函数知识点整理

合集下载

高一数学必修一函数必背知识点整理

高一数学必修一函数必背知识点整理

高一数学必修一函数必背知识点整理高一数学必修一函数必背知识点1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略3、恒成立问题的求解策略4、反函数的几种题型及方法5、二次函数根的问题——一题多解&指数函数y=a^xa^a*a^b=a^a+ba>0,a、b属于Qa^a^b=a^aba>0,a、b属于Qab^a=a^a*b^aa>0,a、b属于Q指数函数对称规律:1、函数y=a^x与y=a^-x关于y轴对称2、函数y=a^x与y=-a^x关于x轴对称3、函数y=a^x与y=-a^-x关于坐标原点对称幂函数y=x^aa属于R1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.2、幂函数性质归纳.1所有的幂函数在0,+∞都有定义并且图象都过点1,1;2时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;3时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:1 代数法求方程的实数根;2 几何法对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.感谢您的阅读,祝您生活愉快。

专转本高数知识点整理

专转本高数知识点整理

专转本高数知识点整理一、函数。

1. 函数的概念。

- 设x和y是两个变量,D是一个给定的非空数集。

如果对于每个数x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y = f(x),x∈ D。

其中x称为自变量,y称为因变量,D称为函数的定义域。

- 函数的两要素:定义域和对应法则。

2. 函数的性质。

- 单调性:设函数y = f(x)在区间(a,b)内有定义,如果对于(a,b)内任意两点x_1和x_2,当x_1时,有f(x_1)(或f(x_1)>f(x_2)),则称函数y = f(x)在区间(a,b)内是单调增加(或单调减少)的。

- 奇偶性:设函数y = f(x)的定义域D关于原点对称,如果对于任意x∈ D,有f(-x)=f(x),则称y = f(x)为偶函数;如果f(-x)= - f(x),则称y = f(x)为奇函数。

- 周期性:设函数y = f(x)的定义域为D,如果存在一个不为零的数T,使得对于任意x∈ D有(x± T)∈ D,且f(x + T)=f(x)恒成立,则称函数y = f(x)为周期函数,T称为函数的周期。

3. 反函数。

- 设函数y = f(x)的定义域为D,值域为W。

如果对于W中的每一个y值,在D中有且只有一个x值使得y = f(x),则在W上定义了一个函数,称为函数y = f(x)的反函数,记作x = f^-1(y)。

习惯上,将y = f(x)的反函数记作y = f^-1(x)。

二、极限。

1. 极限的定义。

- 数列极限:设{a_n}为一数列,如果存在常数a,对于任意给定的正数varepsilon(不论它多么小),总存在正整数N,使得当n > N时,不等式| a_n-a|都成立,那么就称常数a是数列{a_n}的极限,或者称数列{a_n}收敛于a,记作lim_n→∞a_n=a。

- 函数极限(x→ x_0):设函数f(x)在点x_0的某一去心邻域内有定义。

高考函数知识点和题型整理大全

高考函数知识点和题型整理大全

高考函数知识点和题型整理大全函数是高考数学中的一个重要知识点,几乎贯穿了整个高中数学学习的内容。

它是数学与实际问题相结合的桥梁,也是解决复杂计算和推理问题的基础工具。

本文将整理高考函数知识点和相关题型,帮助同学们系统地回顾和总结。

一、函数的定义与性质1. 函数的定义:若给定数集A和数集B,对于每一个属于A的元素x,通过一个确定的法则f,可以得出B中唯一确定的元素y与之对应,那么就称f为从A到B的一个函数。

2. 函数的性质:自变量、因变量、定义域、值域、图像与映射关系等。

二、常见函数类型及其性质1. 一次函数:一次函数是函数的一种特殊类型,其形式为y=ax+b,其中a和b 为常数,a≠0。

性质:函数图像为一条直线,斜率为a,截距为b;增减性与性质。

2. 二次函数:二次函数是函数的一种特殊类型,其形式为y=ax^2+bx+c,其中a、b和c为常数,a≠0。

性质:函数图像为一条抛物线,开口的方向由a的正负决定;顶点坐标与坐标轴交点等。

3. 幂函数:幂函数是函数的一种特殊类型,形式为y=x^a,其中a为常数。

性质:函数图像与幂指数a的奇偶性相关;增减性与性质。

4. 指数函数:指数函数是函数的一种特殊类型,形式为y=a^x,其中a为常数且a>0且a≠1。

性质:函数图像通过点(0, 1);增减性与性质。

5. 对数函数:对数函数是函数的一种特殊类型,形式为y=loga(x),其中a为常数且a>0且a≠1。

性质:函数图像通过点(1, 0);增减性与性质。

6. 三角函数:三角函数是函数的一种特殊类型,包括正弦函数、余弦函数和正切函数等。

性质:函数图像的周期、对称性、单调性等。

三、函数的运算与复合1. 函数的四则运算:函数的加减乘除运算与性质。

2. 函数的复合:函数的复合运算与性质。

四、函数的图像与方程1. 方程的解与函数的零点:求解方程与函数的零点之间的关系。

2. 函数图像与方程的联系:根据函数图像求解方程,根据方程确定函数图像等。

高一数学必修一函数概念的知识点

高一数学必修一函数概念的知识点

高一数学必修一函数概念的知识点高一数学必修一函数概念的知识点在日常过程学习中,是不是经常追着老师要知识点?知识点在教育实践中,是指对某一个知识的泛称。

哪些知识点能够真正帮助到我们呢?以下是店铺整理的高一数学必修一函数概念的知识点,仅供参考,欢迎大家阅读。

高一数学必修一函数概念的知识点 11、映射的定义2、函数的概念3、函数的三要素:定义域、值域和对应法则。

4、两个函数能成为同一函数的条件当且仅当两个函数的定义域和对应法则完全相同时,这两个函数才是同一函数。

5、区间的概念和记号6、函数的表示方法函数的表示方法有三种。

(1)解析法(2)列表法(3)图像法7、分段函数常见考法本节是段考和高考必不可少的考查部分,多以选择题和填空题的形式出现。

段考中常考查函数的定义域、值域、对应法则、同一函数、函数的解析式和分段函数。

高考中可以和高中数学的大部分章节知识联合考查,但是难度不大,属于容易题。

多考查函数的定义域、函数的表示方法和分段函数。

误区提醒1、映射是一种特殊的函数,映射中的集合A,B可以是数集,也可以是点集或其他集合,这两个集合有先后顺序。

A到B的映射与B到A的映射是不同的。

而函数是数集到数集的映射,所以函数是特殊的映射,但是映射不一定是函数。

2、函数的问题,要遵循“定义域优先”的原则。

无论是简单的函数,还是复杂的函数,无论是具体的函数,还是抽象的函数,必须优先考虑函数的定义域。

之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便。

3、分段函数是一个函数,而不是几个函数。

分段函数书写时,注意格式规范,一般在左边的区间写在上面,右边的区间写在下面,每一段自变量的取值范围的交集为空集,所有段的自变量的取值范围的并集是函数的定义域。

高一数学必修一函数概念的知识点 2一、函数的概念设A、B是非空的数集,如果按照某个确定的对应关系f,是对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A。

高中数学必修一 第二章 函数 知识点整理

高中数学必修一  第二章  函数 知识点整理

第二章函数2.1 函数1. 函数(1)函数的定义传统定义:在某一个变化过程中有两个变量x和y,如果对于在某一个范围内的任一个x的值,都有唯一的y值与它对应,则称y是x的函数,x叫做自变量,y叫做因变量。

近代定义:给定两个非空数集A和B,如果按照某个对应关系f,对于A中任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应,那么就把对应关系f叫做定义在A 上的函数,记作A→B,或y=f(x),x∈A,此时,x叫做自变量,集合A叫做函数的定义域,集合{f(x)|x∈A}叫做函数的值域,习惯上我们称y是x的函数。

