中考数学常用公式和定理大全之代数
最新中考数学常用代数公式和几何结论汇总
最新中考数学常用代数公式和几何结论汇总近年来,中考数学常用代数公式和几何结论有所调整和变化。
下面是一个汇总,包含了一些常用的代数公式和几何结论。
代数公式:1. 二次方程的根公式:设ax^2+bx+c=0为一元二次方程,其解为x= (-b±√(b^2-4ac))/2a。
2.因式分解公式:(1)平方差公式:a^2-b^2=(a+b)(a-b)。
(2)完全平方公式:a^2+2ab+b^2=(a+b)^2(3)求和差的立方公式:a^3+b^3=(a+b)(a^2-ab+b^2), a^3-b^3=(a-b)(a^2+ab+b^2)。
(4)平方和公式:(a+b)^2=a^2+2ab+b^23. 比例公式:在等比或等差数列中,设a是首项,d是公差(等差数列)、r是公比(等比数列),则第n项为an,有如下公式:(1)等差数列:第n项an=a+(n-1)d,前n项和Sn=(n/2)(a+an)。
(2)等比数列:第n项an=ar^(n-1),前n项和Sn=a(1-r^n)/(1-r)。
4.百分数和利率问题公式:(1)百分数的基本公式:百分数=a/b*100%,其中a是部分,b是整体。
(2)增长率和减少率公式:增长率=(新值-原值)/原值*100%减少率=(原值-新值)/原值*100%(3)利率问题公式:简单利率:利息=本金*利率*时间复利公式:利息=本金*(1+利率)^时间-本金几何结论:1.直角三角形的勾股定理:设三角形ABC,边AB、BC、AC分别为直角三角形的斜边、两条直角边,满足AB^2+BC^2=AC^22.平行线之间的夹角:(1)同位角和内错角的性质:同位角相等,内错角互补。
(2)同位角的性质:同位角是平行线与横截线之间的对应角,包括同旁内角和同旁外角,同旁内角相等,同旁外角互补。
3.直角三角形中的正弦、余弦和正切:(1)正弦定理:设∠A是锐角,a是边BC,有sinA=a/AC。
(2)余弦定理:设∠C是锐角,c是边AB,有cosC=(a^2+b^2-c^2)/2ab。
初高中数学公式定理大全
初高中数学公式定理大全由于数学的公式定理非常多,要一一列举完全是非常困难的。
下面我列举一些初高中数学中常用的公式和定理。
一、代数与函数1.二次方程的求根公式:对于一元二次方程ax² + bx + c = 0,其求根公式为:x = (-b ± √(b² - 4ac)) / (2a)。
其中,当判别式Δ = b² - 4ac > 0时,方程有两个不相等的实根;当Δ = 0时,方程有两个相等的实根;当Δ < 0时,方程没有实根。
2.四则运算性质:加法交换律:a+b=b+a乘法交换律:a×b=b×a加法结合律:(a+b)+c=a+(b+c)乘法结合律:(a×b)×c=a×(b×c)加法与乘法的分配律:a×(b+c)=a×b+a×c(a+b)×c=a×c+b×c3.平方差公式:(a+b)×(a-b)=a²-b²4.二项式定理:对于任意实数a和b以及正整数n,二项式定理表示:(a + b)ⁿ = C(n,0) × aⁿ + C(n,1) × aⁿ⁻¹b + C(n,2) × aⁿ⁻²b²+ ... + C(n,n-1) × abⁿ⁻¹ + C(n,n) × bⁿ其中C(n,i)表示从n中选择i个的组合数。
5.函数性质:函数的定义域和值域:对于函数y=f(x),其定义域是所有满足使函数有意义的x值的集合。
值域是所有可能的y值的集合。
二、数列与级数1.等差数列的通项公式:对于等差数列an = a₁ + (n - 1)d,其中a₁为首项,d为公差,an为第n项,其通项公式为:an = a₁ + (n - 1)d。
2.等差数列的前n项和公式:对于等差数列an = a₁ + (n - 1)d,其中a₁为首项,d为公差,an为第n项,其前n项和公式为:Sn = n/2 (a₁ + an)。
中考数学公式大全归纳
中考数学公式大全归纳1.代数部分:- 二次方程的根公式:若ax²+bx+c=0,则 x= (-b±√(b²-4ac))/(2a)。
-四则运算:加减乘除的计算规则。
- 一元一次方程:ax+b=0,解为 x= -b/a。
-平方差公式:(a+b)(a-b)=a²-b²。
- 完全平方公式:(a+b)²=a²+2ab+b²。
- 分配律:a(b+c)=ab+ac。
- 因式分解公式:ab+ac=a(b+c)。
-平均值公式:(a+b)/22.几何部分:-直角三角形勾股定理:直角三角形两直角边的平方和等于斜边的平方。
- 正弦定理:a/sinA=b/sinB=c/sinC。
- 余弦定理:c²=a²+b²-2abcosC。
-面积公式:三角形的面积=(底边×高)/2-相似三角形的定理:对应角相等,对应边成比例。
-圆的面积公式:圆的面积=πr²,其中r为半径。
-圆的周长公式:圆的周长=2πr。
3.概率与统计部分:-互斥事件概率公式:P(A或B)=P(A)+P(B)。
-独立事件概率公式:P(A和B)=P(A)×P(B)。
-全概率公式:P(A)=P(A,B)×P(B)+P(A,B')×P(B'),其中B'为B的补事件。
-随机事件平均值公式:事件A的平均值=事件A发生次数/实验次数。
-取值范围:最大值=数列中的最大数,最小值=数列中的最小数。
