信号与线性系统复习总结课件_管致中等主编78页PPT
信号与线性系统 管致中 第四版 第4章 ppt课件
HjE Rjj j1+2
2020/12/2
16
2) 从微分方程直接求解(方程两边取傅氏变换) 例:已知微分方程
y ''( t) 3 y '( t) 2 y ( t) x ( t)
求:系统函数 H( j) 。 解:对方程两边求傅氏变换,可得
[j()2 3 (j) 2 ]Y (j)X (j)
1 2j1 1 vo(t)1 2e t (t) 28
例:某系统的微分方程为
y " (t) 5 y '( t) 6 y ( t) x (t) 已知输入 x(t激 )e励 t(t),
初始状 y(0态 )2,y'(0)1, 试求全响应。
解(1: )求零状态yz响 s(t),用 应傅氏变换分析
X(j)F[x(t)] 1 j1
H(j)141 j11
27
例:已知 vS(t)2e2t(t)求:1.H( j) 2. h (t ) 3. vo (t)
H(j)141 j11
反变换,得 h(t)1(t)et(t) 4
V o (j ) V S(j )H (j )j 2 2 1 4 jj 1 2
2020/12/2
| H(j)| 2 42
0,| H ( j ) | 1
2020/12/2
2,| H(j)| 2
2
,|H (j)| 0 23
设含噪声 u1(t)信 5s号 itn) (: 3sin 2(t0)
u1(t)
h(t)
u2(t)
2020/12/2
24
三、系统响应: y(t)yx(t)yf(t)
yx(t): 系统零输入响应,取决于系统自然频率和初始值;
信号与系统复习总结PPT课件
1、周期信号的傅立叶级数
三角函数形式:f (t) a0 (an cos n1t bn sin n1t) n1
余弦形式:f (t) c0 cn cos(n1t n ) n1
指数函数形式: f (t) Fne jn1t
n
Fn
1 T14
F0
(
j)
n1
F0 ( j)为单脉冲信号的傅氏变换
五 信号的三大变换
(一)傅立叶变换
2、周期信号的频谱
单边谱 f (t) c0 cn cos(n1t n ) n 1
双边谱
f (t)
Fne jn1t
n
周期信号频谱的特点:离散性、谐波性、收敛性
四 典型信号
(二)离散时间信号 1、单位样值信号
2、单位阶跃序列
3、矩形序列 4、指数序列 5、正弦序列 6、复指数序列
12
五 信号的三大变换
1
傅立叶变换
2
拉普拉斯变换
3
Z变换
连续时间信号
离散时间信号
13
五 信号的三大变换
(一)傅立叶变换
•单位样值序列 (n) 1
•单位阶跃序列 u(n) z z 1
( z 1)
•斜变序列 nu(n) z (z 1)2
( z 1)
•指数序列 anu(n) z
( z a)
za
anu(n 1) z
( z a)
za
30
五 信号的三大变换
2、收敛域
双边 X (z) x(n)zn n
信号与线性系统(管致中)
1 5rad / s
T1 2 5
sin t 的角频率和周期分别为 1 rad / s T1 2 2
T1和T2 的不存在最小公倍数,因此原信号不是周期信号
连续正弦信号一定是周期信号; 两个连续周期信号之和不一定是周期信号 。
例1:判断下列信号是否为周期序列,若是,求其周期。 (1) f (k ) cosk 解:
两个周期序列之和一定是周期序列 。
2 8 N1 3 4 3
f (k ) sin k cos
k
2
信号的分类
能量信号与功率信号
假设信号f(t)在实际应用中是一个电路网络输出的电流或 者电压,将它施加在一个电阻值为1欧的负载电阻上,则在一 定时间间隔(t1,t2)里,负载电阻中消耗的信号能量为:
传输和处理连续时间信号系统的激励和响应在连续时间的一切值上都有确定的意义连续时间系统传输和处理离散时间信号系统的激励和响应都是不连续的离散序列离散时间系统在实际工程中离散时间系统常常与连续时间系统联合运用同时包含有这两者的系统称为混合系统
信号与线性系统
主讲: 俞菲 建雄院 211室 无线谷 5209室
正弦序列不一定是周期序列
例1:判断下列信号是否为周期序列,若是,求其周期。
解: 序列由两个周期序列组成 sin 3k 4 的角频率和周期分别为
3k k (2) f (k ) sin cos 4 2
1 3 4 rad / s
cosk 2的角频率和周期分别为 2 1 2 rad / s N1 4 2 N1和N 2的最小公倍数为8,因此其周期为8。
信号的分类
连续信号与离散信号
离散信号(discrete signal)可以在均匀的时间间隔上给 出函数值,也可以在不均匀的时间间隔上给出函数值,本课 程一般考虑均匀间隔的情况。 离散信号的描述:
信号与线性系统管致中第8章通信系统
PPT文档演模板
信号与线性系统管致中第8章通信系 统
• 已调信号的最大峰值等于载波峰值的 2倍。 这就要求发射机的峰值功率容限是载波功率的 4 倍,发射机的效率是很低的。
• 从功率利用的角度, 越大越好;从包络检波
的效果来看, 越小越好。因此,在包络解调中,
