(完整版)2018年黑龙江省哈尔滨中考数学模拟试卷(1月份)

合集下载

2018年黑龙江哈尔滨中考数学试卷及答案解析版

2018年黑龙江哈尔滨中考数学试卷及答案解析版

).
【答案】 C. 7. (2018 哈尔滨,7,3 分)如图,在□ABCD 中,AD=2AB,CE 平分∠BCD 交 AD 边于点 E,且 AE=3,则 AB 的长为( ). A. 4 B.3 C. 5 2 D.2
(第 7 题图)
【答案】 B. 8. (2018 哈尔滨,8,3 分)在一个不透明的袋子中,有 2 个白球和 2 个红球,它们只有颜色上的区别,从袋子 中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ). A. 1 16 B. 1 8 C. 1 4 1 D. 2
【答案】 D. 二、填空题(每小题 3 分,共计 30 分) 11. (2018 哈尔滨,11,3 分)把 98000 用科学记数法表示为_______________. 【答案】9.8×104. 12. (2018 哈尔滨,12,3 分)在函数 y= 【答案】x≠3. 13. (2018 哈尔滨,13,3 分)计算: 273 =__________________. 2 x 中,自变量 x 的取值范围是_______________. x+3
【答案】 C. 9. (2018 哈尔滨,9,3 分)如图,在△ABC 中,M、N 分别是边 AB、AC 的中点,则△AMN 的面积与四边形 MBCN 的面积比为( ). A. 1 2 1 B. 3 C. 1 4 2 D. 3
【答案】 B. 10. (2018 哈尔滨, 10, 3 分) 梅凯种子公司以一定价格销售“黄金 1 号”玉米种子, 如果一次购买 10 千克以上(不 含 10 千克)的种子,超过 10 千克的那部分种子的价格将打折,并依此得到付款金额 y(单位:元)与一次购买种 子数量 x(单位:千克)之间的函数关系如图所示.下列四种说法: ①一次购买种子数量不超过 10 千克时,销售价格为 5 元/千克; ②一次购买 30 千克种子时,付款金额为 100 元; ③一次购买 10 千克以上种子时,超过 10 千克的那部分种子的价格打五折; ④一次购买 40 千克种子比分两次购买且每次购买 20 千克种子少花 25 元钱. 其中正确的个数是( ). A. 1 个 B. 2 个 C. 3(2018 哈尔滨,14,3 分)不等式组 3x-1<2, 的解集是______________. x+3≥1

2018年黑龙江省哈尔滨市中考数学试卷(带答案解析)

2018年黑龙江省哈尔滨市中考数学试卷(带答案解析)

2018年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)﹣57的绝对值是( )A .57B .75C .−57D .−75【解答】解:|−57|=57,故选:A .2.(3分)下列运算一定正确的是( ) A .(m +n )2=m 2+n 2 B .(mn )3=m 3n 3C .(m 3)2=m 5D .m•m 2=m 2【解答】解:A 、(m +n )2=m 2+2mn +n 2,故此选项错误; B 、(mn )3=m 3n 3,正确; C 、(m 3)2=m 6,故此选项错误; D 、m•m 2=m 3,故此选项错误; 故选:B .3.(3分)下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【解答】解:A 、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B 、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C 、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D 、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意; 故选:C .4.(3分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.5.(3分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3√3 C.6 D.9【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.6.(3分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A .y=﹣5(x +1)2﹣1B .y=﹣5(x ﹣1)2﹣1C .y=﹣5(x +1)2+3D .y=﹣5(x ﹣1)2+3【解答】解:将抛物线y=﹣5x 2+1向左平移1个单位长度,得到y=﹣5(x +1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x +1)2﹣1. 故选:A .7.(3分)方程12x =2x+3的解为( )A .x=﹣1B .x=0C .x=35 D .x=1【解答】解:去分母得:x +3=4x , 解得:x=1,经检验x=1是分式方程的解, 故选:D .8.(3分)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD=8,tan ∠ABD=34,则线段AB 的长为( )A .√7B .2√7C .5D .10【解答】解:∵四边形ABCD 是菱形, ∴AC ⊥BD ,AO=CO ,OB=OD , ∴∠AOB=90°, ∵BD=8, ∴OB=4,∵tan ∠ABD=34=AOOB,∴AO=3,在Rt △AOB 中,由勾股定理得:AB=√AO 2+OB 2=√32+42=5, 故选:C .9.(3分)已知反比例函数y=2k−3x的图象经过点(1,1),则k 的值为( )A .﹣1B .0C .1D .2【解答】解:∵反比例函数y=2k−3x的图象经过点(1,1), ∴代入得:2k ﹣3=1×1, 解得:k=2, 故选:D .10.(3分)如图,在△ABC 中,点D 在BC 边上,连接AD ,点G 在线段AD 上,GE ∥BD ,且交AB 于点E ,GF ∥AC ,且交CD 于点F ,则下列结论一定正确的是( )A .AB AE =AG AD B .DF CF =DG ADC .FG AC =EG BD D .AE BE =CF DF【解答】解:∵GE ∥BD ,GF ∥AC , ∴△AEG ∽△ABD ,△DFG ∽△DCA ,∴AE AB =AG AD ,DG DA =DF DC , ∴AE BE =AG DG =CF DF. 故选:D .二、填空题(每小题3分,共计30分)11.(3分)将数920000000科学记数法表示为 9.2×108 . 【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×10812.(3分)函数y=5xx−4中,自变量x 的取值范围是 x ≠4 .【解答】解:由题意得,x ﹣4≠0, 解得,x ≠4, 故答案为:x ≠4.13.(3分)把多项式x 3﹣25x 分解因式的结果是 x (x +5)(x ﹣5) 【解答】解:x 3﹣25x =x (x 2﹣25) =x (x +5)(x ﹣5).故答案为:x (x +5)(x ﹣5).14.(3分)不等式组{x −2≥15−2x >3x −15的解集为 3≤x <4 .【解答】解:{x −2≥1①5−2x >3x −15②∵解不等式①得:x ≥3, 解不等式②得:x <4,∴不等式组的解集为3≤x <4, 故答案为;3≤x <4.15.(3分)计算6√5﹣10√15的结果是 4√5 .【解答】解:原式=6√5﹣10×√55=6√5﹣2√5=4√5,故答案为:4√5.16.(3分)抛物线y=2(x +2)2+4的顶点坐标为 (﹣2,4) . 【解答】解:∵y=2(x +2)2+4, ∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).17.(3分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是 13.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:26=13.故答案为:13.18.(3分)一个扇形的圆心角为135°,弧长为3πcm ,则此扇形的面积是 6π cm 2.【解答】解:设扇形的半径为Rcm , ∵扇形的圆心角为135°,弧长为3πcm ,∴135π×R 180=3π,解得:R=4, 所以此扇形的面积为135π×42360=6π(cm 2),故答案为:6π.19.(3分)在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为 130°或90° . 【解答】解:∵在△ABC 中,AB=AC ,∠BAC=100°, ∴∠B=∠C=40°,∵点D 在BC 边上,△ABD 为直角三角形, ∴当∠BAD=90°时,则∠ADB=50°, ∴∠ADC=130°, 当∠ADB=90°时,则 ∠ADC=90°,故答案为:130°或90°.20.(3分)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AB=OB ,点E 、点F 分别是OA 、OD 的中点,连接EF ,∠CEF=45°,EM ⊥BC 于点M ,EM 交BD 于点N ,FN=√10,则线段BC 的长为 4√2 .【解答】解:设EF=x ,∵点E 、点F 分别是OA 、OD 的中点, ∴EF 是△OAD 的中位线, ∴AD=2x ,AD ∥EF , ∴∠CAD=∠CEF=45°,∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC=2x , ∴∠ACB=∠CAD=45°, ∵EM ⊥BC , ∴∠EMC=90°,∴△EMC 是等腰直角三角形, ∴∠CEM=45°, 连接BE , ∵AB=OB ,AE=OE ∴BE ⊥AO ∴∠BEM=45°, ∴BM=EM=MC=x , ∴BM=FE ,易得△ENF ≌△MNB ,∴EN=MN=12x ,BN=FN=√10,Rt △BNM 中,由勾股定理得:BN 2=BM 2+MN 2,∴(√10)2=x 2+(12x)2,x=2√2或﹣2√2(舍),∴BC=2x=4√2.故答案为:4√2.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣1a−2)÷a2−6a+92a−4的值,其中a=4cos30°+3tan45°.【解答】解:当a=4cos30°+3tan45°时,所以a=2√3+3原式=a−3a−2•2(a−2)(a−3)2=2 a−3=√3 322.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2√2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求,CE=4.23.(8分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×40120=320人.24.(8分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点G,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a ,EG=DE=a ,∴S △ADE =12AE•DE=12•2a•a=a 2,∵BH 是△ABE 的中线, ∴AH=HE=a , ∵AD=CD 、AC ⊥BD , ∴CE=AE=2a ,则S △ADC =12AC•DE=12•(2a +2a )•a=2a 2=2S △ADE ;在△ADE 和△BGE 中, ∵{∠AED =∠BEGDE =GE ∠ADE =∠BGE ,∴△ADE ≌△BGE (ASA ), ∴BE=AE=2a ,∴S △ABE =12AE•BE=12•(2a )•2a=2a 2,S △BCE =12CE•BE=12•(2a )•2a=2a 2,S △BHG =12HG•BE=12•(a +a )•2a=2a 2,综上,面积等于△ADE 面积的2倍的三角形有△ACD 、△ABE 、△BCE 、△BHG .25.(10分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;若购买4个A 型放大镜和6个B 型放大镜需用152元. (1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A 型放大镜?【解答】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:{8x +5y =2204x +6y =152,解得:{x =20y =12,答:每个A 型放大镜和每个B 型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.26.(10分)已知:⊙O是正方形ABCD的外接圆,点E在AB̂上,连接BE、DE,点F在AD̂上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为74,求线段BR的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H 作HM ⊥KD ,垂足为点M , ∵∠F=90°, ∴HF ⊥FD , ∵DA 平分∠EDF , ∴HM=FH , ∵FH=BP , ∴HN=BP , ∵KH ∥BN , ∴∠DKH=∠DLN , ∴∠ELP=∠DLN , ∴∠DKH=∠ELP , ∵∠BED=∠A=90°, ∴∠BEP +∠LEP=90°, ∵EP ⊥BN ,∴∠BPE=∠EPL=90°, ∴∠LEP +∠ELP=90°, ∴∠BEP=∠ELP=∠DKH , ∵HM ⊥KD ,∴∠KMH=∠BPE=90°, ∴△BEP ≌△HKM , ∴BE=HK ;(3)解:如图3,连接BD , ∵3HF=2DF ,BP=FH , ∴设HF=2a ,DF=3a , ∴BP=FH=2a ,由(2)得:HM=BP ,∠HMD=90°, ∵∠F=∠A=90°,∴tan ∠HDM=tan ∠FDH ,∴HM DM =FH DF =23,∴DM=3a ,∵四边形ABCD 为正方形, ∴AB=AD ,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE ,∠DBF=45°﹣∠ABF ,∠BDE=45°﹣∠ADE , ∴∠DBF=∠BDE , ∵∠BED=∠F ,BD=BD , ∴△BED ≌△DFB , ∴BE=FD=3a ,过H 作HS ⊥BD ,垂足为S ,∵tan ∠ABH=tan ∠ADE=AH AB =23,∴设AB=3√2m ,AH=2√2m ,∴BD=√2AB=6m ,DH=AD ﹣AH=√2m ,∵sin ∠ADB=HS DH =√22,∴HS=m ,∴DS=√DH 2−HS 2=m , ∴BS=BD ﹣DS=5m ,∴tan ∠BDE=tan ∠DBF=HS BS =15,∵∠BDE=∠BRE ,∴tanBRE=BP PR =15,∵BP=FH=2a , ∴RP=10a ,在ER 上截取ET=DK ,连接BT ,由(2)得:∠BEP=∠HKD , ∴△BET ≌△HKD , ∴∠BTE=∠KDH , ∴tan ∠BTE=tan ∠KDH ,∴BP PT =23,即PT=3a , ∴TR=RP ﹣PT=7a ,∵S △BER ﹣S △DHK=74,∴12BP•ER ﹣12HM•DK=74, ∴12BP•(ER ﹣DK )=12BP•(ER ﹣ET )=74, ∴12×2a ×7a=74, 解得:a=12(负值舍去),∴BP=1,PR=5, 则BR=√12+52=√26.27.(10分)已知:在平面直角坐标系中,点O 为坐标原点,点A 在x 轴的负半轴上,直线y=﹣√3x +72√3与x 轴、y 轴分别交于B 、C 两点,四边形ABCD 为菱形.(1)如图1,求点A 的坐标;(2)如图2,连接AC ,点P 为△ACD 内一点,连接AP 、BP ,BP 与AC 交于点G ,且∠APB=60°,点E 在线段AP 上,点F 在线段BP 上,且BF=AE ,连接AF 、EF ,若∠AFE=30°,求AF 2+EF 2的值;(3)如图3,在(2)的条件下,当PE=AE 时,求点P 的坐标.【解答】解:(1)如图1中,∵y=﹣√3x+7√3 2,∴B(72,0),C(0,7√32),∴BO=72,OC=7√32,在Rt△OBC中,BC=√OC2+OB2=7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣72=72,∴A(﹣72,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠APB=60°,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACE≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT=√AP2−TP2=√3m,在Rt△ABT中,∵AT2+TB2=AB2,∴(√3m)2+(2m)2=72,解得m=√7或﹣√7(舍弃),∴BF=√7,AT=√21,BP=3√7,sin∠ABT=ATAB =√217,∵OK=PQ=BP•sin∠PBQ=3√7×√217=3√3,BQ=√BP2−PQ2=6,∴OQ=BQ﹣BO=6﹣72=52,∴P(﹣52,3√3)。

2018年黑龙江省哈尔滨中考数学模拟试卷(1月份)

2018年黑龙江省哈尔滨中考数学模拟试卷(1月份)


10.小明家、公交车站、学校在一条笔直的公路旁 (小明家、学校到这条公路的距离忽略不计 ).一天,
小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,
小明下车时发现还有 4 分钟上课,于是他沿这条公路跑步赶到学校 (上、下车时间忽略不计 ).小明与家
的距离 s(单位:米 )与他所用的时间 t(单 位:分钟 )之间的函数关系如图所示.已知小明从家出发 7 分
2018 年中考数学模拟试卷
A.
B.3
C.5
D.
一、选择题 (每小题 3 分。共计 30 分)
9.如图,在地面上的点 A 处测得树顶 B 的仰角为α度,AC=7m ,则树高 BC 为(用含α的代数式表
1. 4 的平方根是(

示)( )
A.±2
B.2
C.±
D.
A. 7sinα
B.7cosα
C.7tan α

A. B. C. D.
【考点】简单几何体的三视图. 【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 【解答】解: A、圆柱的主视图和左视图都是长方形,俯视图是圆,故此选项错误; B、长方体的三视图不相同,故此选项错误; C、圆锥的主视图和左视图都是等腰三角形,故此选项错误; D、球的主视图和左视图、俯视图都是圆,故此选项正确; 故选: D. 【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图 中.
2.下列运算中,结果正确的是(