4.函数部分:-y=x+b为一次函数的一般式,其中b为常数。
- y=kx 为比例函数的一般式,其中 k 为常数。
- y=ax²+bx+c 为二次函数的一般式,其中 a、b、c 为常数。
-y=a^x为指数函数的一般式,其中a为常数。
- y=loga(x) 为对数函数的一般式,其中 a 为底数,x 为真数。
中考数学常用代数公式和几何结论
中考数学常用代数公式和几何结论一、代数公式1.二次根式:若a>0,则√a(平方根a)的平方是a,即(√a)²=a。
2. 一次方程求根公式:对于一次方程ax+b=0(a≠0),它的根为x=-b/a。
3. 二次方程求根公式:对于二次方程ax²+bx+c=0(a≠0),它的根为x=(-b±√(b²-4ac))/(2a)。
4.平方差公式:a²-b²=(a+b)(a-b)。
5. 二次完全平方公式:a²+2ab+b²=(a+b)²。
6. 二次差平方公式:a²-2ab+b²=(a-b)²。
7. 平方和公式:a²+2ab+b²=(a+b)²。
8. 两个平方和公式:a²+b²=(a+b)²-2ab。
9.两个平方差公式:a²-b²=(a+b)(a-b)。
10.三角恒等式:包括正弦定理、余弦定理和正切定理等。
二、几何结论1.圆的面积公式:S=πr²,其中S表示圆的面积,r表示圆的半径,π≈3.142.圆的周长公式:C=2πr,其中C表示圆的周长,r表示圆的半径,π≈3.143. 三角形的面积公式:S=1/2bh,其中S表示三角形的面积,b表示三角形的底边长,h表示三角形的高。
4.三角形内角和公式:三角形的三个内角之和为180°。
5.三角形边长关系:三角形两边之和大于第三边,任意两边之差小于第三边。
6.相似三角形的边长比例:若两个三角形的对应边长度之比相等,则这两个三角形是相似三角形。
7.等腰三角形特性:等腰三角形的底边、顶角、底角相等。
8.等边三角形特性:等边三角形的三边相等。
9.正多边形内角和公式:正n边形的内角和为(2n-4)×90°,其中n 表示边数。
初中高中数学定理公式大全
初中高中数学定理公式大全1.代数运算定理:-加法交换律:a+b=b+a-减法交换律:a-b≠b-a-乘法交换律:a×b=b×a-除法交换律:a÷b≠b÷a-分配律:a×(b+c)=a×b+a×c2. 平方差公式:(a + b)² = a² + 2ab + b²3. 平方和公式:(a - b)² = a² - 2ab + b²4. 一元二次方程求根公式:x = (-b ± √(b² - 4ac)) / (2a)5. 正弦定理:a/sinA = b/sinB = c/sinC6. 余弦定理:c² = a² + b² - 2abcosC7. 对数公式:loga(ab) = loga(a) + loga(b)8.指数公式:a^m×a^n=a^(m+n)9.相反数的求法:-(-a)=a10. 完全平方公式:(a + b)² = a² + 2ab + b²11. 二项式定理:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n12.绝对值公式:,a×b,=,a,×,b13.分式的乘法公式:(a/b)×(c/d)=(a×c)/(b×d)14.微积分的基本定理:积分与微分是互逆的15.等腰三角形的定理:等腰三角形的底角相等,等腰三角形的两底边相等16.等边三角形的定理:等边三角形的三边相等,等边三角形的三个内角都是60度17.三角函数的和差化积公式:- 正弦的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinB- 余弦的和差化积公式:cos(A ± B) = cosAcosB ∓ sinAsinB18.直角三角形的勾股定理:a²+b²=c²19.等角三角函数的关系式:- 正弦和余弦的关系式:sin²θ + cos²θ = 1- 正切和余切的关系式:tanθ × cotθ = 120.对数函数的性质:-对数函数的底数必须大于0且不等于1- 对数函数的性质:loga(b × c) = loga(b) + loga(c)。
中考数学公式大全归纳
中考数学公式大全归纳下面整理了一些中考数学的常用公式,希望能对你的学习有所帮助。
1.代数和式:- 一次项和:(a + b)^2 = a^2 + 2ab + b^2- 平方差:(a - b)^2 = a^2 - 2ab + b^2-平方差公式:a^2-b^2=(a+b)(a-b)- 完全平方公式:(a + b)^ 2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^22.三角函数:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a^2 = b^2 + c^2 - 2bc*cosA,b^2 = a^2 + c^2 - 2ac*cosB,c^2 = a^2 + b^2 - 2ab*cosC- 正弦函数定义:sinA = 对边/斜边- 余弦函数定义:cosA = 邻边/斜边- 正切函数定义:tanA = 对边/邻边3.相似三角形:-边长比相等-对应角相等4.