通常折衷地取
。
PPT文档演模板
信号与线性系统管致中第8章通信系 统
• 对正弦载波的情况,若调制信号是脉冲信号,
•则称为:
• ASK------幅度键控(Amplitude Shift Keying)
• FSK------频率键控(Frequency Shift Keying)
• PSK------相位键控(Phase Shift Keying)
PPT文档演模板
信号与线性系统管致中第8章通信系 统
• 如果 然。
,定义
为调制指数 , 显
•特例
• 当调制信号是单音正弦时,在 的情况下,
已调信号的频谱如下:
PPT文档演模板
信号与线性系统管致中第8章通信系 统
• 此时,已调信号的平均功率是载波功率的1.5 倍, 而这些功率中真正用于传输有用信息的边带功率 只是载波功率的1/2,只占整个已调信号总功率的 1/3。
•二. 脉冲载波的情况:
• 根据被控制的参量可分为:脉冲幅度调制、脉
冲宽度调制、脉冲周期(位置)调制。
•PAM------Pulse Amplitude Modulation
•PWM-----Pulse Width Modulation
•PPM------Pulse Periodic(Position) Modulation
PPT文档演模板
信号与线性系统§1.1 绪论 ppt课件
衰减正弦信号:
Ketsi n t
f(t)
t00
0
t0
■ 第 32 页
复指数信号
f (t) Kest
( t )
Ke t cos t jKet sin t
s j 为复数,称为复频率
, 均 为 实 常 数
的量 1/纲 , s的 为量 ra 纲 d为 /s
讨论
0, 0 直流
0, 0 等幅
③ S t ) a 0 ,t ( n π , n 1 , 2 , 3
④ sitn dtπ, sitn dtπ
0t
2 t
⑤ limSat()0
t
■
t
第 34 页
▲
■
第 30 页
指数信号 f(t)Ket
0直流(常数),
0指数衰减, 0指数增长
0
f t
0
K
0
t
O
单边指数信号
f t
f t0t
t 0 1
e
t 0 O
t
■ 第 31 页
正弦信号 f(t)K si n t ()
f tT
K
2π
O
2π
振幅:K 周期: T 2π 1
f频率:ftFra bibliotek角频率:2πf
初相:θ
▲
■
第8页
二、系统的概念
信号的产生、传输和处理需要一定的物理装置, 这样的物理装置常称为系统。
一般而言,系统(system)是指若干相互关联的 事物组合而成具有特定功能的整体。
如手机、电视机、通信网、计算机网等都可以 看成系统。它们所传送的语音、音乐、图象、文字 等都可以看成信号。
▲
■
(完整版)信号与线性系统管致中第1章信号与系统
N
x(n) 2
x(n) 2
在无限区间内的平均功率可定义为:
x(t) P
lim 1 T 2T
T T
2
dt
1 N
P
lim
N
2N
1
N
x(n) 2
三类重要信号: 1. 能量信号——信号具有有限的总能量,
即: E , P 0
2. 功率信号——信号有无限的总能量,但平均功率 有限。即:
1.2 自变量变换
如果有 x(t) x(t) 则称该信号为奇信号
x(n) x(n)
(镜像奇对称)
对复信号而言:
x(t) x(t) 如果有 x(n) x(n) 则称该信号为共轭偶信号。
x(t) x(t)
如果有
则称为共轭奇信号。
x(n) x(n)
1.2 自变量变换
x (n)]
例1:
x(t)
2 1
-2 -1 0
t
12
-2
xe (t)
1
t
02
xo (t)
1
-1
t
1 -1
例2. 信号的奇偶分解:
1.3 指数信号与正弦信号
(Exponential and Sinusoidal Signals ) 1.3.1. 连续时间复指数信号与正弦信号
x(t) Ceat 其中 C, a 为复数
确定的定义。
x(n) c 可以视为周期信号,其基波周期 N0 。1
1.2 自变量变换
非周期信号
周期信号
1.2.3. 奇信号与偶信号: odd Signals and even Signals 对实信号而言:
信号与线性系统分析课件
04 线性系统的响应
系统的冲激响应
冲激响应定义
01
冲激响应是线性系统对单位冲激函数的响应,反映了系统对瞬
时作用的响应特性。
冲激响应计算
02
通过求解线性系统的微分方程或差分方程,可以得到系统的冲
激响应。
冲激响应的物理意义
03
冲激响应可以理解为系统内部能量的传播和分布,是分析系统
动态特性的重要手段。
卷积积分定义
卷积积分是信号处理中常用的一种运算,用于描述两个函数的相互作用。在线性系统中 ,卷积积分用于描述系统的输出与输入之间的关系。
卷积积分的计算
卷积积分的计算涉及到函数乘积的积分,常用的计算方法包括离散卷积和离散化卷积等 。
卷积积分的物理意义
卷积积分可以理解为系统对输入信号的处理和转换能力,是分析系统动态特性的重要手 段。在信号处理中,卷积积分常用于信号滤波、预测和控制系统设计等领域。
03 信号的傅里叶分析
