高中物理第三章磁场章末复习课达标检测含解析粤教版选修3_1.doc
【粤教版】选修3-1物理:第3章《磁场》章末过关检测卷(含答案解析)
【金版学案】2015-2016高中物理 第三章 磁场章末过关检测卷 粤教版选修3-1(测试时间:50分钟 评价分值:100分)一、单项选择题(每小题4分,满分16分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.有电子、质子、氘核、氚核,以同样速度垂直射入同一匀强磁场中,它们都做匀速圆周运动,则轨道半径最大的粒子是(B)A .氘核B .氚核C .电子D .质子解析:根据公式Bqv =m v 2R 可得R =mv Bq,电子、质子、氘核、氚核四种粒子的带电量多少是相同的,但是质量是不相同的,m 电子<m 质子<m 氘核<m 氚核,它们以相同的速度进入同一匀强磁场,轨道半径是与质量成正比的,所以氚核的轨道半径是最大的.选项ACD 错误,选项B 正确.2.两个电子以大小不同的初速度沿垂直于磁场的方向射入同一匀强磁场中.设r 1、r 2为这两个电子的运动轨道半径,T 1、T 2是它们的运动周期,则(D)A .r 1=r 2,T 1≠T 2B .r 1≠r 2,T 1≠T 2C .r 1=r 2,T 1=T 2D .r 1≠r 2,T 1=T 2解析:根据半径公式r =mvBq 可得r 1=mv 1Bq ,r 2=mv 2Bq,因为速度不同,所以r 1≠r 2,根据周期公式T =2πm Bq 可得,T 1=2πm Bq ,T 2=2πm Bq,故T 1=T 2,所以D 正确. 3.如图所示,直角三角形通电闭合线圈ABC 处于匀强磁场中,磁场垂直纸面向里,则线圈所受磁场力的合力(A )A .大小为零B .方向竖直向上C.方向竖直向下 D.方向垂直纸面向里解析:对三个边进行受力分析,由F=BIL和三个力的夹角关系可以得出三个力的合力为零.故选A.4.两个相同的圆形线圈,通以方向相同但大小不同的电流I1和I2,如图所示.先将两个线圈固定在光滑绝缘杆上,问释放后它们的运动情况是(B)A.相互吸引,电流大的加速度大 B.相互吸引,加速度大小相等C.相互排斥,电流大的加速度大 D.相互排斥,加速度大小相等解析:两个圆形线圈,电流同向,根据同向电流相互吸引,异向电流相互排斥,知两线圈相互吸引.因为线圈1对线圈2的力和线圈2对线圈1的力大小相等,方向相反,根据牛顿第二定律知,加速度大小相等.故B正确,A、C、D错误.故选B.二、不定项选择题(每小题6分,满分30分.在每小题给出的四个选项中,有一个或多个选项符合题目要求,全部选对得6分,选不全得3分,有选错或不答的得0分) 5.电子以初速度v0垂直进入磁感应强度为B的匀强磁场中,则 (ABCD)A.磁场对电子的作用力大小始终不变 B.磁场对电子的作用力始终不做功C.电子的动量大小始终不变 D.电子的动能始终不变解析:电子在磁场中只受洛伦兹力作用,而洛伦兹力只改变电子的速度方向,不改变速度大小,所以B、D正确.6.一束几种不同的正离子,垂直射入有正交的匀强磁场和匀强电场区域里,离子束保持原运动方向未发生偏转,接着进入另一匀强磁场,发现这些离子分成几束,如图所示.对这些正离子,可得出结论(AD)A.它们的速度一定相同 B.它们的电量一定各不相同C.它们的质量一定各不相同 D.它们的比荷一定各不相同解析:在电磁场中,正离子受到的洛伦兹力F洛与电场力F电相等,从而做直线运动,有Eq=qvB1,v=EB1,即所有正离子速度都相同,当正离子进入磁场B2中时,r=mvqB2,正离子分成几束,则r不同,比荷一定各不相同,A、D正确.7.图为一质子以速度v穿过互相垂直的电场和磁场区域而没有发生偏转,不计重力.则(BD)A.若电子以相同速度v射入该区域,将会发生偏转B.无论何种带电粒子,只要以相同速度射入都不会发生偏转C.若质子的速度v′<v,它将向下偏转而做类平抛运动D.若质子的速度v′>v,它将向上偏转,其运动轨迹既不是圆弧也不是抛物线解析:AB.质子穿过相互垂直的电场和磁场区域而没有偏转,说明了它受的电场力和洛伦兹力是一对平衡力,有:qvB=qE,与带电性质无关,所以只要以相同的速度射入该区域都不会发生偏转.故A错误,B正确;C.若质子的入射速度v′<v,质子所受的洛伦兹力小于电场力,将向下偏转,洛伦兹力对粒子不做功,电场力做正功,存在洛伦兹力,所以不是类平抛运动.故C错误;D.质子的入射速度v′>v,它所受到的洛伦兹力大于电场力.由于质子所受到的洛伦兹力方向向上,故质子就向上偏转.由于质子所受的电场力是一恒力,而洛伦兹力是一变力,故其轨迹既不是圆弧也不是抛物线,故D正确.故选:B、D.8.如图所示,在竖直向上的匀强磁场中,水平放置着一根长直流导线,电流方向指向读者,a、b、c、d是以直导线为圆心的同一圆周上的四点,在这四点中(BCD)A.a、b两点磁感应强度相同 B.a点磁感应强度最小C.c、d两点磁感应强度大小相等 D.b点磁感应强度最大解析:根据安培定则,直线电流的磁感应强度如图所示:根据平行四边形定则,a、b、c、d各个点的磁场情况如图所示:显然,c 点与d 点合磁感应强度相等;a 点磁感应强度为两点之差的绝对值,最小;b 点磁感应强度等于两个磁感应强度的代数和,最大;故选B 、C 、D.9.(2014·佛山模拟)圆形区域内有垂直于纸面的匀强磁场,三个质量和电荷量都相同的带电粒子a 、b 、c ,以不同的速率沿着AO 方向对准圆心O 射入磁场,其运动轨迹如图所示.若带电粒子只受磁场力的作用,则下列说法正确的是(C )A .a 粒子速率最大B .c 粒子速率最小C .a 粒子在磁场中运动的时间最长D .它们做圆周运动的周期T a <T b <T c 解析:由于三个带电粒子的质量、电荷量均相同,在同一个磁场中,根据qvB =m v 2r,可得v =qBr m ,故轨道半径越大时,速度越大,选项A 错误、选项B 错误;由于T =2πm qB及t =θ2π×T 可知,三个粒子运动的周期相同,a 在磁场中运动的偏转角最大,对应时间最长,选项C 正确、选项D 错误.三、非选择题(本大题共2小题,共54分.按题目要求作答.解答题应写出必要的文字说明、方程和重要演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)10.(27分)如图所示, 光滑的U 形导电轨道与水平面的夹角为θ, 空间有一范围足够大、方向竖直向下的匀强磁场,一质量为m 的光滑裸导体棒ab 恰能静止在导轨上,试确定图中电池的正负极并求导体中的电流所受磁场力的大小.(当地的重力加速度为g)解析:导体棒的受力如图所示,根据左手定则,知电流的方向由a到b,所以只有当d 为正极,c为负极时ab棒才可能静止,由平衡条件可得F磁=mg tan θ.答案:电池d为正极,所受的磁场力大小为mg tan θ.11.(27分)如图所示,在x轴的上方( y>0的空间内)存在着垂直于纸面向里、磁感应强度为B的匀强磁场,一个不计重力的带正电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成45°角,若粒子的质量为m,电量为q,求:(1)该粒子在磁场中做圆周运动的轨道半径;(2)粒子在磁场中运动的时间.解析:(1)粒子垂直进入磁场,由洛伦兹力提供向心力,根据牛顿第二定律得:qvB =m v 2R ,R =mv qB. (2)粒子圆周运动的周期T =2πR v =2πm qB,根据圆的对称性可知,粒子进入磁场时速度与x 轴的夹角为45°角,穿出磁场时,与x 轴的夹角仍为45°角,根据左手定则可知,粒子沿逆时针方向旋转,则速度的偏向角为270°角,轨道的圆心角也为270°.故粒子在磁场中运动的时间t =270°360°T =34T =3πm2qB .答案:(1)mv qB (2)3πm2qB。
物理粤教版选修3-1第三章磁场学力测评 含解析 精品
学力测评一、本题共7小题,每小题4分,共28分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分.1.下列关于磁感应强度的说法中,正确的是()A.一小段通电直导线放在磁感应强度为零的地方,受到的磁场力可能不为零B.一小段通电直导线放在磁场中某点不受磁场力的作用,则该点的磁感应强度可能不为零C.一小段通电直导线放在磁场中某点不受磁场力作用,则该点磁感应强度一定为零D.一小段通电直导线放在磁场中受到的安培力为F,通电电流为I,导线长为ΔL,则磁感应强度B的大小等于F/(IΔL)解析:没有磁场的地方,通电直导线就不会受到磁场力的作用,A错.通电直导线如果平行于磁场放置则不受磁场力的作用,所以一小段通电直导线放在磁场中某点不受磁场力的作用,并不说明该点磁感应强度为零,B对、C错.是这样定义磁感应强度的:当通电导线与磁场方向垂直时,通电导线所受的安培力F跟电流I和导线长度L的乘积IL的比值叫做磁感应强度,所以D错误.答案:B2.关于磁场和磁感线的描述,正确的说法是()A.磁感线从磁体的N极出发,终止于S极B.磁场的方向就是通电导体在磁场中某点受磁场作用力的方向C.沿磁感线方向,磁场逐渐减弱D.在磁场强的地方同一通电导体受的安培力可能比在磁场弱的地方受的安培力小解析:磁感线是为了形象描述磁场而引入的闭合曲线,没有起点和终点,所以A错.通电直导线在磁场中所受的磁场力的方向与磁场垂直,B错.磁感线的疏密表示磁场的强弱,磁感线的方向不表示磁场的强弱,故C错.通电导线在磁场中的受力不仅与磁感应强度有关,还跟导线的位置取向有关,若通电导线与磁场方向平行,则无论怎样安培力均为零,D正确.答案:D3.如图3-1所示,三根长导线通电电流大小相同,通电方向为b导线和d导线向纸里,c导线向纸外,a点为bd的中点,ac垂直于bd,且ab=ad=ac,磁场在a点处的磁感应强度的方向为()图3-1A.垂直纸面指向纸外B.垂直纸面指向纸里C.沿纸面由a指向bD.沿纸面由a指向c解析:在多个磁体存在的空间里任意一点的磁场是这些磁体在该点产生磁场的合磁场.a点是b、d两根通电直导线的对称点,b、d两通电直导线在a点产生的磁场的磁感应强度大小相等、方向相反,二者的合磁感应强度为零,则a点磁场的磁感应强度就等于c通电直导线在a点产生的磁场的磁感应强度,方向由a指向b,C正确.答案:C4.如图3-2所示,金属板abcd置于匀强磁场中,通以水平向左的恒定电流,当达到稳定状态后()图3-2A.电子向cd边偏转,使ab边电势高于cd边电势B.电子向cd边偏转,使ab边电势低于cd边电势C.电子不再发生偏转,但ab边电势高于cd边电势D.电子不再发生偏转,但ab边电势低于cd边电势解析:电流水平向左,定向移动的电子向右,金属阳离子是不能移动的,在洛伦兹力作用下电子向ab边偏转使ab边带负电,则cd边带正电,所以ab边电势低于cd边的电势,D正确.答案:D5.一带电粒子M在相互垂直的匀强电场、匀强磁场中做匀速圆周运动,匀强电场竖直向下,匀强磁场水平且垂直纸面向里,如图3-3 所示.下列说法正确的是()图3-3A.沿垂直纸面方向向里看,粒子M的绕行方向为顺时针方向B.运动过程中外力对粒子做功的代数和为零,故机械能守恒C.在粒子旋转一周的时间内重力做功为零D.沿垂直纸面方向向里看,粒子M的绕行方向既可以是顺时针也可以是逆时针方向解析:粒子能在竖直面内做匀速圆周运动,则该粒子一定带负电,且电场力和重力大小相等、方向相反,洛伦兹力提供向心力,由左手定则判断知:该粒子沿垂直纸面方向向里看,粒子M的绕行方向为顺时针方向,A正确、D错误.由于电场力参与做功,所以粒子运动过程中机械能不守恒,B错.重力做功与路径无关,只与起点和终点有关,运动一周重力做功为零,C对.答案:AC6.一束混合的离子束,先径直穿过正交匀强电、磁场,再进入一个磁场区域后分裂成几束,如图3-4所示.若粒子的重力不计,此分裂是因为()图3-4A.带电性质不同,有正离子又有负离子B.速度不同C.质量和电荷量的比值不同D.以上选项均不正确解析:能沿直线通过正交匀强电、磁场区域的粒子必须满足电场力与洛伦兹力大小相等,即Eq=Bqv ,所以所有沿直线通过该区域的粒子的速度相等,与带电粒子的电性无关.粒子进入偏转磁场后做匀速圆周运动,轨道半径为Bqm v R =,粒子束分裂成几束,说明它们的半径不同,这是因为他们的比荷不同所致,C 正确.答案:C7.如图3-5,在半径为R 的圆内有一磁感应强度为B 的向外的匀强磁场,一质量为m 、电荷量为q 的粒子(不计重力),从A 点对着圆心方向垂直射入磁场,从C 点飞出,则( )图3-5A.粒子带正电B.粒子的轨道半径为RC.A 、C 两点相距R 3D.粒子在磁场中运动的时间为πm /3Bq解析:用左手定则判断可知粒子带正电,A 对.由几何关系可得粒子轨道半径大于R ,等于R 3,B 错.由A 、C 和粒子圆轨道的圆心构成的三角形是等边三角形,所以A 、C 两点相距R 3,C 对.粒子在磁场中运动圆弧对应的圆心角为3π,运动时间为Bqm T 36π=,D 正确.答案:ACD二、本题共9小题,共72分.第8~11小题答案填写在题内横线空白处.解答题应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须写出数值和单位.8.(5分)如图3-6所示,蹄形磁铁两极间的导体棒ab ,当通有自b 向a 的电流时受到向右的安培力的作用,则磁铁的上端是______________极.如果磁铁上端是S 极,导体棒中的电流方向自a 到b ,则导体棒受到的安培力的方向向______________.图3-6解析:用左手定则判断,通电直导线处在竖直向下的磁场中,即N 极在上端;用左手定则判断,导体棒受到的安培力方向向右.答案:N 右9.(5分)如图3-7所示,在轻弹簧的下端悬挂一个边长为L 的正方形金属线框.金属线框的下边放在磁感应强度为B 的匀强磁场中,当线框中的电流为I 时,弹簧仍保持原长,线框恰好平衡.现断开电路,使线框中的电流为零,线框开始向下运动.当线框向下运动到最低点时,弹簧的弹性势能增加了E ,则线框下降的距离x=_____________.图3-7解析:通有电流I 时,线框受到的安培力大小等于其重力大小,即mg=BIL ,断开电源后,线框下落,只有重力和弹簧弹力做功,线框、弹簧、地球构成的系统机械能守恒,有:E-mgx=0,所以BILE mg E x ==.答案:E/ILB10.(5分)如图3-8所示,带电液滴从h 高处自由落下,进入一个匀强电场与匀强磁场的互相垂直的区域,磁场方向垂直纸面,电场强度为E ,磁感应强度为B.已知液滴在此区域中做匀速圆周运动,则圆周运动的半径R=______________.图3-8解析:带电液滴进入磁场就做匀速圆周运动,说明电场力与重力平衡,即Eq=mg 得gEq m =液滴自离磁场边界h 高处下落,下落过程中机械能守恒:221mv mgh =得:gh v 2=做匀速圆周运动所需要的向心力为洛伦兹力,满足:R m v Bqv 2=,即Bqm v R =联立方程①②③得:gh B E R 2=.答案:g hB E 211.(5分)正方形导线框abcd ,匝数为10匝,边长为20 cm ,在磁感应强度为0.2 T 的匀强磁场中围绕与B 方向垂直的转轴匀速转动,转速为120 r/min.当线框从平行于磁场位置开始转过90°时,线圈中磁通量的变化量是_____________Wb.解析:导线框与B 垂直时磁通量最大,当转过90°时磁通量为零,所以此过程磁通量的变化量就等于初始时刻的磁通量的值,即ΔΦ=BS=0.2×(0.2)2 Wb=0.008 Wb.答案:0.00812.(10分)如图3-9所示是一宽D=8 cm 的同时存在相互垂直的匀强电场和匀强磁场区域,一束带电粒子(重力不计)以速度v 0垂直射入时恰好不改变运动方向.若粒子射入时内有电场,可测得粒子束穿过电场时沿竖直方向向上偏了3.2 cm ;若粒子射入时只有磁场,问:图3-9(1)粒子在磁场中的运动情况如何?(2)粒子离开磁场时偏离原方向多大距离?答案:粒子在复合场中、电场中和磁场中运动情况各有不同(1)电场和磁场共存时,带电粒子做匀速直线运动,则有:Eq=qv 0B(2)只有电场时,带电粒子只受电场力,做类平抛运动,则有:水平方向x=v 0t竖直方向y=Eqt 2/2m解①②③联立的方程组代入y=0.032 m 得qB 2/mE=10.(3)只有磁场时,带电粒子只受洛伦兹力做匀速圆周运动,则有:qBv 0=mv 02/R 得:R=mE/qB 2=0.1 m带电粒子从进入磁场到出磁场过程,设粒子在磁场中偏离原方向的距离为d ,通过几何关系得R 2=D 2+(R-d)2把R=0.1 m 、D=0.08 m 代入得d=0.04 m.13.(8分)在竖直平面内半圆形光滑绝缘管处在如图3-10所示的匀强磁场中,B=1.1 T ,管道半径R=0.8 m ,其直径AOB 在竖直线上.在管口A 处以2 m/s 的水平速度射入一个小带电球,其电荷量为10-4 C ,问:图3-10(1)小球滑到B 处的速度为多大?(2)若小球从B 处滑出的瞬间,管子对它的压力恰好为零,小球质量为多少?(取g=10 m/s 2)解析:(1)小球从A 到B ,利用动能定理mg·2R=mv b 2/2-mv a 2/2得v b =6 m/s.(2)在B 点,对小球进行受力分析,由于小球做圆周运动,所以有qv B B-mg=mv b 2/R ,得m=1.2×10-5kg.答案:(1)6 m/s (2)1.2×10-5 kg14.(12分)正电子发射计算机断层(PET )是分子水平上的人体功能显像的国际领先技术,它为临床诊断和治疗提供全新的手段.图3-11(1)PET 所用回旋加速器示意如图,其中置于高真空中的金属D 形盒的半径为R ,两盒间距为d ,在左侧D 形盒圆心处放有粒子源S ,匀强磁场的磁感应强度为B ,方向如图所示.质子质量为m ,电荷量为q.设质子从粒子源S 进入加速电场时的初速度不计,质子在加速器中运动的总时间为t (其中已略去了质子在加速电场中的运动时间),质子在电场中的加速次数与回旋半周的次数相同,加速电子时的电压大小可视为不变.求此加速器所需的高频电源频率f 和加速电压U.(2)试推证当R d 时,质子在电场中加速的总时间相对于在D 形盒中回旋的总时间可忽略不计(质子在电场中运动时,不考虑磁场的影响).