频谱与功率谱的概念-FFT与相关系数的C++代码
傅里叶变换与频谱分析
傅里叶变换与频谱分析傅里叶变换是一种将时域信号转换为频域信号的数学工具,它是基于法国数学家傅里叶的研究成果而得名的。
频谱分析是利用傅里叶变换将信号分解为不同频率成分的过程。
通过傅里叶变换和频谱分析,我们可以理解信号的频域特性,以及从频域的角度对信号进行处理和解释。
傅里叶变换的基本原理是将一个周期为T的连续函数f(t)分解为一组基函数的线性组合。
这组基函数是正弦和余弦函数,它们的频率是f(t)中的频率成分。
在数学表达上,傅里叶变换是通过将一个信号f(t)与一个复指数函数e^(jωt)相乘,再对整个信号进行积分来实现的。
傅里叶变换公式如下所示:F(ω) = ∫f(t)e^(-jωt)dt其中,F(ω)是信号f(t)在频率ω处的振幅和相位信息。
通过傅里叶变换,我们可以将一个时域信号从时间域转换到频率域。
在频率域中,我们可以分析信号的频率特性,包括信号的频率成分以及它们在整个信号中所占的比例。
这些信息对于了解信号的谐波分量、周期性、滤波等操作非常重要。
频谱分析是基于傅里叶变换得到的频域信息进行的。
它可以将一个信号在频谱上进行可视化,以便我们更好地理解信号的频域特性。
频谱分析通常呈现为频谱图,横轴表示频率,纵轴表示振幅或功率。
在频谱图中,我们可以观察到信号的频率成分,它们以峰值的形式显示在不同的频率点上。
峰值的强度代表了该频率在信号中的强度或重要性。
通过观察频谱图,我们可以推断信号的频率含量、周期性、峰值频率等信息。
除了用于频域分析的信号处理外,傅里叶变换还在其他领域有广泛应用,例如图像处理、通信等。
在图像处理中,我们可以将图像转换为频域,通过分析图像的频谱特性来实现图像增强、压缩等操作。
在通信领域,傅里叶变换在调制、解调、滤波等过程中被广泛使用。
在实际应用中,由于傅里叶变换涉及到复杂的数学操作和积分运算,计算复杂度较高。
因此,为了提高计算效率,人们发展出了快速傅里叶变换(FFT)算法。
FFT算法通过巧妙地利用信号的对称性质,将傅里叶变换的计算量从O(N^2)降低到O(NlogN),大大提高了计算速度。
fft计算频谱和相位 c语言
一、概述快速傅里叶变换(FFT)是一种常用的计算频谱和相位的方法,广泛应用于信号处理、图像处理、语音识别等领域。
C语言作为一种高效、灵活的编程语言,被广泛应用于嵌入式系统、操作系统、网络编程等方面。
本文将介绍如何使用C语言编写FFT算法,计算信号的频谱和相位。
二、FFT算法原理1. 傅里叶变换的基本概念傅里叶分析是一种数学工具,用来将一个信号分解成不同频率的正弦和余弦函数的叠加。
对于一个离散的信号序列,可以使用快速傅里叶变换来高效地计算其频谱和相位。
2. 快速傅里叶变换的原理FFT是一种将离散信号的傅里叶变换分解为若干子变换的算法,其时间复杂度为O(NlogN),远优于普通的傅里叶变换算法。
FFT算法基于蝶形运算和分治策略,通过递归地将N个信号点划分为两个子序列,然后分别计算它们的傅里叶变换,最后再将结果合并得到整体的傅里叶变换。
三、C语言实现FFT算法1. 数据结构定义在C语言中,可以使用数组来存储信号序列,并且定义结构体来表示复数及其运算。
例如:```ctypedef struct {double real; // 实部double imag; // 虚部} Complex;```2. FFT算法实现以递归方式实现FFT算法,需要先实现蝶形运算和分治策略。
以下是一个简化的FFT实现代码示例:```cvoid fft(Complex *input, Complex *output, int N) {if (N == 1) {output[0] = input[0];} else {Complex *even = (Complex*)malloc(N/2 * sizeof(Complex)); Complex *odd = (Complex*)malloc(N/2 * sizeof(Complex)); for (int i = 0; i < N/2; ++i) {even[i] = input[2*i];odd[i] = input[2*i + 1];}fft(even, even, N/2);fft(odd, odd, N/2);for (int k = 0; k < N/2; ++k) {Complex t = {cos(2*PI*k/N), -sin(2*PI*k/N)};output[k] = add(even[k], mul(t, odd[k]));output[k + N/2] = sub(even[k], mul(t, odd[k]));}free(even);free(odd);}}```4. 主函数调用在主函数中可以定义输入序列,调用fft函数计算其傅里叶变换,并进一步计算频谱和相位。
功率谱和频谱的区别
功率谱和频谱的区别功率谱和频谱是信号处理和频率分析中两个重要的概念。
尽管它们都与信号的频率特性有关,但功率谱和频谱之间存在一些区别。
本文将就功率谱和频谱的定义、计算方法以及其在实际应用中的区别进行详细介绍。
首先,我们来了解功率谱的概念。
功率谱是用来描述信号频率分布和能量分布的一种方法。
它可以通过将信号在频域上进行傅里叶变换来计算得到。
功率谱图能够展示出信号在不同频率上的功率或能量分布情况。
通常,功率谱表示信号的频率分量与其对应的功率之间的关系。
频谱则用来描述信号的频率构成。
它是信号在频域上的表示形式,能够展示出信号中不同频率分量的强度或幅度。
频谱的计算也使用了傅里叶变换,但它关注的是信号在不同频率上的幅度信息,而不是功率信息。
功率谱和频谱之间的区别在于它们关注的不同方面。
功率谱描述了信号在不同频率上的功率分布情况,即不同频率成分对信号的贡献程度。
而频谱则更加关注不同频率分量的幅度信息,即信号的频率构成。
在计算方法上,功率谱可以通过将信号进行傅里叶变换得到,然后将变换结果取模的平方。
这是因为功率谱表示的是信号在不同频率上的功率或能量分布。
而频谱的计算也可以通过傅里叶变换来实现,但一般只需要取变换结果的绝对值即可。
功率谱和频谱在实际应用中有着不同的用途。
功率谱主要用于分析信号的能量分布情况,从中可以得到信号的主要频率成分。
它在时序分析、振动分析、音频处理等领域有着广泛的应用。
而频谱则主要用于表示信号的频率构成,能够清晰展示信号中不同频率分量的强度信息。
频谱在调频广播、音频解码、通信工程等领域有着广泛的应用。
除了以上的区别,功率谱和频谱还有一个重要的概念是密度谱。
密度谱是对功率谱或频谱进行归一化处理得到的,用来表示单位频率或单位带宽上的功率或幅度信息。