两个定义间的联系:函数的两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合的观点出发。

这样,就不难得知函数的实质是从非空数集A到非空数集B的一个特殊对应。

(2)函数概念的理解①A、B都是非空数集,因此定义域(或值域)为空集的函数不存在。

②在现代定义中,B不一定是函数的值域,如函数y=x2+1可称为实数集R到实数集R的函数,但值域为[1,+∞)。

③对应关系、定义域、值域是函数的三要素,缺一不可,其中对应关系是核心,定义域是根本,当定义域和对应关系已确定,则值域也就确定了。

④函数符号f(x)的含义:f(x)是表示一个整体,一个函数,而记号“f”可以看作是对“x”施加的某种法则(或运算),如f(x)=x2-2x+3,当x=2时,可看做是对“2”施加了这样的运算法则:先平方,再减去它与2的积,再加上3;当“x”为某个代数式(或某一个函数记号)时,则左右两边的所有x都用同一个代数式(或函数记号)代替,如f(2x-1)=(2x-1)2-2(2x-1)+3,f[g(x)]=[g(x)]2-2g(x)+3等,f(a)与f(x)的区别就在于前者是函数值,是常数;而后者是因变量,是变量。

(3)函数的定义域函数的定义域是自变量x的取值范围,但要注意,在实际问题中,定义域要受到实际意义的制约。

2024年高考数学知识点总结整理

2024年高考数学知识点总结整理

2024年高考数学知识点总结整理一、函数与方程1. 函数的概念和性质- 函数的定义:函数是一个将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)的规则。

- 函数的表示:函数可以用函数式表示、图像表示、数据表格表示等。

- 函数的性质:奇偶性、周期性、单调性、极值、零点等。

2. 平面直角坐标系- 坐标系的建立:确定坐标轴的正方向和原点的位置。

- 直角坐标的表示法:点在平面上的位置可以用有序数对表示。

- 直线的方程:点斜式、两点式、截距式等。

3. 一元二次方程- 一元二次方程的定义:形如ax^2 + bx + c = 0的代数方程,其中a、b、c都是已知的实数,a ≠ 0。

- 一元二次方程的解:实数解、复数解、无解等。

- 一元二次方程的求解方法:配方法、公式法、图解法等。

4. 不等式- 不等式的概念:比大小关系不是等号的代数式。

- 不等式的性质:加减、乘除等运算规则。

- 不等式的解集:解集可以用数轴图、区间表示等。

二、数列与数学归纳法1. 等差数列- 等差数列的定义:数列中相邻两项之差相等。

- 等差数列的通项公式:an = a1 + (n - 1)d,其中an是第n项,a1是首项,d是公差。

- 等差数列的性质:求和公式、前n项和等。

2. 等比数列- 等比数列的定义:数列中相邻两项之比相等。

- 等比数列的通项公式:an = a1 * r^(n - 1),其中an是第n项,a1是首项,r是公比。

- 等比数列的性质:求和公式、前n项和等。

3. 数列的求和- 等差数列的前n项和公式:Sn = n/2 * (a1 + an),其中Sn是前n项和,a1是首项,an是第n项。

- 等比数列的前n项和公式:Sn = (a1 * (1 - r^n))/(1 - r),其中Sn是前n项和,a1是首项,r是公比。

4. 数学归纳法- 数学归纳法的基本思想:证明某个命题对于一切自然数n 都成立,先证明对n=1成立,然后假设对n=k成立,再证明对n=k+1成立。

函数定义域知识点整理

函数定义域知识点整理

函数定义域知识点整理一、定义域概念在函数中,定义域指定了输入值的可接受范围。

也就是说,它是函数中所有可能输入值的集合。

定义域通常由数值或表示数值的变量组成。

举个例子:函数f(x) = 1 / x,则定义域通常是所有除数不为零的实数,因为当x = 0时,除法运算将无法进行。

二、常用函数的定义域1、多项式函数:f(x) = ax^n+bx^n-1+...+k (a≠0,x∈R)定义域为实数集R。

3、对数函数:f(x) = loga(x)(a > 0,a ≠ 1)定义域为(0,+∞)。

4、三角函数:sin(x),cos(x),tan(x),cot(x),sec(x),csc(x)6、有理函数:f(x) = p(x) / q(x),p(x)和q(x)都是多项式函数定义域为x使得q(x) ≠ 0的所有实数。

7、根式函数:f(x) = √x定义域为x≥0(或x>0)。

定义域分别为[-1,1],[-1,1],(-∞,+∞),(-∞,+∞),[1,+∞),(-∞,-1]∪[1,+∞)。

三、特殊情况的定义域1、分式函数中:分母等于0时,函数无定义。

比如,f(x) = 1 / (x-2),定义域为除去x = 2的所有实数。

1、拆分法:将复合函数中的函数逐一拆分,保证每个函数都有定义。

2、代数法:通过解方程,使得函数中不存在负数、非正数、除数为0等无法计算的情况。

3、图像法:通过函数图像,确定函数值的可行区间。

4、限定法:通过限定自变量的取值范围,确定函数值的可行范围。

五、补充说明1、同一个函数在不同的应用场景中,可能对应不同的定义域。

因此,在确定函数定义域时,需要根据实际情况加以考虑。

2、特别地,当要对一个函数进行简化、去除歧义等操作时,也需要明确该函数的定义域。

高中数学函数的性质知识点整理

高中数学函数的性质知识点整理

一、函数(一)、函数的单调性1、定义:一般地,设函数f(x)的定义域为I,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1 ,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说函数f(x)在区间D 上是增函数; 当x 1<x 2时,都有f(x 1)>f(x 2),那么就说函数f(x)在区间D 上是减函数。

单调性定义的等价形式:设x 1,x 2∈[a,b],x 1≠x 2.(1)若有(x 1-x 2)[f(x 1)-f(x 2)]>0或>0,则f(x)在闭区间[a,b]上是增函数;(2)若有(x 1-x 2)[f(x 1)-f(x 2)]<0或<0,则f(x)在闭区间[a,b]上是减函数.2、常用结论(1)若f(x),g(x)均为区间A 上的增(减)函数,则f(x)+g(x)也是区间A 上的增(减)函数. (2)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反.(3)函数y=f(x)(f(x)>0)在公共定义域内与y=-f(x),y=的单调性相反.(4)函数y=f(x)(f(x)≥0)在公共定义域内与y=的单调性相同.(5)复合函数单调性的确定方法:若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.简称“同增异减”. (二)、函数的奇偶性1.函数奇偶性的定义:函数()f x 的定义域必须关于原点对称,对定义域内的任意一个x 都满足 ①()()f x f x -=⇔函数()f x 为偶函数;②()()()()0f x f x f x f x -=-⇔-+=⇔函数()f x 为奇函数.2.奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;反过来如果一个函数的图像关于原点对称,则该函数为奇函数,若该函数的图像关于y 轴对称,该函数为偶函数. 3.函数奇偶性的性质①既是奇函数又是偶函数的函数只有一种类型,即()0f x =,x D ∈,其中定义域D 是关于原点对称的非空数集.②奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.即奇函数()f x 在区间[,](0)a b a b ≤<上单调递增(减),则()f x 在区间[,]b a --上也是单调递增(减); ③偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.即偶函数()f x 在区间[,](0)a b a b ≤<上单调递增(减),则()f x 在区间[,]b a --上也是单调递减(增); ④任意定义在R 上的函数()f x 都可以唯一地表示成一个奇函数与一个偶函数的和.即()()()()()22f x f x f x f x f x +---=+(三)、函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)特别的(2)()()()f a x f b x f x -=+⇔关于2a bx +=轴对称; (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称.本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称. 3、中心对称的等价描述:(1)()()f a x f a x -=-+⇔()f x 关于(),0a 中心对称(当0a =时,恰好就是奇函数); (2)()()()f a x f b x f x -=-+⇔关于,02a b +⎛⎫⎪⎝⎭中心对称;(3)()f x a +是奇函数,则()()f x a f x a +=--+,进而可得到:()f x 关于(),0a 中心对称。

函数知识点复习整理

函数知识点复习整理

函数知识点复习整理函数是数学中的基本概念之一,它在解决问题、研究现象和建模等方面起到了重要的作用。

函数的知识点主要包括函数的定义、函数的性质和函数的应用等方面。

下面就对函数的知识点进行复习整理。

一、函数的定义函数是一种特殊的关系,它把一个集合与另一个集合中的元素进行对应。

数学中常用的函数记作f(x),其中x表示自变量,f(x)表示因变量。

函数的定义包括以下几个要素:1.自变量的定义域:自变量x的取值范围,通常用集合表示。

2.因变量的值域:因变量f(x)的取值范围,也用集合表示。

3.函数表达式:函数的具体表达形式,可以是一个公式或者一个算法。

4.函数名称:给函数取一个名称,以便于引用和表示。

二、函数的性质函数的性质主要包括函数的奇偶性、周期性、单调性、有界性、连续性和可导性等方面。

下面对这些性质进行详细讲解:1.奇偶性:如果对于函数f(x),有f(-x)=f(x),则称函数f(x)为偶函数;如果对于函数f(x),有f(-x)=-f(x),则称函数f(x)为奇函数。

