考研概率第1讲 概率统计
考研数学一概率论与数理统计公式整理
第1章随机事件及其概率
我们作了次试验,且满足
每次试验只有两种可能结果,发生或不发生;
次试验是重复进行的,即发生的概率每次均一样;
每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影
响的。
这种试验称为伯努利概型,或称为重伯努利试验。
用
表示每次试验发生的概率,
则发生的概率为,用
表示重伯努利试验中
出现次的概率,
,。
n A A n A A A n p A A q p =-1)(k P n n A )0(n k k ≤≤k
n k k
n n q p k P C -=)(n k ,,2,1,0 =
第二章随机变量及其分布
第三章二维随机变量及其分布
第四章随机变量的数字特征
2
(
x
f)
dx
,
dxdy
)dx
x f X )()]2dy
y f Y )()]2
第五章大数定律和中心极限定理
第六章样本及抽样分布
第七章参数估计
第八章假设检验
单正态总体均值和方差的假设检验
31。
概率论与数理统计考研复习资料
概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德•摩根律B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kkii i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX kk P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数). 2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(xx dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布 (1)X ~U (a,b) 区间(a,b)上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2)参数为μ,σ的正态分布222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0. 特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(zα)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布 1.若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=0y h y h f y f X Y其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布 一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性 0≤p i j ≤1 .(2)归一性∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y ,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),(则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y) 关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i·( i =1,2,…) 归一性11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p·j( j =1,2,…) 归一性11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y ,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j= p i ··p ·j( i ,j =1,2,…)对一切x i ,y j成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X(x)f Y(y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称,}{},{jj i j j i p p y Y P y Y x X P ∙=====P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X)∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2D(X) . 2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p)2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/12 5.X 服从参数为θ的指数分布 θ θ2 6.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E {[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l}第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i XX n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i ki k X X n B 1)(1( k=1,2,…),}{},{∙=====i j i i j i p p x X P y Y x X P二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2/n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) .③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2Y S22则212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意:.).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p (x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,Xn的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧kθθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.文 - 汉语汉字 编辑词条文,wen ,从玄从爻。
考研数学一大纲重点梳理概率论与数理统计部分
考研数学一大纲重点梳理概率论与数理统计部分概率论和数理统计是考研数学一科目中的重要部分,本文将针对概率论与数理统计这一大纲进行重点梳理。
首先,我们将介绍概率论的基本概念和理论,然后详细讨论数理统计的相关内容。
一、概率论的基本概念和理论1. 概率的基本概念概率是研究随机现象的定量描述,用来描述事件发生的可能性大小。
概率可以用数值表示,范围在0到1之间,其中0代表不可能事件,1代表必然事件。
2. 概率的运算规则概率的运算规则包括加法规则和乘法规则。
加法规则适用于互斥事件,乘法规则适用于独立事件。
3. 随机变量和概率分布随机变量是用来描述随机现象的变量,可以分为离散随机变量和连续随机变量。
概率分布描述了随机变量的取值与概率之间的关系,常见的概率分布包括二项分布、泊松分布和正态分布等。
4. 期望和方差期望是随机变量的平均值,用来描述随机变量的集中趋势;方差是随机变量与期望之间的差异程度,用来描述随机变量的离散程度。
二、数理统计的相关内容1. 抽样与抽样分布抽样是指从总体中选取一部分个体进行观察和研究的过程,抽样分布是指样本统计量的概率分布。
常见的抽样分布包括正态分布、t分布和F分布等。
2. 参数估计参数估计是利用样本数据来估计总体参数的值,常见的参数估计方法包括点估计和区间估计。
点估计是用单个数值来估计参数的值,区间估计是用一个区间来估计参数的值。
3. 假设检验假设检验是根据样本提供的信息,对总体的某个参数是否满足某种假设进行判断。
假设检验可以分为单侧检验和双侧检验,常见的假设检验方法包括z检验和t检验等。
4. 方差分析方差分析是用来比较两个或多个总体间均值差异是否显著的统计方法。
方差分析可以分为单因素方差分析和多因素方差分析,常用的方法包括单因素方差分析和双因素方差分析等。
5. 回归分析回归分析是用来研究自变量与因变量之间的关系的方法。
简单线性回归是一种自变量和因变量之间存在线性关系的回归分析方法,多元线性回归是多个自变量和一个因变量之间的回归分析方法。
第一章 概率论的基本概念
第一章 概率论的基本概念一、随机事件其运算1.随机试验、样本点和样本空间(1)随机试验随机试验具有如下特点的试验.1、在相同的条件下,试验可以重复进行.2、试验的所有可能结果是预先知道的,并且不止一个.3、每一次试验出现那一个结果事先不能确定. (2)样本点和样本空间随机试验的每一个可能的(不可分解的)结果,称为这个随机试验的一个样本点,记为ω.随机试验的所有样本点组成的集合,称为这个随机试验的样本空间,记为. Ω2.随机事件、基本事件、必然事件和不可能事件在随机试验中,可能发生也可能不发生的事情称为该试验的随机事件,记为A ,B 等. 随机试验的随机事件可以表示为它的一些样本点组成的集合.在一次试验中,若试验结果是随机事件A 中的一个样本点,则称在一次试验中事件A 发生. 只包含一个样本点的事件称为基本事件. 在任何一次试验中都发生的事件,称为必然事件,它就是Ω所表示的事件,因而用Ω表示必然事件.在任何一次试验中都不发生的事件,称为不可能事件,它就是由φ所表示的事件,因而用φ表示不可能事件.3.事件之间的关系和运算 (1)包含关系设A ,B 为二事件,若A 发生必导致B 发生,则称事件A 包含于事件B ,或事件B 包含事件A ,记为B A ⊂.B A ⊂⇔A ∈∀ω必有B ∈ω,见图1—1. (2)相等关系设A ,B 为二事件,若B A ⊂并且A B ⊂,则称A 与B 相等,记为B A =,见图1—2.(3)事件的并设A ,B 为二事件,称事件“A ,B 至少一个发生(A 发生或B 发生)”为A ,B 的并(或和),记为.B A ∪B A ∪}|{B A ∈∈=ωωω或.见图1—3.(4)事件的交设A ,B 为二事件,称事件“A ,B 同时发生(A 发生且B 发生)”为A ,B 的交(或积).记为或B A ∩AB .AB }|{B A ∈∈=ωωω且.见图1—4. (5)事件的差设A ,B 为二事件,称事件“A 发生且B 不发生”为A 减去B 的差,记为B A −.B A − }|{B A ∉∈=ωωω且.见图1—5.(6)互不相容关系设A ,B 为二事件,若A ,B 不能同时发生,称A ,B 互不相容或互斥,记为AB φ=. A ,B 互不相容⇔AB φ=,见图1—6. (7)对立事件设A 为一事件,称事件“A 不发生”为A 的余事件或A 的对立事件,记为A .A =A −Ω,即φ=Ω=+A A A A ,,见图1—7.(8)完备事件组 构成完备事件组,若,,,,21n H H H )( 21j i H H H H H j i n ≠=Ω=++++φ, .换句话说,如果有限个或可数个事件两两不相容,并且“所有事件的和”是必然事件,则称它们构成完备事件组. ,,,,21n H H H 4.事件的运算法则对于任意事件,,有C B A ,, ,,,,21n A A A (1) 交换律 A B B A A B B A ∩∩∪∪==,.(2) 结合律 C B A C B A ∪∪∪∪)()(=;C B A C B A ∩∩∩∩)()(=.(3) 分配律 ;)()()(C A B A C B A ∩∪∩∪∩=)()()(C A B A C B A ∪∩∪∩∪=.() ∪∩∪ ∪∩ ∪∪ ∪∩)()(11n n A A A A A A A =. (4) 对偶律 ,;B A B A B A B A ∪∩∩∪==∩∩ ∩ ∪∪ ∪n n A A 11=; ∪∪ ∪ ∩∩ ∩n n A A 11=.下列关系和运算要熟记:Ω⊂⊂A φ;;B A B A B A ∪∩⊂⊂)(或B B A A B A B A ==⇒⊂∪∩且;A B A ⊂−;φ=−⇒⊂B A B A ;φφ=A ∩;A A =∪φ;φ=Ω;Ω=φ;A B B A ⊂⇒⊂;AB A B A B A −==−∩;)(A B A B A ∪∪=.【例1】写出下列随机试验的样本空间: (1)从袋中任取3个球,记录取球的结果.(2)从袋中不放回地接连取出3个球,记录取球的结果. (3)从袋中有放回地接连取出3个球,记录取球的结果.(4)从袋中不放回地一个一个地取球,直到取得白球为止录取球的结果.【例2】今有3个球、4个盒子.写出下列随机试验的样本空间:(1)将3个球任意地放入4个盒子中去、每个盒子放入的球数不限,记录放球的结果. (2)将3个球放入4个盒子中去,每个盒子至多放入1个球,记录放球的结果.【例3】写出下列随机试验的样本空间: (1)在上任取一点,记录其坐标. )1,0((2)将一尺之捶折成三段,记录三段的长度 (3)在上任取三点,记录三点的坐标.)1,0(【例4】写出下列随机试验的样本空间,用样本点的集合表示所述事件,并讨论它们之间的相互关系.(1)袋中有3个白球和2个黑球,从其中任取2个球,令A 表示 “取出的全是白球”,B 表示“取出的全是黑球”,表示“取出的球颜色相同”, (C i A 2,1=i )表示“取出的2个球中恰有i 个白球”,表示“取出的2个球中至少有1个白球”. D (2)袋中有2个正品和2个次品,从袋中有放回地接连抽取产品3次,每次任取1件,令 ()表示“第次取出的是正品”,i A 3,2,1=i i B 表示“3次都取得正品”. (3)从l,2,3,4这4个数字中,任取—数,取后放回,然后再任取一数.先后取了3次,令A 表示“3次取出的数不超过3”,B 表示“3次取出的数不超过2”,表示“3次取出的数的最大者为3”.C (4)将3个球任意地放入4个盒子中去,令A 表示“恰有3个盒子中各有1球”,B 表示“至少有2个球放入同1个盒子中”.【例5】设为3事件,试用表示下列事件: C B A ,,C B A ,,(1)至少有1个发生. C B A ,, (2)都不发生.C B A ,,(3)不都发生.C B A ,,(4)不多于1个发生. C B A ,,【例6】什么样的事件X 满足下列等式: (1)B A X A X =)()(∪∪∪. (2).B A X A ∪∪=(3). )()(C B C A X AB ∪∩∪∪=二、事件的概率及其性质1.事件概率的定义(1)古典概型满足下列条件的随机试验,称为古典概型.10 有限性:样本点的总数是有限的;20等可能性:所有基本事件是等可能的;①概率的定义:设随机试验为古典概型,样本空间为},,{1n ωω =Ω,A 是一个事件.},,{1r i i A ωω =,则事件的概率为含样本点的个数含样本点的个数Ω==A n r A P )(. ②概率的性质:对于古典概型,事件的概率具有下列性质. 10. 1)(0≤≤A P 20.1)(=ΩP 30有限可加性:若两两互不相容,则n A A A ,,,21 ∑===ni i n i i A P A P 11)()(∪.(2)几何概型满足下列条件的随机试验,称为几何概型.10有限性:样本空间是直线、二维或三维空间中度量(长度、面积或体积)有限的区间或区域.20均匀性:样本点在样本空间上是均匀分布的(可通俗地称为是等可能的) .①概率的定义:在几何概型中,Ω为样本空间,A 是一个事件,定义事件A 的概率)()()(Ω=L A L A P . 其中,分别是)(A L )(ΩL A ,的度量.Ω②概率的性质:对于几何概型,事件的概率具有下列性质. 10. 1)(0≤≤A P 20.1)(=ΩP 30若两两互不相容,则,,,,21n A A A ∑∞=∞==11)()(i i i i A P A P ∪.(3)事件的频率和性质以及概率的统计定义①事件的频率:将试验重复独立地进行次,若其中事件n A 发生了次,则称为A n A n A 在这n 次试验中出现的频数,称比值为n n A /A 在这次试验中出现的频率,记为,即.n )(A f n =)(A n f n n A /②频率的性质:事件的频率有如下性质: 101)(0≤≤A f n . 20.1)(=ΩP 30 若两两互不相容,则m A A A ,,,21 ∑===mi i n m i i n A f A f 11)()(∪.2.概率的公理化定义及性质(1)概率的公理化定义设随机试验E 的样本空间为,以ΩE 的所有随机事件组成的集合(即的一些子集组成的集合)为定义域,定义一个函数(Ω)(A P A 为任意随机事件),即任意一个随机事件A 与一个实数,且满足:)(A P 10.0)(≥A P 20.1)(=ΩP 30 可列可加性:若两两互不相容,则,,,,21n A A A ∑∞=∞==11)()(i i i i A P A P ∪.