一元二次方程的应用—增长率问题

合集下载

一元二次方程的应用(平均增长率问题)

一元二次方程的应用(平均增长率问题)

➢4.解:解所列的方程; ➢5.验:是否是所列方程的根;是否符合题 意; ➢6.答:答案也必需是完善的语句,注明单 位且要贴近生活。
➢列方程解应用题的关键是: ➢读懂题目中的每一句话, ➢理清数量关系,找出等量关系.
例、某钢铁厂去年1月某种钢的产量为5000 吨,3月上升到7200吨,这两个月平均每个月 增长的百分率是多少?
…… 第n次增长后的量是a(1+x)n=b 2、反之,假设增为长两率次公降式低.,则
两次平均降低率公式为 a(1-x)2=b
总结:
假设平均增长(或降低)百分率为x, 增长(或降低)前的是a, 增长(或降低)n 次后的量是b, 则平均增长〔降低〕 公式可表示为:
a(1x)n b
其中 增长取+ ,降低取-
依据什么来列等量关系
合作沟通
1.所列的等量关系为:
今年的使用率×〔1+年平均增长率〕2 =后年的 使用率
2.所列的等量关系为:
原价×〔1-年平均降价的百分率〕2=现价
总结: 1.两次平均增长后的量=原来的量●(1+增 长率)2 假设原来为a,平均增长率是x,增长后的量为 b
则 第1次增长后的量是a(1+x) =b 第2次增长后的量是a(1+x)2=b
探究:随着人民生活水平的不断
提高,我市家庭轿车的拥有量逐 年增加。据统计,某小区2023年 〔 元底 家再2〕拥 庭建为筑有 轿了假家车缓设解庭的干停个轿 拥车停冲车 有车突量6位,4。达辆该据小1,测0区算20打,0辆算2建。3投筑年资费1底用5万分 别 考〔为 虑1室 到〕内 实假车际位因设素50该,00小打元算/区个露,2天露0车2天位3车年的位数底1量0到0不0元少/个于,室 内2车02位3的年2倍底,家但庭不超轿过车室内拥车有位量的2年.5倍的,年求该 小 能平区 的均最 方多 案增可。长建率两种都车一位样各多,少求个?该试小写区出全到部可 2023年底家庭轿车将到达多少辆?

2.5 一元二次方程的应用(3)-增长率问题

2.5 一元二次方程的应用(3)-增长率问题

二次增长:新数=基数 (1+增长率)
2
开启
智慧
1.学校图书馆去年年底有图书5万册,预计到明年年 底增加到7.2万册.求这两年的年平均增长率.
解 : 设每年的平均增长率为x, 根据题意, 得
5(1 x)2 7.2.
解这个方程 : (1 x)2 1.44, (1 x) 1.2, x 1.2 1,
填空:
• • • • • • 1.已知两数的和为12,设一个数为x,则另一个数_________。 12-x X+4 2.两数的差为4,设较小的一个数为x,则另一个数为______。 X+2 3.两个连续奇数中小的一个为x,则另一个奇数为_________。 4.一个两位数的十位数是x,个位数是y,则这个两位数为 10x+y ______________。 5.某试验田去年亩产1000斤,今年比去年增产10%,则今年亩 1100 产为___________斤,计划明年再增产10%,则明年的产量为 1210 • ——————斤。 • 6.某厂一月份产钢50吨,二、三月份的增长率都是x,则该厂 三 50(1+x)2 • 月分产钢______________吨. 增长问题的数量关系是: 一次增长:新数=基数 (1+增长率)
补充作业:
A层
1.某公司去年一月份的营业额为40万元,三月份营 业额为90万元,求二、三平均每月增长率为多少?
2.某市进行环境绿化,计划两年内把绿化面积增 加44%,问平均每年增长的百分率是多少?
B层
1.两个连续奇数的积为63,求这两个数。
2.某农场的粮食产量在两年内从3000吨增加到3630 吨,求平均每年增长的百分率是多少?
解 : 设每年平均需降低的百分数为x, 根据题意, 得

