工程数学期末考试题
小学数学六年级上期末分主题复习资料——工程问题
第六次练习 工程问题姓名: 学号: 得分:1、 (每空3分,共30分)填空。
(1)一项工程,甲单独做5天完成,则他平均每天完成这项工程的( );若他m 天完成,平均每天完成( )。
(2)一条水渠,甲队6天可以修完,每天修全长的( )。
(3)一条公路长1200千米,汽车共行驶了60小时,每小时行驶( )千米,每小时行了全程的( )。
(4)一条长尾330米的水渠,甲队6天可以修完,每天修全长的( );每天可以修( )米。
(5)一项工程,甲3天完成101,甲一天完成了这项工程的( )。
(6)一项工程,甲每天完成101,乙每天完成51,合作一天完成可完成整个工程的( )。
2、(10分)修一条公路,甲工程队每天修整条公路的401,乙工程队每天修整条公路的501,两队合修,几天能修完?3、(10分)一条公路长1500米,单独修好甲需要15天,乙要10天,两队合修几天才能完成?4、(10分)加工480个零件,师傅单独做,需要6天完成;徒弟单独做,需要8天完成。
现在两人共同做,4天可以完成吗?5、(10分)大客车从A城市开往B城市需要3小时,小客车从B城市开往A城市需要4小时,两车同时分别从A城和B城对开,几小时后相遇?相遇时,大客车行完全程的几分之几?6、(10分)组装一批智能机,甲车间单独做10天完成,乙车间单独做15天完没有完成。
甲乙两个车间合作成,甲乙两个车间同时做若干后,还剩下任务的13了多少天?7、(10分)一批零件,甲队单独做12天完成,乙独做18天完成,二人合作多?少天可以完成这项工程的238、(10分)一辆汽车从甲地去乙地,已经行了全程的40%,再行20千米,就正好行了全程的一半。
甲,乙两地相距多少千米?(挑战自我)。
《工程数学(本)》期末综合练习
《工程数学(本)》期末综合练习一、单项选择题1.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ). A .()BAAB 11=- B .()111---+=+B A B A C .()111---=B A AB D .1111----+=+B A B A正确答案:A2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( ),其中0≠i a ,)3,2,1(=i .A .0321=++a a aB .0321=-+a a aC .0321=+-a a aD .0321=++-a a a 正确答案:B3.设矩阵⎥⎦⎤⎢⎣⎡--=1111A 的特征值为0,2,则3A 的特征值为 ( ) .A .0,2B .0,6C .0,0D .2,6 正确答案:B4. 设A ,B 是两事件,则下列等式中( )是不正确的. A. )()()(B P A P AB P =,其中A ,B 相互独立 B. )()()(B A P B P AB P =,其中0)(≠B P C. )()()(B P A P AB P =,其中A ,B 互不相容 D. )()()(A B P A P AB P =,其中0)(≠A P 正确答案:C5.若随机变量X 与Y 相互独立,则方差)32(Y X D -=( ). A .)(3)(2Y D X D - B .)(3)(2Y D X D + C .)(9)(4Y D X D - D .)(9)(4Y D X D + 正确答案:D6.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是( )矩阵.A .s n ⨯B .n s ⨯C .t m ⨯D .m t ⨯ 正确答案:B7.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX = O 的解,则( )是AX =B 的解. A .213231X X + B .213231ηη+ C .21X X - D .21X X + 正确答案:A8.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( ) . A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101 B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100 正确答案:C9. 下列事件运算关系正确的是( ).A .AB BA B += B .A B BA B +=C .A B BA B +=D .B B -=1 正确答案:A10.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( ). A .)3,2(-N B .)3,4(-N C .)3,4(2-N D .)3,2(2-N 正确答案:D11.设321,,x x x 是来自正态总体),(2σμN 的样本,则( )是μ的无偏估计. A .321525252x x x ++ B .321x x x ++ C .321535151x x x ++ D .321515151x x x ++ 正确答案:C12.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( ).A .χ2分布 B .t 分布 C .指数分布 D .正态分布 正确答案:B二、填空题1.设412211211)(22+-=x x x f ,则0)(=x f 的根是 .应该填写:2,2,1,1--2.设向量β可由向量组n ααα,,,21 线性表示,则表示方法唯一的充分必要条件是n ααα,,,21 .应该填写:线性无关3.若事件A ,B 满足B A ⊃,则 P (A - B )= . 应该填写:)()(B P A P -4..设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x kx f ,则常数k = .应该填写:π45.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x n x 11,则~x .应该填写:)1,0(nN 6.行列式701215683的元素21a 的代数余子式21A 的值为= . 应该填写-567.设三阶矩阵A 的行列式21=A ,则1-A = . 应该填写:28.若向量组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k .应该填写:2≠9.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 个解向量. 应该填写:310.设A B ,互不相容,且P A ()>0,则P B A ()= . 应该填写:011.若随机变量X ~ ]2,0[U ,则=)(X D . 应该填写:31 12.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ的 估计. 应该填写:无偏三、计算题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210211321,100110132B A ,求:(1)AB ;(2)1-A . 解:(1)因为210110132-=--=A 12111210211110210211321-=-===B 所以2==B A AB .(2)因为 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100010110001132I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→10010011001012/32/1001100100110010101032所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-10011012/32/11A .2.求齐次线性方程组 ⎪⎩⎪⎨⎧=++--=++++=++++0233035962023353215432154321x x x x x x x x x x x x x x 的通解.