A.2a+3b=5ab B .a2?a3=a6 C.( a+b )2=a2+b 2 D.2a﹣( a+b )=a ﹣b

2018年黑龙江省哈尔滨市道外区中考数学一模试卷

2018年黑龙江省哈尔滨市道外区中考数学一模试卷

2018年黑龙江省哈尔滨市道外区中考数学一模试卷一、选择题1.下列实数中,无理数是()A.B.C.D.2.0200200022.下列运算正确的是()A.B.C.D.3.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.不能确定的4.下列几何图形中,既是中心对称图形又是轴对称图形的个数是()A.1个B.2个C.3个D.4个5.若某反比例函数y=的图象经过点(3,﹣4),则该函数图象位于()A.第一、二象限 B.第二、四象限 C.第一、三象限 D.第三、四象限6.如图所示的几何体是由六个小正方体组合而成的,它的主视图是()A.B.C.D.7.将抛物线y=2x2+1向左平移1个单位,再向下平移3个单位后所得到的抛物线为()A.y=2(x+1)2﹣2 B.y=2(x+1)2+4 C.y=2(x﹣1)2﹣2 D.y=2(x﹣1)2+48.如图,AB为⊙O的切线,切点为A,BO交⊙O于点C,点D在⊙O上,若∠ABO的度数是32°,则∠ADC的度数是()A.29°B.30°C.31°D.32°9.如图,将正方形纸片ABCD绕着点A按逆时针方向旋转30°后得到正方形AB′C′D′,若AB=2 cm,则图中阴影部分的面积为()A.6cm2 B.(12﹣6)cm2C.3cm2D.4cm210.已知,A市到B市的路程为260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回A市,同时甲车以原来1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,下列四种说法:①甲车提速后的速度是60千米/时;②乙车的速度是96千米/时;③乙车返回时y与x的函数关系式为y=﹣96x+384;④甲车到达B市乙车已返回A市2小时10分钟.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题11.实数6的相反数是.12.在函数y=中,自变量x的取值范围是.13.计算:=.14.把多项式ax2+2ax+a分解因式的结果是.15.不等式组的解集是.16.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为(结果保留π)17.已知A种品牌的文具比B种品牌的文具单价少1元,小明买了2个A种品牌的文具和3个B 种品牌的文具,一共花了28元,那么A种品牌的文具单价是元.18.如图,一个可以自由转动的圆形转盘,转盘分成8个大小相同的扇形,上面分别标有数字1、2、3、4,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动转盘一次,当转盘停止转动时,则指针指向标有“3”所在区域的概率为.19.已知正方形ABCD中,点E在边CD上,DE=3,EC=1.点F是正方形边上一点,且BF=AE,则FC=.20.如图,在△ABC中,∠ACB=90°,AC=BC,P为三角形内部一点,且PC=3,PA=5,PB=7,则△PAB的面积为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.先化简,再求代数式的值,其中,y=tan45°.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段DE,点A、B、D、E均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的直角三角形ABC,点C在小正方形的顶点上,且△ABC的面积为5;(2)在方格纸中画出以DE为一边的锐角等腰三角形DEF,点F在小正方形的顶点上,且△DEF的面积为10.连接CF,请直接写出线段CF的长.23.为了拓展学生视野,培养学生读书习惯,某校围绕着“你最喜欢读的书是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.请根据两幅统计图中的信息,回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)求本次抽样调查中最喜欢小说类的学生数,并补全条形图;(3)若该校共有1800名学生,请你估计全校学生中最喜欢动漫类的人数约为多少?24.已知,四边形ABCD是菱形,点M、N分别在AB、AD上,且BM=DN,MG∥AD,NF∥AB,点F、G分别在BC、CD上,MG与NF相交于点E.(1)如图1,求证:四边形AMEN是菱形;(2)如图2,连接AC在不添加任何辅助线的情况下,请直接写出面积相等的四边形.25.为美化小区,物业公司计划对面积为3000m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队的1.5倍,如果要独立完成面积为300m2区域的绿化,甲队比乙队少用1天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若物业公司每天需付给甲队的绿化费用为0.5万元,需付给乙队的费用为0.4万元,要使这次的绿化总费用不超过11万元,至少应安排甲队工作多少天?26.在△ABC中,以AC为直径的⊙O交BC边于点D,E为弧AD上一点,∠DEC=∠EBC,延长BE交AC于点F,交⊙O于点G.(1)如图1,求证:∠BFC=90°;(2)如图2,连接AG,当AG∥BC时,求证:AG=DC;(3)如图3,在(2)的条件下,连接AD交EG于点H,当FH:HE=1:2,且AF=,求BE的长.27.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5与x轴交于点A、点B,与y轴交于点C.直线y=x+2经过点A,交抛物线于点D,AD交y轴于点E,连接CD,CD∥x轴.(1)求抛物线的解析式;(2)如图2,过点A的直线交抛物线第四象限于点F,若tan∠BAF=,求点F的坐标;(3)在(2)的条件下,P为直线AF上方抛物线上一点,过点P作PH⊥AF,垂足为H,若HE=PE,求点P的坐标.2018年黑龙江省哈尔滨市道外区中考数学一模试卷参考答案与试题解析二、填空题11.实数6的相反数是﹣6.【考点】相反数.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可直接得到答案.【解答】解:6的相反数是﹣6,故答案为:﹣6.【点评】此题主要考查了相反数,关键是掌握相反数的概念.12.在函数y=中,自变量x的取值范围是x≠0.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,3x≠0,解得x≠0.故答案为:x≠0.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.计算:=5.【考点】二次根式的加减法.【分析】首先化简二次根式,进而合并求出即可.【解答】解:原式=3+2=5.故答案为:5.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.14.把多项式ax2+2ax+a分解因式的结果是a(x+1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,再利用完全平方公式分解因式得出答案.【解答】解:ax2+2ax+a=a(x2+2x+1)=a(x+1)2.故答案为:a(x+1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用完全平方公式是解题关键.15.不等式组的解集是﹣1<x<2.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>﹣1,解②得:x<2.则不等式组的解集是:﹣1<x<2.故答案是:﹣1<x<2.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.16.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为3π(结果保留π)【考点】扇形面积的计算.【专题】计算题.=,代入数据运算即可得出答案.【分析】根据扇形公式S扇形【解答】解:由题意得,n=120°,R=3,===3π.故S扇形故答案为:3π.【点评】此题考查了扇形的面积计算,属于基础题,解答本题的关键是熟练掌握扇形的面积公式,另外要明白扇形公式中,每个字母所代表的含义.17.已知A种品牌的文具比B种品牌的文具单价少1元,小明买了2个A种品牌的文具和3个B种品牌的文具,一共花了28元,那么A种品牌的文具单价是5元.【考点】一元一次方程的应用.【分析】设A、B这两种品牌彩笔的单价分别为x元、x+1元,根据小明买了2个A种品牌的文具和3个B种品牌的文具,一共花了28元列方程,然后解方程即可.【解答】解:设A、B这两种品牌彩笔的单价分别为x元、x+1元,可得:2x+3(x+1)=28,解得:x=5,答:A种品牌的文具单价是5元.故答案为:5【点评】本题考查了一元一次方程的应用,列一元一次方程解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出等量关系,列出方程.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.18.如图,一个可以自由转动的圆形转盘,转盘分成8个大小相同的扇形,上面分别标有数字1、2、3、4,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动转盘一次,当转盘停止转动时,则指针指向标有“3”所在区域的概率为.【考点】概率公式.【分析】由一个转盘被分成8个大小相同的扇形,上面分别标有数字1、2、3、4,标有数字“3”的扇形有3个,直接利用概率公式求解即可求得答案.【解答】解:∵一个转盘被分成8个大小相同的扇形,上面分别标有数字1、2、3、4,标有数字“3”的扇形有3个,∴指针指向标有“3”所在区域的概率为:.故答案为.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.19.已知正方形ABCD中,点E在边CD上,DE=3,EC=1.点F是正方形边上一点,且BF=AE,则FC=或3.【考点】正方形的性质;勾股定理.【专题】分类讨论.【分析】由正方形的性质得出BC=AB=AD=CD=DE+EC=4,∠BAD=∠C=∠D=90°,由勾股定理求出AE;分两种情况:①当点F在AD边上时,由勾股定理求出AF,得出DF,在由勾股定理求出FC即可;②当点F在CD边上时,由勾股定理求出FC即可.【解答】解:∵四边形ABCD是正方形,∴AB=AD=CD=DE+EC=4,∠BAD=∠C=∠D=90°,∴AE===5,分两种情况:①当点F在AD边上时,如图1所示:∵BF=AE=5,∴AF===3,∴DF=AD﹣AF=1,∴FC===;②当点F在CD边上时,如图2所示:∵BF=AE=5,∴FC===3;综上所述:FC的长为或3;故答案为:或3.【点评】本题考查了正方形的性质、勾股定理;熟练掌握正方形的性质,由勾股定理求出AE是解决问题的突破口.20.如图,在△ABC中,∠ACB=90°,AC=BC,P为三角形内部一点,且PC=3,PA=5,PB=7,则△PAB的面积为14.【考点】勾股定理;等腰直角三角形.【分析】过P作PD⊥AC于D,PE⊥BC于E,根据四边形CDPE是矩形,得到CD=PE=y,CE=PD=x,设PD=x,PE=y,AC=BC=a,列方程组即可得到结论.【解答】解:过P作PD⊥AC于D,PE⊥BC于E,则四边形CDPE是矩形,设PD=x,PE=y,AC=BC=a,∴CD=PE=y,CE=PD=x,∴,∴,∴a2﹣ay﹣ax=28,∴S△APB=S△ABC﹣S△APC﹣S△BCP=a2﹣ax﹣ay=14.故答案为:14.【点评】本题考查了勾股定理,等腰直角三角形的性质,熟记各性质是解题的关键.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.先化简,再求代数式的值,其中,y=tan45°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先根据分式混合运算的法则把原式进行化简,再求出x、y的值代入进行计算即可.【解答】解:原式=[﹣]•=•=.当x=﹣2cos60°=﹣2×=﹣1,y=tan45°=1时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段DE,点A、B、D、E均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的直角三角形ABC,点C在小正方形的顶点上,且△ABC的面积为5;(2)在方格纸中画出以DE为一边的锐角等腰三角形DEF,点F在小正方形的顶点上,且△DEF 的面积为10.连接CF,请直接写出线段CF的长.【考点】作图—应用与设计作图;等腰三角形的性质;勾股定理.【分析】(1)直接利用旋转的性质得出对应点位置,进而得出答案;(2)利用等腰三角形的性质得出对应点位置进而结合勾股定理得出答案.【解答】解:(1)如图所示:△ABC即为所求;(2)如图所示:△DFE,即为所求;CF==.【点评】此题主要考查了应用设计与作图以及等腰三角形的性质和勾股定理等知识,根据题意得出对应点位置是解题关键.23.为了拓展学生视野,培养学生读书习惯,某校围绕着“你最喜欢读的书是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.请根据两幅统计图中的信息,回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)求本次抽样调查中最喜欢小说类的学生数,并补全条形图;(3)若该校共有1800名学生,请你估计全校学生中最喜欢动漫类的人数约为多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据科普人数和对应的百分比求得抽样调查的人数即可;(2)根据抽样调查的人数减去参加科普、动漫、和其他兴趣小组的人数可得答案,补充条形统计图;(3)根据喜欢动漫类的人数所占的百分比,即可用乘法求得估计全校学生中最喜欢动漫类的人数.【解答】解:(1)15÷30%=50(人)答:本次抽样调查中最喜欢小说类的有50名学生.(2)喜欢小说类的学生:50﹣15﹣20﹣10=5(人)画图如下:(3)1800×=720(名)答:估计全校学生中最喜欢动漫的人数约为720名.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.已知,四边形ABCD 是菱形,点M 、N 分别在AB 、AD 上,且BM=DN ,MG ∥AD ,NF ∥AB ,点F 、G 分别在BC 、CD 上,MG 与NF 相交于点E . (1)如图1,求证:四边形AMEN 是菱形;(2)如图2,连接AC 在不添加任何辅助线的情况下,请直接写出面积相等的四边形.【考点】菱形的判定与性质.【分析】(1)由MG ∥AD ,NF ∥AB ,可证得四边形AMEN 是平行四边形,又由四边形ABCD 是菱形,BM=DN ,可得AM=AN ,即可证得四边形AMEN 是菱形;(2)易得四边形CGEF 是菱形;即可得S △AEM =S △AEN ,S △CEF =S △CEG ,S △ABC =S △ADC ,继而求得答案.【解答】(1)证明:∵MG ∥AD ,NF ∥AB , ∴四边形AMEN 是平行四边形, ∴四边形ABCD 是菱形, ∴AB=AD , ∵BM=DN ,∴AB ﹣BM=AD ﹣DN , ∴AM=AN ,∴四边形AMEN 是菱形;(2)解:∵四边形AMEN 是菱形, ∴S △AEM =S △AEN ,同理:四边形CGEF 是菱形, ∴S △CEF =S △CEG , ∵四边形ABCD 是菱形, ∴S △ABC =S △ADC ,∴S 四边形MBFE =S 四边形DNEG ,S 四边形MBCE =S 四边形DNEC ,S 四边形MBCG =S 四边形DNFC ,S 四边形ABFE =S 四边形ADGE ,S 四边形ABFN =S 四边形ADGM .【点评】此题考查了菱形的性质与判定.注意证得四边形AMEN是菱形与四边形CGEF是菱形是关键.25.为美化小区,物业公司计划对面积为3000m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队的1.5倍,如果要独立完成面积为300m2区域的绿化,甲队比乙队少用1天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若物业公司每天需付给甲队的绿化费用为0.5万元,需付给乙队的费用为0.4万元,要使这次的绿化总费用不超过11万元,至少应安排甲队工作多少天?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为300m2区域的绿化时,甲队比乙队少用1天,列出方程,求解即可;(2)设应安排甲队工作a天,根据这次的绿化总费用不超过11万元,列出不等式,求解即可.【解答】(1)解:设乙工程队每天完成绿化的面积是xm2,则甲工程队每天完成绿化的面积是1.5xm2,根据题意得﹣1=,解得x=100,经检验x=100是原方程的解,1.5x=1.5×100=150.答:甲工程队每天完成绿化的面积是150m2,乙工程队每天完成绿化的面积是100m2.(2)设应安排甲队工作a天,根据题意得0.5a+×0.4≤11,解得a≥10.答:至少应安排甲队工作10天.【点评】此题考查了分式方程的应用和一元一次不等式的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验.26.在△ABC中,以AC为直径的⊙O交BC边于点D,E为弧AD上一点,∠DEC=∠EBC,延长BE交AC于点F,交⊙O于点G.(1)如图1,求证:∠BFC=90°;(2)如图2,连接AG,当AG∥BC时,求证:AG=DC;(3)如图3,在(2)的条件下,连接AD交EG于点H,当FH:HE=1:2,且AF=,求BE的长.【考点】圆的综合题.【分析】(1)连接AD,由AC是⊙O的直径知∠DAC+∠ACD=90°,又由∠DEC=∠DAC=∠EBC 可得∠EBC+∠ACD=90°,即∠BFC=90°;(2)连接AD、GC,由AC是⊙O的直径可得∠ADC=∠AGC=90°,根据AG∥BC证得四边形GADC 是矩形,故AG=DC;(3)根据FH:HE=1:2,可设FH=a、HE=2a,由∠BFC=90°知FG=FE=3a且∠HAF+∠AHF=90°,又由∠HAF+∠FAG=90°可得∠AHF=∠FAG,则有,根据比例式求得a的值,进而知HF=1、EH=2、FG=3、GH=4,由∠ACE=∠AGE=∠EBC=∠DEC得∠DEC=∠ACE,故DE∥AC,即,又由,可得,据此可得HB的长即可.【解答】解:(1)如图1,连接AD,∵AC是⊙O的直径,∴∠ADC=90°,∴∠DAC+∠ACD=90°,∵,∴∠DEC=∠DAC,又∵∠DEC=∠EBC,∴∠DAC=∠EBC,∴∠EBC+∠ACD=90°,∴∠BFC=90°;(2)如图2,连接AD、GC,∵AC是⊙O的直径,∴∠ADC=∠AGC=90°,∵AG∥BC,∴∠GAD+∠ADC=180°,∴∠GAD=90°,即∠GAD=∠ADC=∠CGA=90°,∴四边形GADC是矩形,∴AG=DC;(3)∵FH:HE=1:2,∴设FH=a(a>0),则HE=2a,由(1)知∠BFC=90°,∴OF⊥EG于点F,∠HAF+∠AHF=90°,∴FG=FE=3a,由(2)知∠HAF+∠FAG=90°,∴∠AHF=∠FAG,∴tan∠AHF=tan∠FAG,∴,∴AF2=HF•FG,∴()2=a•3a,∴3a2=3,∵a>0,∴a=1,∴HF=1,EH=2,FG=3,∴GH=4,∵,∴∠ACE=∠AGE,∵AG∥BC,∴∠AGE=∠EBC,又∵∠EBC=∠DEC,∴∠DEC=∠ACE,∴DE∥AC,∴,∵AG∥BC,又∵GH=4,∴HB=8,∴BE=BH﹣HE=8﹣2=6.【点评】本题考查的是垂径定理、圆周角定理、线段的比等知识点,根据角与角间的转换得出线段平行,从而根据平行得到线段的比求出长度是关键.27.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5与x轴交于点A、点B,与y轴交于点C.直线y=x+2经过点A,交抛物线于点D,AD交y轴于点E,连接CD,CD∥x轴.(1)求抛物线的解析式;(2)如图2,过点A的直线交抛物线第四象限于点F,若tan∠BAF=,求点F的坐标;(3)在(2)的条件下,P为直线AF上方抛物线上一点,过点P作PH⊥AF,垂足为H,若HE=PE,求点P的坐标.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得C点坐标,根据平行于x轴的直线上点的纵坐标相等,可得D点的纵坐标,根据待定系数法,可得函数解析式;(2)根据正切函数值,可得关于t的方程,根据解方程,可得t的值,根据第四项限内点的横坐标大于零,根据自变量与函数值的对应关系,可得答案;(3)根据待定系数法,可得AF的解析式,根据自变量与函数值的对应关系,可得E点坐标,根据等腰三角形的判定与性质,可得E点是PQ的中点,根据中点的坐标,可得Q点坐标,根据Q点的坐标满足函数解析式,可得关于m的方程,根据解方程,可得答案.【解答】解:(1)抛物线y=ax2+bx+5与y轴交与C,当x=0时,y=5,即C(0,5);∵CD∥x轴,∴D点的纵坐标为5,当y=5时,x+=2=5,解得x=3,D(3,5),当y=0时,x=﹣2,A(﹣2,0).抛物线A(﹣2,0),D(3,5),∴,解得,抛物线的解析式为y=﹣x2+x+5;(2)设F(t,﹣t2+t+5),过F作FG⊥x轴于点G,则G(t,0),由∠BAF==,得AG=2FG.t﹣(﹣2)=2×[0﹣(﹣t2+t+5)],化简,得t2﹣4t﹣12=0,解得t1=﹣2,t2=6,∵F在第四象限,t>0,t=﹣2(舍),t=6,即F(6,﹣4);(3)∵A(﹣2,0),F(6,﹣4),设直线AF解析式y=kx+b,∴,解得AF的解析式为y=﹣x﹣1;∵y=x+2交y轴于E点,当x=0时,y═2,即E点坐标为(0,2);设直线PE交AF于点Q,∵HE=PE,∴∠EHP=∠EPH,∵PH⊥AF于H,∴∠PHA=90°.∴∠PQH+∠EHQ=90°,∴EQ=EH.∵HE=PE,∴EQ=EP,即E为PQ中点.设P(m,﹣m2+m+5),∵E(0,2),∴Q(﹣m,m2﹣m﹣1).∵Q在直线AF上,∴m2﹣m﹣1=﹣(﹣m)﹣1,整理,得m2=4m,解得m1=0,m2=4,当m1=0时,P1(0,5),当m2=4时,P2(4,3),综上所述:P1(0,5),P2(4,3).【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用正切函数的出关于t的方程是解题关键;利用等腰三角形的判定与性质得出E点是PQ的中点是解题关键,又利用了图象上的点满足函数解析式.第21页(共21页)。

2018年黑龙江省哈尔滨市中考数学试卷含答案解析

2018年黑龙江省哈尔滨市中考数学试卷含答案解析

哈尔滨市2018年初中升学考试数学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.57-的绝对值是 ( ) A.57B.75C.57-D.75-2.下列运算一定正确的是 ( )A.()222=m n m n++B.()333=mn m nC.()235=m m D.22=m m mg3.下列图形中既是轴对称图形又是中心对称图形的是( )A B C D4.六个大小相同的正方体搭成的几何体如图所示,其俯视图是( )A B C D5.如图,点P为Oe外一点,PA为Oe的切线,A为切点,PO交Oe于点B,∠P=30°,OB=3,则线段BP的长为( )A.3B.33C.6D.96.将抛物线2=51y x-+向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )第1页第 2 页A .()2=511y x -+- B .()2=511y x --- C .()2=513y x -++D .()2=513y x --+ 7.方程12=23x x +的解为( )A .=1x -B .=0xC .3=5xD .=1x8.如图,在棱形ABCD 中,对角线AC ,BD 相交于点O ,BD =8,3tan =4ABD ∠,则线段AB 的长为( )A .7B .27C .5D .109.已知反比例函数23=k y x-的图象经过点()1,1,则k 的值为( )A .-1B .0C .1D .210.如图,在ABC ∆中,点D 在BC 边上,连接AD ,点G 在线段AD 上,GE ∥BD ,且交AB 于点E ,GF ∥AC ,且交CD 于点F ,则下列结论一定正确的是 ( ) A .AB AGAE AD =B .DF DGCF AD =C .FG EGAC BD=D .AE CFBE DF=第Ⅱ卷(非选择题 共90分)二、填空题(本大题共10小题,每小题3分,共30分.请把答案填在题中的横线上) 11.将数920 000 000用科学记数法表示为 . 12.函数5=4xy x -中,自变量x 的取值范围是 . 13.把多项式325x x -分解因式的结果是 .14.不等式组215215x x x -≥⎧⎨--⎩,>3的解集为 .15.计算165105-的结果是 . 16.抛物线()2=224y x ++的顶点坐标为 .第 3 页17.一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是 . 18.一个扇形的圆心角为135°,弧长为3π cm ,则此扇形的面积是 cm ². 19.在ABC ∆中,AB =AC ,∠BAC =100°,点D 在BC 边上,连接AD ,若ABD∆为直角三角形,则∠ADC 的度数为 .20.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,AB =OB ,点E ,点F 分别是OA ,OD 的中点,连接EF ,∠CEF =45°,EM ⊥BC 于点M ,EM 交BD 于点N ,FN =10,则线段BC 的长为 .三、解答题(本大题共7小题,共60分.解答应写出必要的文字说明、证明过程或演算步骤) 21.(本小题满分7分)先化简,再求代数式21691224a a a a -+⎛⎫-÷⎪--⎝⎭的值,其中°°=4cos303tan 45a +.22.(本小题满分7分)如图,方格纸中的每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上. (1)在图中画出以线段AB 为一边的矩形ABCD (不是正方形),且点C 和点D 均在小正方形的顶点上;(2)在图中画出以线段AB 为一腰,底边长为22的等腰三角形ABE ,点E 在小正方形的顶点上。

2018年黑龙江省哈尔滨市中考数学模拟试题及参考答案

2018年黑龙江省哈尔滨市中考数学模拟试题及参考答案

2018年黑龙江省哈尔滨市中考模拟试题数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1下列运算结果为正数的是()A.(﹣3)2B.﹣3÷2C.0×(﹣2017)D.2﹣32.下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2D.(a﹣b)2=a2﹣2ab+b23.如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥4.下列二次函数中,图象经过原点,且顶点的坐标为(﹣1,3)的是()A.y=x2+2B.y=﹣(x+1)2+3C.y=﹣3(x+1)2+3D.y=﹣3(x﹣1)2+3 5.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.6.要把分式方程=化为整式方程,方程两边可同时乘以()A.2x﹣4B.x C.x﹣2D.x(x﹣2)7.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.如图,在△ABC中,点D在AC上,DE⊥BC,垂足为E,若AD=2DC,AB=4DE,则sinB等于()A.B.C.D.9.如图,已知AB∥CD∥EF,AC=CE=EP,△PEF的面积是2,则四边形ABCD的面积是()A.18B.16C.12D.1010.如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是().B.C.D.二、填空题(本大题共10小题,每小题3分,共30分)11.今年“十一”黄金周期间,共接待游客38.88万人次,388800用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.因式分解:mx4﹣my4=.14.计算:(﹣)﹣(﹣﹣)=.15.若原点O与反比例函数y=(k<0)的图象上的点之间的距离的最小值为4,则k的值为.16.若不等式组无解,则m的取值范围是.17.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.18.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,.若AB=1,则阴影部分图形的周长为(结果保留π).19.若菱形的两条对角线之和为l,面积为S,则它的边长为.20.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、解答题(本大题共60分)21.(7分)先化简,再求代数式的值.(﹣)÷,其中tan60°>a>sin30°,请你取一个合适的数作为a 的值代入求值.22.(7分)如图,在小正方形的边长均为1的方格纸中,有线段AB,点A,B 均在小正方形的顶点上.(1)在图1中画出一个以线段AB为一边的平行四边形ABCD,点C,D均在小正方形的顶点上,且平行四边形ABCD的面积为8;(2)在图2中画一个钝角三角形ABE,点E在小正方形的顶点上,且三角形ABE 面积为2,tan∠AEB=.请直接写出BE的长.23.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?24.(8分)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.25.(10分)某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据.月份n(月)12成本y(万元/件)1112需求量x(件/月)120100(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.26.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.27.(10分)如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点,点P是AC上的一动点,过点P作PD∥y轴,与抛物线交于点D.(1)求此抛物线的函数关系式;(2)是否存在这样的P点,使线段PD的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)连接AD,求△PAD为直角三角形时点P的坐标.参考答案:一、选择题1.A2.D3.D4.C5.C6.D7.C8.D9.D10.A二、填空题11.3.888×105.12.x≥﹣,且x≠2.13.m(x2+y2)(x+y)(x﹣y).14.+.15.816.m<17.18.π+119..20.40或三、解答题21.(7分)解:原式=(﹣)×=×=.∵tan60°>a>sin30°,即>a>.取a=,原式==.22.(7分)解:(1)、(2)如图1、2所示:BE==2.23.(8分)解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.24.(8分)(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.25.(10分)解:(1)由题意,设y=a+,由表中数据可得:,解得:,∴y=6+,由题意,若12=18﹣(6+),则=0,∵x>0,∴>0,∴不可能;(2)将n=1、x=120代入x=2n2﹣2kn+9(k+3),得:120=2﹣2k+9k+27,解得:k=13,∴x=2n2﹣26n+144,将n=2、x=100代入x=2n2﹣26n+144也符合,∴k=13;由题意,得:18=6+,解得:x=50,∴50=2n2﹣26n+144,即n2﹣13n+47=0,∵△=(﹣13)2﹣4×1×47<0,∴方程无实数根,∴不存在;(3)第m个月的利润为W,W=x(18﹣y)=18x﹣x(6+)=12(x﹣50)=24(m2﹣13m+47),∴第(m+1)个月的利润为W′=24[(m+1)2﹣13(m+1)+47]=24(m2﹣11m+35),若W≥W′,W﹣W′=48(6﹣m),m取最小1,W﹣W′取得最大值240;若W<W′,W′﹣W=48(m﹣6),由m+1≤12知m取最大11,W′﹣W取得最大值240;∴m=1或11.26.(10分)证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.27.(10分)解:(1)根据题意得,,∴,∴抛物线解析式为y=x2﹣2x﹣6,(2)∵抛物线解析式为y=x2﹣2x﹣6,∴C(6,0)∵A(0,﹣6),∴直线AC解析式为y=x﹣6,设P(t,t﹣6),∴D(t,t2﹣2t﹣6),∴PD=|t2﹣2t﹣6﹣(t﹣6)|=|t2﹣3t|=|(t﹣3)2﹣|=﹣(t﹣3)2+,当t=3时,PD=;最大值(3)设P(t,t﹣6),∴D(t,t2﹣2t﹣6),∵PD∥y轴,∴CD∥x轴时,∠ADP=90°,∴﹣6=t2﹣2t﹣6,∴t=0(舍)或t=4;∴P(4,﹣2);∵抛物线的解析式为y=x2﹣2x﹣6=(x﹣2)2﹣8,∴抛物线的顶点坐标为D(2,﹣8),∴P(2,﹣4),∵A(0,﹣6)∴AD2=4+4=8,PD2=42=16,PA2=4+4=8,∴AD2+PA2=PD2,∴△PAD为直角三角形,∴P(2,﹣4).即:△PAD为直角三角形时点P的坐标为(2,﹣4),(4,﹣2).。

黑龙江省哈尔滨市2018年中考数学一模试题含答案

黑龙江省哈尔滨市2018年中考数学一模试题含答案

2018年中考一摸试题数学试卷一、选择题(每小题 3分,共计 30分)1.如图,数轴上表示数2的相反数的点是( )A .点PB .点QC .点MD .点N2. 下列运算中,结果正确的是( ) A .2a+3b=5ab B. a 2.a 3=a 6 C .(a+b)2=a 2+b 2D .2a-(a+b)=a-b3.下列图形中,是轴对称图形的是( )A. B. C. D.4. 下列几何体的主视图、左视图、俯视图都相同的是( )A .圆柱 B.圆锥 C .球 D .长方体5.如图,已知直线m ∥n,直角三角板ABC 的顶点A 在直线m 上,则∠α等于( )A .2l °B .30°C .58°D .48°6.如图,菱形ABCD 的两条对角线相交于O ,若AC=8,BD=6,则菱形ABCD 的周长是( )A .48B .24C .D .20圆柱圆锥球长方体第5题图7.对于双曲线xk 4y -=,当x >0时,y 随x 的增大而减小,则k 的取值范围是 ( )(A )k <4 (B )k ≤4 (C )k >4 (D )k ≥48.如果一个多边形的内角和与外角和相等,那么这个多边形是( )A. 三角形B. 四边形C. 五边形D.十边形9.如图,AD ∥BE ∥CF ,直线l 1、l 2与这三条平行线分别交于点A 、B 、C 和点D 、E 、F .若AB=4.5,BC=3,EF=2,则DE 的长度是( )A .415 B .3 C .5 D .34 10.在△ABC 中,点O 是△ABC 的内心,连接OB 、OC ,过点O 作EF ∥BC 分别交AB 、AC 于点E 、F ,已知BC=a (a 是常数),设△ABC 的周长为y , △AEF 的周长为x ,在下列图象中,大致表示y 与x 之间的函数关系的是( )A .B .C .D .二、填空题(每小题 3分,共计 30分)11. 某市常住人口约为5 245 000人,数字5 245 000用科学记数法表示为 . 12.在函数32y +-=x x 中,自变量x 的取值范围是 . 13.计算:2-8 = . 14. 分解因式:a 2b ﹣9b= .第9题图第10题图15.不等式组⎩⎨⎧->≤120x -3x x 的解集是 .16.一个袋子中装有6个球,其中4个黑球2个白球,这些球除颜色外,其他都完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一黑一白球的概率是 .17.如果关于x 的一元二次方程x 2+px +q =0的两根分别为1,221-==x x ,那么pq的值为 .18.数据1x ,2x ,…,n x 的方差是2,则另一组数据31+x ,32+x ,…,3+n x 的方差是______.19.已知:等腰三角形ABC 的面积为302m ,AB=AC= 10m ,则底边BC 的长度为 m.20.如图,正方形ABCD 的边长为4,点E 为BC 的中点,点F 为AB 上一点,BF=23,点H 为CD 上一点,若∠BFE=∠HFE ,连接AH ,则AH 的长为 .三、解答题(共60分) 21.先化简,再求代数式)252(23+--÷+-a a a a 的值。

