吉时利讲义
148班讲义1
1、责任含义:是一个人应当做的事情,和不应该做的事情。
2、责任产生于:社会关系之中的相互承诺。
责任来自子对他人的承诺、分配的任务、上级的任命、职业的要求、法律规定、传统习俗、公民身份、道德原则。
3、自己对自己负责的表现是:(1)用合理、合法的方法及时纠正自己的过失.小到为自己一次约定守时,大到终身信守诚实、自尊自信、自立自强;(2)小到为自己一次约定守时,大到终身信守诚实、自尊自信、自立自强;4、自己对自己负责的意义:只有自己对自己负责,才有资格、有信心、有能力承担起对他人、对社会的责任。
如果不能自觉承担责任、对自己负责,就永远无法长大成人。
5、不同的角色承担不同的责任P76、责任的代价:承担责任不仅意味着付出时间、精力和金钱,而且还意味着可能因做得不好而受到责备,甚至受到处罚。
7、责任的回报:既包括物质方面也包括精神方面。
更重要的是无形的财富,如良好的自我感觉、他人的赞许、获得新的知识或技能。
8、如何选择自己承担的责任:有勇气和信念,凭借自己的经验和智慧,对承担责任的代价和回报进行正确的评估,做出最合适的选择。
一旦做出选择,就要义无反顾地负责。
9、如何对待不愿选择的事情:如果采取抱怨、懈怠的消极态度是缺乏责任心的表现,我们可以改变对待自己事情的态度,把它当作不可推卸的责任担在肩头,全身心地投入,同样能把事情做得出色。
这样我们可以说:我承担,我无悔。
10、不计代价和回报的人:正因为有他们在履行责任,我们的生活才更加安全,更加多彩,更加温暖,更加充满希望。
他们这种奉献精神,是社会责任感的集中表现。
我们应该感激他们。
11、不言代价与回报的奉献精神则是最富有责任心的人共有的情感12、集体利益与个人利益的关系集体利益与个人利益是相互依存的。
只有维护集体利益,个人利益才有保障。
保障个人利益是集体的责任,而集体利益是集体中每个成员努力的结果。
集体应充分尊重和保护个人利益,个人更应该积极关心和维护集体利益。
13、为什么说关爱集体人人有责?因为集体是我们每一个人的集体,只有人人都主动关心、爱护集体,为集体建设出力,集体才会真正成为我们依恋的家。
吉时利2000型数字多用表说明书-中文
吉时利2000型数字多用表说明书-中文吉时利2000型数字多用表说明书打印版本以下所列的打印版本清单列出了所有的版本和附录数据。
版本水平表是按字母顺序增加的,作为随后的更新。
随修订版本而发布的附录,包含重要的信息变更,使用人应该立即将其吸纳在手册中。
附录是有顺序的。
当一个新版本颁布时,所有与之前版本手册相关的附录都会涵盖在新的版本中。
每一个新版本都包括此修订历史页。
版本A(文件编号2000-903-01)——————————1995.04 版本B(文件编号2000-903-01)——————————2000.02 版本C(文件编号2000-903-01)——————————2007.10安全预警应在使用本设备及相关设备前阅读本安全预警。
虽然设备使用时电压安全,但是仍有不安全的情况存在。
本设备须由有资质的人员操作,能够识别震击危害和类似的安全隐患,以避免可能发生的伤害。
使用前,仔细阅读并遵守所有的安装、操作、维护信息。
参考用户文件。
如果不按说明使用,产品的保护措施预警将会受到破坏。
产品用户类型:负责人:对设备使用与维护负责的个人或团队,确保按说明操作设备以及操作人员接受过培训。
操作人员:使用设备的人员。
必须经过安全流程培训,合适的使用设备。
防止电击和电压电路的危害。
维护人员:常规流程的产品维护,确保其运行稳定,例如,设置线电压或是替换消耗材料。
用户手册对维护流程进行了说明。
如果操作人员进行维护,则需明确的说明流程。
否则,只能由客户人员进行。
客服人员:培训电路工作,安全安装与维修设备。
只有经过合适的培训,客户人员才能完成安装和客服流程的工作。
Keithley设备产品是基于设定的测量范围I和II的电子信号设计的,测量范围见国际电工委员会(IEC)标准IEC60664中的描述。
大多数的测量、控制和数据I/O信号就是测量范围I,并且绝不能直接连接电源电压,或高瞬态过电压的电源电压。
测量范围II的连接要求与本地AC电源接线关联的高瞬态过电压的电源电压的安全。
公司理财精要版原书第12版中文Ch05估值导言Calculator课件
• 你想开始为你女儿的大学教育存钱,你估计她 在17年后需要15万美元。如果你自信你可以每 年赚8%,你现在需要投资多少?
▪ N = 17; I/Y = 8; FV = 150,000
▪ CPT PV = -40,540.34
Copyright © 2019 McGraw-Hill Education. All rights reserved. No reproduction or distribution with
现值
• 我今天需要投资多少才能在未来得到一 些钱?
▪ FV = PV(1 + r)t ▪ 重新整理得 PV = FV / (1 + r)t
• 当我们讨论折现时,我们指的是找出未 来金额的现值
• 当我们谈论某物的“价值”时,我们谈论
Copyright © 2019 McGraw-Hill Education. All rights reserved. No reproduction or distribution with
现值 – 重要关系一
• 对于给定的利率,时间越长,现值越低
▪ 5年后500美元的现值是多少?十年?折现率 是10%
▪ 5年: N = 5; I/Y = 10; FV = 500 CPT PV = -310.46
▪ 10年: N = 10; I/Y = 10; FV = 500 CPT PV = -192.77
快速测验 – 第二部分
• 现值和终值之间的关系是什么? • 假设3年后你需要15000美元。如果你每年能赚
6%,你现在需要投资多少?
• 如果你能以8%的利率投资,你会投资更多还是 更少?多少钱?