数列:-等差数列通项公式:an = a1 + (n - 1)d-等差数列求和公式:Sn = (a1 + an)n/2-等比数列通项公式:an = a1 * q^(n-1),其中q为公比-等比数列求和公式:Sn=a1(q^n-1)/(q-1)5.平面几何:-面积公式:矩形的面积=长*宽,三角形的面积=底边*高/2,梯形的面积=上底加下底的和*高/2,圆的面积=π*r^2-周长公式:正方形的周长=4*边长,矩形的周长=2*(长+宽),圆的周长=2*π*r6.平面解析几何:-中点公式:x=(x1+x2)/2,y=(y1+y2)/2-距离公式:两点之间的距离d=√((x2-x1)^2+(y2-y1)^2)7.三角函数:- 余角公式:sin(90° - A) = cosA,cos(90° - A) = sinA- 和差化积公式:sin(A + B) = sinA * cosB + cosA * sinB,cos(A + B) = cosA * cosB - sinA * sinB- 积化和差公式:sinA * sinB = (cos(A - B) - cos(A + B))/2,cosA * cosB = (cos(A - B) + cos(A + B))/28.指数与幂:- 指数运算公式:a^m * a^n = a^(m + n),(a^m)^n = a^(mn),(ab)^n = a^n * b^n-幂运算公式:a^(-m)=1/a^m,(1/a)^m=1/a^m以上是一些中考数学常用的公式,希望能对你的学习有所帮助。
中考数学必背公式汇总
中考数学必背公式汇总数学是一门基础学科,它在我们的学习和生活中起着重要的作用。
为了帮助同学们更好地备考中考数学,下面是一些必背的数学公式汇总。
1.代数公式:平方公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³(a - b)³ = a³ - 3a²b + 3ab² - b³二次因式定理:ax² + bx + c = (x - p)(x - q),其中p、q是方程ax² + bx + c = 0的两个根。
2.几何公式:周长公式:正方形的周长=4边长长方形的周长=2(长+宽)圆的周长=2πr,其中r是半径面积公式:正方形的面积=边长²长方形的面积=长×宽三角形的面积=底×高÷2梯形的面积=(上底+下底)×高÷2圆的面积=πr²体积公式:长方体的体积=长×宽×高正方体的体积=边长³圆柱的体积=πr²×高圆锥的体积=1/3πr²×高3.三角函数公式:正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c是三角形的边长,A、B、C是对应的角度。
余弦定理:c² = a² + b² - 2abcosC,其中c是三角形的边长,a、b是其他两边的边长,C是夹角。
正切公式:tanA = sinA/cosA4.概率公式:基本概率公式:P(A)=n(A)/n(S),其中P(A)是事件A发生的概率,n(A)是事件A发生的次数,n(S)是样本空间中的总次数。
初中数学基础定理公式(代数篇)
初中数学基础定理公式纸数篇⼀实数9有理数除法法则1相反数的性质两数相除同号得正异号得负并把绝对值相除在数轴上表示互为相反数零除外的两个点位于原点零除以任何⼀个不等于零的数都得零的两侧并且到原点的距离相等除以⼀个数不等于零等于乘以这个数的倒数a D a x ia a-àià10有理数混合运算法则2绝对值先算乘⽅再算乘除最后算加减⼀个正数的绝对值是它本身⼀个负数的绝对值是它的如有括号先进⾏括号⾥的运算相反数零的绝对值是零互为相反数的两个数绝对值相等11平⽅根a f㤻⼀个正数有正负两个平⽅根它们互为相反数-a a o零的平⽅根是零负数没有平⽅根了数的⼤⼩⽐较在数轴上表示的两个数右边的数总⽐左边的数⼤公主⽅根正数都⼤于零负数都⼩于零正数⼤于负数⼀个正数有⼀个正的⽴⽅根两个正数⽐较⼤⼩绝对值⼤的数⼤两个负数⽐⼀个负数有⼀个负的⽴⽅根较⼤⼩绝对值⼤的数反⽽⼩零的⽴⽅根是零4有理数加法法则13同底数幂的乘法同号两数相加取与加数相同的符号并把绝对值相加同底数幂相乘底数不变指数相加异号两数相加取绝对值较⼤的加数的符号并⽤较am an amtnlm ru都是正整数⼤的绝对值减去较⼩的绝对值互为相反数的两个数相加得零⼀个数同零相加仍得14幂的乘⽅法则这个数幂的乘⽅底数不变指数相乘iiamncm n都是正整数5有理数加法的运算定律加法交换律a t b b t a15积的乘⽅法则加法结合律a t b⼗Eat btc积的乘⽅等⼀个因式分别乘⽅再把所得的幂相乘abt a吣n为正整数6有理数减法法则减去⼀个数等于加上这个数的相反数16同底数幂的除法a b at-1同底数幂相除底数不变指数相减ǎiiamn atT有理数乘法法则两数相乘同号得正异号得负并把绝对值相乘17零次幂与负指数幂任何数与零相乘积为零任何不等于零的数的零次幂都等于1a1at8有理数乘法的运算定律任何不等于零的数的⼒仍是正整数次幂等于这个数的乘法交换律axb⼆bxa1次幂的倒数乘法结合律axblxciaxlbxc cid ato隄正整数分配律a x btc axbtaxc⼆代数式11.