2018年黑龙江省哈尔滨市道里区中考数学一模试卷-普通用卷

2018年黑龙江省哈尔滨市道里区中考数学一模试卷-普通用卷

2018年黑龙江省哈尔滨市道里区中考数学一模试卷副标题一、选择题(本大题共10小题,共30.0分)1.在,,,,,0.中,无理数的个数是A. 1个B. 2个C. 3个D. 4个2.下列运算正确的是A. B. C.D.3.下列图案既是中心对称图形,又是轴对称图形的是A. B. C. D.4.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量把130 000 000kg用科学记数法可表示为A. B. C. D.5.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是A. B. C. D.6.如图,内接于,连结OA,OB,,则的度数是A.B.C.D.7.在中,,,,则的值为A. B. C. D.8.在反比例函数的图象的每一个象限内,y都随x的增大而减小,则k的取值范围是A. B. C. D.9.如图,在▱ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,它们相交于点G,延长BE交CD的延长线于点H,下列结论错误的是A.B.C.D.10.甲、乙两名同学进行登山比赛,甲同学和乙同学沿相同的路线同时在早8:00从山脚出发前往山顶,甲同学到达山顶后休息1小时,沿原路以每小时6千米的速度下山,在这一过程中,各自行进的路程随所用时间变化的图象如图所示,根据提供信息得出以下四个结论:甲同学从山脚到达山顶的路程为12千米;乙同学登山共用4小时;甲同学在14:00返回山脚;甲同学返回与乙同学相遇时,乙同学距登到山顶还有千米的路程.以上四个结论正确的有个A. 1B. 2C. 3D. 4二、填空题(本大题共10小题,共30.0分)11.因式分解:______.12.函数中,自变量x取值范围是______.13.计算的结果是______.14.不等式组的解集是______.15.把抛物线向上平移2个单位,那么所得抛物线与x轴的两个交点之间的距离是______.16.如图,某高速公路建设中需要确定隧道AB的长度,已知在离地面900米高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为和,则隧道AB的长为______米结果保留根号.17.第一个盒子中有2个白球和1个黄球,第二个盒子中有3个白球和2个黄球,这些球除颜色外无其他差别,分别从每个盒子中随机抽取一个球,取出的两个球都是黄球的概率是______.18.如图,在中,,,以点C为中心,把逆时针旋转,得到,则图中阴影部分的面积为______.19.矩形ABCD,,,点E在BC的垂直平分线上,,则______.20.如图,,,,,,,则______.三、计算题(本大题共1小题,共7.0分)21.先化简,再求代数式的值,其中,.四、解答题(本大题共6小题,共53.0分)22.如图,在每个小正方形的边长均为1个单位长度的方格纸中,线段AB的端点A、B均在小正方形的顶点上.将BA向右平移3个单位长度得到线段CD,在方格纸中补全四边形ABCD;在中的四边形ABCD内确定点E,连接EC,DC,使是等腰三角形,连接AE,直接写出AE的长.23.“校园安全”受到全社会的广泛关注,“高远”中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下尚不完整的条形统计图,且知在抽样调查中“了解很少”的同学占抽样调查人数的,请你根据提供的信息解答下列问题:接受问卷调查的学生共有多少名?请补全条形统计图;若“高远”中学共有1800名学生,请你估计该校学生对校园知识“基本了解”的有多少名?24.在正方形ABCD中,E,F分别是CB,CD延长线上的点,,连接AE,AF.如图1,求证:;如图2,连接EF分别交AB,AD于M,N两点,直接写出图中所有等腰直角三角形.25.某商品经销店欲购进A、B两种纪念品,用320元购进的A种纪念品与用400元购进的B种纪念品的数量相同,每件B种纪念品的进价比A种纪念品的进价贵10元.求A、B两种纪念品每件的进价分别为多少?若该商店A种纪念品每件售价45元,B种纪念品每件售价60元,这两种纪念品共购进200件,这两种纪念品全部售出后总获利不低于1600元,求A种纪念品最多购进多少件.26.如图,以的AB边为直径作交BC于点D,过点D作切线交AC于点E,.如图1,求证:;如图2,设CA的延长线交于点F,点G在上,,连接BG,求证:;在的条件下,如图3,点M为BG中点,MD的延长线交CE于点N,连接DF交AB于点H,若AH::8,,求DE长.27.如图,在平面直角坐标系中,点O为坐标原点,抛物线交x轴负半轴于点A,交x轴正半轴于点B,交y轴负半轴于点C,,.求抛物线的解析式;点D在抛物线在第一象限的部分上,连接BC,DC,过点D作x轴的垂线,点E为垂足,的正切值等于的正切值的一半,求点D的坐标;在的条件下,横坐标为t的点P在抛物线在第四象限的部分上,PB的延长线交DE于点F,连接BD,OF交于点G,连接EG,若GB平分,求t值.答案和解析【答案】1. B2. D3. D4. D5. A6. C7. D8. D9. A10. A11.12.13.14.15.16.17.18.19. 13或20.21. 解:,,,,,,,原式.22. 解:如图所示:四边形ABCD即为所求;如图所示:即为所求,.23. 解:接受问卷调查的学生共有名;“不了解”的人数为,补全条形图如下:名,答:估计该校学生对校园知识“基本了解”的有450名.24. 证明:四边形ABCD为正方形,,,在和中,≌ ,;解:图中等腰直角三角形有:,,,.25. 解:设A种纪念品每件的进价为x元,则B种纪念品每件的进价为元.根据题意得:,解得:,经检验,是原分式方程的解,.答:A种纪念品每件的进价为40元,B种纪念品每件的进价为50元.设购进A种纪念品a件,则购进B种纪念品件,根据题意得:,解得:.答:A种纪念品最多购进80件.26. 证明:连接OD,为的切线,,,,又,,,,,;证明:如图2,连接BF,AG,为的直径,,,,,,,,,,四边形AFBG为矩形,;解:如图3,连接AD,为的直径,,,,,,在和中,≌ ,,过点C作交BA的延长线于点P,,,::8,::5,,,,,设,则,,连接FB,,,为BG中点,,,,则,,,,,,.27. 解:,.,,把,代入得,解得,抛物线解析式为;作于H,如图1,设,当时,,解得,,则,在中,,的正切值等于的正切值的一半,在中,,,解得得,,则;如图2,设直线BD的解析式为,把,代入得,解得,直线BD的解析式为,设,平分,::BE,即GO::2,,,整理得,解得,,,易得直线OF的解析式为,当时,,则,设直线BF的解析式为,把,代入得,解得直线BF的解析式为,解方程组得或,,即t的值为2.【解析】1. 解:在,,,,,0.中,无理数有、这2个,故选:B.根据无理数的定义判断即可此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像,等有这样规律的数.2. 解:A、原式,不符合题意;B、原式,不符合题意;C、原式,不符合题意;D、原式,符合题意,故选:D.原式各项计算得到结果,即可作出判断.此题考查了整式的混合运算,熟练掌握公式及法则是解本题的关键.3. 解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4. 解:130 000 .故选:D.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是非负数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.5. 解:如图所示:故选:A.由已知条件可知,主视图有3列,每列小正方数形数目分别为1,2,3;据此可画出图形.本题考查几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.6. 解:,,,,故选:C.根据三角形内角和定理、等腰三角形的性质求出,根据圆周角定理解答.本题考查的是圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7. 解:在中,,,,,则,故选:D.先根据勾股定理求出,再利用余弦函数的定义可得答案.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.8. 解:在反比例函数的图象的每一个象限内,y都随x的增大而减小,,即,故选:D.利用反比例函数的性质判断即可.此题考查了反比例函数的性质,熟练掌握反比例函数的性质是解本题的关键.9. 解:四边形ABCD是平行四边形,,,,A错误、D正确,A符合题意;,B正确,不符合题意;,C正确,不符合题意;故选:A.根据平行四边形的性质得到,,根据相似三角形的性质列出比例式,判断即可.本题考查的是相似三角形的性质和判定、平行四边形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.10. 解:值的最大值为12,甲同学从山脚到达山顶的路程为12千米,结论正确;乙同学登山的速度为千米时,乙同学登山所用时间为小时,乙同学登山共用6小时,结论错误;甲同学登山的速度为千米时,甲同学登山所用时间为小时,甲同学下山所用时间为小时,甲同学返回山脚的时间为时,结论错误;设二者相遇的时间为x时,根据题意得:,解得:,二人相遇时,乙同学距山顶的距离为千米,结论错误.综上所述:正确的结论有.故选:A.由s的最大值为12,可得出甲同学从山脚到达山顶的路程为12千米,结论正确;利用速度路程时间可求出甲登山的速度,由时间路程速度可求出甲登山及下山所用时间,再结合甲的出发时间及中间休息一小时,可得出甲同学在15:00返回山脚,结论错误;设二者相遇的时间为x时,根据路程甲下山的路程乙上山的路程,即可得出关于x的一元一次方程,解之即可得出x的值,再根据离山顶的距离山顶到山脚的路程乙登山的路程,即可得出二人相遇时,乙同学距山顶的路程为千米,结论错误综上即可得出结论.本题考查了函数图象以及解一元一次方程,观察函数图象逐一分析四条结论的正误是解题的关键.11. 解:.故答案为:.首先提取公因式a,进而利用平方差公式分解因式得出即可.此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.12. 解:根据题意,得,解得.故答案为.根据分式的意义,分母不能为据此得不等式求解.本题主要考查函数自变量的取值范围和分式有意义的条件,当函数表达式是分式时,考虑分式的分母不能为0.13. 解:原式,故答案为:.根据合并同类二次根式的加减,可得答案.本题考查了二次根式的加减,系数相加被开方数不变,化成同类二次根式是解题关键.14. 解:,解得,所以不等式组的解集为.故答案为.先解得,然后根据大小小大中间找确定不等式组的解集.本题考查了解一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15. 解:所得抛物线为,当时,,解得,两个交点之间的距离是.先由平移规律求出新抛物线的解析式,然后求出抛物线与x轴的两个交点横坐标,利用坐标轴上两点间距离公式即可求得距离.主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减并用规律求函数解析式会利用方程求抛物线与坐标轴的交点.16. 解:由题意得,,,,.即隧道AB的长约为.故答案为:易得,,利用相应的正切值可得AO,BO的长,相减即可得到AB的长.本题考查了解直角三角形的应用,解答本题的关键是利用三角函数值得到与所求线段相关线段的长度.17. 解:画树状图如下:由树状图知共有15种等可能结果,其中取出的两个球都是黄球的情况由2种,所以取出的两个球都是黄球的概率是,故答案为:.画树状图列出所有等可能结果,从中确定取出的两个球都是黄球的结果数,根据概率公式计算可得.本题考查了列表法与树状图法:运用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18. 解:在中,,,,把逆时针旋转,得到,,,,,阴影部分的面积,故答案为.先在中利用勾股定理求出,再根据旋转的性质得出≌ ,然后根据阴影部分的面积扇形的面积的面积的面积扇形的面积,代入数值解答即可.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了勾股定理以及扇形面积公式的应用.19. 解:如图,四边形ABCD是矩形,,,点E是边BC的垂直平分线,,,易知,四边形ABGH是矩形,,,,,,当点E在BC上方时,,在中,根据勾股定理得,,当点E在BC下方时,,在中,根据勾股定理得,,故答案为或13.先求出,进而判断出四边形ABGH是矩形得出,再分两种情况求出EH,最后用勾股定理即可得出结论.此题主要考查了矩形的性质和判定,勾股定理,垂直平分线的性质,分两种情况用勾股定理解决问题是解本题的关键.20. 解:将逆时针旋转,得到,连接DE,作于H,则,,,,,,,,在中,,故答案为:.将逆时针旋转,得到,连接DE,作于H,根据旋转变换的性质得到,,,,根据勾股定理求出DE,根据余弦的概念计算即可.本题考查的是直角三角形的性质、等腰三角形的性质以及旋转变换的性质,利用旋转变换的性质得到相等的线段和角是解题的关键.21. 先根据分式混合运算的法则把原式进行化简,再计算x和y的值并代入进行计算即可本题考查的是分式的化简求值和特殊的三角函数值,熟知分式混合运算的法则是解答此题的关键.22. 根据平移画出图形即可;利用勾股定理解答即可.本题考查的是利用平移设计图案,熟知平移的性质是解答此题的关键.23. 根据“了解人很少”的人数及其所占百分比可得总人数;总人数减去其它类型的人数,求得“不了解”的人数即可补全条形图;总人数乘以样本中“基本了解”人数所占比例即可.本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据.24. 利用正方形的性质结合全等三角形的判定和性质得出答案;结合中所求,再利用等腰直角三角形的判定方法得出答案.此题主要考查了正方形的性质以及全等三角形的判定和性质,正确得出全等三角形是解题关键.25. 设A种纪念品每件的进价为x元,则B种纪念品每件的进价为元,根据数量总价单价结合用320元购进的A种纪念品与用400元购进的B种纪念品的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;设购进A种纪念品a件,则购进B种纪念品件,根据总利润单件利润购买数量结合这两种纪念品全部售出后总获利不低于1600元,即可得出关于a的一元一次不等式,解之取其内的最大值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出分式方程;根据数量间的关系,正确列出一元一次不等式.26. 利用切线的性质得出,进而得出,即可得出;结合圆周角定理以及利用矩形判定方法得出四边形AFBG为矩形,进而得出答案;首先得出 ≌ ,则,再过点C作交BA的延长线于点P,得出,设,则,,利用勾股定理表示出BF的长,进而得出k的值,得出求出答案即可.此题主要考查了全等三角形的判定与性质以及矩形的判定、勾股定理等知识,正确作出辅助线得出k的值是解题关键.27. 先确定,,然后利用待定系数法求抛物线解析式;作于H,如图1,设,再解方程得,利用正切的定义得到,则,然后解方程求出x即可得到D点坐标;如图2,先利用待定系数法求出直线BD的解析式为,设,再利用角平分线的性质定理得到GO::BE,则,所以,解方程得到,接着求出直线BD与OG的交点F的坐标为,然后利用待定系数法求出直线BF的解析式为,最后解方程组得t的值.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、角平分线的性质和锐角三角函数的定义;会利用待定系数法求函数解析式,会解一元二次方程;理解坐标与图形性质,记住两点间的距离公式.。

2018年黑龙江省哈尔滨市中考数学试卷-答案

2018年黑龙江省哈尔滨市中考数学试卷-答案

哈尔滨市2018年初中升学考试数学答案解析1.【答案】A 【解析】,故选A. 55=77-【考点】绝对值的概念..2.【答案】B【解析】,A 错误;,B 正确;,C 错误;,()222=2m n m mn n +++()333=mn m n ()23326==m m m ⨯2123==m m m m + D 错误.综上所述,故选B.【考点】整式的运算.3.【答案】C【解析】A 选项中的图形既不是轴对称图形,也不是中心对称图形;B 选项中的图形是中心对称图形,但不是轴对称图形;D 选项中的图形是轴对称图形,但不是中心对称图形;C 选项中的图形既是轴对称图形,又是中心对称图形,故选C.【考点】轴对称图形和中心对称图形的概念.4.【答案】B【解析】俯视图是从几何体的上方观察几何体得到的平面图形,由图易得B 选项中的图形符合题意,故选B .【考点】几何体的俯视图.5.【答案】A【解析】连接,则,又因为为圆的切线,所以,则在中,由OA 3OA OB ==PA O OA PA ⊥t R POA ∆30P ∠=︒得,则,故选A .26OP OA ==3BP OP OB =-=【考点】圆的切线、含特殊角的直角三角形的性质.6.【答案】A【解析】抛物线的顶点为,将其向左平移1个单位长度,再向下平移2个单位长度得到的2=51y x -+()0,1点的坐标为,则对应的抛物线解析式为,故选A. ()11--,()2=511y x -+-【考点】抛物线的平移.7.【答案】D【解析】由取分母得,解得,经检验,是原分式方程的解,故选D. 12=23x x +3=4x x +=1x =1x 【考点】解分式方程.8.【答案】C【解析】因为四边形ABCD 为菱形,所以AC ⊥BD ,AO =CO ,BO =DO ,则,又因为tan ∠ABD =1=42BO BD =,所以AO =3,则由勾股定理易得AB =5,故选C . 34AO BO =【考点】菱形的性质、锐角三角函数、勾股定理. 9.【答案】D【解析】将点代入反比例函数得,解得,故选D. ()1,123=k y x -231=1k -=2k 【考点】反比例函数图象上的点.10.【答案】D【解析】因为EG ∥BD ,所以,又因为GF ∥AC ,所以,所以,故选D. AE AG BE DG =AG CF DG DF =AE CF BE DF =【考点】平行线的性质.11.【答案】89.210⨯【解析】920 000 000=.89.210⨯【考点】科学记数法.12.【答案】4x ≠【解析】由有意义得,解得,所以函数中,自变量的取值范围为. 54x x -40x -≠4x ≠5=4x y x -x 4x ≠【考点】函数的自变量.13.【答案】()()55x x x +-【解析】. ()()()3225=25=55x x x x x x x --+-【考点】因式分解.14.【答案】34x ≤<【解析】解得,解得,所以题中不等式组的解集为.21x -≥3x ≥52315x x -->4x <34x ≤<【考点】解一元一次不等式组.15.【答案】【解析】--【考点】二次根式的计算.16.【答案】()2,4-【解析】抛物线为顶点式方程,则其顶点坐标为. ()2=224y x ++()2,4-【考点】抛物线方程.17.【答案】13【解析】抛掷一次骰子会出现6种等可能的结果,其中点数为3的倍数的有3,6,共2种,则所求概率为 21=63【考点】概率的计算.18.【答案】 6π【解析】设扇形的半径为r ,则扇形的弧长为,解得,则扇形的面积为. 135r =3180ππr=421354=6360ππ⨯【考点】扇形的弧长公式、面积公式.19.【答案】90°或130°【解析】因为,,所以.因为为直角三角形,当AB AC =100BAC ∠=︒()°°1180=402B BAC -∠=∠ABD ∆时,,当时,.综上所述,的度90ADB ∠=︒90ADC ∠=︒90BAD ∠=︒130ADC BAD B ∠=∠+∠=︒ADC ∠数为90°或130°.【考点】三角形的内角和、三角形的外角.20.【答案】【解析】连接BE ,由AB =OB ,点E 为AO 的中点易得BE ⊥AC ,又因为点F 位OD 的中点,所以EF ∥AD ∥BC ,则,,,则为等腰直角三1122EF AD BC ==EFN MBN ∠=∠45ECB CEF ∠=∠=︒BEC ∆角形,又因为,所以点M 为BC 的中点,则.在和EM BC ⊥12EM BM EF BC BM ===,t R BMN ∆t R FEN ∆中,由得,所以90EF MB EFN MBN FEN BMN =∠=∠∠=∠=︒,,t t R BMN R FEN ∆≅∆,,则在中,由勾股定理得,即1122EN MN EM BM ===BN FN ==t R BMN ∆222BN MN BM =+,解得. 222=2BM BM ⎛⎫+ ⎪⎝⎭BM =2BC BM ==【考点】全等三角形的判定与性质、勾股定理、中位线的性质、等腰三角形的判定与性质.21.【答案】原式= ()()22221692224324=269223=232=.3a a a a a a a a a a a a a a a a --+⎛⎫-÷ ⎪---⎝⎭----+----- ∵,=433a ⨯∴原式【解析】原式= ()()22221692224324=269223=232=.3a a a a a a a a a a a a a a a a --+⎛⎫-÷ ⎪---⎝⎭----+-----∵,=433a ⨯∴原式【考点】分式的化简与求值、特殊角的三角函数值.22.【答案】(1)如图(2) 如上图.CE =4【解析】(1)如图(2)如上图.CE =4【考点】勾股定理、作图.23.【答案】(1), 2420%=120÷(名)∴本次调查共抽取了120名学生.(2) 1202440168=32----(名)∴最喜爱书法的学生有32名.补全条形统计图,如图所示.(3). 40960=320120⨯(名)∴估计该中学最喜爱国画的学生有320名.【解析】(1), 2420%=120÷(名)∴本次调查共抽取了120名学生.(2) 1202440168=32----(名)∴最喜爱书法的学生有32名.补全条形统计图,如图所示.。