Copyright © 2019 McGraw-Hill Education. All rights reserved. No reproduction or distribution with
什么是吉赛利个性特征理
什么是吉赛利个性特征理论?美国著名心理学家吉赛利(E.Echiselli)对300名经理人员研究中在1971年出版的《管理才能探索》一书中研究探索了八种个性特征和五种激励特征:1.八种个性特征:具体包括:(1)才智:语言与文字方面的才能;(2)首创精神:开拓创新的愿望和能力;(3)督察能力:指导和监督别人的能力;(4)自信心:自我评价高、自我感觉好;(5)适应性:善于同下属沟通信息。
交流感情;(6)判断能力:决策判断能力较强,处事果断;(7)性别:男性与女性有一定的区别;(8)成熟程度:经验、工作阅历较为丰富。
2.五种激励特征:具体包括:(1)对工作稳定性的需要;(2)对物质金钱的需要;(3)对地位权力的需要;(4)对自我实现的需要;(5)对事业成就的需要。
吉赛利的领导者品质究吉赛利对这些特征进行了科学的研究,具体分析了每个特征对领导者的领导行为的影响,并且指出了这些特征的相对重要程度,如词条附图所示。
吉赛利的研究结果表明,一个有效的领导者:首先是才智和自我实现,以及对事业成功的追求等,这些特征对一个人能否取得事业的成功关系较大,而对物质金钱的追求、工作经验等则关系不大。
其次,一个有效的领导者的监察能力和判断能力也是十分重要的,是驾驭事业航程顺利前进所必不可少的。
最后,男性与女性的区别与事业成功与否关系不大。
吉赛利个性特征理论的局限性事实上,性格理论所涉及的身体特征、才智和个性对管理成功的影响不是绝对重要的。
其中大多数实际上也只不过是人们对于某一个领导者,特别是一个从事上层领导工作者的期望。
从1940年以来,这类利用领导者个人性格或个性特征来解释或预测领导效能的理论,逐渐被人们放弃,理由是:①它们忽视了被领导者的地位和影响作用。
事实上,一个领导者能否发挥其领导效能,会因被领导者的不同而不同;②领导者的性格特征内容过于繁杂,且随不同情况而变化,难以寻求由此获得成功的真正因素;③难以探索领导者所有性格特征彼此的相对重要性;④各种有关实证研究所显示的结果相当不一致。
11.12讲义
生产经营决策案例例1、在一个小镇中有一个加油站,油站内设有一所卖报纸和杂货的商店,该商店在本地社区的销售每周达到3600元。
除此之外,来买汽油的顾客也会光顾这商店。
经理估计,平均每100元花费在汽油上的车主便另花费20元在商店的货品上。
在汽油销售量波动时,这比率仍维持不变。
本地社区的销售与汽油的销售是独立的。
汽油的贡献边际率是18%,而货品的贡献边际率是25%。
现行的汽油销售价是每升2.8元,而每周的销售量是16000升。
场地每周的固定成本是4500元,而每周工人薪金是固定的2600元。
经理非常关心将来的生意额。
因为一个近期的公路发展计划将会夺去油站的生意,而汽油销售量是利润最敏感的因素。
要求:1、计算(1)现行每周的利润(2)汽油销售的保本量(3)如果汽油销售跌到8000升,会有多少利润(损失)2、如果由于公路发展,汽油销售跌到8000升,但又想保持在1(1)部分的利润水平,假设成本没有改变,那么每升的汽油售价应该是多少3、根据1、2的回答,以及案例中的资料,对加油站的前景提出建议。
例2某公司拥有和经营一个度假村,设有客房部、一个商务中心、一个餐厅和健身房。
该度假村编制了一份详细的营业旺季的预算。
营业旺季历时20周,其中高峰期为8周。
客房部拥有80个单人房和40个双人房,双人房的收费为单人房收费的1.5倍。
有关预测资料如下:(1)客房部:单人房每日变动成本26元,双人房每日变动成本35元,客房部固定成本为713000元。
(2)健身房:住客每人每天收费4元,散客(不住店)每人每天收费10元。
键身设施的固定成本为54000元。
(3)餐厅:平均每个客人给餐厅每天带来3元的贡献毛益,固定成本为25000元。
(4)商务中心:出租商务中心可增加贡献毛益总额40000元,商务客人的估计数已包括在其他方面的预计中。
(5)预订情况:营业高峰期客房部所有房间都已被预订,在其余12周,双人房客满率为60%,单人房客满率为70%。
KEITHLEY半导体特性分析研讨会讲义-EDN首页
James Zhang•吉时利仪器公司成立于1946年,60年来一直致力于微弱信号测试领域。
•吉时利仪器公司为全球专业的电子制造商提高准确度的测量解决方案,用于产品制造与发。
•吉时利一直致力于半导体参数测试领域:第一个推出自动参数测试系统,第一个推出于Window的参数分析仪,第一个推出硅片级的射频信号解决方案,第一个推出并行的参测试解决方案,第一个推出Pulse-IV解决方案。
•吉时利仪器1993年开始进入中国,目前在中国有三个办事处。
为中国的客户提供专业的术支持。
•Semiconductor device parametric test and process monitor •Semiconductor materials, hall, four-points•Reliability and quality control•New device development, modeling•Nano device, single electron, MEMS research, Solar cell •Optoelectronics, LED/OLED, TFT research•Component/device incoming test and failure analysis北京大学(9)中国科技大学清华大学(8)电子科技大学(2)浙江大学(2)青岛科技大学复旦大学(2)国防科技大学山东大学(3)北京科技大学上海大学(2)大连理工大学东南大学(2)武汉理工大学厦门大学(2) 北京工业大学(2) 武汉大学西北工业大学南京大学哈尔滨工业大学香港大学天津工业大学吉林大学合肥工业大学河南大学北方工业大学兰州大学牡丹江师范大学温州大学福建师范大学湘潭大学华南师范大学中南大学西安交通大学(2)华中科技大学深圳职业技术学院中科院物理所(2)电子部北京11所中科院半导体所电子部南京55所(3)中科院上海技物所(2)电子部石家庄13所中科院上海冶金所电子部重庆44所(2)中科院固体物理所电子部重庆24所中科院北京化学所(4)电子部沈阳47所中科院微电子中心(2)兵器昆明物理所中科院国家纳米中心兵器蚌埠214所中科院苏州纳米研究所防化研究院中科院宁波材料研究所航空洛阳014所(2)航天北京511所航天上海808所航天北京18所上海中芯国际(6)东莞Phlips上海宏力(3)福州CPT(2)苏州和建上海Diode上海贝岭苏州CPT (2)上海先进(4)上海SVA-NEC无锡上华(4)天津ROMH无锡华晶深圳CPT宁波中纬(3)深圳SAE西安西岳上海Vishay深圳方正上海AMD•Familiar Windows®interface speeds device characterization and analysis•Single-click test sequencing•Introduced in 2001 –very successful to dateDC and pulse characterization of•semiconductor devices•test structures•materialsCombines•fast and accurate SMUs•DC and pulse source and measure•embedded Windows-based PC•friendly Keithley Test Environment•.1fA (100 AttoAmps) and 1μV resolution•±200 volts, 1 Amp •Remote mounted preamp to remove cabling issues• 6 ½digit A/D per SMU for parallel, high-precisionmeasurements•Lowest noise•Control a variety of externalinstruments and equipmentSource Sense•2-wire connection introduces lead resistance •4-wire connection eliminates the errorConnecting Voltage meter measuring Vs and reading VmV m =V sRcableRs+ Rcable()Connecting Voltage source Voltage meter guarded outputV sRshuntAguardRshunt+Rs () AguardVm=4200 探针台脉冲发生器示波器驱动外置仪器驱动外置矩阵开关CV测试单元前置放大器源-测试单元4200硬件平台源-测试单元Æ2-8 个DC I-V测试单元前置放大器0.1fA(可选的)Æ加强小信号测试能力脉冲发生器(可选的)Æ50MHz 脉冲源示波器(可选的)Æ快速AC测试能力CV测试单元Æ10K –10MHz外置仪器(可选的)ÆSwitch: 707A,708AÆSourceMeter: 23x,24xx1.微弱信号的精密放大技术是小信号测试的核心技术2.将测试单元和信号放大器分离,能得到更加准确的测试结果。
1-J. Catal. 341, 44-54, 2016
Single-atom and small-cluster Pt induced by Sn (IV)sites confined in an LDH lattice for catalyticreformingYanru Zhu,Zhe An,Jing He ⇑State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing 100029,Chinaa r t i c l e i n f o Article history:Received 17February 2016Revised 2June 2016Accepted 4June 2016Available online 9July 2016Keywords:Pt dispersion Single atoms Small clustersHydrotalcite-like compounds Catalytic reforminga b s t r a c tConventional supported Pt for industrial catalytic reforming exhibits high conversion,but suffers low selectivity due to the hydrogenolysis reaction.The development of highly dispersed Pt offers the oppor-tunity to settle this problem.Here,a supported Pt,with Pt dispersed in single atoms plus small clusters with fewer than 10atoms (91%)on Sn-containing mixed metal oxides,has been prepared by the induc-tion of a Sn component confined in the lattices of brucite-like layers of layered double hydroxides.Pt in single-atom and small-cluster dispersion effectively inhibits hydrogenolysis and significantly improves the selectivity to cyclization products in the n -heptane reforming reaction.