统计学第五章课后题及答案解析

合集下载

统计学第五章课后题及答案解析

统计学第五章课后题及答案解析

第五章一、单项选择题1.抽样推断的目的在于()A.对样本进行全面调查B.了解样本的基本情况C.了解总体的基本情况D.推断总体指标2.在重复抽样条件下纯随机抽样的平均误差取决于()A.样本单位数B.总体方差C.抽样比例D.样本单位数和总体方差3.根据重复抽样的资料,一年级优秀生比重为10%,二年级为20%,若抽样人数相等时,优秀生比重的抽样误差()A.一年级较大B.二年级较大C.误差相同D.无法判断4.用重复抽样的抽样平均误差公式计算不重复抽样的抽样平均误差结果将()A.高估误差B.低估误差C.恰好相等D.高估或低估5.在其他条件不变的情况下,如果允许误差缩小为原来的1/2,则样本容量()A.扩大到原来的2倍B.扩大到原来的4倍C.缩小到原来的1/4D.缩小到原来的1/26.当总体单位不很多且差异较小时宜采用()A.整群抽样B.纯随机抽样C.分层抽样D.等距抽样7.在分层抽样中影响抽样平均误差的方差是()A.层间方差B.层内方差C.总方差D.允许误差二、多项选择题1.抽样推断的特点有()A.建立在随机抽样原则基础上 B.深入研究复杂的专门问题C.用样本指标来推断总体指标 D.抽样误差可以事先计算E.抽样误差可以事先控制2.影响抽样误差的因素有()A.样本容量的大小 B.是有限总体还是无限总体C.总体单位的标志变动度 D.抽样方法E.抽样组织方式3.抽样方法根据取样的方式不同分为()A.重复抽样 B.等距抽样 C.整群抽样D.分层抽样 E.不重复抽样4.抽样推断的优良标准是()A.无偏性 B.同质性 C.一致性D.随机性 E.有效性5.影响必要样本容量的主要因素有()A.总体方差的大小 B.抽样方法C.抽样组织方式 D.允许误差范围大小E.要求的概率保证程度6.参数估计的三项基本要素有()A.估计值 B.极限误差C.估计的优良标准 D.概率保证程度E.显著性水平7.分层抽样中分层的原则是()A.尽量缩小层内方差 B.尽量扩大层内方差C.层量扩大层间方差 D.尽量缩小层间方差E.便于样本单位的抽取三、填空题1.抽样推断和全面调查结合运用,既实现了调查资料的_______性,又保证于调查资料的_______性。

统计学 第五章习题 正确答案

统计学 第五章习题 正确答案

第五章 概论与概率分布重点知识1.样本、样本空间、随机事件的定义;2.事件的运算:交、并、对立事件、互斥事件;3.概论的定义:古典定义、统计定义、经验定义;4.概率的计算:加法公式,乘法公式,条件概率,事件的独立性,全概率公式,贝叶斯公式; 5.随机变量的定义,有几种类型;6.离散型随机变量及其分布的定义与性质,数学期望与方差:重点了解二项分布及其简单性质; 7.连续型随机变量及其分布的定义与性质,数学期望与方差:重点了解正态分布及其简单性质,会根据标准正态分布计算任何正态分布随机变量的概率;复习题一、填空1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设 。

2.若事件A 和事件B 不能同时发生,则称A 和B 是 事件。

3.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是 ;在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是 。

4.甲、乙各射击一次,设事件A 表示甲击中目标,事件B 表示乙击中目标,则甲、乙两人中恰好有一人不击中目标可用事件 表示.5.已知甲、乙两个盒子里各装有2个新球与4个旧球,先从甲盒中任取1个球放入乙盒,再从乙盒中任取1个球,设事件A 表示从甲盒中取出新球放入乙盒,事件B 表示从乙盒中取出新球,则条件概率P(B A )=__.6.设A,B 为两个事件,若概率P (A )=41,P(B)=32,P(AB)=61,则概率P(A+B)=__.7.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 互斥,则概率P(A+B)=__. 8.设A,B 为两个事件,且已知概率P(A)=0.8,P(B)=0.4,若事件A ⊃B ,则条件概率P(B A )=__. 9.设A,B 为两个事件,若概率P(B)=103,P(B A )=61,P(A+B)=54,则概率P(A)=__.10.设A,B 为两个事件,且已知概率P(A )=0.7,P(B)=0.6,若事件A,B 相互独立,则概率P(AB)=__. 11.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 相互独立,则概率P(A+B)=__. 12.设A,B 为两个事件,若概率P(B)=0.84,P(A B)=0.21,则概率P(AB)=__. 13.设离散型随机变量X 的概率分布如下表ccccPX 4322101-则常数c =__.14.已知离散型随机变量X 的概率分布如下表414121P321X则概率P {3<X }=__.15.已知离散型随机变量X 的概率分布如下表6632P213-X11则数学期望)(X E =__.16.设离散型随机变量X 服从参数为p 的两点分布,若离散型随机变量X 取1的概率p 为它取0的概率q 的3倍,则方差)(X D =__.17.设连续型随机变量的概率X 密度为⎪⎩⎪⎨⎧<<-=其他,0210,1)(2x x k x ϕ 则常数k =__.18.设连续型随机变量X 的概率密度为⎩⎨⎧≤≤=其他,00,24)(2rx x x ϕ 则常数r =__.19.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥=-其他,00,2)(2x xex xϕ 则概率}11{<<-X P =__.20.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,021,2)(2x x x ϕ 则数学期望)(X E =_____.21.设X 为随机变量,若数学期望1)12(=-X E ,则数学期望)(X E =__.22.设X 为随机变量,若方差3)63(=-X D ,则方差)(X D =__.二、单项选择1.设A,B 为两个事件,若事件A ⊃B ,则下列结论中( )恒成立.(a)事件A,B 互斥 (b)事件A,B 互斥 (c)事件A ,B 互斥 (d)事件A ,B 互斥 2.设A,B 为两个事件,则事件B A +=( ).(a)A +B (b)A-B (c)A B (d)AB3.投掷两颗均匀骰子,则出现点数之和等于6的概率为( ).(a)111 (b)115 (c)361 (d)3654.盒子里装有10个木质球与6个玻璃球,木质球中有3个红球、7个黄球,玻璃球中有2个红球、4个黄球,从盒子里任取1个球.设事件A 表示取到玻璃球,事件B 表示取到红球,则条件概率P(A B )=( ).(a)114 (b)74 (c)83 (d)535.设A,B 为两个事件,若概率P(A)=31,P(A B )=32,P(A B )=53,则概率P(B)=__.(a)51 (b)52 (c)53 (d)546.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>0,若事件A ⊃B,下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A-B)=P(A)-P(B)(c)P(AB)=P(A)P(B) (d)P(B A )=17.设A,B 为两个事件,则概率P(A+B)=( ).(a)P(A)+P(B) (b)P(A)+P(B)-P(A)P(B)(c)1-P (B A ) (d)1-P( A )P(B ) 8.设A,B 为两个事件,若概率P(A)=31,P(B)=41,P(AB)=121,则( ).(a)事件A 包含B (b)事件A ,B 互斥但不对立 (c)事件A ,B 对立 (d)事件A ,B 相互独立 9.设A,B 为两个事件,且已知概率P(A)=53,P(A+B)=107,若事件A,B 相互独立,则概率P(B)=( ).(a)161 (b)101 (c)41 (d)5210.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>O ,若事件A,B 相互独立,则下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A+B)=P(A) (c)P(A-B)=P(A)-P(B) (d)P(A-B)=P(A)P(B )11.中( )可以作为离散型随机变量X 的概率分布.(a)6321-P321X11 (b)653-21P321X1(c)6321P321X 11 (d)65321P321X 112.已知离散型随机变量X 的概率分布如下表52511015110142101PX-则下列概率计算结果中( )正确.(a)0}3{==X P (b)0}0{==X P . (c)1}1{=->X P (d)1}4{=<X P13.设离散型随机变量X 的所有可能取值为-1与l ,且已知离散型随机变良X 取-1的概率为)10(<<p p ,取1的概率为q ,则数学期望=)(2X E ( ).(a)O (b)l (c)p q - (d)2)(p q - 14.设连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥+=其他,00,1)(2x x kx ϕ 则常数k =( ).(a)π1(b)π (c)π2(d)2π15.下列函数中( )不能作为连续型随机变量X 的概率密度.(a)⎩⎨⎧≤≤-=其他,001,3)(2x x x f (b)⎪⎩⎪⎨⎧≤≤-=其他,021,2)(x x x g(c)⎪⎩⎪⎨⎧≤≤=其他,020,cos )(πx x x h (d)⎪⎩⎪⎨⎧≤≤=其他,02,sin )(ππx x x h 16.设X 为连续型随机变量,若b a ,皆为常数,则下列等式中( )非恒成立.(a)}{}{a X P a X P ==≥ (b)}{}{b X P b X P <=≤ (c)1}{=≠a X P (d)0}{==b X P 17.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他,040,81)(x x x ϕ 则数学期望)(X E =( ).(a)21 (b)2 (c)83 (d)3818.设X 为随机变量,若数学期望)(X E 存在,则数学期望))((X E E =( ).(a)O (b))(X E (c))(2X E (d)2))((X E 19.设X 为随机变量,若方差)(X D =4,则方差)43(+X D =( ).(a)12 (b)16 (c)36 (d)4020.设X ,Y 为随机变量,已知随机变量X 的标准差等于4,随机变量Y 的标准差等于3,若随机变量X ,Y 相互独立,则随机变量X -Y 的标准差等于( ).(a)1 (b)7 (c)5 (d)7四、名词解释1、 数学期望:2、 对立事件:3、 随机事件:4、 事件和:5、 事件积:6、 互斥事件:7、 互相独立事件:五、判断题1.对于连续型随机变量,讨论某一点取值的概率是没有意义的。

统计学第五章课后题及答案解析

统计学第五章课后题及答案解析

第五章练习题一、单项选择题1.抽样推断的目的在于()A.对样本进行全面调查B.了解样本的基本情况C.了解总体的基本情况D.推断总体指标2.在重复抽样条件下纯随机抽样的平均误差取决于()A.样本单位数B.总体方差C.抽样比例D.样本单位数和总体方差3.根据重复抽样的资料,一年级优秀生比重为10%,二年级为20%,若抽样人数相等时,优秀生比重的抽样误差()A.一年级较大B.二年级较大C.误差相同D.无法判断4.用重复抽样的抽样平均误差公式计算不重复抽样的抽样平均误差结果将()A.高估误差B.低估误差C.恰好相等D.高估或低估5.在其他条件不变的情况下,如果允许误差缩小为原来的1/2 ,则样本容量()A.扩大到原来的2倍B.扩大到原来的4倍C.缩小到原来的1/4D .缩小到原来的1/26.当总体单位不很多且差异较小时宜采用()A.整群抽样B.纯随机抽样C.分层抽样D.等距抽样7.在分层抽样中影响抽样平均误差的方差是()A.层间方差B.层内方差C.总方差D.允许误差二、多项选择题1.抽样推断的特点有()A .建立在随机抽样原则基础上B.深入研究复杂的专门问题C .用样本指标来推断总体指标D.抽样误差可以事先计算E .抽样误差可以事先控制2.影响抽样误差的因素有()A .样本容量的大小B.是有限总体还是无限总体C .总体单位的标志变动度D.抽样方法E .抽样组织方式3.抽样方法根据取样的方式不同分为()A .重复抽样B .等距抽样C .整群抽样D .分层抽样E .不重复抽样4.抽样推断的优良标准是()A .无偏性B .同质性C .一致性D .随机性E .有效性5.影响必要样本容量的主要因素有()A.总体方差的大小B.抽样方法元) 户)1.抽样推断和全面调查结合运用,既实现了调查资料的 _________ 性,又保证于调查资料的______ 性。