解析:(1)设质子加速后最大速度为v ,由牛顿第二定律有Rv m qvB 2=质子的回旋周期qB m v R T ππ22==高频电源的频率mqB T f π21==质子加速后的最大动能221mv E k =设质子在电场中加速的次数为n ,则nqU E k =又2Tn t =可解得t BR U 22π=(2)在电场中加速的总时间为vnd v nd t 221==在D 形盒中回旋的总时间为v B n t π=2故B d t t π221=1即当R d 时,t 1可忽略不计.答案:(1)t BR m qB 222ππ (2)证明略15.(11分)如图3-12所示,在足够长的竖直放置的绝缘真空管中,有一电荷量为4×10-4 C 、质量为0.1 g 的带正电的小圆柱体,恰好可在管内部自由滑动.将此管放在相互垂直的水平匀强磁场和水平匀强电场中,已知E=10 N/C ,B=5 T ,小圆柱体与管壁的动摩擦因数μ=0.2.设圆柱体在管内静止下落,图3-12(1)试说明小圆柱体运动的性质;(2)下落过程中最大和最小的加速度及与此相对应的速度大小为多少? 解析:(1)见解析(2).(2)对小圆柱体受力分析,水平方向:N +qvB =Eq ,竖直方向:mg-μN=ma当N=0时,即mg=ma ,a=g=10 m/s 2,此时qvB=Eq 得v=E/B=10/5 m/s=2 m/s.当速度继续增大时,洛伦兹力随之增大,管壁对小圆柱体的弹力要反向增大,经受力分析得水平方向:Eq+N=qvB竖直方向:mg-μN=ma当a=0时,速度达到最大值,即mg=μ(qvB -Eq)得v max =(mg+μEq)/μqB ,代入数据得v max =4.5 m/s.16.(11分)如图3-1-3所示,x 轴上方有匀强磁场B ,下方有匀强电场E.电荷量为q 、质量为m 的粒子在y 轴上,重力不计,x 轴上有一点M(L ,0),要使粒子在y 轴上由静止释放能达到M 点.问:图3-1-3(1)带电粒子应带何种电荷?释放位置离O点须满足什么条件?(2)粒子从出发点运动到M点经历的时间多长?解析:(1)带电粒子要在电场中向上加速,所以带电粒子应带负电荷.设释放点离原点距离为d,负电荷在电场中加速,由动能定理得:Eqd=mv2/2 ①负电荷在磁场中做匀速圆周运动,其运动半径为R,qvB=mv2/R ②又由题意得:2nR=L联立①②③式得d=qB2L2/8n2mE,n=1、2、3……(2)带电粒子实际运动到M点的时间有两部分组成.设粒子从出发点到原点的时间为t1,则在电场中运动的时间为t E=(2n-1)t1,由运动学方程d=Eqt12/2m联立④⑤式得t1=BL/2nE带电粒子在磁场中运动的时间t B=nπm/qB,所以带电粒子从出发点运动到M点的总时间为t=t E+t B=(2n-1)BL/2nE+nπm/qB,n=1,2,3……。
高中物理 第3章 磁场章末综合测评 粤教版选修31
章末综合测评(三) 磁场(时间:60分钟 满分:100分)一、选择题(本题共10小题,每小题6分,共60分.在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~10题有多项符合题目要求,全部选对的得6分,选对但不全的得3分 ,有选错的得0分.)1.(2016·绍兴高二检测)安培的分子环形电流假说不能用来解释下列哪些磁现象( )A .磁体在高温时失去磁性B .磁铁经过敲击后磁性会减弱C .铁磁类物质放入磁场后具有磁性D .通电导线周围存在磁场【解析】 磁铁内部的分子电流的排布是大致相同的,在高温时,分子电流的排布重新变得杂乱无章,故对外不显磁性,A 对;磁铁经过敲击后,分子电流的排布重新变得杂乱无章,每个分子电流产生的磁场相互抵消,故对外不显磁性,故B 对;铁磁类物质放入磁场后磁铁内部的分子电流的排布是大致相同的,对外显现磁性,C 对;通电导线的磁场是由自由电荷的定向运动形成的,即产生磁场的不是分子电流,故D 错误.【答案】 D2.(2016·郑州高二检测)关于电场强度和磁感应强度,下列说法正确的是( ) A .电场强度的定义式E =F q,适用于任何电场B .由真空中点电荷的电场强度公式E =kQ r2可知,当r →0,E →+∞C .由公式B =F IL可知,一小段通电导线在某处若不受磁场力则说明此处一定无磁场 D .磁感应强度的方向就是置于该处的通电导线所受的安培力方向【解析】 电场强度的定义式E =F q,适用于任何电场,故A 正确.当r →0时,电荷已不能看成点电荷,公式E =kQ r 2不再成立.故B 错误.由公式B =FIL可知,一小段通电导线在某处若不受磁场力,可能是B 的方向与电流方向平行,所以此处不一定无磁场,故C 错误.磁感应强度的方向和该处通电导线所受的安培力方向垂直,故D 错误.【答案】 A3.(2015·海南高考)如图1所示,a 是竖直平面P 上的一点,P 前有一条形磁铁垂直于P ,且S 极朝向a 点,P 后一电子在偏转线圈和条形磁铁的磁场的共同作用下,在水平面内向右弯曲经过a 点.在电子经过a 点的瞬间,条形磁铁的磁场对该电子的作用力的方向( )图1A.向上B.向下C.向左D.向右【解析】a点处磁场垂直于纸面向外,根据左手定则可以判断电子受力向上,A正确.【答案】 A4.如图2所示,匀强磁场的方向垂直纸面向里,匀强电场的方向竖直向下,有一正离子恰能以速率v沿直线从左向右水平飞越此区域.下列说法正确的是( ) 【导学号:30800050】图2A.若一电子以速率v从右向左飞入,则该电子将沿直线运动B.若一电子以速率v从右向左飞入,则该电子将向上偏转C.若一电子以速率v从右向左飞入,则该电子将向下偏转D.若一电子以速率v从左向右飞入,则该电子将向下偏转【解析】正离子以速率v沿直线从左向右水平飞越此区域,则有:qvB=Eq.即:vB =E,若一电子的速率v从左向右飞入此区域时,也必有evB=Ee.电子沿直线运动.而电子以速率v从右向左飞入时,电子所受的电场力和洛伦兹力均向上,电子将向上偏转,B正确,A、C、D均错误.【答案】 B5.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两个D形金属盒处于垂直于盒底的匀强磁场中,如图3所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )图3A.增大匀强电场间的加速电压B.减小磁场的磁感应强度C.增加周期性变化的电场的频率D .增大D 形金属盒的半径【解析】 粒子最后射出时的旋转半径为D 形金属盒的最大半径R ,R =mv qB ,E k =12mv2=q 2B 2R 22m.可见,要增大粒子的动能,应增大磁感应强度B 和增大D 形金属盒的半径R ,故正确选项为D.【答案】 D6.(2016·宜昌高二检测)如图4所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°.现将带电粒子的速度变为v3,仍从A 点射入磁场,不计重力,则粒子在磁场中的运动时间变为( )图4A.12Δt B .2Δt C.13Δt D .3Δt【解析】 由牛顿第二定律qvB =m v 2r 及匀速圆周运动T =2πrv 得r =mv qB ;T =2πmqB.作出粒子的运动轨迹如图,由图可得,以速度v 从A 点沿直径AOB 方向射入磁场经过Δt =T6从C 点射出磁场,轨道半径r =3AO ;速度变为v 3时,运动半径是r 3=3AO3,由几何关系可得在磁场中运动转过的圆心角为120°,运动时间为T3,即2Δt .故A 、C 、D 项错误,B 项正确. 【答案】 B7.(2016·保定高二检测)带正电粒子(不计重力)以水平向右的初速度v 0,先通过匀强电场E ,后通过匀强磁场B ,如图5甲所示,电场和磁场对该粒子做功为W 1.若把该电场和磁场正交叠加,如图乙所示,再让该带电粒子仍以水平向右的初速度v 0(v 0<E B)穿过叠加场区,在这个过程中电场和磁场对粒子做功为W 2,则( )图5A .W 1<W 2B .W 1=W 2C .W 1>W 2D .无法判断【解析】 在乙图中,由于v 0<EB,电场力qE 大于洛伦兹力qBv .根据左手定则判断可知:洛伦兹力有与电场力方向相反的分力.则在甲图的情况下,粒子沿电场方向的位移较大,电场力做功较多,所以选项A 、B 、D 错误,选项C 正确.【答案】 C8.在匀强磁场B 的区域中有一光滑斜面体,在斜面体上放置一根长为L ,质量为m 的导线,当通以如图6所示方向的电流后,导线恰能保持静止,则磁感应强度B 满足( )图6A .B =mg sin θIL ,方向垂直斜面向下 B .B =mg sin θIL ,方向垂直斜面向上 C .B =mg tan θIL ,方向竖直向下 D .B =mg IL,方向水平向左【解析】 磁场方向垂直斜面向下时,根据左手定则,安培力沿斜面向上,导体棒还受到重力和支持力,根据平衡条件和安培力公式,有mg sin θ=BIL ,解得选项A 正确.磁场竖直向下时,安培力水平向左,导体棒还受到重力和支持力,根据平衡条件和安培力公式,有mg tan θ=BIL ,解得选项C 正确.磁场方向水平向左时,安培力竖直向上,与重力平衡,有mg =BIL ,解得选项D 正确.【答案】 ACD9.利用如图7所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质量为m 、电荷量为q ,具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( )图7A .粒子带正电B .射出粒子的最大速度为qBd +L2mC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大【解析】 由左手定则和粒子的偏转情况可以判断粒子带负电,选项A 错;根据洛伦兹力提供向心力qvB =mv 2r 可得v =qBr m ,r 越大v 越大,由图可知r 最大值为r max =3d +L2,选项B 正确;又r 最小值为r min =L2,将r 的最大值和最小值代入v 的表达式后得出速度之差为Δv=3qBd 2m,可见选项C 正确、D 错误. 【答案】 BC10.如图8所示,直角三角形ABC 中存在一匀强磁场,比荷相同的两个粒子沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则( )【导学号:30800051】图8A .从P 射出的粒子速度大B .从Q 射出的粒子速度大C .从P 射出的粒子,在磁场中运动的时间长D .两粒子在磁场中运动的时间一样长【解析】 作出各自的轨迹如右图所示,根据圆周运动特点知,分别从P 、Q 点射出时,与AC 边夹角相同,故可判定从P 、Q 点射出时,半径R 1<R 2,所以,从Q 点射出的粒子速度大,B 正确;根据图示,可知两个圆心角相等,所以,从P 、Q 点射出时,两粒子在磁场中的运动时间相等.正确的选项应是B 、D.【答案】 BD二、计算题(本题共3小题,共40分,按题目要求作答)11.(12分)如图9所示,倾角为θ=30°的光滑导体滑轨A 和B ,上端接入一电动势E =3 V 、内阻不计的电源,滑轨间距为L =0.1 m ,将一个质量为m =0.03 kg ,电阻R =0.5 Ω的金属棒水平放置在滑轨上,若滑轨周围存在着垂直于滑轨平面的匀强磁场,当闭合开关S 后,金属棒刚好静止在滑轨上,求滑轨周围空间的磁场方向和磁感应强度的大小.(重力加速度g 取10 m/s 2)图9【解析】 合上开关S 后,由闭合电路欧姆定律得:I =ER经分析可知,金属棒受力如图所示,金属棒所受安培力,F =BIL 沿斜面方向受力平衡,F =mg sin θ 以上各式联立可得:B =0.25 T 磁场方向垂直导轨面斜向下【答案】 磁场方向垂直导轨面斜向下 0.25 T12.(12分)一磁场宽度为L ,磁感应强度为B ,如图10所示,一电荷质量为m ,带电荷量为-q ,不计重力,以一速度(方向如图)射入磁场.若不使其从右边界飞出,则电荷的速度应为多大?图10【解析】 若要粒子不从右边界飞出,当达最大速度时运动轨迹如图所示,由几何知识可求得半径r ,即r +r cos θ=Lr =L1+cos θ又Bqv =mv 2r,所以v =Bqr m =BqLm+cos θ.不使电荷从右边界飞出,则v ≤BqLm+cos θ【答案】 v ≤BqLm+cos θ13.(16分)(2015·山东高考)如图11所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径.两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量为+q 的粒子由小孔下方d2处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场.不计粒子的重力.图11(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小.【解析】 (1)设极板间电场强度的大小为E ,对粒子在电场中的加速运动,由动能定理得qE d 2=12mv 2①由①式得E =mv 2qd②(2)设Ⅰ区磁感应强度的大小为B ,粒子做圆周运动的半径为R ,由牛顿第二定律得qvB =m v 2R③如图所示,粒子运动轨迹与小圆相切有两种情况.若粒子轨迹与小圆外切,由几何关系得R =D 4④联立③④式得B =4mv qD⑤若粒子轨迹与小圆内切,由几何关系得 R =3D 4⑥联立③⑥式得B =4mv 3qD⑦ 【答案】 (1)mv 2qd (2)4mv qD 或4mv3qD。
粤教版 选修3-1 第三单元磁场(期末总结复习)(DOC)
高中物理 磁场典型练习题1、首先发现通电导线周围存在磁场的物理学家是( )A .安培B .法拉第C .奥斯特D .特斯拉2、下列关于磁场的说法中,正确的是 ( )A 、只有磁铁周围才存在磁场B 、磁场是假想的,不是客观存在的C 、磁场只有在磁极与磁极、磁极和电流发生作用时才产生D .磁极与磁极,磁极与电流、电流与电流之间都是通过磁场发生相互作用3.关于磁感线的一些说法, 不正确的是 ( )A. 磁感线上各点的切线方向, 就是该点的磁场方向B. 磁场中两条磁感线一定不相交C. 磁感线分布较密的地方, 磁感应强度较强D. 通电螺线管的磁感线从北极出来, 终止于南极, 是一条不闭合的曲线4.由磁感应强度的定义式B=F/IL 可知( )A.若某处的磁感应强度为零,则通电导线放在该处所受安培力一定为零 B.通电导线放在磁场中某处不受安培力的作用时,则该处的磁感应强度一定为零C.同一条通电导线放在磁场中某处所受的磁场力是一定的D.磁场中某点的磁感应强度与该点是否放通电导线无关5. 一根有质量的金属棒MN ,两端用细软导线连接后悬挂于a 、b 两点.棒的中部处于方向垂直纸面向里的匀强磁场中,棒中通有电流,方向从M 流向N ,此时悬线上有拉力.为了使拉力等于零,可( )A .适当减小磁感应强度B .使磁场反向C .适当增大电流强度D .使电流反向6.一束粒子沿水平方向飞过小磁针的下方,如图所示,此时小磁针的S 极向纸内偏转,这一束粒子不可能的是 ( )A .向右飞行的正离子束B 、向左飞行的负离子束C 、向右飞行的电子束D 、向左飞行的电子束 7.一个质量为m 、带电量为q 的粒子,在磁感应强度为B 的匀强磁场中作匀速圆周运动.下列说法中正确的是( )A 、它所受的洛伦兹力是恒定不变的;B 、它的动量是恒定不变的;C 、它的速度与磁感应强度B 成正比;D 、它的运动周期与速度的大小无关.8.在赤道上空,水平放置一根通以由西向东的电流的直导线,则此导线 ( )A .受到竖直向上的安培力B .受到竖直向下的安培力C .受到由南向北的安培力D .受到由西向东的安培力9.如图,条形磁铁放在水平桌面上,在其正上方固定一根直导线,导线与磁场垂直,给导线通以垂直纸面向外的电流,则( )A 、磁铁对桌面压力减小,不受桌面的摩擦力作用;B 、磁铁对桌面压力减小,受到桌面的摩擦力作用;C 、磁铁对桌面压力增大,不受桌面的摩擦力作用;D 、磁铁对桌面压力增大,受到桌面的摩擦力作用.10. 如图所示,两根长通电导线M 、N 中通有同方向等大小的电流,一闭合线框abcd 位于两平行通电导线所在平面上,并可自由运动,线框两侧与导线平行且等距,当线框中通有图示方向电流时,该线框将( )A .ab 边向里,cd 边向外转动B .ab 边向外,cd 边向里转动C .线框向左平动,靠近导线MD .线框向右平动,靠近导线N11.有三束粒子,分别是质子(p ),氚核(H 31)和α粒子,如果它们以相同的速度沿垂直于磁场方向射入匀强磁场,(磁场方向垂直于纸面向里)则在下面四图中,哪个图正确地表示出这三束粒子的运动轨迹?( )12. 一束几种不同的正离子, 垂直射入正交的匀强磁场和匀强电场区域里, 离子束保持原运动方向未发生偏转. 接着进入另一匀强磁场, 发现这些离子分成几束如图. 对这些离子, 可得出结论 ( )A 、它们的动能一定各不相同B 、它们的电量一定各不相同C 、它们的质量一定各不相同D 、它们的荷质比一定各不相同13.如图所示,在互相垂直的匀强电场和匀强磁场中,电量q 的液滴做半径为R 的匀速圆周运动,已知电场强度为E ,磁感应强度为B ,则油滴的质量和环绕速度分别为:( )A 、Eq/g ,BgR/E ;B 、B 2qR/E ,E/B ;C 、B g Rq /,qRg ;D 、Eq/g ,E/B ;14、如图所示,abcd 是一竖直的矩形导线框,线框面积为S ,放在磁感强度为B 的均匀水平磁场中,ab 边在水平面内且与磁场方向成600角,若导线框中的电流为I ,则导线框所受的安培力对某竖直的固定轴的力矩等于( )A .IBSB .½IBSC .23IBS 15、在赤道上,地磁场可以看作是沿南北方向并且与地面平行的匀强磁场,磁感应强度是5×10-5T.如果赤道上有一条沿东西方向的直导线,长40m,载有20A的电流,地磁场对这根导线的作用力大小是( )A.4×10-8N B.2.5×10-5N C.9×10-4N D.4×10-2N16.关于磁通量的说法中,正确的是( )A.穿过一个面的磁通量等于磁感强度和该面面积的乘积B.在匀强磁场中,穿过某平面的磁通量等于磁感应强度与该面面积的乘积C.穿过一个面的磁通量就是穿过该面的磁感线条数D.地磁场穿过地球表面的磁通量为零。