解: A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--326001130012331203313596212331⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100001130012331⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100000130001031 一般解为 ⎪⎪⎩⎪⎪⎨⎧=-=--=0313543421x x x x x x ,其中x 2,x 4 是自由元令x 2 = 1,x 4 = 0,得X 1 =)0,0,0,1,3('-; x 2 = 0,x 4 = 3,得X 2 =)0,3,1,0,3('--所以原方程组的一个基础解系为 { X 1,X 2 }.原方程组的通解为: 2211X k X k +,其中k 1,k 2 是任意常数.3.设随机变量)1,4(~N X .(1)求)24(>-X P ;(2)若9332.0)(=>k X P ,求k 的值. (已知9332.0)5.1(,8413.0)1(,9775.0)2(=Φ=Φ=Φ).解:(1))24(>-X P =1-)24(≤-X P= 1-)242(≤-≤-X P =1-()2()2(-Φ-Φ) = 2(1-)2(Φ)=0.045. (2))44()(->-=>k X P k X P =1-)44(-≤-k X P=1-)5.1(9332.0)4(Φ==-Φk )5.1()5.1(1)4(-Φ=Φ-=-Φk即 k -4 = -1.5, k =2.5.4.某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5 cm ,标准差为0.15cm.从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4,10.6,10.1,10.4问:该机工作是否正常(05.0=α, 96.1975.0=u )?解:零假设5.10:0=μH .由于已知15.0=σ,故选取样本函数nx U σμ-=~)1,0(N经计算得375.10=x ,075.0415.0==nσ,67.1075.05.10375.10=-=-nx σμ由已知条件96.121=-αu,且2196.167.1αμσμ-=<=-nx故接受零假设,即该机工作正常.5.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=350211B ,求X . 解:因为B X A I =-)(,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-101210011110001011100201010101001011)(I A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→11100121010120001110100011110010101 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--110121120)(1A I所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X .6.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组. 解:因为(1α 2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→1100770075002341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000200011002341 所以,r (4321,,,αααα) = 3.它的一个极大线性无关组是 431,,ααα(或432,,ααα).7.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ,λ为何值时方程组有非零解?在有非零解时,求出通解. 解:因为A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---λ83352231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→610110231λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ505==-λλ即当时,3)(<A r ,所以方程组有非零解.方程组的一般解为: ⎩⎨⎧==3231x x x x ,其中3x 为自由元.令3x =1得X 1=)1,1,1(',则方程组的基础解系为{X 1}. 通解为k 1X 1,其中k 1为任意常数.8.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率.解:设1A =“取到3颗棋子中至少有一颗黑子”,2A =“取到的都是白子”,3A =“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则 (1))(1)(1)(211A P A P A P -=-=745.0255.01131238=-=-=C C .(2))()()()(3232A P A P A A P B P +=+=273.0018.0255.0255.031234=+=+C C .9.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=0.9成立的常数a . (8413.0)0.1(=Φ,9.0)28.1(=Φ,9973.0)0.2(=Φ). 解:(1)P (1< X < 7)=)23723231(-<-<-X P =)2231(<-<-X P =)1()2(-Φ-Φ = 0.9973 + 0.8413 – 1 = 0.8386 (2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 0.9 所以28.123=-a ,a = 3 + 28.12⨯ = 5.56 10.从正态总体N (μ,9)中抽取容量为64的样本,计算样本均值得x = 21,求μ的置信度为95%的置信区间.(已知 96.1975.0=u ) 解:已知3=σ,n = 64,且nx u σμ-= ~ )1,0(N因为 x = 21,96.121=-αu,且735.064396.121=⨯=-nuσα所以,置信度为95%的μ的置信区间为: ]735.21,265.20[],[2121=+---nux nux σσαα.四、证明题1.设A 是n 阶矩阵,若3A = 0,则21)(A A I A I ++=--. 证明:因为 ))((2A A I A I ++-=322A A A A A I ---++ =3A I -= I所以 21)(A A I A I ++=--2.设n 阶矩阵A 满足0))((=+-I A I A ,则A 为可逆矩阵.证明: 因为 0))((2=-=+-I A I A I A ,即I A =2 所以,A 为可逆矩阵.3.设向量组321,,ααα线性无关,令2112ααβ+=,32223ααβ+=,1334ααβ-=,证明向量组321,,βββ线性无关。
大学工程数学考试题及答案
大学工程数学考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是微积分的基本定理?A. 积分中值定理B. 洛必达法则C. 牛顿-莱布尼茨公式D. 泰勒级数展开答案:C2. 在概率论中,随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)等于多少?A. 2B. 3C. 4D. 5答案:A3. 线性代数中,一个矩阵A可逆的充分必要条件是什么?A. 行列式非零B. 秩等于A的阶数C. A的所有特征值非零D. 所有选项都是答案:D4. 在复数域中,下列哪个表达式表示复数的共轭?A. z + z*B. z - z*C. |z|^2D. z * z*答案:B5. 傅里叶级数在工程数学中的应用之一是?A. 信号处理B. 量子力学C. 统计物理D. 所有选项都是答案:A二、填空题(每题3分,共15分)6. 函数f(x) = sin(x)的一阶导数是_________。
答案:cos(x)7. 矩阵的特征值是_________。
答案:λ8. 拉普拉斯变换的逆变换通常使用_________。
答案:拉普拉斯逆变换9. 随机变量X和Y相互独立,且P(X=x) = 2x,P(Y=y) = 3y,则P(X+Y=4)等于_________。
答案:1/410. 曲线y = x^2在点(1,1)处的切线斜率是_________。
答案:2三、解答题(共75分)11. (15分)证明函数f(x) = e^x在实数域上是单调递增的。