2018年黑龙江省哈尔滨市香坊区中考数学一模试卷

2018年黑龙江省哈尔滨市香坊区中考数学一模试卷

2018年黑龙江省哈尔滨市香坊区中考数学一模试卷一、选择题(每小题3分,共计30分)1.(3分)﹣8的绝对值是()A.8B.C.﹣D.﹣82.(3分)下列运算中正确的是()A.x2•x3=x6B.(xy)3=xy3C.x3÷x3=1D.(﹣x)3(﹣x)=﹣x43.(3分)如图图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)抛物线y=﹣2(x﹣6)2+9的顶点坐标是()A.(6,9)B.(﹣6,9)C.(6,﹣9)D.(﹣6,﹣9)5.(3分)如图所示为某一物体的主视图,请你判断它是下面()组物体的主视图.A.B.C.D.6.(3分)方程=的解是()A.x﹣9B.x=3C.x=9D.x=﹣67.(3分)如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC的度数是()A.52°B.38°C.22°D.19°8.(3分)在Rt△ACB中,∠C=90°,AC=1,BC=2,则sinB的值为()A.B.C.D.9.(3分)如图,F是菱形ABCD的边CD上一点,射线AF交BC延长线于点E,则下列比例式中正确的是()A.=B.=C.=D.=10.(3分)春运某日,货车从甲地出发1小时后,客车从甲地出发,货车到乙地用1小时卸货后以120千米时返回从货车出发到与客车相遇,两车相距S (千米)与货车行驶时间x(小时)的函数关系如图所示,下列说法正确的是()A.客车速度为60千米/时B.货车从甲地到乙地速度为100千米时C.甲、乙两地相距160千米D.P点坐标为(5,100)二、填空题(每小题3分,共计30分)11.(3分)将20180000用月科学记数法表示为.12.(3分)函数y=中自变量x的取值范围是.13.(3分)把x2y+6xy+9y分解因式的结果是.14.(3分)化简计算:2+4=.15.(3分)已知反比例函数y=,当x>0时,y随x增大而减小,则m的取值范围是.16.(3分)不等式组的解集是.17.(3分)在一个不透明的口袋中,装有除颜色不同,其它完全相同的18个球,若从袋中摸出绿球的概率为,则袋中装有绿球的个数为.18.(3分)已知扇形弧长为2π,半径为3cm,则此扇形所对的圆心角为度.19.(3分)矩形ABCD中,AB=6,AD=9,对角线AC、BD交于点O,点E在AC 上,AO=2OE,延长BE交矩形一边于点F,则DF的长为.20.(3分)已知:如图,AB=AC,AE+CE=CD,∠AEC=2∠BCD,则=.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式﹣的值,其中x=2sin60°﹣tan45°.22.(7分)如图,在正方形网格中有一条线段AB(网格中每个小正方形的边长均为1个单位),其端点A、B均在小正方形的顶点上.(1)在图中画出面积为4的等腰△ABC,且点C在小正方形的顶点上(画出一种即可);(2)在图中画出平行四边形AEBD,且点D和点E均在小正方形的顶点上,tan ∠EBD=2,连接CE,请直接写出线段CE的长(画出一种即可).23.(8分)某中学现有在校学生2150人,为了解本校学生的课余活动情况,采取随机抽样的方法从阅读、运动、娱乐、其它四个方面调查了若干名学生,并将调查的结果绘制了如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形图,并求出扇形统计图中阅读部分圆心角的度数;(3)请你估计该中学在课余时间参加阅读和其它活动的学生一共有多少名?24.(8分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A 作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上﹣点,连接CF,且∠ACF=∠CBG.(1)求证:AF=CG;(2)写出图中长度等于2DE的所有线段.25.(10分)某公司决定购进A、B两种办公桌椅,若购进A种桌椅3套,B种桌椅4套,需要5000元;若购进A种桌椅5套,B种桌椅2套,需要6000元.(1)求购进A、B两种桌椅每套各需多少元?(2)若公司决定用不超过3万元购进A、B两种桌椅共50套,那么公司最多购进A种桌椅多少套?26.(10分)如图,在⊙O中,弦AC、BD相交于点E,AF⊥BD于点F,AE=AB,连接AB、CD.(1)如图1,求证:CD+BD=2DF;(2)如图2,当BD经过圆心O时,连接AO并延长,交⊙O于点G,连BC,求证:∠D=∠DOG;(3)如图3,在(2)的条件下,连接EG、CG,当OF=1,EG=4时,求CG的长.27.(10分)已知:如图,抛物线y=ax2+bx﹣3与直线y=x+3一个交点B在x 轴上,抛物线与x轴另交于点C,直线y=x+3与y轴交于点A,且BC=AB.(1)求抛物线解析式;(2)点P为抛物线在第二象限部分上一动点,连接AP并延长交x轴负半轴于点D,将AD绕点A逆时针旋转到AQ(点D和点Q是对应点),使∠DAQ=∠ABC,设点Q坐标为(m,n),请用含m式子表示n;(3)在(2)条件下,当点Q在抛物线上时,AQ交x轴负半轴于点E,取AB中点F,连接EF,作QH⊥x轴于点H,与EF延长线交于点G,求△GFQ面积.2018年黑龙江省哈尔滨市香坊区中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)﹣8的绝对值是()A.8B.C.﹣D.﹣8【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣8的绝对值为|﹣8|=8.故选:A.【点评】本题考查了绝对值的性质,熟记一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.(3分)下列运算中正确的是()A.x2•x3=x6B.(xy)3=xy3C.x3÷x3=1D.(﹣x)3(﹣x)=﹣x4【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减进行计算即可.【解答】解:A、x2•x3=x5,故原题计算错误;B、(xy)3=x3y3,故原题计算错误;C、x3÷x3=1,故原题计算正确;D、(﹣x)3(﹣x)=x4,故原题计算错误;故选:C.【点评】此题主要考查了整式的乘法和除法,关键是熟练掌握各计算法则.3.(3分)如图图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,是中心对称图形.故本选项错误;C、既不是轴对称图形,不是中心对称图形.故本选项错误;D、是轴对称图形,也是中心对称图形.故本选项正确;故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)抛物线y=﹣2(x﹣6)2+9的顶点坐标是()A.(6,9)B.(﹣6,9)C.(6,﹣9)D.(﹣6,﹣9)【分析】直接根据其顶点式进行解答即可.【解答】解:由函数的解析式可知,此函数的顶点坐标为:(6,9).故选:A.【点评】本题考查的是二次函数的性质,熟知二次函数的三种形式是解答此题的关键.5.(3分)如图所示为某一物体的主视图,请你判断它是下面()组物体的主视图.A.B.C.D.【分析】从该组合体的主视图看从左至右共有三列,从左到右第一列有两个正方体,第二列有三个正方体,第三列有一个,据此找到答案即可.【解答】解:从该组合体的主视图看从左至右共有三列,从左到右第一列有两个正方体,第二列有三个正方体,第三列有一个,故选:D.【点评】此题主要考查了画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.6.(3分)方程=的解是()A.x﹣9B.x=3C.x=9D.x=﹣6【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程去分母得:2x=3x﹣9,解得:x=9,经检验,x=9是分式方程的解,故选:C.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.7.(3分)如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC的度数是()A.52°B.38°C.22°D.19°【分析】由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠C的度数,又由A0∥BC,根据平行线的性质,即可求得∠0AC的度数.【解答】解:∵∠AOB=38°,∴∠C=∠AOB=19°,∵A0∥BC,∴∠OAC=∠C=19°.故选:D.【点评】此题考查了圆周角定理与平行线的性质.此题比较简单,注意掌握数形结合思想的应用.8.(3分)在Rt△ACB中,∠C=90°,AC=1,BC=2,则sinB的值为()A.B.C.D.【分析】根据勾股定理求出斜边AB的值,在利用正弦的定义直接计算即可.【解答】解:在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB==,∴sinB===,故选:B.【点评】本题主要考查锐角三角函数的定义,解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数是定义.9.(3分)如图,F是菱形ABCD的边CD上一点,射线AF交BC延长线于点E,则下列比例式中正确的是()A.=B.=C.=D.=【分析】由四边形ABCD为菱形,可得AD∥CE,AB∥FC,AB=BC=CD=AD,可得△ADF∽△ECF,△ABE∽△FCE,△ADF∽△EBA,然后根据相似三角形的性质,对各项进行分析即可求得答案.【解答】解:∵四边形ABCD为菱形,∴AD∥CE,AB∥FC,AB=BC=CD=AD,∴△ADF∽△ECF,△ABE∽△FCE,∴△ADF∽△EBA,∴==,故A错误;=,故B错误;=,故C错误;=,故D正确.故选:D.【点评】本题考查相似三角形的判定与性质、菱形的性质、找准对应关系,避免错选其它答案.10.(3分)春运某日,货车从甲地出发1小时后,客车从甲地出发,货车到乙地用1小时卸货后以120千米时返回从货车出发到与客车相遇,两车相距S (千米)与货车行驶时间x(小时)的函数关系如图所示,下列说法正确的是()A.客车速度为60千米/时B.货车从甲地到乙地速度为100千米时C.甲、乙两地相距160千米D.P点坐标为(5,100)【分析】要解答本题需要熟悉一次函数的图象特征,再根据一次函数的性质和图象结合实际问题对每一项进行分析即可得出答案.【解答】解:A、设客车从甲地到乙地的速度为x千米/时,则0.4×120+1.4x=160x=80.故A错误;B、设货车从甲地到乙地的速度为y千米/时,则4y﹣3×80=160,解得y=100,故B正确;C、因为160千米是两车之间的距离,不是甲、乙两地之间的距离,故C错误;D、货车到乙地用1小时卸货后,所以图中点P的横坐标为4+1=5,纵坐标为160﹣80×1=80,∴P(5,80),故D错误,故选:B.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,关键是根据一次函数的性质和图象结合实际问题判断出每一结论是否正确.二、填空题(每小题3分,共计30分)11.(3分)将20180000用月科学记数法表示为 2.018×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:20180000=2.018×107,故答案为:2.018×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)函数y=中自变量x的取值范围是x≠﹣2.【分析】根据分母不等于0列式计算即可得解.【解答】解:根据题意得,x+2≠0,解得x≠﹣2.故答案为:x≠﹣2.【点评】本题考查了函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)把x2y+6xy+9y分解因式的结果是y(x+3)2.【分析】先提取公因式y,再根据完全平方公式进行二次分解.【解答】解:x2y+6xy+9y=y(x2+6x+9)=y(x+3)2.故答案为:y(x+3)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.14.(3分)化简计算:2+4=5.【分析】先进行二次根式的化简,再结合二次根式的加减法运算法则进行求解即可.【解答】解:原式=2×2+4×=4+=5.故答案为:5.【点评】本题考查了二次根式的加减法,解答本题的关键在于熟练掌握二次根式的化简及二次根式加减法的运算法则.15.(3分)已知反比例函数y=,当x>0时,y随x增大而减小,则m的取值范围是m>2.【分析】根据反比例函数y=,当x>0时,y随x增大而减小,可得出m﹣2>0,解之即可得出m的取值范围.【解答】解:∵反比例函数y=,当x>0时,y随x增大而减小,∴m﹣2>0,解得:m>2.故答案为:m>2.【点评】本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.16.(3分)不等式组的解集是﹣1<x≤1.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤1由②得,x>﹣1不等式的解集为:﹣1<x≤1故答案为:﹣1<x≤1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(3分)在一个不透明的口袋中,装有除颜色不同,其它完全相同的18个球,若从袋中摸出绿球的概率为,则袋中装有绿球的个数为6.【分析】等量关系为:绿球数:总球数=,把相关数值代入即可求解.【解答】解:设绿球有x个,根据题意得:=,解得:x=6,即绿球的个数为6,故答案为:6.【点评】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.(3分)已知扇形弧长为2π,半径为3cm,则此扇形所对的圆心角为120度.【分析】直接利用扇形弧长公式代入求出即可.【解答】解:∵扇形弧长为2π,半径为3cm,∴l==2π,即=2π,解得:n=120°,∴此扇形所对的圆心角为:120°.故答案为:120.【点评】此题主要考查了弧长公式的应用,正确利用弧长公式是解题关键.19.(3分)矩形ABCD中,AB=6,AD=9,对角线AC、BD交于点O,点E在AC 上,AO=2OE,延长BE交矩形一边于点F,则DF的长为4或6.【分析】根据矩形的性质得出BC∥AD,AB∥CD,AD=BC=9,CD=AB=6,OA=OB=OC=OD.点E在AC上,AO=2OE时,分两种情况:①点E在OA上;②点E在OC上.根据相似三角形的判定与性质求解即可.【解答】解:∵四边形ABCD是矩形,∴BC∥AD,AB∥CD,AD=BC=9,CD=AB=6,OA=OB=OC=OD.点E在AC上,AO=2OE时,分两种情况:①当点E在OA上时,∵AF∥BC,∴△AEF∽△CEB,∴==,∴AF=BC=3,∴DF=AD﹣AF=6;②当点E在OC上时,∵CF∥AB,∴△CEF∽△AEB,∴==,∴CF=AB=2,∴DF=CD﹣CF=4.综上所述,DF的长为4或6.故答案为4或6.【点评】本题考查了相似三角形的判定与性质,矩形的性质,进行分类讨论是解题的关键.20.(3分)已知:如图,AB=AC,AE+CE=CD,∠AEC=2∠BCD,则=.【分析】延长CE到H,使得EH=EA.设AE=x,CD=y,利用相似三角形的性质,构建方程即可解决问题;【解答】解:延长CE到H,使得EH=EA.∵EA=EH,∴∠H=∠EAH,∵∠AED=∠H+∠EAH=2∠H,∵∠AED=2∠DCB,∴∠DCB=∠H,∴BC∥AH,设AE=x,CD=y,∵AE+EC=EH+EC=CH=CD=y,∴EC=y﹣x,∵AB=AC,∴∠ABC=∠ACB=∠CAH,∵∠CAH=∠CAE+∠EAH,∠ABC=∠D+∠DCB,∴∠EAC=∠D,∵∠AEC=∠DEA,∴△EAC∽△EDA,∴EA2=EC•ED,∴x2=(y﹣x)(2y﹣x),∴y=x,∴==.【点评】本题考查相似三角形的判定和性质、平行线的判定和性质、等腰三角形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考填空题中的压轴题.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式﹣的值,其中x=2sin60°﹣tan45°.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=2sin60°﹣tan45°时,所以x=2×﹣1=﹣1∴原式=﹣•=﹣=﹣==【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(7分)如图,在正方形网格中有一条线段AB(网格中每个小正方形的边长均为1个单位),其端点A、B均在小正方形的顶点上.(1)在图中画出面积为4的等腰△ABC,且点C在小正方形的顶点上(画出一种即可);(2)在图中画出平行四边形AEBD,且点D和点E均在小正方形的顶点上,tan ∠EBD=2,连接CE,请直接写出线段CE的长(画出一种即可).【分析】(1)因为AB为底、面积为4的等腰△ABC,所以点C在线段AB的垂直平分线上,由此即可画出图形;(2)首先根据tan∠EBD=2的值确定点D的位置,由此即可解决问题,利用勾股定理计算CE的长;【解答】解:(1)如图所示,△ABC即为所求:(2)平行四边形AEBD如图所示,平行四边形AEBD即为所求:CE=.【点评】本题考查﹣应用与作图设计、勾股定理、等腰三角形的性质和判定、平行四边形的判定和性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,利用数形结合的思想思考问题,属于中考常考题型.23.(8分)某中学现有在校学生2150人,为了解本校学生的课余活动情况,采取随机抽样的方法从阅读、运动、娱乐、其它四个方面调查了若干名学生,并将调查的结果绘制了如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形图,并求出扇形统计图中阅读部分圆心角的度数;(3)请你估计该中学在课余时间参加阅读和其它活动的学生一共有多少名?【分析】(1)根据运动的人数和所占的百分比即可求出调查的总人数;(2)用调查的总人数减去阅读、运动和其它的人数,求出娱乐的人数,从而补全统计图;用360°乘以阅读部分所占的百分比,即可求出阅读部分的扇形圆心角的度数;(3)用全校的总人数乘以阅读和其它活动的学生所占的百分比即可得出答案.【解答】解:(1)根据题意得:20÷20%=100(名),答:一共调查的学生数是100人;(2)娱乐的人数是:100﹣30﹣20﹣10=40(名),补图如下:阅读部分的扇形圆心角的度数是360°×=108°;(3)根据题意得:2150×=860(名),答:该中学在课余时间参加阅读和其它活动的学生一共有860名.【点评】本题主要考查了条形统计图和扇形统计图,正确读图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A 作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上﹣点,连接CF,且∠ACF=∠CBG.(1)求证:AF=CG;(2)写出图中长度等于2DE的所有线段.【分析】(1)要证AF=CG,只需证明△AFC≌△CBG即可.(2)延长CG交AB于H,则CH⊥AB,H平分AB,继而证得CH∥AD,得出DG=BG 和△ADE与△CGE全等,从而证得CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.∵BG=CF,∴BG=2DE,∴DG=2DE,故长度等于2DE的线段有CF、BG、DG.【点评】本题考查了三角形全等的判定和性质、等腰三角形的性质、平行线的判定及性质,三角形全等是解本题的关键.25.(10分)某公司决定购进A、B两种办公桌椅,若购进A种桌椅3套,B种桌椅4套,需要5000元;若购进A种桌椅5套,B种桌椅2套,需要6000元.(1)求购进A、B两种桌椅每套各需多少元?(2)若公司决定用不超过3万元购进A、B两种桌椅共50套,那么公司最多购进A种桌椅多少套?【分析】(1)设购进A种桌椅每套需x元,购进B种桌椅每套需y元,根据“购进A种桌椅3套,B种桌椅4套,需要5000元;若购进A种桌椅5套,B种桌椅2套,需要6000元”列方程组求解可得;(2)设公司购进A种桌椅a套,则购进A种桌椅(50﹣a)套,根据“用不超过3万元购进A、B两种桌椅共50套”列不等式求解可得.【解答】解:(1)设购进A种桌椅每套需x元,购进B种桌椅每套需y元,根据题意,得:,解得:,答:购进A种桌椅每套需1000元,购进B种桌椅每套需500元;(2)设公司购进A种桌椅a套,则购进A种桌椅(50﹣a)套,根据题意,得:1000a+500(50﹣a)≤30000,解得:a≤10,答:公司最多购进A种桌椅10套.【点评】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.26.(10分)如图,在⊙O中,弦AC、BD相交于点E,AF⊥BD于点F,AE=AB,连接AB、CD.(1)如图1,求证:CD+BD=2DF;(2)如图2,当BD经过圆心O时,连接AO并延长,交⊙O于点G,连BC,求证:∠D=∠DOG;(3)如图3,在(2)的条件下,连接EG、CG,当OF=1,EG=4时,求CG的长.【分析】(1)只要证明DC=DE,EF=FB,再根据线段的和差定义即可解决问题;(2)只要证明∠D=∠AOB,即可解决问题;(3)如图3中,取EG的中点H,连接CH,设OA=OB=r.只要证明四边形DEHC 是菱形即可解决问题;【解答】(1)证明:如图1中,∵AE=AB,AF⊥EB,∴EF=FB,∠AEB=∠B,∵∠AEB=∠DEC,∠B=∠C,∴∠DEC=∠C,∴DC=DE,∴CD+BD=DE+DE+BE=2(DE+EF)=2DF.(2)证明:如图2中,∵∠C=∠DEC=∠AEB=∠B,∴∠D+2∠C=180°,∵OA=OB,∴∠OAB=∠OBA,∴∠AOB+2∠ABO=180°,∵∠C=∠ABO,∴∠D=∠AOB,∵∠DOG=∠AOB,∴∠D=∠DOG.(3)解:如图3中,取EG的中点H,连接CH,设OA=OB=r.则FB=EF=r﹣1,OE=R﹣2,∴DE=DC=2,∵AG是直径,∴∠ECG=90°,∴CH=EH=GH=2,∴DC=DE=CH=EH,∴四边形DEHC是菱形,∴CD∥EG,∴∠D=∠GEO=∠GOE,∴EG=OG=4,∵AF⊥BD,∴∠AFO=90°,∴AF==∴CG===,AE===2,∵∠AEF=∠DEC=∠CEG,∴sin∠CEG=sin∠AEF,∴=,∴=,∴CG=.【点评】本题考查圆综合题、等腰三角形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程组解决问题,属于中考压轴题.27.(10分)已知:如图,抛物线y=ax2+bx﹣3与直线y=x+3一个交点B在x 轴上,抛物线与x轴另交于点C,直线y=x+3与y轴交于点A,且BC=AB.(1)求抛物线解析式;(2)点P为抛物线在第二象限部分上一动点,连接AP并延长交x轴负半轴于点D,将AD绕点A逆时针旋转到AQ(点D和点Q是对应点),使∠DAQ=∠ABC,设点Q坐标为(m,n),请用含m式子表示n;(3)在(2)条件下,当点Q在抛物线上时,AQ交x轴负半轴于点E,取AB中点F,连接EF,作QH⊥x轴于点H,与EF延长线交于点G,求△GFQ面积.【分析】(1)由待定系数法可求解析式;(2)当BC=AB,∠DAQ=∠ABC,且AQ=AD时,可利用三角形内角和,证明∠AQD=∠ACB,则有D、Q、C、A四点共圆,由圆周角性质可证明AB∥CQ,得到直线CQ解析式,把Q坐标代入得到n与m的关系式;(3)当点Q在抛物线上时,求CQ与抛物线交点Q坐标,依次求出E、F、G点坐标,即可求△GFQ面积.【解答】解:(1)∵直线y=x+3与y轴交于点A,交x轴于点B则点A坐标为(0,3),点B坐标为(﹣4,0)Rt△ABO中,AB=∵BC=AB∴OC=1,即点C坐标为(1,0)将点B(﹣4,0),C(1,0)代入抛物线y=ax2+bx﹣3,得解得∴抛物线解析式为:y=(2)如图,连CQ由旋转可知AD=AQ,∵BC=AB,∠DAQ=∠ABC∴∠AQD=∠ACB∴D、Q、C、A四点共圆∴∠DAQ=∠QCD∴∠ABC=∠QCD∴BA∥QC则点Q在过点C平行于AB的直线上运动∴CQ解析式为:y=∵点Q坐标为(m,n)∴n=(3)当点Q在抛物线上时,如图求交点联立方程得:=解得x1=﹣3,x2=1∴点Q坐标为(﹣3,﹣3)∵QH=AO,QH∥AO∴△QHE≌△AOE∴HE=EO即E点坐标为(﹣,0)∵F为AB中点∴F坐标为(﹣2,)∴可求EF解析式为:y=﹣3x﹣则G点坐标为(﹣3,)=∴S△GQF【点评】本题为代数几何综合题,应用了二次函数待定系数法、圆的相关性质、三角形全等等知识,解答过程中应用了转化的数学思想和数形结合思想.。

2018年黑龙江省哈尔滨市南岗区中考数学一模试卷(解析版)

2018年黑龙江省哈尔滨市南岗区中考数学一模试卷(解析版)

【解答】解:连接 OA,OC,过 O 作 OE⊥AC, ∵四边形 ABCD 是⊙O 的内接四边形,∠B=2∠D, ∴∠B+∠D=3∠D=180°, 解得:∠D=60°, ∴∠AOC=120°, 在 Rt△AEO 中,OA=2, ∴AE=2 ∴AC=4 , ,
故选:B.
9. (3 分)如图,直线 l1∥l2∥l3,直线 AC 分别交 l1、l2、l3 于点 A、B、C,直线 DF 分别交 l1、l2、l3 于点 D、E、F,AC 与 DF 相交于点 H,则下列式子不正确的是 ( )
A.
=
B.
=
C.
=
D.
= = 或 = ,然后利用比例性
【分析】根据平行线分线段成比例定理得到
质得到
=
,于是可对各选项进行判断.
【解答】解:∵l1∥l2∥l3,分)已知下列命题: ①三角形两边的差小于第三边; ②依次连接任意一个四边形各边中点所得的四边形是平行四边形; ③圆的切线垂直于过切点的半径; ④在数据 1,2,3,0,2 中,众数是 3,中位数是 3; ⑤若一次函数 y=kx+b(k,b 为常数,k≠0)的图象不经过第二象限,则 b<0, 其中真命题的个数是( )
14. (3 分)计算: 15. (3 分)不等式组
﹣18
的结果是 的整数解是
. .
16. (3 分)一个扇形的弧长是 20πcm,面积是 240πcm2,则这个扇形的圆心角 是 度.
17. (3 分)从﹣1,2,4,﹣8 这四个数中任选两数,分别记作 m,n,那么点 (m,n)在函数 y= 图象上的概率是 .
(2)请你在图 2 中用网格线段将其切割成若干个三角形和正方形,拼接成一个 与其面积相等的正方形,并在图 3 中画出格点正方形. 23. (8 分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调 查,根据调查结果绘制了如下尚不完整的统计图.

2018年黑龙江省哈尔滨市南岗区中考数学一模试卷

2018年黑龙江省哈尔滨市南岗区中考数学一模试卷

确的是( )
A. =
B. =
C. =
D. =
10.(3 分)已知下列命题: ①三角形两边的差小于第三边; ②依次连接任意一个四边形各边中点所得的四边形是平行四边形; ③圆的切线垂直于过切点的半径; ④在数据 1,2,3,0,2 中,众数是 3,中位数是 3; ⑤若一次函数 y=kx+b(k,b 为常数,k≠0)的图象不经过第二象限,则 b<0,
E 关于直线 AE 对称,点 B′在矩形 ABCD 的内部,连接 B′C,B′D,若△
B′CD 是等腰直角三角形,则 的值为

三、解答题(其中 21-22 题各 7 分,23-24 题各 8 分,25-27 题各 10 分,共计 60 分)
21.(7 分)先化简,再求代数式
÷ ﹣1 的值,其中 a=2sin45°
2018 年黑龙江省哈尔滨市南岗区中考数学一模试卷
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分) 1.(3 分)﹣ 的相反数是( )
A.9
B.﹣9
C.
D.﹣
2.(3 分)下列运算正确的是( )
A.﹣3(x﹣4)=﹣3x+12
B.(﹣3x)2•4x2=﹣12x4
C.3x+2x2=5x3
17. ; 18.9; 19.﹣4 或﹣ ; 20.

三、解答题(其中 21-22 题各 7 分,23-24 题各 8 分,25-27 题各 10 分,共计 60
分)
21.
; 22.
; 23.1000;15%;144; 24.
; 25.

26.
; 27.

