高考数学高三模拟试卷试题压轴押题普通高中毕业班综合测试一文科数学

合集下载

高考数学高三模拟试卷试题压轴押题普通高中毕业班综合测试一文科数学

高考数学高三模拟试卷试题压轴押题普通高中毕业班综合测试一文科数学

高考数学高三模拟试卷试题压轴押题普通高中毕业班综合测试(一)文科数学【题型】选择题 【题文】 函数()f x =A .1+∞(,)B .[1+∞,)C .0+∞(,)D .-1∞(,)【答案】A 【解析】 【题文】已知i 为虚数单位,复数1i 1z =-的模为A .12B .2CD .2【答案】B 【解析】 【题文】设x R ∈,则“220x x +->”是“1x >”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B 【解析】 【题文】已知向量(1,2)a =,(1,0)b =,(3,4)c =.若λ为实数,()//a b c λ+,则λ等于A .14B .12 C .1D .2【答案】B 【解析】 【题文】某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积A .20π3B .6π C .16π3D .10π3【答案】D 【解析】 【题文】执行如图所示的程序框图,输出的S 值为A .2B .4C .8D .16【答案】C 【解析】 【题文】ABC ∆的内角,,A B C 所对的边分别为,,a b c .若2B A =,1a =,b =则c 等于A ..2C .D .1【答案】B 【解析】 【题文】设点O 为坐标原点,F 为抛物线2:4C y x =的焦点,P 为C 上一点,若=4PF ,则POF ∆的面积为A .1BC .2【答案】C 【解析】 【题文】 在长为12cm 的线段AB 上任取一点C .现作一矩形,其邻边长分别等于线段,AC BC 的长,则该矩形面积大于220cm 的概率为 A .16B .13C .23D .45【答案】C 【解析】 【题文】已知()g x 为三次函数cx ax x a x f ++=233)(的导函数,则函数()f x 与()g x 的图象可能是 【答案】D 【解析】 【结束】 【题型】填空题 【题文】在等差数列{}n a 中,已知1694=+a a ,则12S =**** .【答案】96 【解析】 【题文】(25PCB ∠=︒设实数,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则23z x y =-的最小值是**** .【答案】6 【解析】 【题文】函数)(x f 的定义域为R ,已知)1(+x f 为奇函数,当1x <时,12)(2+-=x x x f ,那么当1x >时,)(x f 的递减区间是**** .【答案】7,4⎛⎫+∞⎪⎝⎭【解析】 【题文】(坐标系与参数方程选做题)直角坐标系中,已知曲线C 的参数方程为cos 1sin x y θθ=+⎧⎨=⎩(θ为参数), 则点()4,4P 与曲线C 上的点的最远距离是**** . 【答案】6 【解析】【题文】(几何证明选讲选做题)如图所示,AB 是半圆O 的直径,C 、D 是半圆上不同的两点,半圆O 的切线PC 交AB 的延长线于点P ,若,则=∠ADC **** . 【答案】0115【解析】 【结束】 【题型】解答题 【题文】已知函数()sin cos f x a x b x =+的图象经过点,03π⎛⎫ ⎪⎝⎭和,12π⎛⎫⎪⎝⎭. 【小题1】求实数a 和b 的值; 【小题2】设,0,2παβ⎡⎤∈⎢⎥⎣⎦,56()65f πα+=,410()313f πβ+=-.求sin()αβ-的值. 【答案】【小题1】由题可列的:1021b a +=⎪=⎩解得:1,a b ==【小题2】由题可得()sin 2sin()3f x x x x π==-又412,0,,sin ,cos 2513παβαβ⎡⎤∈∴==⎢⎥⎣⎦【解析】 【小题1】 【小题2】 【题文】某学校高二年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生. 【小题1】【小题2】在喜欢运动的女生中调查她们的运动时间,发现她们的运动 时间介于30分钟到90分钟之间, 右图是测量结果的频率分布直 方图,若从区间段)50,40[和)70,60[的所有女生中随机抽取两名女生,求她们的运动时 间在同一区间段的概率.【答案】【小题1】根据分层抽样的定义,知抽取男生130人,女生70人, 【小题2】由直方图知在[)70,60内的人数为4人,设为,,,a b c d . 在[)50,40的人数为2人,设为,A B .从这6人中任选2人有AB,Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd,ab,ac,ad,bc,bd,cd 共15种情况 若[)70,60,∈y x 时,有,,,,,ab ac ad bc bd cd 共六种情况. 若[)50,40,∈y x 时,有AB 一种情况.事件A:“她们在同一区间段”所包含的基本事件个数有617+=种, 故157)P(A =答:两名女生的运动时间在同一区间段的概率为157. 【解析】 【小题1】 【小题2】【题文】在直角梯形ABCD 中(如图1),90ADC∠=︒,AB CD //,122AD CD AB ===, 点E为AC 的中点,将ADC ∆沿AC 折起, 使平面ADC ⊥平面ABC ,得到几何体D ABC -(如图2).【小题1】在CD 上找一点F ,使//AD 平面EFB ,并说明理由; 【小题2】求证:DA BC ⊥;【小题3】求几何体D ABC -的体积.【答案】【小题1】 取CD 的中点F ,连结EF ,BF 在ACD ∆中,E ,F 分别为AC ,DC 的中点∴EF 为ACD ∆的中位线EF ⊆平面EFBAD ⊄平面EFB∴//AD 平面EFB【小题2】在图1中,可得ACBC ==,从而222AC BC AB +=,∴AC BC ⊥……6分∵平面ADC ⊥平面ABC ,面ADC面ABCAC =,BC ⊂面ABC∴ BC ⊥平面ADC∴又AD ⊂面ADC ∴BC⊥DAACDEFACD图2EBACD图1E【小题3】090ADC ∠=AD DC ∴⊥由(2)知BC ⊥平面ADC ,所以点B 到平面ADC 的距离为BC =【解析】 【小题1】 【小题2】 【小题3】 【题文】已知各项都不相等的等差数列{}n a 的前六项和为60,且6a 为1a 和21a 的等比中项.【小题1】求数列{}n a 的通项公式n a ;【小题2】若数列{}n b 满足1n n n b b a +-=*()n N ∈,且13b =,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】【小题1】设等差数列}{n a 的首项为1a ,公差为d ,则660S =,即,601561=+d a ①26121a a a =,即2111(5)(20)a d a a d +=+②①②联立,解得2,51==d a32+=∴n a n .【小题2】由n n n a b b =-+1).,2(11*--∈≥=-∴N n n a b b n n n【解析】【小题1】 【小题2】 【题文】已知椭圆1C :22221x y a b +=(0)a b >>的离心率为2e =,且与双曲线2C :22221+1x y b b -=有共同焦点.【小题1】求椭圆1C 的方程;【小题2】若直线l 为椭圆1C 的切线,它与坐标轴围成的三角形的面积为S ,求S 的最小值以及此时l 的方程;【答案】【小题1】由e =c a =2234c a =22234a b a -∴=224a b ∴=①又2221c b =+即22221a b b -=+②联立①②解得:224,1a b ==∴椭圆1C 的方程为:2214x y +=【小题2】l 与椭圆相切且与两坐标轴相交,∴l 的斜率必存在,且0K ≠设l 的直线方程为:y kx m =+联立2214y kx mx y =+⎧⎪⎨+=⎪⎩ ,消去y 整理得:2221()2104k x kmx m +++-=2221(2)4()(1)04km k m ∆=-+-=,即2241m k =+④又直线l 与两坐标轴的交点分别为-,0)mk(,(0,)m∴直线l 与坐标轴围成的三角形的面积21-22m m S m k k ==⑤ 联立④、⑤得 2241122222m k S k k k k+===+≥当且仅当112,22k k k =∴=时取等号 ∴直线l 的方程为:12y x =12y x =, 12y x =-12y x =--【解析】【小题1】 【小题2】 【题文】已知函数()ln f x x a x =-,1(), (R).ag x a x+=-∈ 【小题1】若2a =,求函数()f x 的图像在点1x =处的切线方程; 【小题2】若在[]1,e (e 2.71...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围. 【答案】【小题1】当2a =时,()2ln f x x x =-,2()1f x x'=-, 切点(1,1),斜率'(1)1kf ==-∴ 切线为 1(1)(1)y x -=--即 20x y +-=【小题2】在[]1,e 上存在一点0x ,使得0()f x <0()g x 成立,即在[]1,e 上存在一点0x ,使得000()()()0h x f x g x =-<,即函数1()ln ah x x a x x+=+-在[]1,e 上的最小值小于零. ①当1e a +≥,即e 1a ≥-时,()h x 在[]1,e 上单调递减,所以()h x 的最小值为(e)h ,由1(e)e 0e ah a +=+-<可得2e 1e 1a +>-, 因为2e 1e 1e 1+>--,所以2e 1e 1a +>-; ②当11a +≤,即0a ≤时,()h x 在[]1,e 上单调递增,所以()h x 最小值为(1)h ,由(1)110h a =++<可得2a <-; ③当11e a <+<,即0e 1a <<-时, 可得()h x 最小值为(1)h a +, 因为0ln(1)1a <+<,所以,0ln(1)a a a <+<故(1)2ln(1)2h a a a a +=+-+>此时,(1)0h a +<不成立.综上讨论可得所求a 的范围是:2e 1e 1a +>-或2a <-.【解析】 【小题1】 【小题2】 【结束】高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