答案:由于f'(x) = e^x > 0对于所有实数x,因此f(x)在实数域上是单调递增的。
12. (20分)解线性方程组:\[\begin{align*}x + 2y &= 5 \\3x - y &= 4\end{align*}\]答案:使用高斯消元法或克拉默法则,解得 \( x = 2, y = 1.5 \)。
13. (20分)计算下列定积分:\[\int_{0}^{1} x^2 dx\]答案:使用基本积分公式,得到 \( \frac{1}{3}x^3 \) 在0到1的积分为 \( \frac{1}{3} \)。
工程数学期末考试题
概述│││系(院) ││专业││___级________班│装姓名_________________││学号_________________││││││订││││││││线│││││││││││││││││工程数学(下)科试卷试卷说明:一.填空(满分20分,每空2分)1.6ieπ=.2.()Ln i-=.3.已知()(,)(2)f z u x y i xy y=++解析,则'(1)f=.4.21121zdzz z+==++⎰.(方向取正向)5.221zdzz==+⎰.6.方程2z i+=所表示的曲线:。
7.13(1)i+=.8.级数(1)(1)n nni z∞=+-∑的收敛圆为.9.设函数sin()zf zz=,则Re[(),0]s f z=.10.31(2)zdzz z==+⎰.二.判断题(20分,每空2分,用“V”和“X”表示对和错填在每小题前的括号中)()1.12121212;z z z z z z z z+=+⋅=⋅。
()2.函数()2f z x yi=+在复平面内处处连续却处处不可导。
()3.正弦函数和余弦函数在复平面内也具有周期性,周期是2k iπ.()4.如果'()f z存在,那末()f z在z解析。
()5.11212122();zLn z z Lnz Lnz Ln Lnz Lnzz=+=-.()6.解析函数的虚部为实部的共轭调和函数,实部为虚部的共轭调和函数。
()7.242z zz zdz dz iz zπ====⎰⎰。
()8.每一个幂级数的和函数在它的收敛圆内处处解析。
()9.函数Re()()zf zz=当0z→时的极限不存在。
()10.时间函数延迟τ的Laplace变换等于它的象函数乘以指数因子seτ-。
概述三.选择题(20分,每小题2分)( ) 1.函数()f z z =在复平面上(A) 处处可导;(B )处处不可导;(B )仅在0z =处可导;(D )仅在0z =处解析. ( ) 2.1z =为函数1()sin 1f z z =-的 (A )可去奇点; (B )极点; (C )本性奇点; (D) 非孤立奇点. ( ) 3.复数z x iy =+的辐角主值的范围是(A )002θπ≤≤; (B)0πθπ-≤≤;(C)0πθπ-<≤; (D)0πθπ-≤<. ( ) 4.在复平面上处处解析的函数是 (A )()f z Lnz =;(B)()(cos sin )x f z e y i y =+; (C)()Re()f z z z =;(D)()f z =│ ││ │ │ │ ││装│││ ││││订 ││ │ ││ ││ │ 线││││ │ │ │ ││││││ ││ │ │( ) 5.设(34)6n n n i α+=,则级数()0346nn n i ∞=+∑(A) 收敛但非绝对收敛; (B)绝对收敛; (C)发散; (D)条件收敛。
工图期末考试题及答案
工图期末考试题及答案一、选择题(每题2分,共20分)1. 点A的坐标为(2,3),点B的坐标为(4,5),下列哪项是正确的?A. 点A在点B的正上方B. 点A在点B的正下方C. 点A在点B的左下方D. 点A在点B的右上方答案:D2. 直线AB和直线CD平行,下列哪项是正确的?A. AB和CD的斜率相等B. AB和CD的斜率互为相反数C. AB和CD的斜率乘积为-1D. AB和CD的斜率不存在答案:A3. 一个圆的半径为5,其面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B4. 一个长方体的长、宽、高分别为3、4、5,其体积是多少?A. 60B. 120C. 180D. 240答案:A5. 一个圆锥的底面半径为4,高为6,其体积是多少?A. 32πB. 64πC. 96πD. 128π答案:C6. 一个圆柱的底面直径为8,高为10,其侧面积是多少?A. 80πB. 160πC. 240πD. 320π答案:C7. 一个球的半径为5,其表面积是多少?A. 100πB. 150πC. 200πD. 250π答案:C8. 一个正四面体的边长为a,其体积是多少?A. a³√2/12B. a³√2/6C. a³√2/3D. a³√2/4答案:B9. 一个正八面体的边长为a,其表面积是多少?A. 2a²√2B. 4a²√2C. 6a²√2D. 8a²√2答案:C10. 一个正十二面体的边长为a,其体积是多少?A. (15+7√5)a³/4B. (15+7√5)a³/2C. (15+7√5)a³/6D. (15+7√5)a³/8答案:A二、填空题(每题2分,共20分)1. 一个长方体的长、宽、高分别为a、b、c,其表面积为________。
答案:2(ab+bc+ac)2. 一个圆柱的底面半径为r,高为h,其体积为________。
工程数学期末考试题及答案
期末考试题一、填空题(每题2分,共20分)1.若1112132122233132332a a a a a a a a a =,则211122122313111213313233333a a a a a a a a a a a a ---= . 2.设A 为三阶方阵,若3=A ,则*=A .3.若123,,ααα线性无关,则向量组122331,,---αααααα线性 .4.若A ,B 互不相容且()0.4,()0.5P A P B ==,则()P AB = .5.某人每次射击命中目标的概率都是0.8,现连续向同一目标射击,直到第一次命中目标为止所需射击次数的期望为 .6.当z 满足 条件时,21z z +为实数. 7.010d ()n z z r z z z --==-⎰ (1)n ≠.8.设21()(1)(2)f z z z =--,则1z =是()f z 的 . 9.设ℱ[()]()f t F ω=,则ℱ[(3)]f t == .10.若ℒ23[()]9f t s =+,则ℒ2[e ()]t f t -= . 二、选择题(每题2分,共10分)1.设(),()ij mn ij mn a b ==A B ,则 是m 阶方阵(其中m n ≠).A.ABB.T T B AC.T A BD.T AB2.适用于任一线性方程组的解法是 .A.逆矩阵法B.克拉默法则C.行变换法D.以上方法都行3.甲、乙两人射击,A ,B 分别表示甲、乙击中目标,则A B 表示 .A.两人都射中B.至少一人没射中C.两人都没射中D.至少一人射中4.若1n n z+∞=∑收敛,则1n n z +∞=∑ .A.收敛B.发散C.可能收敛可能发散D.不能判定5.设()sin cos f t t t =⋅,则ℱ[()]f t 为 .A.π[(2)(2)]4δωδω+--B.πi[(2)(2)]2δωδω+-- C.πi[(2)(2)]δωδω+-- D.2πi[(2)(2)]δωδω+--三、计算题(每题7分,共70分)1.求1011121421311143D =.2.已知010302101⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,求1-A .3.判定向量组123442113135,,,130112121522⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪====-- ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭αααα是否线性相关.4.求线性方程组1234512345123451323054332x x x x x x x x x x x x x x x ++++=⎧⎪+++-=⎨⎪+++-=⎩的通解.5.某仓库有同样规格的产品6箱,其中甲、乙、丙厂的产品依次为3、2、1箱,三厂的次品率分别为110、115、120.现从中任取1箱,再从该箱中任取一件,求该产品为次品的概率.6.设随机变量X 的概率密度为sin ,0π()0,a x x f x ≤≤⎧=⎨⎩其它,试求:(1)常数a ;(2)ππ{}26P X -<;(3)分布函数()F x .7.求积分221d z z z z =-⎰.8.将函数21(1)z z z +-在01z <<内展成洛朗级数.9.求函数π()sin(5)3f t t =+的傅里叶变换.10.求221()(1)F s s s =+的拉普拉斯逆变换.自测题B参考答案一、1. ;2.9;3.相关;4.0.2;5.1.25;6. ;7.0;8.二级极点;9. ;10. .二、1.D;2.C;3.B;4.A;5.B.三、1.16;2. ;3.线性无关;4. (为任意实数);5.约0.081;6.(1)0.5;(2)0.5;(3);7.0;8. ;9. ;10. .。