2019-2020学年高中物理 第3章 磁场 章末知识整合课时检测 粤教版选修3-1.doc
2019-2020学年高中物理第3章磁场章末知识整合课时检测粤教版选修3-1专题一磁场对电流的作用1.+公式F=BIL中L为导线的有效长度.2.安培力的作用点为磁场中通电导体的几何中心.3.安培力做功:做功的结果将电能转化成其他形式的能.4.分析在安培力作用下通电导体运动情况的一般步骤.①画出通电导线所在处的磁感线方向及分布情况.②用左手定则确定各段通电导线所受安培力.③据初速度方向结合牛顿定律确定导体运动情况.如图所示:在倾角为α的光滑斜面上,垂直纸面放置一根长为L,质量为m的直导体棒.当导体棒中的电流I垂直纸面向里时,欲使导体棒静止在斜面上,可将导体棒置于匀强磁场中,当外加匀强磁场的磁感应强度B的方向在纸面内由竖直向上逆时针转至水平向左的过程中,关于B大小的变化,正确的说法是( )A.逐渐增大 B.逐渐减小C.先减小后增大 D.先增大后减小解析:根据外加匀强磁场的磁感应强度B的方向在纸面内由竖直向上逆时针至水平向左的条件,受力分析,再根据力的平行四边形定则作出力的合成变化图,由此可得B大小的变化情况是先减小后增大.答案:C练习1.如右图所示,一根长度为L的均匀金属杆用两根劲度系数为k的轻弹簧水平悬挂在匀强磁场中,磁场方向垂直纸面向里.当金属棒中通有由左向右的电流I时,两根轻弹簧比原长缩短Δx后金属杆平衡,保持电流大小不变,方向相反流过金属杆时,两弹簧伸长Δx后金属杆平衡,求匀强磁场的磁感应强度B为多大?解析:根据安培力和力的平衡条件有(设棒的重力为mg ): 当电流方向由左向右时:BIL =2k Δx +mg , 当电流方向由右向左时:BIL +mg =2k Δx , 将重力mg 消去得:B =2k ΔxIL.答案:B =2k Δx IL2.如图所示,两平行金属导轨间的距离L =0.40 m ,金属导轨所在的平面与水平面夹角θ=37°,在导轨所在平面内,分布着磁感应强度B =0.50 T 、方向垂直于导轨所在平面的匀强磁场.金属导轨的一端接有电动势E =4.5 V 、内阻r =0.50 Ω的直流电源.现把一个质量m =0.040 kg 的导体棒ab 放在金属导轨上,导体棒恰好静止.导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接触的两点间的电阻R =2.5 Ω,金属导轨电阻不计,g 取210 /m s .已知sin 37°=0.60,cos 37°=0.80,求:(1)通过导体棒的电流; (2)导体棒受到的安培力大小; (3)导体棒受到的摩擦力.解析:(1)导体棒、金属导轨和直流电源构成闭合电路,根据闭合电路欧姆定律有:I=ER+r=1.5 A(2)导体棒受到的安培力:F安=BIL=0.30 N(3)导体棒所受重力沿斜面向下的分力F1=mg sin 37°=0.24 N,由于F1小于安培力,故导体棒受沿斜面向下的摩擦力f;根据共点力平衡条件mg sin 37°+f=F安,解得:f=0.06 N.答案:(1)I=1.5 A (2)F安=0.30 N(3)f=0.06 N专题二磁场对运动电荷的作用1.带电粒子在无界匀强磁场中的运动:完整的圆周运动.2.带电粒子在有界匀强磁场中的运动:部分圆周运动(偏转).解题一般思路和步骤:①利用辅助线确定圆心.②利用几何关系确定和计算轨道半径.③利用有关公式列方程求解.如图所示,在x轴的上方(y>0的空间内)存在着垂直于纸面向里、磁感应强度为B的匀强磁场,一个不计重力的带正电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成45°角,若粒子的质量为m,电量为q,求:(1)该粒子在磁场中做圆周运动的轨道半径.(2)粒子在磁场中运动的时间.解析:先作圆O′,根据题目条件过O作直线L即x轴,交圆O′于O″,即可得到粒子进入磁场的运动轨迹:过入射点O沿逆时针再经O″出射.再分别过O、O″作垂线交于O′,既为粒子作圆周运动轨迹的圆心.如图(a)这样作出的图既准确又标准,且易判断粒子做圆周运动的圆心角为270°.(1)粒子轨迹如图(b).粒子进入磁场在洛伦兹力的作用下做圆周运动:qvB =m2v r,r =mvqB.(2)粒子运动周期:T =2πr v =2πm qB ,粒子做圆周运动的圆心角为270°,所以t =34T =3πm2qB.答案:(1)mv qB (2)3πm2qB3.(2013·广东)(双选)两个初速度大小相同的同种离子a 和b ,从O 点沿垂直磁场方向进人匀强磁场,最后打到屏P 上.不计重力,下列说法正确的有( )A .a 、b 均带正电B .a 在磁场中飞行的时间比b 的短C .a 在磁场中飞行的路程比b 的短D .a 在P 上的落点与O 点的距离比b 的近解析:a 、b 粒子的运动轨迹如图所示:粒子a 、b 都向下由左手定则可知,a 、b 均带正电,故A 正确;由r =mv qB可知,两粒子半径相等,根据上图中两粒子运动轨迹可知a 粒子运动轨迹长度大于b 粒子运动轨迹长度,运动时间a 在磁场中飞行的时间比b 的长,故B 、C错误;根据运动轨迹可知,在P上的落点与O点的距离a比b的近,故D正确.故选AD.答案:AD练习4.如图所示,分布在半径为r的圆形区域内的匀强磁场,磁感应强度为B,方向垂直纸面向里.电量为q、质量为m的带正电的粒子从磁场边缘A点沿圆的半径AO方向射入磁场,离开磁场时速度方向偏转了60°角.试求:(1)粒子做圆周运动的半径;(2)粒子的入射速度;(3)若保持粒子的速率不变,从A点入射时速度的方向顺时针转过60°角,粒子在磁场中运动的时间.解析:(1)设带电粒子在匀强磁场中做匀速圆周运动半径为R,如图所示∠OO′A=30°由图可知,圆运动的半径R=O′A=3r;(2)根据牛顿运动定律, 有:Bqv =m v 2R 有:R = mv qB ,故粒子的入射速度 v =3rqBm(3)当带电粒子入射方向转过60°角,如图所示,在△OAO 1中,OA = r ,O 1A = 3r ,∠O 1AO =30°,由几何关系可得,O 1O =r ,∠AO 1E =60°设带电粒子在磁场中运动所用时间为t ,由:v =2πR T ,R =mvBq有:T = 2πR Bq 解出:t = T 6=πm3qB答案:见解析☞规律小结: (1) 直线边界(进出磁场具有对称性,如图)(2)平行边界(存在临界条件,如图)(3)圆形边界(沿径向射入必沿径向射出,如图)专题三带电粒子在复合场中的运动1.复合场:电场、磁场、重力场共存,或其中两场共存.2.组合场:电场和磁场各位于一定得区域内,并不重叠或在同一区域,电场、磁场交替出现.3.三种场的比较4.复合场中粒子重力是否考虑的三种情况(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等一般考虑其重力. (2)在题目中有明确说明是否要考虑重力的,这种情况按题目要求处理比较正规,也比较简单.(3)不能直接判断是否要考虑重力的,在受力分析与运动分析时,要结合运动状态确定是否要考虑重力.5.带电粒子在复合场中运动的应用实例 (1)速度选择器①平行板中电场强度E 和磁感应强度B 互相垂直,这种装置能把具有一定速度的粒子选择出来,所以叫速度选择器.②带电粒子能够沿直线匀速通过速度选择器的条件是:qvB =qE 即v =E B .(2)磁流体发电机①磁流体发电机是一项新兴技术,它可以把内能直接转化为电能.②根据左手定则,右图可知B 是发电机的正极.③磁流体发电机两极间的距离为L ,等离子体的速度为v ,磁场的磁感应强度为B ,则两极板间能达到的最大电势差U =BLv.④外电阻R 中的电流可由闭合电路欧姆定律求出. (3)电磁流量计工作原理:如图所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即qvB =qE =q U d ,所以v =UBd 因此液体流量:即Q =Sv =24d ,U Bd =πdU4B(4) 霍尔效应在匀强磁场中放置一个矩形截面的载流导体,当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现了电势差,这种现象成为霍尔电势差,其原理如图所示.为监测某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的流量计.该装置由绝缘材料制成,长、宽、高分别为a 、b 、c ,左右两端开口.在垂直于上下底面方向加磁感应强度大小为B 的匀强磁场,在前后两个内侧面分别固定有金属板作为电极.污水充满管口从左向右流经该装置时,电压表将显示两个电极间的电压U.若用Q 表示污水流量(单位时间内排出的污水体积),下列说法中正确的是( )A .若污水中正离子较多,则前表面比后表面电势高B .若污水中负离子较多,则前表面比后表面电势高C .污水中离子浓度越高,电压表的示数将越大D .污水流量Q 与U 成正比,与a 、b 无关解析:由左手定则可判断,前表面聚集负电荷,比后表面电势低,且当时,电荷不再偏转,电压表示数恒定,与污水中的离子的多少无关,A 、B 、C 均错误;由Q =v·1·bc 可得Q =UcB .可见,Q 与U 成正比,与a 、b 无关,D 正确. 答案:D 练习5.半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直于磁场方向射入磁场中,并从B 点射出.∠AOB =120°,如图所示,则该带电粒子在磁场中运动的时间为( )A.023r v πB.03rvC. 03rv πD.03r v解析:由∠AOB =120°可知,弧AB 所对圆心角θ=60°,故t =16T =πm3qm ,但题中已知条件不够,没有此项选择,另想办法找规律表示t .由匀速圆周运动t =L ABv 0,从图中分析有R =3r ,则AB 弧长L AB =R ·θ=3r ×π3=33πr ,则t =L AB v 0=3πr3v 0,D 项正确.答案:D6.如下图,在平面直角坐标系xOy 内,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m 、电荷量为q 的带正电粒子,从y 轴正半轴上y = h 处的M 点,以速度v0垂直于y 轴射入电场,经x 轴上x = 2h 处的P 点进入磁场,最后以垂直于y 轴的方向射出磁场.不计粒子重力.求: (1)电场强度的大小E.(2)粒子在磁场中运动的轨道半径r.(3)粒子从进入电场到离开磁场经历的总时间t.解析:粒子的运动轨迹如下图所示(1)设粒子在电场中运动的时间为t 1,x 、y 方向: 2h =v 0t 1,h =12at 2根据牛顿第二定律Eq =ma求出E =mv 202qh(2)根据动能定理Eqh =12mv 2-12mv 2设粒子进入磁场时速度为v ,根据Bqv =m v 2rr =2mv 0Bq(3)粒子在电场中运动的时间t 1=2hv 0粒子在磁场中运动的周期T =2πr v =2πmBq设粒子在磁场中运动的时间为t 2=38T求出t =t 1+t 2=2h v 0+3πm4Bq答案:见解析如图(a)所示,左为某同学设想的粒子速度选择装置,由水平转轴及两个薄盘N 1、2N 构成,两盘面平行且与转轴垂直,相距为L ,盘上各开一狭缝,两狭缝夹角可调,如下图(b);右为水平放置的长为d 的感光板,板的正上方有一匀强磁场,方向垂直纸面向外,磁感应强度为B.一小束速度不同、带正电的粒子沿水平方向射入N 1,能通过2N 的粒子经O 点垂直进入磁场.O 到感光板的距离为d2,粒子电荷量为q ,质量为m ,不计重力.(1)若两狭缝平行且盘静止,如下图(c),某一粒子进入磁场后,竖直向下打在感光板中心点M 上,求该粒子在磁场中运动的时间t.(2)若两狭缝夹角为0,盘匀速转动,转动方向如图(b).要使穿过N 1、2N 的粒子均打到感光板1P 、1P连线上,试分析盘转动角速度ω的取值范围(设通过N 1的所有粒子在盘转一圈的时间内都能到达2N ).分析说明:(1)作圆周X ,由入射点O 、出射点M 可以确定粒子在磁场中运动的轨迹为四分之一圆周,如图(1).(2)作圆周Y ,要使穿过N 1、2N 的粒子打到感光板的P 1,可以确定粒子在磁场中运动的轨迹为二分之一圆周,对应的粒子运动速度为最小值,如图(2). (3)作圆周Z ,要使穿过N 1、2N 的粒子打到感光板的2P ,可以确定粒子在磁场中运动的轨迹为OP 2段圆周,对应的粒子运动速度为最大值,再找出圆心的位置,几何关系就易找出了,如图(3).解析:(1)粒子在磁场中做匀速圆周运动,运动半径R =d4,洛伦兹力提供向心力,qvB =m 2v R,又:2πR =v·T, t=T 4,解得:t =πm2qB.(2)速度最小时,运动半径1R =d 4,L =v t 11,θ0=t ω11,qv B 1=m 211vR ,解得:ω1=4qBd mlθ;速度最大时,22R =(2R -d 2)2+d 2,解得:2R =5d 4,L =22v t ,θ0=22t ω,2qv B =m222v R ,解得:2ω=54qBd mlθ,所以04qBd mlθ≤ω≤54qBd mlθ.πm 2qB (2)4qBdmlθ≤ω≤54qBdmlθ答案:(1)。
物理粤教版选修3-1第三章磁场单元测试含解析
本章测评(90分钟,100分)一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分)1关于磁感线的认识下列说法正确的是()A.磁感线从磁体的N极出发,终止于磁体的S极B.磁感线可以表示磁场的强弱和方向C.电流在磁场中的受力方向,即为该点磁感线的切线方向D.沿磁感线的方向,磁感应强度减弱2以下情况中能比较正确反映奥斯特实验结果的是…() A.电流由南向北时,其下方的小磁针N极偏向东边B.电流由东向西时,其下方的小磁针N极偏向南边C.电流由南向北时,其下方的小磁针N极偏向西边D.电流由东向西时,其下方的小磁针N极偏向北边3有关洛伦兹力和安培力的描述,正确的是()A.通电直导线处于匀强磁场中一定受到安培力的作用B.安培力是大量运动电荷所受洛伦兹力的宏观表现C.带电粒子在匀强磁场中运动受到洛伦兹力做正功D.通电直导线在磁场中受到的安培力方向与磁场方向平行4如图所示,通电直导线右边有一个矩形线框,线框平面与直导线共面,若使线框逐渐远离(平动)通电导线,则穿过线框的磁通量将()A.逐渐增大B.逐渐减小C.保持不变D.不能确定5如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φa和Φb大小关系为()A.Φa>Φb B.Φa<ΦbC.Φa=Φb D.无法比较6如图所示,在竖直放置的条形磁铁的外面,水平放着一个不大的圆环线圈,当圆环从磁铁的N极向下移到S极的过程中,在Ⅰ、Ⅱ、Ⅲ三位置穿过的磁通量为… ( )A.Ⅰ、Ⅲ位置较大,Ⅱ位置较小B.Ⅰ、Ⅲ位置较小,Ⅱ位置较大C.Ⅰ、Ⅲ位置相同,但磁感线穿过圆环的方向相反D.Ⅰ、Ⅲ位置相同,且磁感线穿过圆环的方向相同7来自宇宙的质子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些质子在进入地球周围的空间时,将( )A.竖直向下沿直线射向地面B.相对于预定地点向东偏转C.相对于预定点,稍向西偏转D.相对于预定点,稍向北偏转8磁电式电流表的蹄形磁铁和铁芯间的磁场是均匀地辐射分布的,目的是( )A.使磁场成圆柱形,以便框转动B.使线圈平面在水平位置与磁感线平行C.使线圈平面始终与磁感线平行D.为了使磁场分布规则9如图所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN 与线圈轴线均处于竖直平面内,为使MN垂直于纸面向外运动,可以…( )A.将a、c端接在电源正极,b、d端接在电源负极B.将b、d端接在电源正极,a、c端接在电源负极C.将a、d端接在电源正极,b、c端接在电源负极D.将a、c端接在交流电源的一端,b、d端接在交流电源的另一端10关于磁感强度B,下列说法中正确的是()A.磁场中某点B的大小,跟放在该点的试探电流元的情况有关B.磁场中某点B的方向,跟该点处试探电流元所受磁场力方向一致C.在磁场中某点试探一次电流元不受磁场力作用时,该点B 值大小为零D.在磁场中磁感线越密集的地方,磁感应强度越大11如图所示,带电平行板中匀强电场竖直向上,匀强磁场方向垂直纸面向里,某带电小球从光滑绝缘轨道上的a点自由滑下,经过轨道端点P进入板间后恰好沿水平方向做直线运动,现使小球从稍低些的b点开始自由滑下,在经P点进入板间的运动过程中不可能的是()A.其动能将会增大B.其电势能将会增大C.小球所受的洛伦兹力将会增大D.小球所受的电场力将会增大12矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图所示.若规定顺时针方向为感应电流I的正方向,下列各图中正确的是()二、填空题(共2小题,每小题6分,共12分)13一根导线长0.2 m,通过3 A的电流,垂直放入磁场中某处受到的磁场力是6×10-2N,则该处的磁感应强度B的大小是______ T;如果该导线的长度和电流都减小一半,则该处的磁感应强度的大小是______ T。
高中物理第3章磁场章末综合测评3含解析粤教版选修3_1.doc