Ó2016Published by Elsevier Inc.1.IntroductionCatalytic reforming is an important secondary processing pro-cedure for crude oil,which converts the naphtha feedstock into high-octane reformates,playing a key role in solving the demand for gasoline consumption and quality upgrading [1].The isomer-ization and cyclization reactions in catalytic reforming are value-enhancing because they provide high-octane products.But it is necessary to inhibit hydrogenolysis byproducts for the sake of atom economy.Aromatization needs to be avoided as well,since carcinogenic aromatic compounds are limited by environmental regulations [2].On alumina-supported Pt,the reforming catalyst applied in industry [3–5]and of wide research interest [6–10],hydrogenolysis was favored on large Pt ensembles containing five atoms,the so-called B5sites [6,7],and the aromatization requires Pt sites with threefold symmetry [8,9].Therefore,highly dispersed Pt catalysts with abundant atomic sites are critical to inhibit the byproducts and could catalyze the reforming process better than large clusters or even particles [10].Introduction of a second or even a third component,such as Sn,Re,Ge,or Ir,offers a way to enhance Pt dispersion [11–20].More and more studies point to the importance of highly dis-persed metallic catalysts because of their enhanced catalysis in a variety of significant reactions [21–26].For example,Pt–Sn/Al 2O 3catalysts with smaller contiguous Pt islands [21,22]exhibit high selectivity to isomerization and cyclization,but low selectivity to aromatization and hydrogenolysis in n -hexane reforming.Isolated Pd atoms dispersed onto Cu surfaces allow very selective hydro-genation of styrene and acetylene [23].Alumina-supported single-atom alloy nanoparticle catalysts with low concentrations of individual Pt atoms on a Cu surface have been found to exhibit excellent activity for butadiene hydrogenation,with high butene selectivity under mild conditions [24].An Ag-alloyed Pd single-atom catalyst supported on silica gel provides excellent catalysis in the selective hydrogenation of acetylene under ethylene-rich conditions [25].The catalyst consisting of only single Pt atoms uni-formly placed on an FeO x support shows extremely high activity for both CO oxidation and PROX reactions [26].Many efforts have been dedicated to improving the dispersion of active metal sites [27–31].A mass-selected soft-landing tech-nique is powerful in the preparation of supported metal clusters or even single-atom catalysts,because of its exact control of the size of metal species using mass-selected atom beams [28].A wet-chemistry approach is often used to anchor single-site metals to the support surface because the precursor already contains single-atom metal species,so long as a aggregation can be avoided in the post-treatment processes [29,30].A few studies show that the support surface defects could serve as anchoring sites for metal clusters or even single atoms [26,31].Nevertheless,to improve metal dispersion by a highly uniformly dispersed second element might be more controllable,suitable,and inexpensive.For exam-ple,either the iron oxide interface between Pt and c -Al 2O 3[32]/10.1016/j.jcat.2016.06.0040021-9517/Ó2016Published by Elsevier Inc.⇑Corresponding author.Fax:+861064425385.E-mail address:jinghe@ (J.He).or the Pt–O–Ce bond in Pt/ceria-based oxide[33]could help pro-mote Pt dispersion.Layered double hydroxides(LDHs),also known as hydrotalcite-like materials,accommodate a wide range of divalent(M2+)and high-valence(M3+or M4+)metal cations in brucite-like layers [34].The metal cations are distributed uniformly at the atomic level within the brucite-like layers,owing to the absence of contin-uous M3+–O–M3+bonds[35].Thus,LDH materials,with greatflex-ibility in chemical composition,prove inexpensive and versatile precursors for supported metal catalysts in which the metal com-ponents are highly dispersed[36–39].For instance,well-dispersed and embedded metallic iron nanoparticles with a high density (1014–1016m2)have been produced using MoO42À-intercalated FeMgAl-LDHs as a precursor[38].Uniform Ni–Fe alloy nanoparti-cles supported on mixed metal oxides(MMOs)are prepared by cal-cination and reduction of a NiFeMgAl-LDH precursor[39].For noble metals such as Pt or Pd,which are difficult to insert into the lattices of brucite-like layers of LDHs,high dispersion could be achieved through the interactions between the supported noble metal component and another component confined in LDH or MMO lattices[36,40–43].Bimetallic PtIn particles with an average diameter of1nm have been prepared by dispersing Pt on the sur-face of a calcined In-containing LDH support,Mg(In)(Al)O[42]. Highly dispersed bimetallic Pd–Ga/MgO–Al2O3catalysts have been produced by introducing[PdCl4]2Àanions into positively charged MgGaAl-LDH layers[43].Our previous work has demonstrated that electron-rich(Sn)or electron-defect(Zr)sites,derived from Sn(or Zr)-containing LDHs,could induce oppositely charged Pt precur-sors to facilitate Pt dispersion[44].In this work,Pt–Sn reforming catalysts,with Pt sites dispersed in single atoms and small clusters, have been produced by the electrostatic induction of highly dis-persed and negatively charged Sn sites to cation Pt precursors,in which the highly dispersed Sn sites are