2021-2022国家开放大学电大本科《工程数学》期末试题及答案(试卷号:1080)
2021-2022国家开放大学电大本科《工程数学》期末试题及答案(试卷号:1080)2021-2022年度国家开放大学电大本科《工程数学(本)》期末试题及答案(试卷号:1080)一、选择题1.设函数$f(x)=\dfrac{1}{x-1}$,则$f(x)$ 的反函数为()A。
$f^{-1}(x)=\dfrac{1}{x}-1$B。
$f^{-1}(x)=\dfrac{1}{x+1}$C。
$f^{-1}(x)=\dfrac{1}{x}+1$D。
$f^{-1}(x)=\dfrac{1}{x}+2$答案:B解析:设 $y=f(x)$,则 $y=\dfrac{1}{x-1}$,两边取倒数并交换 $x$ 和 $y$,得到 $x=\dfrac{1}{y-1}$,解出 $y$,即$f^{-1}(x)=\dfrac{1}{x+1}$。
2.已知 $f(x)=\ln(1+x)$,则 $f'(x)$ 等于()A。
$\dfrac{1}{1+x}$B。
$\dfrac{1}{x}$C。
$\dfrac{1}{\ln(1+x)}$D。
$\dfrac{x}{1+x}$答案:A解析:$f'(x)=\dfrac{1}{1+x}$。
3.设 $a,b$ 均为正数,则 $\lim\limits_{x\to 0}\dfrac{a^x-1}{b^x-1}$ 等于()A。
$\dfrac{\ln a}{\ln b}$B。
$\dfrac{1}{\ln a-\ln b}$C。
$\dfrac{\ln b}{\ln a}$D。
$\dfrac{\ln a}{\ln b-\ln a}$答案:A解析:$\lim\limits_{x\to 0}\dfrac{a^x-1}{b^x-1}=\lim\limits_{x\to 0}\dfrac{e^{x\ln a}-1}{e^{x\ln b}-1}=\dfrac{\ln a}{\ln b}$。
二、填空题1.设 $f(x)=\sqrt{x+1}$,则$f''(x)=$\underline{\hphantom{~~~~~~~~~~}}。
人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)
人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需6小时完成;如果由乙单独做,需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?2.一项道路工程,甲队单独做9天完成,乙队单独做天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,则乙队还需几天才能完成?3.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?4.某地为了打造风光带,将一段长为的河道整治任务分配给甲,乙两个工程队先后接力完成,共用时天,已知甲工程队每天整治,乙工程队每天整治.求:(1)甲,乙两个工程队分别整治了多长的河道?(2)甲、乙两工程队各整治河道的天数.5.甲、乙两队修一座桥,如果由甲队单独完成,需要15天;如果由乙队单独完成,需要30天.现在由甲队单独做了3天后,承办方接到通知,需要加快修桥进度,后续工程由甲、乙两队共同完成,则甲、乙两队后续需要合作多少天才能修完这座桥?6.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?12360m 2024m 16m7.将一批工业最新动态信息输入管理储存网络,甲单独完成需要4小时,乙单独完成需要6小时.(1)如果让甲、乙合作,需几小时完成这项工作任务的一半?(2)如果乙先做90分钟,然后甲、乙合作,还需多长时间才能完成这项工作?8.某工程队修一条隧道,计划每天修600米,20天完成,而实际每天多修25%,实际可以提前几天完成?(用比例解)9.一项工程,甲单独做需20天完成 ,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?10.修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米,这条公路全长多少千米?11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.正常情况下,甲、乙两人能否履行该合同?12.为了打赢蓝天保卫战,某市环保局对一段长的河道进行整治,整治任务由甲、乙两个工程队来完成.已知甲工程队每天完成,乙工程队每天完成.(1)若该任务由甲、乙两个工程队合作完成,则整治这段河道需要多少天?(2)若甲工程队先单独整治一段时间后离开,剩下的由乙工程队来完成,两队共用时天,求甲、乙工程队分别整治了多长的河道.13.修一条公路,甲单独完成需要20天,乙单独完成需要12天,甲先修4天后,为加快工程进度,乙加入,二人合作完成余下的任务,问还需多少天完成?(列方程解)2400m 30m 50m 6020.某信息管理中心,在距下班还剩4小时的时候,接到将一批工业最新动态信息输入管理储存网络的任务,甲单独做需6小时完成,乙单独做需4小时完成:(1)甲乙合作需要小时完成?(2)若甲先做30分钟,然后甲、乙合作,则甲、乙合作还需多少小时才能完成工作?(3)若甲先做30分钟,然后甲、乙合作1小时,这时又接到新的工作任务,必须调走一人,问剩下那人能否在下班之前完成这项工作?参考答案:。
《工程数学(本)》期末试题及答案
《工程数学(本)》期末试题及答案一、单项选择题(每小题3分,本题共15分)1.设A ,B 都是n 阶矩阵(n>1),则下列命题正确是( ).2222).(B AB A B A A ++=+B .AB=0,且A≠0,则B=0D .若AB=AC ,且A≠0,则B=C2.向量组 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,001的秩是( ). A .1 B .3C .2 D .43.若线性方程组AX=0只有零解,则线性方程组AX=b( ).A .有惟一解B .无解C .有无穷多解D .解的情况不能断定4.袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球概率是( ). 1 256.A103.⋅B 203.C 259.D 5.设f(x)和F(x)分别是随机变量X 分布密度函数和分布函数,则对任意a<b ,有)()(.b F a F A -dx x f B ba )(.⎰dx x F C bu )(.⎰ )()(a f b f D -⋅二、填空题(每小题3分,共15分)1.设A 是2阶矩阵,且2.设A 为押阶方阵,若存在数A 和非零”维向量x ,使得( ),则称x 为A 相应于特征值A 的特征向量.3.若则 P(AB)= ( ),4.设随机变量X ,若D(X)=3,则D(一X+3)= ( ).5.若参数θ的两个无偏估计量1ˆθ和2ˆθ满足)ˆ()ˆ(21θθD D >,则称2ˆθ比lθˆ更( ). 三、计算题(每小题】6分,共64分)1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500050002,322121011B A ,求A -1B 2.求线性方程组的全部解.3.设,试求(1)(已知4·据资料分析,某厂生产的一批砖,其抗断强度X ~N(32.5,1.21),今从这批砖中随机地抽取了9块,测得抗断强度(单位:kg /cm 2)平均值为31.12,问这批砖抗断强度是否合格(96.1,05.0975.0==u α).四、证明题(本题6分)设A ,B 为随机事件,试证:P(A)=P(A--B)+P(AB).一、单项选择题(每小题3分,本题共l5分)1.C 2.B 3.D 4.D 5.B二、填空题(每小题3分。