磁场(时间:90分钟分值:100分)一、选择题(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~12题有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分)1.有一导线南北方向放置,在其下方放一个小磁针.小磁针稳定后,给导线通上如图所示电流,发现小磁针的S极垂直纸面向外偏转.关于此现象下列说法正确的是( )A.没有通电时,小磁针的S极指向地磁场的南极B.通电后小磁针S极仍指向地磁场的南极C.通电导线在小磁针所在处产生的磁场方向垂直纸面向外D.通电后小磁针S极发生偏转说明通电导线周围存在磁场D [小磁针自由静止时,指向地理北极的一端是小磁针的北极,即N极,地磁场的北极在地理南极附近,小磁针的S极指向地磁场的北极,故A错误;通电后根据安培定则可知,导线在小磁针处产生的磁场方向垂直纸面向里,所以小磁针N极将偏向纸里,S极将偏向纸外,故B、C错误;通电后小磁针S极发生偏转说明通电导线周围存在磁场,即电流的磁效应,故D正确.]2.在同一平面上有a、b、c三根等间距平行放置的长直导线,依次通有电流强度大小为1 A、2 A和3 A的电流,各电流的方向如图所示,则导线b所受的合力方向是( )A.水平向左B.水平向右C.垂直纸面向外D.垂直纸面向里A [根据通有反向电流的导线相互排斥,可知b受到a的排斥力,同时受到c的排斥力;a的电流大小小于c的电流大小,则c对b的电场力大于a对b的电场力,可知导线b所受的合力方向水平向左.故A正确,B、C、D错误.]3.如图所示,竖直面内的导体框ABCD所在平面有水平方向的匀强磁场,AP⊥BC,∠B=∠C=60°,AB=CD=20 cm,BC=40 cm.若磁场的磁感应强度为0.3 T,导体框中通入图示方向的5 A电流,则该导体框受到的安培力( )A.大小为0.6 N,方向沿PA方向B.大小为0.6 N,方向沿AP方向C.大小为0.3 N,方向沿PA方向D.大小为0.3 N,方向沿BC方向C [力是矢量,三段导体在磁场中受到的安培力的合力与AD段受到的安培力是等效的,所以根据左手定则可知,导体框受到的安培力的方向垂直于AD的方向向下,即沿PA方向;AD段的长度L=BC-2BP=40 cm-2×20 cm×cos 60°=20 cm=0.2 m,安培力的大小F=BIL =0.3×5×0.2=0.3 N.故C正确,A、B、D错误.]4.某空间存在匀强磁场和匀强电场.一个带电粒子(不计重力)以一定初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动,下列因素与完成上述两类运动无关的是( )A.磁场和电场的方向B.磁场和电场的强弱C.粒子的电性和电量D.粒子入射时的速度C [由题可知,当带电粒子在复合场内做匀速直线运动,即Eq=qvB,则v=EB,若仅撤除电场,粒子仅在洛伦兹力作用下做匀速圆周运动,说明要满足题意,对磁场与电场的方向以及强弱程度都要有要求,但是对电性和电量无要求,根据F=qvB可知,洛伦兹力的方向与速度方向有关,故对入射时的速度也有要求,故选C.]5.如图所示,两平行光滑金属导轨固定在绝缘斜面上,导轨间距为L,劲度系数为k的轻质弹簧上端固定,下端与水平直导体棒ab相连,弹簧与导轨平面平行并与ab垂直,直导体棒垂直跨接在两导轨上,空间存在垂直导轨平面斜向上的匀强磁场.闭合开关K后,导体棒中的电流为I,导体棒平衡时,弹簧伸长量为x1;调转图中电源极性使棒中电流反向,导体棒中电流仍为I,导体棒平衡时弹簧伸长量为x2,忽略回路中电流产生的磁场,弹簧形变均在弹性限度内,则磁感应强度B的大小为( )A .k 2IL (x 2-x 1)B .k IL (x 2-x 1)C .k2IL(x 2+x 1) D .k IL(x 2+x 1)A [弹簧伸长量为x 1时,导体棒所受安培力沿斜面向上,根据平衡条件沿斜面方向有mg sin α=kx 1+BIL电流反向后,弹簧伸长量为x 2,导体棒所受安培力沿斜面向下,根据平衡条件沿斜面方向有mg sin α+BIL =kx 2联立两式得B =k2IL(x 2-x 1),选A.]6.回旋加速器是用来加速带电粒子的装置,如图所示.它的核心部分是两个D 形金属盒,两盒相距很近,分别和高频交流电源相连接,两盒间的窄缝中形成匀强电场,使带电粒子每次通过窄缝都得到加速.两盒放在匀强磁场中,磁场方向垂直于盒底面,带电粒子在磁场中做圆周运动,通过两盒间的窄缝时反复被加速,直到达到最大圆周半径时通过特殊装置被引出.如果用同一回旋加速器分别加速氚核(31H)和α粒子(42He),比较它们所加的高频交流电源的周期和获得的最大速度的大小,有( )A .加速氚核的交流电源的周期较大,氚核获得的最大速度也较大B .加速氚核的交流电源的周期较大,氚核获得的最大速度较小C .加速氚核的交流电源的周期较小,氚核获得的最大速度也较小D .加速氚核的交流电源的周期较小,氚核获得的最大速度较大B [带电粒子在磁场中运动的周期与交流电源的周期相同,根据T =2πm qB,知氚核(31H)的质量与电量的比值大于α粒子(42He)的,所以氚核在磁场中运动的周期大,则加速氚核的交流电源的周期较大,根据qvB =m v 2r 得,最大速度v =qBr m ,则最大动能E km =12mv 2=q 2B 2r22m,氚核的质量是α粒子的34倍,氚核的电量是α粒子的12倍,则氚核的最大动能是α粒子的13倍,即氚核的最大动能较小,故B 正确,A 、C 、D 错误.]7.如图是质谱仪的原理图,若速度相同的同一束粒子沿极板P 1、P 2的轴线射入电磁场区域,由小孔S 0射入右边的偏转磁场B 2中,运动轨迹如图所示,不计粒子重力.下列相关说法中正确的是( )A .该束带电粒子带负电B .速度选择器的P 1极板带负电C .在B 2磁场中运动半径越大的粒子,质量越大D .在B 2磁场中运动半径越大的粒子,比荷q /m 越小D [带电粒子在磁场中向下偏转,磁场的方向垂直纸面向外,根据左手定则知,该粒子带正电,故A 错误;在平行金属板间,根据左手定则知,带电粒子所受的洛伦兹力方向竖直向上,则电场力的方向竖直向下,知电场强度的方向竖直向下,所以速度选择器的P 1极板带正电,故B 错误;进入B 2磁场中的粒子速度是一定的,根据qvB =m v 2r 得,r =mvqB,知r 越大,荷质比qm越小,而质量m 不一定大,故C 错误,D 正确.]8.如图所示为圆柱形区域的横截面,在该区域加沿圆柱轴线方向的匀强磁场.带电粒子(不计重力)第一次以速度v 1沿截面直径入射,粒子飞出磁场区域时,速度方向偏转60°角;该带电粒子第二次以速度v 2从同一点沿同一方向入射,粒子飞出磁场区域时,速度方向偏转90°角.则带电粒子第一次和第二次在磁场中运动的( )A .半径之比为 3∶1B .速度之比为1∶ 3C .时间之比为2∶3D .时间之比为3∶2AC [设磁场半径为R ,当第一次以速度v 1沿截面直径入射时,根据几何知识可得r 1R=tan 60°,即r 1=3R .当第二次以速度v 2沿截面直径入射时,根据几何知识可得r 2=R ,则r 1r 2=31,A 正确;两次情况下都是同一个带电粒子在相同的磁感应强度下运动的,所以根据公式r =mvBq,可得v1v2=r1r2=31,B错误;因为周期T=2πmBq,与速度无关,所以运动时间之比为t1t2=60°360°T90°360°T=23,C正确,D错误.]9.如图所示的区域共有六处开口,各相邻开口之间的距离都相等,匀强磁场垂直于纸面,不同速度的粒子从开口a进入该区域,可能从b、c、d、e、f五个开口离开,粒子就如同进入“迷宫”一样,可以称作“粒子迷宫”.以下说法正确的是( )A.从d口离开的粒子不带电B.从e、f口离开的粒子带有异种电荷C.从b、c口离开的粒子运动时间相等D.从c口离开的粒子速度是从b口离开的粒子速度的2倍AD [从d口离开的粒子不偏转,所以不带电,选项A正确;根据左手定则,从e、f口离开的粒子带有同种电荷,选项B错误;从b口离开的粒子运动时间是12T,从c口离开的粒子运动时间是14T,选项C错误;从c口离开的粒子轨道半径是从b口离开的粒子轨道半径的2倍,因此速度也是2倍关系,选项D正确.]10.如图是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有强度为B0的匀强磁场.下列表述正确的是( )A.质谱仪是分析同位素的重要工具B.该速度选择器中的磁场方向垂直于纸面向里C .该速度选择器只能选出一种电性,且速度等于B E的粒子 D .打在A 1处的粒子比打在A 2处的粒子的比荷小AD [质谱仪是测量带电粒子荷质比,分析同位素的重要工具,故A 正确;带电粒子进入磁场中向左偏转,所受洛伦兹力向左,磁场的方向垂直纸面向外,根据左手定则,该粒子带正电;该粒子在速度选择器中,受到电场力方向水平向右,则洛伦兹力必须水平向左,该粒子才能通过速度选择器,根据左手定则判断磁场方向垂直纸面向外,故B 错误;根据qE =qvB知,v =E B 时粒子能通过速度选择器,故C 错误;根据qvB =m v 2r 知r =mvqB,则越靠近狭缝P ,半径越小,则比荷越大,故打在A 1处的粒子比打在A 2处的粒子比荷小,故D 正确.]11.电磁流量计是根据法拉第电磁感应定律制造的用来测量管内导电介质体积流量的感应式仪表.如图所示为电磁流量计的示意图,匀强磁场方向垂直于纸面向里,磁感应强度大小为B ;当管中的导电液体流过时,测得管壁上a 、b 两点间的电压为U ,单位时间(1 s)内流过管道横截面的液体体积为流量(m 3),己知管道直径为D ,则( )A .管中的导电液体流速为U BDB .管中的导电液体流速为BD UC .管中的导电液体流量为BD UD .管中的导电液体流量为πDU 4BAD [最终正负电荷在电场力和洛伦兹力的作用下处于平衡,有qvB =q U D ,则v =UBD,故A 正确,B 错误;流量为Q =vS =U BD ·π⎝ ⎛⎭⎪⎫D 22=πDU 4B ,故D 正确,C 错误.]12.如图所示,套在足够长的绝缘直棒上的带正电小球,其质量为m ,电荷量为q .将此棒竖直放在互相垂直的、沿水平方向的匀强电场和匀强磁场中,匀强电场的电场强度大小为E ,匀强磁场的磁感应强度为B ,小球与棒间的动摩擦因数为μ,小球由静止沿棒竖直下落,重力加速度为g ,且E <mgμq,小球带电荷量不变.下列说法正确的是( )A .小球下落过程中的加速度先增大后减小B .小球下落过程中加速度一直减小直到为0C .小球运动中的最大速度为mg μqB +E BD .小球运动中的最大速度为mg μqB -E BBD [小球下滑过程中,受到重力、摩擦力、弹力、向右的洛伦兹力、向右的电场力,开始阶段,小球向下做加速运动时,速度增大,洛伦兹力增大,小球所受的棒的弹力向左,大小为F N =qE +qvB ,F N 随着v 的增大而增大,滑动摩擦力f =μF N 也增大,小球所受的合力F 合=mg -f ,f 增大,F 合减小,加速度a 减小,当mg =f 时,a =0,速度最大,做匀速运动,由mg =f =μ(qE +qv m B )得小球运动中的最大速度为v m =mg μqB -EB,故B 、D 正确,A 、C 错误.]二、非选择题(本题共4小题,共52分)13.(8分)金属滑杆ab 连着一弹簧,水平地放置在两根互相平行的光滑金属导轨cd 、ef 上,如图所示,有一匀强磁场垂直于cd 与ef 所在的平面,磁场方向如图所示,合上开关S ,弹簧伸长2 cm ,测得电路中的电流为5 A ,已知弹簧的劲度系数为20 N/m ,ab 的长L =0.1 m .求匀强磁场的磁感应强度的大小是多少?[解析] ab 受到的安培力为:F =BIL ,根据胡克定律:f =k Δx , 由平衡条件得:BIL =k Δx , 代入数据解得:B =kΔx IL =20×0.025×0.1T =0.8 T. [答案] 0.8 T14.(12分)如图所示,粒子源能放出初速度为0、比荷均为qm=1.6×104C/kg 的带负电粒子,进入水平方向的加速电场中,加速后的粒子正好能沿圆心方向垂直进入一个半径为r =0.1 m 的圆形磁场区域,磁感应强度B =0.5 T ,在圆形磁场区域右边有一竖直屏,屏的高度为h =0.6 3 m ,屏距磁场右侧距离为L =0.2 m ,且屏中心与圆形磁场圆心位于同一水平线上.现要使进入磁场中的带电粒子能全部打在屏上,不计重力,试求加速电压的最小值.[解析] 粒子运动轨迹如图所示:根据牛顿第二定律及几何知识得tan θ2=r R =qBrmv ,故磁感应强度一定时,粒子进入磁场的速度越大,在磁场中偏转量越小.若粒子恰好不飞离屏,则加速电压有最小值,此时粒子刚好打在屏的最下端B 点,根据带电粒子在磁场中的运动特点可知,粒子偏离水平方向的夹角正切值为tan θ=h2r +L, 解得tan θ=3,粒子偏离水平方向的夹角θ=60°=π3,由几何关系可知,此时粒子在磁场中对应的轨迹半径为R =r tanθ2=310 m带电粒子在电场中加速,由动能定理得qU =12mv 2带电粒子在磁场中偏转时,洛伦兹力提供向心力,由牛顿第二定律可得qvB =mv 2R联立解得U =60 V故加速电压的最小值为60 V. [答案] 60 V15.(14分)如图甲所示,质量为m 带电量为-q 的带电粒子在t =0时刻由a 点以初速度v 0垂直进入磁场,Ⅰ区域磁场磁感应强度大小不变、方向周期性变化如图乙所示(垂直纸面向里为正方向);Ⅱ区域为匀强电场,方向向上;Ⅲ区域为匀强磁场,磁感应强度大小与Ⅰ区域相同均为B 0.粒子在Ⅰ区域内一定能完成半圆运动且每次经过mn 的时刻均为T 02整数倍,则甲 乙(1)粒子在Ⅰ区域运动的轨道半径为多少?(2)若初始位置与第四次经过mn 时的位置距离为x ,求粒子进入Ⅲ区域时速度的可能值(初始位置记为第一次经过mn ).[解析] (1)带电粒子在Ⅰ区域做匀速圆周运动,洛伦兹力提供向心力,即qv 0B 0=m v 2r解得r =mv 0qB 0⎝ ⎛⎭⎪⎫或T 0=2πr v 0,r =v 0T 02π. (2)第一种情况:粒子在Ⅲ区域运动半径R =x2qv 2B 0=m v 22R解得粒子在Ⅲ区域速度大小v 2=qB 0x2m第二种情况:粒子在Ⅲ区域运动半径R =x -4r2粒子在Ⅲ区域速度大小v 2=qB 0x2m-2v 0.[答案] (1)mv 0qB 0或v 0T 02π (2)qB 0x 2m qB 0x 2m-2v 0 16.(18分)如图所示,在y 轴左侧有一平行x 轴方向的匀强电场,电场强度E =2×103V/m ,在y 轴右侧存在垂直纸面向里的匀强磁场,第一象限内磁场的磁感应强度大小B 0=2×10-2T ,第四象限内磁场的磁感应强度大小为2B 0.现有一比荷qm=1×106C/kg 的粒子,从电场中与y轴相距10 cm 的M 点(图中未标出)由静止释放,粒子运动一段时间后从N 点进入磁场,并一直在磁场中运动且多次垂直通过x 轴,不计粒子重力,试求:(1)粒子进入磁场时的速度大小;(2)从粒子进入磁场开始计时到粒子第三次到达x 轴所经历的时间; (3)粒子轨迹第一次出现相交时所对应的交点坐标.[解析] (1)对粒子在电场中,由动能定理得Eqx =12mv 2,解得v =2Eqx m=2×104m/s.(2)粒子进入磁场做匀速圆周运动,其轨迹如图所示,根据洛伦兹力提供向心力qvB =m v 2R ,又v =2πRT得:T 1=2πm qB 0;T 2=πmqB 0所以粒子从进入磁场到第三次运动到x 轴所用的时间为t =T 14+T 22+T 12代入数值可得t =2π×10-4s.(3)设粒子轨迹第一次出现相交时的交点为P ,如图所示,三角形OPO 1为等边三角形,OP =PO 1=OO 1=R 1根据洛伦兹力提供向心力有qvB 0=m v 2R 1得R 1= 2 m根据几何关系可得,P 点坐标x =R 1cos 60°=22m y =R 1sin 60°=62m 所以P 点坐标为P ⎝⎛⎭⎪⎫22m ,62m .[答案] (1)2×104 m/s (2)2π×10-4 s (3)⎝ ⎛⎭⎪⎫22m ,62m。
优化方案高中物理第三章磁场章末检测(含解析)粤教版选修31