分式的乘除法法则l合并同类项的法则分式乘分式⽤分⼦的积做积的分⼦分⺟的积做积的分⺟把同类项的系数相加所得结果作为系数字⺟和字⺟分式除以分式把除式的分⼦分⺟颠倒位置后与被除式相乘的指数不变iǎ毙iiii fi2代数式的去括号法则括号前是⼗号把括号和它前⾯的⼗号去掉括号⾥各12同分⺟分式相加减法则项都不变号括号前是把括号和它前⾯的⼆号去掉括号⾥同分⺟的分式相加减分式的分⺟不变把分⼦相加减各项都改变符号G P f3单项式与单项式相乘的法则单项式与单项式相乘把它们的系数同底数幂分别相乘13.⼆次根式的性质其余字⺟连同它的指数不变作为积的因式1a2a a_o⼼a Ya azo4单项式与多项式相乘的法则-a a o单项式与多项式相乘就是⽤单项式去乘多项式的每⼀项再把所tab1axtblazo bz得的积相加fiji azo brom at btc matmbtmc14⼆次根式的运算5多项式与多项式相乘的法则laxdb dablazo bz0多项式与多项式相乘先⽤⼀个多项式的每项乘另⼀个多项式的iyjlazo by每⼀项再把所得的积相加6乘法公式三⽅程与不等式平⽅差公式a1a b a2-51等式的性质完全平⽅公式atbiátzab5性质1如果a b那么a c吐a b2cizab5性质2如果a D那么a Ebc或Edict7单项式除以单项式的法则2解元⼀次⽅程的基本步骤单项式相除把系数同底数幂分别相除作为商的因式对于只去分⺟去括号移项合并同类项系数化为1在被除式⾥含有的字⺟则连同它的指数作为商的⼀个因式了⼆元⼀次⽅程组的解法8多项式除以单项式的法则代⼊消元法加减消元法多项式除以单项式先把这个多项式的每项除以这个单项式再把所得的商相加4元⼆次⽅程的公式法at btc m ai mtbi mtcim对于⼀元⼆次⽅程aitbxtc0at如果5-4aczo那么⽅程的两个根为9分式有意义的条件⼀吐15-4⽐x za分式中字⺟的取值不能使分⺟为零当分⺟的值为零时分式就没有意义5根的判别式5-4a o⽅程aitbxtc0at有两个不相等的实数根10分式的基本性质5-4a o⽅程cibxtc⼆0件有两个相等的实数根分式的分⼦与分⺟都剩或除以同⼀个不等于零的整式分式5-4a o⽅程aitbxtc⼆0at没有实数根的值不变BA⼆合笟BA⼆合梁其中是不等于零的整式6⼀元⼆次⽅程根与系数的关系如果不加是⼀元⼆次⽅程ax4劰c0的两个根那么x tn P xixiǎ7不等式的性质4反⽐例函数的性质性质1i a b b c a c当k0时在图象所在的每⼀象限内函数值4随⾃变量x的增性质2i a b a c btc a c b c⼤⽽减⼩当k0时在图象所在的每⼀象限内函数值了随⾃acbiatcabtc a c be变量⼒的增⼤⽽增⼤性质3a咀csoiaobc fia1且oiacabc ci5次函数⽕以at图象的特征⼆次函数⽕chat的图象是⼀条抛物线它关刊轴对四函数称顶点是坐标原点当a0时抛物线的开⼝向上⼀⼀顶点是抛l坐标平⾯内点的对称物线的最低点当a0时抛物线的开⼝向下顶点是抛物线的在直⻆坐标系中点a1关于⼒轴的对称点的坐标为a b最⾼点关于性由的对称点的坐标为1-a b6.⼆次函数⽕ax4bxtc at图象的性质z⼀次函数的性质⼆次函数⽕aitbxtc at的图象是⼀条抛物线对于⼀次函数⽕kxtblk的常数且⽐0当k0时少随它的对称轴是直线不出顶点坐标是ǜii当a0 x的增⼤⽽增⼤当k0时 ⼒的增⼤⽽减⼩时抛物线的开⼝向上顶点是抛物线上的最低点当a0抛物线的开⼝向下顶点是抛物线上的最⾼点3反⽐例函数图象的特征反⽐例函数⽕ìlkt的图象是两个分⽀组成的曲线当k0时图象在⼀三象限当⼼时图象在⼆四象限反⽐例函数⽕ilkt的图象关于直⻆坐标系的原点成中⼼对称。
初中数学代数公式归纳
初中数学代数公式归纳在初中数学的学习中,代数是一个重要的部分,而掌握代数公式则是学好代数的关键。
下面就为大家归纳一下初中数学中常见的代数公式。
一、整式运算公式1、同底数幂的乘法:$a^m \times a^n = a^{m+n}$(其中$m$、$n$都是正整数)同底数幂相乘,底数不变,指数相加。
例如:$2^3 \times 2^4 = 2^{3+4} = 2^7 = 128$2、幂的乘方:$(a^m)^n = a^{mn}$(其中$m$、$n$都是正整数)幂的乘方,底数不变,指数相乘。
例如:$(3^2)^3 = 3^{2×3} = 3^6 = 729$3、积的乘方:$(ab)^n = a^n b^n$(其中$n$是正整数)积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
例如:$(2×3)^2 = 2^2 × 3^2 = 4×9 = 36$4、同底数幂的除法:$a^m ÷a^n =a^{mn}$($a≠0$,$m$、$n$都是正整数,且$m>n$)同底数幂相除,底数不变,指数相减。
例如:$5^5 ÷ 5^3 = 5^{5-3} = 5^2 = 25$5、单项式乘以单项式:系数相乘,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
例如:$2x^2y × 3xy^2 =(2×3)×(x^2×x)×(y×y^2) = 6x^3y^3$6、单项式乘以多项式:用单项式乘以多项式的每一项,再把所得的积相加。