傅里叶级数
傅里叶级数定义
将周期信号表示为无穷多个正弦和余弦函数 的线性组合。
复指数形式
使用复指数函数来表示周期信号。
三角函数形式
使用正弦和余弦函数来表示周期信号。
傅里叶级数的应用
用于分析信号的频率成分和幅度变化。
傅里叶变换
01
02
03
傅里叶变换定义
将时域信号转换为频域信 号,表示信号的频率分布 。
傅里叶变换的性质
线性、时移、频移、共轭 、对称等性质。
傅里叶变换的应用
用于信号处理、图像处理 、通信等领域。
频域分析
频域分析定义
通过分析信号的频率成分 来理解信号的特征和性质 。
频域分析的应用
用于信号滤波、调制解调 、频谱分析等领域。
信号与线性系统总结课件_高等教育出版社_管致中等主编
1.2 信号的分类及性质 4.能量信号与功率信号 .
将信号f 施加于 电阻上,它所消耗的瞬时功率为| 施加于1 将信号 (t)施加于 电阻上,它所消耗的瞬时功率为 f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为: 定义为: 在区间 的能量和平均功率定义为
(1)信号的能量E )信号的能量 (2)信号的功率 )信号的功率P
压缩, 压缩,得f (2t – 4)
f (-2t -4 - -4) 1 -3 -1 o t
f (2t -4 -4)
反转, 反转,得f (– 2t – 4)
o
1 1 2 3 t
1.4 系统的分类方法
1. 连续系统与离散系统 2. 动态系统与即时系统 动态系统与即时系统 线性系统与非线性系统 3. 线性系统与非线性系统 时不变系统与时变系统 4. 时不变系统与时变系统 5. 因果系统与非因果系统 因果系统与非因果系统 稳定系统与不稳定系统 6. 稳定系统与不稳定系统
Sa ( t ) dt = π
Sa ( t ) dt =
π
2
∫− ∞
+∞
1.3 信号的基本运算
一、信号的+、-、×运算 信号的+、-、× +、-、
两信号f 的相+、-、 两信号 1(·) 和f2 (·)的相 、-、×指同一时刻两 的相 、-、× 信号之值对应相加减乘 。如
2 , k = −1 3 , k = 0 f1 (k ) = 6 , k = 1 0 , k其他 2, k = −1 3 , k = 0 6, k = 0 2 , k = 1 f 1 ( k ) + f 2 ( k ) = 8, k = 1 f 2 (k ) = 4, k = 2 4 , k = 2 0 , k其他 9 , k = 0 0, k其他 f 1 ( k ) × f 2 (k ) = 12 , k = 1 0 , k其他
信号与线性系统PPT教学课件
2.1.3 阶跃信号的应用
2、信号的接入特性及定义域的表达
2.1.4 冲激信号的定义
冲激信号:
t 0,t 0
tdt 1
2.1.4 冲激信号的性质
1、抽样特性
f t t f 0 t f t t t0 f t0 t t0
2.1.4 冲激信号的性质
1.1 信号的基本概念
3、信号总是以下面的形式传输: 信源 通过 信道 到达 信宿 甲(语言) (空气) 乙(耳朵)
信号的特性:(时间特性 频率特性)
一般地说 :信号是时间的函数;有一定的波形。 任一信号具有其自身特有的频率组成,所以信号 也是频率的函数。
1.2 信号的分类
1.确定性信号和随机信号 按信号是否可预知划分,可以将信号分为确定性信号和随 机信号。 2.连续时间信号和离散时间信号 按信号是否是时间的连续函数划分,将信号分为连续时间 信号和离散时间信号。
1.确定信号与随机信号
(a)
(b)
2.连续时间信号与离散时间信号
f (t)
f (k)
-1
0 t1
t -4 -3 0 1 2 k
3.周期信号与非周期信号
周期信号是指依一定时间间隔周而复始,且无始 无终的信号,表达式可写为
f t f t nT
n 0,复始的特性。非 周期信号也可以看作为周期为无穷大的周期信号
1.3 系统的定义和分类
3、系统的模拟和联结
系统的模拟
1.4 信号与系统分析概要
1、信号的分析 信号分析的内容及方法有多种,本教材主要描
述了时域法和频域法。 2、系统的分析
系统的分析方法也有时域法和频域法。对连续 时间系统的分析主要采用卷积法,而离散时间系 统则采用卷积和的方法;
信号与线性系统 绪论完美版PPT
y(n) 数字信号处理器
D/A变换器
ya (t)
xa (t)
T 2T y(n)
x(n)7 5Biblioteka 443t0
1234
n -1 -3
ya (t )
0 1234
n
二. 数字信号处理的实现方法
1.软件实现方法(优缺点分析) 按照原理和算法,编写程序在通用计算机上实现。
2.硬件实现方法(优缺点分析) 按照具体的要求和算法,设计硬件结构图,用乘法器、加 法器、延时器、控制器、存储器以及输入输出接口部件 实现的一种方法。
3.专用计算机(DSP芯片) 目前发展最快、应用最广的一种方法。
三. 数字信号处理的特点
与模拟信号处理(ASP)相比,数字信号处理具有如
依自变量和函数值的连续与否:模拟信号;
下特点: 程佩青, 清华大学出版社