第三章磁场(时间:90分钟,满分:100分)一、单项选择题(本题共7小题,每小题4分,共28分,在每小题给出的四个选项中,只有一个选项正确)1.如图所示,环形导线周围有三只小磁针a、b、c,闭合开关S后,三只小磁针N极的偏转方向是( )A.全向里B.全向外C.a向里,b、c向外D.a、c向外,b向里解析:选D.开关闭合后,环形电流中存在顺时针方向的电流,根据安培定则可判知:环内磁场方向垂直于纸面向里,环外磁场方向垂直于纸面向外.磁场的方向就是小磁针静止时N极的指向,所以小磁针b向里偏转,小磁针a、c向外偏转.2.一根长直导线穿过载有恒定电流的环形导线中心且垂直于环面,导线与环中的电流方向如图所示,则环的受力( )A.沿环的半径向外B.沿环的半径向里C.水平向左D.不受力解析:选D.电流I2产生的磁场方向与I2的环绕方向处处平行,所以I1不受磁场力,故D对.3.如图所示,三根长直通电导线中电流大小相同,通电电流方向为:b导线和d导线中电流向纸里,c导线中电流向纸外,a点为b、d两点的连线中点,ac垂直于bd,且ab=ad=ac.则a点的磁场方向为( )A.垂直纸面指向纸外B.垂直纸面指向纸里C.沿纸面由a指向bD.沿纸面由a指向d解析:选C.通电导线b、d在a点产生的磁场互相抵消,故a点磁场方向即为通电导线c在a点产生的磁场方向,根据安培定则知,C正确.4.(·梅州高二检测)每时每刻都有大量宇宙射线向地球射来,地磁场可以改变射线中大多数带电粒子的运动方向,使它们不能到达地面,这对地球上的生命有十分重要的意义.假设有一个带正电的宇宙射线粒子正垂直于地面向赤道射来,在地磁场的作用下,它将( )A.向东偏转B.向南偏转C.向西偏转D.向北偏转解析:选A.赤道附近的地磁场方向水平向北,一个带正电的射线粒子竖直向下运动时,据左手定则可以确定,它受到水平向东的洛伦兹力,故它向东偏转,A正确.5.如图所示,正方形区域abcd中充满匀强磁场,磁场方向垂直纸面向里.一个氢核从ad边的中点m沿着既垂直于ad边又垂直于磁场的方向,以一定速度射入磁场,正好从ab边中点n射出磁场.若将磁场的磁感应强度变为原来的2倍,其他条件不变,则这个氢核射出磁场的位置是( )A .在b 、n 之间某点B .在n 、a 之间某点C .a 点D .在a 、m 之间某点解析:选C.带电粒子在匀强磁场中做匀速圆周运动,当氢核垂直于ad 边从中点m 射入,又从ab 边的中点n 射出,则速度必垂直于ab 边,以a 点为圆心,且r =mv qB ,当磁场的磁感应强度变为原来的2倍,则半径变为原来的1/2,氢核从a 点垂直于ad 边射出,所以选项C 正确.6.如图所示,有界匀强磁场边界线SP 平行于MN ,速率不同的同种带电粒子从S 点沿SP 方向同时射入磁场.其中穿过a 点的粒子速度v 1与MN 垂直;穿过b 点的粒子速度v 2与MN 成60°角,设两粒子从S 到a 、b 所需时间分别为t 1和t 2,则t 1∶t 2为(重力不计)( )A .1∶3B .4∶3C .1∶1D .3∶2解析:选D.两个粒子转过的圆心角分别为90°、60°,根据T =2πm qB ,t =θ2πT ,可得它们运动时间之比为3∶2,D 正确.7.如图所示,一束质量、带电量、速度均未知的正离子射入正交的电场、磁场区域,发现有些离子毫无偏移地通过这一区域,对于这些离子来说,它们一定具有( )A .相同的速率B .相同的电量C .相同的质量D .速率、电量和质量均相同解析:选A.离子毫无偏移地通过这一区域,说明受到的电场力和洛伦兹力平衡,故Eq =qvB ,可得v =E B,可见这些离子具有相同的速率,故选A.二、双项选择题(本题共5小题,每小题6分,共30分.在每小题给出的四个选项中,有两个选项符合题目要求,全选对的得6分,只选一个且正确的得3分,有错选或不答的得0分)8.下列说法正确的是( )A .所有电荷在电场中都要受到电场力的作用B .所有电荷在磁场中都要受到磁场力的作用C .一切运动电荷在磁场中都要受到磁场力的作用D .运动电荷在磁场中,只有当垂直于磁场方向的速度分量不为零时,才受到磁场力的作用解析:选AD.电荷在电场中受电场力F =qE ,不管q 运动还是静止都一样,故A 对;而运动电荷在磁场中受到的洛伦兹力f =qvB ,其中v 是垂直于B 的分量.当v 平行于B 时,电荷不受洛伦兹力,故C 错,D 对.9.(·长沙高二检测)如图所示,竖直向上的匀强磁场中,水平放置一根长通电直导线,电流的方向垂直于纸面向外,a、b、c、d是以直导线为圆心的同一圆周上的四点,在这四点中( )A.b、d两点的磁感应强度大小相等B.a、b两点的磁感应强度大小相等C.a点的磁感应强度最小D.c点的磁感应强度最小解析:选AC.根据安培定则,电流在a、b、c、d四点产生的B大小相同,方向为该点的切线方向,与竖直向上的磁场合成如图所示,由图可知,a点的磁感应强度最小,b、d两点的磁感应强度大小相等,c点的磁感应强度最大,故选A、C.10.如图所示,在沿水平方向向里的匀强磁场中,带电小球A与B处在同一条竖直线上,其中小球B带正电荷并被固定,小球A与一水平放置的光滑绝缘板C接触而处于静止状态,若将绝缘板C沿水平方向抽去,则( )A.小球A仍可能处于静止状态B.小球A将可能沿轨迹1运动C.小球A将可能沿轨迹2运动D.小球A将可能沿轨迹3运动解析:选AB.若小球所受库仑力和重力二力平衡,则撤去绝缘板后,小球仍能继续处于平衡状态,A正确.若小球在库仑力、重力、绝缘板弹力三力作用下处于平衡状态,则撤去绝缘板后,小球所受合力向上,小球向上运动并受到向左的洛伦兹力而向左偏转,B正确.C、D错误.11.一个带电粒子以初速度v0垂直于电场方向向右射入匀强电场区域,穿出电场后接着又进入匀强磁场区域.设电场和磁场区域有明确的分界线,且分界线与电场强度方向平行,如图中的虚线所示.在如图所示的几种情况中,可能出现的是( )解析:选AD.A、C选项中粒子在电场中向下偏转,所以粒子带正电,再进入磁场后,A 图中粒子应逆时针转,正确.C图中粒子应顺时针转,错误.同理可以判断B错误,D正确.12.如图所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是( )A.小球一定带正电B.小球一定带负电C.小球的绕行方向为顺时针D.改变小球的速度大小,小球将不会做圆周运动解析:选BC.小球做匀速圆周运动,重力必与电场力平衡,小球带负电,故B对,A错;洛伦兹力充当向心力,由曲线运动轨迹弯曲方向结合左手定则可判断运动方向为顺时针,故C对,D错.三、计算题(本题共4小题,共42分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)13.(8分)如图所示,光滑导轨与水平面成θ角,导轨宽L.匀强磁场磁感应强度为B .金属杆长也为L ,质量为m ,水平放在导轨上.当回路总电流为I 1时,金属杆正好能静止.求:(1)当B 的方向垂直于导轨平面向上时B 的大小;(2)若保持B 的大小不变而将B 的方向改为竖直向上,应把回路总电流I 2调到多大才能使金属杆保持静止?解析:(1)杆受力如图所示由平衡条件可得F =mg sin θ(2分)即BI 1L =mg sin θB =mg sin θI 1L.(2分) (2)磁场竖直向上,杆受力如图所示由平衡条件可得BI 2L =mg tan θI 2=mg tan θBL(2分) 再由B =mg sin θI 1L 得I 2=I 1cos θ.(2分) 答案:(1)mg sin θI 1L (2)I 1cos θ14.(10分)一磁场宽度为L ,磁感应强度为B ,如图所示,一电荷质量为m ,带电荷量为-q ,不计重力,以一速度v (方向如图)射入磁场.若不使其从右边界飞出,则电荷的速度应为多大?解析:若要粒子不从右边界飞出,则当达到最大速度时,半径最大,此时运动轨迹如图所示,即轨迹恰好和右边界相切.由几何关系可求得最大半径r ,即r +r cos θ=L ,(3分)所以r =L1+cos θ.(1分) 由牛顿第二定律得 qvB =mv 2r.(3分) 所以v max =qBr m =qBL m (1+cos θ).(3分) 答案:0<v ≤qBLm (1+cos θ)15.(12分)一个质量为m =0.1 g 的小滑块,带有q =5×10-4C 的电荷量,放置在倾角α=30°的光滑斜面上(绝缘),斜面置于B =0.5 T 的匀强磁场中,磁场方向垂直纸面向里,如图所示,小滑块由静止开始沿斜面下滑,其斜面足够长,小滑块滑至某一位置时要离开斜面.求:(取g =10 m/s 2)(1)小滑块带何种电荷?(2)小滑块离开斜面时的瞬时速度多大?(3)该斜面的长度至少多长?解析:(1)小滑块沿斜面下滑的过程中,受重力mg 、斜面支持力N 和洛伦兹力f .若要小滑块离开斜面,洛伦兹力f 方向应垂直斜面向上,根据左手定则可知,小滑块应带有负电荷.(3分)(2)小滑块沿斜面下滑时,垂直斜面方向的加速度为零,有qvB +N -mg cos α=0,(2分)当N =0时,小滑块开始脱离斜面, 所以v =mg cos αBq =0.1×10-3×10×320.5×5×10-4 m/s(2分) =2 3 m/s ≈3.46 m/s.(3)法一:下滑过程中,只有重力做功,由动能定理得:mgs sin α=12mv 2(3分)斜面的长度至少应是s =v 22g sin α=(23)22×10×0.5m =1.2 m .(2分) 法二:下滑过程中,小滑块做初速度为零的匀加速直线运动,对小滑块:由牛顿第二定律得:mg sin α=ma (2分)由运动学公式得:v 2=2as (2分)解得s =v 22g sin α=1.2 m .(1分) 答案:(1)带负电 (2)3.46 m/s (3)1.2 m16.(12分)如图甲所示,宽度为d 的竖直狭长区域内(边界为L 1、L 2),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图乙所示),电场强度的大小为E 0,E 0>0表示电场方向竖直向上.t =0时,一带正电、质量为m 的尘埃从左边界上的N 1点以水平速度v 射入该区域,沿直线运动到Q 点后,做一次完整的圆周运动,再沿直线运动到右边界上的N 2点.Q 为线段N 1N 2的中点,重力加速度为g ,上述d 、E 0、m 、v 、g 为已知量.(1)求微粒所带电荷量q 和磁感应强度B 的大小;(2)求电场变化的周期T .解析:(1)微粒做匀速圆周运动说明其重力和电场力平衡,即mg =qE0(2分)故微粒所带电荷量q =mgE 0(1分)由于粒子在刚开始和最后一段做直线运动,对其受力分析如图所示,则 qvB =qE 0+mg (2分)则B =E 0v +mg qv =E 0v +mg v ·mg E 0=2E 0v .(2分) (2)经分析从N 1点到Q 点粒子做匀速直线运动的时间t 1=d 2v =d 2v(1分) 到Q 点后做匀速圆周运动的周期T ′=2πm qB =πv g(2分) 从Q 点到N 2点粒子做匀速直线运动,其运动时间t 2=t 1,则由题中图象可知电场变化的周期T =t 1+T ′=d 2v +πv g(2分) 答案:(1)mg E 02E 0v (2)d 2v +πg。
高中物理 第3章 磁场 章末过关检测卷课时检测 粤教版
章末过关检测卷(三)第三章磁场(测试时间:50分钟评价分值:100分)一、单项选择题(每小题4分,满分16分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.如图所示的四个实验现象中,不能表明在电流周围能产生磁场的是( )A.图甲中,导线通电后磁针发生偏转B.图乙中,通电导线在磁场中受到力的作用C.图丙中,当电流方向相同时,导线相互靠近D.图丁中,当电流方向相反时,导线相互远离答案:B2.如图所示,在水平直导线正下方,放一个可以自由转动的小磁针.现给直导线通以向右的恒定电流,不计其他磁场的影响,则下列说法正确的是( )A.小磁针保持不动B.小磁针的N极将向下转动C.小磁针的N极将垂直于纸面向里转动D.小磁针的N极将垂直于纸面向外转动解析:当通入如图所示的电流时,根据右手螺旋定则可得小磁针的位置的磁场方向是垂直纸面向里,由于小磁针静止时N极的指向为磁场的方向,所以小磁针的N极将垂直于纸面向里转动.答案:C3.关于磁场,下列说法正确的是( )A.磁场对放入其中的磁体一定有力的作用B.磁场对放入其中的电流一定有力的作用C.磁场对放入其中的运动电荷一定有力的作用D.磁感线实际上是不存在的,所以不可能模拟出磁感线解析:A.磁场对放入其中的磁体一定有磁场力作用,故A正确;B.磁场对放入其中的电流不一定有磁场力的作用,当平行于磁场放时,一定没有磁场力;当垂直放入磁场中,磁场力最大.故B错误;C.磁场对放入其中的运动电荷不一定有力的作用,当运动方向与磁场方向平行时,就没有磁场力.故C错误;D.磁感线实际上是不存在的,所以可以用细铁屑来体现出磁感线的疏密.故D错误.答案:A4.如图所示,在倾角为α的光滑斜面上,垂直纸面放置一根长为L ,质量为m 的直导体棒.在导体棒中的电流I 垂直纸面向里时,欲使导体棒静止在斜面上,下列外加匀强磁场的磁感应强度B 的大小和方向正确的是( )A .B =mgIL αsin ,方向垂直斜面向上B .B =mgILαsin ,方向垂直斜面向下C .B =mgILαcos ,方向垂直斜面向下D .B =mgILαcos ,方向垂直斜面向上解析:A.外加匀强磁场的磁感应强度B 的方向垂直斜面向上,则沿斜面向上的安培力、支持力与重力,处于平衡状态.答案:A二、双项选择题(每小题6分,满分30分.在每小题给出的四个选项中,有两个选项符合题目要求,全部选对得6分,选不全得3分,有选错或不选的得0分)5.关于地磁场,下列说法正确的是( )A.地球是一个巨大的磁体,地磁N极在地理南极附近,S极在地理北极附近B.地磁场在地表附近某处,有两个分量,水平分量指向地理北极附近,竖直分量一定竖直向下C.若能将指南针放在地心,则它的N极指向地球北极D.若能将指南针放在地心,则它的N极指向地球南极解析:A.地理北极附近是地磁南极,地理南极附近是地磁北极.故A符合题意.B.地磁场的磁感线可分解成两个分量,水平分量指向地理北极附近,若在北半球,则竖直分量竖直向下;若是南半球,则是竖直向上.故B不符合题意.C.磁感线是闭合曲线,地球内部的磁感线是从S极到N极,因此若能将指南针放在地心,则它的N极指向地球的南极.故C不符合题意,D符合题意.答案:AD6.磁场中某点的磁感应强度B的方向,是指( )A.放在该点的小磁针N极的受力方向B.放在该点的小磁针静止后S极的指向C.磁感线在该点的切线方向D.与放在磁场中该点的通电导线所受安培力的方向一致解析:A、B.我们规定:磁场中某点的磁感应强度B的方向与放在该点的小磁针N极的受力方向一致;与放在该点的小磁针静止后N极的指向一致;故A正确,B不正确;C.为了使用磁感线形象地描述磁场的强弱和方向,规定磁场的方向沿磁感线在该点的切线的方向,故C正确;D.磁感应强度B的方向与放在磁场中该点的通电导线所受安培力的方向垂直,故D错误.答案:AC7.如图所示是用电子射线管演示带电粒子在磁场中受洛伦兹力的实验装置,图中虚线是带电粒子的运动轨迹,那么下列关于此装置的说法正确的有( )A.A端接的是高压直流电源的正极B.A端接的是高压直流电源的负极C.C端是蹄形磁铁的N极D.C端是蹄形磁铁的S极解析:A.由图可知,电子是从A端射出,则A端是高压直流电源的负极,故A错误;B.由图可知,电子是从A端射出,则A端是高压直流电源的负极.故B正确;C.电子是从A 向B运动,且洛伦兹力向下,则由左手定则可得磁场方向由C向D,故C正确;D.电子是从A向B运动,且洛伦兹力向下,则由左手定则可得磁场方向由C向D.故D错误.答案:BC8.如图所示,竖直向下的匀强磁场穿过光滑的绝缘水平面,平面上一个钉子O固定一根细线,细线的另一端系一带电小球,小球在光滑水平面内绕O做匀速圆周运动.在某时刻细线断开,小球仍然在匀强磁场中做匀速圆周运动,下列说法错误的是( )A .速率变小,半径变小,周期不变B .速率不变,半径不变,周期不变C .速率变小,半径变大,周期变大D .速率不变,半径变小,周期变小解析:A.线断后,小球只受洛伦兹力作用,由于洛伦兹力不做功,所以小球的速率一定不变,故AC 错误;B.若线断前,线中无拉力,只有洛伦兹力提供向心力,则线断后无影响,小球的轨迹不变,半径不变,周期也不变,故B 正确;D.若线断前,绳中有拉力F 且F -qvB=m v 2r 时,线断后qvB =m v 2r,小球做圆周运动的绕行方向发生变化,当F -qvB =qvB ,即F =2qvB 时,半径、周期都不变;当F -qvB >qvB ,即F >2qvB 时,半径、周期都变大;当F -qvB <qvB ,即F <2qvB 时,半径、周期都变小,故D 正确.答案:AC9.带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹,如图是在有匀强磁场的云室中观察到的粒子的轨迹,a 和b 是轨迹上的两点,匀强磁场B 垂直纸面向里.该粒子在运动时,其质量和电荷量不变,而动能逐渐减少.下列说法正确的是( )A.粒子先经过a点,再经过b点B.粒子先经过b点,再经过a点C.粒子带负电D.粒子带正电解析:粒子在云室中运动时,速度逐渐减小,根据r=mvqB可知其运动轨迹的半径逐渐减小,故粒子运动方向为由a到b,故A正确,B错误;运动方向由a到b,磁场垂直纸面向里,所受洛伦兹力方向指向运动轨迹内侧,故由左手定则可知该电荷带负电,故C正确,D 错误.答案:AC三、非选择题(本大题共3小题,共54分.按题目要求作答.解答题应写出必要的文字说明、方程和重要演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)10.电子(e,m)以速度v0与x轴成30°角垂直射入磁感强度为B的匀强磁场中,经一段时间后,打在x轴上的P点,如图所示,则P点到O点的距离为________,电子由O点运动到P点所用的时间为________.解析:电子在磁场中受洛伦兹力作用做匀速圆周运动,轨迹如图所示,由图可知:弦切角为30°,所以圆心角为60°,P 点到O 点的距离等于半径,根据Bev 0=m v 20R 得R =mv 0eB所以P 点到O 点的距离等于mv 0eB圆周运动的周期:T =2πmeB圆心角为60°,所以电子由O 点运动到P 点所用的时间:t =60°360°·2πm eB =πm3eB.答案:mv 0eB πm 3eB11.最近研制出一种可以投入使用的电磁轨道炮,其原理如图所示.炮弹(可视为长方形导体)置于两固定的平行导轨之间,并与轨道壁密接.开始时炮弹静止在轨道的一端,通以电流后炮弹会被磁力加速,最后从位于导轨另一端的出口高速射出.设两导轨之间的距离d =0.10 m ,导轨长L =5.0 m ,炮弹质量m =0.30 kg.导轨上的电流I 的方向如图中箭头所示.可认为,炮弹在轨道内运动时,它所在处磁场的磁感应强度始终为B =2.0 T ,方向垂直于纸面向里.若炮弹出口速度为v =2.0×310 m/s ,忽略摩擦力与重力的影响以及发射过程中电流产生的焦耳热,试求:(1)通过导轨的电流I ;(2)发射过程中电源的最大输出功率P .解析:(1)炮弹的加速度为:a =IdBm炮弹做匀加速运动,有:v 2=2aL 代入题给数据得I =6.0×105A (2)电源的最大输出功率:P =IdB ·v 解得:P =2.4×108W答案:(1)6.0×105A (2)2.4×108W12.质谱仪原理如图所示,a 为粒子加速器,电压为U 1;b 为速度选择器,磁场与电场正交,磁感应强度为B 1,板间距离为d ;c 为偏转分离器,磁感应强度为B 2.今有一质量为m 、电荷量为+q 的正电子(不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做半径为R 的匀速圆周运动.求:(1)粒子射出加速器时的速度v 为多少? (2)速度选择器的电压U 2为多少? (3)粒子在B 2磁场中做匀速圆周运动的半径R 为多大?解析:(1)粒子经加速电场U 1加速,获得速度v ,由动能定理得:qU 1=12mv 2解得v =2qU 1m故粒子的速度为:2qU 1m(2)在速度选择器中作匀速直线运动,电场力与洛伦兹力平衡得 Eq =qvB 1即U 2dq =qvB 1U 2=B 1dv =B 1d2qU 1m故速度选择器的电压U 2为:B 1d2qU 1m11 (3)在B 2中作圆周运动,洛伦兹力提供向心力,有:qvB 2=m v 2R ,R =mv qB 2=m qB 22qU 1m答案:见解析。
粤教版高中物理选修3-1第三章磁场复习课.docx