例如:$2x(3x^2 4x + 5) = 2x×3x^2 2x×4x + 2x×5 = 6x^3 8x^2 + 10x$7、多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
例如:$(x + 2)(x 3) = x×x 3×x + 2×x 2×3 = x^2 x 6$8、平方差公式:$(a + b)(a b) = a^2 b^2$两个数的和与这两个数的差的积,等于这两个数的平方差。
(完整版)初中代数八大定理
(完整版)初中代数八大定理初中代数八大定理引言初中代数是数学学科中的一个重要分支,涉及到代数运算、代数方程、代数不等式等概念和方法。
掌握初中代数的基本定理对于提高数学水平和解决实际问题具有重要意义。
本文将介绍初中代数中的八大定理,帮助读者更好地理解和应用这些定理。
定理一:一元一次方程的解一元一次方程是形如 ax + b = 0 的方程,其中 a 和 b 是已知数,x 是未知数。
一元一次方程有唯一解,解的公式为 x = -b/a。
该定理的证明过程较为简单,可以通过代入法或消元法得到。
定理二:一元二次方程的解一元二次方程是形如 ax^2 + bx + c = 0 的方程,其中 a、b 和 c是已知数,x 是未知数。
一元二次方程可以有零个、一个或两个实数解,解的公式为 x = (-b ± √(b^2 - 4ac))/(2a)。
根据方程的判别式b^2 - 4ac 的值可以判断方程的解的情况。
定理三:因式定理因式定理是指如果把一个多项式的一个因式 x - a 除去,得到的商多项式为 q(x),则原多项式可以表示为 p(x) = (x - a)q(x) + r,其中 r 是一个常数。
这个定理告诉我们如何判断一个多项式是否是另一个多项式的因式。
定理四:余式定理余式定理是因式定理的一种特殊情况,当把一个多项式的一个因式 x - a 除去时,得到的余式为 0。
余式定理和因式定理密切相关,可以帮助我们判断一个数是否是多项式的根。
定理五:二次根式乘除定理二次根式乘除定理是指两个二次根式之间可以进行乘法和除法运算,乘法运算可以通过平方差公式进行展开,除法运算可以通过有理化的方法进行求解。
定理六:二次根式的加减定理二次根式的加减定理是指两个二次根式之间可以进行加法和减法运算,运算过程中需要对二次根式进行合并和简化。
定理七:分式的加减定理分式的加减定理是指两个分式之间可以进行加法和减法运算,运算过程中需要对分式进行通分、合并和简化。
初中数学代数公式总结
初中数学代数公式总结代数是数学中的一个重要分支,通过符号和字母来表示未知数和运算关系,是数学推理和问题解决的基础。
在初中数学学习中,代数公式是不可或缺的工具。
下面将给出初中数学代数公式的总结。
一、基本公式1. 两个相反数相加等于零对于任意实数a,有a + (-a) = 0。
2. 加法、减法交换律对于任意实数a和b,有a + b = b + a;a - b = -b + a。
3. 加法、减法结合律对于任意实数a、b和c,有(a + b) + c = a + (b + c);(a - b) - c = a - (b + c)。
4. 乘法、除法交换律对于任意实数a和b,有ab = ba(乘法交换律);a/b = b/a,其中a和b均不为零(除法交换律)。
5. 乘法、除法结合律对于任意实数a、b和c,有(ab)c = a(bc)(乘法结合律);(a/b)/c = a/(bc),其中a、b和c均不为零(除法结合律)。
6. 分配律对于任意实数a、b和c,有a(b + c) = ab + ac(左分配律);(b + c)a = ba + ca (右分配律)。
7. 幂运算对于任意实数a和正整数n,有a^n = a × a × ... × a(n个a的积),a称为底数,n称为指数。
二、一次方程一次方程是代数学中最简单的方程形式,即形如ax + b = 0的方程。
1. 解一次方程对于一次方程ax + b = 0,其中a和b是已知实数,a ≠ 0,它的解是x = -b/a。
在解一次方程时,可以通过移项和消元的方法求解。
2. 解一次方程组含有多个一次方程的方程组称为一次方程组。
求解一次方程组的方法主要有消元法、代入法和加减法。
三、二次方程二次方程是课程进度中较为复杂的代数公式形式,即形如ax^2 + bx + c = 0的方程,其中a、b和c是已知实数,且a ≠ 0。
1. 求二次方程的解对于二次方程ax^2 + bx + c = 0,其中a、b和c是已知实数,且a ≠ 0,可以通过求根公式来求解。
中考数学公式大全
中考数学公式大全1.代数公式:- 二次方程求根公式:对于一元二次方程ax²+bx+c=0,求根公式为x=(-b±√(b²-4ac))/(2a)。
- 四平方恒等式:(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²,(a+b)(a-b)=a²-b²。
-同底数幂相乘:a^m*a^n=a^(m+n)。
-同底数幂相除:(a^m)/(a^n)=a^(m-n)。
-同底数幂相乘的幂:(a^m)^n=a^(m*n)。
-平方差公式:(a+b)(a-b)=a²-b²。
- 绝对值符号:,a-b,=,b-a,ab,=,a,*,b。
-分数的加减:(a/b)+(c/d)=((a*d)+(b*c))/(b*d),(a/b)-(c/d)=((a*d)-(b*c))/(b*d)。