密度谱能够更好地描述信号在不同频率或带宽上的分布情况,特别适用于宽带信号或窄带信号的频率分析。
综上所述,功率谱和频谱是描述信号频率特性的两个重要概念。
功率谱关注信号在不同频率上的功率分布,而频谱则关注信号的频率构成。
c实现快速傅里叶变换输出频谱
标题:C语言实现快速傅里叶变换输出频谱一、简介在信号处理和频域分析中,快速傅里叶变换(FFT)是一种常用的算法,用于将时域的信号转换为频域的频谱。
在C语言中实现快速傅里叶变换可以帮助我们对信号进行高效的频域分析。
本文将从基础开始,介绍C语言实现快速傅里叶变换并输出频谱的方法。
二、快速傅里叶变换概述快速傅里叶变换是一种将离散信号转换为频域表示的算法,它将N个离散时间域采样点转换成N个频域采样点。
快速傅里叶变换算法的核心是分治法,通过递归地将信号分解为奇偶部分,然后合并计算,从而实现高效的频谱分析。
三、C语言实现快速傅里叶变换1. 我们需要定义一个复数结构体,用于表示实部和虚部。
在C语言中,可以使用结构体来表示复数,例如:```ctypedef struct {double real; // 实部double imag; // 虚部} Complex;```2. 接下来,我们可以编写一个函数来实现快速傅里叶变换。
在函数中,我们可以按照快速傅里叶变换的递归算法,将信号分解为奇偶部分,并进行合并计算,最终得到频域表示的频谱。
```cvoid FFT(Complex* x, int N, int inv) {// 实现快速傅里叶变换的代码// ...}```3. 在实现快速傅里叶变换的过程中,我们还需要编写一些辅助函数,例如计算旋转因子和进行信号分解合并等操作。
四、输出频谱在C语言中实现快速傅里叶变换后,我们可以将得到的频域表示的频谱输出到文件或者直接在终端进行可视化。
通过频谱分析,我们可以了解信号的频域特性,包括频率成分、频谱密度等信息。
五、个人观点和理解C语言实现快速傅里叶变换需要深入理解算法的原理,同时对C语言的数据结构和递归算法有一定的掌握。
在实际应用中,我们可以将快速傅里叶变换应用于音频处理、图像处理、通信系统等领域,对信号的特性进行频域分析。
六、总结通过本文的介绍,我们了解了C语言实现快速傅里叶变换并输出频谱的方法。
傅里叶变换及C语言实现
傅里叶变换及C语言实现傅里叶变换(Fourier Transform)是一种将时域信号转换为频域信号的数学工具。
它是由法国数学家傅里叶(Joseph Fourier)在19世纪提出的,被广泛应用于信号处理、图像处理、通信等领域。
F(k)=∫[f(x)e^(-2πikx)]dx其中,F(k)是频域中的复数值表示,k表示频率,f(x)是时域信号。
在计算机中,我们通常使用离散傅里叶变换(Discrete Fourier Transform,简称DFT),用于处理离散的时域信号。
离散傅里叶变换可以表示为:X(k)=∑[x(n)e^(-2πikn/N)]其中,X(k)是频域中的复数值表示,k表示频率,x(n)是时域信号,N表示信号的长度。
C语言是一种广泛应用于嵌入式系统、操作系统、驱动程序等领域的编程语言。
在C语言中,我们可以通过编写代码来实现傅里叶变换。
以下是一个简单的C语言程序,用于实现离散傅里叶变换(DFT):```C#include <stdio.h>#include <math.h>#define N 8 // 信号长度typedef structdouble real;double imag;int k, n;double angle;for(k = 0; k < N; k++)output[k].real = 0;output[k].imag = 0;for(n = 0; n < N; n++)angle = 2 * M_PI * k * n / N;output[k].real += input[n].real * cos(angle) + input[n].imag * sin(angle);output[k].imag += input[n].imag * cos(angle) - input[n].real * sin(angle);}}int main(void)int k;dft(input, output);for(k = 0; k < N; k++)printf("X(%d) = %f + %fi\n", k, output[k].real,output[k].imag);}return 0;```该程序中的信号长度N为8,可以根据实际需求进行修改。
关于功率谱和频谱的区别
(1)信号通常分为两类:能量信号和功率信号;
(2)一般来讲,能量信号其傅氏变换收敛(即存在),而功率信号傅氏变换通常不收敛,当然,若信号存在周期性,可引入特殊数学函数(Delta)表征傅氏变换的这种非收敛性;(3)信号是信息的搭载工具,而信息与随机性紧密相关,所以实际信号多为随机信号,这类信号的特点是状态随机性随时间无限延伸,其样本能量无限。
换句话说,随机信号(样本)大多属于功率信号而非能量信号,它并不存在傅氏变换,亦即不存在频谱;
(4)若撇开搭载信息的有用与否,随机信号又称随机过程,很多噪声属于特殊的随机过程,它们的某些统计特性具有平稳性,其均值和自相关函数具有平稳性。
对于这样的随机过程,自相关函数蜕化为一维确定函数,前人证明该确定相关函数存在傅氏变换;
(5)能量信号频谱通常既含有幅度也含有相位信息;幅度谱的平方(二次量纲)又叫能量谱(密度),它描述了信号能量的频域分布;功率信号的功率谱(密度)描述了信号功率随频率的分布特点(密度:单位频率上的功率),业已证明,平稳信号功率谱密度恰好是其自相关函数的傅氏变换。
对于非平稳信号,其自相关函数的时间平均(对时间积分,随时变性消失而再次退变成一维函数)与功率谱密度仍是傅氏变换对;
(6)实际中我们获得的往往仅仅是信号的一段支撑,此时即使信号为功率信号,截断之后其傅氏变换收敛,但此变换结果严格来讲不属于任何“谱”(进一步分析可知它是样本真实频谱的平滑:卷积谱);
(7)对于(6)中所述变换若取其幅度平方,可作为平稳信号功率谱(密度)的近似,是为经典的“周期图法”;
(8)FFT是DFT的快速实现,DFT是DTFT的频域采样,DTFT是FT的频域延拓。
人们不得已才利用DFT近似完成本属于FT的任务。
若仅提FFT,是非常不专业的。
功率谱和频率谱
功率谱和频率谱
功率谱和频率谱都是信号分析中常用的工具,用于研究信号的频域特性。
它们在不同的上下文中有不同的定义和用途:
功率谱:
1.定义:功率谱是一个信号在频域上的能量分布,表示信号在各个频率上的功率强度。