电大《工程数学》期末真题(含31套历年真题:2002年至2017年)
) 。
D. D. 秩(A)<n 或秩(B)<n
三、计算题(每小题 10 分,共 30 分)
2
一、单项选择题(每小题 3 分,本题共 21 分) 1. 1. B 2. 2. D 3. 3. B 4. 4. D 5. 5. C 6. 6. A 7. 7. C 二、填空题(每小题 3 分,共 15 分) 1. 1. 相等 2. 2. t,s(答对一个给 2 分) 3. 3. P(A)P(B) 4. 4. p(1-p)
1
中央广播电视大学 2001—2002 学年度第一 学期“开放本科”期末考试土木专业工程数 学(本)试题
2002 年 1 月
一、单项选择题(每小题 3 分,本题共 21 分)
4.设 A,B 均为 n 阶方阵,若 AB=0,是一定有( A. A. A=0 或 B=0 B. B. 秩(A)=0 或秩(B)=0 C. C. 秩(A)=n 或秩(B)=n
0 00
, 则{ A} 今(
0 0
A . 2 4
1 3 . 一 2 4
C.0
U . 1 2
’,口“ z + " + a . } , 若有 O a , 十O a z - } - . . . 0 a . = 0 , 则向量组 a } , a z ・, 对 于向量组 a ' ,a
(含 31 套历年真题)2002 年 1 月至 2017 年 7 月 国家开放大学(中央电大)“开放本科”期末考 试《工程数学》(本)试题及参考答案(含 15 年 31 套真题)
试卷代号:1080
《工程数学》真题目录(31 套)
1、2002 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 2、2003 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 3、2003 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 4、2004 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 5、2004 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 6、2005 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 7、2005 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 8、2006 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 9、2006 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 10、2007 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 11、2007 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 12、2008 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 13、2008 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 14、2009 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 15、2009 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 16、2010 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 17、2010 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 18、2011 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 19、2011 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 20、2012 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 21、2012 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 22、2013 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 23、2013 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 24、2014 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 25、2014 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 26、2015 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 27、2015 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 28、2016 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 29、2016 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 30、2017 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 31、2017 年 6 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案
工程数学期末考试试题与标准答案及评分标准模板
《工程数学》试题(A 卷)(考试时间: 90 分钟)一、选择题(共30分,共10小题,每小题3分)1.函数293x x xy -++=的定义域是( ). A.{}3|-≥x x ; B.{}3|≤x x ;C.{}33|≤≤-x x ; D .{}33|≤<-x x . 2.函数x y =在0=x 处( ) .A.连续且可导;B.不连续且不可导; C 不可导但连续;D.不连续但可导. 3.x x arctan lim +∞→=﹙ ).A.0;B.不存在 ;C. 2π-; D.2π. 4.若11,1,22()3,1,1,1x x f x x x ⎧+<⎪⎪==⎨⎪>⎪⎩,则1lim ()x f x →=( ). A.2; B. 1; C.1-; D.不存在. 5.函数11)(-=x x f 的水平渐近线是( ). A. 1=x ; B. 1-=y ; C. 0=x ; D. 0=y . 6.函数()y f x =在x 处可导是该点可微的( )条件.A.必要;B.充分;C.充要;D.无关.7.若),)(b a x f 在(内二阶可导,且0)(,0)(<''<'x f x f ,则在),(b a 内函数( ). A.单调减,凸函数; B. 单调增,凸函数; C. 单调减,凹函数; D. 单调增,凹函数.8.函数22,1(),1x x f x x x >⎧=⎨≤⎩,在点1x =处( ).A.不连续;B.连续;C. ()2f x '=可导且;D.无法判断. 9.设函数()f x ,()g x 在[,]a b 上连续,且()()f x g x ≥,则( ).A.()d ()d bbaaf x xg x x ≥⎰⎰ ; B.()d ()d bbaaf x xg x x ≤⎰⎰;C.()d ()d f x x g x x ≥⎰⎰ ; D.()d ()d f x x g x x ≤⎰⎰.10. 曲线x y x y ==与2所围成的平面图形绕x 轴旋转而成的旋转体的体积为( ).A. ⎰-124d )(x x x π; B. ⎰-142d )(x x x π;C.⎰-12d )(y y y π; D. ⎰-12d )(y y y π.二、填空题(共20分,共5小题,每小题4分)1.函数654)(22+--=x x x x f ,则2=x 是_______间断点,3=x 是 _______间断点.2. 复合而成和是由函数函数 e arcsin x y =. 3.点()1,0是曲线b ax x y +-=233 的拐点,则=a ______,=b ______. 