2.在其他条件不变的情况下, 样本容量与抽样误差成 _____ 比;总体各单位的标志变动度 与样本容量成 ______ 比。

概率论与数理统计(茆诗松)课后第五章习题参考答案

概率论与数理统计(茆诗松)课后第五章习题参考答案

第五章 统计量及其分布习题5.11. 某地电视台想了解某电视栏目(如:每日九点至九点半的体育节目)在该地区的收视率情况,于是委托一家市场咨询公司进行一次电话访查. (1)该项研究的总体是什么? (2)该项研究的样本是什么? 解:(1)总体是该地区的全体用户;(2)样本是被访查的电话用户.2. 某市要调查成年男子的吸烟率,特聘请50名统计专业本科生作街头随机调查,要求每位学生调查100名成年男子,问该项调查的总体和样本分别是什么,总体用什么分布描述为宜?解:总体是任意100名成年男子中的吸烟人数;样本是这50名学生中每一个人调查所得到的吸烟人数;总体用二项分布描述比较合适.3. 设某厂大量生产某种产品,其不合格品率p 未知,每m 件产品包装为一盒.为了检查产品的质量,任意抽取n 盒,查其中的不合格品数,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是全体盒装产品中每一盒的不合格品数;样本是被抽取的n 盒产品中每一盒的不合格品数;总体的分布为X ~ b (m , p ),x m x qp x m x X P −⎟⎟⎠⎞⎜⎜⎝⎛==}{,x = 0, 1, …, n , 样本的分布为nn x m x n x m x x m x n n q p x m q p x m q p x m x X x X x X P −−−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛====L L 2211212211},,,{ ∑∑⋅⎟⎟⎠⎞⎜⎜⎝⎛===−=∏ni tni tx mn x ni i q px m 111.4. 为估计鱼塘里有多少鱼,一位统计学家设计了一个方案如下:从鱼塘中打捞出一网鱼,计有n 条,涂上不会被水冲刷掉的红漆后放回,一天后再从鱼塘里打捞一网,发现共有m 条鱼,而涂有红漆的鱼则有k 条,你能估计出鱼塘里大概有多少鱼吗?该问题的总体和样本又分别是什么呢? 解:设鱼塘里有N 条鱼,有涂有红漆的鱼所占比例为Nn , 而一天后打捞出的一网鱼中涂有红漆的鱼所占比例为m k,估计mk N n ≈,故估计出鱼塘里大概有kmnN ≈条鱼;总体是鱼塘里的所有鱼;样本是一天后再从鱼塘里打捞出的一网鱼. 5. 某厂生产的电容器的使用寿命服从指数分布,为了了解其平均寿命,从中抽出n 件产品测其使用寿命,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是该厂生产的全体电容器的寿命;样本是被抽取的n 件电容器的寿命;总体的分布为X ~ e (λ ),p (x ) = λ e λ x ,x > 0,样本的分布为11212(,,,)e e e enin i x x x x n n p x x x λλλλλλλλ=∑=⋅=L L ,x i > 0.6. 美国某高校根据毕业生返校情况纪录,宣布该校毕业生的年平均工资为5万美元,你对此有何评论? 解:返校的毕业生只是毕业生中一部分特殊群体,样本的抽取不具有随机性,不能反应全体毕业生的情况.习题5.21. 以下是某工厂通过抽样调查得到的10名工人一周内生产的产品数149 156 160 138 149 153 153 169 156 156 试由这批数据构造经验分布函数并作图. 解:经验分布函数0,138,0.1,138149,0.3,149153,()0.5,153156,0.8,156160,0.9,160169,1,169.n x x x F x x x x x <⎧⎪≤<⎪⎪≤<⎪=≤<⎨⎪≤<⎪≤<⎪⎪≥⎩ 作图略.2. 下表是经过整理后得到的分组样本组序 1 2 3 4 5分组区间 (38,48] (48,58] (58,68] (68,78] (78,88] 频数 3 4 8 3 2试写出此分布样本的经验分布函数.解:经验分布函数0,37.5,0.15,37.547.5,0.35,47.557.5,()0.75,57.567.5,0.9,67.577.5,1,77.5.n x x x F x x x x <⎧⎪≤<⎪⎪≤<⎪=⎨≤<⎪⎪≤<⎪≥⎪⎩3. 假若某地区30名2000年某专业毕业生实习期满后的月薪数据如下:909 1086 1120 999 1320 1091 1071 1081 1130 1336 967 1572 825 914 992 1232 950 775 1203 1025 1096 808 1224 1044 871 1164 971 950 866 738(1)构造该批数据的频率分布表(分6组); (2)画出直方图. 解:(1)最大观测值为1572,最小观测值为738,则组距为15727381406d −=≈, 区间端点可取为735,875,1015,1155,1295,1435,1575, 频率分布表为 组序 分组区间 组中值 频数 频率 累计频率 1 (735, 875] 805 6 0.2 0.2 2 (875, 1015] 945 8 0.2667 0.4667 3 (1015, 1155] 1085 9 0.3 0.7667 4 (1155, 1295] 1225 4 0.1333 0.95 (1295,0.96672 0.066671435]13651 0.03333150516 (1435,1575]合计30 1(2)作图略.4.某公司对其250名职工上班所需时间(单位:分钟)进行了调查,下面是其不完整的频率分布表:所需时间频率0~10 0.1010~20 0.2420~3030~40 0.1840~50 0.14 (1)试将频率分布表补充完整.(2)该公司上班所需时间在半小时以内有多少人?解:(1)频率分布表为组序分组区间组中值频数频率累计频率10] 5 25 0.1 0.11 (0,20] 15 60 0.24 0.342 (10,30] 25 85 0.34 0.683 (20,40] 35 45 0.18 0.864 (30,50] 45 35 0.14 15 (40,合计250 1(2)上班所需时间在半小时以内有25 + 60 + 85 = 170人.5.40种刊物的月发行量(单位:百册)如下:5954 5022 14667 6582 6870 1840 2662 45081208 3852 618 3008 1268 1978 7963 20483077 993 353 14263 1714 11127 6926 2047714 5923 6006 14267 1697 13876 4001 22801223 12579 13588 7315 4538 13304 1615 8612 (1)建立该批数据的频数分布表,取组距为1700(百册);(2)画出直方图.解:(1)最大观测值为353,最小观测值为14667,则组距为d = 1700,区间端点可取为0,1700,3400,5100,6800,8500,10200,11900,13600,15300,频率分布表为组序分组区间组中值频数频率累计频率1700] 850 9 0.225 0.2251 (0,25509 0.225 0.453400]2 (1700,42505 0.125 0.5755100]3 (3400,59504 0.1 0.6756800]4 (5100,76504 0.1 0.7758500]5 (6800,1 0.025 0.893506 (8500,10200]1 0.025 0.825110507 (10200,11900]3 0.075 0.9127508 (11900,13600]4 0.1 11445015300]9 (13600,合计30 1(2)作图略.6.对下列数据构造茎叶图472 425 447 377 341 369 412 399400 382 366 425 399 398 423 384418 392 372 418 374 385 439 408429 428 430 413 405 381 403 479381 443 441 433 399 379 386 387 解:茎叶图为34 135369, 6377, 2, 4, 9382, 4, 5, 1, 1, 6, 7399, 8, 2400, 5, 3412, 9, 8, 8, 3, 9425, 5, 3, 8, 9, 8439, 0, 3447, 3, 14546472, 97.根据调查,某集团公司的中层管理人员的年薪(单位:千元)数据如下:40.6 39.6 37.8 36.2 38.838.6 39.6 40.0 34.7 41.738.9 37.9 37.0 35.1 36.737.1 37.7 39.2 36.9 38.3试画出茎叶图.解:茎叶图为34.735. 136.2, 7, 937.0, 1, 738. 639.6, 6, 240.6, 8, 041.742.43.844.9, 545. 4习题5.31.在一本书上我们随机的检查了10页,发现每页上的错误数为:4 5 6 0 3 1 4 2 1 4试计算其样本均值、样本方差和样本标准差.解:样本均值3)41654(101=+++++=L x ; 样本方差7778.3])34()31()36()35()34[(91222222≈−+−++−+−+−=L s ;样本标准差9437.17778.3≈=s .2. 证明:对任意常数c , d ,有11()()()()()()n niiiii i x c y d x x y y n x c y d ==−−=−−+−−∑∑.证:∑∑==−+−−+−=−−ni i i n i i i d y y y c x x x d y c x 11)]())][(()[())((∑=−−+−−+−−+−−=ni i i i i d y c x d y x x y y c x y y x x 1)])(())(())(())([())(()()()()())((111d y c x n x x d y y y c x y y x x ni i ni i ni i i −−+−−+−−+−−=∑∑∑===))(())(())((00))((11d y c x n y y x x d y c x n y y x x ni i i ni i i −−+−−=−−+++−−=∑∑==.3. 设x 1 , …, x n 和y 1 , …, y n 是两组样本观测值,且有如下关系:y i = 3 x i − 4,i = 1, …, n ,试求样本均值x和y 间的关系以及样本方差2x s 和2y s 间的关系.解:4343431)43(111111−=−=⎟⎟⎠⎞⎜⎜⎝⎛−=−==∑∑∑∑====x x n n x n x n y n y ni i n i i n i i n i i ; 212121229(19)]43()43[(11)(11x n i i n i i n i i ys x x n x x n y y n s =−−=−−−−=−−=∑∑∑===. 4. 记∑==n i i n x n x 11,∑=−−=n i i n x x n s 122)(11,n = 1, 2, …,证明 )(1111n n n n x x n x x −++=++,21221)(111n n nn x x n s n n s −++−=++. 证:)(111111111111111111n n n n n n n i i n i i n x x n x x n x n n x n x n n n x n x −++=+++=++⋅+=+=+++=+=+∑∑; ⎥⎦⎤⎢⎣⎡−+−−=−=++=+=++∑∑21112112121))(1()(1)(1n n n i n i n i n i n x x n x x n x x n s ⎥⎦⎤⎢⎣⎡−+⋅+−−+−=++=∑2122112)()1(1)1()()(1n n n n n i n i x x n n x x x x n 2122112)(111)(1)(11)1(1n n n n n n i n i x x n s n n x x n n x x n n n −++−=⎥⎦⎤⎢⎣⎡−++−−−=++=∑.5. 从同一总体中抽取两个容量分别为n , m 的样本,样本均值分别为1x , 2x ,样本方差分别为21s , 22s ,将两组样本合并,其均值、方差分别为x , s 2,证明:12nx mx x n m+=+,)1)(()(1)1()1(22122212−++−+−+−+−=m n m n x x nm m n s m s n s . 证:m n x m x n x x m n x x m n x m j j n i i m j j n i i ++=⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++=∑∑∑∑====211211121111; ⎥⎦⎤⎢⎣⎡−+−−+=∑∑==m j jn i i x x x x m n s 1221212()(11 ⎥⎦⎤⎢⎣⎡−+−+−+−−+=∑∑==221222211211)()()()(11x x m x x x x n x x m n m j j n i i ⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛++−+−+⎟⎠⎞⎜⎝⎛++−+−−+=221222221121)1()1(11m n x m x n x m s m m n x m x n x n s n m n 2212222122221)()()(111)1()1(m n x x mn x x nm m n m n s m s n +−+−⋅−++−+−+−=)1)(()(1)1()1(2212221−++−+−+−+−=m n m n x x nm m n s m s n . 