高考数学高三模拟试卷试题压轴押题普通高等学校招生全国统一考试文科数学

高考数学高三模拟试卷试题压轴押题普通高等学校招生全国统一考试文科数学

高考数学高三模拟试卷试题压轴押题普通高等学校招生全国统一考试文科数学一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1. 设,a b 是向量,命题“若a b ≠-,则∣a ∣= ∣b ∣”的逆命题是【D 】 (A )若a b ≠-,则∣a ∣≠∣b ∣ (B )若a b =,则∣a ∣≠∣b ∣ (C )若∣a ∣≠∣b ∣,则∣a ∣≠∣b ∣ (D )若∣a ∣=∣b ∣,则a = b2.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是 【C 】 (A )28y x =- (B )28y x = (C) 24y x =- (D) 24y x = 3.设0a b <<,则下列不等式中正确的是 【B 】(A )2ab a b ab <<<(B )2a b a ab b +<<< (c )2a b a ab b +<<< (D)2a bab a b +<<<4. 函数13y x =的图像是 【B 】5. 某几何体的三视图如图所示,则它的体积是【A 】(A)283π- (B)83π-(C)82π (D)23π 6.方程cos x x =在(),-∞+∞内【C 】 (A)没有根 (B)有且仅有一个根 (C) 有且仅有两个根 (D )有无穷多个根7.如右框图,当126,9,x x ==8.5p =时,3x 等于 【B 】 (A) 7 (B) 8 (C)10 (D )11 8.设集合M={y|2cos x —2sin x|,x ∈R},N={x||x —1i|<2,i 为虚数单位,x ∈R},则M∩N 为【C 】(A)(0,1) (B)(0,1] (C)[0,1) (D)[0,1]9.设1122(,),(,),x y x y ···,(,)n n x y 是变量x 和y 的n 次方个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是(A ) (A) 直线l 过点(,)x y(B )x 和y 的相关系数为直线l 的斜率 (C )x 和y 的相关系数在0到1之间(D )当n 为偶数时,分布在l 两侧的样本点的个数一定相同10.植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为(D ) (A )(1)和(20)(B )(9)和(10) (C) (9)和(11) (D) (10)和(11)B. 填空题。

高考数学高三模拟试卷试题压轴押题普通高等学校招生全国统一考试文科数学001

高考数学高三模拟试卷试题压轴押题普通高等学校招生全国统一考试文科数学001

高考数学高三模拟试卷试题压轴押题普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至4页,满分150分,考试时间120分钟.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效. 3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:样本数据1122(,),(,),...,(,)n n x y x y x y 的回归方程:y a bx =+其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =- 锥体体积公式1212,n n x x x y y y x y n n++⋅⋅⋅+++⋅⋅⋅+==13V Sh = 其中S 为底面积,h 为高 第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若()2,,x i i y i x y R -=+∈,则复数x yi +=( )A.2i -+B.2i +C.12i -D.12i + 答案:B解析: ()iyi x x y i y i xi i y i i x +=+∴==∴+=-+=-22,12,222.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( )A.M N ⋃B.M N ⋂C.()()U U C M C N ⋃D.()()U U C M C N ⋂ 答案:D 解析:{}4,3,2,1=⋃N M ,Φ=⋂N M ,()(){}6,5,4,3,2,1=⋃N C M C U U , ()(){}6,5=⋂N C M C U U3.若121()log (21)f x x =+,则()f x 的定义域为()A.1(,0)2-B.1(,)2-+∞C.1(,0)(0,)2-⋃+∞D.1(,2)2- 答案:C解析:()()+∞⋃⎪⎭⎫⎝⎛-∈∴≠+>+∴≠+,00,21112,012,012log 21x x x x4.曲线xy e =在点A (0,1)处的切线斜率为( )A.1B.2C.eD.1e答案:A解析: 1,0,0'===e x e y x5.设{n a }为等差数列,公差d = 2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24答案:B 解析:20,100,1111111110=∴+==∴=a d a a a S S6.观察下列各式:则234749,7343,72401===,…,则20117的末两位数字为( )A.01B.43C.07D.49 答案:B 解析:()()()()()()343***2011,200922011168075,24014,3433,492,7=∴=-=====f f f f f x f x7.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为o m ,平均值为x ,则( )A.e o m m x ==B.e o m m x =<C.e o m m x <<D.o e m mx <<答案:D解析:计算可以得知,中位数为5.5,众数为5所以选D父亲身高x(cm ) 174 176176 176 178 儿子身高y(cm )175 175176177177A.y = x1B.y = x+1C.y = 88+ 12x D.y = 176 答案:C解析:线性回归方程bx a y +=,()()()∑∑==---=ni ini iix x yyx x b 121,x b y a -=9.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )答案:D解析:左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案。

高考数学高三模拟试卷试题压轴押题高三一模试卷数学文科

高考数学高三模拟试卷试题压轴押题高三一模试卷数学文科

高考数学高三模拟试卷试题压轴押题高三一模试卷数学(文科)第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设全集{|02}U x x =<<,集合1{|0}A x x =<≤,则集合UA =()(A )(0,1)(B )(0,1](C )(1,2)(D )[1,2)解析:根据集合的运算性质UA =(1,2)2.已知平面向量(2,1)=-a ,(1,3)=b ,那么|a +b |等于() (A )5(B(C(D )13解析:a +b =(3,2),所以==|a +b |3.已知双曲线2222:1(0,0)x y C a b a b-=>>的虚轴长是实轴长的2倍,则此双曲线的离心率为() (A(B )2(C(D解析:因为虚轴长是实轴长的2倍,所以有b=2a ,222a b c +=,所以离心率ce a== 4.某几何体的三视图如图所示,则该几何体的体积为() (A )2 (B )43(C )4 (D )5解析:由题可知该几何体是由一长方体和一三棱柱组成的几何体,所以111221242V =⨯⨯+⨯⨯⨯= 5.下列函数中,对于任意x ∈R ,同时满足条件()()f x f x =-和(π)()f x f x -=的函数是正(主)视图俯视图侧(左)视图解析:函数满足以π为周期的偶函数,所以答案选D 。

6.设0a >,且1a ≠,则“函数log a y x =在(0,)+∞上是减函数”是“函数3(2)y a x =-在R 上是增函数”的()(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件解析:函数log a y x =在(0,)+∞上是减函数,有0<a<1,2a>0,所以可以推出3(2)y a x =-在R 上是增函数,反之函数3(2)y a x =-在R 上是增函数,0<a<2,不能推出函数log a y x=在(0,)+∞上是减函数,所以充分而不必要条件。

高考数学高三模拟试卷试题压轴押题毕业班综合测试一文科数学

高考数学高三模拟试卷试题压轴押题毕业班综合测试一文科数学

高考数学高三模拟试卷试题压轴押题毕业班综合测试(一)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =(A ){}12x x -≤≤(B ){}10x x -≤≤(C ){}12x x ≤≤(D ){}01x x ≤≤ 答案:D解析:集合A ={}11x x ≤≤-,集合B ={}2x x ≤≤0,所以,A B ={}01x x ≤≤。

(2)已知复数3i1iz +=+,其中i 为虚数单位,则复数z 所对应的点在 (A )第一象限(B )第二象限(C )第三象限(D )第四象限 答案:D 解析:(3)(1)22i i z i +==--,对应坐标为(2,-1),在第四象限。

(3)已知函数()2,1,1,1,1x x x f x x x ⎧-≤⎪=⎨>⎪-⎩则()()2f f -的值为(A )12(B )15(C )15-(D )12-答案:C解析:2f (-)=4+2=6,11((2))(6)165f f f -===--,选C 。

(4)设P 是△ABC 所在平面内的一点,且2CP PA =,则△PAB 与△PBC 的面积之比是(A )13(B )12(C )23(D )34答案:B解析:依题意,得:CP =2PA ,设点P 到AC 之间的距离为h ,则△PAB 与△PBC的面积之比为1212BPA BCPPA hS S PC h ∆∆==12(5)如果函数()cos 4f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为6π,则ω的值为 (A )3(B )6(C )12(D )24答案:B解析:依题意,得:周期T =3π,23ππω=,所以,ω=6。

高考数学高三模拟试卷试题压轴押题第一学期高三调研测试一数学文科

高考数学高三模拟试卷试题压轴押题第一学期高三调研测试一数学文科

高考数学高三模拟试卷试题压轴押题第一学期高三调研测试一数学(文科)本试卷共4页,24小题,满分150分.考试用时120分钟. 注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若a 为实数,且12aii i+=-,则a = A .2-B .1C .1-D .22.集合{}123456U =,,,,,,{}23A =,,{}2650B x Z x x =∈-+<,则()A B C U ⋂=A .{}156,,B .{}1456,,,C .{}234,,D .{}16, 3.已知点()0,1A ,()2,1B ,向量()3,2AC =--,则向量BC =A .()5,2B .()5,2--C .()1,2-D .()1,24.设:4p x <,:04q x <<,则p 是q 成立的A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.已知抛物线22x ay =(a 为常数)的准线经过点(11)-,,则抛物线的焦点坐标为A .(10)-,B .(10),C .(01)-,D .(01), 6.已知等比数列{}n a 的前n 项和1126n n S a -=⋅+,则a 的值为 A .13-B .13C .12-D .127.某单位为了了解办公楼用电量y (度)与气温x (oC)之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表:3438 由表中数据得到线性回归方程2y x a =-+,当气温为04C -时,预测用电量约为A .68度B .52度C .12度D .28度8.下列程序框图中,输出的A 的值A .128B .129C .131D .1349.已知ABC ∆中,内角A ,B ,C 所对的边长分别为a ,b ,c ,若3A π=,且2cos b a B =, 1c =,则ABC ∆的面积等于A .3B .3C .36D .3810.某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是A .163B .203C .86π-D .83π-11.已知函数()sin()f x x ωϕ=+(0,2πωϕ><)的部分图像如图所示,则()y f x = 的图象可由cos 2y x = 的图象A .向右平移3π个长度单位 B .向左平移3π个长度单位C .向右平移6π个长度单位D .向左平移6π个长度单位 12.已知函数232,31,()1ln ,13x x x f x x x ⎧-+--≤≤⎪=⎨<≤⎪⎩,若()|()|g x ax f x =-的图像与x 轴有3个不同的交点,则实数a 的取值范围是A .ln 31[,)3e B .1(0,)2e C .1(0,)e D .ln 31[,)32e第Ⅱ卷本卷包括必考题和选考题两部分。