2.表示:通常用单位频率的功率密度函数来表示,即信号在单位频率范围内的功率。
3.应用:功率谱广泛应用于通信、信号处理、无线通信等领域,用于分析信号的频谱特性,识别信号中的频率成分。
频率谱:
1.定义:频率谱描述了信号在频域上的频率分布情况,表示信号中各个频率成分的相对强度。
2.表示:通常以振幅-频率图或相位-频率图的形式呈现,显示信号在不同频率上的振幅或相位信息。
3.应用:频率谱常用于音频处理、音乐分析、振动分析等领域,帮助了解信号的频率特性。
在某些情况下,功率谱和频率谱可以通过傅立叶变换来相互转换。
傅立叶变换可以将一个信号从时域(时间域)转换到频域(频率域),提供了信号在频域上的全面信息。
总的来说,功率谱和频率谱是频域分析的两个重要工具,用于深入了解信号的频率特性,从而在不同应用领域中发挥作用。
功率谱和频谱
频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的结果是以频率为横坐标的各种物理量的谱线和曲线,即各种幅值以频率为变量的频谱函数F(ω)。
频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。
频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。
一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。
功率谱是一个时间平均(time average)概念;功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。
保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。
有两个重要区别:1. 功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。
(随机的频域序列)2. 功率概念和幅度概念的差别。
此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶矩是否存在,并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。
功率谱密度是信号功率在信号持续频谱带宽上的密度,也就是说功率谱密度对频谱的积分就是功率,也就是相关函数在零点的取值。
随机信号是时域无限信号且不收敛,不具备可积分条件,因此不能直接进行傅氏变换,因此一般采用具有统计特性的功率谱来作为谱分析的依据。
●功率谱与自相关函数是一个傅氏变换对。
●功率谱具有单位频率的平均功率量纲,所以标准叫法是功率谱密度。
●通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。
像白噪声就是平一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。
可以有三种办法来重新定义谱密度,来克服上述困难:一是用相关函数的傅立叶变换来定义谱密度;二是用随机过程的有限时间傅立叶变换来定义谱密度;三是用平稳随机过程的谱分解来定义谱密度。
频谱、幅度谱、功率谱和能量谱含义
频谱、幅度谱、功率谱和能量谱在信号处理的学习中,有一些与谱有关的概念,如频谱、幅度谱、功率谱和能量谱等,常常让人很糊涂,搞不清其中的关系。
这里主要从概念上厘清其间的区别。
对一个时域信号进行傅里叶变换,就可以得到的信号的频谱,信号的频谱由两部分构成:幅度谱和相位谱。
这个关系倒还是简单。
那么,什么是功率谱呢?什么又是能量谱呢?功率谱或能量谱与信号的频谱有什么关系呢?要区分功率谱和能量谱,首先要清楚两种不同类型的信号:功率信号和能量信号。
我们从一个具体的物理系统来引出能量信号和功率信号的概念。
已知阻值为R的电阻上的电压和电流分别为v(t) 和i(t),则此电信号的瞬时功率为:p(t) = v2(t)/R = i2(t)R。
在作定性分析时,为了方便起见,通常假设电阻R为1欧姆而得到归一化(Normolized) 的功率值。
作定量计算时可以通过去归一化,即将实际的电阻值代入即可得到实际的功率值。
将上面的概念做一个抽象,对信号x(t) 定义其瞬时功率为|f (t)|2,在时间间隔(-T/2 T/2) 内的能量为:(1)该间隔内的平均功率为:p = E/T (2)当且仅当f(t)在所有时间上的能量不为0且有限时,该信号为能量信号,即(1)式中的T 趋于无穷大的时候E为有限。
典型的能量信号如方波信号、三角波信号等。
但是有些信号不满足能量信号的条件,如周期信号和能量无限的随机信号,此时就需要用功率来描述这类信号。
当且仅当x(t)在所有时间上的功率不为0且有限时,该信号为功率信号,即(2) 式中的T 趋于无穷大的时候p 为有限。
系统中的波形要么具有能量值,要么具有功率值,因为能量有限的信号功率为0,而功率有限的信号能量为无穷大。
一般来说,周期信号和随机信号是功率信号,而非周期的确定信号是能量信号。
将信号区分为能量信号和功率信号可以简化对各种信号和噪声的数学分析。
还有一类信号其功率和能量都是无限的,如f(t) = t,这类信号很少会用到。
频率与功率谱密度计算公式
频率与功率谱密度计算公式
频率和功率谱密度是信号处理中重要的概念之一。
下面是频率和功率谱密度的基本计算公式:
1. 频率(Frequency):频率是指信号在单位时间内的周期性重复次数,用赫兹(Hz)表示。
频率可以计算为信号的周期的倒数。
公式如下:
频率 = 1 / 周期
2. 周期(Period):周期是指信号完成一个完整周期所需的时间。
周期可以计算为信号的频率的倒数。
公式如下:
周期 = 1 / 频率
3. 功率谱密度(Power Spectral Density):功率谱密度描述
了信号在频域上的功率分布情况。
它是信号功率在单位频率范围内的密度,常用单位为瓦特/赫兹(W/Hz)或分贝/赫兹(dB/Hz)。
功率谱密度可以通过对信号的傅里叶变换(Fourier Transform)得到。
傅里叶变换将信号从时域转换到频域,得到信号在不同频率上的幅度谱,然后将幅度谱的平方得到功率谱密度。
具体而言,对于一个连续时间信号,其功率谱密度可以表示为:
S(f) = |F(w)|^2
其中,S(f) 是频率为 f 的功率谱密度,F(w) 是信号的傅里叶变换。
对于一个离散时间信号,其功率谱密度可以表示为:
S(f) = |X(k)|^2 / N
其中,S(f) 是频率为 f 的功率谱密度,X(k) 是信号的离散傅里叶变换,N 是信号的长度。