6. 设有容量为n 的样本A ,它的样本均值为A x ,样本标准差为s A ,样本极差为R A ,样本中位数为m A .现对样本中每一个观测值施行如下变换:y = ax + b ,如此得到样本B ,试写出样本B 的均值、标准差、极差和中位数.解:b x a b x n a nb x a n b ax n y n y A ni i n i i n i i n i i B +=+⋅=+=+==∑∑∑∑====11111)(1)(11;A n i A i n i A i n iB i B s a x x n a b x a b ax n y y n s ||)(11||)(11)(11121212=−−⋅=−−+−=−−=∑∑∑===; R B = y (n ) − y (1) = a x (n ) + b − a x (1) − b = a [x (n ) − x (1)] = a R A ; 当n 为奇数时,b am b ax y m A n n B +=+==⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+5.021215.0,当n 为偶数时,b am b x x ab ax b ax y y m A n n n n n n B +=++=+++=+=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛5.01221221225.0][2][21][21,故m B 0.5 = a m A 0.5 + b .7. 证明:容量为2的样本x 1 , x 2的方差为2212)(21x x s −=. 证:221212221221222112)(214)(4)(])2()2[(121x x x x x x x x x x x x s −=−+−=+−++−−=. 8. 设x 1 , …, x n 是来自U (−1, 1) 的样本,试求)(X E 和Var(X .解:因X i ~ U (−1, 1),有0211)(=+−=i X E ,3112)11()(Var 2=+=i X ,故0)(1)1()(11===∑∑==ni i n i i X E n X n E X E ,n n nXnX n X ni in i i 31311)(Var 11Var )(Var 2121=⋅⋅==⎟⎟⎠⎞⎜⎜⎝⎛=∑∑==. 9. 设总体二阶矩存在,X 1 , …, X n 是样本,证明X X i −与)(j i X X j ≠−的相关系数为 − (n − 1) − 1.证:因X 1 , X 2 , …, X n 相互独立,有Cov (X l , X k ) = 0,(l ≠ k ), 则),(Cov ),(Cov ),(Cov ),(Cov ),(Cov X X X X X X X X X X X X j i j i j i +−−=−−)(Var ),1(Cov )1,(Cov 0X X X nX n X j j i i +−−= 22221111)(Var )(Var 1)(Var 1σσσσnn n n X X n X n j i −=+−−=+−−=,且)1,(Cov 21),(Cov 2)(Var )(Var )(Var 22i i i i i X nX n X X X X X X −+=−+=−σσ)(Var 1212222X X nn n n j −=−=−+=σσσσ,故11111)(Var )(Var ),(Cov ),(Corr 222−−=−⋅−−=−⋅−−−=−−n nn n n n X X X X X X X X X X X X j i j i j i σσσ. 10.设x 1 , x 2 ,…, x n 为一个样本,∑=−−=ni i x x n s 122)(11是样本方差,试证: 22)()1(1s x x n n ji j i =−−∑<. 证:因⎟⎟⎠⎞⎜⎜⎝⎛−−=−−=∑∑==21212211)(11x n x n x x n s n i i n i i , 则⎟⎟⎠⎞⎜⎜⎝⎛−+=−+=−=−∑∑∑∑∑∑∑∑∑∑∑==========<n i n j j i n i n j j n i n j i n i n j j i j i n i n j j i j i j i x x x x x x x x x x x x 1111211211221122221)2(21)(21)( 221212111212)1(2221221s n n x n x n x n x n x n x x x n x n n i i n i i n i n j j i n j j n i i −=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=⎟⎟⎠⎞⎜⎜⎝⎛−+=∑∑∑∑∑∑======, 故22)()1(1s x x n n ji j i =−−∑<. 11.设总体4阶中心矩ν4 = E [X − E (X )]4存在,试对样本方差∑=−−=ni i X X n S 122(11,有 2442442442)1(3)1()2(2)1()()Var(−−+−−−−−=n n n n n S σνσνσν,其中σ 2为总体X 的方差.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎥⎦⎤⎢⎣⎡−−−−=∑=21222)()(Var )1(1)Var(µµX n X n S n i i⎭⎬⎫⎩⎨⎧−+⎟⎟⎠⎞⎜⎜⎝⎛−−−⎥⎦⎤⎢⎣⎡−−=∑∑==])(Var[)(,)(Cov 2)(Var )1(12212122µµµµX n X n X X n n i i n i i ⎭⎬⎫⎩⎨⎧−+−−−−−=∑∑==22122122)Var())(,)Cov((2)Var()1(1µµµµX n X X n X n n i i n i i , 因E (X i − µ)2 = σ 2,E (X i − µ)4 = ν4,则)(})({}])([)({)Var(441224122412σνσνµµµ−=−=−−−=−∑∑∑===n X E X E X ni ni i i ni i ,因E (X i − µ) = 0,221)Var()(σµnX X E ==−,且当i ≠ j 时,X i − µ 与X j − µ 相互独立, 则∑∑==−−−−−=−−ni i i ni i X E X E X X E X X 12222122})()(])()[({))(,)Cov((µµµµµµ∑∑==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−⋅−=ni nk k i n X n X E 1222121)(1)(σσµµ∑∑=≠⎭⎬⎫⎩⎨⎧−⎥⎦⎤⎢⎣⎡−⋅−+−=n i i k k i i n X E X E X E n1422421)()()(1σµµµ)(11])1([144142242σνσσσν−=⎭⎬⎫⎩⎨⎧−−⋅+=∑=n n n nni ,且224122421)(1])([)()Var(⎥⎦⎤⎢⎣⎡−⎥⎦⎤⎢⎣⎡−=−−−=−∑=σµµµµn X n E X E X E X n i i42221441)()(24)(1σµµµn X X X E n j i j i n i i −⎥⎦⎤⎢⎣⎡−−⎟⎟⎠⎞⎜⎜⎝⎛+−=∑∑<= 42221441)()(6)(1σµµµn X E X E X E n j i j i ni i −⎥⎦⎤⎢⎣⎡−−+−=∑∑<= 42443424444222442)3(11])1(3[11261σσνσσνσσσνn n n n n n n n n n n +−=−−+=−⎥⎦⎤⎢⎣⎡⋅⎟⎟⎠⎞⎜⎜⎝⎛⋅+=, 故⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+−+−⋅−−−=4244324444222)3(1)(12)()1(1)Var(σσνσνσνn n n n n n n S⎭⎬⎫⎩⎨⎧+−+−−−−=444444422)3(1)(2)()1(1σσνσνσνn n n 2442442444444442)1(3)1()2(2)1()()3(1)2(2)()1(1−−+−−−−−=⎭⎬⎫⎩⎨⎧−+−−−−=n n n n n n n n σνσνσνσνσνσν. 12.设总体X 的3阶矩存在,设X 1 , X 2 ,…, X n 是取自该总体的简单随机样本,X 为样本均值,S 2为样本方差,试证:nS X 32),Cov(ν=,其中ν3 = E [X − E (X )]3.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎟⎟⎠⎞⎜⎜⎝⎛⎥⎦⎤⎢⎣⎡−−−−−=−=∑=21222)()(11,Cov ),Cov(),Cov(µµµµX n X n X S X S X n i i ⎥⎦⎤⎢⎣⎡−−−−−−=∑=))(,Cov())(,Cov(11212µµµµX X n X X n n i i , 因0)()(=−=−µµi X E X E ,E (X i − µ)2 = σ 2,E (X i − µ)3 = ν3,且当i ≠ j 时,X i − µ 与X j − µ 相互独立,则∑∑∑∑====−−=⎟⎟⎠⎞⎜⎜⎝⎛−−=−−n i i i ni i n k k ni i X X n X X n X X 1212112))(,Cov(1)(,)(1Cov ))(,Cov(µµµµµµ331231])()()([1ννµµµ=⋅=−−−−=∑=n nX E X E X E n n i i i i , 且31232)(1)()()())(,Cov(⎥⎦⎤⎢⎣⎡−=−−−−=−−∑=n i i X n E X E X E X E X X µµµµµµ323313313311)(1)(1ννµµn n n X E n X E n n i i n i i =⋅=−=⎥⎦⎤⎢⎣⎡−=∑∑==,故n nn n n n n S X 333232111111),Cov(νννν=−⋅−=⎟⎠⎞⎜⎝⎛⋅−−=. 13.设1X 与2X 是从同一正态总体N (µ, σ 2)独立抽取的容量相同的两个样本均值.试确定样本容量n ,使得两样本均值的距离超过σ 的概率不超过0.01. 解:因µ==)()(21X E X E ,nX X 221)Var()Var(σ==,1X 与2X 相互独立,且总体分布为N (µ, σ 2),则0)(21=−=−µµX X E ,n n n X X 222212)Var(σσσ=+=−,即⎟⎟⎠⎞⎜⎜⎝⎛−n N X X 2212,0~σ, 因01.0222212}|{|21≤⎟⎟⎠⎞⎜⎜⎝⎛Φ−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛Φ−=>−n n X X P σσσ,有995.02≥⎟⎟⎠⎞⎜⎜⎝⎛Φn ,5758.22≥n ,故n ≥ 13.2698,即n 至少14个.14.利用切比雪夫不等式求抛均匀硬币多少次才能使正面朝上的频率落在 (0.4, 0.6) 间的概率至少为0.9.如何才能更精确的计算这个次数?是多少?解:设⎩⎨⎧=,,0,,1次反面朝上第次正面朝上第i i X i 有X i ~ B (1, 0.5),且正面朝上的频率为∑==ni i X n X 11,则E (X i ) = 0.5,Var (X i ) = 0.25,且5.0(=X E ,n X 25.0)(Var =, 由切比雪夫不等式得n nX P X P 2511.025.01}1.0|5.0{|}6.04.0{2−=−≥<−=<<,故当9.0251≥−n时,即n ≥ 250时,9.0}6.04.0{≥<<X P ;利用中心极限定理更精确地计算,当n 很大时∑==ni i X n X 11的渐近分布为正态分布25.0,5.0(n N , 则)2.0()2.0()25.05.04.0(25.05.06.0()4.0()6.0(}6.04.0{n n nnF F X P −Φ−Φ=−Φ−−Φ=−=<<9.01)2.0(2≥−Φ=n ,即95.0)2.0(≥Φn ,64.12.0≥n ,故当n ≥ 67.24时,即n ≥ 68时,9.0}6.04.0{≥<<X P .15.从指数总体Exp (1/θ ) 抽取了40个样品,试求X 的渐近分布.解:因θ==)((X E X E ,2401)(Var )(Var θ==n X X ,故X 的渐近分布为)401,(2θθN .16.设X 1 , …, X 25是从均匀分布U (0, 5) 抽取的样本,试求样本均值X 的渐近分布.解:因25)()(==X E X E ,1211225)05()(Var )(Var 2=×−==n X X ,故X 的渐近分布为)121,25(N . 17.设X 1 , …, X 20是从二点分布b (1, p ) 抽取的样本,试求样本均值X 的渐近分布.解:因p X E X E ==)((,20)1()(Var )(Var p p n X X −==,故X 的渐近分布为20)1(,(p p p N −.18.设X 1 , …, X 8是从正态分布N (10, 9) 中抽取的样本,试求样本均值X 的标准差.解:因89)(Var )(Var ==n X X ,故X 的标准差为423)(Var =X . 19.切尾均值也是一个常用的反映样本数据的特征量,其想法是将数据的两端的值舍去,而用剩下的当中的值为计算样本均值,其计算公式是][2])[()2]([)1]([αααααn n X X X X n n n n −+++=−++L ,其中0 < α < 1/2是切尾系数,X (1) ≤ X (2) ≤ … ≤ X (n ) 是有序样本.