(2)概率的性质 100)(=φP .20 有限可加性:若两两互不相容,则.n A A A ,,,21 ∑===ni in i iA P A P 11)()(∪30可减性:如果B A ⊂,则)()()(A P B P A B P −=−,)()(B P A P ≤⇒. (无条件等式)()()(AB P B P A B P −=−) 40对于任意事件A ,有1)(≤A P . 50一般加法公式:==)(1∪n i i A P ∑=ni i A P 1)(∑≤<≤−nj i j i A A P 1)( ++∑≤<<≤nk j i k j i A A A P 1)()()1(211n n A A A P −−+【例7】袋中有3个白球及5个黑球,(1)从袋中任取4个球,求取得2个白球及2个黑球的概率.(2)从袋中不放回地接连取出4个球,求取得2个白球及2个黑球的概率. (3)从袋中有放回地接连取出 4个球,求取得2个白球及2个黑球的概率.【例8】设有个人,每个人都等可能地被分配到个房间中的任一间(),求下列事件的概率:n N N n < 事件:某指定的间房中各有1个人. 1A n 事件:恰有间房各有1个人. 2A n 韦件:某指定的房间中有个人.3A k 事件:当4A N n =时,恰有一间房空着.【例9】编号为1,2,3,4,5,6,7,8,9的车皮随机地发往三个地区,和的各2,3和4节,求发往同一地区的车皮编号相邻的概率. 1E 2E 3E【例10】从0,1,2,…,9这10个数字中任取1个,取后放回,先后取了6个数字,求下列事件的概率:事件:6个数字全不相同. 1A 事件:不含0与9. 2A 事件:0恰好出现2次. 3A 事件:至少出现2个0.4A 事件:6个数字中最大的是6. 5A 事件:6个数字的总和是20.6A【例11】有5名插班生,其中有3名男生、2名女生.现将他们按每班1人任意地分配到编号为1—5的5个班中去,求下列事件的概率:事件:3名男生被分到班号相连的3个班中.1A 事件:至少有2个男生被分到的班号或2个女生被分到的班号相连. 2A【例12】从n 双尺码不同的鞋子中任取r 2 (n r ≤2)只,求下列事件的概率: 事件:所取1A r 2只鞋子中只有2只成双 事件:所取2A r 2只鞋子中至少有2只成双.事件:所取3A r 2只鞍子恰成r 双.【例13】在线段AB 上任取一点,该点将AB 分成两段,求下列事件的概率: 事件:其中一段大于另一段的倍. 1A m 事件:其中每一段都小于另一段的倍.2A m【例14】设只1个泊位的码头有甲、乙两艘船停靠,2船各自可能在1昼夜的任何时刻到达.设两艘船停靠的时间分别为1小时和2小时,求下列事件的概率: 事件:码头空闲超过2小时.1A 事件:一艘船要停靠必须等待一段时间. 2A【例15】在线段上任取3个点,求下列事件的概率: AC 321,,A A A 事件:位于与之间.1B 2A 1A 1A 事件:能构成1个三角形. 2B 321,,AA AA AA【例16】若,5.0)(=A P 4.0)(=B P ,3.0)(=−B A P ,求和)(B A P ∪)(B A P ∪.【例17】对于任意两个互不相容的事件A 与B ,以下等式中只有一个不正确,它是: (A) ;)()(A P B A P =−(B) )()(A P B A P =−1)(−+B A P ∪; (C) )()()(B P A P B A P −=−; (D) ; (E) )())()((A P B A B A P =−∩∪)()()(B A P A P B A P ∪−=−.三、条件概率和乘法公式1.条件概率的定义及性质(1)条件概率的定义设为两个事件,,则称B A ,0)(>B P )()()|(B P AB P B A P =为B 发生的条件下A 的条件概率.(2)条件概率的性质 条件概率满足: 10. 0)|(≥B A P 20.1)|(=ΩB P 30可列可加性:若两两互不相容,则,,,,21n A A A ∑∞=∞==11)|()|(i i i i B A P B A P ∪.2.关于条件概率的三个定理(1)乘法公式若,则0)(>A P )()()(A B P A P AB P =. 推广 若,则0)(21>n A A A P )()()()(12112121−=n n n A A A A P A A P A P A A A P .(2)全概率公式设是样本空间的一个划分(或称为完备事件组),即两两不交:n B B B ,,,21 Ωn B B B ,,,21 j i B B j i ≠=,φ,且Ω=n B B B ∪ ∪∪21.则∑==ni i i B P B A P A P 1)()|()(.(3)贝叶斯公式设是样本空间Ω的一个划分,若事件n B B B ,,,21 A 满足:,则有0)(>A P n i B P BA PB P B A P A B P nj j ji i i ,,2,1,)()|()()|()|(1==∑=.)(i B P (),通常叫先验概率.,(n i ,,2,1 =)|(A B P i n i ,,2,1 =),通常称为后验概率.如果我们把A 当作观察的“结果”,而理解为“原因”,则贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断.n B B B ,,,21【例18】在3重努利试验中,设5.0)(=A P ,若已知A 至少出现1次,求A 至少出现1次的概率.【例19】口袋个装有个白球、个黑球,一次取出球,发现都是同一颜色的球,求它们都是黑球的概率. 12−n n 2n【例20】假设一个人在一年内患感冒的次数X 服从参数为5的泊松分布;正在销售的一种药品A 对于75%的人可以将患感冒的次数平均降低到3次,而对于25%的人无效.现在有某人试用此药一年,结果在试用期患感冒两次,试求此药有效的概率α.【例21】对产品作抽样检验时,每100件为一批,逐批进行.对每批检验时,从其中任取1件作检查,如果是次品,就认为这批产品不合格;如果是合格品,则再检查下件.检验过的产品不放回.如此连续检查5件.如果检查5件产品都是合格品,则认为这批产品合格而被接受.假定一批产中有5%是次品,求这批产品被接受的概率.【例22】加工零件需要经过两道工序,第—道工序出现合格品的概率为0.9,出现次品的概今为0.1第一道工序加工出来的合格的,在第二道工序中出现合格品的概率为0.8,出现次品的概率为0.2;第一道工序加工出来的次品,在第二道工序出现次品或出现废品的概率都是0.5.分别求经过两道工序加工出来的零件是合格品、次品、废品的概率.【例23】在某工厂中有甲、乙、丙3台机器生产同样的产品,它们的产量各占25%,35%,40%,并且在各自的产品中.废品各占5%,4%,2%,从产品中任取1件,求它是废品的概率.若取出的是废品,分别求它是甲、乙、丙机器生产的概率.【例24】乒乓球盒内有12个球,其中9个是新球.第一次比赛时任取3个使用,用后放回.第二次比赛时再任取3个球,求此3个球全是新球的概率.若第二次取出的3个球全是新球,求第一次取出使用的3个球也是新球的概率.【例25】袋中装有5个白球和2个黑球,从中任取5个放入一个空袋中.再从这个袋的5个球做任取3个球放入另一个空袋个.最后从第三个袋中任取1球,求从第三个袋中取出白球的概率.若从第三个袋取出的是白球,分别求从第一个袋中取出放入第二个袋的5个球全是白球的概率、从第二个袋中取出放入第三个袋的3个球全是白球的概率.四、事件的独立性1.二事件的独立性定义 设为二事件,若B A ,)()()(B P A P AB P =,则称相互独立. B A , 性质 若,则相互独立的充要条件是)0(>A P B A ,)()|(B P A B P =. 定理 若相互独立,则B A ,A 与B ,A 与B ,A 与B 均独立. 2.三个或三个以上事件的独立性(1)三个事件相互独立 设为三个事件,若满足: C B A ,,)()()(B P A P AB P =; )()()(C P A P AC P =;)()()(C P B P BC P =;)()()()(C P B P A P ABC P =,则称相互独立,简称独立.C B A ,,C B A ,,若只满足上面的前三个式子,称两两独立.两两独立,未必相互独立. C B A ,,C B A ,,(2)个事件相互独立 如果n 个事件满足:n n A A A ,,,21 )()()(j i j i A P A P A A P =, n j i ≤<≤1, 共个等式; 2nC )()()()(k j i k j i A P A P A P A A A P =, n k j i ≤<<≤1 共个等式; 3nC … … … … … … … … … … … … … … … … … …)()()()(2121n n A P A P A P A A A P = 共个等式 nn C 这等式成立,则称相互独立,简称独立.1232−−=+++n C C C n nn n n n A A A ,,,21 n A A A ,,,21 若相互独立,是中的个事件,则相互独立.n A A A ,,,21 k i i i A A A ,,,21 n A A A ,,,21 k k i i i A A A ,,,21若相互独立,将任意n A A A ,,,21 m )1(n m ≤≤个事件换成它的对立事件后,所得个事件仍独立.n 若相互独立,则.n A A A ,,,21 ∏==−−=ni in i iA P A P 11))(1(1)(∪3.独立试验序列概型贝努利试验 对一个试验E ,如果只考虑两个结果A 和A ,且,p A P =)(q p A P =−=1)(,则称E 为贝努利试验.n 重贝努利试验 将贝努利试验E 重复独立地做次,称为n 重贝努利试验.n 二项概率公式 在n 重贝努利试验中,若用表示在n 次试验中k n A ,A 出现次,则k kn k k n k n q p C A P −=)(,,,n k ,,1,0 =p q −=1.【例26】设有两门高射炮,每—门击中飞机的概率都是0.6,求同时射击一发炮弹能击中飞机的概率.若欲以99%的概率击中飞机,求至少需要多少门高射炮同时射击.【例27】今有甲、乙两名射手轮流对同一目标进行射击,甲命中的概率为,乙命中的概率为,甲先射,谁先命中谁得胜,分别求甲、乙获胜的概率. 1p 2p【例28】甲、乙二人进行下棋比赛,假设每局甲胜的概率为α,乙胜的概率为β,且1=+βα,在每局比赛中谁获胜谁得1分.如果谁的积分多于对方2分,谁就获得全场的胜利,分别求甲、乙二人获得全场胜利的概率.【例29】检查产品质量时,从其中连续抽查若干件,如果废品不超过2件,则认为这批产品合格而被接收.现有一大批产品,其废品率为0.1. (1)若连续抽查10件.求这批产品被接收的概率.(2)为使这批产品被接收的概率不超过0.9.应至少抽查多少件产品.【例30】保险公司为某年龄段的人设计一项人寿保险,投保人在1月1日向保险公司交纳保险费10元,1年内若投保人死亡,家属可向保险公司领取5000元,已知在1年内该年龄段的人的死亡率为0.0005,(1)若有10000人投保,水保险公司获利不少于50000元的概率. (2)若有7000人投保,求保险公司亏损的概率.。
考研数学一-概率论与数理统计(一)
考研数学⼀-概率论与数理统计(⼀)考研数学⼀-概率论与数理统计(⼀)(总分:100.00,做题时间:90分钟)⼀、选择题(总题数:10,分数:40.00)1.设随机变量X服从正态分布N(1,σ2 ),其分布函数为F(x),则对任意实数x,有______(分数:4.00)A.F(x)+F(-x)=1.B.F(1+x)+F(1-x)=1.√C.F(x+1)+F(x-1)=1.D.F(1-x)+F(x-1)=1.解析:[解析] 由于X~N(1,σ2 ),所以X的密度函数f(x)的图形是关于x=1对称的,⽽可知正确答案是B.2.设X~P(λ),P 1,P 2分别为随机变量X取偶数和奇数的概率,则______(分数:4.00)A.P1=P2.B.P1<P2.C.P1>P2.√D.P1,P2⼤⼩关系不定.解析:[解析] 若X~P(λ),则,其中X取偶数的概率为X取奇数的概率为于是应选C.3.设随机变量X的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对于任意实数a,有______ A.B.C.F(-a)=F(a).D.F(-a)=2F(a)-1.(分数:4.00)A.B. √C.D.解析:[解析] 概率密度f(x)为偶函数,于是对于任意实数a,有F(-a)=1-F(a)成⽴;利⽤区间可加性得结合上⾯的等式,于是得应选B.4.设⼆维随机变量(X,Y)在区域D:x 2 +y 2≤9a 2 (a>0)上服从均匀分布,p=P{X 2 +9Y 2≤9a 2 },则A.p的值与a⽆关,且B.p的值与a⽆关,且C.p的值随a值的增⼤⽽增⼤.D.p的值随a值的增⼤⽽减⼩.(分数:4.00)A.B. √C.D.解析:[解析] 因为(X,Y)在区域D:x 2 +y 2≤9a 2上服从均匀分布,所以(X,Y)的联合密度函数为故选B.5.设随机变量X与Y服从正态分布N(-1,2)与N(1,2),并且X与Y不相关,aX+Y与X+by亦不相关,则______(分数:4.00)A.a-b=1.B.a-b=0.C.a+b=1.D.a+b=0.√解析:[解析] X~N(-1,2),Y~N(1,2),于是D(X)=2,D(Y)=2.⼜Cov(X,Y)=0,Cov(aX+Y,X+bY)=0,由协⽅差的性质有故选D.6.已知总体X的期望E(X)=0,⽅差D(X)=σ2.X 1,…,X n是来⾃总体X的简单随机样本,其均值为,则下⾯可以作为σ2⽆偏估计量的是______A.B.C.D.(分数:4.00)A.B.C. √D.解析:[解析] 由于E(X)=0,D(X)=E(X 2 )=σ2,则所以选择C.对于A,B选项,由E(S 2 )=σ2,知均不是σ2的⽆偏估计量.7.设随机变量序列X 1,…,X n,…相互独⽴,则根据⾟钦⼤数定律,当n→∞时,于其数学期望,只要{X n,n≥1}满⾜______(分数:4.00)A.有相同的数学期望.B.服从同⼀离散型分布.C.服从同⼀泊松分布.√D.服从同⼀连续型分布.解析:[解析] ⾟钦⼤数定律的应⽤条件为:“独⽴同分布且数学期望存在”,选项A缺少同分布条件,选项B、D虽然服从同⼀分布但不能保证期望存在,只有C符合该条件.故选C.8.设X 1,X 2,…,X n是来⾃总体X的简单随机样本,是样本均值,C为任意常数,则______A.B.C.D.(分数:4.00)A.B.C. √D.解析:[解析故选C.9.设总体X服从正态分布N(0,σ2 ),X 1,X 2,…,X 10是来⾃X的简单随机样本,统计量从F分布,则i等于______(分数:4.00)A.4.B.2.√C.3.D.5.解析:[解析] 因为X 1,X 2,…,X 10是来⾃X的简单随机样本,故独⽴同分布于N(0,σ2 )因此,则有⼜与相互独⽴,故故选B.10.在假设检验中,如果待检验的原假设为H 0,那么犯第⼆类错误是指______(分数:4.00)A.H0成⽴,接受H0.B.H0不成⽴,接受H0.√C.H0成⽴,拒绝H0.D.H0不成⽴,拒绝H0.解析:[解析] 直接应⽤“犯第⼆类错误”=“取伪”=“H 0不成⽴,接受H 0”的定义,选择B.⼆、解答题(总题数:10,分数:60.00)11.每次从1,2,3,4,5中任取⼀个数,且取后放回,⽤b i表⽰第i次取出的数(i=1,2,3),三维列向量b=(b 1 ,b 2 ,b 3 ) T,三阶⽅阵,求线性⽅程组Ax=b有解的概率.(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:对增⼴矩阵作初等⾏变换有于是Ax=b有解的充要条件是,即b 3 -2b 2 +b 1 =0,其中b 1,b 2,b 3相互独⽴,且分布律相同:,k=1,2,3,4,5,i=1,2,3.所以Ax=b有解的概率为甲、⼄两个⼈投球,甲先投,当有任⼀⼈投进之后便获胜,⽐赛结束.设甲、⼄命中率分别为p 1,p 2,0<p 1,p 2<1.求:(分数:6.00)(1).甲、⼄投球次数X 1与X 2的分布;(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:每次投篮是相互独⽴的与其他⼏次⽆关.事件X 1 =n表⽰“甲投了n次”,即“甲、⼄各⾃在前n-1次没有投进,在第n次时甲投进或⼄投进”,所以P{X 1 -n}=(q 1 q 2 ) n-1 (p 1 +q 1 p 2 ),n=1,2,…其中:q i =1-p i,i=1,2.事件“X 2=m”表⽰“⼄投了m次”,即“甲、⼄前m-1次均没有投进,甲在第m次也没有投进,⼄在第m 次投进”,或“甲、⼄前m次均没有投进,甲在第m+1次投进”.特殊地,当m=0时,表⽰甲第⼀次就投中,所以P{X 2 =m}=(q 1 q 2 ) m-1 (q 1 p 2 +q 1 q 2 p 1 )=q 1 (p 2 +q 2 p 1 )(q 1 q 2 ) m-1,m=1,2,…(2).若使甲、⼄两⼈赢得⽐赛的概率相同,则p 1,p 2满⾜什么条件?(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:设事件A表⽰“甲获胜”,则总投篮次数为奇数.当X 1 +X 2 =2n-1时,意味着甲、⼄前n-1次都未投进,甲在第n次投进,于是有P{X 1 +X 2 =2n-1}=p 1 (q 1 q 2 ) n-1,则若甲、⼄两⼈赢得⽐赛的概率相同,则12.设随机变量X在区间(0,1)上服从均匀分布,⼜求Y的概率密度f Y (y)与分布函数F Y (y).