confined in the brucite-like layers of Sn-containing LDHs as the precursor(Scheme1). The negatively charged Sn sites are selectively controlled by the deprotonation of hydroxy groups by use of the extremely low iso-electric point($4.3)[45]of Sn(IV)oxide or hydroxide.Owing to excellent dispersion of Pt,the resulting catalyst effectively inhibits the hydrogenolysis and promotes the cyclization in the n-heptane reforming reaction.2.Experimental2.1.Materials 2.2.PreparationAn MgSnAl LDH sample was synthesized on the surface of c-Al2O3by an in situ growth method[46].Typically,41mg of sodium citrate and49mg of SnCl4Á5H2O were dissolved in0.50mL deion-ized water to form a Sn4+citrate solution.Portions of2.56g of Mg (NO3)2Á6H2O and2.40g of urea were dissolved in4.5mL deionized water to form a Mg2+urea solution.Sn4+citrate solution and Mg2+ urea solution were mixed well and then moved to a Teflon auto-clave with5.0g of c-Al2O3.After aging at120°C for12h,the sam-ple wasfiltrated,washed with deionized water till neutrality,and dried at70°C overnight,to give a MgSnAl-LDHs/Al2O3sample. Similar procedures were used to prepare MgAl-LDH/Al2O3samples in the absence of Sn citrate solution.Sn4+was loaded on as-prepared MgAl-LDH/Al2O3or Al2O3by the incipient wetness impregnation method.A portion of1.8mL of SnCl4Á5H2O acetone solution(the concentration of Sn4+is3.7g LÀ1)was impregnated onto2g of MgAl-LDH/Al2O3or Al2O3support;then the sample was oscillated for2h at ambient temperature and dried at120°C overnight.Pt2+loading was achieved by the incipient wetness impregnation method.A portion of13mg of[Pt(NH3)4](NO3)2 was dissolved in1.8mL of deionized water.This solution(pH8) was then poured onto2g of an as-prepared MgSnAl-LDHs/Al2O3 sample,Sn4+-loaded MgAl-LDH/Al2O3,or Sn4+-loaded Al2O3.The resulting sample was oscillated at ambient temperature for2h and dried at120°C overnight.A PtO2/Mg(Sn)(Al)O/Al2O3,PtO2/ SnO2/Mg(Al)O/Al2O3,or PtO2/SnO2/Al2O3sample was produced by calcining Pt2+-loaded MgSnAl-LDHs/Al2O3,Sn4+/MgAl-LDH/ Al2O3,or Sn4+/Al2O3at550°C for 2.5h inflowing air (40mL minÀ1).The temperature was raised from ambient temper-ature to550°C at2°C minÀ1.After calcination at550°C for2.5h, the temperature was decreased to500°C in N2flow(40mL minÀ1). Then a H2flow(40mL minÀ1)was introduced and the temperature was maintained at500°C for2.5h,affording Pt/Mg(Sn)(Al)O/Al2O3, Pt/SnO x/Mg(Al)O/Al2O3,and Pt/SnO x/Al2O3.For comparison,0.3wt. %Pt/Al2O3or2wt.%Pt/Al2O3was produced following the above procedures,except for the loading of Sn element.For the temperature-programmed reduction(TPR)evaluation of Sn(IV), Mg(Sn)(Al)O/Al2O3,SnO2/Mg(Al)O/Al2O3,and SnO2/Al2O3were produced by calcining MgSnAl-LDHs/Al2O3,Sn4+/MgAl-LDH/Al2O3, and Sn4+/Al2O3at550°C for2.5h.2.3.CharacterizationsElemental analysis for Pt and Sn was performed using a Shi-Scheme1.Schematic illustration of the preparation of highly dispersed Pt catalyst.Y.Zhu et al./Journal of Catalysis341(2016)44–5445were recorded with a Shimadzu XRD-6000diffractometer(CuK a radiation,k=0.154nm)in the2h ranges of3–90with a scan speed of5°minÀ1.The low-temperature N2adsorption–desorption experiments were carried out using a Quantachrome Autosorb-1 system.The specific surface area was estimated according to the five-point Brunauer–Emmett–Teller(BET)method based on the adsorption isotherm.Before measurements,the samples were pre-treated at100°C under high vacuum(104Torr)for4h.TPR and hydrogen–oxygen titration(HOT)were carried out on a Micromet-ric ChemiSorb2720chemisorption system with a thermal conduc-tivity detector(TCD).About100mg of sample was loaded in a U-type quartz reactor.The TPR was carried out with a heating ramp rate of10°C minÀ1in a stream of10%H2in Ar to900°C,with a totalflow rate of40mL minÀ1.For HOT measurement,the sample after reduction online was exposed to aflow of dry Ar (15mL minÀ1)until the baseline was stabilized at150°C.Subse-quently,O2pulses were introduced into the carrier gas until total saturation was reached at150°C,and then the absorbed oxygen was titrated by introducing pulses of H2at150°C.Finally,the TCD was used to monitor and record the consumption of H2.The Pt dispersion was calculated based on the HOT results according to the method for metal dispersion measurements in0.4wt.%Pt–Sn/Al2O3in Rajeshwer’s work[47]using the relation of HT:OT: Pt=1.5:0.75:1.The scanning electron microscope(SEM)images were taken using a Zeiss Supra55(Zeiss Ltd.,Germany).Samples were cut in half to expose interior surfaces and cross sections. The X-ray photoelectron spectra(XPS)were recorded on a Thermo Fisher Scientific ESCALAB-250instrument(USA)with an excitation source of AlK a radiation.A C1s peak at284.8eV was used as a cal-ibration peak.In addition to a binding energy scan range from0to 1200eV for the identification of all detectable elements,detailed scans for chemical state identification and quantification were recorded.HAADF-STEM images were taken on a JEM-ARM200F electron microscope capable of subangstrom resolution.The sam-ples were dispersed onto a copper grid coated with a thin holey carbonfilm.The size distribution of Pt is based on200single atoms,clusters,and particles in total counted in varied regions. The Pt L III-edge X-ray absorption spectra(XAS)of0.3wt.