现我们在高校采访了16名大学生,了解他们平时的学习情况,以下数据是大学生每周用于看电视的时间:15 14 12 9 20 4 17 26 15 18 6 10 16 15 5 8 取α = 1/16,试计算其切尾均值.解:因n α = 1,且有序样本为4, 5, 6, 8, 9, 10, 12, 14, 15, 15, 15, 16, 17, 18, 20, 26,故切尾均值8571.12)20865(216116/1=++++−=L x . 20.有一个分组样本如下:区间 组中值 频数 (145,155) 150 4 (155,165) 160 8 (165,175) 170 6 (175,185) 180 2试求该分组样本的样本均值、样本标准差、样本偏度和样本峰度.解:163)2180617081604150(201=×+×+×+×=x ;2338.9]2)163180(6)163170(8)163160(4)163150[(1912222=×−+×−+×−+×−=s ; 因81]2)163180(6)163170(8)163160(4)163150[(20122222=×−+×−+×−+×−=b , 144]2)163180(6)163170(8)163160(4)163150[(20133333=×−+×−+×−+×−=b ,14817]2)163180(6)163170(8)163160(4)163150[(20144444=×−+×−+×−+×−=b ,故样本偏度1975.02/3231==b b γ,样本峰度7417.032242−=−=b b γ.21.检查四批产品,其批次与不合格品率如下:批号批量不合格品率1 100 0.052 300 0.063 250 0.04 4 150 0.03试求这四批产品的总不合格品率.解:046875.0)03.015004.025006.030005.0100(8001=×+×+×+×=p . 22.设总体以等概率取1, 2, 3, 4, 5,现从中抽取一个容量为4的样本,试分别求X (1) 和X (4) 的分布. 解:因总体分布函数为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,54,43,53,32,52,21,51,1,0)(x x x x x x x F则F (1) (x ) = P {X (1) ≤ x } = 1 − P {X (1) > x } = 1 − P {X 1 > x , X 2 > x , X 3 > x , X 4 > x } = 1 − [1 − F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625624,43,625609,32,625544,21,625369,1,0x x x x x x且F (4) (x ) = P {X (4) ≤ x } = P {X 1 ≤ x , X 2 ≤ x , X 3 ≤ x , X 4 ≤ x } = [F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625256,43,62581,32,62516,21,6251,1,0x x x x x x故X (1) 和X (4) 的分布为6251625156256562517562536954321)1(P X ; 6253696251756256562515625154321)4(PX . 23.设总体X 服从几何分布,即P {X = k } = pq k − 1,k = 1, 2, …,其中0 < p < 1,q = 1 − p ,X 1, X 2, …, X n 为该总体的样本.求X (n ) , X (1)的概率分布.解:因k k kj j q qq p pqk X P −=−−==≤∑=−11)1(}{11,k = 1, 2, …,故n k n k ni i ni i n n n q q k X P k X P k X P k X P k X P )1()1(}1{}{}1{}{}{111)()()(−==−−−=−≤−≤=−≤−≤==∏∏;且nk k n ni i ni i q q k X P k X P k X P k X P k X P −=>−−>=>−−>==−==∏∏)1(11)1()1()1(}{}1{}{}1{}{.24.设X 1 , …, X 16是来自N (8, 4) 的样本,试求下列概率(1)P {X (16) > 10}; (2)P {X (1) > 5}.解:(1)1616161)16()16()]2810([1)]10([1}10{1}10{1}10{−Φ−=−=≤−=≤−=>∏=F X P X P X P i i = 1 − [Φ(1)]16 = 1 − 0.841316 = 0.9370;(2)3308.09332.0)]5.1([285(1[)]5(1[}5{}5{16161616161)1(==Φ=−Φ−=−=>=>∏=F X P X P i i . 25.设总体为韦布尔分布,其密度函数为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−=−mmm x mx m x p ηηηexp ),;(1,x > 0, m > 0, η > 0. 现从中得到样本X 1 , …, X n ,证明X (1) 仍服从韦布尔分布,并指出其参数. 解:总体分布函数mm mmx xt xmt xt mm xt t mtt t p x F ⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−−−=−=⎟⎟⎠⎞⎜⎜⎝⎛===∫∫∫ηηηηηηe1e d ed ed )()(00010,x > 0,则X (1) 的密度函数为111(1)11()[1()]()eeemmmmx x x m m m n n n mmmxmnxp x n F x p x n ηηηηη⎛⎞⎛⎞⎛⎞⎛⎞−−−−−−−−⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠=−=⋅==,故X (1) 服从参数为⎟⎟⎠⎞⎜⎜⎝⎛m n m η,的韦布尔分布. 26.设总体密度函数为p (x ) = 6 x (1 − x ), 0 < x < 1,X 1 , …, X 9是来自该总体的样本,试求样本中位数的分布. 解:总体分布函数3203223)23(d )1(6d )()(x x t t t t t t t p x F xxx−=−=−==∫∫,0 < x < 1,因样本容量n = 9,有样本中位数)5(215.0x x m n ==⎟⎠⎞⎜⎝⎛+,其密度函数为)1(6)231()23(!4!4!9)()](1[)]([!4!4!9)(432432445x x x x x x x p x F x F x p −⋅+−−⋅=−⋅=. 27.证明公式∫∑−−=−−−−=−⎟⎟⎠⎞⎜⎜⎝⎛110)1()!1(!!)1(p r n r rk k n k dx x x r n r n p p k n ,其中0 ≤ p ≤ 1. 证:设总体X 服从区间(0, 1)上的均匀分布,X 1, X 2, …, X n 为样本,X (1), X (2), …, X (n )是顺序统计量,则样本观测值中不超过p 的样品个数服从二项分布b (n , p ),即最多有r 个样品不超过p 的概率为∑=−+−⎟⎟⎠⎞⎜⎜⎝⎛=>rk kn k r p p k n p X P 0)1()1(}{,因总体X 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(x x x x x F则X (r + 1)的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−+.,0,10,)1()!1(!!)()](1[)]([)!1(!!)(111其他x x x r n r n x p x F x F r n r n x p r n r r n r r 故∫∑−−+=−−−−=>=−⎟⎟⎠⎞⎜⎜⎝⎛11)1(0)1()!1(!!}{)1(p r n r r rk kn k dx x x r n r n p X P p p k n . 28.设总体X 的分布函数F (x )是连续的,X (1), …, X (n )为取自此总体的次序统计量,设ηi = F (X (i )),试证: (1)η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量;(2)1)(+=n iE i η,)2()1()1()Var(2++−+=n n i n i i η,1 ≤ i ≤ n ; (3)ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−2)1(2)1(2)1(2)1(22212111n a a n a a n a a n a a 其中11+=n i a ,12+=n j a . 注:第(3)问应要求i < j . 解:(1)首先证明Y = F (X )的分布是均匀分布U (0, 1),因分布函数F (x )连续,对于任意的y ∈ (0, 1),存在x ,使得F (x ) = y , 则F Y ( y ) = P {Y = F (X ) ≤ y } = P {F (X ) ≤ F (x )} = P {X ≤ x } = F (x ) = y , 即Y = F (X )的分布函数是⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y可得Y = F (X )的分布是均匀分布U (0, 1),即F (X 1), F (X 2), …, F (X n )是均匀分布总体U (0, 1)的样本, 因分布函数F (x )单调不减,ηi = F (X (i )),且X (1) ≤ X (2) ≤ … ≤ X (n )是总体X 的次序统计量, 故η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量; (2)因均匀分布U (0, 1) 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他y y p Y ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y则ηi = F (X (i ))的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−.,0,10,)1()!()!1(!)()](1[)]([)!()!1(!)(11其他y y y i n i n y p y F y F i n i n y p i n i Y in Y i Y i即ηi 服从贝塔分布Be (i , n − i + 1),即Be (a , b ),其中a = i ,b = n − i + 1,故1)(+=+=n i b a a E i η,)2()1()1()1()()Var(22++−+=+++=n n i n i b a b a ab i η,1 ≤ i ≤ n ; (3)当i < j 时,(ηi , ηj )的联合密度函数为z y Y Y j n Y i j Y Y i Y ij z p y p z F y F z F y F j n i j i n z y p <−−−−−−−−−−=I )()()](1[)]()([)]([)!()!1()!1(!),(111011I )1()()!()!1()!1(!<<<−−−−−−−−−−=z y j n i j i z y z y j n i j i n , 则∫∫∫∫−−−+∞∞−+∞∞−−⋅−−−−−=⋅=1001)1()()!()!1()!1(!),()(z j n i j i ij j i dy z z y z y dz j n i j i n dydz z y p yz E ηη, 令y = zu ,有dy = zdu ,且当y = 0时,u = 0;当y = z 时,u = 1,则∫∫⋅−−=−⋅−−−−−−−1101)()()1()1()(zdu zu z zu z z dy z z y z y i j i j n zj n i j ij n j j n j i j i j j n z z j i j i i j i B z z du u u z z z −+−+−−−−−−=−+⋅−=−⋅−=∫)1(!)!1(!),1()1()1()1(1111,即∫−+−−−−−−−=101)1(!)!1(!)!()!1()!1(!)(dz z z j i j i j n i j i n E jn j j i ηη )1,2(!)!1(!)!()!1()!1(!+−+−−⋅−−−−=j n j B j i j i j n i j i n)2)(1()1()!2()!()!1(!)!1(!)!()!1()!1(!+++=+−+⋅−−⋅−−−−=n n j i n j n j j i j i j n i j i n , 可得)2()1()1(11)2)(1()1()()()(),Cov(2++−+=+⋅+−+++=−=n n j n i n j n i n n j i E E E j i j i j i ηηηηηη, 因11+=n i a ,12+=n j a , 则2)1()2()1()1(),Cov(212+−=++−+=n a a n n j n i j i ηη, 且2)1()2()1()1()Var(112+−=++−+=n a a n n i n i i η,2)1()2()1()1()Var(222+−=++−+=n a a n n j n j jη, 故ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−=⎟⎟⎠⎞⎜⎜⎝⎛2)1(2)1(2)1(2)1()Var(),Cov(),Cov()Var(22212111n a a n a a n a a n a a j j i j i i ηηηηηη. 