列一元二次方程解应用题——增长率问题

列一元二次方程解应用题——增长率问题

17.4(2)一元二次方程的应用——应用题2班级姓名学号一、探究新知例4:某工厂七月份的产值是100万元,计划九月份的产值要达到144万元.如果每月产值的增长率相同,求这个增长率.例5:某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.二、应用新知1. 某企业研制的产品今年第一季度的销售数量为300件,第二季度由于市场等因素,销售数量比第一季度减少了4%,从第三季度起,该企业搞了一系列的促销活动,销售数量又有所提升,第四季度的销售量达到了450件,假设第三季度与第四季度销售数量的增长率相同,求这个增长率.2.某企业10月份的营业额为50万元,第四季度的营业额为182万元,若设后两个月平均营业额的增长率为x ,则由题意可得方程为 .3.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是 .4.某商场将原来每件进价80元的某种商品按每件100元出售,一天可出售100件,后来经过市场调查,发现这种商品单价每降低2元,其销量可增加20件.(1)求商场经营该商品原来一天可获利多少元?(2)若商场经营该商品一天要获得利润2160元,则每件商品应降价多少元?三、巩固练习1.某旅游公司2012年三月份共接待游客16万人次,2012年五月份共接待游客81万人次.设每月的平均增长率为x ,则可列方程为( )A .216(1)81x +=B .216(1)81x -=C .281(1)16x +=D .281(1)16x -=2. 某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x ,根据题意,可列出方程为( )A .250(1)60x +=B .250(1)120x +=C .25050(1)50(1)120x x ++++=D .250(1)50(1)120x x +++= 3. 祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪x 名学生,根据题意,列出方程4.某商品的原价为120元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是 元(结果用含m 的代数式表示).5. 某商品的利润为每件10元时,能卖500件,已知该商品每涨价1元,其销售量就要减少10件,为了赚8000元利润,设涨价为x 元,应列方程为 .6. 某工厂因为改进了生产工艺所以利润逐月提高.据统计,2017年第一季度的利润为2000万元,第三季度的利润为2880万元.(1)求该企业从第一季度到第三季度利润的平均增长率;(2)若第四季度保持前两季度利润的平均增长率不变,该企业2017年的年利润总和能否突破1亿元?7.某商厦4月份的营业额为40万元,第二季度的营业额为192万元,若设后两个月平均营业额的增长率为x,则由题意可得方程为.8.有一个人患了流感,经过两轮传染后共有81人患了流感.(1)试求每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人会患流感?9.随着中国特色的社会主义“新时代”的到来,小轿车已进入普通人民群众的生活.一辆小轿车新购置时价值是18万元,若第一年后使用折旧20%,以后其折旧率有所变化,现知第三年这辆轿车折旧后值11.664万元,求这辆轿车在第二、三年中的平均年折旧率.10.为落实素质教育要求,促进学生全面发展,某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,到2018年底共投资31.79万元.求该学校为新增电脑投资的年平均增长率.。

一元二次方程的应用——增长率问题

一元二次方程的应用——增长率问题
某种商品原来的产量为a,设年增 长率为x,那么增长一年后的产量 为___________, 若下一年的增长率 a(1+X) 仍为x,则下一年后的产量为 a(1+x)+a(1+x)x ____________, 即___________. a(1+x)2
小结:①若某种商品现在的产量为 a,设每年增长率都是x,则2年后 2 a(1+x) 的产量为__________. ②若某种商品现在的产量为a,设 每年下降率都是x,则2年后的产量 2 a(1-x) 为_____________. 总结公式:
2.某校去年对实验器材的投资为2万元,预计今明 两年的投资总额为8万元,若设该校今明两年在 实验器材投资上的平均增长率是x,则可列方程

.
1、平均增长(降低)率公式
a(1 x) b
2
2、注意: (1)1与x的位置不要调换 (2)解这类问题列出的方程一般 用 直接开平方法
解:设2002年,2003年 两年绿地面积的年平 3.美化城市,改善人们的居住环境已 均增长率为x,根据题 成为城市建设的一项重要内容。某城 意,得 市近几年来通过拆迁旧房,植草,栽 60 (1+x)2=72.6 . 树,修公园等措施,使城区绿地面积 (1+x)2=1.21. 不断增加(如图所示)。(1)根据 ∴1+x=±1.1. 图中所提供的信息回答下列问题: 2001年底的绿地面积为 60 公顷,∴ x1 = 0.1=10%, 比2000年底增加了 公顷;在 x2 =-2.1(不合题意,舍 4 去) 1999年,2000年,2001年这三年中, 答: 2002年,2003年 绿地面积增加最多的是 1998 1999 2000 2001 2000 ____________ 年; 两年绿地面积的年平 (2)为满足城市发展的需要,计划 均增长率为10%.

一元二次方程实际问题1(增长率)

一元二次方程实际问题1(增长率)
一元二次方程实际问题 1(增长率)
在这个部分,我们来学习一元二次方程的实际应用。这个问题涉及到增长率, 让我们一起来探索吧!
什么是一元二次方程?
一元二次方程是指只有一个未知数的二次方程,可以写成 Ax²+ Bx + C = 0 的形式。
一元二次方程的一般形式是什 么?
一元二次方程的一般形式是 Ax²+ Bx + C = 0,其中 A、B、C 是已知的常数, x 是未知数。
例题3的解法演示
让我们一起来解答实际问题3的例题,并演示如何求解一元二次函数的最大值和最小值。
例题3答案的意义是什么?
例题3的答案可以告诉我们一元二次函数在什么自变量取值下达到最大值和最 小值,帮助我们理解函数的特性。
如何求解一元二次函数的极值?
可以通过求导数和解方程来求解一元二次函数的极值。
实际问题3的例题介绍
我们将通过一个真实的例题来演示如何求解一元二次函数的最大值和最小值。
实际问题3的解题思路
1. 确定已知信息和未知数。 2. 列出一元二次函数。 3. 求导数并解方程得到未知数的值。 4. 计算最大值和最小值。
什么是实际问题?
实际问题是指与现实生活相关的问题,需要用数学方法来解决。
为什么需要将实际问题转化成一元二次 方程?
将实际问题转化成一元二次方程可以使问题更加具体化,便于用数学工具来求解。
实际问题1:增长率是什么?
增长率是指某个变量随时间变化的速度,可以用百分比或小数表示。
如何计算增长率?
增长率可以通过计算某一时间段内变量的变化量与初始值的比值来得到。
例题1的答案可以告诉我们在给定条件下的增长率,帮助我们理解实际问题的变化趋势。
实际问题1的注意点