(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:解法⼀:应⽤单调函数公式法先求Y的概率密度f Y (y).由于X在(0,1)内取值所以的值域为(0,+∞),且y=g(x)在(0,1)单调.因此其反函数在(0,+∞)内单调可导,其导数h"(y)=2e -2y,在其定义域(0,+∞)内恒不为零.⼜因为X的概率密度所以Y的概率密度因此可见Y服从参数为2的指数分布,其分布函数为解法⼆:⽤分布函数法先求出Y的分布函数F Y (y).当y≤0时,F Y (y)=0;当y>0时,0<x=1-e -2y<1,最后⼀步是由于X服从(0,1)上的均匀分布.故所求Y的分布函数为将F Y (y)对y求导,得设随机变量(X,Y)的概率密度为试求:(分数:6.00)(1).(X,Y)的分布函数;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:①当x≤0或y≤0时,f(x,y)=0,故F(x,y)=0.②当0<x≤1,0<y≤2时,③当0<x≤1,y>2时,④当x>1,0<Y≤2时,⑤当x>1,y>2时,综上所述,分布函数为(2).(X,Y)的边缘分布密度;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当0≤x≤1时,当0≤y≤2时,(3).概率P{X+Y>1},P{Y>X} 2.00)__________________________________________________________________________________________ 正确答案:()解析:如下图所⽰,如下图所⽰,所以设(X,Y)服从D={(x,y)|y≥0,x 2 +y 2≤1}上的均匀分布,定义(分数:6.00)(1).求(U,V)的联合分布律;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:由题设可知,故(U,V)的可能值为(0,0),(0,-1),(0,1),(1,-1),(1,0),(1,1).则(U.V)的联合分布律为(2).求关于V的边缘分布律;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:由(U,V)的联合分布律得V的边缘分布律为(3).求在U=1的条件下V的分布律.(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:,所以所以所求V的分布律为13.设随机变量X的概率密度为,求随机变量 F Y (y).(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:记如下图所⽰,φ(x)在[0,+∞)内最⼩值为-1,⽆最⼤值,在[0,+∞)左端点处的值为0.y=-1,0将y轴分成(-∞,-1),[-1,0),[0,+∞)三个区间.当y∈(-∞,-1)时,F Y (y)=0.当y∈[-1,0)时,纵坐标为y的⽔平直线关于曲线y=φ(x)内的集合在x轴上的投影与[0,+∞)的交集为F Y (y)=f X (x)在上的积分为当y∈[0,+∞)时,纵坐标为y的⽔平直线关于曲线y=φ(x)内的集合在x轴的投影与[0,+∞)的交集为,此时F Y (y)=f X (x)在上的积分为综上所述,y的分布函数为设随机变量X在区间(0,2)上随机取值,在X=x(1<x<2)条件下,随机变量Y在区间(1,x)上服从均匀分布.(分数:6.00)(1).求(X,Y)的联合概率密度,并问X与Y是否独⽴;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:根据题设X在(0,2)上服从均匀分布,其密度函数为⽽变量Y,在X=x(1<-x<2)的条件下,在区间(1,x)上服从均匀分布,所以其条件概率密度为再根据条件概率密度的定义,可得联合概率密度⼜所以由于f X (x)f Y(y)≠f(x,y),所以X与Y不独⽴.(2).求P{3Y≤2X};(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:如下图所⽰,(3).记Z=X-Y,求Z的概率密度f Z (z).(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:已知(x,y)~f(x,y),则Z=X-Y的取值范围为0<Z<1.当0<z<1时,Z=X-Y的分布函数为则故设随机变量X与Y相互独⽴,X的概率分布为,Y的概率密度函数为Z=X+Y.求:(分数:6.00)3.00)__________________________________________________________________________________________ 正确答案:()(2).Z的概率密度函数.(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:F Z(z)=P{Z≤z}=P{X+Y≤z}=P{X=-1,Y≤z+1}+P{X=0,Y≤z}+P{X=1,Y≤z-1}.因为X与Y相互独⽴,故①当z+1<0(z-1<-2),即z<-1时,f Y (y)=0,从⽽F Z (z)=0;②当0≤z+1<1(-2≤z-1<-1),即-1≤z<0时,③当-1≤z-1<0(1≤z+1<2),即0≤z<1时,④当0≤z-1<1(2≤z+1<3),即1≤z<2时,⑤当1≤z-1(3≤z+1),即z≥2时,综上故设⼆维连续型随机变量(X,Y)的联合概率密度为U=X+Y,V=X-Y.求:(分数:6.00)(1).U的分布函数F 1 (u);(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当u<0时,F 1 (u)=0;当u≥0时,故U的分布函数F 1 (u)为(2).V的分布函数F 2 (v);(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当v<0时,F 2 (v)=0;当v≥0时,故V的分布函数F 2 (v)为(3).P{U≤u,V≥v}(u>v>0),并判断U与V是否独⽴.(分数:2.00)__________________________________________________________________________________________ 正确答案:()当u>0,v>0时,P{U≤u}P{V≥v}=F 1(u)·[1-F 2 (v)]=e -2v (1-e -u ) 2≠P{U≤u,V≥v},从⽽可知,U与V不独⽴.设⼆维随机变量(X,Y)在矩形区域D={(x,y)|0≤x≤2,0≤y≤2}上服从⼆维均匀分布,随机变量求:(分数:6.00)(1).U和V的联合概率分布;(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:(U,V)的可能取值为(-1,-1),(-1,1),(1,-1,),(1,1),如下图.依题意知,X与Y的联合概率密度为则有同理类似地可以计算出其他P ij的值:(2).讨论U和V的相关性和独⽴性.(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:从(U,V)的联合分布与边缘分布可以计算出所以E(UV)=E(U)·E(V),U与V不相关;⼜因为P{U=u,V=v}=P{U=u}·P{V=v},所以U与V相互独⽴.。
考研数学一概率统计讲义参考书目
《考研数学一概率统计讲义参考书目》一、引言在考研数学一科目中,概率统计是一个重要的部分。
掌握好概率统计知识对于考研数学一的学习至关重要。
为了更好地学习概率统计,参考一些优质的讲义和参考书目是必不可少的。
在本文中,我将为大家推荐一些值得参考的概率统计讲义和书目,并对它们进行全面评估,以便帮助大家更好地理解和掌握概率统计知识。
二、深度和广度的要求在选择讲义和书目时,我们不仅要考虑内容的深度,还要考虑其广度。
因为概率统计这一科目涉及的知识非常广泛,深度和广度并重才能更好地帮助我们学习和掌握这一领域的知识。
三、推荐的参考书目1.《概率论与数理统计》(第四版)王金喜2.《概率论与数理统计教程》(第三版)吴喜丰、刘燕华3.《数理统计学》(第二版)苏镇宇4.《概率论与数理统计》(第五版)郝成秋、顾孟迪四、全面评估(1)《概率论与数理统计》(第四版)王金喜这本讲义从概率论和数理统计的基本概念开始,逐步深入,结构清晰,适合初学者。
但在部分内容的深度方面可能不够,建议结合其他书目进行学习。
(2)《概率论与数理统计教程》(第三版)吴喜丰、刘燕华该教程内容广泛,深度适中,适合广大学生参考。
但在一些难度较大的问题上可能需要额外的拓展和讨论。
(3)《数理统计学》(第二版)苏镇宇这本书在数理统计方面的内容比较突出,但概率论方面的内容可能有所欠缺。
建议结合其他书目进行学习,以便全面掌握概率统计知识。
(4)《概率论与数理统计》(第五版)郝成秋、顾孟迪该书深入浅出,内容全面,适合学习者从简到繁地掌握概率统计知识。
在内容上对概率统计的深度和广度都有较好的覆盖,是一本值得推荐的参考书目。
五、总结和回顾通过对以上书目的评估,我们可以看出每本书都有其优点和不足之处。
在学习概率统计这一科目时,我们应该多方参考,结合自身情况选择适合自己的学习材料。
要注重概率统计知识的深度和广度,从简到繁地逐步学习,以便更好地掌握这一领域的知识。
六、个人观点和理解对于概率统计这一科目,我个人认为要注重理论与实践相结合。
考研数学《概率论与数理统计》知识点总结
第一章 概率论的基本概念定义: 随机试验E 的每个结果样本点组成样本空间S ,S 的子集为E 的随机事件,单个样本点为基本事件. 事件关系: 1.A ⊂B ,A 发生必导致B 发生.2.A B 和事件,A ,B 至少一个发生,A B 发生. 3.A B 记AB 积事件,A ,B 同时发生,AB 发生. 4.A -B 差事件,A 发生,B 不发生,A -B 发生.5.A B=Ø,A 和B 互不相容(互斥),A 和B 不能同时发生,基本事件两两互不相容. 6.A B=S 且A B=Ø,A 和B 互为逆事件或对立事件,A 和B 中必有且仅有一个发生,记B=A S A -=. 事件运算: 交换律、结合律、分配率略.德摩根律:B A B A =,B A B A =.概率: 概率就是n 趋向无穷时的频率,记P(A).概率性质:1.P (Ø)=0.2.(有限可加性)P (A 1 A 2 … A n )=P (A 1)+P (A 2)+…+P (A n ),A i 互不相容. 3.若A ⊂B ,则P (B -A)=P (B)-P (A).4.对任意事件A ,有)A (1)A (P P -=.5.P (A B)=P (A)+P (B)-P (AB).古典概型: 即等可能概型,满足:1.S 包含有限个元素.2.每个基本事件发生的可能性相同. 等概公式: 中样本点总数中样本点数S A )A (==n k P . 超几何分布:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=n N k n D N k D p ,其中ra C r a =⎪⎪⎭⎫ ⎝⎛. 条件概率: )A ()AB ()A B (P P P =. 乘法定理:)A ()A B ()AB C ()ABC ()A ()AB ()AB (P P P P P P P ==.全概率公式: )B ()B A ()B ()B A ()B ()B A ()A (2211n n P P P P P P P +++= ,其中i B 为S 的划分. 贝叶斯公式: )A ()B ()B A ()A B (P P P P i i i =,∑==nj j j B P B A P A P 1)()()(或)()()()()()()(B P B A P B P B A P B P B A P A B P +=.独立性: 满足P (AB)=P (A)P (B),则A ,B 相互独立,简称A ,B 独立.定理一: A ,B 独立,则.P (B |A)=P (B). 定理二: A ,B 独立,则A 和B ,A 和B ,A 和B 也相互独立.(0—1)分布: k k p p k X P --==1)1(}{,k =0,1 (0<p <1).伯努利实验:实验只有两个可能的结果:A 及A .二项式分布: 记X~b (n ,p ),kn k k n p p C k X P --==)1(}{. n 重伯努利实验:独立且每次试验概率保持不变.其中A 发生k 次,即二项式分布.泊松分布: 记X~π(λ),!}{k e k X P k λλ-==, ,2,1,0=k .泊松定理: !)1(lim k e p p C k kn k knn λλ--∞→=-,其中λ=np .当20≥n ,05.0≤p 使用泊松定理近似效果颇佳.随机变量分布函数: }{)(x X P x F ≤=,+∞<<∞-x .)()(}{1221x F x F x X x P -=≤<.连续型随机变量: ⎰∞-=xt t f x F d )()(,X 为连续型随机变量,)(x f 为X 的概率密度函数,简称概率密度.概率密度性质:1.0)(≥x f ;2.1d )(=⎰+∞∞-x x f ;3.⎰=-=≤<21d )()()(}{1221x x x x f x F x F x X x P ;4.)()(x f x F =',f (x )在x 点连续;5.P {X=a }=0.均匀分布: 记X~U(a ,b );⎪⎩⎪⎨⎧<<-=其它,,01)(bx a ab x f ;⎪⎩⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,,,10)(. 性质:对a ≤c <c +l ≤b ,有 a b l l c X c P -=+≤<}{ 指数分布:⎪⎩⎪⎨⎧>=-其它,,001)(x e x f x θθ;⎩⎨⎧>-=-其它,,001)(x e x F x θ. 无记忆性: }{}{t X P s X t s X P >=>+>. 正态分布: 记),(~2σμN X ;]2)(ex p[21)(22σμσπ--=x x f ;t t x F xd ]2)(ex p[21)(22⎰∞---=σμσπ.性质: 1.f (x )关于x =μ对称,且P {μ-h <X ≤μ}=P {μ<X ≤μ+h };2.有最大值f (μ)=(σπ2)-1. 标准正态分布:]2exp[21)(2x x -=πϕ;⎰∞--=Φxt t x d ]2ex p[21)(2π.即μ=0,σ=1时的正态分布X ~N(0,1)性质:)(1)(x x Φ-=-Φ.正态分布的线性转化: 对),(~2σμN X 有)1,0(~N X Z σμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=x x X P x X P x F .正态分布概率转化: )()(}{1221σμσμ-Φ--Φ=≤<x x x X x P ;1)(2)()(}{-Φ=-Φ-Φ=+<<-t t t t X t P σμσμ.3σ法则: P =Φ(1)-Φ(-1)=68.26%;P =Φ(2)-Φ(-2)=95.44%;P =Φ(3)-Φ(-3)=99.74%,P 多落在(μ-3σ,μ+3σ)内. 上ɑ分位点: 对X~N(0,1),若z α满足条件P {X>z α}=α,0<α<1,则称点z α为标准正态分布的上α分位点. 常用 上ɑ分位点: 0.001 0.005 0.01 0.025 0.05 0.10 3.0902.5762.3261.9601.6451.282Y 服从自由度为1的χ2分布:设X 密度函数f X (x ),+∞<<∞-x ,若Y=X 2,则⎪⎩⎪⎨⎧≤>-+=000)]()([21)(y y y f y f y y f X XY ,,若设X ~N(0,1),则有⎪⎩⎪⎨⎧≤>=--00021)(221y y e y y f y Y ,,π定理:设X 密度函数f X (x ),设g (x )处处可导且恒有g ′(x )>0(或g ′(x )<0),则Y=g (X)是连续型随机变量,且有⎩⎨⎧<<'=其他,,0)()]([)(βαy y h y h f y f X Y h (y )是g (x )的反函数;①若+∞<<∞-x ,则α=min{g (−∞),g (+∞)},β=max{g (−∞),g (+∞)};②若f X (x )在[a ,b ]外等于零,g (x )在[a ,b ]上单调,则α=min{g (a ),g (b )},β=max{g (a ),g (b )}.使用: Y=aX +b ~N(a μ+b ,(|a |σ)2).二维随机变量的分布函数: 分布函数(联合分布函数):)}(){(),(y Y x X P y x F ≤≤= ,记作:},{y Y x X P ≤≤.),(),(),(),(},{112112222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤<.F (x ,y )性质: 1.F (x ,y )是x 和y 的不减函数,即x 2>x 1时,F (x 2,y )≥F (x 1,y );y 2>y 1时,F (x ,y 2)≥F (x ,y 1).2.0≤F (x ,y )≤1且F (−∞,y )=0,F (x ,−∞)=0,F (−∞,−∞)=0,F (+∞,+∞)=1.3.F (x +0,y )=F (x ,y ),F (x ,y +0)=F (x ,y ),即F (x ,y )关于x 右连续,关于y 也右连续.4.