需要注意的是,具体的信号处理方法和计算过程可能会因应用场景和算法的不同而有所差异。
上述公式仅提供了基本的概念和计算方法,具体的实现需要结合具体算法和工具来进行。
功率谱 频谱计算
功率谱频谱计算摘要:一、引言二、功率谱和频谱的概念1.功率谱2.频谱三、功率谱和频谱的计算方法1.离散傅里叶变换(DFT)2.快速傅里叶变换(FFT)四、功率谱和频谱在实际应用中的意义1.在信号处理中的应用2.在通信系统中的应用五、总结正文:一、引言在信号处理和通信系统中,功率谱和频谱的计算是非常重要的。
它们可以帮助我们更好地分析和理解信号的特性。
本文将详细介绍功率谱和频谱的概念,以及它们的计算方法。
二、功率谱和频谱的概念1.功率谱功率谱是一种描述信号能量分布的函数,它反映了信号在不同频率下的能量大小。
功率谱通常用一个矩形图表示,横轴是频率,纵轴是信号的功率。
2.频谱频谱是信号在频域中的表示形式,它显示了信号在不同频率下的振幅和相位信息。
频谱通常用一个波形图表示,横轴是频率,纵轴是信号的振幅或相位。
三、功率谱和频谱的计算方法1.离散傅里叶变换(DFT)离散傅里叶变换是一种将时域信号转换为频域信号的算法。
它通过将信号分解成一组正弦和余弦函数的叠加,从而得到信号的频谱。
2.快速傅里叶变换(FFT)快速傅里叶变换是离散傅里叶变换的快速算法。
它利用信号的对称性和周期性,将DFT 的计算复杂度从O(N^2) 降低到O(NlogN)。
四、功率谱和频谱在实际应用中的意义1.在信号处理中的应用功率谱和频谱在信号处理中被广泛应用,如滤波、信号识别、噪声抑制等。
通过分析信号的频谱,我们可以了解信号的频率成分,从而对信号进行适当的处理。
2.在通信系统中的应用在通信系统中,功率谱和频谱的计算对于信号调制和解调、信道估计、误码纠正等环节至关重要。
准确的功率谱和频谱分析可以提高通信系统的性能和可靠性。
五、总结本文介绍了功率谱和频谱的概念,以及它们的计算方法。
通过这些方法,我们可以更好地分析和理解信号的特性。
信号的频谱、幅度谱、相位谱及能量谱密度、功率谱密度
信号的频谱、幅度谱、相位谱及能量谱密度、功率谱密度这篇⽂章的标题起得如此长,实在是为了区分“谱”与“谱密度”。
谱的英⽂原词为spectrum,私以为是函数图象,却⼜不够准确。
信号就是时间的函数,那怎么不把信号称为谱?可知谱是函数图像中的某⼀类⽽已。
每每提及谱,都和频率脱不了⼲系,⽽此⽂的来由,也正是我对Parseval恒等式突发的好奇⼼。
Parseval恒等式是傅⾥叶变换的⼀个重要性质。
说到此,学识渊博的读者,您⾃然很熟悉,傅⾥叶变换将信号从时域或者空域变换到频域上,产⽣频谱。
这谱,⾃然和频率,有着天然的不可分割性。
罢了,再往下说就变成考证了。
即使本⽂意为⼀篇科普,也须得有理科⽂章的简洁。
且说上⽂提到的Parseval恒等式,⽼师有提到该等式的intuitive sense是:傅⾥叶变换的原信号和频谱之间是能量守恒的。
这当然是不错的解释,但却不够shocking,⼀个shocking的解释是,傅⾥叶变换之后的频谱保留了原信号的所有信息。
我当时就震惊了。
当然,只要想到傅⾥叶变换是可逆的(即⼀⼀对应),也就不那么震惊了。
傅⾥叶变换的另⼀个令⼈震惊的事实是:Gaussian分布的密度函数 $e^{-x^2/2}$是唯⼀的⼀个傅⾥叶变换不变函数。
Gaussian密度函数的⼀阶导数与哺乳动物视觉感知系统主视⽪层简单细胞的感受野(cortical receptive field)具有相似的结构。
泛函分析中,Gaussian密度函数的极限($\sigma\to\infty$)是delta-dirac函数 $\delta(x)$,即脉冲函数。
更简单地,在⼤学⼀年级的数学分析课程中,Gaussian密度函数的积分是 $\sqrt{\pi}$。
总⽽⾔之,Gassian分布具有许多异常完美的性质,被它震惊也不是⼀回两回了。
⾔归正传,信号经过傅⾥叶变换之后产⽣频谱,频谱是⼀个以频率为⾃变量的函数。
频谱在每⼀个频率点的取值是⼀个复数。
fft功率频谱
FFT功率频谱一、引言傅里叶变换(FFT)是一种在信号处理、图像处理、通信系统等领域广泛应用的重要工具。
其中,FFT功率频谱是描述信号在频率域上的能量分布情况,对于音频分析、图像处理、通信系统等领域具有重要的应用价值。
本文将就FFT功率频谱的基本原理、应用场景、性能评估以及性能提升策略等方面进行详细阐述。
二、FFT功率频谱基本原理1.FFT基本原理傅里叶变换(FFT)是一种将时域信号转换为频域信号的算法。
其基本思想是将一个信号分解为一系列正弦和余弦函数的线性组合,通过计算这些函数的系数,可以得到信号在频域上的表示。
FFT算法具有高效性、并行性等优点,因此在信号处理领域得到了广泛应用。
2.功率谱密度基本原理功率谱密度是描述信号在频率域上的能量分布情况。
对于一个时域信号,其功率谱密度可以通过FFT算法计算得到。
在计算功率谱密度时,需要对FFT 变换的结果进行归一化处理,即将每个频率分量的幅度除以总幅度,得到该频率分量的相对幅度。
3.FFT功率频谱计算过程FFT功率频谱的计算过程包括以下步骤:(1)对时域信号进行FFT变换;(2)对FFT变换的结果进行归一化处理;(3)计算每个频率分量的功率谱密度;(4)绘制功率谱密度曲线。
三、FFT功率频谱应用场景1.音频分析在音频分析中,FFT功率频谱可以用于分析音频信号的频率成分、能量分布等特征。
通过对音频信号的FFT功率频谱进行分析,可以提取出音频信号中的音调、节奏等信息,为音频处理、音乐分析等领域提供有力支持。
2.图像处理在图像处理中,FFT功率频谱可以用于分析图像的频率成分、纹理特征等。
通过对图像的FFT功率频谱进行分析,可以提取出图像中的边缘、纹理等特征信息,为图像增强、目标检测等领域提供有效手段。
3.通信系统在通信系统中,FFT功率频谱可以用于分析信号的频率分布、调制方式等特征。
通过对通信信号的FFT功率频谱进行分析,可以提取出信号中的调制信息、信道状态等参数,为通信系统的设计和优化提供重要依据。
信号处理之功率谱原理与python实现
信号处理之功率谱原理与python实现功率谱图又叫功率谱密度图功率谱是功率谱密度函数的简称,它定义为单位频带内的信号功率。
它表示了信号功率随着频率的变化情况,即信号功率在频域的分布状况。
功率谱表示了信号功率随着频率的变化关系。
常用于功率信号(区别于能量信号)的表述与分析,其曲线(即功率谱曲线)一般横坐标为频率,纵坐标为功率。
由于功率没有负值,所以功率谱曲线上的纵坐标也没有负数值,功率谱曲线所覆盖的面积在数值上等于信号的总功率(能量)。