2.周期性:如果对于函数f(x),存在一个正数T,使得对于任意x,有f(x+T)=f(x),则称函数f(x)为周期函数。

3.单调性:如果对于函数f(x)中的任意两个数a和b,当a<b时,有f(a)<f(b);当a>b时,有f(a)>f(b),则称函数f(x)在区间(a,b)上单调递增;反之,如果当a<b时,有f(a)>f(b);当a>b时,有f(a)<f(b),则称函数f(x)在区间(a,b)上单调递减。

4.有界性:如果对于函数f(x)中的任意x,存在两个常数M和N,使得当,x,>M时,有,f(x),<N,称函数f(x)在无穷远处有界。

5.连续性:如果对于函数f(x)中的任意x0,当,x-x0,趋近于0时,有f(x)趋近于f(x0),则称函数f(x)在点x0处连续。

6.可导性:如果对于函数f(x)中的任意x0,存在一个常数f'(x0),使得当x趋近于x0时,有[f(x)-f(x0)]/[x-x0]趋近于f'(x0),则称函数f(x)在点x0处可导。

初中初级数学函数知识点整理

初中初级数学函数知识点整理

初中初级数学函数知识点整理函数是数学中一个非常重要的概念,它在初中数学中占据着重要的位置。

了解和掌握函数的概念和相关知识,对于学好数学、解决实际问题非常有帮助。

下面将对初中初级数学函数知识点进行整理和概括。

一、函数的概念函数是一个有输入和输出的关系,也可以认为是一组有序的数对。

其中,输入称为自变量或x,输出称为函数值或因变量或y。

函数用符号y=f(x)表示。

二、函数的表示及分类1. 函数的表示函数可以通过不同的表示形式来表达,主要有:- 函数表达式:常见的形式有代数表达式和分段函数表达式。

- 函数图像:可以通过绘制坐标轴来展示函数的图像。

- 函数关系式:用x和y之间的关系来表示函数。

2. 函数的分类根据函数的性质和特点,函数可以分为以下几类:- 一次函数:函数的表达式为y = ax + b,其中a和b为常数,a不等于0。

- 二次函数:函数的表达式为y = ax^2 + bx + c,其中a、b和c为常数,且a 不等于0。

- 反比例函数:函数的表达式为y = k/x,其中k为常数,且k不等于0。

- 绝对值函数:函数的表达式为y = |x|,图像为一条V字型的直线。

- 幂函数:函数的表达式为y = x^a,其中a为常数,且a不等于0。

- 根式函数:函数的表达式为y = √x,其中x大于等于0。

三、函数的性质1. 定义域和值域- 定义域:函数中自变量的取值范围称为函数的定义域。

- 值域:函数在定义域内所对应的所有函数值的集合称为函数的值域。

2. 奇偶性- 奇函数:当函数满足f(-x) = -f(x),即关于y轴对称时,函数为奇函数。

奇函数的图像关于原点对称。

- 偶函数:当函数满足f(-x) = f(x),即关于y轴对称时,函数为偶函数。

偶函数的图像关于y轴对称。

3. 单调性- 递增函数:在定义域内,若对于任意的x1和x2,当x1<x2时,有f(x1) < f(x2),则函数为递增函数。

- 递减函数:在定义域内,若对于任意的x1和x2,当x1<x2时,有f(x1) > f(x2),则函数为递减函数。

高中数学第三章函数的概念与性质知识点总结全面整理(带答案)

高中数学第三章函数的概念与性质知识点总结全面整理(带答案)