29.设总体X 服从N (0, 1),从此总体获得一组样本观测值x 1 = 0, x 2 = 0.2, x 3 = 0.25, x 4 = −0.3, x 5 = −0.1, x 6 = 2, x 7 = 0.15, x 8 = 1, x 9 = −0.7, x 10 = −1.(1)计算x = 0.15(即x (6))处的E [F (X (6))],Var[F (X (6))]; (2)计算F (X (6))在x = 0.15的分布函数值.解:(1)根据第28题的结论知1)]([)(+=n iX F E i ,)2()1()1()](Var[2)(++−+=n n i n i X F i ,且n = 10, 故116)]([)6(=X F E ,2425121156)](Var[2)6(=××=X F ; (2)因F (X (i ))服从贝塔分布Be (i , n − i + 1),即这里的F (X (6))服从贝塔分布Be (6, 5),则F (X (6))在x = 0.15的分布函数值为∫−⋅=15.00456)1(!4!5!10)15.0(dx x x F , 故根据第27题的结论知0014.085.015.0101)1(!4!5!10)15.0(501015.00456=××⎟⎟⎠⎞⎜⎜⎝⎛−=−⋅=∑∫=−k k k k dx x x F . 30.在下列密度函数下分别寻求容量为n 的样本中位数m 0.5的渐近分布.(1)p (x ) = 6x (1 − x ),0 < x < 1;(2)⎭⎬⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ; (3)⎩⎨⎧<<=.,0;10,2)(其他x x x p (4)||e 2)(x x p λλ−=.解:样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛⋅)(41,5.025.0x p n x N ,其中p (x )是总体密度函数,x 0.5是总体中位数, (1)因p (x ) = 6x (1 − x ),0 < x < 1,有35.025.003205.023)23()1(6)(5.05.05.0x x x x dx x x x F x x −=−=−==∫,则x 0.5 = 0.5,有nn p n 91)5.05.06(41)5.0(4122=×××=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 91,5.0;(2)因⎭⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ,有0.5 = F (x 0.5) = F (µ), 则x 0.5 = µ ,有n n p n 2ππ2141)(41222σσµ=⎟⎟⎠⎞⎜⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛n N 2π,2σµ;(3)因⎩⎨⎧<<=.,0;10,2)(其他x x x p 有25.00205.05.05.02)(5.0x x xdx x F x x ====∫, 则215.0=x ,有n n p n 8121241214122=⎟⎠⎞⎜⎝⎛××=⎟⎠⎞⎜⎝⎛⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 81,21; (4)因||e 2)(x x p λλ−=,有0.5 = F (x 0.5) = F (0),则x 0.5 = 0,有2221241)0(41λλn n p n =⎟⎠⎞⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛21,0λn N .31.设总体X 服从双参数指数分布,其分布函数为⎪⎩⎪⎨⎧≤>⎭⎬⎫⎩⎨⎧−−−=.,0;,exp 1)(µµσµx x x x F其中,−∞ < µ < +∞,σ > 0,X (1) ≤ … ≤ X (n )为样本的次序统计量.试证明)(2)1()1()(−−−−i i X X i n σ服从自由度为2的χ 2分布(i = 2, …, n ). 注:此题有误,讨论的随机变量应为)(2)1()1()(−−+−i i X X i n σ.证:因(X (i − 1), X (i ))的联合密度函数为z y i n i i i z p y p z F y F i n i n z y p <−−−−−−=I )()()](1[)]([)!()!2(!),(2)1( z y in i z y z y i n i n <<−−⎭⎬⎫⎩⎨⎧−−⋅⎭⎬⎫⎩⎨⎧−−⋅⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−−−=µσµσσµσσµσµI exp 1exp 1exp exp 1)!()!2(!2z y i n i z y y i n i n <<+−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσI exp exp 1exp )!()!2(!122,则T = X (i ) − X (i − 1)的密度函数为∫+∞∞−−⋅⋅+=dy t y y p t p i i T 1),()()1(∫∞++−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−+−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσdy t y y y i n i n i n i 122exp exp 1exp )!()!2(!∫∞+−+−+−⎥⎦⎤⎢⎣⎡⎭⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=µσµσσµσµσσy d y y t i n i n i i n i n exp )(exp 1exp exp )!()!2(!2112∫−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=−+−+−012112)()1(exp )!()!2(!du u ut i n i n i i n i n σσσ∫−+−−⎭⎬⎫⎩⎨⎧+−−−−=1021)1()1(exp )!()!2(!du u ut i n i n i n i i n σσ )1,2()1(exp )!()!2(!−+−⎭⎬⎫⎩⎨⎧+−−−−=i i n B t i n i n i n σσ⎭⎬⎫⎩⎨⎧+−−+−=−+−⋅⎭⎬⎫⎩⎨⎧+−−−−=σσσσt i n i n n i i n t i n i n i n )1(exp 1!)!2()!1()1(exp )!()!2(!,t > 0,可得T i n X X i n S i i σσ2)1()(2)1()1()(+−=−+−=−的密度函数为⎭⎬⎫⎩⎨⎧−=+−⋅⎭⎬⎫⎩⎨⎧−+−=+−⋅⎟⎟⎠⎞⎜⎜⎝⎛+−=2exp 21)1(22exp 1)1(2)1(2)(s i n s i n i n s i n p s p T S σσσσ,s > 0, 故)(2)1()1()(−−+−=i i X X i n S σ服从参数为21的指数分布,也就是服从自由度为2的χ 2分布. 32.设总体X 的密度函数为⎩⎨⎧<<=.,0;10,3)(2其他x x x p X (1) ≤ X (2) ≤ … ≤ X (5)为容量为5的取自此总体的次序统计量,试证)4()2(X X 与X (4)相互独立.z −证:因总体X 的密度函数和分布函数分别为⎩⎨⎧<<=.,0;10,3)(2其他x x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x F 则(X (2), X (4))的联合密度函数为)4()2(I )()()](1[)]()([)]([!1!1!1!5),()4()2(1)4(1)2()4(1)2()4()2(24x x x p x p x F x F x F x F x x p <−−⋅⋅=103)4(3)2(3)4(2)4(5)2(102)4(2)2(3)4(3)2(3)4(3)2()4()2()4()2(I )1)((1080I 33)1)((120<<<<<<−−=⋅⋅−−=x x x x x x x x x x x x x x x ,设)4()2(1X X Y =,Y 2 = X (4),有X (2) = Y 1Y 2,X (4) = Y 2,则(X (2), X (4))关于( Y 1 , Y 2 )的雅可比行列式为21221)4()2(1),(),(y y y y y x x J ==∂∂=,且0 < X (2) ≤ X (4) < 1对应于0 < Y 1 < 1, 0 < Y 2 < 1,可得(Y 1 , Y 2 )的联合密度函数为210,10323213222521221242121I )1]()([)(1080||),(),(y y y y y y y y J y y y p y y p y y ⋅−−=⋅=<<<<103211210315121I )1(I )1(1080<<<<−⋅−=y y y y y y ,由于(Y 1 , Y 2 , …, Y n )的联合密度函数p ( y 1 , y 2)可分离变量, 故)4()2(1X X Y =与Y 2 = X (4)相互独立.33.(1)设X (1)和X (n )分别为容量n 的最小和最大次序统计量,证明极差R n = X (n ) − X (1)的分布函数∫+∞∞−−−+=dy y p y F x y F n x F n R n )()]()([)(1其中F ( y )与p ( y )分别为总体的分布函数与密度函数;(2)利用(1)的结论,求总体为指数分布Exp (λ)时,样本极差R n 的分布. 注:第(1)问应添上x > 0的要求. 解:(1)方法一:增补变量法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 对于其函数R n = X (n ) − X (1),增补变量W = X (1),⎩⎨⎧−==.;y z r y w 反函数为⎩⎨⎧+==.;r w z w y 其雅可比行列式为11101==J ,则R n 的密度函数为∫+∞∞−>−+−+−=dw r w p w p w F r w F n n r p r n R n 02I )()()]()()[1()(,故R n = X (n ) − X (1)的分布函数为∫∫∫∞−+∞∞−>−∞−+−+−==x r n x R R dw r w p w p w F r w F n n dr dr r p x F n n 02I )()()]()()[1()()(∫∫+∞∞−∞−>−+−+−=xr n dr r w p w p w F r w F n n dw 02I )()()]()()[1(∫∫+∞∞−−+−+−=xn dr r w p w F r w F dw w p n n 02)()]()([)()1(∫∫+∞∞−−+−+−=xn r w dF w F r w F dw w p n n 02)()]()([)()1(∫+∞∞−−−+−⋅−=x n w F r w F n dw w p n n 01)]()([11)()1(∫+∞∞−−−+=dw w p w F x w F n n )()]()([1 ∫+∞∞−−−+=dy y p y F x y F n n )()]()([1,x > 0;方法二:分布函数法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 故R n = X (n ) − X (1)的分布函数为∫∫+∞∞−+∞−=≤−==xy n n n R dz z y p dy x X X R P x F n ),(}{)(1)1()(∫∫+∞∞−+−−−=xy yn dz z p y p y F z F dy n n )()()]()([)1(2∫∫+∞∞−+−−⋅−=xy yn z F d y F z F y p dy n n )]([)]()([)()1(2∫∫+∞∞−−+∞∞−+−−+=−−⋅⋅−=dy y p y F x y F n y F z F n y p dy n n n x y y n )()]()([)]()([11)()1(11,x > 0;(2)因指数分布Exp (λ)的密度函数与分布函数分别为⎩⎨⎧≤>=−.0,0;0,e )(x x x p x λλ ⎩⎨⎧≤>−=−.0,0;0,e 1)(x x x F x λ故R n = X (n ) − X (1)的分布函数为∫∫+∞−−−+−+∞∞−−⋅−−−=−+=01)(1e )]e 1()e 1[()()]()([)(dy n dy y p y F x y F n x F y n y x y n R n λλλλ101011)e 1()(e 1)e 1(e )1()e 1()(e −−+∞−−−+∞−−−−−−=⎟⎠⎞⎜⎝⎛−⋅−=−⋅−=∫n x n y n x y n x n y n n d n λλλλλλ,x > 0.34.设X 1 , …, X n 是来自U (0, θ ) 的样本,X (1) ≤ … ≤ X (n ) 为次序统计量,令)1()(+=i i i X X Y ,i = 1, …, n − 1,Y n = X (n ) ,证明Y 1 , …, Y n 相互独立.。