(完整版)一元二次方程应用题经典题型汇总含答案

(完整版)一元二次方程应用题经典题型汇总含答案

z 一元二次方程应用题经典题型汇总一、增长率问题例 1 恒利商厦九月份的销售额为200 万元,十月份的销售额下降了20% ,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6 万元,求这两个月的平均增长率.解设这两个月的平均增长率是X.,则根据题意,得200(1 —20%)(1+ x)2= 193.6 ,即(1+x)2= 1.21,解这个方程,得x i = 0.1 , X2=— 2.1 (舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2= n求解,其中m v n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1 —x)2= n即可求解,其中m >n.二、商品定价例2 益群精品店以每件21 元的价格购进一批商品, 该商品可以自行定价, 若每件商品售价a元,则可卖出(350 —10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400 元,需要进货多少件?每件商品应定价多少?解根据题意,得(a—21)(350 —10a) = 400,整理,得a2—56a+775 = 0 ,解这个方程,得a1 = 25 , a2 = 31.因为21 p+20%) = 25.2,所以a2=31不合题意,舍去.所以350 —10 a= 350 —10 X25 = 100 (件).答需要进货100 件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率•(假设不计利息税)解设第一次存款时的年利率为X.则根据题意,得[1000(1+ x)- 500](1+0.9 x) = 530.整理,得90X2+145 x —3 = 0.解这个方程,得X i~0.0204 = 2.04% , X21.63.由于存款利率不能为负数,所以将X2~—1.63 舍去.答第一次存款的年利率约是 2.04%.说明这里是按教育储蓄求解的,应注意不计利息税四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得2(x+0.1+ x+1.4+0.1) x= 1.8,整理,得x2+0.8 x—1.8 = 0.解这个方程,得X1 = — 1.8 (舍去),X2= 1.所以x+1.4+0.1 = 1 + 1.4+0.1 = 2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为X,则十位数字为x - 3.则根据题意,得x2= 10(x —3)+ x,即X2-11X+30 = 0,解这个方程,得x= 5或x= 6.当x = 5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x = 6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979 , 1980 , 1984 , 1985.经核实,有一位同学统计无误•试计算这次比赛共有多少个选手参加•解设共有n个选手参加比赛,每个选手都要与(n —1)个选手比赛一局,共计n(n —1)1局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为2 n(n —1)局由于每局共计2分,所以全部选手得分总共为n(n —1)分•显然(n—1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0, 2 , 6,故总分不可能是1979 , 1984 , 1985,因此总分只能是1980,于是由n(n —1) = 1980,得n2—n —1980 = 0 ,解得n1 = 45 , n2=—44 (舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题, 法求解• 七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元•请问该单位 这次共有多少员工去天水湾风景区旅游?解设该单位这次共有 x 名员工去天水湾风景区旅游 •因为1000 >25 = 25000 V 27000,所以员工人数一定超过 25人.则根据题意,得[1000 — 20(x — 25)] x = 27000.整理,得 x 2 — 75X +1350 = 0,解这个方程,得 x i = 45 , X 2= 30.当 x = 45 时,1000 — 20( x — 25) = 600 V 700,故舍去 x i ;当 X 2= 30 时,1000 — 20(x — 25) = 900 >700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论都可以仿照些如果人数不超过25人 如果人数超过25人,每増加1 人人均放游费用降低20元 旦人均册费用不得低于700人均旅游费用海1000元.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为 原来荒地面积的三分之二•(精确到0.1m )(1 )设计方案1 (如图2)花园中修两条互相垂直且宽度相等的小路(2)设计方案2 (如图3)花园中每个角的扇形都相同 .以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由 解 都能.(1)设小路宽为 X ,则 18x +16x — x 2=^ X18 X15,即 x 2— 34X +180 = 0 ,解这个方程,得x = 2 ,即x ~ 6.6.(2)设扇形半径为 r ,则 3.14 r 2 =X18 X15 ,即卩 r 2疋 57.32,所以 r ~7.6.明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变; 积也变,但重量不变,等等九、动态几何问题例9 如图 4所示,在△ ABC 中,/ C = 90?/SPAN> , AC = 6cm , BC = 8cm ,点 P 从 点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动(1)如果P 、Q 同时出发,几秒钟后,可使△ PCQ 的面积为8平方厘米?X ,或形变(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△ PCQ 的面积等于△ ABC 的面积的一半•若存在,求出运动的时间;若不存在,说明理由(1 )设 x s 后,可使△ PCQ 的面积为 8cm 2,所以 AP = x cm , PC = (6 — x )cm , CQ =2x cm.则根据题意,得(6 — x ) 2x = 8.整理,得X 2— 6x +8 = 0,解这个方程,得 x i = 2, X 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△ PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△ PCQ 的面积等于△ ABC 面积的一半•1 1 1则根据题意,得 2(6 — x ) 2x =2 x2 x6 X8.整理,得 x 2— 6x +12 = 0.由于此方程没有实数根,所以不存在使厶 PCQ 的面积等于ABC 面积一半的时刻•说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度x 时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m.(1) 若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2) 若梯子的底端水平向外滑动 1m ,梯子的顶端滑动多少米?(3 )如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角 =8 (m ).