高考数学高三模拟试卷试题压轴押题高三月考试卷数学文科

高考数学高三模拟试卷试题压轴押题高三月考试卷数学文科

高考数学高三模拟试卷试题压轴押题高三月考试卷数学(文科)第I卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的1.已知集合,则A. B. C. D.【答案】A【解析】【分析】化简集合A,根据交集的定义写出A∩B.【详解】,∴故选:A【点睛】在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用两个复数代数形式的除法,虚数单位i的幂运算性质化简复数z,求出其共轭复数,从而得到答案.【详解】∵复数===﹣1﹣3i,∴,它在复平面内对应点的坐标为(﹣1,3),故对应的点位于在第二象限,故选:B.【点睛】本题主要考查两个复数代数形式的除法,共轭复数,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.3.执行如图所示的程序图,如果输入,,则输出的的值为A. 7B. 8C. 12D. 16【答案】B【解析】【分析】根据程序框图,依次判断是否满足条件即可得到结论.【详解】若输入a=1,b=2,则第一次不满足条件a>6,则a=2,第二次不满足条件a>6,则a=2×2=4,第三次不满足条件a>6,则a=4×2=8,此时满足条件a>6,输出a=8,故选:B.【点睛】本题主要考查程序框图的识别和运行,依次判断是否满足条件是解决本题的关键,比较基础.4.若变量x,y满足约束条件,则的最大值为A. 1B. 3C. 4D. 5【解析】【分析】画出满足条件的平面区域,求出A点的坐标,将z=2x+y转化为y=﹣2x+z,结合函数图象求出z的最大值即可.【详解】画出满足条件的平面区域,如图示:,由,解得:A(2,1),由z=2x+y得:y=﹣2x+z,显然直线y=﹣2x+z过(2,1)时,z最大,故z的最大值是:z=4+1=5,故选:D.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.5.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是A. B.C. D.【答案】C【分析】根据回归直线方程一定经过样本中心点这一信息,即可得到结果.【详解】由条件知,,设回归直线方程为,则.∴回归直线的方程是故选:C【点睛】求解回归方程问题的三个易误点:(1)易混淆相关关系与函数关系,两者的区别是函数关系是一种确定的关系,而相关关系是一种非确定的关系,函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.(2)回归分析中易误认为样本数据必在回归直线上,实质上回归直线必过(,)点,可能所有的样本数据点都不在直线上.(3)利用回归方程分析问题时,所得的数据易误认为准确值,而实质上是预测值(期望值).6.在数列中,,数列是以3为公比的等比数列,则等于A. B. C. D.【答案】B【解析】【分析】由等比数列通项公式得到,再结合对数运算得到结果.【详解】∵,数列是以3为公比的等比数列,∴∴故选:B【点睛】本题考查等比数列通项公式,考查指对运算性质,属于基础题.7.设,且,则等于A. 2B.C. 8D.【答案】C【解析】【分析】由题意利用诱导公式求得asinα+bcosβ=﹣3,再利用诱导公式求得f()的值.【详解】∵∴即而=8故选:C【点睛】本题主要考查诱导公式的应用,体现了整体的思想,属于基础题.8. 某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )A. B. C. D.【答案】D【解析】试题分析:由三视图可知,该几何体为圆锥的一半,那么该几何体的表面积为该圆锥表面积的一半与轴截面面积的和.又该半圆锥的侧面展开图为扇形,所以侧面积为,底面积为,由三视图可知,轴截面为边长为2的正三角形,所以轴截面面积为,则该几何体的表面积为.选D考点:几何体的表面积,三视图9.将函数的图象向右平移个单位后得到的函数为,则函数的图象A. 关于点(,0)对称B. 关于直线对称C. 关于直线对称D. 关于点()对称【答案】C【解析】【分析】利用平移变换得到,然后研究函数的对称性.【详解】将的图象右移个单位后得到图象的对应函数为,令得,,取知为其一条对称轴,故选:C.【点睛】函数的性质(1) .(2)周期(3)由求对称轴(4)由求增区间;由求减区间.10.若函数且)的值域是[4,+∞),则实数的取值范围是A. B. C. D.【答案】A【解析】【分析】先求出当x≤2时,f(x)≥4,则根据条件得到当x>2时,f(x)=3+logax≥4恒成立,利用对数函数的单调性进行求解即可.【详解】当时,,要使得函数的值域为,只需的值域包含于,故,所以,解得,所以实数的取值范围是.故选:A【点睛】本题主要考查函数值域的应用,利用分段函数的表达式先求出当x≤2时的函数的值域是解决本题的关键.11.已知点是双曲线的左焦点,点是该双曲线的右顶点,过且垂直于轴的直线与双曲线交于两点,若是钝角三角形,则该双曲线的离心率的取值范围是()A. B. C. D.【答案】D【解析】如图,根据双曲线的对称性可知,若是钝角三角形,显然为钝角,因此,由于过左焦点且垂直于轴,所以,,,则,,所以,化简整理得:,所以,即,两边同时除以得,解得或(舍),故选择D.点睛:求双曲线离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,利用和转化为关于的方程或不等式,通过解方程或不等式求得离心率的值或取值范围,在列方程或不等式的过程中,要考虑到向量这一重要工具在解题中的应用.求双曲线离心率主要以选择、填空的形式考查,解答题不单独求解,穿插于其中,难度中等偏高,属于对能力的考查.12.已知△ABC是边长为2的等边三角形,P为△ABC所在平面内一点,则的最小值是A. B. C. D.【答案】A【解析】【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.【详解】以为轴,的垂直平分线为轴,为坐标原点建立坐标系,则,设,所以,所以,,故选:A【点睛】本题主要考查平面向量数量积的应用,根据条件建立坐标系,利用坐标法是解决本题的关键.第II卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试題考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小題,每小题5分,共20分13.锐角中,,△ABC的面积为,则=_______。

高考数学高三模拟试卷试题压轴押题高三下期文数综合测试1

高考数学高三模拟试卷试题压轴押题高三下期文数综合测试1

高考数学高三模拟试卷试题压轴押题高三下期(文数)综合测试(1)一、选择题(每小题5分,共50分)1、i 为虚数单位,则2(1)i -的虚部是( C ) A.2i - B.2i C.2- D. 22、已知全集{, ln , ln1}U e e =,集合{1,0}A =,则U C A =( B ) A.{, ln }e e B.{}eC.2{, ln }e e D.2{ln , ln }e e 3、已知幂函数()y f x =的图象过点2(2,)2,则( A ) A.(1)(2)f f > B. (1)(2)f f <C.(1)(2)f f =D. (1)f 与(2)f 的大小无法判定4、ABC ∆中,A B >是tan tan A B >的( D ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不必要又不充分条件 5、执行如图所示的程序框图,输出P 的值为( A )A . 1-B .1C .0D .20166、已知两条不同的直线,l m 和两个不同的平面,αβ,有如下命题: ①若l α⊂,m α⊂,//l β,//m β,则//αβ;②若l α⊂,//l β,m αβ=,则//m l ; ③若αβ⊥,l β⊥,则//l α 其中正确命题的个数是(C )A .3B .2C .1D .07、如图,长方体1111ABCD A B C D -中,2AB =,12AD AA ==。

设长方体的截面四边形11ABC D 的内切圆为O ,圆O 的正视图是椭圆O ',则椭圆O '的离心率等于( B )A.33 B.22 C. 23D.32 8、设函数()f x 在R 上可导,其导函数为()f x ',且函数()f x 在2x =-处取得极小值,则函数()y x f x '=⋅的图象可能是( C )9、已知双曲线2222:1(0,0)x y C a b a b-=>>左右顶点为12, A A ,左右焦点为1F ,2F ,P 为双曲线C 上异于顶点的一动点,直线1PA 的斜率为1k ,直线2PA 的斜率为2k ,且121k k =,又12PF F ∆内切圆与x 轴切于点(1,0),则双曲线方程为( A ).A .221x y -= B .2212y x -= C .2213y x -=D .2214y x -= 10、已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1yx x a y e -++=成立,则实数a 的取值范围是( B )A .1[,]e e B. 2(,]e e C. 2(,)e +∞ D. 21(,)e e e+二、填空题(每小题5分,共25分)11、若实数,x y 满足不等式组330101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,则2z x y =+的最小值是.5-12、已知命题“[]0,1x ∃∈,使20x a +<”为假命题,则a 的取值范围是.0a ≥ 13、已知4sin 3cos 0αα+=,则915sin()cos(5)cos()cos()2213cos()sin(3)cos(9)sin()2ππαπαααπαπαπαα-+++-=-++-+. 3414、已知()f x 是定义在R 上以3为周期的偶函数,若(1)1f ≤,23(5)1a f a -=+,则实数 a 的取值范围为___________.(1,4]-15、已知不等式1x e x ≥+,对任意的x R ∈恒成立. 现有以下命题:①对x R ∀∈,不等式1x e x ->-恒成立;②对()0,x ∀∈+∞,不等式()ln 1x x +<恒成立; ③对()0,x ∀∈+∞,且1x ≠,不等式ln 1x x <-恒成立; ④对()0,x ∀∈+∞,且1x ≠,不等式ln 1ln 11x xx x x +>+-恒成立. 其中真命题有(写出所有真命题的序号).②③④成都经开区实验高中高三下期(文数)综合测试(1)答题卷姓名班级一、 选择题11、 12、 13、 14、 15、三、解答题(共6小题,共75分)16、(本题满分12分)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如下图所示.(1)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(2)在(1)的前提下,从这6人中随机抽取3人参加社区宣传交流活动,求至少有2人年龄在第3组的概率. (2)4517、(本题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若tan 21tan A c B b+=. (1)求角A 的大小; (2)若函数()22sin ()32, [,]442fx x x x πππ=+∈,在x B =处取到最大值a ,求ABC ∆的面积.题号 12 3 4 5 6 7 8 9 10 答案解:(1)因为sin cos 2sin 1cos sin sin A B CA B B+⋅=, 所以sin 2sin cos CC A=, 又因为sin 0C ≠,所以1cos 2A =, 所以3A π=.(2)因为()22sin ()24f x x x π=+12sin 23x π⎛⎫=+- ⎪⎝⎭,所以,当232x ππ-=,即512x π=时,()max 3f x =, 此时5,C , 3.124B a ππ=== 因为sin sin a cA C=,所以3sin sin a C c A ⨯===则11sinB 322S ac ==⋅=. 18、(本题满分12分)已知数列{}n a 的前n 项和是n S ,且112n n S a +=(*n N ∈). (1)求数列{}n a 的通项公式; (2)设113log (1)n n b S +=-,令12231111n n n T b b b b b b +=+++,求n T . 解 (1)当n =1时,a1=S1,由S1+12a1=1,得a1=23,当n ≥2时,Sn =1-12an ,Sn -1=1-12an -1,则Sn -Sn -1=12(an -1-an),即an =12(an -1-an),所以an =13an -1(n ≥2).故数列{an}是以23为首项,13为公比的等比数列.故an =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n (n ∈N*). (2)因为1-Sn =12an =⎝ ⎛⎭⎪⎫13n .所以bn =log 13(1-Sn +1)=log 13⎝ ⎛⎭⎪⎫13n +1=n +1,因为1bnbn +1=1(n +1)(n +2)=1n +1-1n +2,所以Tn =1b1b2+1b2b3+…+1bnbn +1=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2 =12-1n +2=n2(n +2). 19、(本题满分12分)如图,在底面为直角梯形的四棱锥P ABCD -中,//AD BC ,90=∠ABC ,⊥PD 平面ABCD ,1=AD ,3=AB ,4=BC .(1)求证:PC BD ⊥;(2)若4=PD ,设点E 在棱PC 上,14PE PC =, 求三棱锥E PAB -的体积.(2)1111123434444323E PAB C PAB P CAB V V V ---===⨯⨯⨯⨯⨯=20、(本题满分13分)已知椭圆C 的中心在原点,焦点在x 轴上,离心率为32,它的一个顶点恰好是抛物线242x y =的焦点.(1)求椭圆C 的方程;(2)直线2x =与椭圆交于P ,Q 两点,P 点位于第一象限,A,B 是椭圆上位于直线2x =两侧的动点,满足直线PA 与直线PB 的倾斜角互补,证明直线AB 的斜率为12. 20、21、(本题满分14分)已知函数xa x x f ln )()(2-=(其中a 为常数).(Ⅰ)当0=a 时,求函数的单调区间;(Ⅱ) 当10<<a 时,若函数)(x f 有3个极值点,分别为12,,a x x .证明:12x x e+>. 1、高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