%Pt sam-ples were determined on the1W1B beamline of the Beijing Syn-chrotron Radiation Facility(BSRF)operated at$2.2GeV and $200mA,and the XAS of the2wt.%Pt/Al2O3sample was deter-mined on the BL14W1beamline at the Shanghai Synchrotron Radi-ation Facility(SSRF)operated at3.5GeV and140–210mA.A Si (111)double-crystal monochromator was used to reduce the har-monic component of the monochrome beam.Pt foil and PtO2were used as reference samples and measured in the transmission mode, and all the samples were measured in thefluorescence mode. Before measurements,the samples were pretreated carefully to ensure that the reduced catalysts were not exposed to air.Speci-mens were made by directly applying thefine powders to Scotch tape inside a glove box kept under high-purity N2(99.99%)sealed by the valve bag,and the XAFS data were then measured immedi-ately.The IFEFFIT software was used to analyze the EXAFS data at the Pt L III edge.Reliable parameters for the high Z(Pt,Sn)and low Z (O)contributions were determined by multiple-shellfitting in r space with application of k3and k1weightings in the Fourier trans-formations.The in situ Fourier-transformed infrared(FT-IR) absorption spectra for the sample with CO adsorbed were carried out in a cell equipped with KBr windows,allowing sample activa-tion and successive measurements in the range298–773K on a Vertex70(Bruker)instrument with4cmÀ1resolution and64scan times in the Beijing Research Institute of Chemical Industry,Sino-pec Group.The sample was reduced under H2at773K for60min and then cooled to373K under evacuation.Backgrounds were col-lected at373K under evacuation.The sample was exposed to1% CO in He at373K for30min and cooled to303K.Then mild evac-uation was carried out at303K for30min and the FT-IR spectra were recorded consecutively at varied times during the evacuation. Finally,the temperature-programmed desorption of adsorbed CO was carried out under evacuation.The temperature was raised from303to573K at5K minÀ1.The coverage-dependent FT-IR spectra were recorded consecutively every12s.2.4.Catalytic testsMCP hydrogenolysis was performed in afixed-bed reactor with inner diameter10mm and length38cm under total pressure 0.1MPa with H2(50mL minÀ1)at350°C.The as-prepared sample (0.5g)was activated by air(20mL minÀ1)at550°C for 2.5h online.After the temperature was decreased to500°C in N2flow (40mL minÀ1),a H2flow(12mL minÀ1)was introduced to reduce the sample at500°C for2.5h.Then MCP was vaporized at250°C and was fed into the reactor by a liquid pump(0.1mL minÀ1)for 10min.The products were analyzed online with a gas chro-matograph(Shimadzu GC-2014C)equipped with an Rt-Alumina BOND/Na2SO4capillary column and connected to aflame ioniza-tion detector(FID).The conversion of MCP(X MCP)and the selectiv-ity(S i)to particular products were determined byX MCP¼PA iÀA MCPPA iÂ100%andS i¼A iPA iÀA MCPÂ100%;wherein A i and A MCP are corrected chromatographic area for partic-ular compounds and for residual MCP[48].n-Heptane(n-C7)reformation was also performed in the reac-tor with inner diameter10mm and length38cm.The sample (0.5g)was set in the reactor,activated,and reduced online as above.Afterward,n-heptane was vaporized at250°C and mixed with H2(H2/n-C7H16molar ratio6.4:1,WHSV=4hÀ1)before being fed into the reactor.The n-heptane reformation was performed at 500°C and0.7MPa.A gas chromatograph(Shimadzu GC-2014C) equipped with a Rt-Alumina BOND/Na2SO4capillary column and connected with aflame ionization detector(FID)was used to ana-lyze the compositions after the reaction.The conversion of n-C7 (X n-C7)and the selectivity(S i)to particular product were deter-mined byX n-C7¼PA iÀA n-C7PiÂ100%andS i¼A iPA iÀA n-C7Â100%;where A i and A n-C7are corrected chromatographic areas for partic-ular compounds and for residual n-C7.3.Results and discussion3.1.Confinement of Sn in LDH latticesA Sn-containing MgAl-LDH(MgSnAl-LDHs)sample was synthe-sized in situ on the surface of c-Al2O3(Fig.1).The Sn content in the resulting MgSnAl-LDHs/Al2O3was determined by ICP technique to be0.3wt.%with an Mg/Sn molar ratio of19/1.For comparison, MgAl-LDH was synthesized on c-Al2O3as well.In each case,the (003),(006),(009),and(110)reflections characteristic of the hydrotalcite structure[49]were visibly observed in the X-ray diffraction(XRD)patterns(Fig.1A).No other phases in addition46Y.Zhu et al./Journal of Catalysis341(2016)44–54to LDHs and c-Al2O3are resolved.The lattice parameter a for MgAlSn-LDHs increases by0.0008nm in comparison to that for MgAl-LDH because Sn(IV)has a larger cationic radius(0.069nm) than Al(III)(0.053nm).From the scanning electron microscopeB–D),MgSnAl-LDHs are observed to grow den-exterior and interior surfaces of c-Al2O3,with a thick-nm.The growth of LDHs results in the specific increasing from206m2gÀ1(for c-Al2O3)toMgSnAl-LDHs/Al2O3)or285m2gÀ1(for MgAl-probably because the LDH crystallites raise the surfaceSn-containing layered double oxide supported on c-(Mg(Sn)(Al)O/Al2O3)was produced by calcination at550°C(Fig.2A).For comparison,control samples were prepared by impregnating MgAl-LDH/Al2O3or c-Al2O3with SnCl4acetone solution in a Sn loading of0.3wt.