(1 )若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m.因为/ C = 90?/SPAN>,所以AB ="汙\取匸=用卜『=10(cm )(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ ABC的则根据勾股定理,列方程72+(6+ x)2= 102,整理,得x2+12 x—15 = 0 ,解这个方程,得X i~ 1.14 , X213.14 (舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8 —X)2+(6+1)2= 100.整理,得X2—16X+13 = 0.解这个方程,得X1~ 0.86 , X2 ~ 15.14 (舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程(8 —X)2+(6+X)2= 102,整理,得2x2—4x = 0,解这个方程,得X1 = 0 (舍去),X2= 2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南方向200 海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC 的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航•一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1) F位于D的正南方向,贝U DF丄BC•因为AB丄BC, D为AC的中点,所以DF =2 AB = 100海里,所以,小岛D与小岛F相距100海里.(2 )设相遇时补给船航行了x海里,那么DE = x海里,AB+BE= 2x海里,EF= AB+BC -(AB+ BE)—CF= (300 - 2x)海里.在Rt△ DEF中,根据勾股定理可得方程x2= 100 2+(300 - 2x)2,整理,得3x2-1200 x+100000 = 0.lOtK/6 10(K/6解这个方程,得X1 = 200 —孑 ~ 118.4 , X2 = 200+3 (不合题意,舍去)•所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12 X12个小正方形格,将边长为n (n 为整数,且2w n< 11 )的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n Xi的纸片正好盖住正方形ABCD左上角的n刈个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n - 1) X n —1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,冼成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n23456使用的纸片张数(2 )设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S i,未被盖住的面积为S2.①当n = 2时,求S i : S2的值;解(1 )依题意可依次填表为: 11、10、9、8、7.②是否存在使得S i = S2的n值?若存在,请求出来;若不存在,请说明理由(2) S1 = n2+(12 - n)[n2—(n - 1)2] = - n2+25 n - 12.①当n = 2 时,S1 = - 22+25 X2 - 12 = 34 , S2= 12 X12 - 34 = 110.所以S1 : S2 = 34 : 110 = 17 : 55.1②若S1 = S2,则有—n2+25 n —12 =? X122,即n2—25 n +84 = 0 ,解这个方程,得n1 = 4 , n2= 21 (舍去).所以当n = 4时,S1= S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于 12cm 2吗?若能,求出两段铁丝的长度; 若不能, 请说明理由解(1)设剪成两段后其中一段为 x cm ,则另一段为(20 — x ) cm.当 x = 16 时,20 — x = 4,当 x = 4时,20 — x = 16 , 答 这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为 y cm ,则另一段为(20 — y ) cm.则由题意得I 4丿+1 4丿=12,整理,得 y 2— 20 y +104 = 0,移项并配方,得(y — 10) 2 =—4v 0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.说明 本题的第(2 )小问也可以运用求根公式中的 b 2 — 4ac 来判定 若b 2 — 4ac >0,方程有两个实数根,若 b 2— 4ac v 0,方程没有实数根,本题中的b 2 — 4ac =— 16 v 0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形 ABCD 中,AB = DC = 5 , AD = 4 , BC = 10.点E?^下底边BC 上,点F 在腰AB 上.(1 )若EF 平分等腰梯形 ABCD 的周长,设BE 长为X ,试用含x 的代数式表示 △ BEF 的面积; (2) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时分成1 : 2的两部分?若存在,求此时BE 的长;若不存在,请说明理由则根据题意,得 =17,解得 X i = 16X 2 = 4 ,Be K解(1 )由已知条件得,梯形周长为12,高4,面积为28.过点F作FG丄BC于G,过点A作AK丄BC于K.12 - K则可得,FG= 总,込24所以S A BEF=BEFG=—§ x2+ x (7 < x < 10).2 24(2)存在.由 (1 )得—5 x2+ 5 x = 14,解这个方程,得x i = 7, X2 = 5 (不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE= 7.(3)不存在•假设存在,显然有S A BEF : S多边形AFECD = 1 : 2,2 16 28即(BE+BF):(AF+AD + DC) = 1 : 2.则有一5 x2+ 5 x =3 ,整理,得3x2—24x+70 = 0,此时的求根公式中的b2—4ac = 576 —840 V 0,所以不存在这样的实数X.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1 : 2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得X2 = 5时,并不属于7 < X W 10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1的小正方形组成:(1 )观察图形,请填写下列表格:正方形边长 13黑色小正方形个数 正方形边长 24黑色小正方形个数(2 )在边长为n (n > 1)的正方形中,设黑色小正方形的个数为个数为P 2,问是否存在偶数.n ,使P 2= 5P i ?若存在,请写出 n 的值;若不存在,请说明 理由.解(1)观察分析图案可知正方形的边长为 1、3、5、7、…、n 时,黑色正方形的个 数为1、5、9、13、2n — 1 (奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形 的个数为4、& 12、16、2n (偶数)•(2 )由(1 )可知n 为偶数时P 1 = 2 n ,所以P 2= n 2— 2n .根据题意,得n 2 — 2 n = 5 x 2n ,即n 2 —12 n = 0,解得n 1= 12 , n 2 = 0 (不合题意,舍去).所以存在偶数n = 12,使得P 2 =5P 1.n (奇数)n (偶数)P i ,白色小正方形的说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。