高考数学高三模拟试卷试题压轴押题第一次月考数学文科试题

高考数学高三模拟试卷试题压轴押题第一次月考数学文科试题

高考数学高三模拟试卷试题压轴押题第一次月考数学(文科)试题一、选择题(本题共60分,每小题5分)1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是 ( )A 、3a ≤-B 、3a ≥-C 、a ≤5D 、a ≥53.要得到2sin(2)3y x π=-的图像, 需要将函数sin 2y x =的图像( ) A .向左平移23π个单位 B .向右平移23π个单位C .向左平移3π个单位D .向右平移3π个单位4.圆1C :222880x y x y +++-=与圆2C :224420x y x y +-+-=的位置关系是( )A. 相交B. 外切C. 内切D.相离 5.下列各组函数是同一函数的是 ( )①()f x =()g x =()f x x =与()g x =③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

A. ①② B 、①③ C 、③④ D 、①④6.已知2tan()5αβ+=, 1tan()44πβ-=, 则tan()4πα+的值为( )A .16B .2213C .322D .13187.已知a ,b 满足:||3a =,||2b =,||4a b +=,则||a b -=( )A B .3 D .108. 若定义运算ba ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕的值域是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R9.直线3440x y --=被圆22(3)9x y -+=截得的弦长为( )A ..4 C .D .210.如图,三棱柱111A B C ABC -中,侧棱1AA ⊥底面111A B C ,底面三角形111A B C 是正三角形,E是BC 中点,则下列叙述正确的是( ) A . 1CC 与1B E 是异面直线 B . AC ⊥平面11ABB A C .11//AC 平面1AB ED .AE ,11B C 为异面直线,且11AE B C ⊥ 11、函数()21xx x f -=()A .在)1,1(-上单调递增B .在()0,1-上单调递增,在()1,0上单调递减C .在()1,1-上单调递减D .在()0,1-上单调递减,在()1,0上单调递增12、若关于x 的方程x3 -3x+m=0在[0,2]上有根,则实数m 的取值范围是( )A .[-2,2]B .[0,2]C .[-2,0]D .(-∞,-2)∪(2, -∞) 二. 填空题(本题共4小题,每小题5分,共20分) 13.给出平面区域(如图),若使目标函数:z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为.14.不等式111x x -<+的解集是________________.15.已知数列{}n a 的前n 项和29n S n n =-,则其通项n a =;若它的第k 项满足58k a <<,则k =.16.椭圆1422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分12分) 在ABC ∆中,,4B AC C π===A 1B 1C 1ABEC 13题5,C1A(Ⅰ)求sin A;(Ⅱ) 记BC的中点为D,求中线AD的长.18.(本题满分12分)有一个容量为100的样本,数据的分组及各组的频数如下:[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5),8.⑴列出样本的频率分布表;⑵画出频率分布直方图;⑶估计数据小于30.5的频率.19.(本小题满分14分)已知圆C同时满足下列三个条件:①与y轴相切,②在直线y=x上截得弦长为72,③圆心在直线x-3y=0上,求圆C的方程。