高中数学第三章函数的概念与性质知识点总结全面整理单选题1、若函数f (x )=2x+m x+1在区间上的最大值为52,则实数m =( ) A .3B .52C .2D .52或3答案:B分析:函数f (x )化为f (x )=2+m−2x+1,讨论m =2,m >2和m <2时函数的单调性,运用单调性可得最小值,解方程即可得到所求值.函数f (x )=2x+m x+1,即f (x )=2+m−2x+1,x ∈[0,1],当m =2时,f (x )=2不成立;当m −2>0,即m >2时,f (x )在递减,可得f (0)为最大值, 即f (0)=0+m 1=52,解得m =52成立;当m −2<0,即m <2时,f (x )在递增,可得f (1)为最大值, 即f (1)=2+m 2=52,解得m =3不成立;综上可得m =52.故选:B .2、下列函数中,在区间(1,+∞)上为增函数的是( )A .y =−3x +1B .y =2xC .y =x 2−4x +5D .y =|x −1|+2答案:D分析:根据一次函数、反比例函数和二次函数单调性直接判断可得结果.对于A ,y =−3x +1为R 上的减函数,A 错误;对于B ,y =2x 在(−∞,0),(0,+∞)上单调递减,B 错误; 对于C ,y =x 2−4x +5在(−∞,2)上单调递减,在(2,+∞)上单调递增,C 错误;[]0,1[]0,1[]0,1对于D ,y =|x −1|+2={x +1,x ≥13−x,x <1,则y =|x −1|+2在(1,+∞)上为增函数,D 正确. 故选:D.3、已知f (2x +1)=4x 2+3,则f (x )=( ).A .x 2−2x +4B .x 2+2xC .x 2−2x −1D .x 2+2x +3答案:A分析:利用配凑法直接得出函数的解析式.因为f (2x +1)=4x 2+3=(2x +1)2−2(2x +1)+4,所以f (x )=x 2−2x +4.故选:A4、函数f(x)=−x 2+2(1−m)x +3在区间(−∞,4]上单调递增,则m 的取值范围是( )A .[−3,+∞)B .[3,+∞)C .(−∞,5]D .(−∞,−3]答案:D分析:先求出抛物线的对称轴x =−2(1−m)−2=1−m ,而抛物线的开口向下,且在区间(−∞,4]上单调递增,所以1−m ≥4,从而可求出m 的取值范围解:函数f(x)=−x 2+2(1−m)x +3的图像的对称轴为x =−2(1−m)−2=1−m ,因为函数f(x)=−x 2+2(1−m)x +3在区间(−∞,4]上单调递增,所以1−m ≥4,解得m ≤−3,所以m 的取值范围为(−∞,−3],故选:D5、现有下列函数:①y =x 3;②y =(12)x;③y =4x 2;④y =x 5+1;⑤y =(x −1)2;⑥y =x ;⑦y =a x (a >1),其中幂函数的个数为( )A .1B .2C .3D .4答案:B分析:根据幂函数的定义逐个辨析即可幂函数满足y =x a 形式,故y =x 3,y =x 满足条件,共2个故选:B6、已知函数f (x )={−√x 3(x ≥a )x 2(x <a),若函数f(x)的值域为R ,则实数a 的取值范围为( ) A .(−1,0)B .(−1,0]C .[−1,0)D .[−1,0]答案:D分析:求出分段函数在各段上的函数值集合,再根据给定值域,列出不等式求解作答.函数y =−√x 3在[a,+∞)上单调递减,其函数值集合为(−∞,−√a 3],当a >0时,y =x 2的取值集合为[0,+∞),f (x )的值域(−∞,−√a 3]∪[0,+∞)≠R ,不符合题意,当a ≤0时,函数y =x 2在(−∞,a)上单调递减,其函数值集合为(a 2,+∞),因函数f(x)的值域为R ,则有−√a 3≥a 2,解得−1≤a ≤0,所以实数a 的取值范围为[−1,0].故选:D7、已知幂函数的图象经过点P (4,12),则该幂函数的大致图象是( ) A .B .C .D .答案:A 分析:设出幂函数的解析式,利用函数图象经过点求出解析式,再由定义域及单调性排除CDB 即可.设幂函数为y =x α,因为该幂函数得图象经过点P (4,12),所以4α=12,即22α=2−1,解得α=−12,即函数为y =x −12,则函数的定义域为(0,+∞),所以排除CD ,因为α=−12<0,所以f(x)=x −12在(0,+∞)上为减函数,所以排除B ,故选:A8、若函数f (x )=x ln (x +√a +x 2)为偶函数,则a 的值为( )A .0B .1C .﹣1D .1或﹣1答案:B分析:由f (x )=x ln (x +√a +x 2)为偶函数,则设g (x )=ln (x +√a +x 2)是奇函数,由g (0)=0,可求出答案.解:∵函数f (x )=x ln (x +√a +x 2)为偶函数,x ∈R ,∴设g (x )=ln (x +√a +x 2)是奇函数,则g (0)=0,即ln √a =0,则√a =1,则a =1.故选:B .多选题9、已知函数f (x )=x |x |,若对任意的x ∈[t ,t +1],不等式f (x +t )≥3f (x )恒成立,则整数t 的取值可以是( )A .−1B .1C .3D .5答案:CD分析:首先判断f (x )在R 上为增函数,将不等式转化为x +t ≥√3x ,即t ≥(√3−1)x 对任意的x ∈[t ,t +1]恒成立,利用一次函数的单调性,解不等式可得所求范围.f (x )=x |x |,当x ≥0时,f (x )=x 2,在[0,+∞)递增,当x≤0时,f(x)=−x2,在(−∞,0]上递增,且f(0)=0,f(x)为连续函数,所以f(x)在R上为增函数,且3f(x)=f(√3x),由对任意的x∈[t,t+1],不等式f(x+t)≥3f(x)恒成立,即f(x+t)≥f(√3x),即x+t≥√3x,所以t≥(√3−1)x对任意的x∈[t,t+1]恒成立,由y=(√3−1)x在[t,t+1]上递增,可得y=(√3−1)x的最大值为(√3−1)(t+1),即t≥(√3−1)(t+1),解得t≥√3+1.故选:CD小提示:关键点点睛:本题考查了函数的单调性的判断以及应用,解不等式以及不等式恒成立问题的解法,解题的关键是将不等式转化为t≥(√3−1)x对任意的x∈[t,t+1]恒成立,考查了转化思想和运算求解能力.10、已知函数f(x),g(x)的定义域都是R,且f(x)是奇函数,g(x)是偶函数,则()A.f(x)⋅|g(x)|是奇函数B.|f(x)|⋅g(x)是奇函数C.f(x)⋅g(x)是偶函数D.|f(x)⋅g(x)|是偶函数答案:AD分析:由奇偶性的定义逐一证明即可.对于A,F(x)=f(x)⋅|g(x)|,F(−x)=f(−x)⋅|g(−x)|=−f(x)|g(x)|=−F(x),即f(x)⋅|g(x)|是奇函数,故A正确;对于B,F(x)=|f(x)|⋅g(x),F(−x)=|f(−x)|g(−x)=|f(x)|g(x)=F(x),即|f(x)|⋅g(x)是偶函数,故B 错误;对于C,F(x)=f(x)⋅g(x),F(−x)=f(−x)⋅g(−x)=−f(x)g(x)=−F(x),即f(x)⋅g(x)是奇函数,故C 错误;对于D,F(x)=|f(x)⋅g(x)|,F(−x)=|f(−x)⋅g(−x)|=|−f(x)⋅g(x)|=|f(x)⋅g(x)|=F(x),即|f(x)⋅g(x)|是偶函数,故D正确;故选:AD小提示:关键点睛:解决本题的关键在于利用定义证明奇偶性.11、关于函数f(x)=√x2−x4|x−1|−1的性质描述,正确的是()A.f(x)的定义域为[−1,0)∪(0,1]B.f(x)的值域为(−1,1)C.f(x)在定义域上是增函数D.f(x)的图象关于原点对称答案:ABD解析:由被开方式非负和分母不为0,解不等式可得f(x)的定义域,可判断A;化简f(x),讨论0<x≤1,−1≤x<0,分别求得f(x)的范围,求并集可得f(x)的值域,可判断B;由f(−1)=f(1)=0,可判断C;由奇偶性的定义可判断f(x)为奇函数,可判断D;对于A,由{x2−x4≥0|x−1|−1≠0,解得−1≤x≤1且x≠0,可得函数f(x)=√x2−x4|x−1|−1的定义域为[−1,0)∪(0,1],故A正确;对于B,由A可得f(x)=√x2−x4−x ,即f(x)=|x|√1−x2−x,当0<x≤1可得f(x)=−√1−x2∈(−1,0],当−1≤x<0可得f(x)=√1−x2∈[0,1),可得函数的值域为(−1,1),故B正确;对于C,由f(−1)=f(1)=0,则f(x)在定义域上是增函数,故C 错误;对于D,由f(x)=|x|√1−x2−x的定义域为[−1,0)∪(0,1],关于原点对称,f(−x)=|x|√1−x2x=−f(x),则f(x)为奇函数,故D正确;故选:ABD小提示:本题考查了求函数的定义域、值域、奇偶性、单调性,属于中档题.12、已知函数f(x)=2x+12x−1,g(x)=2x,则下列结论正确的是()A.f(x)g(x)为奇函数B.f(x)g(x)为偶函数C.f(x)+g(x)为奇函数D.f(x)+g(x)为非奇非偶函数答案:BC解析:先判断函数f(x),g(x)的奇偶性,再利用函数奇偶性的性质判断选项正误.f(x)=2x+12x−1,其定义域为(−∞,0)∪(0,+∞),f(−x)=2−x+12−x−1=(2−x+1)⋅2x(2−x−1)⋅2x=1+2x1−2x=−f(x),故函数f(x)为奇函数,又g(x)=2x为奇函数,根据函数奇偶性的性质可知:f(x)g(x)为偶函数,f(x)+g(x)为奇函数,故选:BC.小提示:本题考查函数奇偶性的判断及其性质应用,难度不大.13、我国著名的数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微;数形结合百般好,隔裂分家万事休.在数学学习和研究中,常用函数的图象来研究函数的性质.下列函数中,在(0,+∞)上单调递增且图象关于y轴对称的是()A.f(x)=x3B.f(x)=x2C.y=x−2D.f(x)=|x|答案:BD解析:根据函数解析式,逐项判断函数的单调性与奇偶性,即可得出结果.A选项,f(x)=x3定义域为R,在(0,+∞)上显然单调递增,但f(−x)=−x3≠f(x),即f(x)=x3不是偶函数,其图象不关于y轴对称,A排除;B选项,f(x)=x2定义域为R,在(0,+∞)上显然单调递增,且f(−x)=(−x)2=x2=f(x),所以f(x)=x2是偶函数,图象关于y轴对称,即B正确;C选项,y=x−2定义域为(−∞,0)∪(0,+∞),在(0,+∞)上显然单调递减,C排除;D选项,f(x)=|x|的定义域为R,在(0,+∞)上显然单调递增,且f(−x)=|−x|=|x|=f(x),所以f(x)=|x|是偶函数,图象关于y轴对称,即D正确.故选:BD.填空题14、已知函数f(x)=x2−2ax+3在区间[2,8]是单调递增函数,则实数a的取值范围是______.答案:a≤2分析:求出二次函数的对称轴,即可得f(x)的单增区间,即可求解.函数f(x)=x2−2ax+3的对称轴是x=a,开口向上,若函数f(x)=x2−2ax+3在区间[2,8]是单调递增函数,则a≤2,所以答案是:a≤2.15、已知函数f(x)的图象为如图所示的两条线段组成,则下列关于函数f(x)的说法:①f(f(1))=3;②f(2)>f(0);③f(x)=2|x−1|−x+1,x∈[0,4];,2].④∃a>0,不等式f(x)≤a的解集为[13其中正确的说法有_________.(写出所有正确说法的序号)答案:①③解析:根据图象,可求得f(1)的值,即可判断①的正误;根据图中数据及f(x)在[1,4]上的单调性,可判断②的正误;分别讨论1≤x≤4和0≤x<1两种情况,求得f(x)解析式,检验即可判断③的正误;根据不等式f(x)≤a解集,即求f(x)=a的根,根据f(x)解析式,即可判断④的正误,即可得答案.对于①:由图象可得:f(1)=0,所以f(f(1))=f(0)=3,故①正确;对于②:f(0)=f(4)=3,且f(x)在[1,4]上为单调递增函数,所以f(2)<f(4)=3,所以f(2)<f(0),故②错误;对于③:当1≤x≤4时,f(x)=2|x−1|−x+1=2(x−1)−x+1=x−1,f(1)=0,f(4)=3,满足图象;当0≤x <1时,f(x)=2|x −1|−x +1=2(1−x)−x +1=3−3x ,f(0)=3,斜率k =−3,满足图象,故③正确;对于④:由题意得f (x )≤a 的解集为[13,2],即f (x )=a 的根为13,2,根据f (x )解析式可得f(13)=2,当1≤x ≤4时,令x −1=2,解得x =3,所以解集为[13,3],故④错误. 所以答案是:①③16、已知a >0,b >0,且a +b =1,则1a+2b−3ab 的最大值是______. 答案:32分析:利用a >0,b >0,且a +b =1,求出a 的范围,将1a+2b−3ab 消元得13a 2−4a+2,利用二次函数的最值及倒数法则即可求得1a+2b−3ab 的最大值.解:因为a >0,b >0,且a +b =1,所以a ∈(0,1),b ∈(0,1),1a +2b −3ab =11+b −3ab=11+(1−a )(1−3a ) =13a 2−4a+2,当a =23时,3a 2−4a +2取最小值23,所以13a 2−4a+2取最大值32,故1a+2b−3ab 的最大值是32. 所以答案是:32.解答题17、已知函数f (x )=√x +3+1x+2.(1)求f (x )的定义域和f (−3)的值;(2)当a >0时,求f (a ),f (a −1)的值.答案:(1)定义域为[−3,−2)∪(−2,+∞),f (−3)=−1;(2)f (a )=√a +3+1a+2,f (a −1)=√a +2+1a+1.分析:(1)由根式、分式的性质求函数定义域,将自变量代入求f (−3)即可.(2)根据a 的范围,结合(1)的定义域判断所求函数值是否有意义,再将自变量代入求值即可.(1)由{x +3≥0x +2≠0,则定义域为[−3,−2)∪(−2,+∞), 且f (−3)=√−3+3+1−3+2=−1.(2)由a >0,结合(1)知:f (a ),f (a −1)有意义.所以f (a )=√a +3+1a+2,f (a −1)=√a −1+3+1a−1+2=√a +2+1a+1. 18、已知幂函数f (x )=x −m2+4m (m ∈Z )的图象关于y 轴对称,且在区间(0,+∞)上是严格增函数.(1)求m 的值; (2)求满足不等式f (2a −1)<f (a +1)的实数a 的取值范围.答案:(1)m =2(2)0<a <2分析:(1)先利用幂函数在区间(0,+∞)上是严格增函数得到−m 2+4m >0,再验证其图象关于y 轴对称进行求值;(2)利用(1)中函数的奇偶性和单调性进行求解.(1)解:因为幂函数f (x )=x −m 2+4m 在区间(0,+∞)上是严格增函数,所以−m 2+4m >0,解得0<m <4,又因为m ∈Z ,所以m =1或m =2或m =3,当m =1或m =3时,f (x )=x 3为奇函数,图象关于原点对称(舍);当m =2时,f (x )=x 4为偶函数,图象关于y 轴对称,符合题意;综上所述,m =2.(2)解:由(1)得f (x )=x 4为偶函数,且在区间(0,+∞)上是严格增函数,则由f (2a −1)<f (a +1)得|2a −1|<|a +1|,即(2a −1)2<(a +1)2,即a 2−2a <0,解得0<a <2,所以满足f (2a −1)<f (a +1)的实数a 的取值范围为0<a <2.。