列一元二次方程解应用题——增长率问题

列一元二次方程解应用题——增长率问题

(2)一元二次方程的应用——应用题2班级姓名学号一、探究新知例4:某工厂七月份的产值是100万元,计划九月份的产值要达到144万元.如果每月产值的增长率相同,求这个增长率.例5:某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.二、应用新知1. 某企业研制的产品今年第一季度的销售数量为300件,第二季度由于市场等因素,销售数量比第一季度减少了4%,从第三季度起,该企业搞了一系列的促销活动,销售数量又有所提升,第四季度的销售量达到了450件,假设第三季度与第四季度销售数量的增长率相同,求这个增长率.2.某企业10月份的营业额为50万元,第四季度的营业额为182万元,若设后两3.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,4.某商场将原来每件进价80元的某种商品按每件100元出售,一天可出售100件,后来经过市场调查,发现这种商品单价每降低2元,其销量可增加20件.(1)求商场经营该商品原来一天可获利多少元(2)若商场经营该商品一天要获得利润2160元,则每件商品应降价多少元三、巩固练习1.某旅游公司2012年三月份共接待游客16万人次,2012年五月份共接待游客81万人次.设每月的平均增长率为x ,则可列方程为() A .216(1)81x B .216(1)81x C .281(1)16x D .281(1)16x2. 某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x ,根据题意,可列出方程为( )A .250(1)60xB .250(1)120xC .25050(1)50(1)120x xD .250(1)50(1)120x x3. 祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程4.某商品的原价为120元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是 元(结果用含m 的代数式表示).5. 某商品的利润为每件10元时,能卖500件,已知该商品每涨价1元,其销售6. 某工厂因为改进了生产工艺所以利润逐月提高.据统计,2017年第一季度的利润为2000万元,第三季度的利润为2880万元.(1)求该企业从第一季度到第三季度利润的平均增长率;(2)若第四季度保持前两季度利润的平均增长率不变,该企业2017年的年利润总和能否突破1亿元7.某商厦4月份的营业额为40万元,第二季度的营业额为192万元,若设后两8.有一个人患了流感,经过两轮传染后共有81人患了流感.(1)试求每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人会患流感9.随着中国特色的社会主义“新时代”的到来,小轿车已进入普通人民群众的生活.一辆小轿车新购置时价值是18万元,若第一年后使用折旧20%,以后其折旧率有所变化,现知第三年这辆轿车折旧后值万元,求这辆轿车在第二、三年中的平均年折旧率.10.为落实素质教育要求,促进学生全面发展,某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,到2018年底共投资万元.求该学校为新增电脑投资的年平均增长率.。

