2016中考数学第四章+第6讲+尺规作图复习(优秀(优秀课件))

合集下载

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题练习《尺规作图》【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【基础检测】1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO=a ,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC(1)线段BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题:A B C①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【达标检测】一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D 两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是。

中考数学尺规作图专题复习(含答案)电子教案

中考数学尺规作图专题复习(含答案)电子教案

中考尺规作图专题复习(含答案)尺规作图定义: 用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画 等长的线段,画等角。

1. 直线垂线的画法:【分析】:以点 C 为圆心,任意长为半径画弧交直线与 A ,B 两点,再分别以点 A , B 为1圆心,大于 2 AB 的长为半径画圆弧,分别交直线 l 两侧于点 M ,N ,连接 MN ,则 MN 即为所求的垂线 线 AB 两侧于点 C , D ,连接 CD ,则 CD 即为所求的线段3. 角平分线的画法12 AB 的长为半径画圆弧,分别交直 AB 的垂直平分线.A ,B 为圆心,大于【分析】 1. 选角顶点 O为圆心,任意长为半径画圆,分别交角两边 A,B 点,再分别以1A,B为圆心,大于AB 的长为半径画圆弧,交 H点,连接 OH,并延长,则射线 OH 即为所求的角平分线 .4. 等长的线段的画法直接用圆规量取即可。

【分析】以 O 为圆心,任意长为半径画圆,交原角的两边为 A,B 两点,连接AB;画一条射线 l ,以上面的那个半径为半径, l 的顶点 K为圆心画圆,交 l 与L,以 L为圆心, AB 为半径画圆,交以 K为圆心, KL 为半径的圆与 M点,连接KM,则角 LKM即为所求 .备注:1. 尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分 .例题讲解例题 1. 已知线段 a,求作△ ABC,使 AB=BC=AC=a.解:作法如下 :①作线段 BC=a;(先作射线 BD, BD截取 BC=a) .②分别以 B、C为圆心,以 a 半径画弧,两弧交于点 A;③连接 AB、 AC.则△ ABC 要求作三角形解:作法如下:①作∠ MAN=∠α;②以点 A 为圆心, a 为半径画弧,分别交射线 AM ,AN 于点 B ,C.③ 连接 B , C.△ ABC 即为所求作三角形 .例 3.( 深圳中考 ) 如图,已知△ ABC , AB <BC ,用尺规作图的方法在 BC 上取一点 P ,使得 PA + PC =BC ,则下列选项中,正确的是 (D)解析】由题意知,做出 AB 的垂直平分线和 BC 的交点即可。

(完整版)中考数学尺规作图专题复习(含答案)

(完整版)中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。

1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。

5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。

中考数学复习—尺规作图训练PPT优秀课件

中考数学复习—尺规作图训练PPT优秀课件

中考数学复习—尺规作图训练PPT优秀 课件
5.如图,已知锐角△ABC. (1)过点 A 作 BC 边的垂线 MN,交 BC 于点 D(用尺规作图法, 保留作图痕迹,不要求写作法); (2)在(1)的条件下,若 BC=5,AD=4,tan∠BAD=43,求 DC 的长.
中考数学复习—尺规作图训练PPT优秀 课件
9.如图,已知线段 a 及∠α(∠α<90°).
(1)作等腰△ABC 并使得所作等腰△ABC 腰长为 a,且底角等 于∠α(尺规作图,保留作图痕迹,不写作法);
(2)若 a=4,∠α=30°,求(1)中所作△ABC 的面积.
中考数学复习—尺规作图训练PPT优秀 课件
中考数学复习—尺规作图训练PPT优秀 课件
解:(1)如图,E 点即为所求. (2)∵四边形 ABCD 是平行四边形, ∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB, ∵AE 是∠BAD 的平分线,∴∠DAE=∠BAE, ∴∠BAE=∠BEA,∴BE=BA=5, ∴CE=BC-BE=3.故答案为 3.
中考数学复习—尺规作图训练PPT优秀 课件
6.如图,⊙O 为锐角△ABC 的外接圆,半径为 5. (1)用尺规作图作出∠BAC 的平分线,并标出它与劣弧 的交 点 E(保留作图痕迹,不写作法); (2)若(1)中的点 E 到弦 BC 的距离为 3,求弦 CE 的长.
中考数学复习—尺规作图训练PPT优秀 课件
中考数学复习—尺规作图训练PPT优秀 课件
中考数学复习—尺规作图训练PPT优秀 课件
解:(1)如图,MN 即为所求. (2)∵AD⊥BC,∴∠ADB=∠ADC=90°. 在 Rt△ABD 中,∵tan∠BAD=ABDD=43, ∴BD=34×4=3,∴DC=BC-BD=5-3=2.