声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布

2018年黑龙江省哈尔滨市中考数学试题及参考答案案

2018年黑龙江省哈尔滨市中考数学试题及参考答案案

哈尔滨市2018年初中升学考试数学试卷 一、选择题(每小题3分,共计30分)1.(2018黑龙江哈尔滨中考,1,3分,★☆☆)75-的绝对值是( ) A .75 B .57 C .75- D .57- 2. (2018黑龙江哈尔滨中考,2,3分,★★☆)下列运算一定正确的是( )A .(m +n )2=m 2+n 2B .(mn )3=m 3n 3C .(m 3)2=m 5D .m ·m 2=m 23. (2018黑龙江哈尔滨中考,3,3分,★☆☆)下列图形中既是轴对称图形又是中心对称图形的是( )A B C D4.(2018黑龙江哈尔滨中考,4,3分,★☆☆)六个大小相同的正方体搭成的几何体如图所示,其俯视图是( )第4题图A B C D5. (2018黑龙江哈尔滨中考,5,3分,★★☆)如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P =30°,OB =3,则线段BP 的长为( )第5题图A .3B .33C .6D .96. (2018黑龙江哈尔滨中考,6,3分,★☆☆)将抛物线y =-5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A .y =-5(x +1)2-1B .y =-5(x -1)2-1C .y =-5(x +1)2+3D .y =-5(x -1)2+37. (2018黑龙江哈尔滨中考,7,3分,★☆☆)方程3221+=x x 的解为( ) A .x = -1 B .x =0 C .x =53 D .x =1 8. (2018黑龙江哈尔滨中考,8,3分,★★☆)如图,在菱形ABCD 中,对角线AC 、BD相交于点O ,BD =8,tan ∠ABD =43,则线段AB 的长为( )第8题图A 7B .7C .5D .109. (2018黑龙江哈尔滨中考,9,3分,★☆☆)已知反比例函数y =xk 32-的图象经过点(1,1),则k 的值为( )A .-1B .0C .1D .210. (2018黑龙江哈尔滨中考,10,3分,★★☆)如图,在△ABC 中,点D 在BC 边上,连接AD ,点G 在线段AD 上,GE //BD ,且交AB 于点E ,GF ∥AC ,且交CD 于点F ,则下列结论一定正确的是( )第10题图A .AE AB =AD AG B .CF DF =AD DGC .AC FG =BDEG D .BE AE =DF CF 二、填空题(每小题3分,共计30分)11. (2018黑龙江哈尔滨中考,11,3分,★☆☆)将数920 000 000用科学记数法表示为_________________.12. (2018黑龙江哈尔滨中考,12,3分,★☆☆)函数y =45-x x 中,自变量x 的取值范围是_________________.13. (2018黑龙江哈尔滨中考,13,3分,★☆☆)把多项式x 3-25x 分解因式的结果是_________________.14. (2018黑龙江哈尔滨中考,14,3分,★☆☆)不等式组⎩⎨⎧--≥-1532512x x x >的解集为_________________.15. (2018黑龙江哈尔滨中考,15,3分,★☆☆)计算65-1051的结果是_________________.16. (2018黑龙江哈尔滨中考,16,3分,★☆☆)抛物线y =2(x +2)2+4的顶点坐标为_________________.17. (2018黑龙江哈尔滨中考,17,3分,★☆☆)一枚质地均匀的正方体骰子,骰子的六 个面上分别刻有1到6的点数.张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是_________.18. (2018黑龙江哈尔滨中考,18,3分,★☆☆)一个扇形的圆心角为135°,弧长为3π cm ,则此扇形的面积是___________cm 2.19. (2018黑龙江哈尔滨中考,19,3分,★★☆)在△ABC 中,AB =AC ,∠BAC =100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_________________.20. (2018黑龙江哈尔滨中考,20,3分,★★☆)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,点E 、点F 分别是OA 、OD 的中点,连接EF ,∠CEF =45°,EM ⊥BC 于点M ,EM 交BD 于点N ,FN =10,则线段BC 的长为_________________.第20题图三.解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(2018黑龙江哈尔滨中考,21,7分,★★☆)先化简,再求代数式(121--a )÷42962-+-a a a 的值,其中a =4cos 30°+3tan 45°.22. (2018黑龙江哈尔滨中考,22,7分,★★☆)如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB 为一边的矩形ABCD (不是正方形),且点C 和点D 均在小正方形的项点上;(2)在图中画出以线段AB 为一腰,底边长为22的等腰三角形ABE ,点E 在小正方形的顶点上.连接CE ,请直接写出线段CE 的长.第22题图23. (2018黑龙江哈尔滨中考,23,8分,★★☆)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书祛、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名.第23题图24.(2018黑龙江哈尔滨中考,24,8分,★★☆)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点G,∠BGE =∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.第24题图25.(2018黑龙江哈尔滨中考,25,10分,★★☆)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B 型放大镜雷用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A 型放大镜?26. (2018黑龙江哈尔滨中考,26,10分,★★★)已知:⊙O 是正方形ABCD 的外接圆,点E 在AB 上,连接BE 、DE ,点F 在AD 上,连接BF 、DF 、BF ,与DE 、DA 分别交于点G 、点H ,且DA 平分∠EDF .(1)如图1,求证:∠CBE =∠DHG ;(2)如图2,在线段AH 上取一点N (点N 不与点A 、点H 重合),连接BN 交DE 于点L ,过点H 作HK ∥BN 交DE 于点K ,过点E 作EP ⊥BN ,垂足为点P ,当BP =HF 时,求证:BE =HK ;(3)如图3,在(2)的条件下,当3HF =2DF 时,延长EP 交⊙O 于点R ,连接BR ,若△BER 的面积与△DHK 的面积的差为47,求线段BR 的长.第26题图27. (2018黑龙江哈尔滨中考,27,10分,★★★)已知:在平面直角坐标系中,点O 为坐标原点,点A 在x 轴的负半轴上,直线y =3 x +327与x 轴、y 轴分别交于B 、C 两点,四边形ABCD 为菱形.(1)如图1,求点A 的坐标;(2)如图2,连接AC ,点P 为△ACD 内一点,连接AP 、BP ,BP 与AC 交于点G ,且∠APB =60°,点E 在线段AP 上,点F 在线段BP 上,且BF =AF ,连接AF 、EF ,若∠AFE =30°,求AF 2+EF 2的值;(3)如图3,在(2)的条件下,当PE =AE 时,求点P 的坐标.第27题图哈尔滨市2018年初中升学考试数学试卷答案全解全析 1.答案:A解析:在数轴上,表示75-的点距离原点75个单位长度,根据绝对值的定义,75-的绝对值是75.故选:A. 考查内容:绝对值.命题意图:本题考查了绝对值的定义,难度较小.2.答案:B解析:根据完全平方公式,(m +n )2=m 2+2mn+n 2,选项A 错误;根据积的乘方性质,(mn )3=m 3n 3 ,选项B 正确;根据幂的乘方性质,(m 3)2=m 6,选项C 错误;根据同底数幂的乘法法则,m ·m 2=m 3,选项D 错误.故选:B.考查内容:同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.命题意图:本题考查完全平方公式与幂的性质的识记,难度较小.易错警示:此类问题容易出错的地方是分不清各种运算的法则,对符号、底数、指数处理不当,特别容易混淆幂的运算性质,如:同底数幂的乘法是底数不变,指数相加;而幂的乘方是底数不变,指数相乘.3.答案:C解析:选项A既不是轴对称图形,也不是中心对称图形,选项B是中心对称图形,不是轴对称图形,选项D是轴对称图形,不是中心对图形.故选:C.考查内容:轴对称图形;中心对称图形.命题意图:本题考查了轴对称图形和中心对称图形的识别能力,难度较小.4.答案:B解析:根据俯视图定义,俯视图有3列,从左到右分别是2,1,2个正方形,故选B.考查内容:简单几何体的三视图.命题意图:本题考查学生的观察能力和对几何体三种视图的识别能力,难度较小.5.答案:A解析:如图,连接OA,则OA= OB=3.∵PA为⊙O的切线,∴∠OAP=90°.∵∠P=30°,∴OP=2OA=6,∴BP= OP﹣OB =6﹣3=3.故选A.考查内容:切线的性质;直角三角形30°角的性质.命题意图:本题考查添加辅助线进行圆的有关计算的能力,难度较小.6.答案:A解析:根据抛物线的平移规律:“左加右减,上加下减”,将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,得到y=﹣5(x+1)2+1﹣2,即y=﹣5(x+1)2﹣1,故选A.考查内容:抛物线的平移命题意图:本题考查抛物线平移规律的识记能力,难度较小.7.答案:D解析:去分母,得x+3=4x,解方程,得x=1.检验:当x=1时,2x(x+3)≠0,x=1是分式方程的解,故选D.考查内容:分式方程的解法.命题意图:本题考查解分式方程以及转化思想的渗透,注意验根.难度较小.8.答案:C解析:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO=12AC ,BO=OD=12BD=4,在Rt △ABO 中,∵tan ∠ABO =AO BO,∴344AO =,∴AO=3.∴,故选C.考查内容:菱形的性质;勾股定理;锐角三角函数. 命题意图:本题考查综合利用几何图形的性质计算的能力,难度中等.9.答案:D解析:∵反比例函数y=x k 32-的图象经过点(1,1),∴2311k -=,即2k ﹣3=1×1, 解得k=2,故选D .考查内容:反比例函数图象上点的坐标特征.命题意图:本题考查反比例函数图象上点的坐标特征,能根据已知得出关于k 的方程是解此题的关键,难度较小.10.答案:D解析:∵GE ∥BD , ∴BE AE =GD AG .∵GF ∥AC ,∴GD AG =DF CF ,∴BE AE =DF CF .故选:D. 考查内容:平行线分线段成比例定理.命题意图:本题考查利用平行线分线段成比例定理确定成比例线段的能力,难度较小.11.答案:9.2×108解析:科学记数法是写成±a ×10n 的形式,其中1≤a <10,n 为整数.此数为九位整数,所以n =8,a =9.2.考查内容:科学记数法命题意图:本题考查学生掌握科学记数法的表示方法的能力,难度小.12.答案:x ≠4解析:根据分母不为0时,分式有意义,得x ﹣4≠0,解得x≠4.考查内容:函数自变量的取值范围命题意图:本题考查学生根据函数关系式确定自变量的取值范围的能力,难度较小.13.答案:x (x +5)(x -5)解析:x 3﹣25x=x (x 2﹣25)=x (x+5)(x ﹣5).考查内容:多项式的因式分解.命题意图:本题考查学生掌握因式分解的方法和步骤的能力,难度较小.14.答案:3≤x <4解析:2152315x x x -≥⎧⎨->-⎩①②,解不等式①,得x≥3,解不等式②,得x <4, 根据“大小小大中间找”,得不等式组的解集为3≤x <4.考查内容:一元一次不等式组的解法.命题意图:本题考查学生解一元一次不等式组的能力,难度中等.15.答案:45解析:65-1051=65-10×55=65-25=45. 考查内容:二次根式的加减法命题意图:本题考查学生二次根式的性质以及运算能力,难度中等.16.答案:(-2,4)解析:由顶点式y =a (x -h )2+k 可知,y =2(x +2)2+4中h =-2,k =4,所以顶点坐标为(-2,4).考查内容:二次函数的函数表达式.命题意图:本题考查由二次函数的顶点式直接写出顶点坐标的能力,难度较小.17.答案:31 解析:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6, 概率是26=31. 考查内容:概率公式.命题意图:本题考查利用概率公式求不确定事件的概率的能力,难度较小.18.答案:6π解析:设扇形的半径为Rcm ,由弧长公式,得135180R π⨯=3π,解得R=4, 所以扇形的面积为S=21354360π⨯=6π(cm 2). 考查内容:弧长的计算;扇形面积的计算.命题意图:本题考查利用扇形面积公式和弧长公式进行计算的能力,难度较小.一题多解:设扇形的半径为rcm ,由弧长公式,得135180r π⨯=3π,解得r=4,所以扇形的面积为S=12lr=12×3π×4=6π(cm2).19.答案:130°或90°.解析:△ABD为直角三角形,分两种情况考虑:①当∠ADB=90°时,如图1,∠ADC=180°﹣∠ADB=90°;②当∠BAD=90°时,如图2,在△ABC中,∵AB=AC,∠BAC=100°,∴∠B=∠C=1801002-=40°,∴∠ADC=∠BAD+∠B=90°+40°=130°.综合起来,∠ADC的度数为90°或130°.考查内容:等腰三角形的性质;三角形的外角.命题意图:本题考查利用等腰三角形的性质计算的能力,注意分类讨论的数学思想,难度中等.20.答案:42解析:连接BE,∵AB=OB,点E是OA的中点,∴BE⊥AO,∠BEC=90°.又∵点F是OD的中点,∴EF是△OAD的中位线,∴EF∥AD,EF=12AD.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴EF∥BC,EF=12BC,∴∠ACB=∠CEF=45°,∴∠EBC=180°﹣∠BEC﹣∠ACB=45°,∴EB=EC,△EBC是等腰直角三角形.∵EM⊥BC,∴EM=12BC=BM=CM.∴EF=EM= BM.∵EF∥BC,∴∠EFN=∠MBN.在△EFN与△MBN中,∵ENF MNBEFN MBNEF MB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFN≌△MBN(AAS),∴EN=MN=12EM,BN=FN=10.设EF=x,则BM=EM=EF=x,MN=12x,AD=BC=2x,在Rt△MBN中,由勾股定理,得BM2+MN2=BN2,∴x2+(12x)2=(10)2,解得x=22或﹣22(舍去),∴BC=2x=42.考查内容:平行四边形的性质;三角形的中位线;全等三角形的判定与性质;等腰直角三角形的判定与性质;勾股定理. 命题意图:本题考查综合利用平行四边形的性质、等腰直角三角形的性质、全等三角形的判定与性质计算线段长度的能力,注意方程思想的应用,难度较大.21.解析:原式=429621222-+-÷⎪⎭⎫ ⎝⎛----a a a a a a =9642232+--⋅--a a a a a =()()232223--⋅--a a a a =32-a ,当a= 4cos 30°+3tan 45°=4×23+3×1=32+3时, 原式=33322-+=33. 考查内容:分式的运算;特殊角的三角函数值.命题意图:本题考查熟练运用分式的运算法则进行运算的能力,难度中等.方法归纳:分式化简求值时需注意的问题:①化简求值,一般是先将分式化为最简分式或整式,再代入求值.化简时不能因跨度太大而缺少必要的步骤,代入求值的模式一般为“当……时,原式=……”.②代入求值,有直接代入法、整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式及化简过程中出现的分式都有意义,且除式的分子不能为0.22.解析:(1)如图所示,矩形ABCD 即为所求;(2)如图△ABE 即为所求,CE=4.考查内容:矩形的判定与性质;等腰三角形的性质;勾股定理.命题意图:本题考查利用等腰三角形的性质、勾股定理、矩形的判定和性质等知识进行作图的能力,难度中等.23.解析:(1)24÷20%=120(名),∴本次调查共抽取了120名学生.(2)120-24-40-16-8=32(名),∴最喜爱书法的学生有32名.补全条形统计图如图所示:(3)960×12040=320(名),∴估计该中学最喜爱国画的学生有320名. 考查内容:条形统计图;扇形统计图;用样本估计总体.命题意图:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,难度中等.24.解析:(1)证明:∵AC ⊥BD ,∴∠AED =∠DEC =∠BEG =90°,∴∠BGE +∠EBG =90°.∵BF ⊥CD ,∴∠BFD =90°,∴∠BDF +∠EBC =90°,∴∠BCE =∠BDF .∵∠BGE =∠ADE ,∴∠ADE =∠BDF .∵DE =DE ,∴△ADE ≌△CDE ,∴AD =CD . (2)△ACD ,△ABE ,△BCE ,△GBH .附理由:设DE=a ,则AE=2DE=2a ,EG=DE=a ,∴S △ADE =12AE•DE=12•2a•a=a . ∵BH 是△ABE 的中线,∴AH=HE=a .∵AD=CD ,AC ⊥BD ,∴CE=AE=2a ,则S △ADC =12AC•DE=12•(2a+2a )•a=2a 2=2S △ADE ;在△ADE 和△BGE 中, ∵AED BEG DE GE ADE BGE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△BGE (ASA ),∴BE=AE=2a ,∴S △ABE =12AE•BE=12(2a )•2a=2a 2,S △BCE =12CE•BE=12(2a )•2a=2a 2,S △BHG =12HG•BE=12(a+a )•2a=2a 2. 综上,面积等于△ADE 面积的2倍的三角形有△ACD 、△ABE 、△BCE 、△BHG . 考查内容:全等三角形的判定与性质;等腰三角形的判定与性质.命题意图:本题主要利用全等三角形的判定与性质和等腰三角形的判定与性质进行证明和计算的能力,难度中等偏上.25.解析:(1)解:设每个A 型放大镜x 元,每个B 型放大镜y 元.根据题意得⎩⎨⎧=+=+1526422058y x y x ,解得⎩⎨⎧==1220y x ,∴每个A 型放大镜20元,每个B 型放大镜12元.(2)解:设可以购买a 个A 型放大镜,则购买B 型放大镜(75-a )个. 根据题意得20a +12(75-a ) ≤1180,解得a ≤35.∴最多可以购买35个A 型放大镜. 考查内容:二元一次方程组的应用;一元一次不等式的应用.命题意图:本题考查利用二元一次方程组和一元一次不等式的知识解决实际问题的能力,难度中等偏上.26.解析:(1)证明:∵四边形ABCD 是正方形,∴∠A =∠ABC =90°.∵∠F =∠A =90°,∴∠F =∠ABC .∵DA 平分∠EDF ,∴∠ADE =∠ADF .∵∠ABE =∠ADE ,∴∠ABE =∠ADF .又∵∠CBE =∠ABC +∠ABE ,∠DHG =∠F +∠ADF ,∴∠CBE =∠DHG .(2)证明:如图,过H 作HM ⊥KD ,垂足为点M .∵∠F =90°,∴HF ⊥FD .又∵DA 平分∠EDF ,∴HM =FH .∵FH =BP ,∴HM =BP .∵KH ∥BN ,∴∠DKH =∠DLN .∵∠ELP =∠DLN ,∴∠DKH =∠ELP .∵∠BED =∠A =90°,∴∠BEP +∠LEP =90°.∵EP ⊥BN ,∴∠BPE =∠EPL =90°,∴∠LEP +∠ELP =90°,∴∠BEP =∠ELP =∠DKH .∵HM ⊥KD ,∴∠KMH =∠BPE =90°,∴△BEP ≌△HKM (AAS ),∴BE =HK .(3)解:如图,连接BD ,∵3HF =2DF ,BP =FH ,∴设HF =2a ,DF =3a ,∴BP =FH =2a .由(2)得HM =BP ,∠HMD =90°.∵∠F =∠A =90°,∴tan ∠HDM =tan ∠FDH ,∴DM HM =DFFH=32 ,∴DM =3a ,∴四边形ABCD 是正方形,∴AB =AD ,∴∠ABD =∠ADB =45°. ∵∠ABF =∠ADF =∠ADE ,∠DBF =45°-∠ABF ,∠BDE =45°-∠ADE ,∴∠DBF =∠BDE .∵∠BED =∠F ,BD =BD ,∴△BED ≌△DFB ,∴BE =FD =3a .过点H 作HS ⊥BD ,垂足为点S .∵tan ∠ABH =tan ∠ADE =ABAH =32,∴设AB =32m ,AH =22m , ∴BD =2AB =6m ,DH =AD -AH =2m ,sin ∠ADB =DH HS =22 ,∴HS =m ,∴ DS =22HS DH -=m ,∴BS =BD -DS =5m ,∴tan ∠BDE =tan ∠DBF =BSHS =51.∵∠BDE =∠BRE .∵tan ∠BRE =PR BP =51.∵BP =FH =2a ,∴RP =10a ,在ER 上截取ET =DK ,连接BT ,由(2)得∠BEP =∠HKD ,∴△BET ≌△HKD ,∴∠BTE =∠KDH ,∴tan ∠BTE =tan ∠KDH ,∴PT BP =32 ,∴PT =3a ,∴TR =RP -PT =7a .∵S △BER -S △KDH =47,∴21BP ·ER 21-HM ·DK =47,∴21BP (ER -DK )=21BP (ER -ET )=47,∴21×2a ×7a =47,∴a 2=41,解得a 1=21,a 2=21-(舍去),∴BP =1,PR =5,∴BR =22RP BP +=2251+=26.考查内容:圆的有关性质;正方形的性质;全等三角形的性质;三角形的面积公式;锐角三角函数定义.命题意图:本题考查综合利用圆的有关性质、三角形的性质、正方形的性质计算和证明的能力,综合性强,难度较大.27.解析:(1)∵y =3-x +327 ,∴B (27,0)C (0,273),∴BO = 27,CO =273 . 在Rt △BCO 中,BC =22CO BO +=2232727⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=7.∵四边形ABCD 为菱形,∴AB =BC =7 ,∴AO =AB -BO =727-=27 ,∴A (27-,0).(2) ∵AO =27=BO ,CO ⊥AB ,∴AC =BC =7,∴AB =AC =BC ,∴△ABC 为等边三角形, ∴∠ACB =60°.∵∠APB =60°,∴∠APB =∠ACB .∵∠PAG +∠APB =∠AGB =∠CBG +∠ACB ,∴∠PAG =∠CBG ,连接CE 、CF ,∵AE =BF ,∴△ACE ≌△BCF ,∴CE =CF ,∠ACE =∠BCF ,∴∠ECF =∠ACF +∠ACE =∠ACF +∠BCF =∠ACB =60°,∴△CEF 为等边三角形,∴∠CFE =60°,EF =FC .∵∠AFE =30°,∴∠AFC =∠AFE +∠CFE =90°.在Rt △ACF 中,∴AF 2+CF 2=AC 2=72=49,∴AF 2+EF 2=49.(3) 由(2)知△CEF 为等边三角形,∴∠CEF =60°,EC =EF ,延长CE 、FA 交于点H .∵∠AFE =30°,∠CEF =∠H +∠EFH ,∴∠H =∠CEF -∠EFH =30°,∴∠H =∠EFH ,∴EH =EF ,∴EC =EH .连接CP ,∵PE =AE ,∠CEP =∠HEA ,∴△CPE ≌△HAE ,∴∠PCE =∠H ,∴CP ∥FH , ∴∠HFP =∠CPF ,在BP 上截取TB =AP ,连接TC ,由(2)知∠CAP =∠CBT .∵AC =BC ,∴△ACP ≌△BCT ,∴CP =CT ,∠ACP =∠BCT ,∴∠PCT =∠ACP +∠ACT =∠BCT +∠ACT =∠ACB =60°,∴△CPT 为等边三角形,∴CT =PT ,∠CPT =∠CTP =60°.∵CP ∥FH ,∴∠HFP =∠CPT =60°. ∵∠APB =60°,∴∠APB =∠AFP ,∴AP =AF ,∴△APF 为等边三角形,∴∠CFP =∠AFC -∠AFP =90°-60°=30°,∴∠TCF =∠CTP -∠TFC =60°-30°=30°,∴∠TCF =∠TFC ,∴TF =TC =TP .连接AT ,则AT ⊥BP .设BF =m ,则AE =PE =m ,∴PF =AP =2m ,∴TF =TP =m ,TB =2m ,BP =3m ,在Rt △APT 中,AT =22TP AP -=()222m m -=3m ,在Rt △ABT 中,AT 2+TB 2=AB 2,∴(3m )2+(2m )2=72,∴m 1=-7(舍去),m 2=7.∴BF =7,AT =21,BP =37,sin ∠ABT =AB AT =721. 作PQ ⊥AB ,垂足为点Q ,作PK ⊥OC ,垂足为点K ,则四边形PQOK 为矩形,则OK =PQ =BP ·sin ∠PBQ =37×721=33,BQ =22PQ BP -=()()223373-=6 , OQ =BQ -BO =6-27=25,∴P (25-,33).考查内容:一次函数;等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质.命题意图:本题考查综合利用一次函数、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理等知识解决问题的能力,注意构造全等三角形的应用,难度较大 .。