高考数学高三模拟试卷试题压轴押题高三第一次统一练习数学试卷文科

高考数学高三模拟试卷试题压轴押题高三第一次统一练习数学试卷文科

高考数学高三模拟试卷试题压轴押题高三第一次统一练习数学试卷(文科)一、选择题.(共8小题,每小题5分,共40分.在每小题所列出的四个选项中,只有一项是符合题目要求的.) 1.已知集合{}{}2320,2,1,1,2A x x x B =-+==--,则=⋂B A A.{}2,1--B.{}1,2-C.{}1,2D.{}2,1,1,2--2.下列函数中,既是奇函数又在区间()0,+∞上单调递减的是A.22y x =-+B.1y x =C.2x y -=D.ln y x =3.在复平面内,复数()212i +对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限 4.当5n =时,执行如图所示的程序框图,输出的S 的值等于 A.2 B.4 C.7 D.115.若441x y +=,则x y +的取值范围是 A.[]0,1 B.[]1,0- C.[)1,-+∞ D.(],1-∞-6.函数()sin y x ϕ=+的图像关于y 轴对称的 充分必要条件是 A.2πϕ=B.ϕπ=C.,2k k πϕπ=+∈Z D.2,2k k πϕπ=+∈Z7.已知无穷数列{}n a 是等差数列,公差为d ,前n 项和为n S ,则A.当首项10,0a d ><时,数列{}n a 是递减数列且n S 有最大值B.当首项10,0a d <<时,数列{}n a 是递减数列且n S 有最小值C.当首项10,0a d >>时,数列{}n a 是递增数列且n S 有最大值D.当首项10,0a d <>时,数列{}n a 是递减数列且n S 有最大值8.某桶装水运营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示:设在进价基础上增加x 元后,日均销售利润为y 元,且()20y ax bx c a =++≠.该经营部要想获得最大利润,每桶水在进价的基础上应增加 A.3元 B.4元 C.5元 D.6元二、填空题(本大题共6小题,每小题5分,共30分)9.双曲线2214x y m-=的离心率为2,则m =,其渐近线方程为.10.不等式组0,20,30x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩所表示平面区域的面积为.11.设向量()()3,1,2,2a b ==-,若()()a b a b λλ+⊥-,则实数λ=.12.已知函数()3269f x x x x =-+,则()f x 在闭区间[]1,5-上的最小值为,最大值为. 13.已知直线:l y =,点(),P x y 是圆()2221x y -+=上的动点,则点P 到直线l 的距离的最小值为.14.已知函数()()2sin 0,6f x x x πωω⎛⎫=+>∈ ⎪⎝⎭R .又()()122,0f x f x =-=且12x x -的最小值等于π,则ω的值为.三、解答题(本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分13分)设数列{}n a 满足:111,3,*n n a a a n +==+∈N . (I)求{}n a 的通项公式及前n 项和n S ;(II)已知{}n b 是等比数列,且12468,b a b a S ==+.求数列{}n b 的前n 项和.16.(本小题满分13分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知cos b B A ===B 为钝角.. (I)求a 的值; (II)求cosC 的值. 17.(本小题满分14分)如图(1),在Rt ABC ∆中,90,3,6,,C BC AC D E ∠===分别是,AC AB 上的点,且//,2DE BC DE =.将ADE ∆沿DE 折起到A DE '∆的位置,使A C CD '⊥,如图(2).(I)求证://DE 平面A BC '; (II)求证:A C BE '⊥;(III)线段A D '上是否存在点F ,使平面CFE A DE '⊥平面.若存在,求出DF 的长;若不存在,请说明理由.(2)(1)CD18.(本小题满分13分)某市调研机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市(I)若所抽调的50名市民中,收入在[)35,45的有15名,求,,a b c 的值,并完成频率分布直方图;(II)若从收入(单位:百元)在[)55,65的被调查者中随机选取两人进行追踪调查,求选中的2人至少有1人不赞成“楼市限购令”的概率.19.(本小题满分14分) 已知椭圆22:416C x y +=. (I)求椭圆C 的离心率;(II)设椭圆C 与y 轴下半轴的交点为B ,如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆2212x y +=的位置关系.(百元)20.(本小题满分13分)已知函数()22ln f x a x ax x =+-. (I)当0a >时,求函数()f x 的单调区间;(II)设()()22g x a x f x =-,且函数()g x 在点1x =处的切线为l ,直线//l l ',且l '在y 轴上的截距为1,求证:无论a 取任何实数,函数()g x 的图像恒在直线l '的下方;(III)已知点()()()()001,1,,A g Q x g x ,且当01x >时,直线QA 的斜率恒小于2,求实数a 的取值范围.顺义区高三第一次统一练习 数学试卷答案(文科)一、CBBDDCAD 二、9.11,2y x =± 10.3211.12.16,20-1 14.12三、15.解:(I)因为13,*n n a a n +=+∈N ,所以13,*n n a a n +-=∈N ,所以数列{}n a 是以11a =为首项,公差3d =的等差数列, 所以()()1111332n a a n d n n =+-=+-⨯=-,............... ...........................................4分()()12132312222n n n a a n n S n n ++-===-................ ...........................................6分 (II)由(I)可知32n a n =-,所以()()128881224,9222n a a a S ++====, 所以4681692108b a S =+=+= ................ ...........................................9分设等比数列{}n b 的公比为q , 则341108274b q b ===, 所以3q =, ............... ...........................................11分所以数列{}n b 的前n 项和()41323213n n n B -==⨯--................ ...........................................12分16.解:(I)在ABC ∆中,因为cosA =,所以sin 3A ===. ...........................................3分 由正弦定理,sin sin a bAB=得sin 3sin b A a B ===................ ...........................................6分(II)因为B 为钝角,所以,cos B===. ...........................................8分由(I)可知,sin 3A =, 又sin cos 3B A == 所以()()cos cos cosC AB A B π=-+=-+⎡⎤⎣⎦ ...........................................10分cos cos sin sin 3333A B A B =-+⎛=-⨯-+ ⎝⎭=............... ...........................................13分17.(I)证明:因为,D E 分别为,AC AB 上的点,且//DE BC ,又因为DE A BC '⊄平面,所以//DE 平面A BC '................ ...........................................3分 (II)证明:因为90,//C DE BC ∠=,所以,DE CD DE AD ⊥⊥,由题意可知,DE A D '⊥, ............... ...........................................4分 又A D CD D '⋂=,所以DE A CD '⊥平面, ............... ...........................................5分 所以BC A CD '⊥平面, ............... ...........................................6分 所以BC A C '⊥, ............... ...........................................7分 又A C CD '⊥,且CD BC C ⋂=,所以A C BCDE '⊥平面, ............... ...........................................8分 又BE BCDE ⊂平面,所以A C BE '⊥. ............... ...........................................9分 (III)解:线段A D '上存在点F ,使平面平面CFE A DE '⊥.理由如下:因为A C CD '⊥,所以,在Rt A CD '∆中,过点C 作CF A D '⊥于F , 由(II)可知,平面DE A CD '⊥,又平面CF A CD '⊂ 所以DE CF ⊥,又A D DE D '⋂=, 所以平面CF A DE '⊥,... ...........................................12分因为CF CEF ⊂平面,所以平面平面CFE A DE '⊥,故线段A D '上存在点F ,使平面平面CFE A DE '⊥. ................................13分 如图(1),因为DE BC ,所以,DE AD BC AC =,即236AD=, 所以,4,2AD CD ==.所以,如图(2),在'Rt ACD ∆中, '4,2A D CD ==所以,'060A DC ∠=,在Rt CFD ∆中,1DF =............... ...........................................14分18.解:(I)由频率分布表得0.10.20.10.11a b +++++=,即0.5a b +=.因为所抽调的50名市民中,收入(单位:百元)在[)35,45的有15名,所以150.350b ==,所以0.2,0.25010a c ==⨯=, 所以0.2,0.3,10a b c ===, 且频率分布直方图如下:C............... ...........................................4分(II)设收入(单位:百元)在[)55,65的被调查者中赞成的分别是123,,A A A ,不赞成的分别是12,B B ,事件M :选中的2人中至少有1人不赞成“楼市限购令”,则从收入(单位:百元)在[)55,65的被调查者中,任选2名的基本事件共有10个:()()()()12131112,,,,,,,A A A A A B A B , ()()()232122,,,,,A A A B A B ,()()3132,,,A B A B ,()12,B B , ............... ...........................................10分事件M 包含的结果是()()1112,,,A B A B ,()()2122,,,A B A B ,()()3132,,,A B A B ,()12,B B 共7个, ............... ...........................................11分所以()710P M =, ............... ...........................................12分 故所求概率为710. ............... ...........................................13分19.解:(I)由题意,椭圆C 的标准方程为221164x y +=, 所以2222216,4,12从而a b c a b ===-=,因此4,a c ==(百元)故椭圆C的离心率c e a ==. ............... ...........................................4分 (II)由221,416y kx x y =+⎧⎨+=⎩得()22148120k x kx ++-=, 由题意可知0∆>. ............... ...........................................5分设点,E F 的坐标分别为()()1122,,,x y x y ,EF 的中点M 的坐标为(),M M x y , 则1224214M x x k x k +==-+,1221214My y y k +==+................ .....................................7分 因为BEF ∆是以EF 为底边,B 为顶点的等腰三角形, 所以BM EF ⊥,因此BM 的斜率1BM k k=-. ............... ...........................................8分又点B 的坐标为()0,2-,所以222122381440414M BM M y k k k k x k k ++++===---+,............... ....................................10分 即()238104k k k k+-=-≠, 亦即218k =,所以4k =±, ............... ...........................................12分故EF的方程为440y -+=. ............... ...........................................13分又圆2212x y +=的圆心()0,0O 到直线EF的距离为32d ==>, 所以直线EF 与圆相离................ ...........................................14分20.(I)解:()22ln f x a x ax x =+-,()()()()22212112120ax ax a x ax f x a x a x x x x+-+-'=+-==>, ............... ...........................................2 分 所以,0a >时,()f x 与()f x '的变化情况如下:因此,函数()f x 的单调递增区间为1,2a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为10,2a ⎛⎫⎪⎝⎭................ ...........................................4分 (II)证明:()()22ln g x a x f x x ax =-=-,()1g x a x'=-, 所以()11g a '=-, 所以l 的斜率1l k a =-.因为//l l ',且l '在y 轴上的截距为1,所以直线l '的方程为()11y a x =-+................ ...........................................6分 令()()()()11ln 10h x g x a x x x x =--+=-->⎡⎤⎣⎦,则无论a 取任何实数,函数()g x 的图像恒在直线l '的下方,等价于()()0,0h x a x <∀∈∀>R , ............... ...........................................7分而()111xh x x x-'=-=.当()0,1x ∈时,()0h x '>,当()1,x ∈+∞时,()0h x '<, 所以函数()h x 的()0,1上单调递增,在()1,+∞上单调递减, 从而当1x =时,()h x 取得极大值()12h =-,即在()0,+∞上,()h x 取得最大值()12h =-,.....................................................8分 所以()()20,0h x a x ≤-<∀∈∀>R ,因此,无论a 取任何实数,函数()g x 的图像恒在直线l '的下方. ............... ...........................................9分(III)因为()()0001,,,ln A a Q x x ax --,所以00000ln ln 11QA x ax a x k a x x -+==---,所以当01x >时,0ln 21x a x -<-, 即()()00ln 210x a x -+-<恒成立................ ...........................................10分 令()()()()ln 211r x x a x x =-+->,则()()12r x a x'=-+, 因为1x >,所以101x<<. (i)当2a ≤-时,20a +≤,此时()0r x '>, 所以()r x 在()1,+∞上单调递增,有()()10r x r >=不满足题意;(ii)当21a -<<-时,021a <+<, 所以当11,2x a ⎛⎫∈ ⎪+⎝⎭时,()0r x '>,当1,2x a ⎛⎫∈+∞ ⎪+⎝⎭时,()0r x '<, 所以至少存在11,2t a ⎛⎫∈ ⎪+⎝⎭,使得()()10r t r >=不满足题意;(iii)当1a ≥-时,21a +≥,此时()0r x '<,所以()r x 在()1,+∞上单调递减,()()10r x r <=,满足题意.综上可得1a ≥-,故所求实数a 的取值范围是[)1,-+∞................ ...........................................13分高考理科数学试卷普通高等学校招生全国统一考试注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m=(A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2 (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18(C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为 (A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12(k ∈Z) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34(9)若cos(π4–α)=35,则sin 2α= (A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2mn (11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.(2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

高考数学高三模拟试卷试题压轴押题第二学期统一练习一高三数学文科

高考数学高三模拟试卷试题压轴押题第二学期统一练习一高三数学文科

高考数学高三模拟试卷试题压轴押题第二学期统一练习(一)高三数学(文科)一、选择题1. 设集合U={1,2,3,4,5,6},A={x ∈N ∣1≤x≤3},则UA =()(A) U (B) {1,2,3}(C) {4,5,6}(D) {1,3,4,5,6}【难度】1【考点】集合的运算 【答案】C 【解析】{}{}311,2,3x A x N *=∈=≤≤,所以{}U A =4,5,6故选C2.下列函数中,在区间(0,)+∞上存在最小值的是()(A) 2(1)y x =- (B) y x = (C) 2xy =(D) 2log y x =【难度】1【考点】函数图象 【答案】A 【解析】选项A 如下图故选A3. 已知a ,b 是两条不同的直线,α是一个平面,且b ⊂α,那么“a ⊥b”是“a ⊥α”的()(A) 充分不必要条件 (B) 必要不充分条件 (C) 充分必要条件 (D) 既不充分也不必要条件 【难度】1【考点】充分条件与必要条件 【答案】B 【解析】必要性显然成立,下面考查充分性:举反例如下图故选B4.当n=5时,执行如图所示的程序框图,输出的S值是()(A) 7 (B)10 (C) 11 (D) 16【难度】2【考点】算法与程序框图【答案】C【解析】程序执行过程如下:n=,开始,输入5<,进入循环体;S=,满足条件m nm=,11<,进入循环体;m=,满足条件m nS=,22<,进入循环体;m=,满足条件m nS=,34<,进入循环体;m=,满足条件m nS=,47<,跳出循环体;m=,不满足符合条件m nS=,511S=,结束。

输出11故选C5.某几何体的三视图如图所示,则该几何体的体积为()(A) 48(B) 32(C) 16(D)323【难度】2【考点】空间几何体的三视图与直观图 【答案】B 【解析】作出该几何体的直观图如下该几何体可看作是底面为直角梯形的四棱柱。