依周期性:周期信号; 非周期信号。
▪ 精度高 它是采用数值计算的方法,完成对信号的处理,而模拟信号处理是通过一些模拟器件(晶体管、电阻、电容、电感等),完成对信号
讲授内容
1.时域离散信号和时域离散系统 2.时域离散信号和系统的频域分析 3.离散傅里叶变换(DFT) 4.快速傅里叶变换(FFT) 5.时域离散系统的基本网络结构与
状态变量分析法 6.IIR DF (无限脉冲响应数字滤波器)的设计 7.FIR DF (有限脉冲响应数字滤波器)的设计
绪论
一. 数字信号处理的基本概念
对数字信号进行加工/运算处理,以实现某种需要的功能。它 是采用数值计算的方法,完成对信号的处理,而模拟信号处理是 通过一些模拟器件(晶体管、电阻、电容、电感等),完成对信 号的处理。
数字信号处理是在模拟信号处理的
基础上发展起来的,数字信号处理系统 也可以处理模拟信号。
信号与系统重点总结课件
2019/9/17
Signals & Systems
27
无记忆系统:
y[n] 2x[n] x2[n] 2 y(t) Rx(t)
记忆系统:
y(t) 1 t x( )d (电容、电感) C n
y(t) x(t t0) yn xk (累加器) k
k 0 称为直流分量, k 1称为基波分量。
k 2称为二次谐波分量等等。
每个谐波分量的频率都是 2 的整数倍。
N
2019/9/17
Signals & Systems
18
1.4.1 离散时间单位脉冲与单位阶跃
1、单位脉冲序列
n 10
n0
n0
n
k
1 0
k -
k 0
2019/9/17
Signals & Systems
20
1.4.2 连续时间单位阶跃与单位冲激
1、单位阶跃函数
u(t)
1 0
, ,
t t
0 0
u(t)
1
t
0
x(t)u(t)
x(t 0
)
t0 t0
2019/9/17
Signals & Systems
21
2、单位冲激函数
un 1 0
n0
n0
u(n)
u
n
k
1 0
u(n k)
nk nk
1
0
1111 L
n
n
-1 0 k 1 k k 1 k 2 k 3
信号与线性系统 管致中 第2章 线性时不变系统
0
2T
t T
0
t
y(t ) x(t ) h(t ) x( )h(t )d
x(t )h( )d
① 当 t 0 时, y(t ) 0 ② ③ ④ ⑤
1 2 y 当 0 t T 时, (t ) 0 d t 2 t 1 2 y 当 T t 2T 时, (t ) t T d Tt 2 T 2T 1 2 y (t ) d 2T (t T ) 2 当 2T t 3T 时, t T 2 当 t 3T 时, y(t ) 0
个 t 的值,将 x( ) 和 h(t ) 对应相乘,再计算相
乘后曲线所包围的面积。
通过图形帮助确定积分区间和积分上下限是很有
用的。
x(t )* h(t )
x( )h(t )d
要完成卷积运算的步骤: 1. 变量臵换:将x(t) ,h(t)变为x(), h() , 以 为积分变量 ; 2. 反褶:将h()变为h(- );
n h( n) 0
x(k )
1
0n4 otherwise
1, 0 n 6
otherwise
h(n k ) nk
k
0
k
n6
0
4
n
① n 0 时,
y ( n) 0
n n k 0 k 0
y ( n) n k n k ② 0 n 4 时, 1 ( n 1) 1 n 1 n 1 1 1
通过图形帮助确定反转移位信号的区间表示,对 于确定卷积和计算的区段及各区段求和的上下限是 很有用的。 例3. 列表法 分析卷积和的过程,可以发现有如下特点:
线性系统第三四章复习PPT教学课件
1. 系统能控性 能观测性分析:
2020/12/11
1
2020/12/11
2
2020/12/11
3
2020/12/11
4
2020/12/11
5
2020/12/11
6
2020/12/11
7ห้องสมุดไป่ตู้
2020/12/11
8
2020/12/11
9
2020/12/11
R=real(D)
2020/12/11
17
例:已知线性定常系统
xx1231
2 x1 6 x2
试判断系统的稳定性。
MATLAB程序如下:
A=[-1,-2;3,-6];
[V,D]=eig(A); R=real(D)
2020/12/11
18
PPT教学课件
谢谢观看
Thank You For Watching
(2)系统的唯一平衡状态Xe=0是渐近稳定的充分必要条件为:
A的所有特征值均具有负实部。
矩阵特征值可通过函数eig( )求出,调用方式如下: [V,D]=eig(A)——D为一对角阵,其对角线上的元素为A阵的特
征值,V阵为每一特征值对应的特征向量。 再由函数real( )获得D阵的实部,调用方式如下:
19
10
2020/12/11
11
2020/12/11
12
2020/12/11
13
2020/12/11
14
2020/12/11
15
2020/12/11
16
MATLAB在系统稳定性中的应用
一、特征值稳定性判断