2018年黑龙江省哈尔滨XX中学中考数学模拟试卷

2018年黑龙江省哈尔滨XX中学中考数学模拟试卷

2018年黑龙江省哈尔滨XX中学中考数学模拟试卷一、选择题(每小题3分,共计30分)1.下列各数中,最小的数是()A.﹣2 B.0 C.D.32.下列运算正确的是()A.a6﹣a2=a4B.(a+b)2=a2+b2C.(2ab3)2=2a2b6D.3a•2a=6a23.下列几何图形中,既是中心对称图形又是轴对称图形的个数是()A.1个 B.2个 C.3个 D.4个4.关于反比例函数y=﹣,下列说法正确的是()A.图象在第一、三象限B.图象经过点(2,﹣8)C.当x>0时,y随x的增大而减小 D.当x<0时,y随x的增大而增大5.由五个完全相同的正方体组成如图的几何体,则下列说法正确的是()A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同6.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠D=55°,使A、C、E在一条直线上,那么开挖点E与D的距离是()A.500sin55°米B.500cos35°米 C.500cos55°米 D.500tan55°米7.如图,直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E和B、D、F,若AC=4,AE=10,BF=,则DF的长为()A.B.10 C.3 D.8.月亮超市正在热销某种商品,其标价为每件10元,若这种商品打7折销售,则每件可获利1元,设该商品每件的进价为x元,根据题意可列出的一元一次方程为()A.10×0.7﹣x=1 B.10﹣x×0.7=1 C.(10﹣x)×0.7=1 D.10﹣x=1×0.79.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=3,则AD 的长为()A.2 B.3 C.2 D.310.甲、乙两人匀速行走从同一地点到距离1500米处的图书馆,甲出发5分钟后,乙出发并沿同一路线行走,乙的速度是甲的速度的.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象如图所示,下列说法①甲行走的速度是30米/分,乙的速度是50米/分;②乙走了7.5分钟就追上了甲;③当甲、乙两人到达图书馆时分别用了50分钟和35分钟;④甲行走30.5分钟或38分钟时,甲、乙两人相距360米;其中正确的个数是()A.1个 B.2个 C.3个 D.4个二、填空题11.将l 250 000 000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.计算:﹣=.14.分解因式:a3+ab2﹣2a2b=.15.不等式组的解集是.16.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为m(结果保留根号).17.一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为cm.18.已知,PA、PB分别切⊙O于A、B两点,∠APB=50°,C为⊙O上一点,(不与A、B重合),则∠ACB=度.19.不透明的布袋里有2个红色小汽车,2个白色小汽车模型(小汽车除颜色不同外,其它都相同),从布袋中随机摸出1个小汽车记下颜色后放回袋中摇匀,然后重新再摸出1个小汽车,则摸出的两个小汽车都是红色的概率是.20.已知,Rt△ABC中∠C=90°,点D在边CB的延长线上,BD=AC,点E在边CA 的延长线上,AE=CD,连接BE、AD交于点P,若BC=2BD=2,则PE=.三、解答题21.先化简,再求代数式:(﹣)÷的值,其中x=2+tan60°,y=4sin30°.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B在小正方形的顶点上,请在图1、图2中各画一个三角形,满足以下要求:(1)在图1中,画直角三角形ABC,点C在小正方形的顶点上,且△ABC的面积为5;(2)在图2中,画△ABE,点E在小正方形的顶点上,△ABE有一个内角为45°,且面积为3.23.某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图.已知抽查的学生在暑假期间阅读量为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:(1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数;(2)将条形统计图补充完整;(3)若规定:假期阅读3本及3本以上课外书者为完成假期作业,据此估计该校1500名学生中,完成假期作业的有多少名学生?24.已知四边形ABCD是正方形,AC、BD相交于点O,过点A作∠BAC的平分线分别交BD、BC于E、F.(1)如图1,求证:CF=2EO;(2)如图2,连接CE,在不添加其它线的条件下,直接写出图中的等腰三角形(等腰直角三角形除外).25.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?26.已知,AB是⊙O的直径,AE、AF是弦,BC是⊙O的切线,过点A作AD,使∠DAF=∠AEF.(1)如图(1),求证:AD∥BC;(2)如图(2),若AD=BC=AB,连接CD,延长AF交CD于G,连接CF,若G为CD中点,求证:CF=CB;(3)如图(3),在(2)的条件下,点I在线段FG上,且IF=AF,点P在上,连接BP并延长到L,使PL=PB,连接AL,延长EA、BI交于点K,已知∠BAK+∠ABL=180°,∠ABI+∠BAL=90°,⊙O的半径为,求四边形ALBK的面积.27.如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;(2)设点F是BD的中点,点P是线段DO上的动点,将△BPF沿边PF翻折,得到△B′PF,使△B′PF与△DPF重叠部分的面积是△BDP的面积的,若点B′在OD上方,求线段PD的长度;(3)在(2)的条件下,过B′作B′H⊥PF于H,点Q在OD下方的抛物线上,连接AQ与B′H交于点M,点G在线段AM上,使∠HPN+∠DAQ=135°,延长PG交AD于N.若AN+B′M=,求点Q的坐标.2018年黑龙江省哈尔滨XX中学中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.下列各数中,最小的数是()A.﹣2 B.0 C.D.3【考点】实数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣2<0<<3,故﹣2最小,故选:A.2.下列运算正确的是()A.a6﹣a2=a4B.(a+b)2=a2+b2C.(2ab3)2=2a2b6D.3a•2a=6a2【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】A.先判断是否为同类项,再运算;B.运用完全平方公式运算即可;C.运用积的乘方运算法则;D.运单项式乘单项式的运算法则:用单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.【解答】解:A.a6与a2不是同类项,不能合并,所以此选项错误;B.(a+b)2=a2+2ab+b2,所以此选项错误;C.(2ab3)2=4a2b6,所以此选项错误;D.3a•2a=6a2,所以此选项正确.故选D.3.下列几何图形中,既是中心对称图形又是轴对称图形的个数是()A.1个 B.2个 C.3个 D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;正六边形是轴对称图形,也是中心对称图形.故选B.4.关于反比例函数y=﹣,下列说法正确的是()A.图象在第一、三象限B.图象经过点(2,﹣8)C.当x>0时,y随x的增大而减小 D.当x<0时,y随x的增大而增大【考点】反比例函数的性质.【分析】反比例函数y=(k≠0)中的k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【解答】解:A、因为k=﹣4<0,所以函数图象位于二、四象限,故本选项错误;B、因为k=﹣4≠﹣8×2,所以图象不过点(2,﹣8),故本选项错误;C、因为k=﹣4<0,所以函数图象位于二、四象限,在每一象限内y随x的增大而增大,故本选项错误;D、因为k=﹣4<0,所以函数图象位于二、四象限,在每一象限内y随x的增大而增大,故本选项正确;故选D.5.由五个完全相同的正方体组成如图的几何体,则下列说法正确的是()A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,从左边看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.6.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠D=55°,使A、C、E在一条直线上,那么开挖点E与D的距离是()A.500sin55°米B.500cos35°米 C.500cos55°米 D.500tan55°米【考点】解直角三角形的应用.【分析】由∠ABC度数求出∠EBD度数,进而确定出∠E=90°,在直角三角形BED 中,利用锐角三角函数定义即可求出ED的长.【解答】解:∵∠ABD=145°,∴∠EBD=35°,∵∠D=55°,∴∠E=90°,在Rt△BED中,BD=500米,∠D=55°,∴ED=500cos55°米,故选C7.如图,直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E和B、D、F,若AC=4,AE=10,BF=,则DF的长为()A.B.10 C.3 D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得到,代入数据即可得到结论.【解答】解:∵AC=4,AE=10,∴CE=6,∵直线a∥b∥c,∴,即,∴DF=,故选A.8.月亮超市正在热销某种商品,其标价为每件10元,若这种商品打7折销售,则每件可获利1元,设该商品每件的进价为x元,根据题意可列出的一元一次方程为()A.10×0.7﹣x=1 B.10﹣x×0.7=1 C.(10﹣x)×0.7=1 D.10﹣x=1×0.7【考点】由实际问题抽象出一元一次方程.【分析】设该商品每件的进价为x元,根据题意可得,售价为0.7×10元,根据利润=售价﹣进价,代入列方程即可.【解答】解:设该商品每件的进价为x元,由题意得,10×0.7﹣x=1.故选A.9.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=3,则AD 的长为()A.2 B.3 C.2 D.3【考点】旋转的性质.【分析】直接利用等腰直角三角形的性质得出∠CAB=∠B=45°,再利用勾股定理得出AB的长,再利用旋转的性质得出AB′的长,再结合直角三角形的性质求出答案.【解答】解:∵△ABC为等腰直角三角形,∠ACB=90°,∴∠CAB=∠B=45°,∵AC=BC=3,∴AB=6,∵将△ABC绕点A逆时针旋转75°得到△AB′C′,∴∠B′AB=75°,AB′=6,∴∠DAB′=180°﹣75°﹣45°=60°,∵B′D⊥CA,∴∠DB′A=30°,∴AD=AB′=3.故选:B.10.甲、乙两人匀速行走从同一地点到距离1500米处的图书馆,甲出发5分钟后,乙出发并沿同一路线行走,乙的速度是甲的速度的.设甲、乙两人相距s (米),甲行走的时间为t(分),s关于t的函数图象如图所示,下列说法①甲行走的速度是30米/分,乙的速度是50米/分;②乙走了7.5分钟就追上了甲;③当甲、乙两人到达图书馆时分别用了50分钟和35分钟;④甲行走30.5分钟或38分钟时,甲、乙两人相距360米;其中正确的个数是()A.1个 B.2个 C.3个 D.4个【考点】一次函数的应用.【分析】①正确.先求出甲的速度,根据即可解决问题.②正确.设乙走了x分钟就追上了甲,列出方程即可解决问题.③正确.求出两地路程,即可解决问题.④正确.设甲行走y分钟时,甲、乙两人相距360米,列出方程即可解决问题.【解答】解:①正确.甲的速度==30米/分,乙的速度=×30=50米/分.故①正确,②正确.设乙走了x分钟就追上了甲,则(50﹣30)x=150,x=7.5,故②正确,③错误.由图象可知当乙到达图书馆时用了30分钟,30×50=1500米,1500÷30=50分,所以甲到达图书馆时用了50分钟,故③错误,④正确.设甲行走y分钟时,甲、乙两人相距360米,由题意50(y﹣5)﹣30y=360,解得y=30.5,或30y=1500﹣360,解得y=38,故④正确,所以①②④正确,故选C.二、填空题11.将l 250 000 000用科学记数法表示为 1.25×109.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将l 250 000 000用科学记数法表示为1.25×109.故答案为:1.25×109.12.在函数y=中,自变量x的取值范围是x≠﹣4.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:根据题意得,x+4≠0,解得x≠﹣4.故答案为x≠﹣4.13.计算:﹣=.【考点】二次根式的加减法.【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:原式=3﹣=2.故答案为:2.14.分解因式:a3+ab2﹣2a2b=a(a﹣b)2.【考点】提公因式法与公式法的综合运用.【分析】可先提取公因式a,再运用完全平方公式继续进行因式分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:a3+ab2﹣2a2b,=a(a2+b2﹣2ab),=a(a﹣b)2.15.不等式组的解集是﹣1≤x<3.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:,解不等式x﹣3<0,得:x<3,解不等式x+1≥0,得:x≥﹣1,故不等式组的解集为:1≤x<3,故答案为:﹣1≤x<3.16.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为30m(结果保留根号).【考点】解直角三角形的应用;勾股定理的应用.【分析】先根据三角形外角的性质求出∠CAD的度数,判断出△ACD的形状,再由锐角三角函数的定义即可求出AB的值.【解答】解:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=60m,在Rt△ABD中,AB=AD•sin∠ADB=60×=30(m).故答案为:30.17.一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为6 cm.【考点】弧长的计算.【分析】根据已知的扇形的圆心角为60°,它所对的弧长为2πcm,代入弧长公式即可求出半径r.【解答】解:由扇形的圆心角为60°,它所对的弧长为2πcm,即n=60°,l=2π,根据弧长公式l=,得2π=,即r=6cm.故答案为:6.18.已知,PA、PB分别切⊙O于A、B两点,∠APB=50°,C为⊙O上一点,(不与A、B重合),则∠ACB=65或115度.【考点】切线的性质.【分析】连结OA、OB,如图,先根据切线的性质得∠PAO=∠PBO=90°,再根据四边形内角和计算出∠AOB=180°﹣∠APB=130°,然后分类讨论:当点C在优弧AB上,根据圆周角定理易得∠ACB=∠AOB;当点C在劣弧AB上,即C′的位置,根据圆内接四边形的性质易得∠AC′B=180°﹣∠ACB,问题得解.【解答】解:连结OA、OB,如图,∵PA、PB分别切⊙O于A、B两点,∴OA⊥PA,OB⊥PB,∴∠PAO=∠PBO=90°,∴∠AOB=180°﹣∠APB=180°﹣50°=130°,当点C在优弧AB上,则∠ACB=∠AOB=65°;当点C在劣弧AB上,即C′的位置,则∠AC′B=180°﹣∠ACB=180°﹣65°=115°,即∠ACB为65°或115°.故答案为65或115.19.不透明的布袋里有2个红色小汽车,2个白色小汽车模型(小汽车除颜色不同外,其它都相同),从布袋中随机摸出1个小汽车记下颜色后放回袋中摇匀,然后重新再摸出1个小汽车,则摸出的两个小汽车都是红色的概率是.【考点】列表法与树状图法.【分析】列出表格,然后根据概率公式列式计算即可得解.【解答】解:解:分别用红1、红2代表2个红色小汽车模型,白1、白2代表2个白色小汽车模型,根据题意,列表如下:由表可知,可能的结果共有16种,且它们都是等可能的,同时摸出的两个小汽车都是红色的有4种情况,∴摸出的两个小汽车都是红色的概率=.故答案为:.20.已知,Rt△ABC中∠C=90°,点D在边CB的延长线上,BD=AC,点E在边CA 的延长线上,AE=CD,连接BE、AD交于点P,若BC=2BD=2,则PE=.【考点】相似三角形的判定与性质;勾股定理.【分析】过B作BH∥EC,可得△BHD∽△CAD,根据相似三角形的性质可设BP=m,则PE=9m,由勾股定理可求m,进一步求得PE的长.【解答】解:由已知得,BC=2,BD=1,∵BD=AC,AE=CD,∴AE=3,AC=1,过B作BH∥EC,∵BH∥EC,∴△BHD∽△CAD,∴=,∴=,∴BH=,∵BH∥AE,∴△HBP∽△AEP,∴==,设BP=m,则PE=9m,∴BE=10m,在Rt△ECB中,由勾股定理得(10m)2=22+42,100m2=20,m2=,m=,PE=.故答案为:.三、解答题21.先化简,再求代数式:(﹣)÷的值,其中x=2+tan60°,y=4sin30°.【考点】分式的化简求值;特殊角的三角函数值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=•=,当x=2+,y=4×=2时,原式=.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B在小正方形的顶点上,请在图1、图2中各画一个三角形,满足以下要求:(1)在图1中,画直角三角形ABC,点C在小正方形的顶点上,且△ABC的面积为5;(2)在图2中,画△ABE,点E在小正方形的顶点上,△ABE有一个内角为45°,且面积为3.【考点】作图—复杂作图;三角形的面积;勾股定理.【分析】(1)把AB=看作底,高为2,由此即可解决问题.(2)如图把AE=3,作为底,高为2,面积正好是3,∠E=45°满足条件.【解答】解:(1)如图1中,△ABC即为所求.∵∠A=90°,AC=2,AB=,=××=5.∴S△ABC(2)如图2中,△ABE即为所求.S△ABE=×3×2=3,∠E=45°.23.某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图.已知抽查的学生在暑假期间阅读量为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:(1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数;(2)将条形统计图补充完整;(3)若规定:假期阅读3本及3本以上课外书者为完成假期作业,据此估计该校1500名学生中,完成假期作业的有多少名学生?【考点】条形统计图;用样本估计总体;中位数.【分析】(1)根据阅读2本的学生有10人,占20%即可求得总人数;(2)利用总人数50减去其它各组的人数就是读4本的学生数,据此即可作出统计图;(3)求得样本中3本及3本以上课外书者所占的比例,然后乘以总人数1500即可求解.【解答】解:(1)被抽查学生人数为:10÷20%=50(人),中位数是3本;(2)阅读量为4本的人数为:50﹣4﹣10﹣15﹣6=15(人),补全条形统计图如图:(3)×1500=1080(本),答:估计该校1500名学生中,完成假期作业的有1080名学生.24.已知四边形ABCD是正方形,AC、BD相交于点O,过点A作∠BAC的平分线分别交BD、BC于E、F.(1)如图1,求证:CF=2EO;(2)如图2,连接CE,在不添加其它线的条件下,直接写出图中的等腰三角形(等腰直角三角形除外).【考点】正方形的性质;等腰三角形的判定;等腰直角三角形.【分析】(1)取AF的中点G,连接OG,根据三角形的中位线得出OG=FC,OG ∥FC,根据正方形的性质求出∠OAB、∠ABO、∠OCB的度数,求出∠OEA和∠OGF的度数,推出OG=OE即可;(2)由已知条件和三角形内角和定理可得∠DAE=∠DEA,∠DEC=∠DCE,∠BEF=∠BFE,进而可得△DAE;△DCE;△BEF是等腰三角形,由垂直平分线的性质可得AE=CD进而可得△AEC是等腰三角形.【解答】证明:取AF的中点G,连接OG,∵O、G分别是AC、AF的中点,∴OG=FC,OG∥FC(三角形的中位线平行于第三边,并且等于第三边的一半),∵正方形ABCD,∴∠OAB=∠ABO=∠OCB=45°,∵AF平分∠BAC,∴∠BAF=∠OAF=22.5°,∴∠GEO=90°﹣22.5°=67.5°,∵GO∥FC,∴∠AOG=∠OCB=45°,∴∠OGE=67.5°,∴∠GEO=∠OGE,∴GO=OE,∴OE=FC,即CF=2EO;(2)∵四边形ABCD是正方形,∴BD⊥AC,AO=CO,∠BAC=∠DAC=45°,∴AE=CE,∴△AEC是等腰三角形;∵过点A作∠BAC的平分线分别交BD、BC于E、F,∴∠BAF=∠CAF=22.5°,∴∠DAE=67.5°,∴∠AED=67.5°,∴AD=ED,∴△ADE是等腰三角形,∵AE=CE,∴∠ECA=∠EAC=22.5°,∴∠ECD=67.5°,∴∠DEC=∠DCE=67.5°,∴DE=CE,∴△DEC是等腰三角形,∵∠BEF=∠BFE=67.5°,∴BE=BF,∴△BEF是等腰三角形.25.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设A种型号计算器的销售价格是x元,A种型号计算器的销售价格是y元,根据题意可等量关系:①5台A型号和1台B型号计算器,可获利润76元;②销售6台A型号和3台B型号计算器,可获利润120元,根据等量关系列出方程组,再解即可;(2)根据题意表示出所用成本,进而得出不等式求出即可.【解答】解:(1)设A种型号计算器的销售价格是x元,B种型号计算器的销售价格是y元,由题意得:,解得:;答:A种型号计算器的销售价格是42元,B种型号计算器的销售价格是56元;(2)设购进A型计算器a台,则购进B台计算器:(70﹣a)台,则30a+40(70﹣a)≤2500,解得:a≥30,答:最少需要购进A型号的计算器30台.26.已知,AB是⊙O的直径,AE、AF是弦,BC是⊙O的切线,过点A作AD,使∠DAF=∠AEF.(1)如图(1),求证:AD∥BC;(2)如图(2),若AD=BC=AB,连接CD,延长AF交CD于G,连接CF,若G为CD中点,求证:CF=CB;(3)如图(3),在(2)的条件下,点I在线段FG上,且IF=AF,点P在上,连接BP并延长到L,使PL=PB,连接AL,延长EA、BI交于点K,已知∠BAK+∠ABL=180°,∠ABI+∠BAL=90°,⊙O的半径为,求四边形ALBK的面积.【考点】圆的综合题.【分析】(1)连接BF,根据圆周角定理得到∠CBF=∠BAF,∠ABC=90°,等量代换得到∠BAD=∠DAF+∠BAF=∠ABF+∠CBF=∠ABC=90°,即可得到结论;(2)连接BF,由(1)的结论推出四边形ABCD是正方形,得到tan∠DAG=,设正方形ABCD的各边长为2a,求得tan∠ABF=,根据勾股定理得到AG=a,求得tan∠CFG=即可得到结论;(3)连接AP,BF,由AB是⊙O的直径,得到AP⊥BL,根据AB是⊙O的直径,得到BP⊥AI,求得tan∠ABF=tan∠DAG=tan∠IBF=,得到tan∠LAP=tan∠BAP=,根据已知条件得到∠PAB=∠KAD,设BK与⊙O交于H,连接AH,过K作KK´⊥AB解三角形得到AH=,BH=,根据相似三角形的性质得到=,求得AK′=,KK′=,于是得到结论.【解答】解:(1)连接BF,如图1所示:∵AB是⊙O的直径,BC是⊙O的切线,∴∠CBF=∠BAF,∠ABC=90°,∵∠AEF=∠ABF,∠DAF=∠AEF,∴∠ABF=∠DAF,∴∠BAD=∠DAF+∠BAF=∠ABF+∠CBF=∠ABC=90°,∴AD∥BC;(2)如图2,连接BF,由(1)知:∠BAD=∠ABC=90°,AD∥BC,∵AD=BC=AB,∴四边形ABCD是正方形,∵G为CD中点,∴tan∠DAG=,设正方形ABCD的各边长为2a,∵∠ABF=∠DAF,∴tan∠ABF=,∴BF=2AF,∵AF2+BF2=AB2,∴5AF2=4a2,∴AF=,∵AG===a,∴FG=,∴tan∠CFG=,∴∠CFG=∠ABF,∠CFB=∠CBF,∴CB=CF;(3)如图3,连接AP,BF,∵AB是⊙O的直径,∴AP⊥BL,∵LP=BP,∴∠LAP=∠BAP,∵AB是⊙O的直径,∴BP⊥AI,∵IF=AF,∴∠ABF=∠IBF,∴tan∠ABF=tan∠DAG=tan∠IBF=,又∵∠ABI+∠BAL=90°,∴∠LAP+∠BAP=45°,∴tan(∠LAP+∠BAP)==1,tan∠LAP=tan∠BAP=,∵∠BAK+∠ABL=180°,∴∠BAK+90°﹣∠PAB=180°,∴∠BAK=90°+∠PAB,又∴∠BAK=90°+∠KAD,∴∠PAB=∠KAD,设BK与⊙O交于H,连接AH,过K作KK´⊥AB,∵tan∠ABF=,AB=,∴BF=AI=2,∵AB=BI,∴AH=,BH=,∵△ABH∽△BKK′,∴=,∵KK′∥AD,∴∠K′KA=∠DAK=∠BAP,∴=,∴AK′=,∴KK′=,=S△ALB+S△ABK=BL•AP+AB•KK′=3+12=15.∴S四边形ALBF27.如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;(2)设点F是BD的中点,点P是线段DO上的动点,将△BPF沿边PF翻折,得到△B′PF,使△B′PF与△DPF重叠部分的面积是△BDP的面积的,若点B′在OD上方,求线段PD的长度;(3)在(2)的条件下,过B′作B′H⊥PF于H,点Q在OD下方的抛物线上,连接AQ与B′H交于点M,点G在线段AM上,使∠HPN+∠DAQ=135°,延长PG交AD于N.若AN+B′M=,求点Q的坐标.【考点】二次函数综合题.【分析】(1)根据二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,列出方程组即可解决问题.(2)如图1中,首先求出直线AC与抛物线的交点B坐标,再证明DP′=PP′,推出四边形BFB′P是菱形,在RT△POB中求出OP即可解决问题.(3)如图2中,过A作AI⊥HP,可得四边形AB′HI是正方形,过A作AL∥PN,连接ML,在Rt△MHL中,由ML2=MH2+HL2列出方程即可解决问题.【解答】解:(1)由题意,解得,∴二次函数的解析式为y=x2+3x.(2)如图1中,∵A(1,4)C(0,2),设直线AC解析式为y=kx+b,则解得∴直线AC 解析式为y=2x+2,由解得或∴B(﹣2,﹣2),∵D(﹣4,4)∴BD=,∵DF=FB,=S△BFP,∴S△DFP=S△PBD,∴S△PFP′=S△PP′F∴S△DP′F∴PP′=DP′,∴PB∥P′F,∴∠B′FP=∠PFB=∠FPB,∴PB=BF=FB′,∴四边形BFB′P是平行四边形,∵BF=BP∴四边形BFB´P是菱形,∴PB=,∵P在y=﹣x上,OB=2,在RT△OPB中,OP==,∴P(﹣1,1)∴PD=(3)如图2中,由(2)得F(﹣3,1),P(﹣1,1)B’(﹣2,4).过A作AI⊥HP,可得四边形AB′HI是正方形,过A作AL∥PN,连接ML.由∠HPN+∠DAQ=135°得∠MGP=45°∴∠MAL=45°,设B′M=m,则AN=﹣m,∴PL=﹣m,∴LI=m﹣,∴ML=B′M+LI=2m﹣,在Rt△MHL中,∵ML2=MH2+HL2,(2m﹣)2=(﹣m)2+(3﹣m)2解得m=∴M(﹣2,)∴直线AM解析式为:y=x+,由解得或,∴Q(,).第31页(共31页)。