高中物理学习材料(灿若寒星**整理制作)姓名__________班级_______选修3—1第三章复习课【旧知检测】1.空间存在竖直向下的匀强电场和水平方向(垂直纸面向里)的匀强磁场,如图8所示,已知一离子在电场力和洛伦兹力共同作用下,从静止开始自A 点沿曲线ACB 运动,到达B 点时速度为零,C 为运动的最低点.不计重力,则( )A .该离子带负电B .A 、B 两点位于同一高度C .C 点时离子速度最大D .离子到达B 点后将沿原曲线返回A 点【考点呈现】第三章知识系统回顾【尝试练】一、基础知识回顾1.磁极间的相互作用规律是:同名磁极相互 ,异名磁极相互 。
2.磁极间的相互作用是通过 而发生的。
3.通电导线的周围存在磁场是由丹麦物理学家 发现的.如图,当导线中通有图示的电流时,小磁针N极将向转动。
4.磁感线与电场线的联系与区别:电场线 磁感线1.电场线从 出发,终止于 ,电场线是 的曲线,正、负电荷可单独存在. 1.在磁体内部,磁感线是从 极指向 极,外部是从 出发从 进去,磁感线是 的曲线,N 、S 极是不可分割的.2. 电荷在电场中某点受到电场力的方向与该点的 方向2.小磁针在磁场中静止时 极的指向或 极的受力方向与该点的N S I一致,也与该点所在电场线的 方向一致. 方向一致,也与该点所在磁感线的 方向致.3.电场中任何两条电场线都 相交. 3.磁场中任何两条磁感线都 相交.4.电场线的疏密表示电场的 . 4.磁场线的疏密表示磁场的 .5.安培定则是用来判断 方向与 方向之间的关系.具体做法是:用右手握住通电直导线,让伸直的大拇指的指向跟 的方向一致,则弯曲的四指所指的方向表示 的环绕方向.而在判断环形电流的磁感线与电流方向的关系时,右手弯曲的四指和 方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上的 方向.6.磁场的强弱和方向用 来描述,它是矢量,它的方向规定为 ,它的定义式为7.磁场对电流的作用力(安培力)大小为F=BIL sin θ(注意:L 为有效长度,电流与磁场方向应.F 的方向可用 定则来判定.当电流与磁场方向平行时,安培力等于 .8.磁场对运动电荷的作用力(洛伦兹力)大小为f=qvB (注意:电荷的速度方向与磁场方向应( ).f 的方向可用 定则来判定.当电荷的速度方向与磁场方向平行时,洛伦兹力等于 .9.当带电粒子垂直进入匀强磁场,只受洛伦兹力作用时,粒子将做 运动,运动半径为,运动周期为【巩固练】1. 试判断下列通电导线的受力方向 × × × × . . . .× × × × . . . .× × × × . . . .× × × × . . . . 2. 试分别判断下列导线的电流方向或磁场方向或受力方向.I × B BB F × F ×B【拓展练】1.图2所示,三根通电直导线P 、Q 、R 互相平行,通过正三角形的三个顶点,三条导线通入大小相等,方向垂直纸面向里的电流;通电直导线产生磁场的磁感应强度B=KI/r ,I 为通电导线的电流强度,r为距通电导线的距离的垂直距离,K 为常数;则R 受到的磁场力的方向是( )A .垂直R ,指向y 轴负方向B .垂直R ,指向y 轴正方向C .垂直R ,指向x 轴正方向D .垂直R ,指向x 轴负方向2.两条直导线相互垂直,如图3所示,但相隔一个小距离,其中AB 是固定的,另一条CD 能自由转动,当直流电流按图所示方向通入两条导线时,CD 导线将( )A .逆时针方向转动,同时离开导线ABB .顺时针方向转动,同时离开导线ABC .逆时针方向转动,同时靠近导线ABD .顺时针方向转动,同时靠近导线AB【当堂小测】1.质量为m 、有效长度为L 、电流强度为I 的通电导体棒,水平静止在倾角为α的绝缘斜面上,整个装置处在匀强磁场中,在如图4所示四种情况下,导体与轨道间的摩擦力可能为零的是( )2. 长为L ,间距也为L 的两平行金属板间有垂直向里的匀强磁场,如图5所示,磁感应强度为B ,今有质量为m 、带电量为-q 的离子从平行板左端中点以平行于金属板的方向射入磁场.欲使离子打在极板上,入射离子的速度大小应满足的条件是( )A .m qBL v 4<B .m qBL v >C .m qBL v 45>D .mqBL v m qBL 454<< 【课后练习】1.如图所示,在倾角为30°的光滑斜面上垂直纸面放置一根长为L ,质量为m 的通电直导体棒,棒内电流大小为I ,方向垂直纸面向外.以水平向右为x轴正方向,竖直向上为y轴正方向建立直角坐标系. (1)若加一方向垂直斜面向上的匀强磁场,使导体棒在斜面上保持静止,求磁场的磁感应强度多大?(2)若加一方向垂直水平面向上的匀强磁场使导体棒在斜面上静止,该磁场的磁感应强度多大.。
粤教版高二物理选修3-1第3章 磁场练习(带解析)
2020—2021高二物理粤教版选修3—1第3章磁场练习含答案粤教版选修3--1第三章磁场1、(多选)关于磁体与磁体间、磁体与电流间、电流与电流间相互作用的示意图,以下正确的是()A.磁体⇔磁场⇔磁体B.磁体⇔磁场⇔电流C.电流⇔电场⇔电流D.电流⇔磁场⇔电流2、关于磁感应强度B、电流强度I、导线长L和导线所受磁场力F的关系,下列说法中正确的是()A.在B=0的地方,F一定等于零B.在F=0的地方,B一定等于零C.若B=1 T,I=1 A,L=1 m,则F一定等于1 ND.若L=1 m,I=1 A,F=1 N,则B一定等于1 T3、某物理兴趣小组利用课外活动时间制作了一部温控式电扇(室温较高时,电扇就会启动),其设计图分为温控开关、转速开关及电动机三部分,如图所示,其中温控开关为甲、乙两种金属材料制成的双金属片.对电动机而言,电扇启动后,下列判断正确的是()A.要使电扇转速加大,滑动片P应向B移动B.面对电扇,电扇沿顺时针方向转动C.面对电扇,电扇沿逆时针方向转动D.电扇有时顺时针方向转动,有时逆时针方向转动4、一个长直螺线管中通有大小和方向都随时间变化的交变电流,把一个带电粒子沿如图所示的方向沿管轴线射入管中,则粒子将在管中()A.做匀速圆周运动B.沿轴线来回振动C.做匀加速直线运动D.做匀速直线运动5、质量分别为m1和m2、电荷量分别为q1和q2的两粒子在同一匀强磁场中做匀速圆周运动.已知两粒子的动量大小相等.下列说法正确的是()A.若q1=q2,则它们做圆周运动的半径一定相等B.若m1=m2,则它们做圆周运动的周期一定相等C.若q1≠q2,则它们做圆周运动的周期一定不相等D.若m1≠m2,则它们做圆周运动的周期一定不相等6、关于通电直导线在磁场中所受的安培力,下列说法正确的是()A.磁感应强度跟导线所受的安培力成正比B.安培力的方向跟磁感应强度的方向垂直C.磁感应强度的方向跟安培力的方向相同D.通电直导线在磁场中某处受到的安培力为零,则该处的磁感应强度一定为零7、关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是() A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向C.安培力的大小与通电直导线和磁场方向的夹角无关D.将直导线从中点折成直角,安培力的大小一定变为原来的一半8、宇宙中的电子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些电子在进入地球周围的空间时,将()A.竖直向下沿直线射向地面B.相对于预定地面向东偏转C.相对于预定点稍向西偏转D.相对于预定点稍向北偏转9、如图所示,水平导线中有电流I通过,导线正下方的电子初速度的方向与电流I的方向相同,则电子将()A.沿路径a运动,轨迹是圆B.沿路径a运动,轨迹半径越来越大C.沿路径a运动,轨迹半径越来越小D.沿路径b运动,轨迹半径越来越小10、在如图所示的匀强磁场中,已经标出了电流I和磁场B以及磁场对电流作用力F三者的方向,其中错误的是()A B C D11、(双选)超导电磁铁相斥式磁悬浮列车能够悬浮的原理是()A.超导体的电阻为零B.超导体的磁性很强C.超导体电流的磁场方向与轨道上磁场方向相反D.超导体电流产生的磁力与列车重力平衡12、如果小朋友误吞了金属类物品于腹腔内,如何把它取出来呢?某同学在学习了磁场之后,设计出了这样一个仪器,如图所示.当仪器顶部接触金属物品时,将手控环内推,再拉出整条塑料管.(1)你能说出这种仪器的原理吗?(2)如果小朋友不慎吞下的是易拉罐拉环或一个回形针,哪种物体可以用这种仪器取出来?(3)如果把活动永磁铁换成电磁铁,你认为是不是更实用呢?13、如图所示,在磁感应强度为B的匀强磁场中,有一长为L的悬线,拉一质量为m、带有+q的电荷量的小球,将摆球与悬线拉至右侧与磁感线垂直的水平位置由静止释放,试求摆球通过最低位置时绳上的拉力.2020—2021高二物理粤教版选修3—1第3章磁场练习含答案粤教版选修3--1第三章磁场1、(多选)关于磁体与磁体间、磁体与电流间、电流与电流间相互作用的示意图,以下正确的是()A.磁体⇔磁场⇔磁体B.磁体⇔磁场⇔电流C.电流⇔电场⇔电流D.电流⇔磁场⇔电流ABD[磁体与磁体间、电流与磁体间、电流与电流间的相互作用都是通过磁场来传递的.选项A、B、D正确.]2、关于磁感应强度B、电流强度I、导线长L和导线所受磁场力F的关系,下列说法中正确的是()A.在B=0的地方,F一定等于零B.在F=0的地方,B一定等于零C.若B=1 T,I=1 A,L=1 m,则F一定等于1 ND.若L=1 m,I=1 A,F=1 N,则B一定等于1 TA[当B=0时,导线一定不受磁场力,F一定为零.但是用B=FIL判断B或计算F时,B一定要和通电导线垂直,没有垂直这个条件,B=FIL不成立.故B、C、D错误,A正确.]3、某物理兴趣小组利用课外活动时间制作了一部温控式电扇(室温较高时,电扇就会启动),其设计图分为温控开关、转速开关及电动机三部分,如图所示,其中温控开关为甲、乙两种金属材料制成的双金属片.对电动机而言,电扇启动后,下列判断正确的是()A.要使电扇转速加大,滑动片P应向B移动B.面对电扇,电扇沿顺时针方向转动C.面对电扇,电扇沿逆时针方向转动D.电扇有时顺时针方向转动,有时逆时针方向转动B[滑动片P向B移动时,线圈中电流减小,电扇转速减小;由左手定则可判断线圈各边所受安培力的方向,可知电扇顺时针转动,故B正确.]4、一个长直螺线管中通有大小和方向都随时间变化的交变电流,把一个带电粒子沿如图所示的方向沿管轴线射入管中,则粒子将在管中()A.做匀速圆周运动B.沿轴线来回振动C.做匀加速直线运动D.做匀速直线运动D[通有交变电流的螺线管内部磁场方向始终与轴线平行,带电粒子沿着磁感线运动时不受洛伦兹力,所以应做匀速直线运动.]5、质量分别为m1和m2、电荷量分别为q1和q2的两粒子在同一匀强磁场中做匀速圆周运动.已知两粒子的动量大小相等.下列说法正确的是()A.若q1=q2,则它们做圆周运动的半径一定相等B.若m1=m2,则它们做圆周运动的周期一定相等C.若q1≠q2,则它们做圆周运动的周期一定不相等D.若m1≠m2,则它们做圆周运动的周期一定不相等A[粒子在磁场中做圆周运动,洛伦兹力提供向心力,由牛顿第二定律得q v B=m v2r,解得r=m vqB=pqB,由题意可知:粒子动量p相等、磁感应强度B相等,若q1=q2,则两粒子轨道半径相等,故A正确;粒子在磁场中做圆周运动的周期T=2πmqB,若m1=m2,由于不知两粒子电荷量关系,如果两粒子电荷量相等,则粒子做圆周运动的周期相等,如果两粒子电荷量不相等,则两粒子做圆周运动的周期不相等,故B错误;粒子在磁场中做圆周运动的周期T=2πmqB,若q1≠q2,只要两粒子的比荷相等,则粒子做圆周运动的周期相等,故C、D错误.] 6、关于通电直导线在磁场中所受的安培力,下列说法正确的是()A.磁感应强度跟导线所受的安培力成正比B.安培力的方向跟磁感应强度的方向垂直C.磁感应强度的方向跟安培力的方向相同D.通电直导线在磁场中某处受到的安培力为零,则该处的磁感应强度一定为零B[磁感应强度B的大小只决定于磁场本身的性质,跟导线所受的安培力及电流与导线长度均没有关系,故A错误;根据左手定则可知,安培力方向与磁场和电流组成的平面垂直,即与电流和磁场方向都垂直,故B正确,C错误;当电流方向与磁场的方向平行,所受安培力为0,而此时的磁感应强度不为零,故D错误.]7、关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是() A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向C.安培力的大小与通电直导线和磁场方向的夹角无关D.将直导线从中点折成直角,安培力的大小一定变为原来的一半B[本题考查安培力的大小和方向.安培力总是垂直于磁场与电流所决定的平面,因此,安培力总与磁场和电流垂直,A错误,B正确;安培力F=BIL sin θ,其中θ是导线与磁场方向的夹角,所以C错误;将直导线从中点折成直角,导线受到安培力的大小不仅与有效长度有关,还与导线在磁场中的相对位置有关,D错误.]8、宇宙中的电子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些电子在进入地球周围的空间时,将()A.竖直向下沿直线射向地面B.相对于预定地面向东偏转C.相对于预定点稍向西偏转D.相对于预定点稍向北偏转C[地球表面的磁场方向由南向北,电子带负电,根据左手定则可判定,电子自赤道上空竖直下落过程中受洛伦兹力方向向西,故C项正确.]9、如图所示,水平导线中有电流I通过,导线正下方的电子初速度的方向与电流I的方向相同,则电子将()A.沿路径a运动,轨迹是圆B.沿路径a运动,轨迹半径越来越大C.沿路径a运动,轨迹半径越来越小D.沿路径b运动,轨迹半径越来越小B[水平导线在导线下方产生的磁场方向垂直纸面向外,由左手定则可判断电子运动轨迹向下弯曲,又由r=m vqB知,B减小,r越来越大,故电子的径迹是a.故选B.]10、在如图所示的匀强磁场中,已经标出了电流I和磁场B以及磁场对电流作用力F三者的方向,其中错误的是()A B C DC[根据左手定则可知A、B、D正确;C图中电流和磁场方向平行,不受安培力,故C错误.]11、(双选)超导电磁铁相斥式磁悬浮列车能够悬浮的原理是()A.超导体的电阻为零B.超导体的磁性很强C.超导体电流的磁场方向与轨道上磁场方向相反D.超导体电流产生的磁力与列车重力平衡CD[列车能够悬浮,必定受到了向上的力,这个力就是车上超导体电磁铁形成的磁场与轨道上线圈中电流形成的磁场之间所产生的相斥力,这个力与列车重力平衡,列车才能悬浮.因此两磁场方向必须相反,故C、D正确.超导体无电流时,即使电阻为零,也不能产生磁场,因此列车也不能悬浮,则A、B错误.]12、如果小朋友误吞了金属类物品于腹腔内,如何把它取出来呢?某同学在学习了磁场之后,设计出了这样一个仪器,如图所示.当仪器顶部接触金属物品时,将手控环内推,再拉出整条塑料管.(1)你能说出这种仪器的原理吗?(2)如果小朋友不慎吞下的是易拉罐拉环或一个回形针,哪种物体可以用这种仪器取出来?(3)如果把活动永磁铁换成电磁铁,你认为是不是更实用呢?[解析](1)当仪器顶部接触金属物品时,将手控环内推,其上面的活动永磁铁使固铁磁化,固铁磁化后能吸引磁性金属物品,然后拉出整条塑料管,即可把这种金属物品取出.(2)由于磁铁只能吸引铁磁性物体,而易拉罐拉环是铝合金材料,不是铁磁性物质,因此不能取出;回形针是铁磁性物体,可以用此仪器取出.(3)电磁铁的磁性强弱可以随电流的变化而变化,如果是误吞了比较重的金属物品,可通过调节电流大小使磁性增强,从而顺利把金属物品取出来,故使用电磁铁应更实用一些.[答案]见解析13、如图所示,在磁感应强度为B的匀强磁场中,有一长为L的悬线,拉一质量为m、带有+q的电荷量的小球,将摆球与悬线拉至右侧与磁感线垂直的水平位置由静止释放,试求摆球通过最低位置时绳上的拉力.[解析]由左手定则判断摆球所受洛伦兹力方向向下,根据牛顿第二定律:F-Bq v-mg=m v2 L根据动能定理:mgL=12m v2,联立得:F=3mg+Bq2gL.[答案]3mg+Bq2gL。
19学年高中物理: 第三章 磁场章末综合检测 选修3-1(含答案).doc