信号与线性系统ppt
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下载特权,一 次发放,全年内有效。
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
2.1 信号的描述
1、典型信号 (1) 复指数信号
f t Aest
t
式中, s j , A,与且都是实数
2.1 信号的描述
2、抽样信号
Sat sin t
t
2.1 信号的描述
3、奇异信号
(a)
(b)
(c)
2.1.3 阶跃信号的应用
1、矩形方波的描述
2.1.3 阶跃信号的应用
其他特 VIP专享精彩活动
权
VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
路漫漫其修远兮,吾将上下而求索!
豫 章 故 郡 , 洪都新 府。星 分翼轸 ,地接 衡庐。 襟三江 而带五 湖,控 蛮荆而 引瓯越 。物华 天宝, 龙光射 牛斗之 墟;人 杰地灵 ,徐孺 下陈蕃 之榻。 雄州雾 列,俊 采星驰 。台隍 枕夷夏 之交, 宾主尽 东南之 美。都 督阎公 之雅望 ,棨戟 遥 临 ; 宇 文 新 州之懿 范,襜 帷暂驻 。十旬 休假, 胜友如 云;千 里逢迎 ,高朋 满座。 腾蛟起 凤,孟 学士之 词宗; 紫电青 霜,王 将军之 武库。 家君作 宰,路 出名区 ;童子 何知, 躬逢胜 饯。 时 维 九 月 , 序属三 秋。潦 水尽而 寒潭清 ,烟光 凝而暮 山紫。 俨骖騑 于上路 ,访风 景于崇 阿;临 帝子之 长洲, 得天人 之旧馆 。层峦 耸翠, 上出重 霄;飞 阁流丹 ,下临 无地。 鹤汀凫 渚,穷 岛屿之 萦回; 桂殿兰 宫,即 冈峦之 体势。 披 绣 闼 , 俯 雕甍, 山原旷 其盈视 ,川泽 纡其骇 瞩。闾 阎扑地 ,钟鸣 鼎食之 家;舸 舰迷津 ,青雀 黄龙之 舳。云 销雨霁 ,彩彻 区明。 落霞与 孤鹜齐 飞,秋 水共长 天一色 。渔舟 唱晚, 响穷彭 蠡之滨 ;雁阵 惊寒, 声断衡 阳之浦 。 遥 襟 甫 畅 , 逸兴遄 飞。爽 籁发而 清风生 ,纤歌 凝而白 云遏。 睢园绿 竹,气 凌彭泽 之樽; 邺水朱 华,光 照临川 之笔。 四美具 ,二难 并。穷 睇眄于 中天, 极娱游 于暇日 。天高 地迥, 觉宇宙 之无穷 ;兴尽 悲来, 识盈虚 之有数 。望长 安 于 日 下 , 目 吴会于 云间。 地势极 而南溟 深,天 柱高而 北辰远 。关山 难越, 谁悲失 路之人 ?萍水 相逢, 尽是他 乡之客 。怀帝 阍而不 见,奉 宣室以 何年? 嗟 乎 ! 时 运 不齐, 命途多 舛。冯 唐易老 ,李广 难封。 屈贾谊 于长沙 ,非无 圣主; 窜梁鸿 于海曲 ,岂乏 明时? 所赖君 子见机 ,达人 知命。 老当益 壮,宁 移白首 之心? 穷且益 坚,不 坠青云 之志。 酌贪泉 而觉爽 ,处涸 辙以犹 欢。北 海 虽 赊 , 扶 摇 可接; 东隅已 逝,桑 榆非晚 。孟尝 高洁, 空余报 国之情 ;阮籍 猖狂, 岂效穷 途之哭 ! 勃 , 三 尺 微 命,一 介书生 。无路 请缨, 等终军 之弱冠 ;有怀 投笔, 慕宗悫 之长风 。舍簪 笏于百 龄,奉 晨昏于 万里。 非谢家 之宝树 ,接孟 氏之芳 邻。他 日趋庭 ,叨陪 鲤对; 今兹捧 袂,喜 托龙门 。杨意 不逢, 抚凌云 而自惜 ;钟期 既 遇 , 奏 流 水 以何惭 ? 呜 乎 ! 胜 地 不常, 盛筵难 再;兰 亭已矣 ,梓泽 丘墟。 临别赠 言,幸 承恩于 伟饯; 登高作 赋,是 所望于 群公。 敢竭鄙 怀,恭 疏短引 ;一言 均赋, 四韵俱 成。请 洒潘江 ,各倾 陆海云 尔: 滕 王 高 阁 临 江渚, 佩玉鸣 鸾罢歌 舞。 画 栋 朝 飞 南 浦云, 珠帘暮 卷西山 雨。 闲 云 潭 影 日 悠悠, 物换星 移几度 秋。 阁 中 帝 子 今 何在? 槛外长 江空自 流。
信号与系统总复习精品PPT课件
4.7-2 例4.7-3,例4.8-1 例4.8-3 例4.8-4
第五章 连续系统的S域分析
• 要求掌握的内容 1、掌握拉氏变换定义和收敛域 2、掌握拉普拉斯变换的性质,并能熟练应用 3、熟悉求拉普拉斯逆变换的方法; 4. 掌握系统函数及其求解方法 5、熟悉卷积的主要性质 • 典型题目 例5.1-1例5.1-2 例5.1-3,例5.2-1例5.2-2 例5.2-3 例5.2-4 例5.2-5 例5.3-3 例5.3-4 例5.3-6,例5.4-1 例5.4-2
信号与线性系统
总复习
内容回顾
• 1、信号分析
时域:信号分解为冲激信号的线性组合
连续信号 频域:信号分解为不同频率正弦信号的线性组合
复频域:信号分解为不同频率复指数的线性组合
信
号
抽
分
样
析
时域:信号分解为脉冲序列的线性组合
离散信号 频域:不作要求
z域:信号分解为不同频率复指数的线性组合
• 2、系统分析
7.3-2 例7.3-3 例7.4-1 例7.4-2 例7.4-3
第八章 系统的状态变量分析