一元二次方程的应用增长率问题

一元二次方程的应用增长率问题

一元二次方程的应用增长率问题一、连续复利公式连续复利公式是描述连续复利增长的一种数学模型,它在金融、投资等领域有着广泛的应用。

一元二次方程在连续复利公式中表现为等比数列求和的数学表达式。

通过解这个方程,可以计算出连续复利增长下的未来值。

二、投资增长模型投资增长模型是描述投资资产随时间增长的一种数学模型。

在这个模型中,一元二次方程可以用来描述投资资产的增长率与时间的关系。

通过解这个方程,可以预测投资资产的未来增长趋势,为投资者提供决策依据。

三、人口增长模型人口增长模型是描述人口随时间增长的一种数学模型。

一元二次方程在这个模型中表现为二次方程的人口增长函数。

通过解这个方程,可以预测未来人口的增长趋势,为政府制定人口政策提供参考。

四、商品价格增长模型商品价格增长模型是描述商品价格随时间变化的一种数学模型。

一元二次方程在这个模型中可以用来描述商品价格的季节性变化、市场供需变化等因素对价格的影响。

通过解这个方程,可以预测未来商品价格的走势,为商家和消费者提供决策依据。

五、化学反应速率方程化学反应速率方程是描述化学反应速率与反应物浓度之间关系的数学模型。

一元二次方程在这个模型中可以用来描述反应速率与反应物浓度之间的非线性关系。

通过解这个方程,可以预测化学反应的速率和反应物的消耗情况。

六、微生物培养问题微生物培养问题涉及到微生物的生长和繁殖过程。

一元二次方程在这个问题中可以用来描述微生物生长速率与培养条件之间的关系。

通过解这个方程,可以优化培养条件和提高微生物的产量。

七、贷款及信用卡利率问题贷款及信用卡利率问题是金融领域中的常见问题。

一元二次方程在这个问题中可以用来描述利率与贷款或信用卡余额之间的关系。

通过解这个方程,可以计算出不同利率下的未来还款金额和偿还时间。

八、股票价格与预期收益股票价格与预期收益是金融市场中的重要问题。

一元二次方程在这个问题中可以用来描述股票价格与预期收益之间的关系。

通过解这个方程,可以预测不同预期收益下的股票价格走势,为投资者提供决策依据。

一元二次方程的应用(增长率问题)

一元二次方程的应用(增长率问题)
2、用一元二次方程解决特殊图形问题时,通常要先画出图形, 利用图形的面积找相等关系列方程. 同时要注意检验所解得 的结果是否符合实际意义.
1.完成课本43页 3、4 45页 7、8 46页 15
2、同步顶尖
第二十二章 一元二次方程
22.3 实践与探索 第2课时 增长率问题
我们总共学了几种方程?
一元一次方程 二元一次方程组
分式方程
一元二次方程
概念
解法
应用
回忆列方程解应用题的一般步骤?
第一步:审(弄清题意和题目中的已知数、未知数及等量关系) 第二步:设(设合理的未知数) 第三步:列(根据等量关系列出方程) 第四步:解(解这个方程,求出未知数的值) 第五步:验(检验根是否符合方程、符合题意) 第六步:答(按题目问题要求写出答案)
解:(1)设该种商品每次降价的百分率为x, 依题意得:400×(1-x)2=324, 解得x1=0.1=10%,x2=1.9(不合题意,舍去) (2)设第一次降价后售出该种商品m件,则第二 次降价后售出该种商品(100-m)件,第一次降 价 后 的 单 件 利 润 为 : 400 × (1 - 10%) - 300 = 60(元/件);第二次降价后的单件利润为:324- 300=24(元/件).依题意得:60m+24×(100- m)=36m+2400≥3210,解得m≥22.5,为使两次 降价销售的总利润不少于
x 解:设平均年增长率应为 ,依题意,得
(1 x)2 2
1 x 2
x1 2 1 ,x2 2 1
x1 0.414 41.4% , x1 3.414
因为增长率不能为负数
所以增长率应为 41.4%
答:这两年中财政净1、如果调整计划,两年后的产值为原产值的 1.5倍、1.2倍、…,那么两年中的平均年增长 率分别应调整为多少?

一元二次方程的应用(增长率问题经典版).ppt

一元二次方程的应用(增长率问题经典版).ppt

6. 某试验田去年亩产 1000 斤,今年比去年增产 10% ,则今年亩产 为 ___________ 斤 , 计 划 明 年 再 增 产 10% , 则 明 年 的 产 量 为
斤。
月分产钢____一月份产钢 50吨,二、三月份的增长率都是 50(1+x)2
小结 类似地 这种增长率的问题在实际
生活普遍存在,有一定的模式
若平均增长(或降低)百分率为x,增长 (或降低)前的是a,增长(或降低)n次后 的量是A,则它们的数量关系可表示为
a ( 1 x ) A
n
其中增长取+,降低取-
练习:
1.某厂今年一月的总产量为500吨,三月的总产
量为720吨,平均每月增长率是x,列方程( B A.500(1+2x)=720 C.500(1+x2)=720 B.500(1+x)2=720 D.720(1+x)2=500 )
3.某产品,原来每件的成本价是500元,若 每件售价625元,则每件利润是 每件利润 125.元 率是 . 25% 利润=成本价×利润率
4.康佳生产彩电,第一个月生产了5000台,第 二个月增产了50%,则:第二个月比第一个月 增加了 _______ 台,第二个月生产了 ______ 5000(1+50% 5000 ×50% 5. 康佳生产彩电,第一个月生产了5000台,第 二个月增产到150%,则:第二个月生产了 ________ 台;第二个月比第一个月增加了 5000×150% 50% ___________ 台, 增长率是________; 5000 (150% - 1)
3、某商场二月份的销售额为 100万元,三月份
有一人患了流感 , 经过两轮传染后 通过对这个问题的 共有121人患了流感 ,每轮传染中平均一 探究 ,你对类似的传播 个人传染了几个人 ? 问题中的数量关系有