第三章磁场章末综合检测一、单项选择题(本题共6小题,每小题5分,共30分,每小题只有一个选项正确,把正确选项前的字母填在题后的括号内)1.关于磁通量,正确的说法有( )A.磁通量不仅有大小而且有方向,是矢量B.在匀强磁场中,a线圈面积比b线圈面积大,则穿过a 线圈的磁通量一定比穿过b线圈的大C.磁通量大,磁感应强度不一定大D.把某线圈放在磁场中的M、N两点,若放在M处的磁通量比在N处的大,则M处的磁感应强度一定比N处大解析:磁通量是标量,大小与B、S及放置角度均有关,只有C项说法完全正确.答案:C2.如图所示,一水平放置的矩形闭合线圈abcd在条形磁体N极附近竖直下落,保持bc边在纸外,ad边在纸内,由图中的位置Ⅰ经过位置Ⅱ到位置Ⅲ,且位置Ⅰ和Ⅲ都很靠近位置Ⅱ.在这个过程中,线圈中的磁通量( )A.是增加的B.是减少的C.先增加,后减少D.先减少,后增加解析:要知道线圈在下落过程中磁通量的变化情况,就必须知道条形磁体的磁极附近磁感线的分布情况.线圈位于位置Ⅱ时,磁通量为零,故线圈中磁通量是先减少,后增加的.答案:D3.如图所示,一根有质量的金属棒MN,两端用细软导线连接后悬于a、b两点,棒的中部处于方向垂直于纸面向里的匀强磁场中,棒中通有电流,方向从M流向N,此时悬线上有拉力.为了使拉力等于零,可以( ) A.适当减小磁感应强度B.使磁场反向C.适当增大电流D.使电流反向解析:首先对MN进行受力分析,受竖直向下的重力G,受两根软导线的竖直向上的拉力和竖直向上的安培力.处于平衡时有2F+BIL=mg,重力mg恒定不变,欲使拉力F减小到0,应增大安培力BIL,所以可增大磁场的磁感应强度B或增加通过金属棒中的电流I,或二者同时增大.答案:C4.如图所示,空间存在水平向左的匀强电场和垂直纸面向里的匀强磁场,电场和磁场相互垂直.在电磁场区域中,有一个竖直放置的光滑绝缘圆环,环上套有一个带正电的小球.O点为圆环的圆心,a、b、c为圆环上的三个点,a点为最高点,c点为最低点,Ob沿水平方向.已知小球所受电场力与重力大小相等.现将小球从环的顶端a点由静止释放.下列判断正确的是( )A .当小球运动的弧长为圆周长的14时,洛伦兹力最大 B .当小球运动的弧长为圆周长的12时,洛伦兹力最大 C .小球从a 点运动到b 点,重力势能减小,电势能增大D .小球从b 点运动到c 点,电势能增大,动能先增大后减小解析:将电场力与重力合成,合力方向斜向左下方与竖直方向成45°角,把电场与重力场看成一个等效场,其等效最低点在点b 、c 之间,小球从b 点运动到c 点,动能先增大后减小,且在等效最低点的速度和洛伦兹力最大,则A 、B 两项错,D 项正确;小球从a 点到b 点,电势能减小,则C 项错.答案:D5.如图所示,在边长为2a 的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m 、电荷量为-q 的带电粒子(重力不计)从AB 边的中点O 以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB 边的夹角为60°.若要使粒子能从AC 边穿出磁场,则匀强磁场的大小B 需满足( )A .B >3mv 3aqB .B <3mv 3aqC .B >3mv aqD .B <3mv aq解析:粒子刚好达到C 点时,其运动轨迹与AC 相切,则粒子运动的半径为r 0=3a .由r =mv qB得,粒子要能从AC 边射出,粒子运动的半径r >r 0,解得B <3mv 3aq,选项B 正确. 答案:B6.如图所示,一个静止的质量为m 、带电荷量为q 的粒子(不计重力),经电压U 加速后垂直进入磁感应强度为B 的匀强磁场中,粒子打至P 点,设OP =x ,能够正确反应x 与U 之间的函数关系的是( )解析:带电粒子在电场中做加速运动,由动能定理有qU =12mv 2,带电粒子在磁场中做匀速圆周运动有x 2=mv qB ,整理得x 2=8m qB 2U ,故B 正确.答案:B二、多项选择题(本题共4小题,每小题6分,共24分,每小题有多个选项符合题意,把正确选项前的字母填在题后的括号内)7.(2017·高考全国卷Ⅰ)如图,三根相互平行的固定长直导线L 1、L 2和L 3两两等距,均通有电流I ,L 1中电流方向与L 2中的相同,与L 3中的相反.下列说法正确的是( )A.L1所受磁场作用力的方向与L2、L3所在平面垂直B.L3所受磁场作用力的方向与L1、L2所在平面垂直C.L1、L2和L3单位长度所受的磁场作用力大小之比为1∶1∶3D.L1、L2和L3单位长度所受的磁场作用力大小之比为3∶3∶1解析:同向电流相互吸引,反向电流相互排斥.对L1受力分析,如图所示,可知L1所受磁场力的方向与L2、L3所在的平面平行,故A错误;对L3受力分析,如图所示,可知L3所受磁场力的方向与L1、L2所在的平面垂直,故B正确;设三根导线间两两之间的相互作用力为F,则L、L2受到的磁场力的合力等于F,L3受的磁场力的合力1为3F,即L1、L2、L3单位长度受到的磁场力之比为1∶1∶3,故C正确,D错误.答案:BC8.一个不计重力的带电粒子以初速度v0垂直于电场方向向右射入匀强电场区域,穿出电场后接着又进入匀强磁场区域.设电场和磁场区域有明确的分界线,且分界线与电场方向平行,如下列图中的虚线所示.在选项图所示的几种情况下,可能出现的是( )解析:A、C选项中粒子在电场中向下偏转,所以粒子带正电,在进入磁场后,A图中粒子应逆时针转,C图中粒子应顺时针转,A正确,C错误.同理可以判断,B错误,D正确.答案:AD9.电子以垂直于匀强磁场的速度v,从a点进入长为d、宽为L的磁场区域,偏转后从b点离开磁场,如图所示,若磁场的磁感应强度为B,那么( )A.电子在磁场中的运动时间t=d vB.电子在磁场中的运动时间t=C.洛伦兹力对电子做的功是W=Bev2tD.电子在b点的速度值也为v解析:由于电子做的是匀速圆周运动,故运动时间t=,A 错误,B项正确;由洛伦兹力不做功可得C错误,D正确.答案:BD10.为监测某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的流量计.该装置由绝缘材料制成,长、宽、高分别为a、b、c,左右两端开口.在垂直于上下底面方向加磁感应强度大小为B的匀强磁场,在前后两个内侧面分别固定有金属板作为电极.污水充满管口中从左向右流经该装置时,接在M、N两端间的电压表将显示两极间的电压U.若用Q表示污水流量(单位时间内排出的污水体积),下列说法中正确的是( )A .N 端的电势比M 端的高B .若污水中正负离子数相同,则前后表面的电势差为零C .电压表的示数U 跟a 和b 都成正比,跟c 无关D .电压表的示数U 跟污水的流量Q 成正比解析:由左手定则可知,不管污水带何种电荷,都有φN >φM ,选项A 正确,选项B 错误.当电荷受力平衡时有qvB =q U b,v =U bB ,流量Q =Sv =cU B,选项C 错误,选项D 正确. 答案:AD三、非选择题(本题共3小题,共46分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)11.(15分)如图所示,两根平行金属导轨M 、N ,电阻不计,相距0.2 m ,上边沿导轨垂直方向放一个质量为m = 5 ×10-2kg 的金属棒ab ,ab 的电阻为0.5 Ω.两金属导轨一端通过电阻R 和电源相连,电阻R =2 Ω,电源电动势E =6 V ,电源内阻r =0.5 Ω.如果在装置所在的区域加一个匀强磁场,使ab对导轨的压力恰好是零,并使ab处于静止状态,(导轨光滑,g取10 m/s2)求所加磁场磁感应强度的大小和方向.解析:因ab对导轨压力恰好是零且处于静止状态,ab所受安培力方向一定竖直向上且大小等于重力,由左手定则可以判定B的方向应为水平向右.ab中的电流I=ER+r+r ab=62+0.5+0.5A=2 A,F=ILB=mg,B=mgIL=5×10-2×102×0.2T=1.25 T.答案:1.25 T 水平向右12.(15分)(2017·高考全国卷Ⅲ)如图,空间存在方向垂直于纸面(xOy平面)向里的磁场.在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1).一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求:(不计重力)(1)粒子运动的时间;(2)粒子与O 点间的距离.解析:(1)粒子的运动轨迹如图所示.带电粒子在匀强磁场中做匀速圆周运动的向心力由洛伦兹力提供,设在x ≥0区域,圆周半径为R 1;设在x <0区域,圆周半径为R 2.由洛伦兹力公式及牛顿第二定律得qv 0B 0=mv 20R 1① qv 0(λB 0)=mv 20R 2② 粒子速度方向转过180°时,所用时间t 1为t 1=πR 1v 0③ 粒子再转过180°时,所用时间t 2为t 2=πR 2v 0④ 联立①②③④式得,所求时间t 0=t 1+t 2=λ+1m λqB 0⑤ (2)由几何关系及①②式得,所求距离为d =2(R 1-R 2)=2λ-1mv 0λqB 0⑥ 答案:(1)λ+1m λqB 0 (2)2λ-1mv 0λqB 013.(16分)如图所示,一带电微粒质量为m =2.0×10-11kg 、 电荷量为q =+1.0×10-5C ,从静止开始经电压为U 1=100 V 的电场加速后,从两平行金属板的中间水平进入偏转电场中,微粒从金属板边缘射出电场时的偏转角θ=30°,并接着进入一个方向垂直纸面向里、宽度为D =34.6 cm 的匀强磁场区域.微粒重力忽略不计.求:(1)带电微粒进入偏转电场时的速率v 1;(2)偏转电场中两金属板间的电压U 2;(3)为使带电微粒不会由磁场右边射出,该匀强磁场的磁感应强度B 至少多大?解析:(1)带电微粒经加速电场加速后速率为v 1,根据动能定理有U 1q =12mv 21, v 1= 2U 1q m=1.0×104 m/s. (2)带电微粒在偏转电场中只受电场力作用,设微粒进入磁场时的速度为v ′,则v ′=v 1cos 30°,解得v ′=233v 1. 由动能定理有12m (v ′2-v 21)=q U 22,解得U 2=66.7 V.(3)带电微粒进入磁场做匀速圆周运动,洛伦兹力提供向心力,设微粒恰好不从磁场右边射出时,做匀速圆周运动的轨道半径为R ,由几何关系知R +R 2=D , 由牛顿运动定律及运动学规律 qv ′B =mv ′2R, 得B =0.1 T.若带电粒子不射出磁场,磁感应强度B 至少为0.1 T. 答案:(1)1.0×104 m/s (2)66.7 V (3)0.1 T。
粤教版高中物理选修3-1第三章磁场单元检测物理试卷含答案解析
粤教版高中物理选修3-1第三章磁场单元检测物理试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示,一矩形线框置于磁感应强度为B的匀强磁场中,线框平面与磁场方向平行,若线框的面积为S,则当线框左边为轴转过30°时通过线框的磁通量为()A.0 B.BS C.32SBD.2BS2.依据如图所示的“处在磁场中的通电金属棒在导轨上运动”这一实验现象及相应规律设计的家用电器是()A.电风扇B.电饭锅C.电热水壶D.电熨斗3.关于磁通量的概念,下面说法正确的是()A.磁感应强度越大的地方,穿过线圈的磁通量也越大B.磁感应强度大的地方,线圈面积越大,则穿过线圈的磁通量也越大C.穿过线圈的磁通量为零时,磁通量的变化率一定为零D.磁通量的变化不一定都是由于磁场强弱的变化产生的4.如图,由均匀的电阻丝组成的等边三角形导体框,垂直磁场放置,将AB两点接入电压恒定的电源两端,通电时,线框受到的安培力为F,若将ACB边移走,则余下线框受到的安培力大小为()A.1 4 FB.1 3 FC.1 2 FD.2 3 F5.如图所示,条形磁铁放在水平桌面上,其中央正上方固定一根直导线,导线与磁铁垂直,并通以垂直纸面向外的电流,则()A.磁铁对桌面的压力减小、不受桌面摩擦力的作用B.磁铁对桌面的压力减小、受到桌面摩擦力的作用C.磁铁对桌面的压力增大、不受桌面摩擦力的作用D.磁铁对桌面的压力增大、受到桌面摩擦力的作用6.如图所示,把一条导线平行地放在磁针的上方附近,当电流通过导线时,磁针会发生偏转.首先观察到这个实验现象的物理学家是A.奥斯特B.爱因斯坦C.伽利略D.牛顿7.在下列设备中,主要不是利用电磁铁工作的是()A.发电机B.电铃C.电磁继电器D.电磁起重机8.在等边三角形的三个顶点a、b、c处,各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图.过c点的导线所受安培力的方向A.与ab边平行,竖直向上B.与ab边平行,竖直向下C.与ab边垂直,指向左边D.与ab边垂直,指向右边9.关于电场和磁场,下列所法中错误的是( )A.电场对处于其中的电荷有力的作用B.磁场对处于其中的小磁针有力的作用C.电场线和磁感线是客观存在的D.电场和磁场都是特殊的物质10.人们早在公元前6、7世纪就发现了磁石吸铁、磁石指南等现象,如图所示是最早的指南仪器﹣﹣司南,形似勺子,勺柄是其磁体南极,则司南静止时,勺柄所指的方向是()A.东方B.北方C.西方D.南方11.关于磁感应强度FBIL,下列说法正确的是()A.电流元IL在磁场中受力为F,则磁感应强度B一定等于F ILB.磁感应强度大小与电流元IL的乘积成反比,与F成正比C.磁感应强度方向与电流元IL在此点的受力方向相同D.磁感强度大小是由磁场本身因素决定的,而与有无检验电流无关12.欧姆在探索通过导体的电流和电压、电阻关系时,因无电源和电流表,他利用金属在冷水和热水中产生电动势代替电源,用小磁针的偏转检测电源,具体做法是在地磁场作用下在水平静止的小磁针上方,平行于小磁针水平放置一直导线,当该导线中通有电流时,小磁针会发生偏转;当通过该导线电流为I时,小磁针偏转了30°,问当他发现小磁针偏转了60°,通过该直导线的电流为(直导线在某点产生的磁场与通过直导线的电流成正比()A.2I B.3I C.I D.无法确定13.回旋加速器是利用较低电压的高频电源使粒子经多次加速获得巨大速度的一种仪器,工作原理如图.下列说法正确的是()A.粒子由A0运动到A1比粒子由A2运动到A3所用时间少B.在D形盒半径和磁感应强度一定情况下,同一粒子获得的动能与交流电源电压有关C.粒子的能量由电场提供D.高频电源的周期与被加速带电粒子做匀速圆周运动的周期无关二、多选题14.下列表述正确的是()A.洛伦兹发现了磁场对运动电荷的作用规律B.焦耳发现了电流通过导体时产生热效应的规律C.行星在圆周轨道上保持匀速率运动的性质是惯性D.物体先对地面产生压力,然后地面才对物体产生支持力15.如图,两根相互平行的金属导轨水平放置于如图所示的匀强磁场中,与导轨接触良好的导体棒AB和CD可以在导轨上自由滑动,当AB在外力F作用下向右运动时,下列说法正确的()A.导体棒CD内有电流通过,方向是D→CB.导体棒CD内有电流通过,方向是C→DC.磁场对导体棒CD的作用力向左D.磁场对导体棒CD的作用力向右16.如图所示,一根通电直导线垂直放在磁感应强度为B的匀强磁场中,以导线截面的中心为圆心,半径为r的圆周上有a、b、c、d四个点,已知c点的实际磁感应强度为零,则下列叙述正确的是()A.直导线中的电流方向垂直纸面向外B.b点的实际磁感应强度大小为C.a点的实际磁感应强度大小为2BD.d点的实际磁感应强度跟b点的相同17.如图所示,两根足够长的直金属导轨平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,底端接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直,导轨和杆ab 的电阻可忽略.整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向上.让杆ab 沿轨道由静止开始下滑,导轨和杆ab 接触良好,不计它们之间的摩擦,杆ab 由静止下滑距离S 时,已处于匀速运动.重力加速度为g .则( )A .匀速运动时杆ab 的速度为22sin mgR B L B .匀速运动时杆ab 受到的安培力大小为mgsinθC .杆ab 由静止下滑距离S 过程中,安培力做功为mgSsinθD .杆ab 由静止下滑距离S 过程中,电阻R 产生的热量为mgSsinθ三、填空题18.如图所示在通电螺丝管内部中间的小磁针,静止时N 极指向右端,则电源的c 端为电源________极,(填“正”或“负”)螺线管的a 端为等效磁极的________极.(填“N”或“S”)19.一矩形线圈面积S=10-2m 2,它和匀强磁场方向之间的夹角θ1=30°,穿过线圈的磁通量Ф=1×103Wb ,则磁场的磁感强度B=________Wb ;若线圈平面和磁场方向之间的夹角变为θ2=0°,则Ф=________.20.如图所示,虚线框内空间中同时存在着匀强电场和匀强磁场,匀强电场的电场线方向竖直向上,电场强度E=6×104V/m ,匀强磁场的磁感线未在图中画出,一带正电的粒子按图示方向垂直进入虚线框空间中,速度v=2×105m/s .如要求带电粒子在虚线框空间做匀速运动,磁场中磁感受线的方向如何?磁感应强度大小如何?(带电粒子所受重力忽略不计)四、解答题21.如图所示,t=0时,竖直向上的匀强磁场磁感应强度B 0=0.5T ,并且以 ΔB Δt =1T/s 在变化,水平导轨不计电阻,且不计摩擦阻力,宽为0.5m ,长L=0.8m .在导轨上搁一导体杆ab ,电阻R 0=0.1Ω,并且水平细绳通过定滑轮吊着质量M=2kg 的重物,电阻R=0.4Ω,问经过多少时间能吊起重物?(g=10m/s2)22.如图,一长为10cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘,金属棒通过开关与一电动势为12V的电池相连,电路总电阻为2Ω.已知开关断开时两弹簧的伸长量均为0.5cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3cm,重力加速度大小取10m/s2.判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量.23.如图所示,矩形导线框abcd处在磁感应强度B=0.2T的有理想边界的匀强磁场中,线框ab边长0.1m,bc边长为0.2m,求:(1)线框在图示位置时穿过线框的磁通量;(2)线框向右水平移动0.1m时,穿过线框的磁通量.24.如图所示,两根光滑平行的金属导轨相距5m,固定在水平面上,导轨之间接有电源盒开关,整个装置处于磁感应强度为2T,方向与导轨平行的匀强磁场中.当开关闭合时,一根垂直放在导轨上的导体棒MN恰好对金属导轨没有压力.若导体棒MN的质量为4kg,电阻为2Ω,电源的内阻为0.5Ω,其余部分电阻忽略不计,g=10m/s2.求:(1)通过导体棒MN的电流大小;(2)电源的电动势.25.有一个圆形线框面积为S,放在磁感应强度为B的匀强磁场中,(1)为使通过此线框的磁通量最大,线框应如何放置?磁通量的最大值是多少?(2)为使通过此线框的磁通量最小,线框应如何放置,磁通量的最小值是多少?参考答案1.D【详解】由磁通量表达式Φ=BSS 指垂直磁感线的有效面积,则可知转过30°时的磁通量Φ=BS sin30°=12BS 故选D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末复习课【知识体系】磁场⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧产生:电流(运动电荷)产生磁场——磁现象的电本质描述⎩⎪⎨⎪⎧物理量⎩⎪⎨⎪⎧磁感应强度B = ,要求I 、B 垂直,矢量,与F 、I 无关,是用比值定义的物理量磁通量Φ= ,S 是垂直B 方向上的 ,标量,有正负之分形象描述⎩⎪⎨⎪⎧磁感线:用来描述磁场的人为曲线,方向、疏密各代表不同的物理意义几种典型的磁场的磁感线分布:直线电流、环形电流、通电螺线管、匀强磁场相互作用⎩⎪⎪⎪⎨⎪⎪⎪⎧安培力⎩⎪⎨⎪⎧磁场对直线电流的作用:F =BIL sin θ方向:由 判定磁场对通电线圈的作用,磁力矩M =BIS cos θ直线电流间的相互作用:同向 ,反向洛伦兹力⎩⎪⎨⎪⎧磁场对运动电荷的作用F = ,此式只适应于v 、B 垂直的情况v 、B 不垂直时,F =qvB sin θ,θ是v 、B 夹角方向:左手定则特点:洛伦兹力对带电粒子永远不做功带电粒子在匀强磁场中的匀速圆周运动F 洛=F 向,R = ,T = [答案填写]F IL BS 投影面积 左手定则 相吸 相斥 qvB mv qB 2πm qB主题1 磁场对电流的作用——安培力1.分析在安培力作用下通电导体运动情况的一般步骤. (1)画出通电导线所在处的磁感线方向及分布情况. (2)用左手定则确定各段通电导线所受安培力. (3)据初速度方向结合牛顿定律确定导体运动情况. 2.注意问题.(1)公式F =BIL 中L 为导线的有效长度.(2)安培力的作用点为磁场中通电导体的几何中心. (3)安培力做功:做功的结果将电能转化成其他形式的能.【典例1】 如图所示,光滑导轨与水平面成α角,导轨宽L .匀强磁场磁感应强度为B .金属杆长为L ,质量为m ,水平放在导轨上.当回路总电流为I 1时,金属杆正好能静止.则(1)这时B 至少多大?B 的方向如何?(2)若保持B 的大小不变而将B 的方向改为竖直向上,应把回路总电流I 2调到多大才能使金属杆保持静止?解析:解这类题时必须先画出截面图,只有在截面图上才能正确表示各力的准确方向,从而理清各矢量方向之间的关系.(1)画出金属杆的截面图.由三角形定则得,只有当安培力方向沿导轨平面向上时安培力才最小,B 也最小.根据左手定则,这时B 应垂直于导轨平面向上,大小满足BI 1L =mg sin α,B =mg sin αI 1L.(2)当B 的方向改为竖直向上时,这时安培力的方向变为水平向右,要使金属杆保持静止,应使沿导轨方向的合力为零,得BI 2L cos α=mg sin α,I 2=I 1cos α.答案:(1)mg sin αI 1L垂直于导轨平面向上 (2)I 1cos α 针对训练1.质量为m 、长度为L 的导体棒MN 静止于水平导轨上,通过MN 的电流为I ,匀强磁场的磁感应强度为B ,方向与导轨平面成θ角斜向下,如图所示.求棒MN 受到的支持力和摩擦力.解析:由左手定则判断安培力的方向时,要注意安培力的方向既垂直于电流方向又垂直于磁场方向,垂直于电流方向和磁场方向所决定的平面,棒MN 受力分析如图所示。