- 乘法公式:(a+b)(c+d)=ac+ad+bc+bd。
- 倍角公式:sin2θ = 2sinθ*cosθ,cos2θ = cos²θ - sin²θ。
- 三角恒等式:sin(α±β) = sinα*cosβ±cosα*sinβ,cos(α±β) = cosα*cosβ∓sinα*sinβ。
- 三角函数平方和差化积:sin²θ = (1-cos2θ)/2,cos²θ =(1+cos2θ)/22.几何公式:-长方形的周长和面积:周长=2*(长+宽),面积=长*宽。
-正方形的周长和面积:周长=4a,面积=a²,其中a为边长。
- 三角形的周长和面积:周长=a+b+c,其中a、b、c为三角形的三条边长;海伦公式:面积=sqrt[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2为半周长。
-直角三角形的勾股定理:a²+b²=c²,其中a和b为两个直角边的长度,c为斜边的长度。
完整版)初中数学代数知识大全
完整版)初中数学代数知识大全牢固的基础是能力的前提。
以下是初中数学代数知识的大全:一、有理数的运算1.相反数:a的相反数为- a,- a的相反数为a。
2.绝对值:|a| = a(a≥0),|a| = -a(a<0)。
3.倒数:ab=1,a和b互为倒数,或a=1/b。
4.有理数的加法:a+b=|a|+|b|,-a+(-b) = -(|a|+|b|),-a+b = -(|a|-|b|),a+(-b) = |a|-|b|(|a|>|b|)。
5.有理数的减法:a-b=a+(-b)。
6.有理数的乘法:a×b=|a|×|b|,-a×b=-(|a|×|b|)(a≥0,b≥0)。
7.有理数的除法:a÷b=|a|÷|b|,-a÷b=-(|a|÷|b|)(a≥0,b≥0)。
8.有理数的乘方:aⁿ=a×a×。
×a(n个a),(-a)ⁿ=aⁿ×(-a)²ⁿ⁻¹=-a²ⁿ⁻¹(a≥0)。
二、整式的运算1.整式的加减:1)非同类项的整式相加减:ab±mn=ab±mn(不能合并!)2)同类项的整式相加减:ab±an=(b±n)a(合并同类项,只把系数相加减)。
2.整式的乘除:1)幂的八种计算a)同底数幂相乘:aⁿ×aᵐ=aⁿ⁺ᵐ。
b)同底数幂相除:aⁿ÷aᵐ=aⁿ⁻ᵐ(a≠0)。
c)零指数:a⁰=1(a≠0)。
d)负指数:a⁻ᵖ=1/aᵖ(a≠0)。
e)积的乘方:(ab)ⁿ=aⁿ×bⁿ。
f)幂的乘方:(aⁿ)ᵐ=aⁿᵐ。
g)同指数的幂相乘:aⁿ×bⁿ=(ab)ⁿ。
h)同指数的幂相除:aⁿ÷bⁿ=(a/b)ⁿ(b≠0)。
2)整式的乘法:a)单项式乘单项式:ma×nb=mnab。
中考数学必备公式大全
中考数学必备公式大全一、代数公式1.二项式定理:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^n−1b^1+C(n,2)a^n−2b^2+…+C(n,n−1)a^1b^(n −1)+C(n,n)a^0b^n2.因式分解公式:a^2−b^2=(a+b)(a−b)a^2+2ab+b^2=(a+b)^2a^2−2ab+b^2=(a−b)^2a^3+b^3=(a+b)(a^2−ab+b^2)a^3−b^3=(a−b)(a^2+ab+b^2)3.分式相关公式:倒数的倒数=本身 eg. a/b 的倒数的倒数 = b/a分式相乘,分子与分母相乘eg. (a/b) × (c/d) = (a×c) / (b×d)分式相除,分子与分母互换并相乘eg. (a/b) ÷ (c/d) = (a×d) / (b×c)相等分式的分子与分母对应相等,且不为0 eg. (a/b) = (c/d),a:c=b:d,ab≠0,cd≠04.求根公式:一元二次方程 ax^2 + bx + c = 0 的根公式为 x = (−b ±√(b^2−4ac)) / 2a二、几何公式1.三角形公式:(1)三角形的面积公式:S=1/2×底×高(2)三角形的海伦公式:c=a+b+c/2,S=√(c×(c−a)×(c−b)×(c−c))(3)三角形内角和公式:三角形内角之和等于180°(4)三角形的斜边关系:a^2+b^2=c^2(直角三角形)(5)正弦定理:a/sinA = b/sinB = c/sinC = 2R(R为外接圆半径)(6)余弦定理:c^2 = a^2 + b^2 - 2abcosC2.平面图形面积公式:(1)矩形的面积公式:S=长×宽(2)正方形的面积公式:S=边长×边长(3)平行四边形的面积公式:S=底×高(4)梯形的面积公式:S=(上底+下底)×高/2(5)圆的面积公式:S=πr^2(r为半径)3.立体图形体积公式:(1)长方体的体积公式:V=长×宽×高(2)正方体的体积公式:V=边长×边长×边长(3)圆柱体的体积公式:V=πr^2×h(r为底面半径,h为高)(4)圆锥体的体积公式:V=1/3×πr^2×h(r为底面半径,h为高)三、概率与统计公式1.事件概率公式:(1)事件的概率:P(A)=n(A)/n(S)(A为事件,n(A)为事件A包含的样本点数,n(S)为样本空间中的样本点数)2.统计指标公式:(1)平均数:平均值=总和/样本个数(2)中位数:奇数个数字的中位数为中间那个数,偶数个数字的中位数为中间两个数之和的一半(3)众数:出现频率最高的数(4)范围:样本最大值减去样本最小值(5)方差:每个数与平均数之差的平方和除以样本个数(6)标准差:方差的平方根(7)百分位数:P%的百分位数是这样一个数值,它将数据分成两部分,较小部分中至少有P%的数据以上是中考数学必备公式的大致集合,希望对你的备考有所帮助。