2018年黑龙江省哈尔滨XX中学中考数学一模试卷

2018年黑龙江省哈尔滨XX中学中考数学一模试卷

2018年黑龙江省哈尔滨XX中学中考数学一模试卷一、选择题:每小题3分,共30分1.哈尔滨地铁二号线一期工程全长为28600米,将28600米这一数据用科学记数法表示为()A.0.286×105B.2.86×104C.2.86×105D.28.6×1032.下列运算中,正确的是()A. +2=3B.15x3﹣7x3=8x3C.(﹣xy)2=﹣x2y2D.x6÷x2=x3 3.如图中几何体的主视图是()A.B.C.D.4.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣2,y2),则y1﹣y2的值是()A.正数B.负数C.非正数D.不能确定5.下列图形中,旋转对称图形有()个.A.1 B.2 C.3 D.46.在△ABC中,AB=AC,BC=8,当S△ABC=20时,tanB的值为()A.B.C.D.7.某种品牌运动服经过两次降价,每件零件售价由640元将为360元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.360(1+x)2=640 B.640(1﹣x)2=360 C.640(1﹣2x)2=360 D.640(1﹣x2)=3608.如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D1处.若∠C1BA=50°,则∠ABE的度数为()A.15°B.20°C.25°D.30°9.如图,点A、B、C在半径为9的⊙O上,∠ACB=30°.则的长是()A.πB.C.2πD.3π10.今年3月,市路桥公司决定对A、B两地之间的公路进行改造,并由甲工程队从A地向B地方向修筑,乙工程队从B地向A第方向修筑.已知甲工程队先施工2天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数关系如图所示.下列说法:①乙工程队每天修公路160米;②甲工程队每天修公路120米;③甲比乙多工作6天;④A、B两地之间的公路总长是1200米.其中正确的说法有()A.4个 B.3个 C.2个 D.1个二、填空题(每小题3分,共计30分)11.哈西和谐大道跨线桥总投资250 000 000元,将250 000 000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.计算:﹣=.14.分解因式:a3﹣2a2b+ab2=.15.不等式组的解集是.16.小明的卷子夹里放了大小相同的试卷共12页,其中语文6页、数学4页、英语2页,他随机地从卷子夹中抽出1页,抽出的试卷恰好是数学试卷的概率为.17.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为.18.近来房地产市场进入寒冬期,某楼盘原价为每平方米8000元,连续两次降价a%后售价为6480元,则a的值是.19.在等边△ABC中,作以DB为直角边的等腰Rt△DBC(A、D两点在BC的同侧),则∠ADB=.20.在△ABC中,∠B=45°,点D在边BC上,AD=AC,点E在边AD上,∠BCE=45°,若AB=5.AE=2DE,则AC=.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.先化简,再求代数式的值,其中a=tan60°﹣6sin30°.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且△ABC的面积为6.(2)在方格纸中画出△ABC的中线BD,并把线段BD绕点C逆时针旋转90°,画出旋转后的线段EF(B与E对应,D与F对应),连接BF,请直接写出BF的长.23.为评估九年级学生的学习成绩状况,以应对即将到来的中考做好教学调整,某中学抽取了部分参加考试的学生的成绩作为样本分析,绘制成了如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)求样本中成绩类别为“中”的人数,并将条形统计图补充完整;(2)该校九年级共有1000人参加了这次考试,请估算该校九年级共有多少名学生的数学成绩达到优秀?24.如图,在正方形ABCD中,点E在BC上,以AE边作等腰Rt△AEF,∠AEF=90°,AE=EF,FG⊥BC于G.(1)如图1,求证:GF=CG;(2)如图2,AF交CD于点M,EF交CD于点N,当BE=3,DM=2时,求线段NC的长.25.甲、乙两家园林公司承接了哈尔滨市平房区园林绿化工程,已知乙公司单独完成所需要的天数是甲公司单独完成所需天数的1.5倍,如果甲公司单独工作10天,再由乙公司单独工作15天,这样就可完成整个工程的三分之二.(1)求甲、乙两公司单独完成这项工程各需多少天?(2)上级要求该工程完成的时间不得超过30天.甲、乙两公司合作若干天后,甲公司另有项目离开,剩下的工程由乙公司单独完成,并且在规定时间内完成,求甲、乙两公司合作至少多少天?26.如图,在⊙O中,弦AB=CD,且相交于点E,连接OE.(1)如图1,求证:EO平分∠BEC;(2)如图2,点F在半径OD的延长线上,连接AC、AF,当四边形ACDF是平行四边形时,求证:OE=DE;(3)如图3,在(2)的条件下,AF切⊙O于点A,点H为弧BC上一点,连接AH、BH、DH,若BH=AH,AB=,求DH的长.27.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+与x轴交于点A、B(点A在点B的左侧),抛物线的顶点为C,直线AC交y轴于点D,D 为AC的中点.(1)如图1,求抛物线的顶点坐标;(2)如图2,点P为抛物线对称轴右侧上的一动点,过点P作PQ⊥AC于点Q,设点P的横坐标为t,点Q的横坐标为m,求m与t的函数关系式;(3)在(2)的条件下,如图3,连接AP,过点C作CE⊥AP于点E,连接BE、CE分别交PQ于F、G两点,当点F是PG中点时,求点P的坐标.2018年黑龙江省哈尔滨XX中学中考数学一模试卷参考答案与试题解析一、选择题:每小题3分,共30分1.哈尔滨地铁二号线一期工程全长为28600米,将28600米这一数据用科学记数法表示为()A.0.286×105B.2.86×104C.2.86×105D.28.6×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:28600=2.86×104,故选:B.2.下列运算中,正确的是()A. +2=3B.15x3﹣7x3=8x3C.(﹣xy)2=﹣x2y2D.x6÷x2=x3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;二次根式的加减法.【分析】根据二次根式的加减法的法则,除法法则,积的乘方、运算法则,同底数的幂的运算法则计算即可.【解答】解:A、+2,不是同类二次根式不能合并,故错误;B、15x3﹣7x3=8x3,故正确;C、(﹣xy)2=x2y2,故错误;D、x6÷x2=x4,故错误.故选B.3.如图中几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:如图中几何体的主视图是.故选:D.4.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣2,y2),则y1﹣y2的值是()A.正数B.负数C.非正数D.不能确定【考点】反比例函数图象上点的坐标特征.【分析】直接把各点坐标代入反比例函数的解析式,再求出其差即可.【解答】解:∵反比例函数y=﹣的图象上有两点(﹣,y1),(﹣2,y2),∴y1=﹣=4,y2=﹣=1,∴y1﹣y2=4﹣1=3.故选A.5.下列图形中,旋转对称图形有()个.A.1 B.2 C.3 D.4【考点】旋转对称图形.【分析】根据旋转对称图形的定义对四个图形进行分析即可.【解答】解:旋转对称图形是从左起第(1),(2),(4);不是旋转对称图形的是(3).故选:C.6.在△ABC中,AB=AC,BC=8,当S△ABC=20时,tanB的值为()A.B.C.D.【考点】等腰三角形的性质;解直角三角形.【分析】作出辅助线AD⊥BC,构造出直角三角形,用面积求出AD,最后用三角函数的定义即可.【解答】解:如图,作AD⊥BC,=20,∵BC=8,S△ABC=×BC×AD=×8×AD=20,∴S△ABC∴AD=5,∵AB=AC,AD⊥BC,∴∠ADB=90°,BD=BC=4,∴tanB==,故选A7.某种品牌运动服经过两次降价,每件零件售价由640元将为360元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.360(1+x)2=640 B.640(1﹣x)2=360 C.640(1﹣2x)2=360 D.640(1﹣x2)=360【考点】由实际问题抽象出一元二次方程.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是640(1﹣x),第二次后的价格是640(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,由题意得:640(1﹣x)2=360,故选:B.8.如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D1处.若∠C1BA=50°,则∠ABE的度数为()A.15°B.20°C.25°D.30°【考点】翻折变换(折叠问题).【分析】根据折叠前后对应角相等可知.【解答】解:设∠ABE=x,根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,所以50°+x+x=90°,解得x=20°.故选B.9.如图,点A、B、C在半径为9的⊙O上,∠ACB=30°.则的长是()A.πB.C.2πD.3π【考点】弧长的计算.【分析】根据圆周角定理可得出∠AOB=60°,再根据弧长公式的计算即可.【解答】解:如图,连接OA、OB.∵∠ACB=30°,∴∠AOB=60°,∵OA=9,∴的长是:=3π.故选:D.10.今年3月,市路桥公司决定对A、B两地之间的公路进行改造,并由甲工程队从A地向B地方向修筑,乙工程队从B地向A第方向修筑.已知甲工程队先施工2天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数关系如图所示.下列说法:①乙工程队每天修公路160米;②甲工程队每天修公路120米;③甲比乙多工作6天;④A、B两地之间的公路总长是1200米.其中正确的说法有()A.4个 B.3个 C.2个 D.1个【考点】一次函数的应用.【分析】①运用乙工程队4天修的长度除以时间就可以求出乙工程队每天修的米数;②运用甲工程队4天修的长度除以时间就可以求出甲工程队每天修的米数;③根据图象得出甲比乙多工作的天数;④根据甲和乙的修路总米数得出A、B两地之间的公路总长即可.【解答】解:①乙工程队每天修公路=240米,错误;②甲工程队每天修公路=120米,正确;③甲比乙多工作10﹣4=6天,正确;④A、B两地之间的公路总长是960+120×10=2160米,错误;故选C二、填空题(每小题3分,共计30分)11.哈西和谐大道跨线桥总投资250 000 000元,将250 000 000用科学记数法表示为 2.5×108.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:250 000 000=2.5×108,故答案为:2.5×108.12.在函数y=中,自变量x的取值范围是x≠2.【考点】函数自变量的取值范围.【分析】根据分式有意义的条件:分母不等于0即可求解.【解答】解:根据题意得:4﹣2x≠0,解得x≠2.故答案是:x≠2.13.计算:﹣=﹣.【考点】二次根式的加减法.【分析】首先化简二次根式进而合并同类二次根式得出答案.【解答】解:原式=3﹣4=﹣.故答案为:﹣.14.分解因式:a3﹣2a2b+ab2=a(a﹣b)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.15.不等式组的解集是﹣1<x≤2.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤2,由②得,x>﹣1,故不等式组的解集为:﹣1<x≤2.故答案为:﹣1<x≤2.16.小明的卷子夹里放了大小相同的试卷共12页,其中语文6页、数学4页、英语2页,他随机地从卷子夹中抽出1页,抽出的试卷恰好是数学试卷的概率为.【考点】概率公式.【分析】由小明的卷子夹里放了大小相同的试卷共12页,其中语文6页,数学4页,英语2页,直接利用概率公式求解即可求得答案.【解答】解:∵小明的卷子夹里放了大小相同的试卷共12页,其中语文6页,数学4页,英语2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为:4÷12=.故答案为:.17.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为 4.8cm.【考点】菱形的性质.【分析】根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,=AC•BD=AB•DH,∴S菱形ABCD∴DH==4.8cm.18.近来房地产市场进入寒冬期,某楼盘原价为每平方米8000元,连续两次降价a%后售价为6480元,则a的值是10.【考点】一元二次方程的应用.【分析】等量关系为:原价×(1﹣降低的百分率)2=现在的价格,把相关数值代入计算即可.【解答】解:第一次降价后价格为8000×(1﹣a%),故第二次降价后价格为8000×(1﹣a%)×(1﹣a%)=8000×(1﹣a%)2,则8000×(1﹣a%)2=6480解得:a1=10,a2=190(不合题意,舍去).故答案为:10.19.在等边△ABC中,作以DB为直角边的等腰Rt△DBC(A、D两点在BC的同侧),则∠ADB=135°.【考点】等边三角形的性质.【分析】根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=AC,根据等腰直角三角形的性质得出BD=DC,∠DBC=∠DCB=45°,进一步证得△ABD≌△ACD,得出∠BAD=∠CAD=∠A=30°,然后根据三角形内角和定理即可求得.【解答】解:如图,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=AC,∵在等边△ABC中,作以DB为直角边的等腰Rt△DBC(A、D两点在BC的同侧),∴∠BDC=90°,BD=DC,∴∠DBC=∠DCB=45°,∴∠ABD=∠ACD=15°,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∴∠BAD=∠A=30°,∴∠ADB=180°﹣30°﹣15°=135°.故答案为135°.20.在△ABC中,∠B=45°,点D在边BC上,AD=AC,点E在边AD上,∠BCE=45°,若AB=5.AE=2DE,则AC=.【考点】相似三角形的判定与性质.【分析】过A作AM⊥BC于M,过作EN∥AB交BC于N,根据相似三角形的性质得到∠ENC=∠B=45°,推出△ABM与△ENC是等腰直角三角形根据勾股定理得到AM=BM=5,设CM=x,则CD=2x,ND=NC﹣CD=﹣2x,BO=5﹣x,列方程即刻得到结论.【解答】解:过A作AM⊥BC于M,过作EN∥AB交BC于N,则△DEN∽△DAB,∴∠ENC=∠B=45°,∴△ABM与△ENC是等腰直角三角形,∵AB=5,∴AM=BM=5,∵DE:AE=,∴=,∴=,∴NE=,∴NC=,设CM=x,则CD=2x,ND=NC﹣CD=﹣2x,BO=5﹣x,则=,即=,∴x=1,∴CM=1,∴AC==.故答案为:.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.先化简,再求代数式的值,其中a=tan60°﹣6sin30°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先根据分式混合运算的法则把原式进行化简,再根据特殊角的三角函数值求出a的值,把a的值代入进行计算即可.【解答】解:原式=﹣×=﹣=,∵a=tan60°﹣6sin30°=﹣6×=﹣3,∴原式===1﹣2.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且△ABC的面积为6.(2)在方格纸中画出△ABC的中线BD,并把线段BD绕点C逆时针旋转90°,画出旋转后的线段EF(B与E对应,D与F对应),连接BF,请直接写出BF的长.【考点】作图﹣旋转变换;三角形的面积;等腰三角形的性质.【分析】(1)根据等腰三角形的性质画出图形即可;(2)根据图形旋转的性质画出线段EF,再写出其长即可.【解答】解:(1)如图所示;(2)如图,由图可知,EF=3.23.为评估九年级学生的学习成绩状况,以应对即将到来的中考做好教学调整,某中学抽取了部分参加考试的学生的成绩作为样本分析,绘制成了如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)求样本中成绩类别为“中”的人数,并将条形统计图补充完整;(2)该校九年级共有1000人参加了这次考试,请估算该校九年级共有多少名学生的数学成绩达到优秀?【考点】条形统计图;用样本估计总体;扇形统计图.(1)先根据成绩类别为“差”的人数和所占的百分比计算出样本容量为50,【分析】然后用成绩类别为“中”的人数所占百分比乘以50即可,再将条形统计图补充完整;(2)先计算出成绩类别为“中”的人数所占的百分比,然后乘以2000即可.【解答】解:(1)样本容量为8÷16%=50,所以成绩类别为“中”的人数等于50×20%=10(人);如图;(2)1000××100%=200,所以估计该校九年级共有200名学生的数学成绩可以达到优秀.24.如图,在正方形ABCD中,点E在BC上,以AE边作等腰Rt△AEF,∠AEF=90°,AE=EF,FG⊥BC于G.(1)如图1,求证:GF=CG;(2)如图2,AF交CD于点M,EF交CD于点N,当BE=3,DM=2时,求线段NC的长.【考点】正方形的性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)利用互余先判断出,∠BAE=∠FEG,从而得出△ABE≌△EGF,最后用线段的和差即可;(2)先判断出,和,,从而找出HN与HM的关系,设出HN,再用线段的和差表示出CN,EC,最后判断出△ECN∽△FHN,求出HN即可.【解答】解:(1)四边形ABCD是正方形,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∵∠AEF=90°,∴∠AEB+∠FEG=90°,∴∠BAE=∠FEG,∵FG⊥BC,∴∠EGF=90°,在△ABE和△EGF中,∴△ABE≌△EGF,∴GF=BE,EG=AB,∵AB=BC,∴BC=EG,∴BE=CG,∴GF=CG,(2)如图2,过F作FH⊥CD,则∠FHC=90°,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠FHC=∠BCD,∴FH∥BC∥AD,∴∠HFN=∠GEF,由(1)知,∠GEF=∠BAE,∴∠BAE=∠HFN,∵∠FHN=∠ABE=90°,∴△ABE∽△FHN,∴∵AD∥HF,∴,∵AB=AD,∴,∵BE=3,DM=2,∴,设HN=x,则HM=x,∵∠HCG=∠CGF=∠CHF=90°,∴四边形CGFH是矩形,∵CG=FG,∴矩形CGFH是正方形,∴HF=CH=CG=BE=3,∴CN=3﹣x,∴BC=CD=CH+HM+DM=3+x+2=5+x,∴EC=BC﹣BE=5+x﹣3=x+2,∵∠CNE=∠HNF,∠ECN=∠FHN=90°,∴△ECN∽△FHN,∴,∴,∴x=或x=﹣9(舍),∴NC=3﹣x=.25.甲、乙两家园林公司承接了哈尔滨市平房区园林绿化工程,已知乙公司单独完成所需要的天数是甲公司单独完成所需天数的1.5倍,如果甲公司单独工作10天,再由乙公司单独工作15天,这样就可完成整个工程的三分之二.(1)求甲、乙两公司单独完成这项工程各需多少天?(2)上级要求该工程完成的时间不得超过30天.甲、乙两公司合作若干天后,甲公司另有项目离开,剩下的工程由乙公司单独完成,并且在规定时间内完成,求甲、乙两公司合作至少多少天?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)题中有两个等量关系,“乙公司单独完成所需要的天数是甲公司单独完成所需天数的1.5倍”,这是说明甲乙两队工作天数的关系,因此若设甲公司单独x天完成,则乙公司单独完成此工程的天数为1.5x;另一个等量关系:甲公司单独工作10天,再由乙公司单独工作15天,这样就可完成整个工程的三分之二.可得:甲公司单独工作10天完成的工作量+乙公司单独工作15天完成的工作量=;(2)设甲、乙两公司合作a天可完成整个工程,等量关系为:甲公司工作a天完成的工作量+乙公司工作30天完成的工作量≥1,依此列出不等式求解即可.【解答】解:(1)设甲公司单独x天完成,则乙公司单独完成此工程的天数为1.5x,由题意得+=,解得:x=30.经检验,x=30是原方程的解.则1.5x=45.答:甲、乙两公司单独完成这项工程各需30天、45天;(2)设甲、乙两公司合作a天可完成整个工程,由题意得a+≥1,解得a≥10.答:甲、乙两公司合作至少10天.26.如图,在⊙O中,弦AB=CD,且相交于点E,连接OE.(1)如图1,求证:EO平分∠BEC;(2)如图2,点F在半径OD的延长线上,连接AC、AF,当四边形ACDF是平行四边形时,求证:OE=DE;(3)如图3,在(2)的条件下,AF切⊙O于点A,点H为弧BC上一点,连接AH、BH、DH,若BH=AH,AB=,求DH的长.【考点】圆的综合题.【分析】(1)作OH⊥CD,OM⊥AB,由AB=CD,根据垂径定理可知OH=OM,由到角的两边距离相等的点在角的平分线上可知,OE平分∠CEB,结论得以证明;(2)要证OE=DE,只要证明∠EOD=∠EDO即可,根据题目中的条件可以证得两个角相等,从而可以证明结论成立;(3)根据题意作出合适的辅助线,构造直角三角形,利用特殊角的三角函数,进行边角的转化,从而可以求得DH的长.【解答】(1)证明:过点O作OH⊥CD,OM⊥AB,垂足分别为H、M,如右图1所示,∵AB=CD,∴OH=OM,∴EO平分∠BEC;(2)连接OA、BD,如右图2所示,∵AB=CD∴,∴∴AC=BD,又∵∠DBE=∠ACE,∠CEA=∠BED,∴△CEA≌△BED,∴AE=DE,又∵OE平分∠CEB,∠BED=∠CEA,∴∠OEC=∠OEB,∴∠OEA=∠OED,∵OE=OE,∴△AOE≌△DOE,∴∠DOE=∠DOA,又∵四边形CAFD是平行四边形,∴∠F=∠C=∠ODE,∴∠C=∠DOA=∠EOD=∠F=∠ODE,∴∠EOD=∠EDO,∴OE=DE;(3)如图3所示,连接OA,则OA⊥AF,∵四边形AFDC是平行四边形,∴CD∥AF,∴OA⊥CD,∴,∴OD⊥AB,∵OE=DE,∴OG=OD=AO,∴∠AOD=60°,∴∠AHB=∠AOD=60°,过点A作AM⊥BH,则HM=AH,AM=AH,∴BM=BH﹣HM=AH﹣AH=AH,由勾股定理得,AB2=BM2+AM2,即21=,得AH=3,∴BH=2,∵OA===BD,过点B作BQ⊥DH于点Q,∠BHQ=30°,∴BQ=,HQ==3,∴DQ==2,∴DH=HQ+DQ=3+2=5,即DH=5.27.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+与x轴交于点A、B(点A在点B的左侧),抛物线的顶点为C,直线AC交y轴于点D,D 为AC的中点.(1)如图1,求抛物线的顶点坐标;(2)如图2,点P为抛物线对称轴右侧上的一动点,过点P作PQ⊥AC于点Q,设点P的横坐标为t,点Q的横坐标为m,求m与t的函数关系式;(3)在(2)的条件下,如图3,连接AP,过点C作CE⊥AP于点E,连接BE、CE分别交PQ于F、G两点,当点F是PG中点时,求点P的坐标.【考点】二次函数综合题.【分析】(1)先由抛物线解析式确定出对称轴,再用中点坐标确定出点A的坐标,代入抛物线解析式确定出抛物线解析式,化为顶点式即可得出顶点坐标;(2)由(1)的条件,确定出直线AC解析式,由PQ⊥AC,确定出点P的坐标,消去y即可;(3)先判断出△ACE∽△APQ,再判断出∠ACB=90°,从而得到TR△BCD≌RT△BED,判断出BD∥AP,进而确定出AP解析式,联立直线AP,抛物线的解析式确定出点P坐标.【解答】解:(1)∵抛物线y=ax2﹣2ax+,∴抛物线对称轴为x=﹣=1,∵抛物线的顶点为C,∴点C的横坐标为1,设点A(n,0)∵直线AC交y轴于点D,D为AC的中点.∴=0,∴n=﹣1,∴A(﹣1,0),∵点A在抛物线y=ax2﹣2ax+上,∴a+2a+=0,∴a=﹣,∴抛物线解析式为y=﹣x2+x+=(x﹣1)2+2,∴抛物线的顶点坐标C(1,2)(2)由(1)有,抛物线解析式为y=﹣x2+x+,∵点x轴上的点B在抛物线上,∴B(3,0),∵直线AC交y轴于点D,D为AC的中点.且A(﹣1,0),C(1,2),∴D(0,1),∵A(﹣1,0),C(1,2),∴直线AC解析式为y=x+1,∵PQ⊥AC,∴设直线PQ解析式为y=﹣x+b,∵设点P(t,﹣t2+t+),∴直线PQ解析式为y=﹣x﹣t2+2t+,∵点Q在直线AC上,且点Q的横坐标为m,∴,∴m=﹣t2+t+;(3)如图,连接DE,BD,BC,∵CE⊥AP,∴∠ACE+∠CAE=90°,∵PQ⊥AC,∴∠APQ+∠CAE=90°,∴∠ACE=∠APQ,∵∠CAE=∠CAE∴△ACE∽△APQ,∴∠APQ=∠ACE,∵∠AEC=90°,∴DE=AD=CD,∴∠ACE=∠DEC,∵∠CEP=90°,∴EF=QF=PF,∴∠APQ=∠PEF,∴∠PEF=∠APQ=∠ACE=∠CED,∴∠CED+∠BEC=∠PEF+∠BEC=∠PEC=90°,∵点A(﹣1,0),D(0,1),∴OA=OD,∴∠BAC=45°∵点A,B是抛物线与x轴的交点,点C是抛物线的顶点,∴AC=BC,∴∠ABC=∠BAC=45°,∴∠ACB=90°在TR△BCD和RT△BED中,,∴TR△BCD≌RT△BED,∴∠BDC=∠BDE,∵DE=DC,∴BD⊥CE,∵AP⊥CE,∴AP∥BD,∵B(3,0),D(0,1),∴直线BD解析式为y=﹣x+1,∵A(﹣1,0),∴直线AP解析式为y=﹣x﹣,联立抛物线和直线AP解析式得,,∴,(舍)∴P(,﹣).。

2018年黑龙江省哈尔滨市中考数学试卷含答案解析(word版)

2018年黑龙江省哈尔滨市中考数学试卷含答案解析(word版)

2018年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m23.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O 于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.96.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+37.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=18.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.109.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.210.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD 上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为.12.(3.00分)函数y=中,自变量x的取值范围是.13.(3.00分)把多项式x3﹣25x分解因式的结果是14.(3.00分)不等式组的解集为.15.(3.00分)计算6﹣10的结果是.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM 交BD于点N,FN=,则线段BC的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD 为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.2018年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:A.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m2【分析】直接利用完全平方公式以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;C、(m3)2=m6,故此选项错误;D、m•m2=m3,故此选项错误;故选:B.【点评】此题主要考查了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法则是解题关键.3.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解:A、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意;故选:C.【点评】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【分析】俯视图有3列,从左到右正方形个数分别是2,1,2.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.【点评】本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O 于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.9【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.【点评】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.10【分析】根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,故选:C.【点评】本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.2【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比例函数y=的图象经过点(1,1),∴代入得:2k﹣3=1×1,解得:k=2,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.10.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD 上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的性质找出==是解题的关键.二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为9.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)函数y=中,自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.13.(3.00分)把多项式x3﹣25x分解因式的结果是x(x+5)(x﹣5)【分析】首先提取公因式x,再利用平方差公式分解因式即可.【解答】解:x3﹣25x=x(x2﹣25)=x(x+5)(x﹣5).故答案为:x(x+5)(x﹣5).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.(3.00分)不等式组的解集为3≤x<4.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(3.00分)计算6﹣10的结果是4.【分析】首先化简,然后再合并同类二次根式即可.【解答】解:原式=6﹣10×=6﹣2=4,故答案为:4.【点评】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为(﹣2,4).【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【解答】解:∵y=2(x+2)2+4,∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).【点评】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:=.故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是6πcm2.【分析】先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.【点评】本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.【点评】本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM 交BD于点N,FN=,则线段BC的长为4.【分析】设EF=x,根据三角形的中位线定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF=45°,证明△EMC是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则EN=MN=x,BN=FN=,最后利用勾股定理计算x的值,可得BC的长.【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2(舍),∴BC=2x=4.故答案为:4.【点评】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【分析】(1)利用数形结合的思想解决问题即可;(2)利用数形结合的思想解决问题即可;【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求;【点评】本题考查作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【分析】(1)由“诗词”的人数及其所占百分比可得总人数;(2)总人数减去其他种类的人数求得“书法”的人数即可补全条形图;(3)用总人数乘以样本中“国画”人数所占比例.【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,ADC从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,=AE•DE=•2a•a=a2,∴S△ADE∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,=AC•DE=•(2a+2a)•a=2a2=2S△ADE;则S△ADC在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S=AE•BE=•(2a)•2a=2a2,△ABES△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.【点评】本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.【分析】(1)由正方形的四个角都为直角,得到两个角为直角,再利用同弧所对的圆周角相等及角平分线定义,等量代换即可得证;(2)如图2,过H作HM⊥KD,垂足为点M,根据题意确定出△BEP≌△HKM,利用全等三角形对应边相等即可得证;(3)根据3HF=2DF,设出HF=2a,DF=3a,由角平分线定义得到一对角相等,进而得到正切值相等,表示出DM=3a,利用正方形的性质得到△BED≌△DFB,得到BE=DF=3a,过H作HS⊥BD,垂足为S,根据△BER的面积与△DHK的面积的差为,求出a的值,即可确定出BR的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H作HM⊥KD,垂足为点M,∵∠F=90°,∵DA平分∠EDF,∴HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠BPE=∠EPL=90°,∴∠LEP+∠ELP=90°,∴∠BEP=∠ELP=∠DKH,∵HM⊥KD,∴∠KMH=∠BPE=90°,∴△BEP≌△HKM,∴BE=HK;(3)解:如图3,连接BD,∵3HF=2DF,BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由(2)得:HM=BP,∠HMD=90°,∵∠F=∠A=90°,∴tan∠HDM=tan∠FDH,∴==,∴DM=3a,∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,∴∠DBF=∠BDE,∵∠BED=∠F,BD=BD,∴△BED≌△DFB,∴BE=FD=3a,过H作HS⊥BD,垂足为S,∵tan∠ABH=tan∠ADE==,∴设AB=3m,AH=2m,∴BD=AB=6m,DH=AD﹣AH=m,∵sin∠ADB==,∴HS=m,∴DS==m,∴BS=BD﹣DS=5m,∴tan∠BDE=tan∠DBF==,∵∠BDE=∠BRE,∴tanBRE==,∵BP=FH=2a,∴RP=10a,在ER上截取ET=DK,连接BT,由(2)得:∠BEP=∠HKD,∴△BET≌△HKD,∴∠BTE=∠KDH,∴tan∠BTE=tan∠KDH,∴=,即PT=3a,∴TR=RP﹣PT=7a,∵S△BER﹣S△DHK=,∴BP•ER﹣HM•DK=,∴BP•(ER﹣DK)=BP•(ER﹣ET)=,∴×2a×7a=,解得:a=(负值舍去),∴BP=1,PR=5,则BR==.【点评】此题属于圆综合题,涉及的知识有:正方形的性质,角平分线性质,全等三角形的判定与性质,三角形的面积,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD 为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.【分析】(1)利用勾股定理求出BC的长即可解决问题;(2)如图2中,连接CE、CF.想办法证明△CEF是等边三角形,AF⊥CF即可解决问题;(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.想办法证明△APF是等边三角形,AT⊥PB即可解决问题;【解答】解:(1)如图1中,∵y=﹣x+,∴B(,0),C(0,),∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A(﹣,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠AOB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACR≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴(m)2+(2m)2=72,解得m=或﹣(舍弃),∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP•sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P(﹣,3)【点评】本题考查一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.。