浙教版初中数学中考复习:尺规作图及命题、证明 (共38张PPT)【优秀课件】

浙教版初中数学中考复习:尺规作图及命题、证明 (共38张PPT)【优秀课件】
19
解析:
20
考点四:尺规作图的综合应用
21
解析:
22
考点四:尺规作图的综合应用
• 【例】(2018·湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作 图考他的大臣:
• ①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点; • ②分别以点A、D为圆心,AC长为半径画弧,G是两弧的一个交点; • ③连结OG. • 问:OG的长是多少? • 大臣给出的正确答案应是( )
尺规作图及命题、证明
命题趋势:
• 主要是考查利用尺规作图解决实际问题的能力,中考试题题型主要以设计 、探究形式的解答题为主.
2
考点一:基本尺规作图 • 尺规作图:在几何作图里,我们把用没有刻度的直尺和圆规作图,简称为尺规
作图.
• 基本作图:
• (1)作一条线段等于已知线段; (2)作一个角等于已知角; (3)作一个角的平分线;
C. ③
D. ④
5
解析:
• 【解析】①是作一个角等于已知角的正确方法;

②是作一个角的平分线的正确作法;

③是作一条线段的垂直平分线,但缺少另一个交点,作法错误;

④是过直线外一点P作已知直线的垂线的正确作法.
• 【思维提升】尺规作图的关键:①先分析题目,读懂题意,判断题目要求作什么;

②读懂题意后,再运用几种基本作图方法解决问题;
23
解析:
24
考点四:尺规作图的综合应用
25
解析:
26
解析:
27
考点五:命题、定理、证明 • 定义与命题:
• (1)能清楚地规定某一名词或术语的意义的句子叫做该名称或术语的定义. • (2)判断某一件事情的句子叫做命题.正确的命题称为真命题;不正确的命题称为

中考数学尺规作图专题复习(含答案)

中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。

1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。

5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。

【中考数学考点复习】第一节 尺规作图 课件(23张PPT)

【中考数学考点复习】第一节  尺规作图 课件(23张PPT)
段的垂
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线

第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;

4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.

中考复习专题:尺规作图课件(共38张PPT)

中考复习专题:尺规作图课件(共38张PPT)

优秀ppt公开课ppt免费课件下载免费 课件20 20年 中考复 习专题 :尺规 作图课 件(共38 张PPT)
下列结论中错误的是( C )
A.∠CEO=∠DEO
C.∠OCD=∠ECD
B.CM=MD D.S 四边形 OCED=12CD·OE
优秀ppt公开课ppt免费课件下载免费 课件20 20年 中考复 习专题 :尺规 作图课 件(成:过不在同一直线上的三点作圆;作三角形的外接圆、内 切圆;作圆的内接正方形和正六边形.
4.在尺规作图中,了解作图的道理,保留作图的痕迹,不要求写出作法.
考情分析:尺规作图是中考的高频考点,但是很少单独考查,具有鲜明的特点:
一是利用尺规作图作三角形、作已知角的平分线、作已知线段的垂直平分线以及过 一点作已知直线的垂线等,同时给出作图语言让学生补全图形,并结合图形条件进 行推理和计算;二是利用尺规作图结合图形变化进行图案设计,均为解答题.考查 的难度、操作与开放的力度或会增加,建议复习时要特别关注作图要求的训练落 实.
1.分别以点A,B为圆心,以 大大于于12AABB的的长长 为 半径,两弧交于M,N两点;2.作直线MN,则 直直线线MMNN 即为线段AB的垂直平分线
过一点作已
知直线的垂 线(已知点P 和直线l)
点P在直线l上
大于 1AB 的长 1.以点P为圆心,以适当长2 为半径 作弧,分别交 直线l于A,B两点;2.分别以点A,B为圆心,以 大于适当长A为B半的径长 为半径作弧,交于M,N两点; 3.过点M,N作直线,则直线MN即为所求垂线
人教版九年级数学
中考复习专题
尺规作图
课标解读:1.能用尺规完成以下基本作图:作一条线段等于已知线段;作一个
角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的 垂线.