对于任意的(x 1,y 1),(x 2,y 2),x 2>x 1,y 2>y 1,有P {x 1<X ≤x 2,y 1<Y ≤y 2}≥0.离散型(X ,Y ):0≥ij p ,111=∑∑∞=∞=ij j i p ,ij yy x x p y x F i i ∑∑=≤≤),(.连续型(X ,Y ):v u v u f y x F y xd d ),(),(⎰⎰∞-∞-=.f (x ,y )性质:1.f (x ,y )≥0.2.1),(d d ),(=∞∞=⎰⎰∞∞-∞∞-F y x y x f .3.y x y x f G Y X P G⎰⎰=∈d d ),(}),{(.4.若f (x ,y )在点(x ,y )连续,则有),(),(2y x f yx y x F =∂∂∂. n 维: n 维随机变量及其分布函数是在二维基础上的拓展,性质和二维类似. 边缘分布: F x (x ),F y (y )依次称为二维随机变量(X ,Y )关于X 和Y 的边缘分布函数,F X (x )=F (x ,∞),F Y (y )=F (∞,y ).离散型: *i p 和j p *分别为(X ,Y )关于X 和Y 的边缘分布律,记}{1i ij j i x X P p p ==∑=∞=*,}{1j ij i j y Y P p p ==∑=∞=*. 连续型:)(x f X ,)(y f Y 为(X ,Y )关于X 和Y 的边缘密度函数,记⎰∞∞-=y y x f x f X d ),()(,⎰∞∞-=x y x f y f Y d ),()(. 二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f . 记(X ,Y )~N (μ1,μ2,σ12,σ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y . 离散型条件分布律: jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{. *=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布:条件概率密度:)(),()(y f y x f y x f Y Y X =|| 条件分布函数:x y f y x f y Y x X P y x F xY Y X d )(),(}{)(⎰∞-==≤=||| )(),()(x f y x f x y f X X Y =||y x f y x f x X y Y P x y F yX X Y d )(),(}{)(⎰∞-==≤=||| 含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布: 若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布. 独立定义:若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的. 独立条件或可等价为:连续型:f (x ,y )=f x (x )f y (y );离散型:P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }.正态独立: 对于二维正态随机变量(X ,Y ),X 和Y 相互对立的充要条件是:参数ρ=0.n 维延伸: 上述概念可推广至n 维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n -1元)的.定理:设(X 1,X 2,…,X m )和(Y 1,Y 2,…,Y n )相互独立,则X i 和Y j 相互独立.又若h ,g 是连续函数,则h (X 1,X 2,…,X m )和g (Y 1,Y 2,…,Y n )相互独立.Z=X+Y 分布: 若连续型(X ,Y )概率密度为f (x ,y ),则Z=X+Y 为连续型且其概率密度为⎰∞∞-+-=y y y z f z f Y X d ),()(或⎰∞∞-+-=x x z x f z f Y X d ),()(.f X 和f Y 的卷积公式:记⎰∞∞-+-==y y f y z f z f f f Y X Y X Y X d )()()(*⎰∞∞--=x x z f x f Y X d )()(,其中除继上述条件,且X 和Y相互独立,边缘密度分别为f X (x )和f Y (y ).正态卷积:若X 和Y 相互独立且X ~N (μ1,σ12),记Y ~N (μ2,σ22),则对Z=X+Y 有Z ~N (μ1+μ2,σ12+σ22).1.上述结论可推广至n 个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布. 伽马分布:记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(t e t t αα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.XY Z =: ⎰∞∞-=x xz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=x xzx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=x x z f x f x z f Y X XY d )()(1)(. 大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望: 简称期望或均值,记为E (X );离散型:k k k p x X E ∑=∞=1)(.连续型:⎰∞∞-=x x xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数).1.若X 是离散型,且分布律为P {X =x k }=p k ,则: k k k p x g Y E )()(1∑=∞=.2.若X 是连续型,概率密度为f (x ),则:⎰∞∞-=x x f x g Y E d )()()(.定理推广: 设Z 是随机变量X ,Y 的函数:Z =g (X ,Y )(g 是连续函数).1.离散型:分布律为P {X =x i ,Y =y j }=p ij ,则:ij j i i j p y x g Z E ),()(11∑∑=∞=∞=. 2.连续型:⎰⎰∞∞-∞∞-=y x y x f y x g Z E d d ),(),()(期望性质:设C 是常数,X 和Y是随机变量,则:1.E (C )=C .2.E (CX )=CE (X ).3.E (X +Y )=E (X )+E (Y ). 4.又若X 和Y 相互独立的,则E (XY )=E (X )E (Y ).方差:记D (X )或Var(X ),D (X )=V ar(X )=E {[X -E (X )]2}.标准差(均方差): 记为σ(X ),σ(X )= .通式:22)]([)()(X E X E X D -=. k k k p X E x X D 21)]([)(-∑=∞=,⎰∞∞--=x x f x E x X D d )()]([)(2.标准化变量: 记σμ-=x X *,其中μ=)(X E ,2)(σ=X D ,*X 称为X 的标准化变量. 0)(*=X E ,1)(*=X D .方差性质: 设C 是常数,X 和Y 是随机变量,则: 1.D (C )=0. 2.D (CX )=C 2D (X ),D (X +C )=D (X ).3.D (X +Y )=D (X )+D (Y )+2E {(X -E (X ))(Y -E (Y ))},若X ,Y 相互独立D (X +Y )=D (X )+D (Y ).4.D (X )=0的充要条件是P {X =E (X )}=1.正态线性变换: 若),(~2i i i N X σμ,i C 是不全为0的常数,则),(~22112211i i n i i i n i n n C C N X C X C X C σμ∑∑+++== .切比雪夫不等式: 22}{εσεμ≤≥-X P 或221}{εσεμ-≥<-X P ,其中)(X E =μ,)(2X D =σ,ε为任意正数.协方差:记)]}()][({[),Cov(Y E Y X E X E Y X --=.X 和Y的相关系数:)()(),Cov(Y D X D Y X XY =ρ.D (X +Y )=D (X )+D (Y )+2Cov(X ,Y ),Cov(X ,Y )=E (XY )-E (X )E (Y ).性质: 1.Cov(aX ,bY )=ab Cov(X ,Y ),a ,b 是常数.2.Cov(X 1+X 2,Y )=Cov(X 1,Y )+Cov(X 2,Y ). 系数性质:令e =E [(Y -(a +bX ))2],则e 取最小值时有)()1(]))([(2200min Y D X b a Y E e XY ρ-=+-=,其中)()(00X E b Y E a -=,)(),Cov(0X D Y X b =.1.|ρXY |≤1.2.|ρXY |=1的充要条件是:存在常数a ,b 使P {Y =a +bX }=1.|ρXY |越大e 越小X 和Y 线性关系越明显,当|ρXY |=1时,Y =a +bX ;反之亦然,当ρXY =0时,X 和Y 不相关. X 和Y 相互对立,则X 和Y 不相关;但X 和Y 不相关,X 和Y 不一定相互独立. 定义: k 阶矩(k 阶原点矩):E (X k ). n 维随机变量X i的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c c c c c c c c212222111211C ,),Cov(j i ij X X c ==E {[X i -E (X i )][X j -E (X j )]}. k +l 阶混合矩:E (X k Y l).k 阶中心矩:E {[X -E (X )] k }.k +l 阶混合中心矩:E {[X -E (X )]k [Y -E (Y )]l }.)(x Dn 维正态分布:)}()(21ex p{det)2(1),,,(1T221μXCμXC---=-nnxxxfπ,T21T21),,,(),,,(nnxxxμμμ==μX.性质:1.n维正态随机变量(X1,X2,…,X n)的每一个分量X i (i=1,2,…,n)都是正态随机变量,反之,亦成立.2.n维随机变量(X1,X2,…,X n)服从n维正态分布的充要条件是X1,X2,…,X n的任意线性组合l1X1+l2X2+…+l n X n服从一维正态分布(其中l1,l2,…,l n不全为零).3.若(X1,X2,…,X n)服从n维正态分布,且Y1,Y2,…,Y k是X j (j=1,2,…,n)的线性函数,则(Y1,Y2,…,Y k)也服从多维正态分布.4.若(X1,X2,…,X n)服从n维正态分布,则“X i 相互独立”和“X i 两两不相关”等价.弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(X k)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有1}|{|lim=<-∞→εaYPnn则称序列Y1,Y2,…,Yn,…依概率收敛于a.记aY Pn−→−伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或0lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,X n ,…相互独立并服从同一分布,且E(X k)=μ,D(X k)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(X k)=σk2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1 样本k阶中心矩:kinikXXnB)(11-∑==,k≥2~ 近似的min Q1 M Q3 max经验分布函数: )(1)(x S nx F n =,∞<<∞-x . )(x S 表示F 的一个样本X 1,X 2,…,X n 中不大于x 的随机变量的个数.自由度为n 的χ2分布:记χ2~χ2(n ),222212n X X X +++= χ,其中X 1,X 2,…,X n 是来自总体N (0,1)的样本.E (χ2 )=n ,D (χ2 )=2n .χ12+χ22~χ2(n 1+n 2).⎪⎩⎪⎨⎧>Γ=--其他,,00)2(21)(2122y e x n y f y n n .χ2分布的分位点:对于0<α<1,满足αχχαχα==>⎰∞y y f n P n )(222d )()}({,则称)(2n αχ为)(2n χ的上α分位点. 当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点. 自由度为n 的t 分布: 记t ~t (n ),nY Xt /=, 其中X~N (0,1),Y~χ2(n ),X ,Y 相互独立.2)1(2)1(]2[]2)1([)(+-+Γ+Γ=n n t n n n t h π h (t )图形关于t =0对称;当n 充分大时,t 分布近似于N (0,1)分布.t 分布的分位点:对于0<α<1,满足ααα==>⎰∞t t h n t t P n t )(d )()}({,则称)(n t α为)(n t 的上α分位点.由h (t )对称性可知t 1-α(n )=-t α(n ).当n >45时,t α(n )≈z α,z α是标准正态分布的上α分位点.自由度为(n 1,n 2)的F 分布:记F ~F (n 1,n 2),21n V n U F =,其中U~χ2(n 1),V~χ2(n 2),X ,Y 相互独立.1/F ~F (n 2,n 1)⎪⎩⎪⎨⎧>+ΓΓ+Γ=+-其他,,00]1)[2()2()](2)([)(2)(21211)2(221212111x n y n n n y n n n n y n n n n ψF 分布的分位点:对于0<α<1,满足αψαα==>⎰∞y y n n F F P n n F ),(2121d )()},({,则称),(21n n F α为),(21n n F 的上α分位点.重要性质:F 1-α(n 1,n 2)=1/F α(n 1,n 2).定理一: 设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,则有),(~2n N X σμ,其中X 是样本均值.定理二:设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,样本均值和样本方差分别记为 X ,2S ,则有1.)1(~)1(222--n S n χσ;2.X 和2S 相互独立.定理三:设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,样本均值和样本方差分别记为X ,2S ,则有)1(~--n t nS X μ.定理四:设X 1,X 2,…,X n 1 和Y 1,Y 2,…,Y n 2分别是来自N (μ1,σ12)和N (μ2,σ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为 X ,Y ,21S ,22S ,则有1.)1,1(~2122212221--n n F S S σσ.2.当σ12=σ22=σ2时,)2(~)()(21121121-++-----n n t n n S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2w w S S =. 第七章 参数估计定义: 估计量:),,,(ˆ21n X X X θ,估计值:),,,(ˆ21nx x x θ,统称为估计. 矩估计法:令)(ll X E =μ=li n i l X n A 11=∑=(k l ,,2,1 =)(k 为未知数个数)联立方程组,求出估计θˆ. 设总体X 均值μ及方差σ2都存在,则有 X A ==1ˆμ,212212122)(11ˆX X nX X n A A in i i n i -∑=-∑=-===σ. 最大似然估计法:似然函数:离散:);()(1θθi n i x p L =∏=或连续:);()(1θθi ni x f L =∏=,)(θL 化简可去掉和θ无关的因式项.θˆ即为)(θL 最大值,可由方程当多个未知参数θ1,θ1,…,θk 时:可由方程组0)(d d =θθL 或0)(ln d d =θθL 求得. 0d d =L iθ或0ln d d=L i θ(k i ,,2,1 =)求得. 最大似然估计的不变性:若u =u (θ)有单值反函数θ=θ(u ),则有)ˆ(ˆθu u=,其中θˆ为最大似然估计. 截尾样本取样: 定时截尾样本:抽样n 件产品,固定时间段t 0内记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ≤t 0)和失效产品数量. 定数截尾样本:抽样n 件产品,固定失效产品数量数量m 记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ).结尾样本最大似然估计: 定数截尾样本:设产品寿命服从指数分布X~e (θ),θ即产品平均寿命.产品t i 时失效概率P {t =t i }≈f (t i )d t i ,寿命超过t m 的概率θm t m et t F -=>}{,则)(}){()(1i mi mn m mnt P t t F C L =-∏>=θ,化简得)(1)(m t s m e L ---=θθθ,由0)(ln d d =θθL 得:mt s m )(ˆ=θ,其中s (t m )=t 1+t 2+…+t m +(n -m )t m ,称为实验总时间. 定时截尾样本:和定数结尾样本讨论类似有s (t 0)=t 1+t 2+…+t m +(n -m )t 0,)(01)(t s m e L ---=θθθ,mt s )(ˆ0=θ,. 无偏性: 估计量),,,(ˆ21nX X X θ的)ˆ(θE 存在且θθ=)ˆ(E ,则称θˆ是θ的无偏估计量. 有效性:),,,(ˆ211n X X X θ和),,,(ˆ212n X X X θ都是θ的无偏估计量,若)ˆ()ˆ(21θθD D ≤,则1ˆθ较2ˆθ有效. 相合性: 设),,,(ˆ21nX X X θθ的估计量,若对于任意0>ε有1}|ˆ{|lim =<-∞→εθθP n ,则称θˆ是θ的相合估计量. 置信区间:αθθθ-≥<<1)},,,(),,,({2121n n X X X X X X P ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态样本置信区间: 设X 1,X 2,…,X n 是来自总体X ~N (μ,σ2)的样本,则有μ的置信区间:枢轴量W W 分布 a ,b 不等式 置信水平 置信区间)1,0(~N n X σμ-⇒ασμα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-12z n X P ⇒)(2ασz n X ± 其中z α/2为上α分位点θ置信区间的求解: 1.先求枢轴量:即函数W =W (X 1,X 2,…,X n ;θ),且函数W 的分布不依赖未知参数. 如上讨论标注2.对于给定置信水平α-1,定出两常数a ,b 使P {a <W <b }=α-1,从而得到置信区间. (0-1)分布p 的区间估计:样本容量n >50时,⇒--∞→)1,0(~)1()(lim N p np np X n n {}⇒-≈<--αα1)1()(2z p np np X n P0)2()(222222<++-+X n p z X n p z n αα⇒若令22αz n a +=,)2(22αz X n b +-=,2X n c =,则有置信区间(a ac b b 2)4(2---,a ac b b 2)4(2-+-).单侧置信区间:若αθθ-≥>1}{P 或αθθ-≥<1}{P ,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.待估 其他 枢轴量W 的分布置信区间单侧置信限一个正态总体μσ2已知)1,0(~N nX Z σμ-=)(2ασz nX ±ασμz nX +=,ασμz nX -=μσ2未知 )1(~--=n t nS X t μ⎪⎭⎫ ⎝⎛±2αt n S X αμt n S X +=,αμt nSX -=σ2μ未知)1(~)1(2222--=n S n χσχ⎪⎪⎭⎫ ⎝⎛---2212222)1(,)1(ααχχS n S n 2122)1(αχσ--=S n ,222)1(αχσS n -=两个正态总体μ1-μ2σ12,σ22已知)1,0(~)(22212121N n n Y X Z σσμμ+---=⎪⎪⎭⎫ ⎝⎛+±-2221212n n z Y X σσα2221212122212121n n z Y X n n z Y X σσμμσσμμαα+--=-++-=-μ1-μ2 σ12=σ22=σ2 未知)2(~)()(21121121-++---=--n n t n n S Y X t w μμ2)1()1(212222112-+-+-=n n Sn S n S w()12112--+±-nn S tY X wα2w w S S =121121121121----+--=-++-=-n n S t Y X n n S t Y X w w ααμμμμσ12/σ22μ1,μ2未知)1,1(~2122212221--=n n F S S F σσ⎪⎪⎭⎫ ⎝⎛-212221222211,1ααF S S F S S ασσ-=1222122211F S S ,ασσF S S 122212221=1122第八章 假设实验定义: H 0:原假设或零假设,为理想结果假设;H 1:备择假设,原假设被拒绝后可供选择的假设. 第Ⅰ类错误:H 0实际为真时,却拒绝H 0.第Ⅱ类错误:H 0实际为假时,却接受H 0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P {当H 0为真拒绝H 0}≤α,α称为显著水平.拒绝域:取值拒绝H 0.临界点:拒绝域边界.双边假设检验:H 0:θ=θ0,H 1:θ≠θ0.右边检验:H 0:θ≤θ0,H 1:θ>θ0.左边检验:H 0:θ≥θ0,H 1:θ<θ0.正态总体均值、方差的检验法(显著性水平为α)原假设H 0备择假设H 1检验统计量 拒绝域 1 σ2已知μ≤μ0μ>μ0 n X Z σμ0-=z ≥z α μ≥μ0 μ<μ0 z ≤-z α μ=μ0 μ≠μ0 |z |≥z α/2 2 σ2未知μ≤μ0μ>μ0 nS X t 0μ-=t ≥t α(n -1) μ≥μ0 μ<μ0 t ≤-t α(n -1) μ=μ0 μ≠μ0 |t |≥t α/2(n -1)3σ1,σ2已知μ1-μ2≤δμ1-μ2>δ 222121n n Y X Z σσδ+--=z ≥z αμ1-μ2≥δ μ1-μ2<δ z ≤-z α μ1-μ2=δ μ1-μ2≠δ |z |≥z α/24 σ12=σ22 =σ2未知μ1-μ2≤δμ1-μ2>δ 1211--+--=n n S Y X t w δ2)1()1(212222112-+-+-=n n S n S n S wt ≥t α(n 1+n 2-2) μ1-μ2≥δ μ1-μ2<δ t ≤-t α(n 1+n 2-2) μ1-μ2=δ μ1-μ2≠δ |t |≥t α/2(n 1+n 2-2) 5 μ未知σ2≤σ02σ2>σ02 2022)1(σχSn -=χ2≥χα2(n -1)σ2≥σ02 σ2<σ02 χ2≤χ21-α(n -1)σ2=σ02σ2≠σ02χ2≥χ2α/2(n -1)或χ2≤χ21-α/2(n -1)6 μ1,μ2未知σ12≤σ22σ12>σ222221SSF=F≥Fα(n1-1,n2-1) σ12≥σ22σ12<σ22F≤F1-α(n1-1,n2-1)σ12=σ22σ12≠σ22F≥Fα/2(n1-1,n2-1)或F≤F1-α/2(n1-1,n2-1)7 成对数据μD≤0 μD>0nSDtD-=t≥tα(n-1) μD≥0 μD<0 t≤-tα(n-1)μD=0 μD≠0 |t|≥tα-2(n-1)检验方法选择:主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X和Y之间存在一一对应关系,而3和4一般指X和Y相互对立,但针对同一实体.关系:置信区间和假设检验之间的关系:未知参数的置信水平为1-α的置信区间和显著水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。
2011年考研数学《概率统计》讲义第一讲
2011年考研数学《概率统计》讲义第一讲1.“几何概型”问题例1 在长l 的线段AB 上任意投掷两个质点M 和N ,则点A 离点M 比离点N 近的概率为( )A .81 B .41 C .21 D .1解 事件A ={点A 离点M 比离点N 近},并且设|AM |=x ,|AN |=y ,则0≤x ≤l ,0≤y ≤l ,因此Ω={(x ,y )|0≤x ≤l ,0≤y ≤l }, A ={(x ,y )|0≤x ≤y ≤l },⋅==Ω=2121)()()(22llL A L A P 故选择C .例2 设平面区域D 是由x =1,y =0,y =x 所围成,今向D 内随机地投入10个点,求这10个点中至少有2个点落在由曲线y =x 2与y =x 所围成的区域D 1内的概率.解 分两步进行.第一步:先计算任投一点落入D 1的概率.根据几何概型,有11()123()1()32L A P A L Ω-===⋅第二步:设X ={落入D 1内的点数},有),31,10(~B X 于是P (X ≥2)=1-P (X =0)-P (X =1).)32)(31()32(1911010C --=例3 设随机变量X 和Y 的联合分布在正方形G ={(x ,y ):1≤x ≤3,1≤y ≤3}上均匀分布,试求随机变量U =|X -Y |的概率密度p (u ).解 由条件知X 和Y 的联合密度为 ⎪⎩⎪⎨⎧≤≤≤≤=.,0,31,31,41),(其他若y x y x f以F (u )=P (U ≤u )(-∞<u <∞)表示随机变量U 的分布函数. 显然,当u ≤0时,F (u )=0;当u ≥2时,F (u )=1.设0<u <2,则 {||}1()(,)d d d d 4x y ux y u GF u f x y x y x y -≤-≤==⎰⎰⎰⎰,)2(411])2(4[4122u u --=--=于是,随机变量的密度为 ⎪⎩⎪⎨⎧<<-=.,0,20),2(21)(其他若u u u p例4 在长为l 的线段上,任意选取两点M 和N ,求E |M -N |,D |M -N |解 令Z =|M -N |,先求p (z ) F (z )=P (Z ≤z )=P (|M -N |≤z )=222)(lz l l --, p (z )=F ′(z )再求E (Z )和D (Z ).例5(1) 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,则 P {max {X ,Y }≤1}=______.答案是:91.分析 本题主要考查“二维均匀分布”中有关概率的计算问题.由题设,可知(X ,Y )~U (D ),其中D ={(x ,y )|0≤x ≤3,0≤y ≤3}. 解法1P {max (X ,Y )≤1}=P (X ≤1,Y ≤1)=P (X ≤1)·P (Y ≤1)⋅==⎰⎰91)d 31()d 31(1010y x解法2 由几何概型可知.911}1,1{}1),{max(==≤≤=≤DS Y X P Y X P(2) 在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于21的概率为____.答案是:43.分析 本题主要考查“二维均匀分布或几何概型”.解 设随机取到的两个数为X 与Y ,则(X ,Y )服从正方形区域上的均匀分布.一方面我们可以利用二重积分计算⎰⎰=<-Dy x f Y X p .d ),()21|(|σ另一方面我们也可以根据几何概型来计算,如图,即⋅=⨯⨯⨯-Ω=<-=43121212121)()()21|(|)(L A L Y X P A P2.“图解法”问题例1 设事件A 、B 、C 满足P (B )=2P (A ),P (C )=3P (A ),并且P (AB )=P (BC ),则P (A )的取值范围是( )A .]1,0[B .]21,0[C .]31,0[ D .]41,0[解 由于A ⊃AB ,于是有x =P (A )≥P (AB )=y =P (BC )利用加法公式,有1≥P (B +C )=P (B )+P (C )-P (BC )=3x +2x -y ≥3x +2x -x =4x ≥0 即0≤4x ≤1 ⇒0≤x ≤41. 故选择D .例2 设两个随机事件A ,B 相互独立,已知仅有A 发生的概率为41,仅有B 发生的概率为41,则P (A )=_______.解 ()()P A P B =1()()()()[1()]()[1()].4P A B P A P B P A P B P A P A ==-=-=所以 1()2P A =例3 设X ~N (2,σ2),并且P (2<X <4)=0.3,则P (X <0)=______.例4 设随机变量X 服从正态分布N (0,1),对给定的α(0<α<1),数αu 满足P {X >αu }=α.若P {|X |<x }=α,则x 等于(A )2αu (B )21α-u(C )21αu - (D )u 1-α解 由题设,可知u α满足P (X >u α)=α.可见,若要P (|X |<x )=α, 即P (|X |≥x )=1-α, 而P (X >x )=21α-,因此⋅=-21αu x 故选择C .3.“事件独立性”问题①定义相互独立()()(),()()(),()()(),()()()(),P A B P A P B P B C P B P C P A C P A P C P A B C P A P B P C ⎧=⎫⎪⎪=⎪⎬⎨⎪=⎭⎪⎪=⎩两两独立②等价定义A. 两两独立+A BA B A B+-与C 独立(三者之一)B. ()()()P AB P A P B = + ()0P C =或1例 设事件A 、B 、C 满足P (AB )=P (A )P (B ),并且P (C )=[P (C )]2,则A 、B 、C ( ) A .一定不是两两独立; B .不一定是两两独立; C .一定是相互独立; D .一定不是相互独立. 解 由P (C )=[P (C )]2,我们有P (C )=0或1 ⎪⎪⎩⎪⎪⎨⎧====⇒⎩⎨⎧==)()()()()()()()()()()()()(10)()()()(C P B P A P ABC P C P A P AC P C P B P BC P B P A P AB P C P B P A P AB P 或 故选择C .证明:(1)对于任意的A ,由于AC ⊂C ,P (AC )≤P (C )=0 P (AC )=0=P (A )P (C ),即A 与C 相互独立 (2)(C +C )A =A ,P (C A )=P (A )-P (AC )=P (A )-P (A )P (C )=P (A )(1-P (C ))=P (A )P (C ) 结论:零(或1)概率事件与任何事件都是相互独立的.4.“全概公式”问题例1 袋中装有n 只球,每次从中随意取出一球,并放入一个白球,如此交换共进行n 次.已知袋中白球数的数学期望为a ,那么第n +1次从袋中任取一球为白球的概率是______.解 依题意袋中白球数X 是个随机变量,X 可取1,2,…,n ,且∑=nk 1kP {X =k }=a .若记B =“第n +1次从袋中任取一球为白球”,A k “第n 次交换后袋中有k 个白球”(k =1,2,…,n ).由全概率公式,得nk k X P A B P A P B P nk k k nk }{)|()()(11===∑∑==.){11na k X kP nnk ===∑=例2(1) 有两个箱子,第一个箱子中有3个白球2个红球,第二个箱子中有4个白球4个红球,先从第一箱当中随机取一个球放入第二个箱子当中.再从第二箱当中取1个球,问它是白球的概率是多少?解 i A 表示第i 次从第i 个箱子取出的白球.53)(1=A P 52)(1=A P95)|(12=A A P 94)|(12=A A P4523)|()()|()()(1211212=+=A A P A P A A P A P A P .(2)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X , 而Y 的概率密度为()f y ,求随机变量U X Y =+的概率密度()g u .分析 离散型随机变量X 和一个连续型随机变量Y 的和是不能确定的,但是本题已知随机变量X 与Y 独立,并且X 只有两个正概率点,这时可以利用全概率公式求U X Y =+的概率密度解 为求出概率密度()g u ,一般应先求分布函数(){}{}G u P U u P X Y u =≤=+≤, 先验概率:()10.3P X ==,()20.7P X == 所以U X Y =+的分布函数为 }{)(u Y X P u G ≤+=()()1{1}2{2}P X P X Y u X P X P X Y u X ==+≤=+=+≤=0.3{1}0.7{2}P X Y u X P X Y u X =+≤=++≤= 0.3{11}0.7{22}P Y u X P Y u X =≤-=+≤-=.由于X 和Y 相互独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-又因为连续型随机变量密度函数是分布函数在对应区间上的微分得到,得U 的概率密度)2(7.0)1(3.0)()(-'+-'='=u F u F u G u g 0.3(1)0.7(2).f u f u =-+-例3 从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则{2}P Y == ___________ .解 由全概率公式:}2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P X 表示从数1,2,3,4中任取一个数,故X 是等可能取到1,2,3,4。
考研数学概率笔记...