中考数学常用代数公式和几何结论汇总
中考数学常用代数公式和几何结论汇总数学常用代数公式:1. 一元一次方程的解:ax + b = 0,解为x = -b/a。
2. 二元一次方程的解:ax + by = c,dx + ey = f,解为x = (ce- bf)/(ae - bd),y = (af - cd)/(ae - bd)。
3. 二次方程的解:对于ax^2 + bx + c = 0,解为x = (-b ±√(b^2 - 4ac))/(2a)。
4. 平方差公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2- 2ab + b^25. 平方和公式:a^2 + b^2 = (a + b)^2 - 2ab。
6. 三角恒等式:sin^2θ + cos^2θ = 1,1 + tan^2θ = sec^2θ,1 + cot^2θ = cosec^2θ。
7. 二项式定理:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b +C(n, 2)a^(n-2)b^2 + ... + C(n, n-1)ab^(n-1) + C(n, n)b^n。
数学常用几何结论:1.垂直平分线定理:垂直平分线将一条线段垂直且平分为两段相等的线段。
2.角平分线定理:角平分线将一个角平分为两个相等的角。
3.三角形内角和公式:三角形内角和为180°。
4.三角形的外角等于其对内角的补角。
5.三角形中,边长越长,则其对应的夹角越大。
6.等腰三角形的底角相等,顶角为一组内角和减去底角。
7.利用等腰三角形性质能够确定角平分线、垂心和垂直平分线等。
这些只是数学常用的一些代数公式和几何结论,还有很多其他的公式和结论可以应用在数学问题中。
熟练掌握这些公式和结论,可以帮助解决各种数学题目。
中学代数公式大全
中学代数公式大全中学代数是数学中的重要分支,它涉及一系列重要的公式和定理。
在这篇文章中,我将为您介绍中学代数中的一些重要公式和定理。
一次方程公式:一次方程是代数中最简单的形式之一,其形式为ax + b = 0。
其中,a和b是已知数,x是未知数。
一次方程的解可以由下面的公式求得:x=-b/a二次方程公式:二次方程是代数中非常常见的形式,其一般形式为ax^2 + bx + c = 0。
其中,a、b和c是已知数,x是未知数。
二次方程的解可以由下面的公式求得:x = (-b ± √(b^2 - 4ac)) / (2a)配方法求二次方程解:当二次方程无法直接使用公式求解时,可以使用配方法。
配方法的步骤如下:1. 将二次方程化为完全平方形式:ax^2 + bx + c = a(x + b/2a)^2 - (b^2 - 4ac) / 4a2.将右边的式子化简,并得到二次方程的解。
比例公式:比例是一种重要的数学关系,其中两个比值相等。
在代数中,比例可以使用下面的公式表示:a/b=c/d百分数公式:百分数用于表示一个数相对于100的百分比。
百分数可以通过下面的公式计算得到:百分数=数值/总数×100%乘法公式:乘法公式用于计算两个数的乘积。
在代数中,有两种常用的乘法公式:1. FOIL法则:(a + b)(c + d) = ac + ad + bc + bd2.平方差公式:a^2-b^2=(a+b)(a-b)因式分解公式:因式分解是将一个多项式分解成若干个乘积的形式。
在代数中,有一些常用的因式分解公式:1.平方差公式:a^2-b^2=(a+b)(a-b)2. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^23. 差二次方公式:a^2 - 2ab + b^2 = (a - b)^24. 三项和差公式:a^3 + b^3 = (a + b)(a^2 - ab + b^2),a^3 - b^3 = (a - b)(a^2 + ab + b^2)二项式定理:二项式定理是代数中的一个重要定理,用于展开二项式的幂。
九年级代数公式总结
九年级代数公式总结1. 代数基本概念1.1 代数表达式代数表达式是由数字、变量以及运算符(加、减、乘、除、乘方、开方等)组成的式子。
1.2 代数方程代数方程是一个等式,其中包含一个或多个未知数(用字母表示),并且要求找到这些未知数的值,使等式成立。