%.By calcination,MgAl-LDH/ Al2O3or c-Al2O3-supported SnO2(denoted SnO2/Mg(Al)O/Al2O3 or SnO2/Al2O3)was produced.No SnO2phase is visible in either case from the XRD patterns(Fig.2A).In the H2TPR profiles (Fig.2B),all Sn-containing materials have one visible reduction peak before750°C,which is attributed to the reduction of Sn (IV)to Sn(II)according to a previous report[50].Mg(Sn)(Al)O/ Al2O3exhibits a narrow and symmetric reduction peak with a T m of480°C,while SnO2/Mg(Al)O/Al2O3or SnO2/Al2O3shows a broad one enveloping two reduction peaks.This implies that the chemi-cal environment of Sn(IV)sites in the LDH lattices is more homo-geneous than that of those outside LDH lattices or without LDH lattices,which we propose to result from the confinement effects of brucite-like lattices of LDHs.For SnO2/Mg(Al)O/Al2O3or SnO2/ Al2O3,reduction at low temperature($340°C)could be attributed to the bulk SnO2clusters,and the other reduction(430–460°C) originates from refractory Sn-aluminates,which might have been formed during calcination[51,52].The reduction of Sn(IV)in Mg (Sn)(Al)O/Al2O3is more difficult than that in SnO2/Mg(Al)O/Al2O3 or SnO2/Al2O3,which could be attributed to the confinement of Sn(IV)in the lattices of Mg(Sn)(Al)O/Al2O3.3.2.Pt dispersion induced by Sn sitesPt was loaded at0.3wt.%on MgSnAl-LDHs/Al2O3,MgAl-LDH/ Al2O3,or Al2O3by incipient wetness impregnation.Pt/Mg(Sn)(Al) O/Al2O3,Pt/SnO x/Mg(Al)O/Al2O3,and Pt/SnO x/Al2O3were produced by reduction in H2at500°C.The dispersion of Pt,calculated on the basis of HOT and ICP-OES results,is as high as96%for Pt/Mg(Sn) (Al)O/Al2O3and85%or80%for Pt/SnO x/Mg(Al)O/Al2O3or Pt/SnO x/ Al2O3.The Sn(IV)sites confined in the lattices of LDO visibly pro-moted the dispersion of Pt sites,which is supposed to result fromof(a)c-Al2O3,(b)MgAl-LDH/Al2O3,and(c)MgSnAl-LDHs/Al2O3.SEM images of(B)exterior surfaces,(C)interior surfaces,Fig.2.(A)XRD patterns of(a)Mg(Sn)(Al)O/Al2O3,(b)SnO2/Mg(Al)O/Al2O3,and(c)SnO2/Al2O3;(B)H2TPR profiles of(a)Mg(Sn)(Al)O/Al2O3,(b)SnO2/Mg(Al)O/Al2O3,(c)SnO2/Al2O3,and(d)Al2O3.the possible electrostatic recognition of the Pt precursor by the confined Sn(IV)site.In an earlier report,highly dispersed Pt cata-lysts from the deposition of Pt4and Pt6clusters onto a c-Al2O3sur-2nm Pt clusters and a few particles(>2nm)are found to coexist with small clusters and single atoms.The single Pt atoms and small clusters account for62%and41%.Without induction by Sn sites,histograms of size distributions of(a)0.3wt.%Pt/Mg(Sn)(Al)O/Al2O3,(b)0.3wt.%Pt/SnO x/Mg(Al)O/AlPt/Al2O3.(f)Histograms of size distributions from HAADF-STEM.48Y.Zhu et al./Journal of Catalysis341(2016)44–54To elucidate the interactions between Sn and Pt sites,H 2TPR and XPS characterizations were carried out (Fig.4).The TPR pro-files (Fig.4A)of all Pt-supported samples (after calcination at 550°C)exhibit two reduction peaks at about 200–300and 380–600°C.The reduction at low temperature is attributed to the reduction of Pt (IV),and the reductions at high temperature could be attributed to hydrogen back spillover on the Pt–support inter-face or the reduction of Sn (IV)[52].The presence of the Sn (IV)component can be clearly observed to increase the reduction tem-perature of Pt (IV)centers.For PtO 2/Mg(Sn)(Al)O/Al 2O 3,where Sn (IV)were confined in the lattice,the reduction temperature (286°C)for Pt (IV)sites is 53°C higher than that for PtO 2/Mg(Al)O/Al 2O 3,while the reduction temperature for Pt (IV)sites in PtO 2/SnO 2/Mg(Al)O/Al 2O 3)increases by 32°C.For PtO 2/SnO 2/Al 2O 3,the reduction temperature for Pt (IV)sites increases by only 6°C in comparison with that for PtO 2/Al 2O 3.The results imply not only the interactions between Sn (IV)component and Pt (IV)sites but also the stronger Pt–Sn interactions in Pt/Mg(Sn)(Al)O/Al 2O 3.In the Sn3d 5/2XPS spectra,the binding energy around 485.5eV corre-sponds to the Sn 0state,while the binding energy around 486.8eV corresponds to the oxidized Sn state [54,55].Comparing the Sn3d 5/2binding energy (Fig.4B–D)for the samples with and with-out loaded Pt (after reduction in H 2at 500°C),it can be seen that the Pt–Sn interactions increase the binding energy for Sn (II/IV)in Pt/Mg(Sn)(Al)O/Al 2O 3by 0.5eV,indicating electron transfer from Sn to Pt.In comparison,the Pt–Sn interactions in Pt/SnO x /Mg(Al)O/Al 2O 3or Pt/SnO x /Al 2O 3increase the binding energy for Sn (II/IV)by 0.2and 0.1eV.The XPS results further suggest stron-ger interactions between confined Sn (IV)sites and supported Pt centers.From the Sn3d 5/2XPS spectra,it can also be observed that Pt–Sn interactions promote the reduction of Sn (IV)sites.For each sample without Pt loaded,no Sn (IV)was reduced to Sn 0.With Pt loaded,the Sn 0state was observed.But the Sn 0fraction depends on the location of Sn sites.By the deconvolution of XPS spectra,the Sn 0percentage in Pt/Mg(Sn)(Al)O/Al 2O 3is estimated to be 7%,much lower than that in Pt/SnO x /Mg(Al)O/Al 2O 3(12%)or Pt/SnO x /Al 2O 3(14%).That means the confinement helps stabilize Sn (IV),making the confined Sn (IV)more difficult to reduce to Sn 0.2/Mg(Al)O/Al 2O 3,(b)PtO 2/Mg(Sn)(Al)O/Al 2O 3,(c)PtO 2/SnO 2/Mg(Al)O/Al 2O 3,(d)PtO 2/Al 2O 3,and (e)PtO /Mg(Al)O/Al 2O 3,and (D)SnO 2/Al 2O 3,without (a)or with (b)Pt.The coordination structure of Pt centers has been further char-acterized by extended X-ray absorptionfine structure(EXAFS) spectroscopy.The parameters of samples from the experimental EXAFS analysis are shown in Table1(more details are presented in the Supporting Information;see Figs.S1and S2).The EXAFS results for0.3wt.