整理函数知识点归纳总结

整理函数知识点归纳总结

整理函数知识点归纳总结一、函数的定义与调用1.1 函数的定义函数是一段可重复利用的代码块,可以通过给定的参数进行调用。

在大多数编程语言中,函数通常由函数名、参数列表、函数体和返回值组成。

函数的定义可以分为无参函数和有参函数两种情况。

1.2 函数的调用函数的调用是通过函数名及其参数列表实现的。

在调用函数时,会执行函数体内的代码,并且根据函数的返回值进行相应的操作。

二、参数传递2.1 值传递值传递是指在调用函数时将实参的值复制一份传递给形参的过程。

在函数内部对形参的修改不会影响到实参的值。

2.2 引用传递引用传递是指在调用函数时将实参的引用传递给形参的过程。

这样在函数内部对形参的修改会影响到实参的值。

2.3 默认参数默认参数是在函数定义时给形参一个默认值,在调用函数时如果不传递该参数将使用默认值。

2.4 可变参数可变参数是指在定义函数时不确定参数的个数,可以通过*args和**kwargs来实现可变参数的传递。

三、返回值函数可以返回一个值,也可以不返回值。

在一些情况下,我们需要通过返回值来将计算结果传递给调用者。

四、作用域作用域是指变量的有效范围,即变量能够被访问的范围。

在函数中,可以分为全局作用域和局部作用域,全局作用域中的变量可以在整个程序中访问,局部作用域中的变量只能在函数内部访问。

五、递归递归是指函数调用自身的过程。

通过递归可以解决一些重复性较高的问题,如计算阶乘、斐波那契数列等。

六、高阶函数高阶函数是指以函数作为参数或者返回值的函数。

在函数式编程中,高阶函数是非常常见的。

七、闭包闭包是指一个函数可以访问其外部函数作用域的变量。

通过闭包可以实现一些在其他语言中需要类来实现的功能,例如私有变量、封装等。

八、装饰器装饰器是一种特殊的高阶函数,它可以在不改变原函数代码的情况下对原函数进行扩展。

装饰器可以为函数添加日志、计时、权限验证等功能。

本文总结了函数的各个方面的知识点,包括函数的定义与调用、参数传递、返回值、作用域、递归、高阶函数、闭包和装饰器等内容。

高一数学《函数》全章知识点整理

高一数学《函数》全章知识点整理

△情况 △ =b2-4ac
一元二次不等式解集
ax2+bx+c>0
ax2+bx+c<0
(a>0)
(a>0)
△ >0
x x x1或x x2
x x1 x x2


△ =0
x x x0


△ <0
R
1、已知函数 f ( x) 4x 2 mx 5 在区间 [ 2, ) 上是增函数,则 f (1) 的范围是(

、 1个
C 、 2个
D 、3个
()
y
y
2
2
1
1
O 12 x
O 1 2x
y 3 2 1
O 1 x
y
2 1 O 12 x
二、函数的解析式与定义域
1、求函数定义域的主要依据:
(1)分式的分母不为零;
(2)偶次方根的被开方数不小于零,零取零次方没有意义;
(3)对数函数的真数必须大于零;
(4)指数函数和对数函数的底数必须大于零且不等于
与 g(x) 的单调性相同,则 y f g x 在 M 上是增函数。
1 判断函数 f ( x) x3 (x R) 的单调性。
2 例 函数 f (x) 对任意的 m, n R ,都有 f (m n) f ( m) f (n) 1 ,并且当 x 0时, f ( x) 1,
⑴求证: f ( x) 在 R 上是增函数;
注意点:(1)对映射定义的理解。 ( 2)判断一个对应是映射的方法。一对多不是映射,多对一是映射
2、函数 构成函数概念的三要素
①定义域②对应法则③值域
两个函数是同一个函数的条件:三要素有两个相同