知乎用户CrisYang对功率谱、能量谱、幅值谱之间的关系进行了详细的说明:在频谱分析中幅度和功率是由紧密联系的两个不同的物理量:能量能表述为幅值的平方和,也能表述为功率在时间上的积分;功率谱密度,是指用密度的概念表示信号功率在各频率点的分布情况,是对随机变量均方值的量度,是单位频率的平均功率量纲;也就是说,对功率谱在频域上积分就可以得到信号的平均功率,而不是能量。
能量谱密度是单位频率的幅值平方和量纲,能量谱密度曲线下面的面积才是这个信号的总能量。
于是,功率谱、能量谱、幅值谱之间的紧密关系主要表述为:能量谱是功率谱密度函数在相位上的卷积,也是幅值谱密度函数的平方在频率上的积分;功率谱是信号自相关函数的傅里叶变换,能量谱是信号本身傅立叶变换幅度的平方。
功率谱是功率谱密度(Power Spectral Density, PSD)函数的简称,它定义为单位频带内的信号功率。
它表示了信号功率随着频率的变化关系,即信号功率在频域的分布状况。
功率谱密度的单位用每赫兹的瓦特数(W/Hz)表示,它的另一种单位dB,当单位为dB时是因为对数据做了对数处理(10logX)做对数处理的目的是拉高低振幅成分,便于观察噪声中的周期信号功率谱估计是频域分析的主要分析手段,我们之前看到的是幅度随时间变化的脑电波功率谱展现的是脑电功率随频率变化的频图。
在睡眠的分期以及智力活动与EEG之间的关系等很多方面,功率谱分析都非常有用。
功率谱和频谱的区别、联系
功率谱和频谱的区别、联系功率谱:信号先自相关再作FFT。
频谱:信号直接作FFT。
区别:1、一个信号的频谱,只是这个信号从时域表示转变为频域表示,只是同一种信号的不同的表示方式而已, 而功率谱是从能量的观点对信号进行的研究,其实频谱和功率谱的关系归根揭底还是信号和功率,能量等之间的关系。
2、频谱是个很不严格的东西,常常指信号的Fourier变换,是一个时间平均(time average)概念;功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。
保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。
3、功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。
(随机的频域序列)4、功率概念和幅度概念的差别。
此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。
联系:1、功率谱可以从两方面来定义,一个是自相关函数的傅立叶变换,另一个是时域信号傅氏变换模平方然后除以时间长度。
第一种定义就是常说的维纳辛钦定理,而第二种其实从能量谱密度来的。
根据parseval定理,信号傅氏变换模平方被定义为能量谱,能量谱密度在时间上平均就得到了功率谱。
2、在频域分析信号分两种:(1).对确定性信号进行傅里叶变换,分析频谱信息。
(2).随机信号的傅里叶信号不存在,转向研究它的功率谱。
随机信号的功率谱和自相关函数是傅里叶变换对(即维纳辛钦定理)。
功率谱估计有很多种方法以下转自小木虫。
有些概念还不太明白,留作以后研究用。
最近听老师讲课,提到功率谱是把信号的自相关作FFT,我才发现自己概念上的一个误区:我一直以为功率谱和频谱是同一个概念,以为都是直接作FFT就可以了。
Matlab编程实现FFT变换及频谱分析的程序代码
Matlab编程实现FFT变换及频谱分析的程序代码(喜欢进行电磁兼容仿真分析的朋友可以借用)2007-10-08 sysop 点击: 436Matlab编程实现FFT变换及频谱分析的程序代码(喜欢进行电磁兼容仿真分析的朋友可以借用)Matlab编程实现FFT变换及频谱分析的程序代码(喜欢进行电磁兼容仿真分析的朋友可以借用)内容1.用Matlab产生正弦波,矩形波,以及白噪声信号,并显示各自时域波形图2.进行FFT变换,显示各自频谱图,其中采样率,频率、数据长度自选3.做出上述三种信号的均方根图谱,功率图谱,以及对数均方根图谱4.用IFFT傅立叶反变换恢复信号,并显示恢复的正弦信号时域波形图源程序%*************************************************************************%% FFT实践及频谱分析 %%*************************************************************************%%*************************************************************************%%***************1.正弦波****************%fs=100;%设定采样频率N=128;n=0:N-1;t=n/fs;f0=10;%设定正弦信号频率%生成正弦信号x=sin(2*pi*f0*t);figure(1);subplot(231);plot(t,x);%作正弦信号的时域波形xlabel('t');ylabel('y');title('正弦信号y=2*pi*10t时域波形');grid;%进行FFT变换并做频谱图y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(1);subplot(232);plot(f,mag);%做频谱图axis([0,100,0,80]);xlabel('频率(Hz)');ylabel('幅值');title('正弦信号y=2*pi*10t幅频谱图N=128'); grid;%求均方根谱sq=abs(y);figure(1);subplot(233);plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('正弦信号y=2*pi*10t均方根谱'); grid;%求功率谱power=sq.^2;figure(1);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('正弦信号y=2*pi*10t功率谱');grid;%求对数谱ln=log(sq);figure(1);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('正弦信号y=2*pi*10t对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(1);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的正弦信号波形'); grid;%****************2.