%Pt/Mg(Sn)(Al)O/Al2O3indicate the presence of first-shell Pt–O contributions with an average coordination num-ber of2.4at a bond distance of2.03Åand second-shell Pt–Pt con-tributions with an average coordination number of3.5at a bond distance of2.72Å.No PtO x phase should be present because the samples were prereduced prior to EXAFS measurements.The Pt–O coordination is assumed to originate from the interactions between the Pt sites and the supports.The Pt–O bonding distance, close to that in PtO2indicates strong interactions.The Pt–Pt coor-dination number in0.3wt.%Pt/Mg(Sn)(Al)O/Al2O3is much lower than that in bulk platinum(coordination number of12at a dis-tance of 2.76Å),indicating the existence of small Pt clusters. According to the XPS results,a very small portion of the Sn(IV) is reduced to Sn0in the presence of Pt.So the Pt–Sn coordination, at a similar distance to the Pt–Pt shell,was attempted to be intro-duced in the EXAFS curvefitting.But thefitted Pt–Sn coordination number(error bound of N>±100%)is unreasonable for0.3wt.%Pt/ Mg(Sn)(Al)O/Al2O3,probably because of the high disordering in the higher shells resulting from the low content of Sn0(about9/1of Pt0/Sn0ratio estimated from XPS).For0.3wt.%Pt/SnO x/Mg(Al)O/ Al2O3or0.3wt.%Pt/SnO x/Al2O3,the Pt–O coordination number is 1.6or1.1,the Pt–Pt coordination number is4.8or5.8,and the Pt–Sn coordination number is0.8or1.0.The Pt–Sn and Pt–Pt coor-dination numbers suggest the formation of semispherical-like clus-ters with the Sn atoms located at the surfaces of these Pt entities, which has been predicted on Pt–Sn/Al2O3catalyst in Weckhuysen’s work[56].The structure is consistent with the estimated ratios of Pt0/Sn0(about9/2for0.3wt.%Pt/SnO x/Mg(Al)O/Al2O3and0.3wt.% Pt/SnO x/Al2O3)from the XPS results.It is visible that the Pt–O coor-dination number decreases and the Pt–Pt coordination number increases regularly with the decrease in the content of small clus-ters and single Pt atoms,which is consistent with the observations for Pt/FeO x catalysts by Zhang et al.[57].The Pt–Pt coordination (N Pt–Pt=8.3)absolutely dominates for2wt.%Pt/Al2O3,also con-firming the formation of large Pt particles.The EXAFS data reveals less Pt–Pt contribution in0.3wt.%Pt/Mg(Sn)(Al)O/Al2O3,in agree-ment with the HAADF-STEM result that0.3wt.%Pt/Mg(Sn)(Al)O/ Al2O3mainly contains single atoms and small clusters Pt.The FT-IR spectra for the samples with CO adsorbed were recorded to provide additional information about the geometric construction of Pt centers(Fig.5).According to previous report, the IR absorption for CO adsorption on reduced Pt is generally com-posed of two t(CO)regions:thefirst,located between2090and 2000cmÀ1,is assigned to linear adsorption on Pt0atoms,some-times accompanied by a shoulder at about2096cmÀ1assigned to CO adsorbed on Pt clusters at metal/support interfaces;the second, at1860–1780cmÀ1,originates from the bridged adsorption on two neighboring Pt atoms[58].For linear adsorption,t(CO)increases with the increase in Pt coordination number and the decrease in Pt dispersion[59,60],as well as the increase in CO coverage because of the coupling of CO molecules adsorbed on neighbor Pt atoms[26].Recent work show that Pt(CO)2gem-dicarbonyl species (characterized by double bands at2086and2069cmÀ1)are formed uniquely on single atoms or small clusters[61–63].As shown in Fig.5a,in addition to the absorption bands of gaseous CO at2170cmÀ1and2115cmÀ1,0.3wt.%Pt/Mg(Sn)(Al)O/Al2O3 presents double absorption bands at2086cmÀ1and2066cmÀ1, which are both rapidly weakened under evacuation,indicative of rather weak and reversible adsorption of CO on Pt sites.No shift in the absorption band position is observed with the decrease in CO coverage(Fig.5a and b),suggesting a lack of interaction between adsorbed CO molecules.Therefore,the double absorption bands are assigned to the symmetric and asymmetric stretching vibrations of CO in the Pt(CO)2gem-dicarbonyl species on single Pt atoms and small Pt clusters.The0.3wt.%Pt/SnO x/Mg(Al)O/ Al2O3(Fig.5c and d)and0.3wt.%Pt/SnO x/Al2O3(Fig.5e and f) mainly present a strong absorption band at2058cmÀ1with a shoulder at about2084cmÀ1.The absorption band at about 2084cmÀ1arises from the CO adsorbed onto Pt clusters at inter-faces.A weak absorption band at1824cmÀ1is also detected for 0.3wt.%Pt/SnO x/Al2O3.The intensity of the absorption band at 2058cmÀ1remains almost unchanged after evacuation for 30min,which indicates that the adsorption of CO is irreversible.A visible red shift is observed with the decrease in CO coverage. Thus,the absorption band at2058cmÀ1is assigned to linearly adsorbed CO on Pt clusters.The weak absorption band at 1824cmÀ1is typical of bridge-bonded CO on Pt particles.The absorption bands at2063and1824cmÀ1observed on2wt.%Pt/ Al2O3(Fig.5g and h)verify the CO adsorption on large Pt particles. The absorption band assigned to linearly adsorbed CO on Pt clus-ters in2wt.%Pt/Al2O3shifts to2063cmÀ1from2058cmÀ1dueTable1EXAFS results of supported Pt and reference samples.Shell R(Å)N D r2Â102(Å2)D E0(eV)Reduced chi-squaredÂ1020.3wt.