高考数学高三模拟考试试卷压轴题猜题押题文科参考答案与试题解析

高考数学高三模拟考试试卷压轴题猜题押题文科参考答案与试题解析

高考数学高三模拟考试试卷压轴题猜题押题(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(•重庆)已知集合A={1,2,3},B={1,3},则A∩B=()A.{2} B.{1,2} C.{1,3} D.{1,2,3}考点:交集及其运算.专题:集合.分析:直接利用集合的交集的求法求解即可.解答:解:集合A={1,2,3},B={1,3},则A∩B={1,3}.故选:C.点评:本题考查交集的求法,考查计算能力.2.(5分)(•重庆)“x=1”是“x2﹣2x+1=0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先求出方程x2﹣2x+1=0的解,再和x=1比较,从而得到答案.解答:解:由x2﹣2x+1=0,解得:x=1,故“x=1”是“x2﹣2x+1=0”的充要条件,故选:A.点评:本题考察了充分必要条件,考察一元二次方程问题,是一道基础题.3.(5分)(•重庆)函数f(x)=log2(x2+2x﹣3)的定义域是()A.[﹣3,1] B.(﹣3,1)C.(﹣∞,﹣3]∪[1,+∞)D.(﹣∞,﹣3)∪(1,+∞)考点:一元二次不等式的解法;对数函数的定义域.专题:函数的性质及应用;不等式.分析:利用对数函数的真数大于0求得函数定义域.解答:解:由题意得:x2+2x﹣3>0,即(x﹣1)(x+3)>0 解得x>1或x<﹣3所以定义域为(﹣∞,﹣3)∪(1,+∞)故选D.点本题主要考查函数的定义域的求法.属简单题型.高考常考题型.评:4.(5分)(•重庆)重庆市各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.23考点:茎叶图.专题:概率与统计.分析:根据中位数的定义进行求解即可.解答:解:样本数据有12个,位于中间的两个数为20,20,则中位数为,故选:B点评:本题主要考查茎叶图的应用,根据中位数的定义是解决本题的关键.比较基础.5.(5分)(•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:利用三视图判断直观图的形状,结合三视图的数据,求解几何体的体积即可.解答:解:由题意可知几何体的形状是放倒的圆柱,底面半径为1,高为2,左侧与一个底面半径为1,高为1的半圆锥组成的组合体,几何体的体积为:=.故选:B.点评:本题考查三视图的作法,组合体的体积的求法,考查计算能力.6.(5分)(•重庆)若tanα=,tan(α+β)=,则tanβ=()A.B.C.D.考点:两角和与差的正切函数.专题:三角函数的求值.分析:由条件利用查两角差的正切公式,求得tanβ=tan[(α+β)﹣α]的值.解答:解:∵tanα=,tan(α+β)=,则tanβ=tan[(α+β)﹣α]===,故选:A.点评:本题主要考查两角差的正切公式的应用,属于基础题.7.(5分)(•重庆)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由已知向量垂直得到数量积为0,于是得到非零向量的模与夹角的关系,求出夹角的余弦值.解答:解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选C.点评:本题考查了向量垂直的性质运用以及利用向量的数量积求向量的夹角;熟练运用公式是关键.8.(5分)(•重庆)执行如图所示的程序框图,则输出s的值为()A.B.C.D.考点:循环结构.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k,s的值,当k=8时不满足条件k<8,退出循环,输出s的值为.解答:解:模拟执行程序框图,可得s=0,k=0满足条件k<8,k=2,s=满足条件k<8,k=4,s=+满足条件k<8,k=6,s=++满足条件k<8,k=8,s=+++=不满足条件k<8,退出循环,输出s的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.9.(5分)(•重庆)设双曲线=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过F做A1A2的垂线与双曲线交于B,C两点,若A1B⊥A2C,则该双曲线的渐近线的斜率为()A.±B.±C.±1 D.±考双曲线的简单性质.点:专题:计算题;圆锥曲线的定义、性质与方程.分析:求得A1(﹣a,0),A2(a,0),B(c,),C(c,﹣),利用A1B⊥A2C,可得,求出a=b,即可得出双曲线的渐近线的斜率.解答:解:由题意,A1(﹣a,0),A2(a,0),B(c,),C(c,﹣),∵A1B⊥A2C,∴,∴a=b,∴双曲线的渐近线的斜率为±1.故选:C.点评:本题考查双曲线的性质,考查斜率的计算,考查学生分析解决问题的能力,比较基础.10.(5分)(•重庆)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为()A.﹣3 B.1C.D.3考点:二元一次不等式(组)与平面区域.专题:开放型;不等式的解法及应用.分析:作出不等式组对应的平面区域,求出三角形各顶点的坐标,利用三角形的面积公式进行求解即可.解答:解:作出不等式组对应的平面区域如图:若表示的平面区域为三角形,由,得,即C(2,0),则C(2,0)在直线x﹣y+2m=0的下方,即2+2m>0,则m>﹣1,则C(2,0),F(0,1),由,解得,即A(1﹣m,1+m),由,解得,即B(,).|AF|=1+m﹣1=m,则三角形ABC的面积S=×m×2+(﹣)=,即m2+m﹣2=0,解得m=1或m=﹣2(舍),故选:B点评:本题主要考查线性规划以及三角形面积的计算,求出交点坐标,结合三角形的面积公式是解决本题的关键.二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. 11.(5分)(•重庆)复数(1+2i)i的实部为﹣2.考点:复数代数形式的乘除运算;复数的基本概念.专题:数系的扩充和复数.分析:利用复数的运算法则化简为a+bi的形式,然后找出实部;注意i2=﹣1.解答:解:(1+2i)i=i+2i2=﹣2+i,所以此复数的实部为﹣2;故答案为:﹣2.点评:本题考查了复数的运算以及复数的认识;注意i2=﹣1.属于基础题.12.(5分)(•重庆)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为x+2y﹣5=0.考点:圆的切线方程;直线与圆的位置关系.专题:直线与圆.分析:由条件利用直线和圆相切的性质,两条直线垂直的性质求出切线的斜率,再利用点斜式求出该圆在点P处的切线的方程.解答:解:由题意可得OP和切线垂直,故切线的斜率为﹣==﹣,故切线的方程为y﹣2=﹣(x﹣1),即 x+2y﹣5=0,故答案为:x+2y﹣5=0.点评:本题主要考查直线和圆相切的性质,两条直线垂直的性质,用点斜式求直线的方程,属于基础题.13.(5分)(•重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,则c=4.考点:正弦定理的应用.专题:解三角形.分析:由3sinA=2sinB即正弦定理可得3a=2b,由a=2,即可求得b,利用余弦定理结合已知即可得解.解答:解:∵3sinA=2sinB,∴由正弦定理可得:3a=2b,∵a=2,∴可解得b=3,又∵cosC=﹣,∴由余弦定理可得:c2=a2+b2﹣2abcosC=4+9﹣2×=16,∴解得:c=4.故答案为:4.点评:本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基础题.14.(5分)(•重庆)设a,b>0,a+b=5,则的最大值为3.考点:函数最值的应用.专题:计算题;函数的性质及应用.分析:利用柯西不等式,即可求出的最大值.解答:解:由题意,()2≤(1+1)(a+1+b+3)=18,∴的最大值为3,故答案为:3.点评:本题考查函数的最值,考查柯西不等式的运用,正确运用柯西不等式是关键.15.(5分)(•重庆)在区间[0,5]上随机地选择一个数p,则方程x2+2px+3p﹣2=0有两个负根的概率为.考点:几何概型.专题:开放型;概率与统计.分析:由一元二次方程根的分布可得p的不等式组,解不等式组,由长度之比可得所求概率.解答:解:方程x2+2px+3p﹣2=0有两个负根等价于,解关于p的不等式组可得<p≤1或p≥2,∴所求概率P==故答案为:点评:本题考查几何概型,涉及一元二次方程根的分布,属基础题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(12分)(•重庆)已知等差数列{an}满足a3=2,前3项和S3=.(Ⅰ)求{an}的通项公式;(Ⅱ)设等比数列{bn}满足b1=a1,b4=a15,求{bn}前n项和Tn.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)设等差数列{an}的公差为d,则由已知条件列式求得首项和公差,代入等差数列的通项公式得答案;(Ⅱ)求出,再求出等比数列的公比,由等比数列的前n 项和公式求得{bn}前n项和Tn.解答:解:(Ⅰ)设等差数列{an}的公差为d,则由已知条件得:,解得.代入等差数列的通项公式得:;(Ⅱ)由(Ⅰ)得,.设{bn}的公比为q,则,从而q=2,故{bn}的前n项和.点评: 本题考查了等差数列和等比数列的通项公式,考查了等差数列和等比数列的前n 项和,是中档题.17.(13分)(•重庆)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份时间代号t1 2 3 4 5 储蓄存款y (千亿元) 56 7 8 10 (Ⅰ)求y 关于t 的回归方程=t+.(Ⅱ)用所求回归方程预测该地区(t=6)的人民币储蓄存款. 附:回归方程=t+中.考点:回归分析的初步应用. 专题:计算题;概率与统计. 分析: (Ⅰ)利用公式求出a ,b ,即可求y 关于t 的回归方程=t+. (Ⅱ)t=6,代入回归方程,即可预测该地区的人民币储蓄存款. 解答:解:(Ⅰ)由题意,=3,=7.2,=55﹣5×32=10,=120﹣5×3×7.2=12,∴=1.2,=7.2﹣1.2×3=3.6, ∴y 关于t 的回归方程=1.2t+3.6.(Ⅱ)t=6时,=1.2×6+3.6=10.8(千亿元).点评: 本题考查线性回归方程,考查学生的计算能力,属于中档题.18.(13分)(•重庆)已知函数f(x)=sin2x﹣cos2x.(Ⅰ)求f(x)的最小周期和最小值;(Ⅱ)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象.当x∈时,求g(x)的值域.考点:三角函数中的恒等变换应用;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣)﹣,从而可求最小周期和最小值;(Ⅱ)由函数y=Asin(ωx+φ)的图象变换可得g(x)=sin(x﹣)﹣,由x∈[,π]时,可得x﹣的范围,即可求得g(x)的值域.解答:解:(Ⅰ)∵f(x)=sin2x﹣cos2x=sin2x﹣(1+cos2x)=sin(2x﹣)﹣,∴f(x)的最小周期T==π,最小值为:﹣1﹣=﹣.(Ⅱ)由条件可知:g(x)=sin(x﹣)﹣当x∈[,π]时,有x﹣∈[,],从而sin(x﹣)的值域为[,1],那么sin(x﹣)﹣的值域为:[,],故g(x)在区间[,π]上的值域是[,].点评:本题主要考查了三角函数中的恒等变换应用,函数y=Asin(ωx+φ)的图象变换,属于基本知识的考查.19.(12分)(•重庆)已知函数f(x)=ax3+x2(a∈R)在x=处取得极值.(Ⅰ)确定a的值;(Ⅱ)若g(x)=f(x)ex,讨论g(x)的单调性.考点:函数在某点取得极值的条件.专题:综合题;导数的综合应用.分析:(Ⅰ)求导数,利用f(x)=ax3+x2(a∈R)在x=处取得极值,可得f′(﹣)=0,即可确定a的值;(Ⅱ)由(Ⅰ)得g(x)=(x3+x2)ex,利用导数的正负可得g(x)的单调性.解答:解:(Ⅰ)对f(x)求导得f′(x)=3ax2+2x.∵f(x)=ax3+x2(a∈R)在x=处取得极值,∴f′(﹣)=0,∴3a•+2•(﹣)=0,∴a=;(Ⅱ)由(Ⅰ)得g(x)=(x3+x2)ex,∴g′(x)=(x2+2x)ex+(x3+x2)ex=x(x+1)(x+4)ex,令g′(x)=0,解得x=0,x=﹣1或x=﹣4,当x<﹣4时,g′(x)<0,故g(x)为减函数;当﹣4<x<﹣1时,g′(x)>0,故g(x)为增函数;当﹣1<x<0时,g′(x)<0,故g(x)为减函数;当x>0时,g′(x)>0,故g(x)为增函数;综上知g(x)在(﹣∞,﹣4)和(﹣1,0)内为减函数,在(﹣4,﹣1)和(0,+∞)内为增函数.点评:本题考查导数的运用:求单调区间和极值,考查分类讨论的思想方法,以及函数和方程的转化思想,属于中档题.21.(13分)(•重庆)如题图,椭圆=1(a>b>0)的左右焦点分别为F1,F2,且过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(Ⅰ)若|PF1|=2+,|PF2|=2﹣,求椭圆的标准方程.(Ⅱ)若|PQ|=λ|PF1|,且≤λ<,试确定椭圆离心率e的取值范围.考点:椭圆的简单性质.专题:开放型;圆锥曲线中的最值与范围问题.分析:(I)由椭圆的定义可得:2a=|PF1|+|PF2|,解得a.设椭圆的半焦距为c,由于PQ⊥PF1,利用勾股定理可得2c=|F1F2|=,解得c.利用b2=a2﹣c2.即可得出椭圆的标准方程.(II)如图所示,由PQ⊥PF1,|PQ|=λ|PF1|,可得|QF1|=,由椭圆的定义可得:|PF1|+|PQ|+|QF1|=4a,解得|PF1|=.|PF2|=2a﹣|PF1|,由勾股定理可得:2c=|F1F2|=,代入化简.令t=1+λ,则上式化为e2=,解出即可.解答:解:(I)由椭圆的定义可得:2a=|PF1|+|PF2|=(2+)+(2﹣)=4,解得a=2.设椭圆的半焦距为c,∵PQ⊥PF1,∴2c=|F1F2|===2,∴c=.∴b2=a2﹣c2=1.∴椭圆的标准方程为.(II)如图所示,由PQ⊥PF1,|PQ|=λ|PF1|,∴|QF1|==,由椭圆的定义可得:2a=|PF1|+|PF2|=|QF1|+|QF2|,∴|PF1|+|PQ|+|QF1|=4a,∴|PF1|=4a,解得|PF1|=.|PF2|=2a﹣|PF1|=,由勾股定理可得:2c=|F1F2|=,∴+=4c2,∴+=e2.令t=1+λ,则上式化为=,∵t=1+λ,且≤λ<,∴t关于λ单调递增,∴3≤t<4.∴,∴,解得.∴椭圆离心率的取值范围是.点评:本题考查了椭圆的定义标准方程及其性质、勾股定理、不等式的性质、“换元法”,考查了推理能力与计算能力,属于中档题.20.(12分)(•重庆)如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积.专题:开放型;空间位置关系与距离.分析:(Ⅰ)由等腰三角形的性质可证PE⊥AC,可证PE⊥AB.又EF∥BC,可证AB⊥EF,从而AB与平面PEF内两条相交直线PE,EF都垂直,可证AB⊥平面PEF.(Ⅱ)设BC=x,可求AB,S△ABC,由EF∥BC可得△AFE≌△ABC,求得S△AFE=S△ABC,由AD=AE,可求S△AFD,从而求得四边形DFBC的面积,由(Ⅰ)知PE为四棱锥P﹣DFBC的高,求得PE,由体积VP﹣DFBC=SDFBC•PE=7,即可解得线段BC的长.解答:解:(Ⅰ)如图,由DE=EC,PD=PC知,E为等腰△PDC中DC边的中点,故PE⊥AC,又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE⊂平面PAC,PE⊥AC,所以PE⊥平面ABC,从而PE⊥AB.因为∠ABC=,EF∥BC,故AB⊥EF,从而AB与平面PEF内两条相交直线PE,EF都垂直,所以AB⊥平面PEF.(Ⅱ)设BC=x,则在直角△ABC中,AB==,从而S△ABC=AB•BC=x,由EF∥BC知,得△AFE≌△ABC,故=()2=,即S△AFE=S△ABC,由AD=AE,S△AFD==S△ABC=S△ABC=x,从而四边形DFBC的面积为:SDFBC=S△ABC﹣SAFD=x﹣x=x.由(Ⅰ)知,PE⊥平面ABC,所以PE为四棱锥P﹣DFBC的高.在直角△PEC中,PE===2,故体积VP﹣DFBC=SDFBC•PE=x=7,故得x4﹣36x2+243=0,解得x2=9或x2=27,由于x>0,可得x=3或x=3.所以:BC=3或BC=3.点评:本题主要考查了直线与平面垂直的判定,棱柱、棱锥、棱台的体积的求法,考查了空间想象能力和推理论证能力,考查了转化思想,属于中档题.高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