矩形波****************% fs=10;%设定采样频率t=-5:0.1:5;x=rectpuls(t,2);x=x(1:99);figure(2);subplot(231);plot(t(1:99),x);%作矩形波的时域波形xlabel('t');ylabel('y');title('矩形波时域波形');grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(2);subplot(232);plot(f,mag);%做频谱图xlabel('频率(Hz)');ylabel('幅值');title('矩形波幅频谱图');grid;%求均方根谱sq=abs(y);figure(2);subplot(233);plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('矩形波均方根谱');grid;%求功率谱power=sq.^2;figure(2);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('矩形波功率谱');grid;%求对数谱ln=log(sq);figure(2);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('矩形波对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(2);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的矩形波波形');grid;%****************3.白噪声****************%fs=10;%设定采样频率t=-5:0.1:5;x=zeros(1,100);x(50)=100000;figure(3);subplot(231);plot(t(1:100),x);%作白噪声的时域波形xlabel('t');ylabel('y');title('白噪声时域波形');grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(3);subplot(232);plot(f,mag);%做频谱图xlabel('频率(Hz)');ylabel('幅值');title('白噪声幅频谱图');grid;%求均方根谱sq=abs(y);figure(3);subplot(233);plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('白噪声均方根谱');grid;%求功率谱power=sq.^2;figure(3);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('白噪声功率谱');grid;%求对数谱ln=log(sq);figure(3);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('白噪声对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(3);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的白噪声波形');grid;本文责任编辑: sysop相关文章? 请教:目前可有哪些用于EMC仿真的软件 - 08-18 10:01 am - 点击: 2718 发表评论查看评论加入收藏 Email给朋友打印本文如果你想对该文章评分, 请先登陆, 如果你仍未注册,请点击注册链接注册成为本站会员. 平均得分 0, 共 0 人评分1 2 3 4 5 6 7 8 9 10。
MATLAB处理信号得到频谱、相谱、功率谱
第一:频谱一.调用方法X=FFT(x);X=FFT(x,N);x=IFFT(X);x=IFFT(X,N)用MATLAB进行谱分析时注意:(1)函数FFT返回值的数据结构具有对称性。
例:N=8;n=0:N-1;xn=[4 3 2 6 7 8 9 0];Xk=fft(xn)→Xk =39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 -7.7071i 5.0000 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929iXk与xn的维数相同,共有8个元素。
Xk的第一个数对应于直流分量,即频率值为0。
(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。
在IFFT时已经做了处理。
要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。
二.FFT应用举例例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。
采样频率fs=100Hz,分别绘制N=128、1024点幅频图。
clf;fs=100;N=128; %采样频率和数据点数n=0:N-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求得Fourier变换后的振幅f=n*fs/N; %频率序列subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;%对信号采样数据为1024点的处理fs=100;N=1024;n=0:N-1;t=n/fs;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求取Fourier变换的振幅f=n*fs/N;subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;subplot(2,2,4)plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;运行结果:fs=100Hz,Nyquist频率为fs/2=50Hz。
频谱与频谱密度的概念和应用
频谱与频谱密度的概念和应用频谱是指信号在频率上的分布情况,是描述信号频率特性的重要概念。
频谱密度是指单位频率范围内的信号能量,是频谱分析中的一个重要参数。