%Pt/Mg(Sn)(Al)O/Al2O3Pt–O 2.03 2.40.54 6.90.37Pt–Pt 2.72 3.50.67 6.90.3wt.%Pt/SnO x/Mg(Al)O/Al2O3Pt–O 2.02 1.60.859.60.19Pt–Pt 2.74 4.80.749.6Pt–Sn 2.820.8 1.39.60.3wt.%Pt/SnO x/Al2O3Pt–O 2.02 1.10.24 4.10.18Pt–Pt 2.73 5.80.92 4.1Pt–Sn 2.80 1.0 1.1 4.12wt.%Pt/Al2O3Pt–Pt 2.758.30.319.00.32PtO2Pt–O 2.02 6.00.288.4 1.1Pt–Pt 3.10 6.00.278.4Pt foil Pt–Pt 2.76120.488.40.17N:coordination number;R:the distance between absorber and backscatter atoms;D r2:change in the Debye–Waller factor value relative to the Debye–Waller factor of the reference compound,where the increase of D r2suggests a high degree of disorder of the system in0.3wt.%Pt/Mg(Sn)(Al)O/Al2O3;D E0:inner potential correction to account for the difference in inner potential between the sample and the reference compound.Infitting,D E0is assumed to be the same for all the scattering paths in one sample because of the high disorder and limited independent data points in the higher shells in the R range1.0–3.5Å.Reduced chi-squared is used to measure the quality of thefits. The better the curve isfitted,the smaller is the reduced chi-squared value.50Y.Zhu et al./Journal of Catalysis341(2016)44–54。
吉时利2000
吉时利2000简介吉时利2000是一款高效的时间管理工具,旨在帮助用户更好地管理时间、提高工作效率。
它集成了任务管理、时间追踪和日程安排等功能,提供了全方位的时间管理解决方案。
主要功能1. 任务管理吉时利2000提供了强大的任务管理功能,让您能够清晰地记录和组织任务。
您可以创建新任务,设置截止日期和优先级,并将任务分配给适当的人员或团队。
在任务完成后,您可以标记任务为已完成,以便进行跟踪和统计。
2. 时间追踪吉时利2000还提供了时间追踪功能,帮助您了解自己的时间花费在哪些任务上。
您可以启动计时器来记录任务的耗时,并生成详细的时间报告。
通过分析时间报告,您可以发现时间管理上的不足,并采取措施进行改进。
3. 日程安排吉时利2000允许您创建个人或团队的日程安排,以便更好地安排工作和生活。
您可以添加待办事项、会议和重要事件,并设置提醒通知,确保您不会错过任何重要事项。
4. 统计与分析吉时利2000记录并统计了您的任务和时间数据,为您提供全面的数据分析。
通过查看统计报告,您可以了解自己在不同任务上的投入时间、任务的完成情况以及效率水平等信息。
这些数据将帮助您更好地评估和优化自己的时间管理策略。
5. 多平台支持吉时利2000提供了多平台支持,您可以在电脑、手机或平板电脑上随时访问您的时间管理工具。
无论您身在何处,都可以通过互联网连接到吉时利2000,管理和追踪您的任务和时间。
使用方法1.创建账户:首先,您需要在吉时利2000的官方网站上创建一个账户。
填写个人信息并设置登录密码,即可成功注册。
2.添加任务:登录吉时利2000后,您可以点击“新任务”按钮创建一个新任务。
填写任务名称、截止日期和优先级等信息,然后保存任务。
3.启动计时器:在开始执行任务时,您可以点击任务旁边的计时器图标,启动计时器记录您的工作时间。
4.添加日程:如果您想创建日程安排,可以点击日历图标进入日程页面。
在指定日期上点击“新建日程”按钮,填写日程的相关信息和提醒设置。
常用量具的使用培训讲义Microsoft PowerPoint 演示文稿共60页文档
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
常用量具的使用培训讲义 Microsoft PowerPoint 演示
文稿
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温
42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚
43、法律和制度必须跟上人类思想进 步。— —杰弗 逊
44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
精益生产讲义(巩怿)
精益生产讲义(巩怿)前言 (1)第一模块:TPS关于成本的认识与诞生背景工 (2)1、企业目的 (3)2、假如成本不下降利润不可能增 (3)3、原价低减=提高生产性 (4)第二模块:存在于企业活动中的7大浪费与解决问题的方法 (5)1、用精益的眼光去看待浪费(一) (7)2、用精益的眼光去看待浪费(二) (8)3、用精益的眼光去看待浪费(三) (8)4、用精益的眼光去看待浪费(四) (9)5、用精益的眼光去看待浪费(五) (9)6、用精益的眼光去看待浪费(六) (10)7、用精益的眼光去看待浪费(七) (10)第三模块:TPS的2大支柱 (12)1、准时化 (13)2、自动化 (15)第四模块:设备的快速换产 (22)快速换产的7个步骤 (23)第五模块:设备布局与标准作业 (23)标准作业三要素 (24)基本原则 (26)第六模块:设备的OEE与自主保全活动的开展 (27)1、OEE的六大缺失 (28)2、TPM的进展 (29)3、努力消除的六大缺失 (30)第七模块:价值流分析 (32)第八模块:全员参与的改善提案活动 (35)1、改善提案知识 (35)2、改善提案的目的 (36)3、4大基本原则 (36)感想与体会精益生产与实际案例讲师:巩怿(windy)2009年3月Continued1感想与体会感想与体会感想与体会感想与体会华制观点:不经历磨难何以成才,烧不死的鸟是凤凰!感想与体会感想与体会华制观点:世界会向那些有目标与远见的人让路。
感想与体会华制观点:最有效的资本是我们的信誉,它24小时不停地为我们工作。
感想与体会感想与体会华制观点:任何的限制,都是从自己的内心开始的。
感想与体会感想与体会华制观点:拿望远镜看别人,拿放大镜看自己。
感想与体会华制观点:做对的情况比把情况做对重要。
感想与体会华制观点:世上最重要的事,不在于我们在何处,而在于我们朝着什么方向走。
口是痛苦。
感想与体会华制观点:再长的路,一步步也能走完;再短的路,不迈开双脚也无法到达。
吉林XXX年会计从业资格考试会计基础讲义
吉林XXX年会计从业资格考试会计基础讲义【本章内容框架】第一节会计概述一、会计的概念(一)会计的差不多概念会计是以货币为要紧计量单位,反映和监督一个单位经济活动的一种经济治理工作。
明白得要点:1.会计是以货币为要紧计量单位(对经济活动的计量有三种方式:实物计量、劳动计量、货币计量);2.会计的要紧职能是反映和监督或者称核算与监督;3.会计的对象是特定的一个单位的经济活动,而不是多个单位的经济活动;4.会计是一种经济治理活动,而不是一样的治理活动,它属于治理范畴。
【例题1】下列关于会计的概念的叙述不正确的有( )。
A.会计是以货币为惟一计量单位,反映和监督一个单位经济活动的一种经济治理工作B.会计是以货币为计量单位,反映和监督一个单位经济活动的一种经济治理工作C.会计是以货币为要紧计量单位,反映和监督单位经济活动的一种经济治理工作D.会计是以货币为要紧计量单位,反映和监督一个单位经济活动的一种治理工作[答案]ABCD[解析]正确的说法应该是:会计是以货币为要紧计量单位,反映和监督一个单位经济活动的一种经济治理工作。
货币是会计计量的要紧单位,但并不是惟一单位。
例如:关于库存商品的核算,既要反映价值又要反映数量。
(二)会计的分类广义的会计体系包含的内容专门多,会计按其报告的对象不同,又分为财务会计和治理会计。
1.财务会计和治理会计的含义财务会计指的是按照会计准则和会计制度的要求对过去差不多发生的经济活动通过记账、算账和报账等专门方法,向单位外部关系人提供单位的账务状况、经营成果和资金变动情形等有关信息的会计。
治理会计指的是依照治理者的需要和成本效益分析原理的要求,采纳一系列的专门方法,对企业内部现在和以后的经济活动进行规划、操纵与评判,向企业经营者和内部治理者提供进行经营规划、经营治理、推测决策所需的相关信息的会计。
2.财务会计和治理会计的要紧区别区别财务会计治理会计服务的对象不同单位外部的关系人企业的内部经营治理者提供的信息不同侧重于提供过去信息侧重于提供以后信息【例题2•判定题】财务会计的服务对象是企业内部的经营治理者,而治理会计的服务对象则是单位外部的关系人。
吉司利的看法。
吉司利的看法。
(原创实用版)
目录
1.吉司利的背景和成就
2.吉司利的主要观点
3.吉司利观点的现实意义
正文
吉司利,全名吉尔伯特·吉司利(Gilbert Gisler),是一位著名的知识管理专家和企业家。
他曾在多家知名企业担任高级职位,并成功地将知识管理理论应用于企业实践,取得了显著的成果。
吉司利的主要观点集中在知识管理、组织学习和企业竞争力等方面。
吉司利认为,知识管理是现代企业竞争的核心要素。
在经济全球化的背景下,企业之间的竞争不再是传统的资源和资本竞争,而是知识的竞争。
企业应将知识视为核心资源,通过有效的知识管理策略,实现知识的创造、共享和应用,从而提高企业的竞争力。
吉司利强调,组织学习是实现知识管理的关键。
组织学习是指企业在不断尝试、改进和创新的过程中,积累和传播知识的能力。
通过组织学习,企业可以建立知识共享的文化,提高员工的知识水平和创新能力,进而提升企业的整体竞争力。
此外,吉司利还关注企业知识管理的实施策略。
他认为,企业应制定明确的知识管理战略,并将其融入企业的日常运营。
这包括建立知识管理系统,对知识进行分类、存储和检索;开展知识共享活动,促进员工之间的交流与合作;提供培训和支持,提高员工的知识应用能力等。
总之,吉司利的观点对现代企业具有重要的现实意义。
第1页共1页。
从用户需求出发吉时利发布新品2401型数字源表
从用户需求出发吉时利发布新品2401型数字源表
佚名
【期刊名称】《信息技术与标准化》
【年(卷),期】2011(000)009
【摘要】9月19日,吉时利仪器公司发布了专为低电压测试而优化的低成本方案,扩展了其广受工程师赞誉的2400系列数字源表产品线.此次发布的新产品更多的是从客户的需求角度出发而设计.
【总页数】1页(P31)
【正文语种】中文
【相关文献】
1.吉时利发布最新2401型数字源表 [J],
2.吉时利发布最新2401型数字源表和2200系列可编程通用电源产品线 [J],
3.吉时利三款新品耀金秋——2401数字源表、2200可编程电源和适用于S530参数测试系统的测试环境共同面世 [J], 胥京宇
4.吉时利多款低成本、高功能新品问市——2401型数字源表,2200系列通用可编程直流电源,半导体测试软件KTE V
5.3重磅上市 [J],
5.吉时利发布最新2401型数字源表——专为低电压测试而优化的极高性价比方案,扩展2400系列数字源表产品线业内最低成本SMU仪器·1A/20V量程·替代电源+DMM [J],
因版权原因,仅展示原文概要,查看原文内容请购买。