统计学(第五版)贾俊平-课后思考题和练习题答案(完整版)

统计学(第五版)贾俊平-课后思考题和练习题答案(完整版)

统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。

1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。

1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。

统计学贾俊平-第五章-参数估计-练习题答案

统计学贾俊平-第五章-参数估计-练习题答案
2
0.058375,s0.005846, F ?2.464484, F1
0.405764
所以,方差比的置信区间为
4.051926,24.61011
5.10已知置信水平
95%,Z
/2
E1.96,120,E
20
所以,n
z
~Er
138.3,取n=139。
5.11已知
n1n2
n, E 5,112,
215,置信水平1
95%,Z
/2
1.96
所以,n
Z
2 2
1 2
256.7,取
E
n=57。
5.12已知置信水平1
95%,n1
n2n,E=0.05,取1
20.5
Z111212
所以
768.32,取n=769
12的置信区间为八01门2
(2)置信水平195%,
P1P2
0.1 1.96, 0.00096一0.00084
0.0168,0.1832
c
D
S
SI
0- 241609
S1A2
0. 058375
1S2
F0.076457
0- 005846
N
2. 464424
0-405764
1
2置信区间
5.9
Excel得,$0.241609, S20.076457, s;
统计学(第四版)贾俊平 第五章 参数估计 练习题答案
5.1(答案精确到小数点后两位)
(1)已知:n=49,15,
样本均值的标准误差X二=15荷2.14
(2)
已知:置信水平:1
95%,Z2
1.96,
(3)

统计学原理第五章习题

统计学原理第五章习题

《统计学原理》第五章习题河南电大贾天骐一.判断题部分题目1:从全部总体单位中按照随机原则抽取部分单位组成样本,只可能组成一个样本。

()答案:×题目2:在抽样推断中,全及指标值是确定的、唯一的,而样本指标值是一个随机变量。

()答案:√题目3:抽样成数的特点是:样本成数越大,则抽样平均误差越大。

()答案:×题目4:抽样平均误差总是小于抽样极限误差。

()答案:×题目5:在其它条件不变的情况下,提高抽样估计的可靠程度,则降低了抽样估计的精确程度。

()答案:√题目6:从全部总体单位中抽取部分单位构成样本,在样本变量相同的情况下,重复抽样构成的样本个数大于不重复抽样构成的样本个数。

()答案:√题目7:抽样平均误差反映抽样误差的一般水平,每次抽样的误差可能大于抽样平均误差,也可能小于抽样平均误差。

()答案:√题目8:在抽样推断中,抽样误差的概率度越大,则抽样极限误差就越大于抽样平均误差。

()答案:√题目9:抽样估计的优良标准有三个:无偏性、可靠性和一致性。

()答案:×题目10:样本单位数的多少与总体各单位标志值的变异程度成反比,与抽样极限误差范围的大小成正比。

()答案:×题目11:抽样推断的目的是,通过对部分单位的调查,来取得样本的各项指标。

()答案:×题目12:用来测量估计可靠程度的指标是抽样误差的概率度。

()答案:√题目13:总体参数区间估计必须具备三个要素即:估计值、抽样误差范围和抽样误差的概率度。

()答案:×二.单项选择题部分题目1:抽样平均误差是()。

A、抽增指标的标准差B、总体参数的标准差C、样本变量的函数D、总体变量的函数答案:A题目2:抽样调查所必须遵循的基本原则是()。

A、准确性原则B、随机性原则C、可靠性原则 C、灵活性原则答案:B题目3:在简单随机重复抽样条件下,当抽样平均误差缩小为原来的1/2时,则样本单位数为原来的()。

2015年《统计学》第五章 平均指标习题及满分答案

2015年《统计学》第五章 平均指标习题及满分答案

2015年《统计学》第五章平均指标习题及满分答案(一)填空题1.平均数可以反映总体各单位标志值分布的(集中趋势)。

2.社会经济统计中,常用的平均指标有(算术平均指标)、(调和平均指标)、(几何平均指标)、(中位数)和(众数)。

3.算术平均数不仅受(标志值)大小的影响,而且也受(权数)多少的影响。

4.各变量值与其算术平均数离差之和等于(零),各变量值与其算术平均数离差平方和为(最小)。

5.调和平均数是平均数的一种,它是(标志值倒数)的算术平均数的(倒数),又称(倒数)平均数。

6.几何平均数是计算平均比率和平均速度最适用的一种方法,凡是变量值的连乘积等于(总比率)或(总速度)的现象,都可以使用几何平均数计算平均比率或平均速度。

7.众数决定于(分配次数)最多的变量值,因此不受(极端值)的影响,中位数只受极端值的(位置)影响,不受其(大小)的影响。

(二)单项选择题1.平均数反映了(A)。

A、总体分布的集中趋势B、总体中总体单位的集中趋势C、总体分布的离中趋势D、总体变动的趋势2.加权算术平均数的大小(D)。

A、受各组标志值的影响最大B、受各组次数的影响最大C、受各组权数系数的影响最大D、受各组标志值和各组次数的共同影响3.在变量数列中,如果变量值较小的一组权数较大,则计算出来的算术平均数(B)。

A、接近于变量值大的一方B、接近于变量值小的一方C、不受权数的影响D、无法判断4.权数对于算术平均数的影响,决定于(D)。

A、权数的经济意义B、权数本身数值的大小C、标志值的大小D、权数对应的各组单位数占总体单位数的比重5.各总体单位的标志值都不相同时(A)。

A、众数不存在B、众数就是最小的变量值C、众数是最大的变量值D、众数是处于中间位置的变量值6.凡是变量值的连乘积等于总比率或总速度的现象,要计算其平均比率或平均速度都可以采用( C )。

A、算术平均法B、调和平均法C、几何平均法D、中位数法7.如果次数分布中,各个标志值扩大为原来的2倍,各组次数都减小为原来的1/2,则算术平均数(D)。

管理统计学习题参考答案第五章

管理统计学习题参考答案第五章

第五章1. 解:(1)统计指数作为一种对比性的统计指标具有相对数的形式,通常表现为百分数。

如某年全国的零售物价指数为105%。

从考察的范围看,统计指数可以分为“个体指数”和“总指数”。

个体指数是考察总体中个别现象或个别项目的数量对比关系的指数。

如市场上某种商品的价格指数或销售量指数。

个体指数实质上就是一般的相对数,包括动态相对数、比较相对数和计划完成相对数等,属于广义的指数概念,而统计指数则是指狭义的指数,不包括个体指数,专指总指数。

总指数是考察总体现象的数量对比关系的指数。

如市场上全部商品物价总指数,市场上商品销售量总指数等。

然而,要考察总体现象是个别现象不能直接加总或不能简单综合对比的“复杂现象总体”。

因此,总指数与个体指数的区别不仅在于考察范围的不同,还在于考察方法的不同。

总指数不能简单地沿用一般相对数的计算分析方法,需要制定和运用专门的指数方法。

(2)物价指数和物量指数都属于总指数。

物价指数是综合反映各种商品价格变动程度的经济指数,如消费者价格指数和零售物价指数。

用K p = p 1 / p 0表示各种个体价格指数,用P K 表示物价总指数,W 表示个体物价指数采用的加权数,则有加权平均物价指数 ∑∑∑∑==W WK W W p p K p P 01物量指数是综合反映各种商品产量或销售量变动程度的经济指数,如工业生产指数和商品销售量指数。

用K q = q 1 / q 0表示个体销售量指数,用q K 表示物量总指数,W 表示个体物量指数采用的加权数,则有加权平均物量指数 ∑∑∑∑==WW K WWq q K qq 01(3)按照指数化指标的性质可以把物价指数和物量指数分别归入“质量指标指数”和“数量指标指数”的类别中。

所谓“指数化指标”就是在指数中反映其数量变化或对比关系的那种变量。

例如,物价指数的指数化指标就是商品或产品的“价格”,销售量指数的指数化指标就是商品的“销售量”,工业生产指数的指数化指标就是工业品的“产量”,而股价指数的指数化指标就是上市交易的“股票价格”,等等。

王孝玲《教育统计学》第五章课后练习题超详细解答步骤

王孝玲《教育统计学》第五章课后练习题超详细解答步骤

考试科 目 物理 化学 数学 总和
标准分数 甲生 -3 0.67 0.92 -1.41 乙生 2 -0.67 -0.08 1.25
在团体中的位置(在改分数之下的人数比例) 甲生 0.00135 0.74857 0.82121 乙生 0.97725 0.25143 0.46812
5
总平均
-0.47
0.416667
18(人)
226(人)
11 (人)
18(人)
6
13. 答: 首先,通过人数比例计算每个等级的所占面积;其次,寻找每个面积对应的中位数来代表等 级的数量化分数 教师甲(人 等级 优 良 中 差 极差 总和 数) 10 20 5 5 0 40 甲比率(人数比 例) 0.25 0.5 0.125 0.125 0 本组 1/2 至 Z=0 的 面积 0.375 0 0.3125 0.4375 中位数 1.15 0 -0.89 -1.53 -
7. 答: (1) 直接查表 (2) P(2.8)-P(0.5)= 0.49744 – 0.19146=0.30598 (3) 直接查绝对值 (4) P(-1.5)+P(1.8)=0.43319+0.46407=0.89726 (5) P(-1.8)-P(-0.5)= 0.46407-0.19146=0.27261 (6) P(-2.5)+P(0.8)=0.49379+0.28814=0.78193 8. 答: (1) 直接查绝对值 (2) 直接查表 (3) P(Z)=0.5-0.2=0.3 ~ 0.29955 Y=0.28034 (4) P(Z)=0.8/2=0.4 ~ 0.39973 Y=0.17585
本组 1/2 至 Z=0 的
中位数

《统计学》课后练习题答案

《统计学》课后练习题答案
3.3汇总统计表
3.4统计图的规范
3.5如何用Excel做统计图
习题
一、单项选择题
1.统计表的结构从形式上看包括()、横行标题、纵栏标题、数字资料四个部分。(知识点3.1答案:D)
A.计量单位B.附录C.指标注释D.总标题
2.如果统计表中数据的单位都一致,我们可以把单位填写在()。(知识点3.1答案:C)
A.指标B.标志C.变量D.标志值
8.以一、二、三等品来衡量产品质地的优劣,那么该产品等级是()。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
9.()表示事物的质的特征,是不能以数值表示的。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
10.在出勤率、废品量、劳动生产率、商品流通费用额和人均粮食生产量五个指标中,属于数量指标的有几个()。(知识点:1.7答案:B)
1.统计调查方案的主要内容是( )( )( )( )( )。(知识点2.2答案:ABCDE)
A.调查的目的B.调查对象C.调查单位D.调查时间E.调查项目
2.全国工业普查中( )( )( )( )( )。(知识点2.2答案:ABCE)
A.所有工业企业是调查对象B.每一个工业企业是调查单位C.每一个工业企业是报告单位
频数f
(棵)
频率
(%)
向上累积
向下累积
频数(棵)
频率(%)
频数(棵)
频率(%)
80-90
8
7.3
8
7.3
110
100.0
90-100
9
8.2
17
15.5
102
92.7
100-110