由平衡条件有水平方向F f =F sin θ,竖直方向F N =F cos θ+mg .且F =BIL ,从而得F f =BIL sin θ.答案:F cos θ+mg BIL sin θ主题2 磁场对运动电荷的作用——洛伦兹力1.带电粒子在无界匀强磁场中的运动:完整的圆周运动.2.带电粒子在有界匀强磁场中的运动:部分圆周运动(偏转).3.解题一般思路和步骤.(1)利用辅助线确定圆心.(2)利用几何关系确定和计算轨道半径.(3)利用有关公式列方程求解.4.带电粒子通过有界磁场.(1)直线边界(进出磁场具有对称性,如图).(2)平行边界(存在临界条件,如图).(3)圆形边界(沿径向射入必沿径向射出,如图).【典例2】如图所示,带异种电荷的粒子a、b以相同的动能同时从O点射入宽度为d 的有界匀强磁场,两粒子的入射方向与磁场边界的夹角分别为30°和60°,且同时到达P 点.则a、b两粒子的质量之比为多少?解析:粒子a 、b 动能相同,有12m a v 2a =12m b v 2v ,则m a mb =⎝ ⎛⎭⎪⎫v b v a 2,a 粒子在磁场中运动轨迹半径r a =d3,b 粒子在磁场中运动轨迹半径r b =d ,a 粒子在磁场中运动轨迹所对的圆心角为120°,轨迹弧长为s a =2πr a 3=2πd 33,运动时间t a =s av a ,b 粒子在磁场中运动轨迹所对的圆心角为60°,轨迹弧长为s b =πr b 3=πd 3,运动时间t b =s bv b ,又因a 、b 同时到达P 点,所以t a =t b ,联立上式得v av b=23,m a m b =34. 答案:3∶4 针对训练2.如图所示,重力不计、初速度为v 的正电荷,从a 点沿水平方向射入有明显左边界的匀强磁场,磁场方向垂直纸面向里,若边界右侧的磁场范围足够大,该电荷进入磁场后( )A .动能发生改变B .运动轨迹是一个完整的圆,正电荷始终在磁场中运动C .运动轨迹是一个半圆,并从a 点上方某处穿出边界向左射出D .运动轨迹是一个半圆,并从a 点下方某处穿出边界向左射出解析:洛伦兹力不做功,电荷的动能不变,A 错误;由左手定则知,正电荷刚进入磁场时受到的洛伦兹力的方向向上,电荷在匀强磁场中做匀速圆周运动,运动轨迹是一个半圆,并从a 点上方某处穿出边界向左射出,B 、D 均错误,C 正确.答案:C主题3 带电粒子在复合场中的运动1.复合场:电场、磁场、重力场共存,或其中两场共存.2.组合场:电场和磁场各位于一定的区域内,并不重叠或在同一区域,电场、磁场交替出现.3.三种场的比较.名称力的特点功和能的特点重力场大小:G=mg方向:竖直向下重力做功与路径无关,重力做功改变物体的重力势能电场大小:F=qE,方向:正电荷受力方向与场强方向相同;负电荷受力方向与场强方向相反电场力做功与路径无关,W=qU,电场力做功改变物体的电势能磁场洛伦兹力f=qvB,方向符合左手定则洛伦兹力不做功,不改变带电粒子的动能(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等一般考虑其重力.(2)在题目中有明确说明是否要考虑重力的,这种情况按题目要求处理比较正规,也比较简单.(3)不能直接判断是否要考虑重力的,在受力分析与运动分析时,要结合运动状态确定是否要考虑重力.【典例3】如图所示,在直角坐标系的第一、二象限内有垂直于纸面的匀强磁场,第三象限有沿y轴负方向的匀强电场,第四象限内无电场和磁场.质量为m、电荷量为q的粒子从M点以速度v0沿x轴负方向进入电场,不计粒子的重力,粒子经N、P最后又回到M点.设OM=L,ON=2 L.求:(1)电场强度E的大小;(2)匀强磁场的方向;(3)磁感应强度B的大小.解析:如图所示,带电粒子从M点进入第三象限做类平抛运动,-x方向上为匀速直线运动,+y方向上为匀加速直线运动,粒子带负电;从N点进入第一、二象限内的匀强磁场区做匀速圆周运动;从P点回到M点是匀速直线运动.(1)带电粒子在第三象限:L =12qE m t 2,且2L =v 0t ,则E =mv 22qL .①(2)粒子带负电,由左手定则可知匀强磁场的方向为垂直纸面向里.(3)设粒子到达N 点的速度为v ,如图所示,设运动方向与x 轴负方向的夹角为θ, 由动能定理得qEL =12mv 2-12mv 20,将①式中的E 代入可得v =2v 0,所以θ=45°.粒子在磁场中做匀速圆周运动,经过P 点时速度方向也与z 轴负方向成45°角. 则OP =OM =L ,NP =NO +OP =3L , 半径为R =NP cos 45°=32L ,又R =mv qB, 解得B =2mv 03qL.答案:(1)mv 202qL (2)垂直纸面向里 (3)2mv 03qL针对训练3.如图所示,空间中存在着水平向右的匀强电场,电场强度大小E =5 3 N/C ,同时存在着水平方向的匀强磁场,其方向与电场方向垂直,磁感应强度大小B =0.5 T .有一带正电的小球,质量m =1.0×10-6kg ,电荷量q =2×10-6C ,正以速度v 在图示的竖直面内做匀速直线运动,当经过P 点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),g 取10 m/s 2.求:(1)小球做匀速直线运动的速度v 的大小和方向.(2)从撤掉磁场到小球再次穿过P 点所在的这条电场线经历的时间t .解析:(1)小球匀速直线运动时受力如图,其所受的三个力在同一平面内,合力为零,有qvB =q 2E 2+m 2g 2,①代入数据解得v =20 m/s ,②速度v 的方向与电场E 的方向之间的夹角θ满足tan θ=qE mg,③ 代入数据解得tan θ=3, 故θ=60°.④ (2)解法一:撤去磁场,小球在重力与电场力的合力作用下做类平抛运动,设其加速度为a ,有a =q 2E 2+m 2g 2m,⑤设撤掉磁场后小球在初速度方向上的分位移为x ,有x =vt ,⑥设小球在重力与电场力的合力方向上分位移为y ,有y =12at 2,⑦a 与mg 的夹角和v 与E 的夹角相同,均为θ,又tan θ=y x,⑧联立④⑤⑥⑦⑧式,代入数据解得t =2 3 s =3.5 s .⑨解法二:撤去磁场后,由于电场力垂直于竖直方向,他对竖直方向的分运动没有影响,以P 点为坐标原点,竖直向上为正方向,小球在竖直向上做匀减速运动,其初速度为v y =v sin θ,⑤若使小球再次穿过P 点所在的电场线,仅需小球的竖直方向上的分位移为零,则有v y t -12gt 2=0,⑥联立⑤⑥式,代入数据解得t =2 3 s =3.5 s.答案:(1)20 m/s 速度v 的方向与电场E 的方向之间的夹角为60° (2)3.5 s统揽考情历年高考对本章知识的考查覆盖面大,几乎每个知识点都会考查到,特别是左手定则和带电粒子在磁场中运动更是两个命题频率最高的知识点,且题目难度大,对考生的空间想象能力、物理过程和运动规律的综合分析能力要求较高,且不仅考查对安培力的理解,而且考查能将它和其他力放在一起,综合分析和解决复杂问题的能力;而带电粒子在磁场中的运动考查能否正确解决包括洛伦兹力在内的复杂综合性力学问题,考查综合能力的特点.试题题型全面,难度中等偏难.预计今后的题目更趋于综合能力考查.真题例析(2018·全国卷Ⅲ)如图,从离子源产生的甲、乙两种离子,由静止经加速电压U 加速后在纸面内水平向右运动,自M 点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v 1,并在磁场边界的N 点射出;乙种离子在MN 的中点射出;MN 长为l .不计重力影响和离子间相互作用.求(1)磁场的磁感应强度大小; (2)甲、乙两种离子的比荷之比.解析:(1)设甲种离子所带电荷量为q 1、质量为m 1,在磁场中做匀速圆周运动的半径为R 1,磁场的磁感应强度大小为B ,由动能定理,有q 1U =12m 1v 21,①由洛伦兹力公式和牛顿第二定律,有q 1v 1B =m 1v 21R 1,②由几何关系,得 2R 1=l ,③ 联立①②③式解得 B =4Ulv 1.④ (2)设乙种离子所带电荷量为q 2、质量为m 2,射入磁场的速度为v 2,在磁场中做匀速圆周运动的半径为R 2.同理有q 2U =12m 2v 22,⑤q 2v 2B =m 2v 22R 2,⑥由题给条件有2R 2=l2,⑦联立①②③⑤⑥⑦式,得甲、乙两种离子的比荷之比为q 1m 1∶q 2m 2=1∶4.⑧ 答案:(1)4Ulv 1(2)1∶4针对训练(2018·全国卷Ⅱ)(多选)如图,纸面内有两条互相垂直的长直绝缘导线L 1、L 2,L 1中的电流方向向左,L 2中的电流方向向上;L 1的正上方有a 、b 两点,它们相对于L 2对称.整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B 0,方向垂直于纸面向外.已知a 、b 两点的磁感应强度大小分别为13B 0和12B 0,方向也垂直于纸面向外.则( )A .流经L 1的电流在b 点产生的磁感应强度大小为712B 0B .流经L 1的电流在a 点产生的磁感应强度大小为112B 0C .流经L 2的电流在b 点产生的磁感应强度大小为112B 0D .流经L 2的电流在a 点产生的磁感应强度大小为712B 0解析:A 、C 对:原磁场、电流的磁场方向如图所示,由题意知在b 点:12B 0=B 0-B 1+B 2在a 点:13B 0=B 0-B 1-B 2由上述两式解得B 1=712B 0,B 2=112B 0.答案:AC1.(2018·北京卷)某空间存在匀强磁场和匀强电场.一个带电粒子(不计重力)以一定初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动.下列因素与完成上述两类运动无关的是( )A.磁场和电场的方向B.磁场和电场的强弱C.粒子的电性和电量D.粒子入射时的速度解析:在匀强磁场和匀强电场的叠加区域内,带电粒子做匀速直线运动,则速度方向与电场方向和磁场方向均垂直,qvB=qE,故v=EB.因此粒子是否在“速度选择器”中做匀速直线运动,与粒子的电性、电量均无关.撤去电场时,粒子速度方向仍与磁场垂直,满足做匀速圆周运动的条件.答案:C2.如图所示,金属棒MN两端由等长的轻质绝缘细线水平悬挂,处于垂直纸面水平向里的匀强磁场中,棒中通有由M到N的恒定电流I,细线的拉力不为零,两细线竖直.现将匀强磁场磁感应强度B大小保持不变,方向缓慢地转过90°变为竖直向下,在这个过程中( )A.细线向纸面内偏转,其中的拉力一直增大B.细线向纸面外偏转,其中的拉力一直增大C.细线向纸面内偏转,其中的拉力先增大后减小D.细线向纸面外偏转,其中的拉力先增大后减小解析:开始时,金属棒的重力和安培力大小相等.当磁场方向由垂直纸面向里缓慢地转过90°变为竖直向下,知安培力的大小F A=BIL不变,方向由竖直向上向里变为垂直纸面向里.根据共点力平衡知,细线向纸面内偏转,因为金属棒受重力、拉力和安培力平衡,重力和安培力的合力于拉力大小等值方向,重力和安培力的大小不变,之间的夹角由180°变为90°,知两个力的合力一直增大,所以拉力一直增大,故A正确,B、C、D错误.答案:A3.(2019·全国卷Ⅱ)如图,边长为l的正方形abcd内存在匀强磁场,磁感应强度大小为B,方向垂直于纸面(abcd所在平面)向外.ab边中点有一电子发源O,可向磁场内沿垂直于ab边的方向发射电子.已知电子的比荷为k.则从a、d两点射出的电子的速度大小分别为( )A.14kBl ,54kBlB.14kBl ,54kBlC.12kBl ,54kBlD.12kBl ,54kBl 解析:a 点射出粒子半径R a =l 4=mv aBq ,得 v a =Bql 4m =Blk 4; d 点射出粒子半径为R 2d =l 2+⎝ ⎛⎭⎪⎫R d -l 22,R d =54l , 故v d =5Bql 4m =5klB 4,故B 选项符合题意. 答案:B4.(2018·天津卷)如图所示,在水平线ab 的下方有一匀强电场,电场强度为E ,方向竖直向下,ab 的上方存在匀强磁场,磁感应强度为B ,方向垂直纸面向里,磁场中有一内、外半径分别为R 、3R 的半圆环形区域,外圆与ab 的交点分别为M 、N .一质量为m 、电荷量为q 的带负电粒子在电场中P 点静止释放,由M 进入磁场,从N 射出.不计粒子重力.(1)求粒子从P 到M 所用的时间t .(2)若粒子从与P 同一水平线上的Q 点水平射出,同样能由M 进入磁场,从N 射出,粒子从M 到N 的过程中,始终在环形区域中运动,且所用的时间最少,求粒子在Q 时速度v 0的大小.解析:(1)设粒子在磁场中运动的速度大小为v ,所受洛伦兹力提供向心力,有qvB =mv 23R,① 设粒子在电场中运动所受电场力为F ,有F =qE ,②设粒子在电场中运动的加速度为a ,根据牛顿第二定律,有F =ma ,③粒子在电场中做初速度为零的匀加速直线运动,有v =at ,④联立①②③④式,解得t=3RB E.(2)粒子进入匀强磁场后做匀速圆周运动,其周期与速度、半径无关,运动时间只由粒子所通过的圆弧所对的圆心角的大小决定.故当轨迹与内圆相切时,所用的时间最短.设粒子在磁场中的轨迹半径为r′,由几何关系,可得(r′-R)2+(3R)2=r′2,⑤设粒子进入磁场时速度方向与ab的夹角为θ,即圆弧所对圆心角的一半,由几何关系,知tan θ=3Rr′-R,⑥粒子从Q射出后在电场中做类平抛运动,在电场方向上的分运动和从P释放后的运动情况相同,所以粒子进入磁场时沿竖直方向的速度同样为v.在垂直于电场方向上的分速度始终等于v0,由运动的合成和分解,可得tan θ=vv0,⑦联立①⑤⑥⑦式,解得v0=qBR m.答案:(1)3RBE(2)qBRm5.(2018·全国卷Ⅱ)一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条形区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N 点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M 点射入时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x 轴正方向的夹角为π6,求该粒子的比荷及其从M 点运动到N 点的时间.解析:(1)粒子运动的轨迹如图(a)所示.(粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称)(2)粒子从电场下边界入射后在电场中做类平抛运动.设粒子从M 点射入时速度的大小为v 0,在下侧电场中运动的时间为t ,加速度的大小为a ;粒子进入磁场的速度大小为v ,方向与电场方向的夹角为θ[如图(b)],速度沿电场方向的分量为v 1.根据牛顿第二定律,有qE =ma ,①式中q 和m 分别为粒子的电荷量和质量.由运动学公式,有v 1=at ,②l ′=v 0t ,③v 1=v cos θ,④粒子在磁场中做匀速圆周运动,设其运动轨道半径为R ,由洛伦兹力公式和牛顿第二定律,得qvB =mv 2R,⑤ 由几何关系,得l =2R cos θ,⑥联立①②③④⑤⑥式,得v 0=2El ′Bl.⑦ (3)由运动学公式和题给数据,得v 1=v 0cot π6,⑧联立①②③⑦⑧式,得 q m =43El ′B 2l 2;⑨ 设粒子由M 点运动到N 点所用的时间为t ′,则t ′=2t +2⎝ ⎛⎭⎪⎫π2-π62πT ,⑩ 式中T 是粒子在磁场中做匀速圆周运动的周期, T =2πm qB,⑪ 由③⑦⑨⑩⑪式,得t ′=Bl E ⎝ ⎛⎭⎪⎫1+3πl 18l ′. 答案:(1)见解析 (2)2El ′Bl(3)43El ′B 2l 2 Bl E ⎝ ⎛⎭⎪⎫1+3πl 18l ′。