人教版九年级数学下册《专题学习:尺规作图(一)》PPT

人教版九年级数学下册《专题学习:尺规作图(一)》PPT
C
A
B
例题解析:
解:(1)作图如图1: (2)证明:如图2, 连接OC, ∵OA=OC,∠A=25° ∴∠BOC=50°, 又∵∠B=40°, ∴∠BOC+∠B=90° ∴∠OCB=90° ∴OC⊥BC ∴BC是ʘO的切线.
当堂练学:
●1.用直尺和圆规作一个角等于已知角,如图,能得出 ∠A′O′B′=∠AOB的依据是( )
●A. ①②③
B.①②④
C.①③④
D. ②③④
当堂练学:
●3.如图,在Rt△ABC中,∠B=90°,分别以点 A、C为圆心,大于AC长为半径画弧,两弧 相交于点M、N,连接MN,与AC、BC分别 交于点D、E,连接AE.ABC
●(1)求∠ADE;(直接写出结果) A
●(2)当AB=3,AC=5时,求△ABE的周长.
● 1、知识总结:初中数学5个基本尺规作图方法(作一个角等于已知角;
● 作已知角的角平分线;做已知线段的垂直平分线;过一点作已知直线的垂线;过直线外一点做 已知直线的平。
● 3、出示小组得分,进行小组评价,评出优胜小组。
谢 谢!
B
C
解析:
● 解:(1)∵由题意可知MN是线段AC的垂直平分线, ●∴∠ADE=90°; ●(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5, ●∴BC==4, ●∵MN是线段AC的垂直平分线, ●∴AE=CE, ●∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.
小结评学:
专题学习:尺规作图(一)
目标领学:
●教学目标: (一)知识目标:1、进一步熟练尺规作图。2、掌握尺规的基 本作图。3、进一步学习解尺规作图题,会写已知、求作和作法,以及掌 握准确的作图语言。4、运用尺规基本作图解决有关的作图问题.

初三数学复习尺规作图ppt课件

初三数学复习尺规作图ppt课件

⊙O就是所求作的圆
10
A O
B
C
O
A
B C
直角三角形外心是斜边AB
的中点
钝角三角形外心在 △ABC的外面 11
已知: △ABC(如图) 求作:△ABC的内切圆
A
N OM
B
D
C
作法:1. 作∠ABC、 ∠ACB的平分线BM和 CN,交点为O.
2. 过点O作OD⊥BC,垂足为D.
3. 以O为圆心,OD为半径作⊙O.
. D. B . C
. B,,C,,D,, O
C
使得 OA, OB, OC, OD, 1
OA OB OC OD 2
(4)顺次连接A,B,,B,C,,C,D,,D,A,,得到
19
A D
B
C. O.
C

D
B. .
点O也在四边形ABCD外
A(点O在这两个四边形的两侧20 )
点O在四边形ABCD内
a
⑶ 以B为圆心,b为半径画弧,交射线CN于点 A; ⑷ 连接AB; (5)△ABC即为所求的直 角三角形
9
已知:不在同一直线上的三点
A、B、C
求作:⊙O,使它经过A、B、C
B
作法:
F A O
1、连结AB,作线段AB的垂
C
直平分线DE,
G
2、连结BC,作线段BC的垂直平
分线FG,交DE于点O,
3、以O为圆心,OB为半径作圆,
顶点的位置确定,只要能分别作
B
出这三个顶点关于直线l 的对称
点,连接这些对称点,就能得到
C
要作的图形。
A O
l
作法: 1、过点A作直线l 的垂线,垂足

中考数学《尺规作图》复习课件

中考数学《尺规作图》复习课件

出已知线段的和、差、倍等线段.
回练课本
2.作一个角等于已知角
2.
作法:①作射线 O'A';②以点 O
为圆心,以任意长为半径画弧,
交 OA 于点 C,交 OB 于点 D;③
以 O'为圆心,以 OC 的长为半径
画弧,交 O'A'于点 C';④以 C'为
圆心,以 CD 的长为半径画弧,交
前弧于点 D';⑤过点 D'作射线
解:(1)如图,∠ADE 为所作.
(2)∵∠ADE=∠ACB,∴DE∥BC, ∵点 D 是 AC 的中点, ∴DE 为△ABC 的中位线, ∴DE=������������BC=������������.
4.(2019 陕西)如图,在△ABC 中,AB=AC,AD 是 BC 边上的高.请用尺 规作图法,求作△ABC 的外接圆(保留作图痕迹,不写作法).
(2)∵D 是 AB 中点,E 是 AC 中点,
∴DE 是△ABC 的中位线.∴DE ∥BC,且
������������.
∴△ADE ∽△ABC.则 △ =
2=������.