频谱与频谱密度是信号处理中不可或缺的概念,广泛应用于信号分析、通信、雷达、声学、光学等领域。
一、频谱的概念频谱是指信号在频率上的分布情况,通常用频率响应函数或功率谱密度函数来表示。
频谱分析是对信号进行频率特性分析的方法,可以用来描述信号的频率成分、频率分布、频率带宽等特征。
在数字信号处理中,频谱通常使用离散傅里叶变换(DFT)或快速傅里叶变换(FFT)进行计算。
通过DFT或FFT可以将信号从时域转换为频域,得到信号的频谱。
频谱可以用图形的形式表示,图形中横轴表示频率,纵轴表示信号的能量或功率。
二、频谱密度的概念频谱密度是指单位频率范围内的信号能量,是描述信号在频率上分布情况的参数。
频谱密度通常用功率谱密度函数来表示,是频谱分析中的一个重要参数。
功率谱密度函数是指信号的每个频率分量的功率与频率的函数关系,通常用单位时间内信号的平均功率来表示。
功率谱密度函数的计算方法包括周期图法、自相关法、协方差法等,其中最常用的是周期图法。
功率谱密度函数可以用图形的形式表示,图形中横轴表示频率,纵轴表示功率谱密度。
功率谱密度函数是描述信号在频域上的分布情况的重要参数,可以用来评估信号的频率特性、功率分布、频带宽度等特征。
三、应用举例1. 通信领域频谱和频谱密度在通信领域中有着广泛的应用。
通信系统中的信号通常具有不同的频率成分,频谱分析可以用来评估信号的频率特性、功率分布、频带宽度等特征。
通信系统中的频谱资源是非常宝贵的,频谱分析可以用来优化频谱资源的利用,提高通信系统的性能。
2. 雷达领域雷达系统中的信号通常具有宽带性质,频谱分析可以用来评估雷达信号的频率特性、功率分布、频带宽度等特征。
雷达系统中的频谱资源也是非常宝贵的,频谱分析可以用来优化雷达系统的频谱资源利用,提高雷达系统的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频谱和功率谱有什么区别与联系谱是个很不严格的东西,常常指信号的Fourier变换,是一个时间平均(time average)概念功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。
保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。
有两个重要区别:1.功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier 变换,对于一个随机过程而言,频谱也是一个“随机过程”。
(随机的频域序列)2.功率概念和幅度概念的差别。
此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。
频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。
频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。
频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。
功率谱功率谱是个什么概念?它有单位吗?随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。
一般用具有统计特性的功率谱来作为谱分析的依据。
功率谱与自相关函数是一个傅氏变换对。
功率谱具有单位频率的平均功率量纲。
所以标准叫法是功率谱密度。
通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。
像白噪声就是平行于w轴,在w 轴上方的一条直线。
功率谱密度,从名字分解来看就是说,观察对象是功率,观察域是谱域,通常指频域,密度,就是指观察对象在观察域上的分布情况。
一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。
可以有三种办法来重新定义谱密度,来克服上述困难。
一是用相关函数的傅立叶变换来定义谱密度;二是用随机过程的有限时间傅立叶变换来定义谱密度;三是用平稳随机过程的谱分解来定义谱密度。
三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周期分量并且均值为零,这样才能保证相关函数在时差趋向于无穷时衰减,所以lonelystar说的不全对,光靠相关函数解决不了许多问题,要求太严格了;对于第二种方式,虽然一个平稳随机过程在无限时间上不能进行傅立叶变换,但是对于有限区间,傅立叶变换总是存在的,可以先架构有限时间区间上的变换,在对时间区间取极限,这个定义方式就是当前快速傅立叶变换(FFT)估计谱密度的依据;第三种方式是根据维纳的广义谐和分析理论:Generalized harmonic analysis, Acta Math, 55(1930), 117-258,利用傅立叶-斯蒂吉斯积分,对均方连续的零均值平稳随机过程进行重构,在依靠正交性来建立的。
另外,对于非平稳随机过程,也有三种谱密度建立方法,由于字数限制,功率谱密度的单位是G的平方/频率。
就是就是函数幅值的均方根值与频率之比。
是对随机振动进行分析的重要参数。
功率谱密度的国际单位是什么?如果是加速度功率谱密度,加速度的单位是m/s^2,那么,加速度功率谱密度的单位就是(m/s^2)^2/Hz,而Hz的单位是1/s,经过换算得到加速度功率谱密度的单位是m^2/s^3.同理,如果是位移功率谱密度,它的单位就是m^2*s,如果是弯矩功率谱密度,单位就是(N*m)^2*s位移功率谱——m^2*s速度功率谱——m^2/s加速度功率谱——m^2/s^3求FFT实现的C++算法#include<iostream.h>#include "math.h"class complex//复数类声明{private:double real;double image;public:complex(double r=0.0,double i=0.0)//构造函数{real=r;image=i;}complex operator+(complex c2);//+重载为成员函数complex operator-(complex c2);//-重载为成员函数complex operator*(const complex& other);//重载乘法//complex operator/(const complex& other);//重载除法void display();};complex complex::operator +(complex c2)//重载的实现{complex