高考数学高三模拟试卷试题压轴押题阶段测试卷文科

高考数学高三模拟试卷试题压轴押题阶段测试卷文科

高考数学高三模拟试卷试题压轴押题阶段测试卷(文科)第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1.已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=( ) A.{}2,1--B.{}2-C.{}1,0,1-D.{}0,12.已知向量 (1,),(,2)a m b m ==, 若a//b, 则实数m 等于( ) A.2-22-2D.03.函数lg(1)()1x f x x +=-的定义域是 ( ) A.(1,)-+∞ B.[1,)-+∞ C.(1,1)(1,)-+∞ D.[1,1)(1,)-+∞4.3sin cos 2αα==若( ) A.23B.13 C.13-D.23-5.下面四个条件中,使a >b 成立的充分而不必要的条件是 ( ) A.a >b +1 B.a >b 1 C.2a >2b D.3a >3b6.已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f ( ) A.2B.1C.0D.27.已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是( )A.p q ∧B.p q ⌝∧C.p q ∧⌝D.p q ⌝∧⌝8.设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则 ( ) A.21n n S a =- B.32n n S a =- C.43n n S a =- D.32n n S a =- 9.已知0>x ,0>y ,822=++xy y x ,则y x 2+的最小值为 ( ) A.3 B.4 C.29 D. 211 10.用{}b a ,max 表示两个数a ,b 中的最大数,设{}x x x x f 22log ,48max )(-+-=,若函数kx x f x g -=)()(有两个零点,则实数k 的取值范围为 ( )A.()3,0B.(]3,0C.()4,0D.[]4,0二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分)11.在等差数列{}n a 中,若2013=a ,1320=a ,则2014a =_________;12.已知函数f(x)=32,0,πtan ,0,2x x x x ⎧<⎪⎨-≤<⎪⎩则π4f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=__________; 13. 已知向量a ,b 满足2=a ,2=b ,且32=+b a,则a 与b 的夹角为__________;14.设变量,x y 满足1,x y +≤则2x y +的最大值为__________;15.已知a 为常数,若曲线x x ax y ln 32-+=存在与直线01=-+y x 垂直的切线,则实数a 的取值范围是__________。