4. 设 ()f x 的一个原函数为1x,则=)(x f . 5. ⎪⎩⎪⎨⎧==tty x 2ee,=x y d d __________.2.已知y x x y '+=求,cos sin 22.三、计算题(共42分,共6小题,每小题7分)1.求x x x2)51(lim +∞→ 2.已知y x x y '+=求,cos sin 22. 3. 已知.d ,2cos e 2y x y x 求= 4.求x x x d e 2⎰. 5.求⎰exdx x 1ln .6.求由曲线2,,1===x x y xy 围成的平面图形的面积. 四、证明题(共8分,共1小题,每小题8分)1.证明不等式()()0,1ln 1><+<+x x x xx.《工程数学》试题(B 卷)(考试时间: 90 分钟)一、选择题(共30分,共10小题,每小题3分)1.函数242y x x x-++=的定义域是( )..A {}2|-≥x x ; B.{}2|≤x x ;C.{}22|≤≤-x x ; D . {}22|≤<-x x2. 当0→x 时,下列变量为无穷小的是( )A.;cos x x B. ;sin xxC.;12-xD..sin 1x - 3.x x arctan lim ∞→=﹙ ﹚.A.0 ;B.不存在 ;C. —2π ; D.2π. 4.若⎩⎨⎧>-≤=1,21,)(2x x x x x f ,则1lim ()x f x →=( ).2;A .1;B .1;C - .;D 不存在5.函数xx f 1)(=的水平渐近线是( ). A. 1=x B. 1-=y C. 0=x D. 0=y6.函数()y f x =在x 处可导是该点连续的( )条件.;A 必要 .;B 充分 .;C 充要 .;D 无关7.若),)(b a x f 在(内二阶可导,且0)(,0)(///>>x f x f ,则在),(b a 内函数( ).A.单调减,凸函数B. 单调增,凸函数C. 单调减,凹函数D. 单调增,凹函数8.函数⎪⎩⎪⎨⎧>+≤=1,21211,)(2x x x x x f ,在点1x =处( )A.连续且可导;B.不连续且不可导; C 不可导但连续;D.不连续但可导.9.设函数()f x 在[,]a b 上连续,则( )dx x f dx x f A b ab a⎰⎰≤)()(. dx x f dx x f B bab a⎰⎰≥)()(.dx x f dx x f C b ab a⎰⎰=)()(. dx x f dx x f D bab a⎰⎰>)()(.10. 曲线12==x x y 与及x 轴所围成的平面图形绕x 轴旋转而成的旋转体的体积为( ) A. ⎰14dx x πB. ⎰102dx x π C. ⎰10ydy π D. ⎰12dy y π二、填空题(共20分,共5小题,每小题4分)1.函数231)(22+--=x x x x f ,则2=x 是_______间断点,1=x 是 _______间断点. 2. 复合而成和是由函数函数 sin x e y =. 3.点(1,3)是曲线y=23bx ax + 的拐点,则a=______,b=______. 4. 设 ()f x 的一个原函数为x sin ,则=)(x f .5. ⎩⎨⎧==3x bt y at ,=dxdy__________. 三、计算题(共42分,共6小题,每小题7分)1.x x x2)31(lim +∞→2.已知')),ln(ln(ln y x y 求=.3. 已知.dy ,2sin 求x x y =4.求dx xe x ⎰.5.求⎰-224dx x .6.求由曲线0,1,2===y x x y 围成的平面图形的面积.四、证明题(共8分,共1小题,每小题8分)1.证明:当x x x 211,0+>+>时一、单项选择题(共30分,共10小题,每小题3分)1、D2、C3、D4、B5、D6、C7、A8、A9、A 10、B 二、填空题(共20分,共5小题,每小题4分)1、可去(或者第一类);无穷(或者第二类)2、x u e y u arcsin ,==;3、a=0,b=1;4、21x-;5、t2e . 三、计算题(共42分,共6小题,每小题7分)1..7(5())5111(lim (3()5111(lim )51(lim 101051)51(102分)分)分)e x x xx x x x x x =+=+=+∞→∞→∞→ 2..7(sin 2cos sin 24()(sin )(sin sin 22'22''分)分)x x x x x x x x y -=-= 3..7()2sin 2(cos 23(2cos 2cos 222分)分)dx x x e x d e xde dy x x x -=+= 4. C e x d e dx e x dx xe x x x x +===⎰⎰⎰2222215)((213()(212'2分)分).(7分) 5.1ln ex xdx ⎰=211ln 2exdx ⎰(3分)=2221111111ln 2244ee x x x dx e x -⋅=+⎰(7分).6..72ln 235(|)ln 21(3()1(21221分)(分)分)-=-=-=⎰x x dx x x S 四、证明题(共8分,共1小题,每小题8分)1、证:令f(x)=ln(1+x), 在[]x 0,上连续,在(0,x )内可导, )(x f '=x11+,(2分) 由拉格朗日中值定理,在(0,x )内至少存在一点ξ,使得ξ+=-+-+110)01ln()x 1ln x ((4分) 有 ln(1+x)=ξ+1x ,又 0<x <ξ, 1<1+x +<1ξ, x xx x <+<+ξ11,(7分) 所以,x x xx<+<+)1ln(1 (8分)一、单项选择题(共30分,共10小题,每小题3分)1、D2、C3、B4、B5、D6、B7、D8、C9、A 10、A . 二、填空题(共20分,共5小题,每小题4分)1、无穷(或者第二类);可去(或者第一类)2、x u e y u sin ,==;3、29,23=-=b a ;4、x cos ;5、abt 23.三、计算题(共42分,共6小题,每小题7分)1..7(5())3111(lim (3()3111(lim )31(lim 6631)31(62分)分)分)e x x xx x x x x x =+=+=+∞→∞→∞→ 2..7(1ln 1)ln(ln 16()(ln ln 1)ln(ln 13())(ln(ln )ln(ln 1'''分)分)分)xx x x x x x x y ===3..7()2cos 22(sin 3(2sin 2sin 分)分)dx x x x x xd xdx dy +=+=4. .7(4()(''分)分)C e xe dx e x xe dx ex dx xe x x x x x x +-=-==⎰⎰⎰5.令2,2;0,0,cos 2sin 2π======t x t x tdt dx t x 当当则.(1分)⎰-224dx x =tdt ⎰202cos 4π(3分)=⎰+20)2cos 1(2πdt t (4分)=20|)2sin 21(2πt t +(6分)=π.(7分))6..7315(|313(10312分)(分)分)===⎰x dx x S 四、证明题(共8分,共1小题,每小题8分)1、证:令x x x f 211)(+-+=, )(x f '=02x1121>+-+x ,0>x (3分)0)0()(,0],0[)(=>>f x f x x x f 单调递增,在,(6分) ,0211)(>+-+=x x x f 即x x 211+>+.(8分)。
工程数学本期末试题及答案
工程数学本期末试题及答案【工程数学本期末试题及答案】一、选择题(每题5分,共20题)1. 下列哪个不是函数的定义?A. 函数的定义域B. 函数的值域C. 函数的图像D. 函数的导数2. 设函数 f(x) = 2x^3 + 3x^2 - 6x + 1,求 f'(2) 的值。
A. 24B. 28C. 32D. 363. 若函数 f(x) = e^x,则 f'(x) 等于:A. e^xB. x^eC. e^(x-1)D. 04. 以下哪个不是极限的定义?A. 函数在某点处的连续性B. 函数的左极限C. 函数的右极限D. 函数的无穷极限5. 设函数 f(x) = x^2 - 3x + 2,求 f(-2) 的值。