数学人教版九年级上册一元二次方程的应用——增长率(下降率)问题

数学人教版九年级上册一元二次方程的应用——增长率(下降率)问题

练习2:某工厂第一季度的一月份生产电视机是 1万台,第一季度生产电视机的总台数是3.31 万台,求二月份、三月份生产电视机平均增长 的百分率是多少?
练习:
1.某厂今年一月的总产量为500吨,三月的总产
量为720吨,平均每月增长率是x,列方程( B A.500(1+2x)=720 C.500(1+x2)=720 B.500(1+x)2=720 D.720(1+x)2=万元,预计今明 两年的投资总额为8万元,若设该校今明两年在 实验器材投资上的平均增长率是x,则可列方程
2 2 ( 1 x ) 2 8 . ( 1 x ) 为
1、平均增长(降低)率公式
a ( 1 x ) b
n
2、注意: (1)1与x的位置不要调换,增长取“+”, 下降取“-” (2)解这类问题列出的方程一般 用直接开平方法,注意验根,看是否 符合实际意义。
生活中普遍存在,有一定的模式
若平均增长(或降低)百分率为x, 增长(或降低)前的是基数量a, 增长(或降低)n次后的量是b, 则它们的数量关系可表示为
n
a ( 1 x ) b
其中增长取+,降低取-
探究1: 两年前生产1吨甲种药品的成本是5000元, 随着生产技术的进步,现在生产 1吨甲种药品 的成本是3000元,甲种药品成本的年平均下 降率是多少? 设甲种药品成本的平均下降率为x ,
3.一批上衣原来每件500元,第一次降价销售甚慢,第二次大幅度 降价的百分率是第一次的2倍,结果以每件240元的价格迅速售出, 求每次降价的百分率
1. 某厂今年1月份的总产量为100吨,平均每月 增长10%, 则:二月份总产量为 吨; 三月份总产量为 吨 2. 某厂今年1月份的总产量为500吨,设平均 每月增长率是x 则: 二月份总产量为 吨; 三月份总产量为 吨。 3.某型号的手机连续两次降价,若两次降价的百 分率都为x,手机原来售价1285元,则:第一次降价 后手机的售价为( ) 元; 第二次降价后手机的售价为( )元

一元二次方程的应用--增长率问题

一元二次方程的应用--增长率问题

一元二次方程的应用 (增长率问题)知识要点:1.建立一元二次方程的增长率模型并运用它解决实际问题。

2.平均增长(或降低)率公式 其中x 是平均增长(或降低)百分率,a 是增长(或降低)前的量,b 是增长(或降低)n 次后的量,增长用“+”,降低用“-” 注意:(1)1与x 的位置不能换.(2)解决这类问题列出的方程一般用直接开平方法.典型题:1.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m ,若每年的年增长率相同,则年增长率为( )A .9%B .10%C .11%D .12%2. 光华机械厂生产某种产品,1999年的产量为2000件,经过技术改造,2001年的产量达到2420件,平均每年增长的百分率是多少?3. 某地区前年参加中考的人数为5万人,今年参加中考的人数为6.05万人.(1)问这两年该地区参加中考人数的年平均增长率是多少?(2)该地区3年来共有多少人参加过中考?4. 随着家庭轿车拥有量逐年增加,渴望学习开车的人也越来越多.据统计,某驾校2008年底报名人数为3 200人,截止到2010年底报名人数已达到5 000人.(1)若该驾校2008年底到2010年底报名人数的年平均增长率均相同,求该驾校的年平均增长率.(2)若该驾校共有10名教练,预计在2011年底每个教练平均需要教授多少人?5. 据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游()b x a n =+1总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?6. 某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.求平均每次下调的百分率;7.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?8. 菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由。

第12课 一元二次方程的应用(3)(增长率问题)

第12课 一元二次方程的应用(3)(增长率问题)

四、过关检测
第1关
13.某公司2015年盈利1 500万元,到2017年盈利2 160万元,
假设每年盈利的年增长率相同.
(1)求这个增长率;
(2)预计2018年盈利多少万元?
解:(1)设年盈利增长率为x,依题意得1500(1+x)2=2160 解这个方程(1+x)2=1.44 1+x=±1.2 x1=0.2,x2=-2.2 (2)2592万元
8. 某商品原价100元,连续两次降价后的价格为64元,
若每次降价的百分率相同,求每次降价的百分率.
解:设每次降价的百分率为x, 依题意得 100(1-x)2=64 解这个方程 (1-x)2=0.64 1-x=±0.8 x1=0.2,x2=1.8(舍去) 所以每次降价的百分率为20%.
9.(例 3)有一人患了流感,经过两轮传染后共有 121 人患了 流感.问(1)每轮传染中平均一个人传染了几个人?(2)三 轮感染后共有多少人患了流感?
上升,二月份比计划盈利减少20%,从三月份开始,公司采
用新技术,盈利不断上升,四月份盈利达到121万元.
(1)二月份实际盈利___1_0_0___万元;
(2)求二月份到四月份盈利的月平均增长率.
解:(2)设月平均增长率为 x. 依题意得 100(1+x)2=121 解这个方程 (1+x)2=1.21 1+x=±1.1 x1=0.,x2=2.1(舍去),所以月平均增长率为10%.
(2)若第二天、第三天每天拆迁面积比前一天增长的百分率相同,
求这个百分率.
解:(2)设增长的百分率为x,依题意得1000(1+x)2=1440 解这个方程 (1+x)2=1.44 1+x=±1.2 x1=0.2,x2=-2.2(舍去),所以增长的百分率为20%.