高考数学高三模拟试卷试题压轴押题第一学期期末试卷高三数学文科

高考数学高三模拟试卷试题压轴押题第一学期期末试卷高三数学文科

高考数学高三模拟试卷试题压轴押题第一学期期末试卷高三数学(文科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|}A x x a =>,集合{1,1,2}B =-,若A B B =,则实数a 的取值范围是( )(A )(1,)+∞ (B )(,1)-∞(C )(1,)-+∞(D )(,1)-∞-2. 下列函数中,值域为[0,)+∞的偶函数是( )(A )21y x =+ (B )lg y x = (C )||y x = (D )cos y x x =3.设M 是ABC ∆所在平面内一点,且BM MC =,则AM =( )(A )AB AC -(B )AB AC + (C )1()2AB AC -(D )1()2AB AC +4.设命题p :“若e 1x >,则0x >”,命题q :“若a b >,则11a b<”,则( ) (A )“p q ∧”为真命题 (B )“p q ∨”为真命题 (C )“p ⌝”为真命题 (D )以上都不对5. 一个几何体的三视图如图所示,那么 这个几何体的表面积是( ) (A)16+ (B)16+ (C)20+ (D)20+侧(左)视图正(主)视图 俯视图6. “0mn <”是“曲线221x y m n+=是焦点在x 轴上的双曲线”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7. 设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥ 若3z x y =+的最大值与最小值的差为7,则实数m =( ) (A )32 (B )32- (C )14 (D )14-8. 某市乘坐出租车的收费办法如下:相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x]表示不大于x 的最大整数,则图中○1处应填( ) (A )12[]42y x =-+(B )12[]52y x =-+(C )12[]42y x =++(D )12[]52y x =++第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知复数z 满足(1i)24i z +=-,那么z =____.10.若抛物线22C y px =:的焦点在直线30x y +-=上,则实数p =____;抛物线C 的准线方程为____.11.某校某年级有100名学生,已知这些学生完成家庭作业的时间均在区间[0.5,3.5)内(单位:小时),现将这100人完成家庭作业的时间分为3组:[0.5,1.5),[1.5, 2.5),[2.5,3.5)加以统计,得到如图所示的频率分布直方图.在这100人中,采用分层抽样的方法抽取10名学生研究其视力状况与完成作业时间的相关性,则在抽取样本中,完成作业的时间小于2.5个小时的有_____人.12.已知函数()f x 的部分图象如图所示,若不等式2()4f x t -<+<的解集为(1,2)-,则实数t 的值为____.13. 在∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c. 若πsin cos()2A B =-,3a =,2c =,则cos C =____;∆ABC 的面积为____.14. 某食品的保鲜时间t (单位:小时)与储藏温度x (恒温,单位:C )满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤且该食品在4C 的保鲜时间是16小时. ○1 该食品在8C 的保鲜时间是_____小时;○2 已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示,那么到了此日13时,甲所购买的食品是否过了保鲜时间______.(填“是”或“否”)三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知数列{}n a 是等比数列,并且123,1,a a a +是公差为3-的等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2n n b a =,记n S 为数列{}n b 的前n 项和,证明:163n S <.16.(本小题满分13分)已知函数()cos (sin )f x x x x =,x ∈R . (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若(0,π)x ∈,求函数()f x 的单调增区间.17.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD ∠=,侧面PAB ⊥底面ABCD ,90BAP ∠=,6AB AC PA ===, ,E F 分别为,BC AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若M 为PD 的中点,求证://ME 平面PAB ;(Ⅲ)当12PM MD =时,求四棱锥M ECDF -的体积.F CADPM18.(本小题满分13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下:(Ⅰ)已知在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,且在4局比赛中,乙的平均得分高于甲的平均得分,求x y +的值;(Ⅱ)如果6x =,10y =,从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a ,b ,求b a ≥的概率;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x 的所有可能取值.(结论不要求证明)19.(本小题满分14分)已知椭圆C :)0(12222>>=+b a by a x ,点A 在椭圆C 上,O 为坐标原点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,且l 与圆225x y +=的相交于不在坐标轴上的两点1P ,2P ,记直线1OP ,2OP 的斜率分别为1k ,2k ,求证:12k k ⋅为定值.20.(本小题满分13分)已知函数21()2f x x x=+,直线1l y kx =-:. (Ⅰ)求函数()f x 的极值;(Ⅱ)求证:对于任意k ∈R ,直线l 都不是曲线()y f x =的切线; (Ⅲ)试确定曲线()y f x =与直线l 的交点个数,并说明理由.高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学高三模拟试卷试题压轴押题普通高中毕业班综合测试(一)文科数学【题型】选择题 【题文】 函数()f x =A .1+∞(,)B .[1+∞,)C .0+∞(,)D .-1∞(,)【答案】A 【解析】【题文】已知i 为虚数单位,复数1i 1z =-的模为A .12B .2CD .2【答案】B 【解析】【题文】设x R ∈,则“220x x +->”是“1x >”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】【题文】已知向量(1,2)a =,(1,0)b =,(3,4)c =.若λ为实数,()//a b c λ+,则λ等于A .14B .12 C .1D .2【答案】B 【解析】【题文】某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积A.20π3B.6πC.16π3D.10π3【答案】D【解析】【题文】执行如图所示的程序框图,输出的S值为A.2B.4C.8D.16【答案】C 【解析】【题文】ABC ∆的内角,,A B C 所对的边分别为,,a b c .若2B A =,1a =,3b =则c 等于A .3.2C .2D .1【答案】B 【解析】【题文】设点O 为坐标原点,F 为抛物线2:4C y x =的焦点,P 为C 上一点,若=4PF ,则POF ∆的面积为A .1B 2C 3.2【答案】C 【解析】【题文】 在长为12cm 的线段AB 上任取一点C .现作一矩形,其邻边长分别等于线段,AC BC 的长,则该矩形面积大于220cm 的概率为 A .16B .13C .23D .45(【答案】C 【解析】【题文】已知()g x 为三次函数cx ax xa x f ++=233)(的导函数,则函数()f x 与()g x 的图象可能是【答案】D 【解析】【结束】【题型】填空题 【题文】在等差数列{}n a 中,已知1694=+a a ,则12S =**** . 【答案】96 【解析】【题文】设实数,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则23z x y =-的最小值是**** .【答案】6 【解析】【题文】函数)(x f 的定义域为R ,已知)1(+x f 为奇函数,当1x <时,12)(2+-=x x x f ,那么当1x >时,)(x f 的递减区间是**** .25PCB ∠=︒【答案】7,4⎛⎫+∞⎪⎝⎭【解析】【题文】(坐标系与参数方程选做题)直角坐标系中,已知曲线C 的参数方程为cos 1sin x y θθ=+⎧⎨=⎩(θ为参数), 则点()4,4P 与曲线C 上的点的最远距离是**** .【答案】6 【解析】【题文】(几何证明选讲选做题)如图所示,AB 是半圆O 的直径,C 、D 是半圆上不同的两点,半圆O 的切线PC 交AB 的延长线于点P ,若,则=∠ADC **** .【答案】0115【解析】【结束】【题型】解答题 【题文】已知函数()sin cos f x a x b x =+的图象经过点,03π⎛⎫ ⎪⎝⎭和,12π⎛⎫⎪⎝⎭. 【小题1】求实数a 和b 的值; 【小题2】设,0,2παβ⎡⎤∈⎢⎥⎣⎦,56()65f πα+=,410()313f πβ+=-.求sin()αβ-的值.【答案】【小题1】由题可列的:310 221a ba⎧+=⎪⎨⎪=⎩解得:1,3a b==-2)【小题2】由题可得()sin3cos2sin()3f x x x xπ=-=-563()2sin()2cos,cos6255fππαααα∴+=+==∴=4105()2sin()sin,sin31313fπββπββ+=+=-=-∴=又412,0,,sin,cos2513παβαβ⎡⎤∈∴==⎢⎥⎣⎦4123533sin()51351365αβ∴-=⨯-⨯=【解析】【小题1】【小题2】【题文】某学校高二年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生.【小题1】【小题2】在喜欢运动的女生中调查她们的运动时间,发现她们的运动时间介于30分钟到90分钟之间,右图是测量结果的频率分布直方图,若从区间段)50,40[和)70,60[的所有女生中随机抽取两名女生,求她们的运动时间在同一区间段的概率.【答案】【小题1】根据分层抽样的定义,知抽取男生130人,女生70人,【小题2】由直方图知在[)70,60内的人数为4人,设为,,,a b c d . 在[)50,40的人数为2人,设为,A B .从这6人中任选2人有AB,Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd,ab,ac,ad,bc,bd,cd 共15种情况 若[)70,60,∈y x 时,有,,,,,ab ac ad bc bd cd 共六种情况. 若[)50,40,∈y x 时,有AB 一种情况.事件A:“她们在同一区间段”所包含的基本事件个数有617+=种, 故157)P(A =答:两名女生的运动时间在同一区间段的概率为157.【解析】 【小题1】 【小题2】【题文】在直角梯形ABCD 中(如图1),90ADC∠=︒,AB CD //,122AD CD AB ===, 点E为AC 的中点,将ADC ∆沿AC 折起, 使平面ADC ⊥平面ABC ,得到几何体D ABC -(如图2).【小题1】在CD 上找一点F ,使//AD 平面EFB ,并说明理由; 【小题2】求证:DA BC ⊥;【小题3】求几何体D ABC -的体积.【答案】【小题1】 取CD 的中点F ,连结EF ,BF 在ACD ∆中,E ,F 分别为AC ,DC 的中点∴EF 为ACD ∆的中位线 ∴//AD EFEF ⊆平面EFBAD ⊄平面EFB∴//AD 平面EFB【小题2】在图1中,可得ACBC ==,从而222AC BC AB +=,∴AC BC ⊥……6分ACDEFACD图2EBACD图1E∵平面ADC ⊥平面ABC ,面ADC面ABC AC =,BC ⊂面ABC∴ BC ⊥平面ADC∴又AD ⊂面ADC ∴BC⊥DA【小题3】090ADC ∠=AD DC ∴⊥11*22222ABCSAD CD ∴==⨯⨯=由(2)知BC ⊥平面ADC ,所以点B 到平面ADC 的距离为BC =∴11.233D ABC B ADC ADCV V S BC --===⨯⨯= 【解析】 【小题1】 【小题2】 【小题3】【题文】已知各项都不相等的等差数列{}n a 的前六项和为60,且6a 为1a 和21a 的等比中项.【小题1】求数列{}n a 的通项公式n a ;【小题2】若数列{}n b 满足1n n n b b a +-=*()n N ∈,且13b =,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】【小题1】设等差数列}{n a 的首项为1a ,公差为d ,则660S =,即,601561=+d a ①26121a a a =,即2111(5)(20)a d a a d +=+②①②联立,解得2,51==d a32+=∴n a n .【小题2】由n nn a b b =-+1).,2(11*--∈≥=-∴N n n a b b n n n,2时当≥n112211)()()(b b b b b b b b n n n n n +-++-+-=--- 1211(1)(3)3n n a a a b n n --=++++=-++).2(+=n n ,31也适合对=b))(2(*∈+=∴N n n n b n)211(21)2(11+-=+=∴n n n n b n )2114121311(21+-++-+-=n n T n 1311()2212n n =--++ )2)(1(4532+++=n n n n 【解析】 【小题1】 【小题2】【题文】已知椭圆1C :22221x y a b +=(0)a b >>的离心率为2e =,且与双曲线2C :22221+1x y b b -=有共同焦点.【小题1】求椭圆1C 的方程;【小题2】若直线l 为椭圆1C 的切线,它与坐标轴围成的三角形的面积为S ,求S 的最小值以及此时l 的方程;【答案】【小题1】由2e =可得:2c a =即2234c a =22234a b a -∴=224a b ∴=① 又2221c b =+即22221a b b -=+②联立①②解得:224,1a b ==∴椭圆1C 的方程为:2214x y +=【小题2】l 与椭圆相切且与两坐标轴相交,∴l 的斜率必存在,且0K ≠设l 的直线方程为:y kx m =+联立2214y kx mx y =+⎧⎪⎨+=⎪⎩ ,消去y 整理得:2221()2104k x kmx m +++-=2221(2)4()(1)04km k m ∆=-+-=,即2241m k =+④又直线l 与两坐标轴的交点分别为-,0)mk(,(0,)m∴直线l 与坐标轴围成的三角形的面积21-22m m S m k k ==⑤ 联立④、⑤得 2241122222m k S k k k k+===+≥当且仅当112,22k k k =∴=时取等号 1,2k m ∴=±=∴直线l 的方程为:12y x =12y x =, 12y x =-12y x =--【解析】 【小题1】 【小题2】【题文】已知函数()ln f x x a x =-,1(), (R).ag x a x+=-∈ 【小题1】若2a =,求函数()f x 的图像在点1x =处的切线方程; 【小题2】若在[]1,e (e 2.71...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围. 【答案】【小题1】当2a =时,()2ln f x x x =-,2()1f x x'=-, 切点(1,1),斜率'(1)1k f ==-∴ 切线为 1(1)(1)y x -=--即 20x y +-=【小题2】在[]1,e 上存在一点0x ,使得0()f x <0()g x 成立,即在[]1,e 上存在一点0x ,使得000()()()0h x f x g x =-<,即函数1()ln ah x x a x x+=+-在[]1,e 上的最小值小于零. 22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x+--++-+'=--== ①当1e a +≥,即e 1a ≥-时,()h x 在[]1,e 上单调递减,所以()h x 的最小值为(e)h ,由1(e)e 0e ah a +=+-<可得2e 1e 1a +>-, 因为2e 1e 1e 1+>--,所以2e 1e 1a +>-; ②当11a +≤,即0a ≤时,()h x 在[]1,e 上单调递增,所以()h x 最小值为(1)h ,由(1)110h a =++<可得2a <-; ③当11e a <+<,即0e 1a <<-时, 可得()h x 最小值为(1)h a +, 因为0ln(1)1a <+<,所以,0ln(1)a a a <+<故(1)2ln(1)2h a a a a +=+-+>此时,(1)0h a +<不成立.综上讨论可得所求a 的范围是:2e 1e 1a +>-或2a <-.【解析】 【小题1】 【小题2】【结束】高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷∴ 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12(k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图, 若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

相关文档
最新文档