第一章 事件与概率(一次半)基础班(8次 学时8×3=24小时)概率论:它是研究随机现象统计规律性的一门数学科学。
简史:起源于赌博。
17世纪法国Pascal 和Fermat 解决Mere (公平赌博)问题等并提出了排列与组合的新知识。
18世纪早期J.Bernoulli 提出了概率论历史上第一个极限定理(贝努里大数定理),19世纪初Laplace 提出了古典概率定义。
20世纪30年代Kolmogorov 建立了概率的公理化定义(19世纪末Cantor 集合论和20世纪30年代Lebesgue 测试论)。
历史上Gauss 、De Moirve 、、Chebeshev 、Liapunov 、Borel 、Khinchine 、Markov 、K.Pearson 、Fisher 、Cramer 、Wiener 、Doob 、Ito 、许宝禄、Rao 等人亦对概率统计发展作出了重要贡献。
1.1随机事件、样本空间①、②、③、④例子,称满足○a 、○b 、○c 条件的试验为随机试验,记为E ,基本事件(样本点):用e 表示;随机事件:用“A,B,…”表示;样本空间(必然事件):用S 表示。
Remark :(1)A 发生A e e i i ∈∃⇔,,e i 出现了;(2)S 引入意义。
1.2事件的关系与运算(两种语言刻划)一、六种关系:{}{}{}{}1.0,1,2,....,1000,...,0,1,2,3,4,5,0,1,2,3,4,5,....,100,7,8,9,10,11,12,,.S A B C A B C ====例观查某电话呼叫台接到的呼叫次数的随机试验,,求之间的关系二、四个运算性质:Remark :(1)两个事件互斥(互不相容) 两个事件互为对立事件;(2)A -B=B A =A -AB ;(3)事件的假设与事件的相互表示是学好概率论与数理统计的基本功。
例1 某人向一目标射击三次,A i 表示第i 次命中(i=1,2,3),B j 表示命中j 次(j=0,1,2,3),用A i 表示B j 。
王式安考研概率讲义
概率统计第一讲随机事件和概率考试要求:数学一、三、四要求一致。
了解:样本空间的概念理解:随机事件,概率,条件概率,事件独立性,独立重复试验掌握:事件的关系与运算,概率的基本性质,五大公式(加法、减法、乘法、全概率、贝叶斯),独立性计算,独立重复试验就算会计古典概率和几何型概率。
算:§ 1 随机事件与样本空间一、随机试验:E(1)可重复(2)知道所有可能结果(3)无法预知二、样本空间试验的每一可能结果——样本点所有样本点全体——样本空间三、随机事件样本空间的子集——随机事件A B C 样本点——基本事件,随机事件由基本事件组成。
如果一次试验结果,某一基本事件出现——发生,出现如果组成事件A的基本事件出现一一A发生,A出现——必然事件——不可能事件§2 事件间的关系与运算.事件间关系包含,相等,互斥,对立,完全事件组,独立•事件间的运算:并,交,差运算规律:交换律,结合律,分配律,对偶律概率定义,集合定义,记号,称法,图三•事件的文字叙述与符号表示例2从一批产品中每次一件抽取三次,用A(i 1,2,3)表示事件: “第i次抽取到的是正品”试用文字叙述下列事件:(1) AA2U A2A3U A1A3 ;(3)人肽血;再用A,A2,A表示下列事件:(5)都取到正品;(7)只有一件次品;(2) A i A2 A3 ;(4)A A2AL AX^U;(6)至少有一件次品;(8)取到次品不多于一件。
§ 3概率、条件概率、事件独立性、五大公式一. 公理化定义,A,P(1)P(A) 0(2)P( ) 1⑶ P(A 少2 U…P(A) P(A2)…P(A n)・’・A i A j ,i j二. 性质(1)P( ) 0(2)P(A J A U…U AnU…)P(A) P(A2)…P(A n)…AA j ,i j(3)P(A) 1 P(A)(4)A B, P(A) P(B)(5)0 P(A) 1三. 条件概率与事件独立性(1) P(A) 0,P(B A) ¥(譽,事件A发生条件下事件B发生的条件概率;(2) P(AB) P(A)P(B),事件A,B 独立,A, B独立寸A,B独立寸A,B独立寸A,B独立;P(A) 0 时,A,B 独立卫P(B A) P(B);⑶ P (A ,A i 2, |||A k)P(A i 1)P(A 2)|||P(A k)1 i 1i2 ||| i k n相互独立两两独立。
考研概率统计重点内容及常见题型
考研概率统计重点内容及常见题型考研概率统计是管理学、经济学、计算机科学、数学等专业的研究生必修课程之一。
它是一门关于随机现象及其规律性的数学学科,对于数据分析、风险评估、决策分析等领域具有重要的应用价值。
在考研概率统计的学习中,掌握重点内容及常见题型是非常重要的,下面将针对这些内容展开讲解。
一、重点内容1. 概率论基础概率论是概率统计的基础,主要包括概率的定义、事件的概率、条件概率、独立事件、全概率公式、贝叶斯定理等内容。
掌握好概率论的基础知识对于后续的学习至关重要。
2. 随机变量及其分布随机变量是概率统计中的重要概念,它描述了随机实验的结果。
在考研概率统计中,需要对离散型随机变量、连续型随机变量以及它们的概率分布进行深入理解,如二项分布、泊松分布、正态分布等。
3. 统计推断统计推断是概率统计的核心内容之一,主要包括点估计和区间估计两个方面。
在考研中,需要理解最大似然估计、矩估计、区间估计的构造及其性质,并能够应用到具体问题中进行分析。
4. 假设检验假设检验是统计推断的重要内容,主要包括参数的假设检验和非参数的假设检验。
学生需要了解假设检验的基本原理、检验的步骤以及常见的假设检验方法,如t检验、F检验等。
5. 回归分析回归分析是概率统计中的一种重要方法,主要用于建立因变量与自变量之间的函数关系。
在考研中,学生需要了解最小二乘估计、回归系数的显著性检验、多重共线性等内容。
以上就是考研概率统计的重点内容,学生在备考过程中需要深入理解这些知识点,并能够灵活应用到实际问题中去。
二、常见题型1. 选择题选择题是考研概率统计中的常见题型,主要考察学生对知识点的理解和掌握程度。
在解答选择题时,学生需要注意审题,理清思路,不要出现粗心大意导致的错误。
4. 应用题应用题是考研概率统计中的综合性题型,主要考察学生对知识点的综合运用能力。
在解答应用题时,学生需要将所学知识与实际问题相结合,理清问题的要点,构建数学模型,得出合理的结论。
考研数学概率论与数理统计笔记知识点(全)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围
考研数学概率论与数理统计知识点终极梳理
考研数学概率论与数理统计知识点终极梳理概率论与数理统计是硕士研究生入学考试(除数二)的一个重要组成部分,从研究必然问题到研究随机问题,不仅大多数初学者感到困难,即使是对于曾学过这门学科的考生也有不少问题,特别是在做习题以及解决实际问题方面遇到的困难会更多一些。
从近几年硕士研究生入学考试数学阅卷结果来看,概率论这一部分得分率普遍较低。
在最后几天,建议大家,加强数学基本计算联系,熟练、严谨、规范非常至关重要。
此外,要注意回顾一遍大纲考点,查漏补缺。
第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基本性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维林德伯格定理、棣莫弗拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验。
考研数学一-概率论与数理统计(一)
考研数学一-概率论与数理统计(一)(总分:100.00,做题时间:90分钟)一、选择题(总题数:10,分数:40.00)1.设随机变量X服从正态分布N(1,σ2 ),其分布函数为F(x),则对任意实数x,有______(分数:4.00)A.F(x)+F(-x)=1.B.F(1+x)+F(1-x)=1.√C.F(x+1)+F(x-1)=1.D.F(1-x)+F(x-1)=1.解析:[解析] 由于X~N(1,σ2 ),所以X的密度函数f(x)的图形是关于x=1对称的,而可知正确答案是B.2.设X~P(λ),P 1,P 2分别为随机变量X取偶数和奇数的概率,则______(分数:4.00)A.P1=P2.B.P1<P2.C.P1>P2.√D.P1,P2大小关系不定.解析:[解析] 若X~P(λ),则,其中X取偶数的概率为X取奇数的概率为于是应选C.3.设随机变量X的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对于任意实数a,有______ A.B.C.F(-a)=F(a).D.F(-a)=2F(a)-1.(分数:4.00)A.B. √C.D.解析:[解析] 概率密度f(x)为偶函数,于是对于任意实数a,有F(-a)=1-F(a)成立;利用区间可加性得结合上面的等式,于是得应选B.4.设二维随机变量(X,Y)在区域D:x 2 +y 2≤9a 2 (a>0)上服从均匀分布,p=P{X 2 +9Y 2≤9a 2 },则A.p的值与a无关,且B.p的值与a无关,且C.p的值随a值的增大而增大.D.p的值随a值的增大而减小.(分数:4.00)A.B. √C.D.解析:[解析] 因为(X,Y)在区域D:x 2 +y 2≤9a 2上服从均匀分布,所以(X,Y)的联合密度函数为故选B.5.设随机变量X与Y服从正态分布N(-1,2)与N(1,2),并且X与Y不相关,aX+Y与X+by亦不相关,则______(分数:4.00)A.a-b=1.B.a-b=0.C.a+b=1.D.a+b=0.√解析:[解析] X~N(-1,2),Y~N(1,2),于是D(X)=2,D(Y)=2.又Cov(X,Y)=0,Cov(aX+Y,X+bY)=0,由协方差的性质有故选D.6.已知总体X的期望E(X)=0,方差D(X)=σ2.X 1,…,X n是来自总体X的简单随机样本,其均值为,则下面可以作为σ2无偏估计量的是______A.B.C.D.(分数:4.00)A.B.C. √D.解析:[解析] 由于E(X)=0,D(X)=E(X 2 )=σ2,则所以选择C.对于A,B选项,由E(S 2 )=σ2,知均不是σ2的无偏估计量.7.设随机变量序列X 1,…,X n,…相互独立,则根据辛钦大数定律,当n→∞时,于其数学期望,只要{X n,n≥1}满足______(分数:4.00)A.有相同的数学期望.B.服从同一离散型分布.C.服从同一泊松分布.√D.服从同一连续型分布.解析:[解析] 辛钦大数定律的应用条件为:“独立同分布且数学期望存在”,选项A缺少同分布条件,选项B、D虽然服从同一分布但不能保证期望存在,只有C符合该条件.故选C.8.设X 1,X 2,…,X n是来自总体X的简单随机样本,是样本均值,C为任意常数,则______A.B.C.D.(分数:4.00)A.B.C. √D.解析:[解析故选C.9.设总体X服从正态分布N(0,σ2 ),X 1,X 2,…,X 10是来自X的简单随机样本,统计量从F分布,则i等于______(分数:4.00)A.4.B.2.√C.3.D.5.解析:[解析] 因为X 1,X 2,…,X 10是来自X的简单随机样本,故独立同分布于N(0,σ2 )因此,则有又与相互独立,故与Y比较,得故选B.10.在假设检验中,如果待检验的原假设为H 0,那么犯第二类错误是指______(分数:4.00)A.H0成立,接受H0.B.H0不成立,接受H0.√C.H0成立,拒绝H0.D.H0不成立,拒绝H0.解析:[解析] 直接应用“犯第二类错误”=“取伪”=“H 0不成立,接受H 0”的定义,选择B.二、解答题(总题数:10,分数:60.00)11.每次从1,2,3,4,5中任取一个数,且取后放回,用b i表示第i次取出的数(i=1,2,3),三维列向量b=(b 1 ,b 2 ,b 3 ) T,三阶方阵,求线性方程组Ax=b有解的概率.(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:对增广矩阵作初等行变换有于是Ax=b有解的充要条件是,即b 3 -2b 2 +b 1 =0,其中b 1,b 2,b 3相互独立,且分布律相同:,k=1,2,3,4,5,i=1,2,3.所以Ax=b有解的概率为甲、乙两个人投球,甲先投,当有任一人投进之后便获胜,比赛结束.设甲、乙命中率分别为p 1,p 2,0<p 1,p 2<1.求:(分数:6.00)(1).甲、乙投球次数X 1与X 2的分布;(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:每次投篮是相互独立的与其他几次无关.事件X 1 =n表示“甲投了n次”,即“甲、乙各自在前n-1次没有投进,在第n次时甲投进或乙投进”,所以P{X 1 -n}=(q 1 q 2 ) n-1 (p 1 +q 1 p 2 ),n=1,2,…其中:q i =1-p i,i=1,2.事件“X 2=m”表示“乙投了m次”,即“甲、乙前m-1次均没有投进,甲在第m次也没有投进,乙在第m 次投进”,或“甲、乙前m次均没有投进,甲在第m+1次投进”.特殊地,当m=0时,表示甲第一次就投中,所以P{X 2 =m}=(q 1 q 2 ) m-1 (q 1 p 2 +q 1 q 2 p 1 )=q 1 (p 2 +q 2 p 1 )(q 1 q 2 ) m-1,m=1,2,…(2).若使甲、乙两人赢得比赛的概率相同,则p 1,p 2满足什么条件?(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:设事件A表示“甲获胜”,则总投篮次数为奇数.当X 1 +X 2 =2n-1时,意味着甲、乙前n-1次都未投进,甲在第n次投进,于是有P{X 1 +X 2 =2n-1}=p 1 (q 1 q 2 ) n-1,则若甲、乙两人赢得比赛的概率相同,则,可得,即12.设随机变量X在区间(0,1)上服从均匀分布,又求Y的概率密度f Y (y)与分布函数F Y (y).(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:解法一:应用单调函数公式法先求Y的概率密度f Y (y).由于X在(0,1)内取值所以的值域为(0,+∞),且y=g(x)在(0,1)单调.因此其反函数在(0,+∞)内单调可导,其导数h"(y)=2e -2y,在其定义域(0,+∞)内恒不为零.又因为X的概率密度所以Y的概率密度因此可见Y服从参数为2的指数分布,其分布函数为解法二:用分布函数法先求出Y的分布函数F Y (y).当y≤0时,F Y (y)=0;当y>0时,0<x=1-e -2y<1,最后一步是由于X服从(0,1)上的均匀分布.故所求Y的分布函数为将F Y (y)对y求导,得设随机变量(X,Y)的概率密度为试求:(分数:6.00)(1).(X,Y)的分布函数;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:①当x≤0或y≤0时,f(x,y)=0,故F(x,y)=0.