函数知识点整理

函数知识点整理

函数知识点整理●直线●y=mx+b●圆●(x-h)^{2}+(y-k)^{2}=r^{2}●椭圆●((x-h)^{2}\div a^{2})+((y-k)^{2}\div b^{2})=1●双曲线●((x-h)^{2}\div a^{2})-((y-k)^{2}\div b^{2})=1●抛物线●y = ax^2 + bx + c●反比例函数●y=k\div x●正弦函数●y = Asin (Bx + C) + D●余弦函数●y=Acos(Bx+C)+D●指数函数●y = a^x●对数函数●y=log_a(x)●阿基米德螺线●r = a + b\theta●罗斯卡曲线●r = \cos(n\theta)●震荡函数●f(x) = \sin(\frac{1}{x})●薛定谔方程●\psi(x) = Ae^{ikx} + Be^{-ikx}●扭曲的正弦函数●f(x) = \sin(x) + \frac{1}{10}\sin(50x)●双曲线函数●f(x) = \cosh(x)●贝塞尔函数●J_n(x)●f(x) = x\ln(x)●极坐标方程●r = \cos(n\theta)●傅里叶级数●f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n\cos(nx) + b_n\sin(nx)●弹性曲线方程●y = \frac{wx^2}{2l} - \frac{wx^3}{6El}●三次仿射变换●\begin{pmatrix}x'\\y'\end{pmatrix} =\begin{pmatrix}a&b\\c&d\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}+\begin{pmat rix}tx\\ty\end{pmatrix}●贪心函数●f(x) = x\lfloor\frac{1}{x}\rfloor●零函数●f(x) = 0●分段函数●f(x) = \begin{cases} x & x \geq 0 \\ -x & x < 0 \end{cases}●高阶多项式函数●f(x) = x^{100} - 2x^{99} + 3x^{98} - \cdots + 99x - 100●链线曲线●y = a\ln(\cos(\frac{x}{a}))●取整函数●f(x) = \lfloor x \rfloor●二元函数●f(x,y) = \sin(x) + \cos(y)●希尔伯特曲线●x = f(t), y = g(t)●线性递推函数●f(n) = f(n-1) + f(n-2)●双曲余弦函数●\cosh(x) = \frac{e^x+e^{-x}}{2}●双曲正弦函数●\sinh(x) = \frac{e^x-e^{-x}}{2}●双曲正切函数●\tanh(x) = \frac{\sinh(x)}{\cosh(x)}=\frac{e^x-e^{-x}}{e^x+e^{-x}}●u(x) = \begin{cases} 0,\quad x<0 \\ 1,\quad x\geq0 \end{cases}●矩形波函数●rect(x) = \begin{cases} 1,\quad |x|<\frac{1}{2} \\ \frac{1}{2},\quad |x|=\frac{1}{2} \\0,\quad |x|>\frac{1}{2} \end{cases}●锯齿波函数●saw(x) = \frac{x}{\\pi}-\lfloor\frac{x}{\\pi}+\frac{1}{2}\rfloor●三角函数之积函数●\sin(x)\cos(x) = \frac{1}{2}\sin(2x)●高斯函数●G(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}●移位的高斯函数●G(x-\mu) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}●球面波函数●Y_l^m(\theta,\phi) = \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}}P_l^m(\cos\theta)e^{im\phi} ●费马函数●f(x,y) = x^2+y^2●双曲正余弦函数●\operatorname{sech}(x) = \frac{1}{\cosh(x)}●Carmen函数●(z) = \int_0^{\infty} \frac{x^{z-1}}{e^x+1}dx,\quad \operatorname{Re}(z)>0●阿贝尔函数●\operatorname{Arcsinh}(x) = \ln(x+sqrt{x^2+1})●双曲正割函数●\operatorname{sech}(x) = \frac{2}{e^x+e^{-x}}●拉格朗日插值多项式●p(x) = \sum_{k=0}^n y_kL_k(x)●奇怪的三角函数●j(x) = \frac{\sin(\pi x)}{\pi x}●克劳修斯-莫斯科维茨函数●f(x) = x^x●阿克曼函数●A(x,y) = \begin{cases} y+1, &\text{if } x=0 \\ A(x-1,1), &\text{if } x>0 \text{ and } y=0\\ A(x-1,A(x,y-1)), &\text{if } x>0 \text{ and } y>0 \end{cases}●莫比乌斯反演●f(n) = \sum_{d|n}g(d) \Leftrightarrow g(n) = \sum_{d|n}\mu(d)f(\frac{n}{d})●吉布斯现象●f(x) = (a\sin(nx))^{n}●五次线性插值样条函数●s(x) = \begin{cases} y_0, & x\leq x_0 \\ \sum_{i=0}^5 a_i(x-x_0)^i, & x_0\leq x\leq x_1\\ \sum_{i=0}^5 b_i(x-x_1)^i, & x_1\leq x\leq x_2 \ldots \end{cases}●瑞利分布函数●f(x) = 1-e^{-\frac{(x-\mu)^2}{2\sigma^2}}●红外线函数●f(k) = \frac{\hbar\omega}{e^{\frac{\hbar\omega}{kT}}-1}●格林函数●G(x,x') = \frac{1}{4\pi|x-x'|}●歙函数●S(x,y) = \sum_{n,m=1}^{\infty}\frac{\sin(nx)\sinh(my)}{nm}●Laplace-Runge-Lenz矢量函数●\vec{A} = \vec{p}\times\vec{L}-\frac{mk}{r}\vec{r}●佩亚诺函数●f(x) = \begin{cases} x, &\text{if } x\leq 1 \\ f(x-f(\sqrt{x}))+f(\sqrt{x}), &\text{if } x>1\end{cases}●零点函数●f(x) = \sin(x)+\sin(\sqrt{2}x)+\sin(\sqrt{3}x)+\ldots●Zaslavskii映射●f(x) = \begin{cases} 2x, &\text{if } 0\leq x<\frac{1}{2} \\ 2-2x, &\text{if }\frac{1}{2}\leq x<1 \end{cases}●欧拉曲线●\sum_{n=1}^{\infty}\frac{x^n}{n^n}●翻倍函数●f(x) = \begin{cases} 1, &\text{if } x=0 \\ 2f(\lfloor\frac{x}{2}\rfloor), &\text{if } x\geq 1\end{cases}●可爱的函数●y=\mathrm{sinc}(x)=\frac{\sin(\pi x)}{\pi x}●插板法函数●f(n,m) = \binom{n+m}{m}●恰克博士函数●f(x) = \begin{cases} x-\frac{1}{2}, &\text{if } 0\leq x<\frac{1}{2} \\ 2x-\frac{3}{2},&\text{if } \frac{1}{2}\leq x<\frac{3}{4} \\ 4x-3, &\text{if } \frac{3}{4}\leq x<1 \\ 0, &\text{if } x\geq 1 \end{cases}●Gudermann函数●\operatorname{gd}(x) = \int_0^x\operatorname{sech}(t)dt●正弦超越函数●f(x) = \sin(e^x)●爱因斯坦反演法●f(x) = \frac{1}{2\pi}\int_{-\infty}^{\infty}\hat{f}(t)e^{itx}dt●凯莱函数●\operatorname{Ai}(x) = \frac{1}{\pi}\int_0^{\infty}\cos(xt+\frac{t^3}{3})dt●圆形斯皮罗格函数●f(z) = \lambdaz+\frac{\bar{\lambda}}{z},\lambda=\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}}●假函数●\operatorname{sh}(x) = \int_0^x\operatorname{Th}(t)dt●范德莫尔函数●V_n(x) = \sqrt{\frac{2}{\pi}}\sin(nx)\sum_{k=0}^n\binom{2n}{2k}(2x)^{n-k}(1-x^2)^k●北极熊函数●f(x) = \begin{cases} x, &\text{if } \sin(x)=0 \\ \frac{f(x-\sin(x))}{\sin(x)}, &\text{if }\sin(x)\neq 0 \end{cases}●旋转函数●R(\theta) = \begin{pmatrix} \cos(\theta) &-sin(\theta) \\ \sin(\theta) & \cos(\theta)\end{pmatrix}●Minkowski函数●f(x) =\sum_{n=1}^{\infty}\frac{1}{n^2}\operatorname{sech}(nx)●Askey-Wilson多项式●p_n(x;a,b,c,d;q) =\frac{(ab,ac,ad;q)_n}{(q;q)_n}(aqa^n,bqb^n,cqc^n,dqd^n;q)_n\times{}_4\phi_3\begin{B matrix} q^{-n}, &abq^{n-1}, &acq^{n-1}, &adq^{n-1} \\ aq^{n-1}, &bq^{n-1},&cq^{n-1} \end{Bmatrix}●方波脉冲函数●f(x) = \sum_{n=-\infty}^{\infty}\operatorname{sinc}(n)x●木桶函数●f(x) = \frac{1}{2}(1+\sin(x)+\cos(x)-\sqrt{2}\sin(x)\cos(x))●索度函数●f(x) = \frac{1}{\Gamma(x)}\int_0^{\infty}\frac{t^{x-1}}{e^t-1}dt●拉马努金级数●\frac{1}{\pi} =\frac{2\sqrt{2}}{9801}\sum_{k=0}^{\infty}\frac{(4k)!(1103+26390k)}{(k!)^4396^{4k}}●f(x,a)=\begin{cases} 1,&\text{if }x=0 \\ e^{-a^2/x}f(x-1,a),&\text{if }x>0 \end{cases} ●虚数单位函数●e^{\pi i}=-1●蓝牛函数●f(x) = \begin{cases} x+1, &\text{if } x<0 \\ 1-\frac{1}{x+1}, &\text{if } x\geq 0\end{cases}●Lame方程解●y(x) = c_1s(x)\phi(\frac{2-x}{3};\frac{1}{2},\frac{11}{6})+c_2s(x)\phi(\frac{1+x}{3};\frac{1}{2},\frac{5}{6}) ●凯库勒-勒让德函数●Q_l(x) =\frac{\sqrt{\pi}2^ll!}{(2l+1)!!}\frac{1}{\sin^{l+1}(x)}\frac{d^l}{dx^l}(\sin^{2l+1}(x)) ●光滑分割函数●f(x) = \begin{cases} x^2, &\text{if } 0\leq x<1 \\ 2x-1, &\text{if } 1\leq x<2 \\ -x^2+4x-3,&\text{if } 2\leq x\leq 3 \end{cases}●博巴斯-威哥特斯函数●f(x) = \prod_{n=1}^{\infty}\frac{\cos(\frac{x}{2^n})}{\cos(\frac{x}{2^{n+1}})}●奎斯特函数●f(x) = \sum_{n=1}^{\infty}\frac{\sin(nx)}{2^n}●诺曼函数●f(x,n) = \sqrt{n}\int_0^1\frac{\cos(nx\sqrt{1-|t-1/2|})}{\sqrt{1-t^2}}dt●荷兰帽函数●f(x) = \begin{cases} 1-\frac{3}{4}x^2, &\text{if } |x|\leq\frac{2}{3} \\ \frac{1}{12}(2-|x|)^3, &\text{if } \frac{2}{3}<|x|\leq 2 \\ 0, &\text{if } |x|>2 \end{cases}●威图维尔函数●f(x) = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}(\cos(nx)-\cos(\sqrt{2}nx))●吸引子函数●f(x) = x^3-\frac{1}{2}●阿英函数●f(x) = \lim_{n\rightarrow\infty}\frac{1}{n}\ln(e^{nx}-1)●弓形函数●f(x) = \frac{1}{\sqrt{2}}\sqrt{\frac{1+\cos x}{1-\cos x}}●格罗滕迪克函数●\phi(x) = \exp(\frac{1}{x-1}-\frac{1}{x})●心形曲线●(x^2+y^2-1)^3-x^2y^3=0●f(x) = \operatorname{rect}(\frac{x}{2})●泰勒对数函数●f(x) = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}(x-1)^n●宽贝塞尔函数●K_0(x) = \int_0^{\infty}\cos(x\cosh(t))dt●特赫米勒函数●F(t) = \int_0^{\infty}f(x)\cos(tx)dx●维特比函数●f(i,j) = \max_{i-1\leq k\leq j-1}\{f(i-1,k)+c(k,j)\}●勒让德多项式●P_n(x) = \frac{1}{2^n n!}\frac{d^n}{dx^n}(x^2-1)^n●炮弹函数●f(x) = \frac{1}{100}(x-50)^2+\sin(x)●阶梯函数之积●f(x) = \prod_{n=1}^{\infty}\begin{cases} 1,\quad x\leq n \\ n,\quad x>n \end{cases} ●阴谋论者函数●f(x) = \begin{cases} x-\lfloor x\rfloor-\frac{1}{2}, &\quad x>0 \\ -x+\lfloor -x\rfloor+\frac{1}{2}, &\quad x<0 \end{cases}●多项分布概率密度函数●P(X_1=k_1,X_2=k_2,\ldots,X_n=k_n) = \binom{N}{k_1k_2\ldots k_n}\prod_{i=1}^np_i^{k_i}●莫斯科维茨函数●f(n) = \sum_{d|(n-1)!}\mu(d)\lfloor\frac{n}{d}\rfloor●比特曼函数●\Psi(x) = \sum_{n=1}^{\infty}\frac{\cos(n\pi x)}{n^s}●心形函数●f\left( x\right) =\sqrt{\left\vert x\right\vert } +0.9\sqrt{4-x^{2}} \sin \left( ax\right)。