应用统计学课后习题和参考答案解析

应用统计学课后习题和参考答案解析

应用统计学课后习题与参考答案第一章一、选择题1.一个统计总体(D)。

A.只能有一个标志 B.只能有一个指标C.可以有多个标志 D.可以有多个指标2.对100名职工的工资收入情况进行调查,则总体单位是(D)。

A.100名职工 B.100名职工的工资总额C.每一名职工 D.每一名职工的工资 3.某班学生统计学考试成绩分别为65分、72分、81分和87分,这4个数字是(D)。

A.指标 B.标志C.变量 D.标志值4.下列属于品质标志的是(B)。

A.工人年龄 B.工人性别C.工人体重 D.工人工资5.某工业企业的职工数、商品销售额是(C)。

A.连续变量 B.离散变量C.前者是离散变量,后者是连续变量 D.前者是连续变量,后者是离散变量 6.下面指标中,属于质量指标的是(C)。

A.全国人口数 B.国内生产总值C.劳动生产率 D.工人工资7.以下指标中属于质量指标的是(C)。

A.播种面积 B.销售量C.单位成本 D.产量8.下列各项中属于数量指标的是(B)。

A.劳动生产率 B.产量C.人口密度 D.资金利税率二、简答题1.一项调查表明,消费者每月在网上购物的平均花费是200元,他们选择在网上购物的主要原因是“价格便宜”。

(1)这一研究的总体是什么?总体是“所有的网上购物者”。

(2)“消费者在网上购物的原因”是定类变量、定序变量还是数值型变量?分类变量。

(3)研究者所关心的参数是什么?所有的网上购物者的月平均花费。

(4)“消费者每月在网上购物的平均花费是200元”是参数还是统计量?统计量。

(5)研究者所使用的主要是描述统计方法还是推断统计方法?推断统计方法。

2.要调查某商场销售的全部冰箱情况,试指出总体、个体是什么?试举若干品质标志、数量标志、数量指标和质量指标。

总体:该商店销售的所有冰箱。

总体单位:该商店销售的每一台冰箱。

品质标志:型号、产地、颜色。

数量标志:容量、外形尺寸;数量指标:销售量、销售额。

质量指标:不合格率、平均每天销售量、每小时电消耗量。

统计学基础课后习题答案

统计学基础课后习题答案

第五章 平均指标与标志变异指标一、判断题: 题号 1 2 3 4 5 6 7 8 9 10 答案××√√××××××二、单选题: 题号 1 2 3 4 5 6 7 8 9 10 答案ACBADADCAD三、多选题:应用能力训练题:⒈试根据下列某大型商场销售员日工资资料,计算该商场销售员的日平均工资:解:根据已知条件,计算有关数据资料如下表:所以:)(35.741007435件===∑∑f xf x⒉某公司下属10个企业,某年合格率资料如下表:要求:计算该产品的平均合格率解:根据题意,将有关数据计算入下表:%14.85140000119200===∑∑f xf x ⒊某市场上有三种鸡蛋,每公斤分别为16元、18元、20元,试计算: ⑴各买10公斤,平均每公斤多少钱? ⑵各买10元,平均每公斤多少钱? 解:⑴元)(1830102010181016............3213332211=⨯+⨯+⨯=++++++++=n n f f f f f x f x f x f x x⑵元)(85.17201018101610101010111=++++===∑∑∑∑m x m mm x x h ⒋某企业生产一种产品需顺次经过四个程序,这四个程序的废品率分别为1.2%、1.5%、1.3%和1.8%,该企业生产的平均废品率是多少?解:首先,计算该企业生产的平均合格率:%18.95%)8.11(%)3.11(%)5.11(%)2.11(......421=-⨯-⨯-⨯-=∏==n n n g x x x x x 该企业生产的平均废品率=1-95.18%=4.82%⒌某企业的销售额2011年比2010年增长7.5%,2012年比2011年增长9.8%,2013年比2012年增长6.3%,2014年比2013年增长11.4%。

计算2010年至2014年该企业销售额的平均增长速度。

统计学课后习题答案第五章指数

统计学课后习题答案第五章指数

13. 编制数量指标指数的一般原那么是采用以下哪一指标作为 同度量因素 A 。

基期的质量指标 B 。

报告期的质量指标 C 。

报告期的数量指标 D 。

基期的数量指标 14. 编制质量指标指数的一般原那么是采用以下哪一指标作为A T V第五章 -、单项选择题 1.广义的指数是指反映 A 。

价格变动的相对数 B 。

C 。

总体数量变动的相对数D 。

物量变动的相对数 各种动态相对数 2。

狭义的指数是反映哪一总体数量综合变动的相对数? A 。

有限总体 B 。

无限总体 C 。

简单总体 D 。

复杂总体 3. 指数按其反映对象范围不同 , 可以分为 A 。

个体指数和总指数 B 。

数量指标指数和质量指标指数C 。

定基指数和环比指数D 。

平均指数和平均指标指数 4. 指数按其所说明的经济指标性质不同可以分为 A 。

个体指数和总指数 B 。

数量指标指数和质量指标指数 平均指数和平均指标指数 5. 按指数比照基期不同 , 指数可分为 A 。

个体指数和总指数 B 。

C 。

简单指数和加权指数 D。

6。

以下指数中属于数量指标指数的是 定基指数和环比指数 动态指数和静态指数 A 。

商品价格指数 单位本钱指数 C 。

劳动生产率指数 D。

7. 以下指数中属于质量指标指数的是A 。

产量指数B 。

C 。

职工人数指数D 。

职工人数指数 销售额指数 劳动生产率指数 8。

由两个总量指标比照所形成的指数是A 。

个体指数 B。

C 。

总指数D 。

9. 综合指数包括 A 。

个体指数和总指数 B 。

C 。

定基指数和环比指数D 。

10. 总指数编制的两种根本形式是 A 。

个体指数和综合指数 综合指数 平均指数 数量指标指数和质量指标指数 平均指数和平均指标指数 B 。

综合指数和平均指数 C 。

数量指标指数和质量指标指数 D 。

固定构成指数和结构影响指数 11. A 。

C 。

12. A 。

第五章统计学课后答案

第五章统计学课后答案

第十章一、选择题1。

某企业计划要求本月每万元产值能源消耗率指标比去年同期下降5%,实际降低了2。

5%,则该项计划的计划完成百分比为( D ).A。

50.0% B 97。

4% C. 97。

6% D。

102。

6%2.下列指标中属于强度相对指标的是( A )。

A.产值利润率 B。

基尼系数C.恩格尔系数D.人均消费支出3。

下列指标中属于狭义指数的是( A ).A.某地区本月社会商品零售量为上月的110%B。

某地区本月能源消耗总量为上月的110%C。

某地区本月居民收入总额为上月的110%D。

某地区本月居民生活用水价格为上月的110%4。

若为了纯粹反映价格变化而不受销售量结构变动的影响,计算价格总指数时应该选择的计算公式是( A ).A.拉氏指数 B。

帕氏指数 C.马埃指数 D。

理想指数5. 与帕氏质量指标综合指数之间存在变形关系的调和平均指数的权数应是( B )。

A。

q0p0 B. q1p1 C。

q1p0 D. q0p16。

为了说明两个地区居民消费水平之间的差异程度,有关指数的计算最好采用( C )。

A。

拉氏指数 B。

帕氏指数 C.马埃指数 D.理想指数7. 同样数量的货币,今年购买的商品数量比去年减少了4%,那么可推断物价指数为( D )。

A。

4.0% B. 104% C。

4。

2% D. 104.2%8。

某公司报告期新职工人数比重大幅度上升,为了准确反映全公司职工劳动效率的真实变化,需要编制有关劳动生产率变化的( B ).A。

总平均数指数 B.组平均数指数C。

结构影响指数 D.数量指标综合指数9。

某地区报告年按可比价格计算的工业总产值为基年工业总产值的110%,这个指数是一个( C)。

A。

总产值指数 B.价格指数C。

工业生产指数 D。

静态指数10。

我国深证100指数将基期价格水平定为1000。

若某周末收盘指数显示为1122,此前一周末收盘指数显示为1100,即表示此周末收盘时股价整体水平比一周前上涨了( A ).A。

《统计学概论》第五章课后练习题答案

《统计学概论》第五章课后练习题答案

《统计学概论》第五章课后练习题答案一、思考题1.什么叫时间序列,构成时间序列的基本要素有哪些?P1212.序时平均数与一般平均数有何异同?P1273.时间数列与时点数列有哪些区别?P124-1254.环比增长速度与定基增长速度之间有什么关系?P1365.什么是平均发展速度?说说水平法和累计法计算平均发展速度的基本思路,各在什么情况下选用?P1386.测定长期趋势有哪些常用的方法?测定的目的是什么?P1367.实际中如何根据时间序列的发展变化的数列特征来判断合适的趋势方程形式?P1458.影响时间序列指标数值大小的因素有哪些?这些因素共同作用的理论模型有哪些?P140二、判断题1.时间序列也称动态数列,它是变量数列的一种形式。

(×)【解析】时间序列是数列,而变量数列是静态数列。

2.时间数列和时点数列属于总量指标时间序列。

(√)3.所谓序时平均数是指将同一总体的不同时期的平均数按时间先后顺序排列起来。

(×)【解析】序时平均数是将不同时期的发展水平加以平均而得到的平均数。

4.间隔相等的时期数列计算平均发展水平时,应用首末折半法。

(×)【解析】间隔相等的时点数列计算平均发展水平时,应用首末折半法。

5.平均增长速度等于各期环比增长速度连乘积开n次方。

(×)【解析】平均发展速度等于各期环比发展速度连乘积开n次方,平均增长速度=平均发展速度-1(或100%)6.两个相邻时期的定基发展速度之比等于相应的环比发展速度。

(√)7.用移动平均法测定长期趋势时,移动平均项数越多越好。

(×)【解析】移动平均法所取项数的多少,应视资料的特点而定。

8.某一时间序列有25年的数据,若采用五项移动平均,则修匀后的数列缺少4项数据。

(√)9.如果时间序列是年度数据,则不存在季节变动。

(√)10.用相同方法拟合趋势方程时,t的取值不同,则得到的趋势方程也不同,但趋势预测值不变。

(√)三、单项选择题1.时间序列的构成要素是()。

管理统计学 第五章答案

管理统计学  第五章答案

2.假定一低昂研究显示,一加仑自助式销售的普通无铅汽油的平均价格是1.16美元,你认为这个数值高于你所在地区的价格,于是决定以随机给各加油站打电话的方式收集数据来验证这个想法。

假定你随机抽取的25家加油站价格如下所示:1.27 1.29 1.16 1.20 1.371.20 1.23 1.19 1.20 1.241.16 1.07 1.27 1.09 1.351.15 1.23 1.14 1.05 1.351.21 1.14 1.14 1.07 1.10假定一个地区的汽油价格服从正态分布,你所收集到的这些数据能够提供拒绝这一想法的足够证据吗?令α=0.01.解:由于只有25个样本,所以属于小样本抽样,且总体服从正态分布,对于该题采用单样本T检验,利用SPSS表格进行分析:假设总体均值为1.16所以可以接受原假设,所以这个数值和该地区的石油价格是基本相等的,没有明显差异。