又 △ =2,∴ △ =8.
3.(2019 赤峰)如图,已知 AC 是▱ ABCD 的对角线.
(1)用直尺和圆规作出线段 AC 的垂直平分线,与 AD 相交于点 E,连接 CE(保留作图痕迹,不要求写作法); (2)在(1)的条件下,若 AB=3,BC=5,求△DCE 的周长.
解:(1)如图,点P即为所求. (2)理由:角的平分线上的点到角的两边的距离相等、垂直平 分线上的点到线段两端点的距离相等.
3.(2019 茂名一模)如图,在△ABC 中,AB>AC,点 D 在边 AC 上.

中考复习课件——尺规作图

中考复习课件——尺规作图

图 24.4.10
(5)过一点作已知直线的垂线
典型例题: 例1:如图,有一破残的轮片,现要制作一 个与原轮片同样大小的圆形零件,请你 根据所学的有关知识,设计一种方案,确 定这个圆形零件的半径.
分析:确定圆的关键是确定圆的半径和 圆心,圆心可以看成是两直径(方法多 种)的交点.
典型例题: 例2:如图,已知三角形的两边及其夹角, 求作这个三角形. a c α 分析:尺规作图题规范要求:写出已知, 求作和作法。
B D D`
B`
O
C
A
O`
C`
A`
• 证明: ,由作法可知 • △C`O`D`≌△COD(SSS), • ∴∠C`O`D`=∠COD(全等三角形的对应角 相等), • 即∠A`O`B`=∠AOB。
3、平分已知角
• 已知: AOB(图2) • 求作:射线OC,使 AOC= BOC
B E C
O
• 1、在OA和OB上,分别截取OD、OE,使 OD=OE。 • 2、分别以D、E为圆心,大于DE的长为半径 作弧,在∠AOB内,两弧交于点C。 • 3、作射线OC。 • 4、OC就是所求的射线。
已知:线段a,c,∠α 求作:ΔABC,使 BC=a,AB=c,∠ABC=∠ α 作法:1)作一条线段BC=a
2)以B为顶点,BC为一边, 作,∠DBC=∠ α 3)在射线BD上截取线段BA=c 4)连接AC, ΔABC就是 所求作的三角形
探索研究:
107国道 O
A D C 320国道 B
1.如图:107国道OA和320国道OB在某市 相交于点O,在∠AOB的内部有工厂C和D, 现要修建一个货站P,使P到OA、OB的距 离相等且PC=PD,用尺规作出货站P的位 置(不写作法,保留作图痕迹,写出结论)