2. 代数公式2.1 二元一次方程的解法公式对于二元一次方程组:\[\begin{cases}a_1x + b_1y = c_1 \\a_2x + b_2y = c_2\end{cases}\]可以使用以下公式求解:\[\begin{cases}x = \frac{b_2c_1 - b_1c_2}{b_1b_2 - a_1a_2} \\ y = \frac{a_1c_2 - a_2c_1}{b_1b_2 - a_1a_2} \end{cases}\]2.2 一元二次方程的解法公式对于一元二次方程:\[ax^2 + bx + c = 0\]可以使用以下公式求解:\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]2.3 完全平方公式\[(a \pm b)^2 = a^2 \pm 2ab + b^2\]2.4 平方差公式\[a^2 - b^2 = (a + b)(a - b)\]2.5 交叉相乘公式对于二元一次方程:\[a_1x + b_1y = c_1 \\a_2x + b_2y = c_2\]可以使用交叉相乘法求解:\[x = \frac{c_1b_2 - c_2b_1}{b_1a_2 - b_2a_1} \\ y = \frac{a_1c_2 - a_2c_1}{b_1a_2 - b_2a_1} \]3. 总结本总结涵盖了九年级代数的基本概念和常用公式,掌握这些知识对于解决代数问题具有重要意义。
同学们在学习过程中要注重理解,多做练习,提高解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学代数常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x x n+++=;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =()()()222121.....nx x xx xx n 轾-+-++-犏臌标准差:方差的算术平方根.数据1x 、2x ……, n x 的标准差s ,则s =一组数据的方差越大,这组数据的波动越大,越不稳定。
12、频率与概率:(1)频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
(2)概率①如果用P 表示一个事件A 发生的概率,则0≤P (A )≤1; P (必然事件)=1;P (不可能事件)=0;②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
③大量的重复实验时频率可视为事件发生概率的估计值; 13、锐角三角函数:①设∠A 是Rt △ABC 的任一锐角,则∠A 的正弦:sin A =,∠A 的余弦:cos A =,∠A 的正切:tan A =.并且sin 2A +cos 2A =1.0<sin A <1,0<cos A <1,tan A >0.∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小. ②余角公式:sin (90º-A )=cos A ,cos (90º-A )=sin A . ③特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=, tan30º=,tan45º=1,tan60º=.④斜坡的坡度:i =铅垂高度水平宽度=.设坡角为α,则i =tan α=.14、平面直角坐标系中的有关知识:(1)对称性:若直角坐标系内一点P (a ,b ),则P 关于x 轴对称的点为P 1(a ,-b ),P 关于y 轴对称的点为P 2(-a ,b),关于原点对称的点为P 3(-a ,-b ).l(2)坐标平移:若直角坐标系内一点P (a ,b )向左平移h 个单位,坐标变为P (a -h ,b ),向右平移h 个单位,坐标变为P (a +h ,b );向上平移h 个单位,坐标变为P (a ,b +h ),向下平移h 个单位,坐标变为P (a ,b -h ).如:点A (2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A (7,1). 15、二次函数的有关知识:1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .4.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。
若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称轴方程可以表示为:122x x x += 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ). (2)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔(0>∆)⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔(0=∆)⇔抛物线与x 轴相切; ③没有交点⇔(0<∆)⇔抛物线与x 轴相离. (3)平行于x 轴的直线与抛物线的交点同(2)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐 标为k ,则横坐标是k c bx ax =++2的两个实数根.(4)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(5)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,则12AB x x =-。