初中数学函数知识点总结6篇

初中数学函数知识点总结6篇

初中数学函数知识点总结初中数学函数知识点总结6篇总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,让我们抽出时间写写总结吧。

那么总结有什么格式呢?以下是小编整理的初中数学函数知识点总结,仅供参考,大家一起来看看吧。

初中数学函数知识点总结1课题3.5正比例函数、反比例函数、一次函数和二次函数教学目标1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式教学重点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学难点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学方法讲练结合法教学过程(I)知识要点(见下表:)第三章第29页函数名称解析式图像正比例函数ykx(k0)0x反比例函数一次函数ykxb(k0)0x二次函数yax2bxc(a0)y0xy0xky (k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0图像过点(0,0)及(1,k)的直线双曲线,x轴、y轴是它的渐近线与直线ykx平行且过点(0,b)的直线抛物线定义域RxxR且xoyyR且yoRR4acb2a0时,y,4aR 值域R4acb2a0时,y,4aba0时,在-,上为增2a函数,在,-单调性k0时,在,0,k0时为增函数0,上为减函数k0时,为增函数b上为减函数2ak0时为减函数k0时,在,0,k0时,为减函数0,上为增函数ba0时,在-,上为减2a函数,在,-b上为增函数2a奇偶性奇函数奇函数b=0时奇函数b=0时偶函数a0且x-ymin最值无无无b时,2a24acb4ab时,2a24acb4aa0且x-ymax第三章第30页b24acb2注:二次函数yaxbxca(x (a0))a(xm)(xn)2a4abb4acb2对称轴x,顶点(,)2a2a4a2抛物线与x轴交点坐标(m,0),(n,0)(II)例题讲解例1、求满足下列条件的二次函数的解析式:(1)抛物线过点A (1,1),B(2,2),C(4,2)(2)抛物线的顶点为P(1,5)且过点Q(3,3)(3)抛物线对称轴是x2,它在x轴上截出的线段AB长为2且抛物线过点(1,7)。