A. 2B. 4C. 6D. 86. 已知函数 f(x) = sin(2x),则 f"(x) 的值为:A. -2sin(2x)B. 2cos(2x)C. -4sin(2x)D. 4cos(2x)7. 若函数 f(x) = ln(x),则 f'(x) 等于:A. e^(1/x)B. 1/xC. 1/(ex)D. x^28. 函数 f(x) = x^3 + 2x^2 - 5x + 3 的最大值为:A. 5B. 6C. 7D. 89. 函数 f(x) = 2x^2 + 3x - 1 的最小值为:A. -1B. 0C. 1D. 210. 已知函数 f(x) = x^3,则函数 f(x) 在(-∞,+∞)上的取值范围是:A. [0,+∞)B. (-∞,0]C. (-∞, +∞)D. [0,1]二、填空题(每题5分,共10题)1. 设函数 f(x) = 3x^2 + 2x - 5,则 f'(x) = ___________。
2. 函数 y = e^(-x) 的图像是一条 ___________ 曲线。
3. 若函数 f(x) = ln(x),则 f"(x) = ___________。
电大本科 工程数学-期末复习试卷含答案
工程数学综合练习(一)一、单项选择题A. 1B. -1C. 0D. 24. A.B 都是〃阶矩阵(〃:>1),则下列命题正确的是(). A.AB=BAB,若AB = O ,则 A = 0或8 = 0C. (A-B)2 =A 2-2AB + B 2D.仇耳=凤同 5. 若A 是对称矩阵,则等式()成立. A. A -1 = A f B. A = —A C. A = A'D. A ,= -A1 2 6. 若 A = 3 5,则A. 0 9. 向量组a, =[1 2 3]',%=[2 2 4]',%=[1 极大无关组可取为().B. a,,a 2C.D. %,。
2,%,。
410. 向量组 %=[1,0,-2],%=[2,3,5],%=[1,2,1],则 2a,+a 2-3a 3 =b a 2 b 2a 3 a 2 3角-如C 2a 33%-打 C3B 是矩阵,则下列运算中有意义的是(). A'B D AB' 3. 己知A7.若人=2 2 2 23 3 3 3 44 4 4C. 2A. 4 2]',%= [2 3 5]'的一个 C 2 C 3C|设A 是〃xs 矩阵, AB B. BA C.2. A. 0 0 -a,若 AB = ,则。
=(8.向量组A. 1,-3,2B. 1,-3,-2]C. 1,3,-2]D. 1,3,2]11. 线性方程组」X,+X2=+X2=解的情况是(). x 2 + x 3 = 0A.无解 D.只有零解 C.有唯一非零解 D.有无穷多解12, 若线性方程组AX=O 只有零解,则线性方程组AX=b (). A.有唯一解 B.有无穷多解C.可能无解 D.无解 13. 若〃元线性方程组AX=O 有非零解,则()成立. A. r(A) < n B. r(A) = n C. |A| = 0D. A 不是行满秩矩阵14. 下列事件运算关系正确的是(). C. D. B = BA+BA15. 对于随机事件A,B.下列运算公式()成立. A. P(A + B) = P(A) + P(B) - P(AB) B. P(AB) = P(A)P(B) C. P(AB) = P(8)P(B|A) D. P(A + B) = P(A) + P(B)16. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都 是红球的概率是(). A. AB. Ac. AD .210 20 252517.若随机事件满足AB = 0,则结论()成立 A. A 与8是对立事件 B. A 与B 互不相容C. A 与B 相互独立D. 1与京互不相容 18.若A, B 满足() ,则A 与8是相互独立. A. P(A + B) = P(A) + P(B) B. P(A-B) = P(A)-P(B)Dpg端 中的数组可以作为离散型随机变量的概率分布.A. B = BA + BAB. A = BA + BAC. P(AB) = P(A)P(B) 19.下列数组中,(1 1 1 3 1 1 3 12 4 16 162 4 8 820. 设X123则 P(X <2)=0.1 0.3 0.4 0.2A. 0.1B. 0.4C. 0.3D. 0.221. 随机变量X 〜8(3,:), 则 P(X <2)=()A. 0B.C.1D782822.已知X 〜N(2,22),若aX+b~ N(O,1),那么(). A. a = 2,b = -2 B.。
《工程数学》期末考试试卷附答案
《工程数学》期末考试试卷附答案一、单项选择题 (每小题3分,共15分)1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。
A. 全部击中 B. 至少有一发击中 C. 必然击中 D. 击中3发2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。
A. X 和Y 独立。
B. X 和Y 不独立。
C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。
A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。
B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( ) A. 对于任意的μ, P 1=P 2 B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正 确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)二、填空题 (每空3分,共15分)1. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。
2.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。
3.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正 常工作的概率为 。
工程数学题六年级期末试卷
一、选择题(每题2分,共20分)1. 下列哪个数是素数?A. 17B. 18C. 19D. 202. 以下哪个图形是正方形?A. 边长为5cm的正方形B. 边长为4cm,对角线长度为6cm的平行四边形C. 边长为3cm,对角线长度为5cm的等腰三角形D. 边长为6cm,对角线长度为8cm的矩形3. 下列哪个数是偶数?A. 17B. 18C. 19D. 204. 一个长方形的长是8cm,宽是4cm,它的周长是多少?A. 16cmB. 24cmC. 32cmD. 40cm5. 小明骑自行车从家到学校,如果以每小时10公里的速度行驶,需要1小时到达。
如果以每小时15公里的速度行驶,需要多少时间到达?A. 40分钟B. 30分钟C. 20分钟D. 10分钟6. 下列哪个比例是正确的?A. 2:4 = 3:6B. 2:3 = 4:6C. 2:4 = 3:5D. 2:5 = 4:37. 下列哪个数是3的倍数?A. 12B. 13C. 14D. 158. 一个圆的半径是5cm,它的直径是多少?A. 10cmB. 15cmC. 20cmD. 25cm9. 小华买了3个苹果,每个苹果重200克,她一共买了多少克苹果?A. 600克B. 700克C. 800克D. 900克10. 下列哪个数是分数?A. 0.5B. 0.25C. 0.125D. 0.375二、填空题(每题2分,共20分)11. 2的倍数包括______,______,______,______,______,______,______,______,______,______。
12. 一个长方形的长是______cm,宽是______cm,它的周长是______cm。
13. 4:8的比例可以简化为______:______。
14. 一个三角形的底是______cm,高是______cm,它的面积是______cm²。
15. 一个正方形的边长是______cm,它的周长是______cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
页脚内容1
│
│
│
系(院) │
│ 专业 │
│
___级________班 │
装 姓名_________________
│
│ 学号_________________
│
│ │
│ │
│
订
│
│ │
│
│
│ │
│ 线 │ │ │ │ │
│
│ │ │ │ │ │ │ │ │ │
│
工程数学(下)科试卷
试卷说明:
一.填空(满分20分,每空2分)
1.6
i
e π= .