4.根据对全国交通状况的一份调查,对于那些乘车上下班的人来说,平均通勤时间为19分钟,其人数总量为100万~300万。

假定一个研究者居住在一个人口为240万的城市里,想要验证通勤时间是否增加了,他随机选取了26名通勤者作为样本,收集的数据如下所示,令α=0.05,并假定通勤时间服从了正态分布,他能得到什么结论?19 28 18 23 19 1924 16 20 23 2317 13 19 23 1623 15 14 27 1718 18 18 20 18解:由于只有26个样本,所以属于小样本抽样,且总体服从正态分布,对于该题采用单样本T检验,利用SPSS表格进行分析:假设平均通勤时间没有增加。

可以接受原假设,所以该地区的通勤时间和平均时间是基本相等的,没有明显差异。

6.美国独立保险代理处对参加保险的客户进行了一次调查,发现其中48%的人会重读他们的保单,29%的会有时重读一下,16%的会很少重读,7%的从来不重读。

假定一家大型保险公司投入大量的时间和金钱对保单条款进行修改,以使他们的保单更具有吸引力、更便于阅读和理解。

统计学课后习题答案全章节剖析

统计学课后习题答案全章节剖析

第二章、练习题及解答2。

为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100只进行测试,所得结果如下:700 716 728 719 685 709 691 684 705 718 706 715 712 722 691 708 690 692 707 701 708 729 694 681 695 685 706 661 735 665 668 710 693 697 674 658 698 666 696 698 706 692 691 747 699 682 698 700 710 722 694 690 736 689 696 651 673 749 708 727 688 689 683 685 702 741 698 713 676 702 701 671 718 707 683 717 733 712 683 692 693 697 664 681 721 720 677 679 695 691 713 699 725 726 704 729 703 696 717 688 要求:(2)以组距为10进行等距分组,生成频数分布表,并绘制直方图.灯泡的使用寿命频数分布表3。

某公司下属40个销售点2012年的商品销售收入数据如下:单位:万元152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 108 97 88 123 115 119 138 112 146 113 126 要求:(1)根据上面的数据进行适当分组,编制频数分布表,绘制直方图。

(2)制作茎叶图,并与直方图进行比较。

解:(1)频数分布表(2)茎叶图第三章、练习题及解答1。

已知下表资料:试根据频数和频率资料,分别计算工人平均日产量. 解:计算表根据频数计算工人平均日产量:(件)根据频率计算工人平均日产量:(件)结论:对同一资料,采用频数和频率资料计算的变量值的平均数是一致的。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章
练习题
一、单项选择题
1.抽样推断的目的在于()
A.对样本进行全面调查B.了解样本的基本情况
C.了解总体的基本情况D.推断总体指标
2.在重复抽样条件下纯随机抽样的平均误差取决于()
A.样本单位数B.总体方差
C.抽样比例D.样本单位数和总体方差
3.根据重复抽样的资料,一年级优秀生比重为10%,二年级为20%,若抽样人数相等时,优秀生比重的抽样误差()
A.一年级较大B.二年级较大
C.误差相同D.无法判断
4.用重复抽样的抽样平均误差公式计算不重复抽样的抽样平均误差结果将()
A.高估误差B.低估误差
C.恰好相等D.高估或低估
5.在其他条件不变的情况下,如果允许误差缩小为原来的1/2,则样本容量()
A.扩大到原来的2倍B.扩大到原来的4倍
C.缩小到原来的1/4D.缩小到原来的1/2
6.当总体单位不很多且差异较小时宜采用()
A.整群抽样B.纯随机抽样
C.分层抽样D.等距抽样
7.在分层抽样中影响抽样平均误差的方差是()
A.层间方差B.层内方差
C.总方差D.允许误差
二、多项选择题
1.抽样推断的特点有()
A.建立在随机抽样原则基础上 B.深入研究复杂的专门问题
C.用样本指标来推断总体指标 D.抽样误差可以事先计算
E.抽样误差可以事先控制
2.影响抽样误差的因素有()
A.样本容量的大小 B.是有限总体还是无限总体
C.总体单位的标志变动度 D.抽样方法
E.抽样组织方式
3.抽样方法根据取样的方式不同分为()
A.重复抽样 B.等距抽样 C.整群抽样
D.分层抽样 E.不重复抽样
4.抽样推断的优良标准是()
A.无偏性 B.同质性 C.一致

D.随机性 E.有效性
5.影响必要样本容量的主要因素有()
A.总体方差的大小 B.抽样方法
C.抽样组织方式 D.允许误差范围大小
E.要求的概率保证程度
6.参数估计的三项基本要素有()
A.估计值 B.极限误差
C.估计的优良标准 D.概率保证程度
E.显著性水平
7.分层抽样中分层的原则是()
A.尽量缩小层内方差 B.尽量扩大层内方差
C.层量扩大层间方差 D.尽量缩小层间方差
E.便于样本单位的抽取
三、填空题
1.抽样推断和全面调查结合运用,既实现了调查资料的_______性,又保证于调查资料的 _______性。

2.在其他条件不变的情况下,样本容量与抽样误差成_______比;总体各单位的标志变动度与样本容量成_______比。

3.样本的可能数目既和总体的_______、样本的_______、抽样的_______有关,也和抽样的 _______有关。

4.必要样本容量是指满足既定的抽样效果和概率保证程度要求时,样本数目的_______值。

5.样本单位数受允许误差范围的制约,允许误差越小,则样本单位数需要的_______,以重复抽样来说,其他条件不变时,允许误差缩小一半,则样本单位数
必须增加到原来的_______,而允许误差扩大一倍,则样本单位数只需要原来的
_______。

四、判断题
1.对于同一总体,所有可能样本的平均数的平均数等于总体平均数。

()
2.抽样调查既有登记误差,又有代表性误差,所以步入全面调查准确。

()
3.抽样极限误差增大1倍,简单重复抽样中,样本容量减少3/4。

()
4.抽样单位数量增加到原来的4倍,随即重复抽样的平均误差减少到原来的1/2。

()
5.在抽样推断中,样本和样本指标是唯一的确定的。

()
6.抽样推断的可靠程度要求越高,估计得准确程度就越低。

()
7.估计区间的大小既取决于概率保证程度,又取决于抽样平均误差。

()
8.抽样平均误差可能大于实际抽样误差,也可能小于抽样实际误差。

()
五、名词解释
1.抽样误差
2.抽样极限误差
3.必要样本容量
4.等距抽样
5.假设检验
五、简答题
1.简述抽样推断的特点。

2.影响抽样误差的因素有哪些?
3.简述抽样极限误差和可靠程度之间的关系。


4.影响必要样本容量的因素有哪些?
5.分层抽样和整群抽样相比各有什么特点?
六、计算题
1.某乡有10000户农民,随机不重复抽取100户,调查月收入资料如下:
试计算:(1)以95.45%的概率保证程度估计该乡农民的平均月收入的范围;
(2)以同样的概率估计月收入600元以上户数所占比重的范围。

2.某砖瓦厂对所生产的砖的质量进行抽样检查,要求概率保证程度为
68.27%,抽样误差范围不超过0.015,并知过去进行几次同样调查,产品的不合格率分别为1.25%、1.83%、2%。

要求:
(1)计算必要样本单位数;
(2)假定其他条件不变,允许误差扩大1倍,抽样单位数为多少?
3.某食品厂生产果酱,标准规定每罐净重250克,根据以往经验,标准差为3克。

现在该厂生产一批这种罐头,从中抽取100罐检验,其平均净重251克,按规定显著性水平α=0.05,问这批罐头是否合乎标准?
4.某公司经理希望估计一下其所在城市居民参加财产保险的比例,业务科长认为大约有80%的居民参加了财产保险。

而统计工作人员随机调查了150户居民,了解到有70%的居民参加了财产保险,经理希望在α=0.05情况下检验参加财产保险户为80%这个假设是否成立?
第五章抽样推断
一、单项选择
1.D
2.D
3.B
4.A
5.B
6.B
7.B
二、多项选择
1.ACDE
2.ACDE
3.AE
4.ACE
5.ABCDE
6.ABD
7.AC
三、填空
1.全面可靠
2.反正
3. 大小容量方法组织形式
4.最小
5.越多 4倍
四、判断
1.√
2.×
3.√
4. √
5.×
6.√
7.√
8.√
五、名词解释
1.抽样误差是指抽样估计值与被估计的未知的真实总体参数之差。

2.是指实际样本指标和总体指标之间存在抽样误差的可能范围。

3.是指既能够满足抽样推断精确性和可靠性的要求,又不会造成浪费的样本单位数目。

4.它是将总体各单位按某一标志排队,然后按固定的顺序和间隔来抽选调查单位的一种组织形式。

5.假设检验是以样本指标构造检验统计量来检验对总体参数所做的某种假设是否成立的一种统计推断方法。

六、简答
1.(1)抽样推断是建立在随机抽样原则基础上的;
(2)抽样推断是运用概率论的理论和方法,用样本指标来推断总体指标;
(3)抽样推断的误差可以事先计算和控制。

2.(1)样本容量的大小。

在其他条件不变的情况下,样本容量与抽样误差成反比;
(2)总体的变异程度。

在其他条件不变的情况下总体各单位的标志变动度与抽样误差成正比;
(3)抽样方法;
(4)抽样组织方式。

3.当抽样平均误差一定时,由Δ=tμ可见,缩小抽样极限误差,就要减少t值,从而使可靠程度降低;而提高可靠程度就要使 t值增大,因而使抽样极限误差增大。

4.(1)总体各单位的标志变动度,即总体方差σ2和p(1-P)的大小;
(2)允许误差范围,即Δ值的大小;
(3)要求的概率保证程度;
(4)抽样方法;
(5)抽样组织形式。

5.(1)分层抽样是按有关的主要标志分组,目的是为了缩小组内差异,整群抽样是按无关标志分组,其目的是简化抽样。

(2)组间方差是影响整群抽样平均误差的主要因素,但它却不影响分层抽样的平均误差;组内方差是影响分层抽样平均误差的主要因素,但它对整群抽样平均误差却没有影响。

(3)分层抽样和整群抽样构成样本的方法不同,分层抽样在每一层中随机重复或不重复抽取若干单位构成样本,整群抽样随机抽取若干“群”由这些群的全部单位构成样本,一般采用不重复抽样方法。

七、计算
1.解:列表计算如下:
月收入分组
(元)户数
f
组中值
x
300以下300——400 400——500 500——600 600——700 700——800 3
18
32
25
12
10
250
350
450
550
650
750
750
6300
14400
13750
7800
7500
195075
432450
96800
50625
252300
600250
合计100 ——50500 1627500 (1)
置信区间
(2)
置信区间
户数下限:10000×13.76%=1376(户)
上限:10000×30.24%=3024(户)
2.解:(1)已知

(2)n=22(块)
3.解:(1)
(2)显著性水平α=0.05,检验形式为双侧检验,查表得临界值为1.96 (3)总体标准差已知,检验统计量
(4)统计决断:由于
,否定原假设。

结论:这批罐头不符合标准。

4.解:(1)
(2)显著性水平α=0.05,检验形式为双侧检验,查表得临界值为1.96 (3)检验统计量
(4)统计决断:由于
,故拒绝原假设。

由此可以判断:参加保险的户数不足80%。

相关文档
最新文档