第二十一章 第12课 一元二次方程的应用(3)(增长率问题)

第二十一章 第12课 一元二次方程的应用(3)(增长率问题)

解:(1)设每轮传染中平均一个人传染了 x 个人,由题意,得 1+x+x(1+x)=64, 解得:x=7 或 x=-9(舍去),∴x=7. 答:每轮传染中平均一个人传染了 7 个人; (2)把 x=7 代入,得 64x=64×7=448(人) 答:如果不及时控制,第三轮又将有 448 人被传染.
11.某种植物主干长出若干数目的分支,每个分支长出相同数 目的小分支,主干、分支、小分支的总数为 241,要求每个分支长 出多少个小分支.若设主干有 x 个分支,依题意列方程正确的是 ( B)
PPT课程
主讲老师:
第二十一章 一元二次方程
第12课 一元二次方程的应用(3)(增长率问题)
1.某药品两年前的价格为 200 元,现在价格为 128 元,求该 药品价格年平均下降率.
解:设该药品价格年平均下降率为 x. 200(1-x)2=128 解得:x1=0.2,x2=1.8 (舍去) 答:该药品价格年平均下降率为 20%.
2.有一人患了流感,经过两轮传染后共有 64 人患病. (1)求每轮传染中平均一个人传染了几个人? (2)按这样的传染速度,经过三轮传染后,患流感的人数是 否突破 600 人?
解:(1) 设平均一个人传染了 x 人 则 1×(1+x)2=64 解得;x1=7,x2=-9 (舍去) 答:平均一个人传染了 7 人.
谢谢!
5.某厂一月份生产某机器 100 台,计划二、三月份共生产 280 台.设二、三月份每月的平均增长率为 x,根据题意列出的 方程是_1_0_0_(_1_+__x)_+__1_0_0_(_1_+__x_)2_=__2_8_0____.
6.某种植物的主干长出若干个枝干,每个枝干又长出同样数 目的小分支,主干、枝干、小分支的总数目为 13,设主干 长出 x 个枝干,则列方程为_1_+__x_+__x_2_=__1_3______.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拓展探究
• 1.某商品经过两次降价,若售价降低了 36﹪,求平均每次降低的百分率。 • 2.某超市一月份的营业额是200万元,第一 季度的总营业额是1400万元,求二、三月 份营业额的平均增长率。
概括:
• a(1±x)2=b • a+a(1±x)+a(1±x)2 =b
(三)检测达标、总结升华
• 课本第30页下面练习: • 将第1题的6000元改为72000元。 • 将第2题的48改为40,183改为190.
一元二次方程的应用—增长率问题
灌涨初中 数学组
2012年9月12日
学习目标
• 1.理解并掌握增长率问题a(1±x)2=b和 a+a(1±x)+a(1±x)2=b的思考方法。 • 2.通过自学、分析、讨论、培养分析问题的 能力。 • 3.培养合作探究的科学精神。
• 导入练习: • 1.某地去年产量是100千克,今年增长了10﹪,则 今年的产量是——千克,预计明年再增长10﹪,则今 年的产量是——千克。 • 2.某件上衣的价格是80元,现降低了20﹪,则现售 价是——元,计划再降低20﹪,则计划售价是——元。 • 3.某工厂计划一月份加工500件产品,二、三月份的 平均增长率为x,则二月份加工——件,三月份加 工——件。 • 4.某汽车售价是8万元,计划连续两次降价,且降价 的百分率是y,则第二次降价后的售价是——万元。
(一)自学自悟、奠定基础
自学课本第30页例8回答下列问题: 1.第一次降价后的价格用x表示为——。 2.第二次降价后的价格用x表示为——。 3.本题的相等关系是——。 4.为何要将x=1.75舍去? 5.最后结果用什厶形式表示?
(二)探究归纳、培养能力
• 1.某工厂三月份用水3000吨,五月份增长 到3630吨,若四、五月份增长的百分率相 同,求每月增长的百分率。 • 2.某超市一月份的销售额为60万元,二月 份销售额下降了10﹪,后加强管理,四月 份猛增到96万元,求三、四月份的平均增 长率。(精确到0.1℅ )
归纳梳理
• 本节课有何收获? • 有那些要注意
相关文档
最新文档