2.()Ln i -= .
3.已知()(,)(2)f z u x y i xy y =++解析,则'
(1)f = . 4.211
21z dz
z z +==++⎰ .(方向取正向) 5.
2
21z dz
z ==+⎰ . 6.方程2z i +=所表示的曲线: 。
7.1
3
(1)
i += .
8.级数
(1)
(1)n
n n i z ∞
=+-∑的收敛圆为 .
9.设函数sin ()z
f z z
=,则Re [(),0]s f z = . 10.3
1
(2)z dz z z ==+⎰ .
二.判断题(20分,每空2分,用“V ”和“X ”
表示对和错填在每小题前的括号中)
( ) 1.12121212;z z z z z z z z +=+⋅=⋅。
( ) 2.函数()2f z x yi =+在复平面内处处连续却处处不可导。
( ) 3.正弦函数和余弦函数在复平面内也具有周期性,周期是2k i π.
( ) 4.如果'
0()f z 存在,那末()f z 在0z 解析。
( ) 5.1
1212122
();z Ln z z Lnz Lnz Ln
Lnz Lnz z =+=-. ( ) 6.解析函数的虚部为实部的共轭调和函数,实部为虚部的共轭调和函数。
( ) 7.
24
2z z z z
dz dz i z z π====⎰⎰。
( ) 8.每一个幂级数的和函数在它的收敛圆内处处解析。
( ) 9.函数Re()
()z f z z
=
当0z →时的极限不存在。
页脚内容2
( )10.时间函数延迟τ的Laplace 变换等于它的象函数乘以指数因子s e τ-。
三.选择题(20分,每小题2分) ( ) 1.函数()f z z =在复平面上
(A) 处处可导;(B )处处不可导;(B )仅在
0z =处可导;
(D )仅在0z =处解析.
( ) 2.1z =为函
数1
()sin 1f z z =-的
(A )可去奇点; (B )极点; (C )本性奇点; (D) 非孤立奇点. ( ) 3.复数z x iy =+的辐角主值的范围是
(A )
002θπ≤≤; (B)0πθπ-≤≤;
(C)0πθπ-<≤; (D)0πθπ-≤<.
( ) 4.在复平面上处处解析的函数是 (A )
()f z Lnz =;
(B)()(cos sin )x
f z e y i y =+; (C)()Re()f z z z =; (D)()f z =
│ │ │ │ │ │
│ │
装
│ │
│ │ │ │
│
订 │
│ │ │
│ │
│ │ 线
│
│
│
│
│ │
│ │ │
│
│
│
│ │ │ │ │
( ) 5.设(34)6n n n i α+=,则级数()0
346n
n n i ∞
=+∑
(A) 收敛但非绝对收敛; (B)绝对收敛; (C)发散; (D)条件收敛。
( ) 6.设C 为圆周2z =,方向为正向,则积分
()
2
sin 3C
z
dz z π-⎰
等于
(A)i π; (B)2i π; (C)4i π; (D)0. ( ) 7.设C 为23z ππ<<内任一正向简单闭曲线,则1z C z
dz e =-⎰
(A)0; (B)2
8π; (C)2
8π-; (D)2
8i π. ( ) 8.设C 为圆周2z i -=,方向为正向,则积分2
sin z C e z
dz z -⎰等于 (A)10i π; (B)2i π; (C)0; (D)3e
i π.
(
) 9.设C 为正向圆周1z =,则3121cos z C z e dz z ⎛⎫
+= ⎪ ⎪⎝⎭
⎰
(A )2i π-; (B)2i π; (C)4i π; (D)0.
( ) 10.下列说法正确的是
(A)两个复数乘积的模等于它们的模的乘积;两个复数乘积的辐角等于它们的辐角的积;
(B)函数在一点处可微和在一点处可导是两个等价的概念,在一点处解析与在一点处可导
是两个等价的概念;
(C)任意两个调和函数u 与v 所构成的函数u iv +一定是解析函数.
(D)幂级数的和函数()f z 是收敛圆内的解析函数,且可以逐项求导、逐项积分.
四.解答下列各题(20分,每小题5分)
页脚内容3
1
.
计
算的值.
2.求函数22
1
()(1)
f z z =+在原点的泰勒级数.
3.判断函数2
()f z z =的解析性.
│ │ │ │ │ │ │ │ 装 │ │ │ │ │ │ │ 订 │ │ │ │
│
│ │ │ 线 │ │
│
│ │ │ │ │ │ │ │ │ │ │ │ │
4.证明:当C 为任何不通过原点的简单闭曲线时,21
0C
dz z
=⎰
.
五.求方程''
'
23t
y y y e -+-=满足初始条件'
00
0,1t t y y
====的解.(10分)
页脚内容4
六
.
若
120,0;0,0;
()()1,0,,0.t
t t f t f t t e t -<<⎧⎧==⎨⎨≥≥⎩⎩ 求1()f t 与2()f t 的卷
积.(10分)。