c;c.real=c2.real+real;c.image=c2.image+image;return complex(c.real,c.image);}complex complex::operator -(complex c2)//重载的实现{complex c;c.real=real-c2.real;c.image=image-c2.image;return complex(c.real,c.image);}complex complex::operator*(const complex& other){complex temp;temp.real=real*other.real-image*other.image;temp.image=image*other.real+real*other.image;return temp;}void complex::display(){cout<<"("<<real<<","<<image<<")"<<endl;}int fft(complex *a,int l)//此处的l是级数数{const double pai=3.141592653589793;complex u,w,t;int n=1,nv2,nm1,k,le,lei,ip;int i,j,m;double tmp;//n<<l表示n左移l位即系列的长度n<<=l;nv2=n>>1;nm1=n-1;i=0;j=0;for(i=0;i<nm1;i++) //.....{if(i<j) //'''变址运算{t=a[j];a[j]=a[i];a[i]=t;}k=nv2; //求下一个倒位序数while(k<=j){ //原理是从高位加1,向低位进位j-=k;k>>=1;}j+=k;}//基2的输入倒位序,输出自然顺序的时间抽取FFT运算le=1;for(m=1;m<=l;m++) //当前运算的是第m级{lei=le;le<<=1;u=complex (1,0);tmp=pai/lei;w=complex (cos(tmp),-sin(tmp));//第m级中的不同系数的蝶形运算for(j=0;j<lei;j++){//第m级中的相同系数的蝶形int aa=1;for(i=j;i<n;i+=le){ip=i+lei;t=a[ip]*u;a[ip]=a[i]-t;a[i]=a[i]+t;}//每级的旋转因子,由j和w来控制u=u*w;}}for(i=0;i<nm1+1;i++){cout<<i<<endl;a[i].display();}return 0;}实例:void main(){complex A[64];for (int i=1;i<=64;i++){A[i-1]=complex(cos(i*0.1),cos(i*0.1+1));}fft(A,6);for(int ii=0;ii<64;ii++){cout<<ii<<endl;A[ii].display();}}本例与matlab中的FFT对比过,运算结果无误。
=======================================================================1.#include <math.h>2.#define DOUBLE_PI 6.2831853071795864769252867665593.4.// 快速傅里叶变换5.// data 长度为 (2 * 2^n), data 的偶位为实数部分, data 的奇位为虚数部分6.// isInverse表示是否为逆变换7.void FFT(double * data, int n, bool isInverse = false)8.{9.int mmax, m, j, step, i;10.double temp;11.double theta, sin_htheta, sin_theta, pwr, wr, wi, tempr, tempi;12. n = 2 * (1 < n);13.int nn = n >> 1;14.// 长度为1的傅里叶变换, 位置交换过程15. j = 1;16.for(i = 1; i n; i += 2)17. {18.if(j > i)19. {20. temp = data[j - 1];21. data[j - 1] = data[i - 1];22. data[i - 1] = temp;23. data[j] = temp;24. data[j] = data[i];25. data[i] = temp;26. }27.// 相反的二进制加法28. m = nn;29.while(m >= 2 && j > m)30. {31. j -= m;32. m >>= 1;33. }34. j += m;35. }36.// Danielson - Lanczos 引理应用37. mmax = 2;38.while(n > mmax)39. {40. step = mmax < 1;41. theta = DOUBLE_PI / mmax;42.if(isInverse)43. {44. theta = -theta;45. }46. sin_htheta = sin(0.5 * theta);47. sin_theta = sin(theta);48. pwr = -2.0 * sin_htheta * sin_htheta;49. wr = 1.0;50. wi = 0.0;51.for(m = 1; m mmax; m += 2)52. {53.for(i = m; i = n; i += step)54. {55. j = i + mmax;56. tempr = wr * data[j - 1] - wi * data[j];57. tempi = wr * data[j] + wi * data[j - 1];58. data[j - 1] = data[i - 1] - tempr;59. data[j] = data[i] - tempi;60. data[i - 1] += tempr;61. data[i] += tempi;62. }63. sin_htheta = wr;64. wr = sin_htheta * pwr - wi * sin_theta + wr;65. wi = wi * pwr + sin_htheta * sin_theta + wi;66. }67. mmax = step;68. }69.}70.71./* 输入数据为data,data是一组复数,偶数位存储的是复数的实数部分,奇数位存储的是复数的虚数部分。