• 要求掌握的内容 1. 熟悉状态变量、状态方程等状态变量描述法中的基本概念 2. 掌握从一般的输入输出方程以及实际的电路中建立状态方程和输出方
《信号与线性系统》总复习(2024级)
信号与线性系统总复习信号分析一、 信号的时域分析1、 常见信号①单位冲激函数:)(t δ定义:抽样性:②单位阶跃函数:)(t ε定义:阶跃与冲激的关系:③斜变函数:)()(t t t R ε=斜变与阶跃的关系:④指数函数:)(t e t εα-⑤门函数:)(t G τ⑥余弦函数:t 0cos ω ⑦正弦函数:t 0sin ω⑧冲激序列:∑∞-∞=-=n T nT t t )()(δδ)(t f )(k f ⎩⎨⎧=01)(t ε00<>t t ⎪⎩⎪⎨⎧==⎰∞∞-0)(1)(t dt t δδ0≠t ⎪⎩⎪⎨⎧==⎰∞-t d t dt t d t ττδεεδ)()()()()()0()()(t f t t f δδ⋅=⋅)0()()0()0()()()(f dt t f dt f t dt t f t ==⋅=⋅⎰⎰⎰∞∞-∞∞-∞∞-δδδ⎪⎩⎪⎨⎧==⎰∞-t d t R dt t dR t ττεε)()()()(2、 信号的运算:3、 信号的变换: 移位:反折:展缩:倍乘:4、 卷积:性质:延时特性:)()()(212211t t t f t t f t t f --=-*-微积分特性:二、 信号的频域分析(傅立叶变换分析法)1、 定义:2、 性质:设)()(11ωj F t f ↔;)()(22ωj F t f ↔;)()(ωj F t f ↔①线性:)()()()(22112211ωωj F a j F a t f a t f a +↔+ ②对称性:)(2)(ωπf jt F ↔ ③延时:0)()(0t j e j F t t f ωω±↔± ④移频:)()(00ωωωj j F e t f t j ↔±⑤尺度变换:)(1)(a j F a at f ω↔;)(1)(aj F e a b at f a bj ωω-↔-⑥奇偶特性:若)(t f 为实偶函数,则)(ωj F 也为实偶函数; 若)(t f 为实偶函数,则)(ωj F 也为实偶函数;⑦时域微分:)()()(ωωj F j dtt df ↔;)()()(ωωj F j dt t f d n nn ↔ )(0t t f ±)(t f -)(at f )(t af ∑∞-∞=-=*i i k fi f k f k f )()()()(2121⎰∞∞--=*τττd t f f t f t f )()()()(2121⎰∞∞--=dt e t f j F tj ωω)()(⎰∞∞-=ωωπωd e j F t f t j )(21)()()(21t f t f ±)()(21t f t f •⎰∞-*=td f dtt df ττ)()(21)(])([21t f d f t *=⎰∞-ττ)()(21t f t f *⑧时域积分:)(1)()0()(ωωωδπττj F j F d f t+↔⎰∞- ⑨频域微分:ωωd j dF t f jt )()()(↔-;n n nd j F d t f jt ωω)()()(↔-⑩频域积分:⎰∞-↔-ωΩΩδπd F t f jtt f )()(1)()0(⑾卷积定理:)()()()(2121ωωj F j F t f t f ↔*)()(21)()(2121ωωπj F j F t f t f *↔⋅3、 常见信号的傅立叶变换 1)(↔t δωωπδεj t 1)()(+↔ )]()([cos 000ωωδωωδπω++-↔t )]()([sin 000ωωδωωδπω--+↔j tωαεαj t e t +↔-1)(22sin )2()(τωτωττωττ=↔Sa t Gωj t 2)sgn(↔2222sin )2(01)(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡↔⎪⎩⎪⎨⎧><-=τωτωττωττττSa t t t t f Tn nT t t n n T πΩΩωδΩωδΩδδΩ2)()()()(=-=↔-=∑∑∞-∞=∞-∞= 4、 周期信号的频谱①性质:离散性,谐波性,收敛性②级数绽开:③频谱:n A •与)(Ωωn =之间的关系图称频谱图; n A 与)(Ωωn =之间的关系图称为振幅频谱图; n ϕ与)(Ωωn =之间的关系图称为相位频谱图;时域 频域周期 离散 离散 周期 时域有限 频域无限 时域无限 频域有限5、 帕色伐尔定理[]⎰⎰∞∞-∞∞-=ωωπd j F dt t f 22)(21)(6、 抽样定理①频带有限信号②满意关系:m s f f 2≥∑∞=++=1)sin cos (2n n n t n b t n a a ΩΩ)(t f ∑∞=-+=10)cos(2n n n t n A a ΦΩ∑∞-∞=•=n tjn n e A Ω21∑∞-∞==n tjn nec Ω⎰+=Tt t n tdt n t f T b 11sin )(2Ωtdt n t f Ta Tt t n Ωcos )(211⎰+=⎰+-•=Tt t