②当0<x≤1,0<y≤2时,③当0<x≤1,y>2时,④当x>1,0<Y≤2时,⑤当x>1,y>2时,综上所述,分布函数为(2).(X,Y)的边缘分布密度;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当0≤x≤1时,当0≤y≤2时,(3).概率P{X+Y>1},P{Y>X} 2.00)__________________________________________________________________________________________ 正确答案:()解析:如下图所示,如下图所示,所以设(X,Y)服从D={(x,y)|y≥0,x 2 +y 2≤1}上的均匀分布,定义(分数:6.00)(1).求(U,V)的联合分布律;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:由题设可知,故(U,V)的可能值为(0,0),(0,-1),(0,1),(1,-1),(1,0),(1,1).则(U.V)的联合分布律为(2).求关于V的边缘分布律;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:由(U,V)的联合分布律得V的边缘分布律为(3).求在U=1的条件下V的分布律.(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:,所以所以所求V的分布律为13.设随机变量X的概率密度为,求随机变量 F Y (y).(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:记如下图所示,φ(x)在[0,+∞)内最小值为-1,无最大值,在[0,+∞)左端点处的值为0.y=-1,0将y轴分成(-∞,-1),[-1,0),[0,+∞)三个区间.当y∈(-∞,-1)时,F Y (y)=0.当y∈[-1,0)时,纵坐标为y的水平直线关于曲线y=φ(x)内的集合在x轴上的投影与[0,+∞)的交集为F Y (y)=f X (x)在上的积分为当y∈[0,+∞)时,纵坐标为y的水平直线关于曲线y=φ(x)内的集合在x轴的投影与[0,+∞)的交集为,此时F Y (y)=f X (x)在上的积分为综上所述,y的分布函数为设随机变量X在区间(0,2)上随机取值,在X=x(1<x<2)条件下,随机变量Y在区间(1,x)上服从均匀分布.(分数:6.00)(1).求(X,Y)的联合概率密度,并问X与Y是否独立;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:根据题设X在(0,2)上服从均匀分布,其密度函数为而变量Y,在X=x(1<-x<2)的条件下,在区间(1,x)上服从均匀分布,所以其条件概率密度为再根据条件概率密度的定义,可得联合概率密度又所以由于f X (x)f Y(y)≠f(x,y),所以X与Y不独立.(2).求P{3Y≤2X};(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:如下图所示,(3).记Z=X-Y,求Z的概率密度f Z (z).(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:已知(x,y)~f(x,y),则Z=X-Y的取值范围为0<Z<1.当0<z<1时,Z=X-Y的分布函数为则故设随机变量X与Y相互独立,X的概率分布为,Y的概率密度函数为Z=X+Y.求:(分数:6.00)3.00)__________________________________________________________________________________________ 正确答案:()(2).Z的概率密度函数.(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:F Z(z)=P{Z≤z}=P{X+Y≤z}=P{X=-1,Y≤z+1}+P{X=0,Y≤z}+P{X=1,Y≤z-1}.因为X与Y相互独立,故①当z+1<0(z-1<-2),即z<-1时,f Y (y)=0,从而F Z (z)=0;②当0≤z+1<1(-2≤z-1<-1),即-1≤z<0时,③当-1≤z-1<0(1≤z+1<2),即0≤z<1时,④当0≤z-1<1(2≤z+1<3),即1≤z<2时,⑤当1≤z-1(3≤z+1),即z≥2时,综上故设二维连续型随机变量(X,Y)的联合概率密度为U=X+Y,V=X-Y.求:(分数:6.00)(1).U的分布函数F 1 (u);(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当u<0时,F 1 (u)=0;当u≥0时,故U的分布函数F 1 (u)为(2).V的分布函数F 2 (v);(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当v<0时,F 2 (v)=0;当v≥0时,故V的分布函数F 2 (v)为(3).P{U≤u,V≥v}(u>v>0),并判断U与V是否独立.(分数:2.00)__________________________________________________________________________________________ 正确答案:()当u>0,v>0时,P{U≤u}P{V≥v}=F 1(u)·[1-F 2 (v)]=e -2v (1-e -u ) 2≠P{U≤u,V≥v},从而可知,U与V不独立.设二维随机变量(X,Y)在矩形区域D={(x,y)|0≤x≤2,0≤y≤2}上服从二维均匀分布,随机变量求:(分数:6.00)(1).U和V的联合概率分布;(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:(U,V)的可能取值为(-1,-1),(-1,1),(1,-1,),(1,1),如下图.依题意知,X与Y的联合概率密度为则有同理类似地可以计算出其他P ij的值:(2).讨论U和V的相关性和独立性.(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:从(U,V)的联合分布与边缘分布可以计算出所以E(UV)=E(U)·E(V),U与V不相关;又因为P{U=u,V=v}=P{U=u}·P{V=v},所以U与V相互独立.。
考研数学《概率论与数理统计》知识点总结
第一章概率论的基本概念第五章ﻩ大数定律及中心极限定理伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,Xn,…相互独立并服从同一分布,且E(X k)=μ,D(Xk)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(Xk)=σ k2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤xp.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,Xn是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.~近似的min Q1 M Q3 max第七章ﻩ参数估计正态总体均值、方差的置信区间与单侧置信限(置信水平为)1122。
考研概率统计重点内容及常见题型
考研概率统计重点内容及常见题型概率论和数理统计是考研数学中的重要内容之一,本文将着重介绍考研概率统计的重点内容及常见题型。
概率论概率论是一门研究随机现象的定量描述规律和控制方法的学科。
通常把概率论分为古典概率和现代概率两个部分,其中古典概率是研究有限样本空间的情况,而现代概率则主要研究无限个样本空间的情况。
重点内容:1. 概率的基本定义和性质:包括概率的三大公理、条件概率、乘法公式、全概率公式、贝叶斯公式等。
2. 随机变量及其分布:包括随机变量的定义、离散随机变量与其分布律、连续随机变量与其概率密度函数、分布函数以及常见的分布如正态分布、泊松分布、指数分布、均匀分布等。
3. 数学期望与方差:包括连续和离散随机变量的数学期望公式和性质、方差公式和性质,两个随机变量的线性性质等。
4. 大数定律和中心极限定理:包括切比雪夫不等式、辛钦大数定律和中心极限定理的主要内容和应用。
常见题型:2. 分布计算题:考察各种概率分布的定义、性质,以及定量计算随机变量的概率或期望、方差等。
数理统计数理统计是利用数学的方法研究随机现象的规律性、提取其中的信息和定量的评价不确定性的学科。
它是概率论的一个分支和应用领域。
1. 统计量及其分布:包括样本均值、样本方差、样本协方差、样本相关系数等常见统计量的定义、性质和分布,如t分布、卡方分布、F分布等。
2. 参数估计与假设检验:包括点估计和区间估计(如置信区间、最大似然估计等),显著性水平、拒绝域、p值等假设检验的基本概念和方法。
3. 方差分析和回归分析:包括单因素方差分析和多因素方差分析的原理和方法,以及回归分析的基本模型、方法和应用。
4. 非参数检验与贝叶斯统计:包括基本的非参数检验方法和贝叶斯统计的基本原理与方法等。
1. 参数估计题:考察最大似然估计、置信区间估计等方法,并要求计算或推导统计量的分布。
2. 假设检验题:考察显著性水平、拒绝域、p值等的概念和应用。
3. 方差分析题和回归分析题:考察该方法的基本原理和步骤,并要求数据处理、回归系数估计和模型选择等。
考研概率统计重点内容及常见题型
考研概率统计重点内容及常见题型考研概率统计是研究事件发生的可能性和事件发生规律的学科。
它是数学的一个分支,也是一门重要的应用统计学科。
概率统计在各个领域中都有广泛的应用,如金融、医学、社会科学等。
对于考研概率统计的学习,以下是一些重点内容和常见题型。
一、概率论的基本概念和性质:1. 概率的定义和基本性质。
2. 随机变量及其分布函数、概率密度函数、概率质量函数的概念。
3. 随机变量的数学期望、方差、协方差的概念及其性质。
4. 大数定律和中心极限定理的概念及应用。
二、随机变量的分布:1. 常见的离散型分布,如伯努利分布、二项分布、泊松分布等。
2. 常见的连续型分布,如均匀分布、正态分布、指数分布等。
3. 常见分布之间的关系与转换。
4. 一些特殊分布,如伽玛分布、柯西分布、二维正态分布等。
三、随机变量的函数:1. 随机变量的函数的概念及性质。
2. 随机变量的函数的分布与数学期望的关系。
3. 一些常用的随机变量的函数,如最大值、最小值、次序统计量等。
四、多维随机变量及其分布:1. 二维随机变量的联合分布、边缘分布和条件分布。
2. 二维随机变量的相关性、协方差、相关系数等概念及其性质。
3. 一些常见的多维分布,如二维正态分布、多项分布等。
五、参数估计:1. 点估计和区间估计的概念及性质。
2. 最大似然估计的概念和方法。
3. 置信区间的概念和构造方法。
六、假设检验:1. 假设检验的基本步骤和原理。
2. 参数假设检验的方法,如正态总体均值的检验、正态总体方差的检验等。
3. 非参数假设检验的方法,如符号检验、秩和检验等。
除了上述的重点内容,考研概率统计中还会出现一些计算题和应用题。
计算题主要是对概率、期望、方差等进行计算;应用题主要是通过给定的场景和问题,运用概率统计的知识进行分析和解决问题。
在复习过程中,要注重理论知识的记忆和理解,同时也要多做一些相关的练习题和真题,加强对知识的运用能力。
考研数学(三)概率论与数理统计第一章复习重点总结
2018考研数学(三):概率论与数理统计第一章复习重点总结一、第一章随机事件与概率1.重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式。
2.难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算。
3.常考题型事件、概率与独立性是本章给出的概率论中最基本、最重要的三个概念。
事件关系及其运算是本章的重点和难点,概率计算是本章的重点。
注意事件与概率之间的关系。
本章主要考查随机事件的关系和运算,概率的性质、条件概率和五大公式,注意事件的独立性。
近几年单独考查本章的试题相对较少,但是大多数考题中将本章的内容作为基本知识点来考查。
相当一部分考生对本章中的古典概型感到困难。
大纲只要求对古典概率和几何概率会计算一般难度的题型就可以。
考生不必可以去做这方面的难题,因为古典型概率和几何型概率毕竟不是重点。
应该将本章重点中的有关基本概念、基本理论和基本方法彻底理解和熟练掌握。
【评注】本题是典型的根据全概率公式及条件概率的解题的题型,这类题型一直都是考查的重点。
三、注意事项与线性代数一样,概率也比高数容易,花同样的时间复习概率也更为划算。
但与线代一样,概率也常常被忽视,有时甚至被忽略。
一般的数学考研参考书是按高数、线代、概率的顺序安排的,概率被放在最后,复习完高数和线代以后有可能时间所剩无多;而且因为前两部分分别占60%和20的分值,复习完以后多少会有点满足心理;这些因素都可能影响到概率的复习。
概率这门课如果有难点就应该是“记忆量大”。
在高数部分,公式、定理和性质虽然有很多,但其中相当大一部分都比较简单,还有很多可以借助理解来记忆;在线代部分,需要记忆的公式定理少,而需要通过推导相互联系来理解记忆的多,所以记忆量也不构成难点;但是在概率中,由大量的概念、公式、性质和定理需要记清楚,而且若靠推导来记这些点的话,不但难度大耗时多而且没有更多的用处(因为概率部分考试时对公式定理的内在推导过程及联系并没有什么要求,一般不会在更深的层次上出题)。
2021年考研概率论与数理统计零基础讲义
(1)在相同的条件下,试验可以重复地进行. (2)试验的结果不止一种,而且事先可以确知试验的所有结果. (3)在进行试验前不能确定出现哪一个结果. 那么我们就称它是一个随机试验,以后简称为试验.一般用字母 E 表示.
§2 样本空间、随机事件
(一)样本空间 在随机试验中,每一个可能出现的不可分解的最简单的结果称为随机试验的
3. 事件运算的性质:一般先逆后积再和差 1)交换律: A B B A ; AB BA.
2)结合律: (A B) C A (B C) ; (A B) C A (B C) .
3)分配律: (A B)C (AC) (BC) ; A (BC) (A B)(A C) .
1
A , B 对立: A B 且 A B A , B 不能同时发生但必然有一个发生. 2. 事件的运算 (1) A 与 B 的和事件:记为 A B 或 A B
A 发生或 B 发生 A , B 至少有一个发生 (2) A 与 B 的积事件:记为 A B 或 AB A 发生且 B 发生 A , B 同时发生. (3) A 与 B 的差事件:记为 A B A 发生且 B 不发生. 注意: A B AB .