中考数学总复习考点知识讲解课件11---尺规作图

中考数学总复习考点知识讲解课件11---尺规作图

(2)过直线外的一点作已知直线的垂线: ①任意取一点M,使点M和点P在直线l的_两__侧__; ②以点P为圆心,P__M_长为半径画弧,交直线l于A、B两点; ③分别以点A、B为圆心,以__大_于___12_A_B__长为半径画弧,
在M的同侧交于点N; ④过点P、N作直线, 则直线PN即为所求作的垂线.
2
百变已知钝角△ABC,依下列步骤尺规作图,并保留作
图痕迹.
步骤1:以C为圆心,CA为半径画弧①;
步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;
步骤3:连接AD,交BC延长线于点H.
下列叙述正确的是( )
A.BH垂直平分线段AD
B.AC平分∠BAD
C.S△ABC=BC·AH
D.AB=AD
百变四:根据要求判断正确作图痕迹 4.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使得PA+PC= BC,则符合要求的作图痕迹是( )
百变五:按规定进行作图 5.(2019·河北)根据圆规作图的痕迹,可用直尺成功找到三角形外心的 是( )
则正确的配对是( ) A.① — Ⅳ,② — Ⅱ,③ — Ⅰ,④ — Ⅲ B.① — Ⅳ,② — Ⅲ,③ — Ⅱ,④ — Ⅰ C.① — Ⅱ,② — Ⅳ,③ — Ⅲ,④ — Ⅰ D.① — Ⅳ,② — Ⅰ,③ — Ⅱ,④ — Ⅲ
【分析】根据基本尺规作图的痕迹进行判断,对号入座即可. 【自主解答】由基本尺规作图的作法可知,①作的是角平分线;②是过直 线外一点作直线的垂线;③作线段垂直平分线;④是过直线上一点作直线 的垂线.故选D.
百变一:判断尺规作图痕迹的依据 1.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长 为半径画弧①,分别交OA,OB于点E,F,那么第二步的作图痕迹②的作法 是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以点 P 就是所要求作的点. 图 4-6-6
【试题精选】 1.(2014 年贵州六盘水)如图 4-6-7,在△ABC 中,利用尺 规作图,画出△ABC 的外接圆或内切圆(任选一个,不写作法, 必须保留作图痕迹).
图 4-6-7
解:如图 39(1)(2).
(1) 图 39
(2)
作图与证明 2.(2014 年内蒙古赤峰)如图 4-6-8,已知在△ABC 中,AB =AC. (1)作图:在 AC 上有一点 D,延长 BD,并在 BD 的延长线 上取点 E,使 AE=AB,连接 AE,作∠EAC 的角平分线 AF, AF 交 DE 于点 F(用尺规作图,保留作图痕迹,不写作法); (2)在(1)的条件下,连接 CF,求证:∠E=∠ACF.
求作:点 E,使直线 DE∥AB,且点 E 到 B,D 两点距离相
等(在题目的原图中完成作图).
图 4-6-3
答案:略.
4.已知:如图 4-6-4,求作:圆的内接正方形.
图 4-6-4 答案:提示:作已知⊙O 的互相垂直的直径即可得圆的内 接正方形.图略.
基本作图与应用 例题:(2013 年甘肃兰州)如图 4-6-5,两条公路 OA 和 OB 相交于点 O,在∠AOB 的内部有工厂 C 和 D,现要修建一个货 站 P 到两条公路 OA,OB 的距离相等,且到两工厂 C,D 的距 离相等,用尺规作出货站 P 的位置(要求:不写作法,保留作图 痕迹,写出结论).
境中酝酿与构建图形之间的形状、位置、大小关系,进而对相
关问题进行计算、探究、发现与证明.
图 4-6-1 解:如图 38,△ABC 即为所求.
图 38
2.如图 4-6-2,四边形 ABCD 是矩形,用直尺和圆规作出
∠A 的平分线与 BC 边的垂直平分线的交点 Q(不写作法,保留
作图痕迹).
图 4-6-2
答案:略.
3.已知:如图 4-6-3,直线 AB 与直线 BC 相交于点 B,点
D 是直线 BC 上一点.
图 4-6-5
思路分析:根据角平分线上的点到角的两边的距离相等, 线段垂直平分线上的点到线段两端点距离相等,作∠AOB 的平 分线与线段 CD 的垂直平分线,交点就是货站 P 的位置.
解:如图 4-6-6,作∠AOB 的平分线
OH,CD 的垂直平分线 EF,
OH 与 EF 的交点 P 就是货站的位置.
图 4-6-8
(1)解:如图 40.
图 40 (2)证明:∵AB=AC,AE=AB, ∴AE=AC. ∵AF 是∠EAC 的平分线,
∴∠EAF=∠CAF.
在△AEF 和△ACF 中,
AE=AC, ∠EAF=∠CAF, AF=AF,
∴△AEF≌△ACF(SAS). ∴∠E=∠ACF. 名师点评:中考通常以基本的尺规作图为载体,在具体情
3.作图的一般步骤.
(1)已知.(2)求作.(3)作法.
注意:当不要求写作法时,一般要保留作图痕迹.对于较
复杂的作图,可先画出草图,使它同所要作的图大致相同,然
后借助草图寻找作法.
1.(2014 年山东青岛)如图 4-6-1,已知线段 a,∠α. 求作:△ABC,使 AB=AC=a,∠B=∠α.
2016年中考数学专题复习
第6讲 线段等于已知线段,作一个 角等于已知角,作一个角的平分线;作一条线段的垂直平分线;
过一点作已知直线的垂线.
2.利用基本作图作三角形:已知三边作三角形;已知两边 及其夹角作三角形;已知两角及其夹边作三角形;已知底边及 底边上的高作等腰三角形;已知一直角边和斜边作直角三角形.
3.会利用基本作图完成:过不在同一直线上的三点作圆;
作三角形的外接圆、内切圆;作圆的内接正方形和正六边形.
4.了解如何过一点、两点和不在同一条直线上的三点作圆. 5.在尺规作图中,了解尺规作图的道理,保留作图痕迹, 不要求写作法.
考点
尺规作图及基本作图
圆规 没有刻度 的直尺和_______ 1.定义:在几何中,把限定用_________ 来画图称为尺规作图. 2.五种基本作图. (1)作一条线段等于已知线段.(2)作一个角等于已知角. (3)作一个角的平分线.(4)过定点作已知直线的垂线.(5)作线段 的垂直平分线.
相关文档
最新文档