tjn n dtet f TA 11)(2Ω⎰+-=Tt t t jn n dte tf Tc 11)(1Ωnj n n e A A φ-•=nn A c •=2122nn n b a A +=nn n a b arctg=φ三、 信号的复频域分析(拉普拉斯变换分析法)1、 定义:2、 性质:①线性: )()()()(22112211s F a s F a t f a t f a +↔+ ②时移:0)()()(00st e s F t t t t f -↔--ε ③频移:)()(00s s F e t f t s -↔ ④尺度变换:)(1)(as F a at f ↔⑤时域微分:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d ⑥时域积分:)(1)(s F sd f t↔⎰∞-ττ ⑦复频域微积分: ds s dF t tf )()(-↔;⎰∞↔s ds s F t f t )()(1⑧初、终值定理:)(lim )0(s sF f s ∞→+=;()(s F 为真分式))(lim )(0s sF f s →=∞⑨卷积定理:)()()()(2121s F s F t f t f ↔* )()(21)()(2121s F s F jt f t f *↔⋅π 3、 常见信号的拉氏变换、收敛区 1)(↔t δ,st 1)(↔ε ,as t e t -↔1)(εα, 1!+↔n n s n t , 22sin ωωω+↔s t ,⎰∞-=0)()(dte tf s F st ⎰∞+∞-=j j stds e s F jt f σσπ)(21)(22cos ωω+↔s st4、 反变换a.部分分式绽开法nn s s k s s ks s k s F -++-+-=2211)( )()()(2121t e k e k e k t f t s n t s t s n ε+++=b.留数法∑==ni i s t f 1Re )(①单根i s 处的留数 Re [()()]i st i i s s s F s e s s ==-②p 重根i s 处的留数 111Re [()()](1)!i p st p i i s s p d s F s e s s p s-=-=-- 四、(离散)信号的Z 域分析1、 定义:∑∞-∞=-=K kzK F Z F )()(2、性质:① 线性线性:)()()()(22112211z F a z F a k f a k f a +↔+ ② 移序:单边z 变换∑-=--↔+1)()()(n k knnzk f zz F z n k f)()()(z F z n k n k f n -↔--ε双边z 变换)()(z F z n k f n ↔+ )()(z F z n k f n -↔-③ 尺度变换:)()(a zF k f a k ↔④ z 域微分特性:)()(z F dzdzk kf -↔⑤ 卷积定理:)()()()(2121z F z F k f k f ↔*)()(21)()(2121s F s F jt f t f *↔⋅π ⑥ 初、终值定理:)(lim )0(z F f z ∞→=)()1(lim )(1z F z f z -=∞→3、 常见序列的Z 变换 1)(↔k δ, 1)(-↔z zk ε , γγ-↔z zk , 2)1(-↔z zk4、 反Z 变换a. 长除法b. 部分分式法nn z B z B z B z B z z F γγγ-++-+-+= 22110)( nn z z B z zB z z B B z F γγγ-++-+-+= 22110)( )()()()(22110k B B B k B k f kn n k k εγγγδ++++=c. 留数法1()Re ni i f k s ==∑①单根i z 处的留数 1Re [()()]i k i i z z s F z z z z -==-②p 重根i z 处的留数 1111Re [()()](1)!i p k p i i z z p d s F z z z z p z--=-=--系统分析卷积+三大变换(时域、频域、复频域、Z 域)一、 系统的时域分析1、 描述:a. 连续系统--微分方程b. 离散系统—差分方程)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n n n +++=++++------ )t )k e )()1()()()1()1()(01011k e b k e b m k e b k y a k y a n k y a n k y m n +++++=++++-+++-3、全响应的求解连续:离散:a. 