2018年哈尔滨市道外区初中升学考试模拟调研测试一数学试题

2018年哈尔滨市道外区初中升学考试模拟调研测试一数学试题

2018年哈尔滨市道外区初中升学考试模拟调研测试(一)数学试题及答案一、选择题(每小题3分,共计30分) 1.3的相反数是( ) A. 3 B.-3 C.-23 D. 23 2.下列运算正确的是( )A .a+a=a 2 B.a 3÷a=a 3 C. a 2·a=a 3 D .(a 2)3=a 53.下列图形是轴对称图形而不是中心对称图形的是( )A. B. C. D.4.如图所示的几何体由5个大小相同的小正方体紧密摆放而成,它的左视图是( )AA. B. C. D.5.反比例函数2m y x +=的图像在每一个象限内,y 都随x 的增大而增大.则m 的取值范围是 ( )A. m <-2B. m >-2C.m >2D.m <26.Rt △ACB 中,∠C =90°,AB =5,BC=4,则tan ∠A= ( ) A. 43 B. 45 C. 35 D. 347.如图,在△ABC 中,∠B=40°,将△ABC 绕点A 逆时针旋转至△ADE 处,使点B 落在BC 的延长线上的D 点处,则∠BDE 等于( )A.100°B.80°C.50°D.40°8.如图,△ABC 中,DF ∥BE ,AD 、BE 相交于点G ,下列结论错误的是( ).AE AG A AF AD = .CE CB B CF CD= .AE CF C AF CE = .GE AG D DF AD = 9. 如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( )A.2x 2-25x+16=0B.x 2-25x+32=0C.x 2-17x+16=0D.x 2-17x-16=010.A 、B 两地相距90km ,甲骑摩托车由A 地出发,去B 地办事,甲出发的同时,乙骑自行车同时由B 地出发沿着同一条道路前往A 地,甲办完事后原速返回A 地,结果比乙早到0.5小时.甲、乙两人离A 地距离y (km )与时间x (h )的函数关系图像如图所示.下列说法:①.a=3.5,b=4;② 甲走的全路程是90km ;③乙的平均速度是22.5km/h;.④甲在B 地办事停留了0.5小时.其中正确的说法有( )A.1个B.2个C.3个D.4个二、填空题(每小题3分,共计30分)11将140000用科学计数法表示为 .12.若函数y=14+x x 有意义,则自变量x 的取值范围是 . 13.计算:31312-= . 14.把多项式m 3n -mn 3分解因式的结果是 . 15.不等式组21353x x+≤⎧⎨≥-⎩的解集为 .16.一个扇形的半径为3cm ,面积为πcm 2,则此扇形的圆心角为 度.17.一个口袋中装有2个红球、2个白球,每个球除颜色外都相同,随机从中一次摸出两球,摸到都是红球的概率是 .18.如图,已知PA 、PB 是⊙O 的两条切线,A 、B 为切点.AC 是⊙O 的直径,若∠P=80°,则∠BAC 的度数为 .19.在正方形ABCD 中,点E 在直线AB 上,EF ⊥AC 于点F ,连接EC ,EC=5,△EFC 的周长为12,则AE 的长为 .20.如图,在△ABC 中,∠B=45°,在BC 边上取一点D ,使CD=CA ,点E 在AC 上,连接ED ,若∠AED=45°,且CE=1,BD=2,则AD 的长是 .三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式)12(12mm m m m +-÷-的值,其中m=2cos30°-tan45°22.图1、图2分别是8×6的网格,网格中每个小正方形的边长均为1,线段AB 的端点在小正方形的顶点上,请在图1、图2中各画一个图形,分别满足以下要求:(1)在图1中画一个以线段AB 为一边周长为10+210的平行四边形,所画图形的各顶点必须在小正方形的顶点上.(2)在图2中画一个以线段AB 为一边的等腰三角形,所画等腰三角形的各顶点必须在小正方形的顶点上,并求出该等腰三角形的周长.23.为了参加市举办“科学发现杯”知识竞赛活动,我区开展了预赛,400名学生参加此次比赛,为了解此次竞赛情况:从中抽取一部分学生成绩统计如下(得分取整数,满分为100分)(1)补全频数分布表和频数分布直方图.(2)这组数据的中位数落在第几组?(3)若90分以上成绩为优秀,估计我区获得优秀学生约有多少?24.如图,在△ABC 中,D 是BC 边的中点,分别过点B 、C 作射线AD 的垂线,垂足分别为E 、F ,连接BF 、CE.(1)求证:四边形BECF 是平行四边形;(2)若AF=FD,在不添加辅助线的条件下,直接写出与△ABD 面积相等的所有三角形.25.某工厂签了1200件商品订单,要求不超过15天完成.现有甲、乙两个车间来完成加工任务。

2018年哈尔滨市南岗区中考数学一模试卷-有答案

2018年哈尔滨市南岗区中考数学一模试卷-有答案

2018年黑龙江省哈尔滨市南岗区中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)2018南1月24日是腊八节,这天哈尔滨市的最低气温是﹣35℃,最高气温是﹣24℃,这一天哈尔滨市的温差为()A.9℃B.10℃C.11℃D.59℃2.(3分)下列计算正确的是()A.3a﹣2a=a B.=C.(2a)3=2a3D.a6÷a3=a23.(3分)下列图形中,是中心对称图形的是()A.B.C. D.4.(3分)抛物线y=x2﹣2x﹣1的对称轴是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣25.(3分)如图所示的几何体的主视图是()A.B.C.D.6.(3分)分式方程=的解为()A.5 B.13 C.D.7.(3分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米8.(3分)一种药品原价每盒25元,经过两次降价后每盒16元,两次降价的百分率相同,设每次降价的百分率为x,则符合题意的方程为()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=169.(3分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点,若∠DAB=50°,则∠ABC的大小是()A.55°B.60°C.65°D.70°10.(3分)如图正方形ABCD的边长为2,点E,F,G,H分别在AD,AB,BC,CD上,且EA=FB=GC=HD,分别将△AEF,△BFG,△CGH,△DHE沿EF,FG,GH,HE翻折,得四边形MNKP,设AE=x(0<x<1),S四边形MNKP=y,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)地球绕太阳公转的速度约为110000千米/时,将这个数用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)把多项式a2b﹣4ab+4b分解因式的结果是.14.(3分)计算:﹣4的结果是.15.(3分)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.16.(3分)不等式组的解集是.17.(3分)从,0,﹣,3.14,6这5个数中随机抽取一个数,抽到的有理数的概率是.18.(3分)若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为.19.(3分)在△ABC中,AB=2,AC=3,cos∠ACB=,则∠ABC的大小为度.20.(3分)如图,在▱ABCD中,点E为CD的中点,点F在BC上,且CF=2BF,连接AE,AF,若AF=,AE=7,tan∠EAF=,则线段BF的长为.三、解答题(其中21-25题各6分,26题10分,共计40分)21.(6分)先化简,再求代数式(1﹣)÷的值,其中x=2cos30°﹣tan45°.22.(6分)如图,在方格纸中,每一个小正方形的边长为1,△ABC的三个顶点都在小方格的顶点上,按要求画一个三角形.(1)将△ABC先向右平移4个单位,再向上平移1个单位,在图1中画出示意图;(2)以点C为旋转中心,将△ABC顺时针旋转90°,在图2中画出示意图.23.(6分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问题卷调查,调查结果分为“A非常了解”、“B了解”、“C基本了解”三个等级,并根据调查结果制作了如下两幅不完整的统计图.(1)这次调查的市民有多少人?(2)补全条形统计图;(2)若该市约有市民950万人,请你根据抽样调查的结果,估计该市有多少万人对“社会主义核心价值观”达到“A非常了解”的程度.24.(6分)如图,点E在菱形ABCD的对角线BD上,连接AE,且AE=BE,⊙O是△ABE的外接圆,连接OB.(1)求证:OB⊥BC;(2)若BD=,tan∠OBD=2,求⊙O的半径.25.(6分)某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车每次共35吨,3辆大型渣土运输车和2辆小型渣土运输车每次共运40吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)该运输公司决定派出大小两种型号的渣土运输车共20辆参与运输土方,若每次运输土方总量不小于150吨,问该运输公司最多派出几辆小型渣土运输车?26.(10分)在平面直角坐标系中,点O为坐标原点,直线y=﹣x+12与x轴,y轴分别相交于点A,B,∠ABO的平分线与x轴相交于点C.(1)如图1,求点C的坐标;(2)如图2,点D,E,F分别在线段BC,AB,OB上(点D,E,F都不与点B重合),连接DE,DF,EF,且∠EDF+∠OBC=90°,求证:∠FED=∠AED;(3)如图3,在(2)的条件下,延长线段FE与x轴相交于点G,连接DG,若∠CGD=∠FGD,BF:BE=5:8,求直线DF的解析式.2018年黑龙江省哈尔滨市南岗区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)2018南1月24日是腊八节,这天哈尔滨市的最低气温是﹣35℃,最高气温是﹣24℃,这一天哈尔滨市的温差为()A.9℃B.10℃C.11℃D.59℃【解答】解:﹣24﹣(﹣35)=﹣24+35=11(℃),故选:C.2.(3分)下列计算正确的是()A.3a﹣2a=a B.=C.(2a)3=2a3D.a6÷a3=a2【解答】解:A、3a﹣2a=a,故本选项正确;B、与不是同类项,不能合并,故本选项错误;C、(2a)3=8a3≠2a3,故本选项错误;D、a6÷a3=a3≠a2,故本选项错误.故选:A.3.(3分)下列图形中,是中心对称图形的是()A.B.C. D.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选:C.4.(3分)抛物线y=x2﹣2x﹣1的对称轴是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣2【解答】解:抛物线y=x2﹣2x﹣1的对称轴是直线x=﹣=1.故选:A.5.(3分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:从正面看易得第一层有2个正方形,第二层也有2个正方形.故选:B.6.(3分)分式方程=的解为()A.5 B.13 C.D.【解答】解:去分母得:5(x+2)=3(2x﹣1),解得:x=13,经检验x=13是分式方程的解,故选:B.7.(3分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC===5,∴小车上升的高度是5m.故选:A.8.(3分)一种药品原价每盒25元,经过两次降价后每盒16元,两次降价的百分率相同,设每次降价的百分率为x,则符合题意的方程为()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16【解答】解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选:D.9.(3分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点,若∠DAB=50°,则∠ABC的大小是()A.55°B.60°C.65°D.70°【解答】解:连接OC,∵点C为的中点,∴∠BOC=∠DAB=50°,∵OC=OB,∴∠ABC=∠OCB=65°,故选:C.10.(3分)如图正方形ABCD的边长为2,点E,F,G,H分别在AD,AB,BC,CD上,且EA=FB=GC=HD,分别将△AEF,△BFG,△CGH,△D HE沿EF,FG,GH,HE翻折,得四边形MNKP,设AE=x(0<x<1),S 四边形MNKP =y ,则y 关于x 的函数图象大致为( )A .B .C .D .【解答】解:∵AE=x ,∴y=S 正方形ABCD ﹣2(S △AEF +S △BGF +S △CGH +S △DEH )=2×2﹣2×[•x•(2﹣x )+•x•(2﹣x )+x•(2﹣x )+x•(2﹣x )] =4x 2﹣8x +4 =4(x ﹣1)2, ∵0<x <2, ∴0<y <4,∵是二次函数,开口向上, ∴图象是抛物线,即选项A 、B 、C 错误;选项D 符合, 故选:D .二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)地球绕太阳公转的速度约为110000千米/时,将这个数用科学记数法表示为 1.1×105 .【解答】解:将110000用科学记数法表示为:1.1×105. 故答案为:1.1×105.12.(3分)函数y=中,自变量x 的取值范围是 x ≠﹣3 .【解答】解:由题意得,x +3≠0, 解得x ≠﹣3. 故答案为:x ≠﹣3.13.(3分)把多项式a2b﹣4ab+4b分解因式的结果是b(a﹣2)2.【解答】解:a2b﹣4ab+4b=b(a2﹣4a+4)=b(a﹣2)2.故答案为:b(a﹣2)2.14.(3分)计算:﹣4的结果是2.【解答】解:原式=4﹣2=2故答案为:215.(3分)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为2.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.16.(3分)不等式组的解集是0<x<5.【解答】解:∵解不等式①得:x>0,解不等式②得:x<5,∴不等式组的解集为0<x<5,故答案为:0<x<5.17.(3分)从,0,﹣,3.14,6这5个数中随机抽取一个数,抽到的有理数的概率是.【解答】解:∵在,0,﹣,3.14,6这5个数中只有0、3.14和6为有理数,∴从,0,﹣,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是.故答案为:.18.(3分)若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为6.【解答】解:扇形的面积==6π.解得:r=6,故答案为:619.(3分)在△ABC中,AB=2,AC=3,cos∠ACB=,则∠ABC的大小为30或150度.【解答】解:如图,作AD⊥BC于点D,在Rt△ACD中,∵AC=3、cos∠ACB=,∴CD=ACcos∠ACB=3×=2,则AD===1,若点B在AD左侧,∵AB=2、AD=1,∴∠ABC=30°;若点B在AD右侧,则∠AB′D=30°,∴∠AB′C=150°,综上,∠ABC的度数为30°或150°,故答案为:30或150.20.(3分)如图,在▱ABCD中,点E为CD的中点,点F在BC上,且CF=2BF,连接AE,AF,若AF=,AE=7,tan∠EAF=,则线段BF的长为.【解答】解:过F作FG⊥AE于G,延长AE、BC交于H,在Rt△AFG中,∵tan∠EAF=,∴设FG=5x,AG=2x,由勾股定理得:,∴x1=1,x2=﹣1(舍),∴AG=2,FG=5,∵AE=7,∴EG=5,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠DCH,∠DAE=∠H,∵DE=EC,∴△ADE≌△HCE,∴EH=AE=7,Rt△FGH中,∵FG=5,GH=5+7=12,∴FH=13,∵CF=2BF,设BF=a,则CF=2a,AD=CH=3a,∴2a+3a=13,a=,∴BF=,故答案为:.三、解答题(其中21-25题各6分,26题10分,共计40分)21.(6分)先化简,再求代数式(1﹣)÷的值,其中x=2cos30°﹣tan45°.【解答】解:原式=×=∵x=2cos30°﹣tan45°=﹣1,∴原式==22.(6分)如图,在方格纸中,每一个小正方形的边长为1,△ABC的三个顶点都在小方格的顶点上,按要求画一个三角形.(1)将△ABC先向右平移4个单位,再向上平移1个单位,在图1中画出示意图;(2)以点C为旋转中心,将△ABC顺时针旋转90°,在图2中画出示意图.【解答】解:(1)如图1,△A′B′C′为所作;(2)如图2,△A″B″C为所作.23.(6分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问题卷调查,调查结果分为“A非常了解”、“B了解”、“C基本了解”三个等级,并根据调查结果制作了如下两幅不完整的统计图.(1)这次调查的市民有多少人?(2)补全条形统计图;(2)若该市约有市民950万人,请你根据抽样调查的结果,估计该市有多少万人对“社会主义核心价值观”达到“A非常了解”的程度.【解答】解:(1)280÷56%=500(人),(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:500﹣280﹣60=160(人),补全条形统计图如下:(3)950×=304(万人),答:该市大约有304万人对“社会主义核心价值观”达到“A.非常了解”的程度.24.(6分)如图,点E在菱形ABCD的对角线BD上,连接AE,且AE=BE,⊙O是△ABE的外接圆,连接OB.(1)求证:OB⊥BC;(2)若BD=,tan∠OBD=2,求⊙O的半径.【解答】(1)证明:连接OA、OE,设OE交AB于F,∵AE=BE,∴∠AOE=∠BOE,∵OA=OB,∴AF=BF,OE⊥AB,∴∠OFB=∠BFE=90°,∴∠BEF+∠EBF=90°,∵四边形ABCD是菱形,∴∠CBD=∠ABD,∵OB=OE,∴∠OBE=CEB,∴∠OBE+∠CBD=90°,∴∠OBC=90°,∴OB⊥BC;(2)解:连接AC交BD于G,∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,BG=BD=,∴∠BGC=90°,∴∠GCB+∠GBC=90°,∵∠OBD+∠CBG=90°,∴∠GCB=∠OBD,在Rt△BCG中,tan∠GCB=tan∠OBD=2,∴=2,∴CG=,∴BC===8,∴AB=8,∴BF=4,在Rt△BEF中,tan∠BEF=tan∠OBD=2,∴=2,∴EF=2,设⊙O的半径为r,在Rt△BOF中,OF2+BF2=OB2,(r﹣2)2+42=r2,解得:r=5,即⊙O的半径为5.25.(6分)某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车每次共35吨,3辆大型渣土运输车和2辆小型渣土运输车每次共运40吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)该运输公司决定派出大小两种型号的渣土运输车共20辆参与运输土方,若每次运输土方总量不小于150吨,问该运输公司最多派出几辆小型渣土运输车?【解答】解:(1)设一辆大型渣土运输车一次运输x吨,一辆小型渣土运输车一次运输y吨,,解得.即一辆大型渣土运输车一次运输10吨,一辆小型渣土运输车一次运输5吨;(2)设该运输公司派出a辆小型渣土运输车,由题意可得,10(20﹣a)+5a≥150,解得a≤10.∵a是整数,∴a最大为10,∴该运输公司最多派出10辆小型渣土运输车.26.(10分)在平面直角坐标系中,点O为坐标原点,直线y=﹣x+12与x轴,y轴分别相交于点A,B,∠ABO的平分线与x轴相交于点C.(1)如图1,求点C的坐标;(2)如图2,点D,E,F分别在线段BC,AB,OB上(点D,E,F都不与点B重合),连接DE,DF,EF,且∠EDF+∠OBC=90°,求证:∠FED=∠AED;(3)如图3,在(2)的条件下,延长线段FE与x轴相交于点G,连接DG,若∠CGD=∠FGD,BF:BE=5:8,求直线DF的解析式.【解答】解:(1)如图1中,作CH⊥AB于H.由题意A(9,0),B(0,12),在Rt△AOB中,AB===15,tan∠OAB===,∵∠CBH=∠CBO,∠CHB=∠COB,CB=CB,∴△O BC≌△HBC,∴BH=OB=12,OC=CH,AH=15﹣12=3,在Rt△ACH中,tan∠CAH==,∠CH=4,∴OC=CH=4,∴点C坐标为(4,0).(2)解:如图2中,过点D分别作DM⊥y轴于点M,DN⊥AB于点N,在NA上截取NP=FM,连接PD.∵∠EDF+∠OBC=90°,∠BDM+∠OBC=90°,∴∠EDF=∠BDM,同理∠BDN=∠BDM=∠MDN,∴∠EDF=∠MDN,∵∠DBM=∠DBN,DM⊥OB,DN⊥AB,∴DM=DN,∵∠FMD=∠PND=90°,NP=FM,∴△DFM≌△DPN,∴DF=DP,∠FDM=∠PDN,∴∠FDM+∠FDN=∠PDN+∠FDN,即∠FDP=∠MDN,∴∠EDF=∠FDP=∠EDP,∵DE=DE,∴△DEF≌△DEP,∴∠FED=∠AED.(3)解:如图3中,过点F作FQ⊥BE于点Q,过点D作DM⊥y轴于M,DN⊥AB于N,DR⊥EF于R,DS⊥OG于点S,过点A作AT⊥BC交BC的延长线于T,连接AD.∵∠DEF=∠DEA,DR⊥EF,DN⊥EA,∴DR=DN,同理DR=DS,∴DN=DS,∴∠BAD=∠OAD,同理∠OFD=∠DFG,在Rt△ACT中,AC=9﹣4=5,tan∠ACT=tan∠BCO==3,=3,设CT=m,则AT=3m.∵CT2+AT2=AC2,∴m2+(3m)2=52,解得m=或﹣(舍弃),∴CT=,AT=,∵∠ADC=∠ABD+∠BAD=(∠OBA+∠BAO)=×90°=45°,∴∠DAT=45°=∠ADC,∴DT=AT=,∴CD=DT﹣CT=,同理可得,CS=1,DS=3=OM,∴OS=4﹣1=3,∴点D坐标(3,3),设BF=5n,则BE=8n,在Rt△BFQ中,cos∠FBQ===,∴BQ=4n=EQ,∴FQ⊥AB,∠BFQ=∠EFQ,∴∠DFQ=∠DFC+∠EFQ=(∠OFG+∠BFE)=×180°=90°,∴∠DFQ=∠BQF=90°,∴DF∥AB,设直线DF的解析式为y=﹣x+b,∴3=﹣×3+b,解得b=7,∴直线DF的解析式为y=﹣x+7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年哈尔滨中考数学模拟试卷一、选择题(每小题3分。

共计30分)
1. 4的平方根是()
A.±2 B.2 C
.± D

2.下列运算中,结果正确的是()
A.2a+3b=5ab B.a2•a3=a6 C.(a+b)2=a2+b2 D.2a﹣(a+b)=a﹣b 3.下列图形中,既是轴对称图形,又是中心对称图形的有()
A.1个 B.2个 C.3个 D.4个
4.下列几何体的主视图、左视图、俯视图都相同的是()
A
. B
. C
. D

5.对于双曲线
y=,当x>0时,y随x的增大而减小,则k的取值范围是()
A.k<3 B.k≤3 C.k>3 D.k≥3 6.下列关于x的方程一定有实数解的是()
A.2x=m B.x2=m C
. =m D
. =m
7.如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.2l° B.30° C.58° D.48°
8.如图,AD∥BE∥CF,直线l
1、l
2
与这三条平行线分别交于点A、B、C和点D、E、F.若AB=4.5,
BC=3,EF=2,则DE的长度是()A
. B.3 C.5 D

9.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7m,则树高BC为(用含α的代数式表示)()
A.7sinα B.7cosα C.7tanα D

10.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计).一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计).小明与家的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小明从家出发7分钟时与家的距离为1200米.从上公交车到他到达学校共用l0分钟.下列说法:
①小明从家出发5分钟时乘上公交车;
②公交车的速度为400米/分钟:
③小明下公交车后跑向学校的速度为l00米/分钟:
④小明上课没有迟到,其中正确的个数是( ).
A.1个
B.2个
C.3个
D.4个
二、填空题(每小题3分。

共计30分)
11.某市常住人口约为5245000人,数字5245000用科学记数法表示为.
12.在函数
y=中,自变量x的取值范围是.
13
.计算:
﹣= .
14.分解因式:a2y﹣4y= .
15
.不等式组的解集是.
16.一个袋子中装有6个球,其中4个黑球2个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为白球的概率是.17.如图,将长为14cm的铁丝AB首尾相接围成半径为2cm的扇形,则S
扇形
= cm2.
18.某种过季绿茶的价格两次大幅下降,原来每袋250元,现在每袋90元,则平均每次下调的百分率是.
19.已知:等腰三角形ABC的面积为30m2,AB=AC=10m,则底边BC的长度为.
20.如图,将正方形ABCD沿直线MN折叠,使B点落在CD边上,AB边折叠后与AD边交于F,若三角形DEF与三角形ECM的周长差为3,则DE的长为.
三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共60分)
21
.先化简,再求代数式的值:,其中a=tan60°﹣2sin30°.
22.如图,在平面直角坐标系中,△OAB的三个顶点的坐标分别为A(6,3),B(0,5).
(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA
1
B
1

(2)画出△OAB关于原点O的中心对称图形△OA
2
B
2

(3)猜想:∠OAB的度数为多少?并说明理由.
23.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤
85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整
理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:
(1)在这次调查中,一共抽取了名学生,α= %;
(2)补全条形统计图;
(3)扇形统计图中C级对应的圆心角为度;
(4)若该校共有2000名学生,请你估计该校D级学生有多少名?。

相关文档
最新文档