考研数学《概率论与数理统计》知识点总结
考研数学《概率论与数理统计》知识点总结引言《概率论与数理统计》是考研数学中的一个重要分支,它不仅要求学生掌握理论知识,还要求能够运用这些知识解决实际问题。
本文档旨在对《概率论与数理统计》的核心知识点进行总结,帮助考生系统复习。
第一部分:概率论基础1. 随机事件与样本空间随机事件:在一定条件下可能发生也可能不发生的事件。
样本空间:所有可能结果的集合。
2. 概率的定义古典定义:适用于有限样本空间,每个样本点等可能发生。
频率定义:长期频率的极限。
主观定义:基于个人信念或偏好。
3. 概率的性质非负性:概率值非负。
归一性:所有事件的概率之和为1。
加法定理:互斥事件概率的和。
4. 条件概率与独立性条件概率:已知一个事件发生的情况下,另一个事件发生的概率。
独立性:两个事件同时发生的概率等于各自概率的乘积。
5. 随机变量及其分布离散型随机变量:可能取有限个或可数无限个值。
连续型随机变量:可能取无限连续区间内的任何值。
分布函数:随机变量取值小于或等于某个值的概率。
第二部分:随机变量及其分布1. 离散型随机变量的分布概率质量函数:描述离散型随机变量取特定值的概率。
常见分布:二项分布、泊松分布、几何分布等。
2. 连续型随机变量的分布概率密度函数:描述连续型随机变量在某区间的概率密度。
常见分布:均匀分布、正态分布、指数分布等。
3. 多维随机变量及其分布联合分布:描述多个随机变量联合取值的概率。
边缘分布:从联合分布中得到的单一随机变量的分布。
条件分布:给定一个随机变量的条件下,另一个随机变量的分布。
第三部分:数理统计基础1. 数理统计的基本概念总体与样本:总体是研究对象的全体,样本是总体中所抽取的一部分。
统计量:根据样本数据计算得到的量。
2. 参数估计点估计:用样本统计量估计总体参数的单个值。
区间估计:在一定概率下,总体参数落在某个区间的估计。
3. 假设检验原假设与备择假设:研究问题中的两个对立假设。
检验统计量:用于决定是否拒绝原假设的量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计部分第1讲随机事件及其概率知识要点一、随机事件与样本空间1. 必然现象和随机现象在一定条件下必然出现的现象称为必然现象.在一定条件下可能出现也可能不出现的现象,称为随机现象.2. 样本空间随机现象的一切可能基本结果组成的集合.记作{}eS=,其中e表示基本结果,又称为样本点.3. 随机事件随机现象的某些样本点组成的集合.常用A,B,C等表示.由一个样本点构成的事件称为基本事件.样本空间S是它本身的子集,在每次试验中一定发生,称S为必然事件.空集∅不含任何样本点,它是S的子集,在每次试验中都不发生,称∅为不可能事件.4. 事件的关系和运算由于事件A 是样本空间S 的一个子集,因此事件间的关系和事件间的运算就按照集合间的关系和运算来表达.事件间的关系有包含、相等、互不相容和对立,事件间的运算有并、交、差等.(1) 包含:如果事件A 发生必然导致事件B 发生,则称事件B 包含事件A ,又称A 为B 的子事件,记作A B ⊂.(2) 相等:如果A B ⊂且B A ⊂,则称事件A 与事件B 相等,记作A B =.(3) 互不相容:如果A B =∅ ,则称事件A 与事件B 是互不相容的.这意味着事件A 与事件B 不能同时发生.(4) 对立:如果A B S = 且A B =∅ ,则称事件A 与事件B 互为对立事件或互逆事件.事件A 的对立事件记为A .两个互相对立的事件A 和A 一定是互不相容事件,但是两个互不相容的事件未必是互为对立事件.(5) 和事件:如果事件A 与事件B 至少有一个发生,则称这样的事件为事件A 与事件B 的并,记作A B .(6) 积事件:如果事件A 与事件B 同时发生,则称这样的事件为事件A 与事件B 的交,记作A B 或记作AB .(7) 差事件:如果事件A 发生而事件B 不发生,则称这样的事件为事件A 与事件B 的差,记作A B -.易知A B A AB AB -=-=,A S A =-.(8) 完备事件组:如果事件1A ,2A ,…两两互不相容,且每次试验必出现且只出现一个,则称,,12A A 构成完备事件组或为样本空间S 的一个划分.5. 事件的运算性质 对任意事件A ,B ,C ,1A ,2A ,…,n A ,…,有: (1) 交换律:A B =B A ;AB =BA .(2) 结合律:()()A B C A B C A B C == ;()()ABC A BC AB C ==.(3) 分配律:()A B C AB AC = ;()A B C AB AC -=-;11i i i i A A AA ∞∞==⎛⎫= ⎪⎝⎭ .(4) 德∙摩根律:A B A B = ;AB A B = ;11iii i A A ∞∞=== ;11i ii i A A∞∞=== .二、事件的概率 事件A 的概率描述了事件A 出现可能性的大小,用()P A 表示,()P A 是一个数值.1.概率的定义在一个随机试验中,对于每一个事件A ,都有唯一的实数()P A 和它对应,且()P A 满足:(1) 非负性:()0P A ≥.(2) 规范性:对于必然事件S ,有()1P S =.(3) 可列可加性:对于两两互不相容的事件1A ,2A ,…,有()11i i i i P A P A ∞∞==⎛⎫= ⎪⎝⎭∑ .则称()P A 为事件A 的概率.2.概率的基本性质 (1)()0P ∅=.(2) 有限可加性:设事件1A ,2A ,…,nA 两两互不相容,则()11n ni i i i P A P A ==⎛⎫= ⎪⎝⎭∑ .(3) 对于两个事件A 和B ,如果B A⊂,则有()()()P A B P A P B -=-.可知()1P S =,()()1P A P A =-.3.条件概率 对于任意两个事件A 和B ,其中()0P A >,则事件B 在事件A 发生的条件下的条件概率为()()()|P AB P B A P A =.对于给定的事件A ,条件概率()|PB A 也是事件的概率,它具有概率的一切性质.4.计算概率的几个公式 (1) 加法公式:对于任意事件A ,B ,C ,有()()()()P A B P A P B P AB =+- ,()()()()()()()().P A B C P A P B P C P AB P BC P AC P ABC =++⎡⎤-+++⎣⎦加法公式可以推广到多个事件的情形.(2) 减法公式:对于任意两个事件A ,B ,有()()()().P A B P A P AB P AB -=-=加法公式和减法公式是两大常用基本公式.它们还有许多不同转化形式,如:()()()()()P A B P A P B A P A P BA =+-=+ ,()()()()P A B P AB P AB P AB=++ ,当A ,B 互不相容时,有()()()P A B P A P B =+ .(3) 乘法公式:对于任意两个事件A ,B,若()0P A >,则有()()().|P AB P A P B A =对于()2n n ≥个事件1A ,2A ,…,n A ,若()110n P A A ->⋯,则有()()()()().12121312121n n n P A A A P A P A A P A A A P A A A A -=⋅⋅⋯∣∣⋯∣⋯(4) 全概率公式:设,,,12n B B B ⋯是一个完备事件组,且()0i P B >,则对于任意事件A ,有 ()()().1ni i i P A P B P AB ==∑∣ (5) 贝叶斯公式:在全概率公式的条件下,如果()0P A >,则有()()()()()1j jj niii P B P A B P B A P B P A B ==∑∣∣∣,,,,12j n = .三、事件的独立性与独立重复试验 1.独立事件(1) 两个事件独立:对于两个事件A 与B ,如果()()()P AB P A P B =⋅,则称事件A 与B 独立.如果事件A 与B 独立,则事件A 与B ,A 与B ,A 与B 也独立.(2) 多个事件相互独立:对于任意n 个事件1A ,2A ,…,nA ,如果其中任意两个事件相互独立,即对任意1i j n ≤<≤,有()()()i j i jP A A P A P A =,则称n 个事件1A ,…,n A 两两独立;如果其中任意k 个事件:,,,12k i i i A A A ⋯(,2k n ≤≤ ),121k i i i n ≤<<<≤⋯均有()()()(),1212k k i i i i i i P A A A P A P A P A =⋅⋯⋯则称事件1A ,,2n A A ,相互独立.2.独立试验(1) 独立重复试验:在相同的条件下,将试验重复进行n 次,若各次试验的结果互不影响,即每次试验的结果与其它各次试验的结果无关,且同一事件在各次试验中出现的概率相同,则称这n 次重复的试验为n 次独立重复试验.(2) 伯努利试验:如果试验结果只有A 与A 两个结果,则称之为伯努利试验.将伯努利试验独立重复进行n 次,则称为n 重伯努利试验.设在每次试验中,事件A 出现的概率为p ,即()P A p =,则在n 重伯努利试验中,事件A 出现()0k k n ≤≤次的概率为()1n kk knC p p --,,,,,.012k n =⋯四、三种概型的概率公式1. 等可能(古典)型概率 若随机试验的样本空间S 只有有限个样本点,且每个基本事件发生的可能性相同,则称这样的试验为古典概型.事件A 的概率为()S A P A =中所包含的样本点数样本空间中样本点数.2. 几何型概率 如果随机试验的样本空间S 是一个区域,并且任一点落在任意两个长度(或面积、体积)相同的子区域内是等可能的,则称这样的试验为几何概型. 事件A 的概率为()()()S A P A =长度的或面积、体积的长度或面积、体积. 3. 伯努利型概率 在n 重伯努利试验中,若每次试验事件A 出现的概率为p ,则事件A 出现k 次的概率为()1n kk knC p p --,,,,,.012k n =⋯典型例题一、有关事件关系与运算、概率性质、条件概率、独立命题 例1 设事件,A B 和A B 的概率分别为0.2,0.3和0.4,则()P AB = .解 由条件知()()().,.,.020304P A P B P A B === ,由加法公式,()()()().01P AB P A P B P A B =+-= .由减法公式,()()()() (020101)P AB P A AB P A P AB =-=-=-=.例2 设事件A 与B 满足()1P B A =,则( ).(A)A 是必然事件; (B)()0PB A =);(C)A B ⊃; (D) ()0P AB =.解 由已知,得()()P AB P A =,所以选(D).例3 设(),()0101P A P B <<<<,()() 1 P A B P A B +=,则A 与B ( ).(A) 互不相容; (B) 互相对立; (C) 不独立 ; (D) 独立.解 利用条件概率公式和棣莫弗尔定律,可由()() 1 P A B P A B +=推出()()()P AB P A P B =.所以选(D).例4 设事件A 与B 满足条件AB AB =,则( ).(A )A B =∅ . (B )A B S = . (C )A B A = . (D )A B B = .解 由“对称性”知(C )(D )都不成立(否则,一个成立另一个必成立),而(A )成立A B A B AB ⇔==∅⇔==Ω⇒=Ω,由A B AB ==∅⇒=∅,这与已知AB AB =相矛盾,所以正确选择是(B ).事实上,由对偶法则及题设有AB AB A B == ,于是有()()A B A B AB A B A B S === . 例5 设随机事件A 与B 互不相容,且()(),00P A P B >>,则下列结论中一定成立的有( ).(A ),A B 为对立事件 (B ),A B 互不相容 (C ),A B 不独立 (D ),A B 相互独立解 ,A B 互不相容,只说明AB =∅,但并不一定满足A B S = ,即互不相容的两个事件不一定是对立事件,又因A B =Ω 不一定成立,故A B 即AB =∅亦不一定成立,因此选项(A )与(B )均不能选. 同时因()()0P AB P =∅=,但是()()0P A P B >,即()()()P AB P A P B ≠,故A 与B 一定不独立,应选(C ).例6 设随机事件A 与B 互不相容,且A B =,则()P A = .解 由于A B =,于是有AB A B ==,又由于A 与B 互不相容,因此AB =∅,即A B ==∅,所以()0P A =例7 对于任意两个事件A 与B ,下面结论正确的是( ). (A )如果()0P A =,则A 是不可能事件(B )如果()0P A =,()0P B ≥,则事件B 包含事件A (C )如果()0P A =,()1P B =,则事件A 与B 对立 (D )如果()0P A =,则事件A 与B 独立解 我们知道事件的关系、运算都是应用概率论语言叙述来定义的,除了独立性概念外,其余的概念都不涉及概率,因此由概率关系推导不出事件的这些关系(独立性除外),所以选项(A )(B )(C )都不正确,它们都是相应结论某种形式的必要条件但不是充分条件.若()0P A =,由于AB A ⊂,故()()()0P AB P A P B ==, 所以A 与B 独立,选(D ).例8 对于任意两事件,A B ,与A B B = 不等价的是( ) (A) A B ⊂; (B) B A ⊂ ; (C) AB φ=; (D) AB φ=.解 利用事件间的关系运算,应选(D). 例9已知事件A发生必导致B发生,且()01P B <<,则()P A B = .(A )0 (B )14 (C )12(D )1解法一 由题设知A B B A BA ⊂⇔⊂⇒=∅,从而推知()0P A B =.故选(A).解法二()()()()()()()()(),0P A B P A P AB P A B P B P B P A P A P B -==-==故选(A).例10 设,A B 是两个随机事件,且()14P A =,()(),1132P B A P A B ==,则()P A B = .解 根据乘法公式()()()()()(),,11143121112162P AB P A P B A P AB P B P A B ==⋅====再应用减法公式()()()11161212P AB P B P AB =-=-=,()()()3124123P AB P A P AB =-=-=,或应用加法公式()()()(),111146123P A B P A P B P AB =+-=+-=()()()213P AB P A B P A B ==-= .二、全概率公式 贝叶斯公式命题例1 口袋中有10张卡片,其中两张是中奖卡. 三个人依次从口袋中摸出一张,问中奖概率是否与摸卡的次序有关?解 记iA 表示“第i 个人摸到卡”, ,,123i =, 则()12111015C P A C ==,()()()()(),212112111121199141555P A P A P A A P A P A A C C C C =+=⨯+⨯=()()()()()31231212312P A P A A P A A A P A A P A A A =+()()()(),123121231215P A A P A A A P A A P A A A ++=所以得到中奖概率与摸卡次序无关.例2 一批产品,每箱装20件,已知每箱不含次品的概率为80%,含一件次品的概率为20%,在购买时,随意选一箱,从中随意逐个选出产品进行检查,如果发现次品就退回,如果检查2个还未发现次品就买下.则 (1)顾客买下该箱产品的概率α= ;(2)在顾客买下的一箱中,确实没有次品的概率β= .解(1)如果记iA =“从箱中第i 次取出产品为正品”(),12i =,则()12P A A α=, 显然12A A 与该箱产品中有几件次品有关,因此我们自然想到将该箱含次品的各种情况一一列出,应用全概率公式计算α.记iB =“取任意一箱,该箱含有i 件次品” (),01i =,则()(),.,.,01010802B B S P B P B === 120121120112A A B A A B A A B B A A =+=+,注意到012B A A ⊂,由全概率公式得()()()()()()()1201120111211P A A P B P B A A P B P B P A B P A B A α==+=+ (1918)08020982019=+⨯⨯=.(2)依题意P β⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭第一次取出品正品,该箱不含次品第二次取出品正品()()()() (01200121208082098)P B A A P B P B A A P A A α====≈例3 每箱产品有10件,其中次品数从0到2是可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.则(1)随机检验一箱产品,它通过验收的概率p = ;(2)检验10箱产品通过率不低于90%的概率q = . 解 如果记A =“一箱产品能通过验收 ”,则()p P A =. 事件A 等价于“在10件产品中任取一件检验结果为正品”,A 的发生与其前题条件“取出产品是正品还是次品”有关,因此我们用全概率公式计算()P A =(1)记B =“任取一件产品为正品”,B =“任取一件产品为次品”, 则 A BA BA = ,由题设知()()..,.100209801P A B P A B =-==,所以()()()()()()()()()()().....09810101088p P A P BA P BA P B P A B P B P A BP B P B P B ==+=+=+-⨯=+ 显然 ()P B 与该箱产品中有几件次品有关,为计算()P B ,我们再次应用全概率公式.若记i C =“每箱产品含i 件次品”(),,012i =,则,,012C C C 是一件完备事件组,()13i P C =,(),,012i =故 012B C B C B C B = ,且()()()()()()()001122P B P C P B C P C P B C P C P B C =+=+.119181093310310=⨯+⨯+⨯=,所以 ....010********p =+⨯=.(2)如果X 用表示检验10箱被接受的箱数,则通过率为10X,我们要求的概率{}.09910X q P P X ⎧⎫=>=>⎨⎬⎩⎭,其中X 是10次检验事件A 发生的次数,(),.100892X B ,故{}{}{}9910q P X P X P X =>==+= (910)100892010808920705=⨯⨯+≈.三、有关三大概型命题 例1 在贝努利试验中()P A p =,求在出现m 次A 之前出现k 次A 的概率.解 事件“m 次A 之前出现k 次A ”等价于事件“在1k m +-次试验中,A 出现k 次,A 出现1m -次,且第m k +次出现A ”,于是 ()()().111111k k m k k mk m k m p C p p p C p p -+-+-=--=- 例2 设平面区域D 是由坐标为()(),,,,0001()(),,,1011的四个点围成的正方形.今向D 内随机地投入10个点,求这10个点中至少有2个点落在曲线2y x =与y x =直线所围成的区域1D 内的概率.解 设事件A 表示“任投一点落在区域1D 内”,()P A 是一个几何型概率的计算问题.样本空间 (){},,0101S x y x y =≤≤≤≤,有利于事件A 的样本点集合为(){},21D x y xy x=≤≤,依几何型概率公式 ()()()116D D S A P A S S μμ===,其中,(),112011d 6D D S S x x x ==-=⎰.设事件kB 表示“10个点种落入区域1D 的点的个数为k ”,,010k = 这是一个十重伯努利概型问题,若记()P A p =,应用伯努利公式()()()()()..231001109110109101111510551130526666P B B B P B P B p C p p =--=----⎛⎫⎛⎫⎛⎫=--=-≈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- 57 -例 3 若在区间(0,1)上随机地取两个数,u v ,则关于x 的一元二次方程220x vx u -+=有实根的概率是 .解 设事件A 表示“方程220x vx u -+=有实根”,因,u v 是从(0,1)中任意取的两个数,因此点(,)u v 与正方形区域D 内的点一一对应,其中{}(,),0101D u v u v =<<<<. 事件{}(,)(),(,)2240A u v v u u v D =-≥∈,有利于事件A 的样本点区域为{(,),,}2101D u v v u u v =≥<<,- 58 -由几何型概率公式,得()113D D S P A S ==,其中()11201d 3D P A S v v ===⎰.例4 某射手的命中率为()01p p <<,该射手连续射击n 次才命中k 次()k n ≤的概率为( ).(A )()1n kk p p -- (B )()1n kk k nC p p --(C )()111n k k kn C p p ---- (D )()1111n kk k n C p p -----解 n 次射击视为n 次重复独立试验,每次射击命中概率为p ,不中概率为1p -,设事件 A =“射击n 次命中k 次”- 59 -=“前1n -次有1k -次击中,且第n次也击中”,则()()()111111n k k k n P A Cpp p ------=-⋅().111n k k kn C p p ---=-应选(C ).。