零输入响应 )(t r zi 、)(k y zi 特征方程:特征根:零输入响应:代定常数C 由初始条件确定:)()()(t r t r t r zs zi +=)()()(k y k y k y zs zi +=00111=++++--a a c n n n λλλ 00111=++++--a a c n n n γγγ 0)())((21=---n λλλλλλ 0)())((21=---n γγγγγγ knn k k zi c c c k y γγγ+++= 221)(tn ttzi n ec ec ec t r λλλ+++= 2121)()1()1(),0(-n y y y )0()0(),0()1(-'n zi zi zi r r r nγγγ,,,21 n λλλ,,,21 ⎪⎪⎩⎪⎪⎨⎧+++=+++='+++=----1122111)1(221121)0()0()0(n n n n n n n n nc c c rc c c r c c c r λλλλλλ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'----n n n n n n n c c c rr r211121121)1(111)0()0()0(λλλλλλ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----)0()0()0(111)1(1112112121n n n n n n n rr r c c cλλλλλλnn ij A AA )(11=-b. 零状态响应 )(t r zs 、)(k y zs4、解的分解零输入响应+零状态响应 自然响应+受迫响应 暂态响应+稳态响应二、系统的频域分析 1、频域系统函数2、系统特性幅频特性:相频特性:3、信号通过线性系统不产生失真的条件时域:频域:三、系统的复频域分析法1、微分方程的拉氏变换分析法 利用拉氏变换的微分特性:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d 把微分方程:011101)(a p a p a p b p b p b p H n n nm m +++++++=-- )(t h 011101)(a S a S a S b S b S b S H n n nm m +++++++=-- )(k h )()()(k e k h k y zs *=)()()(t e t h t r zs *=)()()(ωϕωωj e j H j H =)()()(ωωωj E j R j H zs =)(ωj H )(ωφ)()(0t t Ke t r -=0)(t j Ke j H ωω-=)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n n n +++=++++------变为代数方程,其过程为: ①)()()0()0()0()()()1(21s P s R s r r s r s s R s dtt r d k k k k k k k k -=--'--↔------ )0()0()0()()1(21------++'+=k k k k r r s r s s P 是与初始条件有关的关于s 的k 次多项式②)()()0()0()0()()()1(21s Q s E s e e s e s s E s dtt e d l l l l l l l l -=--'--↔------ 0)0()0()0()()1(21=++'+=------l l l l e e s e s s Q因为)(t e 是有始信号:0)0()0()0()1(==='=----l e e e 所以:)()(s E s dtt e d l l l ↔ ③把以上结果代入微分方程得:)()()()()()()(01111111s R a s P a s sR a s P a s R s a s P s R s n n n n n n +-++-+-----)()()(01s E b s sE b s E s b m m +++=)()()()()(010111s E b s b s b s M s R a s a s a s m m n n n +++=-++++--)()()()()(s E s N s M s R s D =-其中:0111)(a s a s a s s D n n n ++++=--01)(b s b s b s N m m +++=)()()()(1111s P a s P a s P s M n n n +++=--)()()()()()()()(s R s R s D s M s E s D s N s R zi zs +=+= 可求得全响应:)()()(t r t r t r zs zi +=2、电路S 域模型等效法……3、系统函数与系统的稳定性011101)(a s a s a s b s b s b s H n n n m m +++++++=-- )())((2101n m m s s s b s b s b λλλ---+++= 若极点n λλλ 21,均在s 平面的左半平面,则系统稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与线性系要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