高二数学函数知识点归纳整理

高二数学函数知识点归纳整理

高二数学函数知识点归纳整理函数是高中数学中重要的概念之一,也是数学学习中的基础知识。

在高二数学学习中,我们需要系统地学习和掌握各种函数的性质和应用。

下面是对高二数学函数知识点的归纳整理。

一、基本概念函数是自然界中各种变化规律的数学抽象,它确定了两个数集之间的对应关系。

通常用字母表示函数,例如f(x)、g(x)等。

二、函数的表示方式1. 函数的显式表示方式:以y=f(x)形式表示函数,其中x称为自变量,f(x)称为函数值或因变量。

2. 函数的隐式表示方式:以F(x,y)=0形式表示函数,该形式能描述一些特殊的函数关系。

三、函数的定义域和值域1. 函数的定义域:表示自变量的取值范围,使得函数有意义。

2. 函数的值域:表示函数所有可能的取值范围。

四、函数的分类1. 代数函数:包括多项式函数、有理函数、指数函数、对数函数等。

2. 三角函数:包括正弦函数、余弦函数、正切函数等。

3. 特殊函数:包括阶乘函数、绝对值函数等。

五、函数的图像和性质1. 函数的图像:将函数的自变量和因变量对应的点在平面直角坐标系中表示出来,形成的图形称为函数的图像。

2. 函数的奇偶性:函数f(x)满足f(-x)=f(x)时,称函数为偶函数;满足f(-x)=-f(x)时,称函数为奇函数。

3. 函数的周期性:函数f(x)满足f(x+T)=f(x),其中T为正数,称函数具有周期性。

六、函数的运算1. 函数的加减:设有函数f(x)和g(x),则可以定义函数h(x)=f(x)+g(x)或h(x)=f(x)-g(x)。

2. 函数的乘法:设有函数f(x)和g(x),则可以定义函数h(x)=f(x)g(x)。

3. 函数的复合:设有函数f(x)和g(x),则可以定义函数h(x)=f(g(x))。

七、函数的应用1. 函数的最大值和最小值:利用函数的性质,可以求函数在定义域内的最大值和最小值。

2. 函数的增减性和极值:利用函数的导数求解函数的增减区间和极值。

高中数学知识点整理

高中数学知识点整理

高中数学知识点整理关键信息项:1、函数相关知识点函数的定义、性质和图像常见函数类型(如一次函数、二次函数、幂函数、指数函数、对数函数等)函数的单调性、奇偶性、周期性函数的定义域、值域函数的零点反函数2、三角函数相关知识点三角函数的定义和基本关系式三角函数的图像和性质诱导公式和差公式、倍角公式解三角形(正弦定理、余弦定理)3、数列相关知识点数列的定义和分类等差数列和等比数列的通项公式、求和公式数列的递推公式数列求和的方法(如错位相减法、裂项相消法等)4、立体几何相关知识点空间几何体的结构特征表面积和体积的计算点、线、面的位置关系直线与平面、平面与平面的平行和垂直的判定与性质5、解析几何相关知识点直线的方程(点斜式、斜截式、两点式、一般式)圆的方程(标准方程、一般方程)椭圆、双曲线、抛物线的标准方程和性质直线与圆、直线与圆锥曲线的位置关系6、概率与统计相关知识点随机事件和概率古典概型和几何概型离散型随机变量及其分布列期望和方差抽样方法和统计图表7、不等式相关知识点不等式的性质一元二次不等式的解法基本不等式线性规划8、导数相关知识点导数的定义和几何意义常见函数的导数公式导数的四则运算利用导数研究函数的单调性、极值和最值11 函数111 函数的定义设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。

记作:y=f(x),x∈A。

其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域;与 x 的值相对应的 y 值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域。

112 函数的性质1121 单调性设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁、x₂,当 x₁<x₂时,都有 f(x₁)<f(x₂)(或f(x₁)>f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。

高三整理函数知识点总结

高三整理函数知识点总结

高三整理函数知识点总结在高中数学中,函数是一个重要的概念和工具。

掌握了函数的基本概念和相关知识,可以帮助我们解决很多数学问题。

下面是高三整理的函数知识点总结。

一、函数的定义和性质1. 函数的定义:函数是一个将一个集合的每个元素映射到另一个集合的规则。

通常用f(x)表示函数,其中x是自变量,f(x)是因变量。

2. 函数的性质:函数包括定义域、值域、奇偶性、单调性、最值等性质。

其中定义域是自变量的取值范围,值域是因变量的取值范围。

二、初等函数1. 指数函数:指数函数指的是形如f(x)=a^x(a>0且a≠1)的函数,其中a是底数,x是指数。

2. 对数函数:对数函数指的是形如f(x)=loga(x)(a>0且a≠1)的函数,其中a是底数,x是对数。

3. 三角函数:包括正弦函数、余弦函数、正切函数等,它们与三角比的关系密切。

4. 反三角函数:包括反正弦函数、反余弦函数、反正切函数等,它们是三角函数的反函数。

5. 幂函数:幂函数指的是形如f(x)=x^n(n为整数)的函数,其中n可以是正整数、负整数或零。

6. 分段函数:分段函数是由不同的函数规则在不同的区间内定义的函数。

三、函数的图像和性质1. 函数的图像:函数的图像是函数在平面直角坐标系上的几何表示,通常是曲线或者直线。

2. 函数的对称性:函数可能有奇对称、偶对称、轴对称等对称性。

3. 单调性:函数的单调性指的是函数值的变化趋势,可以是递增、递减或者恒增、恒减。

4. 最值:函数的最大值和最小值是函数在定义域上的两个特殊点。

5. 零点:函数的零点指的是函数取零值的自变量的取值。

四、函数的运算1. 四则运算:函数可以进行加法、减法、乘法和除法的运算。

2. 复合函数:复合函数是将一个函数的输出作为另一个函数的输入进行运算的函数。

3. 反函数:反函数是函数的一种特殊形式,将函数的自变量和因变量交换得到。

五、函数的应用1. 函数方程:通过给出函数的性质,求解函数的具体形式的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数函数的概念及其表示初中学习的(传统)的函数的定义设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数. 高中函数:设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =)(x f ,x ∈A 。

其中x 叫自变量,x 的取值范围A 叫做函数y =)(x f 的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{)(x f |x ∈A},叫做函数y =)(x f 的值域。

函数符号y =)(x f 表示“y 是x 的函数”,有时简记作函数)(x f 。

函数的三要素:对应法则f 、定义域A 、值域{)(x f |x ∈A}注:只有当这三要素完全相同时,两个函数才能称为同一函数。

求函数的定义域的常见类型:(1)当)(x f 为整式时,定义域为R ;(2)当)(x f 为分式时,定义域为使分母不为0的x 的集合;(3)当)(x f 为n 次根式中的偶次根式时,定义域为使被开方式非负的x 的集合;(4)当)(x f 是由几个式子组成时,定义域是使各个式子都有意义的x 的取值的集合。

映射:设,A B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射.如果集合A 中的元素x 对应集合B 中元素y ,那么集合A 中的元素x 叫集合B 中元素y 的原象,集合B 中元素y 叫合A 中的元素x 的象. 映射概念的理解(1)映射B A f →:包含三个要素:原像集合A ,像集合B(或B 的子集)以及从集合A 到集合B 的对应法则f .两个集合A,B 可以是数集,也可以是点集或其他集合.对应法则f 可用文字表述,也可以用符号表示.映射是一种特殊的对应关系,它具有:(1)方向性:映射是有次序的,一般地从A 到B 的映射与从B 到A 的映射是不同的; (2)任意性:集合A 中的任意一个元素都有像,但不要求B 中的每一个元素都有原像; (3)唯一性:集合A 中元素的像是唯一的,即不允许“一对多”,但可以“多对一”.函数与映射的关系函数是特殊的映射,映射是函数的推广.〖注意〗(1)函数实际上就是集合A 到集合B 的一个特殊对应f :A →B 。

这里A ,B 为非空的数集。

(2)A :定义域,原象的集合;{)(x f |x ∈A}:值域,象的集合,其中{)(x f |x ∈A}⊆B ;f :对应法则,x ∈A ,y ∈B(3)函数符号:y =)(x f ,y 是x 的函数,简记)(x f单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为yxo增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)对“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,a -∞、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.函数的奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇.函数...(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去指数函数指数与指数幂的运算1.根式的概念:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.负数没有偶次方根;0的任何次方根都是0,记作00=n 。

当n 是奇数时,a a nn=,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1)ra ·sr r a a +=),,0(R s r a ∈>; (2)rss r a a =)(),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>. (二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1. 指数函数及其性质指数函数)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x≠>=且,总有a )1(f =;对数函数(一)对数1.对数的概念:一般地,如果N a x=)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式)说明:○1 注意底数的限制0>a ,且1≠a ;○2 x N N a a x=⇔=log ; ○3 注意对数的书写格式. 两个重要对数:○1 常用对数:以10为底的对数N lg ; ○2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化幂值 真数(二)对数的运算性质如果0>a ,0>N ,那么: ○1 M (log N a log ;○2 M a log -N a log ;○3 n M a log )(R n ∈.几个重要的对数恒等式:log 10a =,log 1a a =,log ba ab =.log a N a N = 注意:换底公式abb c c a log log log =(0>a ,且1≠a 0>b ).利用换底公式推导下面的结论 (1)b mnb a n a m log log =;(2)a b b a log 1log =. (二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

如:x y 2log 2=,5log 5x y = 都不是对数函数,而只能称其为对数型函数.○2 对数函数对底数的限制:0(>a ,且)1≠a . 2、对数函数的性质对数函数(三)幂函数1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数. 2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1); (2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴. 幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则qpy x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质 ①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--②当0a>时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2b x a =-时,2min 4()4ac b f x a-=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba-+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2bq a ->,则()m f q =①若02b x a -≤,则()M f q = ②0x ->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2bq a ->,则()M f q =xxxxx x(q)0x xf xf x①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.xfx xx。

相关文档
最新文档