主成分分析、因子分析实验报告--SPSS
SPSS 因子分析和主成分分析
![SPSS 因子分析和主成分分析](https://img.taocdn.com/s3/m/1c0ca8e95ef7ba0d4a733ba0.png)
实验课:因子分析实验目的理解主成分(因子)分析的基本原理,熟悉并掌握SPSS中的主成分(因子)分析方法及其主要应用。
因子分析一、基础理论知识1 概念因子分析(Factor analysis):就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方法。
从数学角度来看,主成分分析是一种化繁为简的降维处理技术。
主成分分析(Principal component analysis):是因子分析的一个特例,是使用最多的因子提取方法。
它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。
选取前面几个方差最大的主成分,这样达到了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信息。
两者关系:主成分分析(PCA)和因子分析(FA)是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。
2 特点(1)因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。
(2)因子变量不是对原始变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。
(3)因子变量之间不存在显著的线性相关关系,对变量的分析比较方便,但原始部分变量之间多存在较显著的相关关系。
(4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。
在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理(即通过因子分析或主成分分析)。
显然,在一个低维空间解释系统要比在高维系统容易的多。
3 类型根据研究对象的不同,把因子分析分为R 型和Q 型两种。
当研究对象是变量时,属于R 型因子分析; 当研究对象是样品时,属于Q 型因子分析。
但有的因子分析方法兼有R 型和Q 型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析,以示与其他两类的区别。
spss对主成分分析报告
![spss对主成分分析报告](https://img.taocdn.com/s3/m/eab6c669492fb4daa58da0116c175f0e7dd11967.png)
SPSS对主成分分析报告1. 简介主成分分析(Principal Component Analysis,简称PCA)是一种常用的多元统计分析方法,可以用于降维、数据压缩、数据可视化以及特征提取等方面。
本报告将使用SPSS软件进行主成分分析,并提供相应的分析结果和解读。
2. 数据集描述本次分析使用的数据集包含X个变量和Y个观测值。
具体变量的含义和取值范围如下:•变量1:描述1,取值范围为x1至x2;•变量2:描述2,取值范围为x1至x2;•…•变量X:描述X,取值范围为x1至x2;3. 数据预处理在进行主成分分析之前,我们需要对数据进行预处理,以确保分析结果的准确性和可靠性。
主要包括以下几个步骤:3.1 数据清洗数据清洗是指对数据中的缺失值、异常值等进行处理,以保证数据的完整性和一致性。
我们使用SPSS软件进行数据清洗,并将处理后的数据作为主成分分析的输入。
3.2 变量选择在进行主成分分析之前,我们需要对变量进行选择,以排除对分析结果影响较小的变量。
变量选择的方法可以根据实际情况进行确定,例如基于相关性分析、方差分析等进行选择。
3.3 数据标准化主成分分析对数据的尺度敏感,因此需要对数据进行标准化,以消除不同变量间的量纲差异。
常用的数据标准化方法包括Z-score标准化和Min-Max标准化等。
4. 主成分分析4.1 主成分提取主成分提取是主成分分析的核心步骤,通过将原始变量线性组合得到一组新的主成分,用于解释原始变量的方差。
在SPSS中,我们可以使用特征值、特征向量和累计方差贡献率等指标来选择主成分的数量。
4.2 因子载荷矩阵因子载荷矩阵是主成分分析的结果之一,用于描述原始变量与主成分之间的相关性。
每个元素表示对应变量在对应主成分上的权重,权重越大表示对应变量与主成分相关性越高。
4.3 解释方差贡献率解释方差贡献率是衡量主成分分析结果解释数据方差能力的指标,表示由每个主成分所解释的总方差的百分比。
基于SPSS的主成分分析与因子分析的辨析
![基于SPSS的主成分分析与因子分析的辨析](https://img.taocdn.com/s3/m/01e490aab9f67c1cfad6195f312b3169a451ea03.png)
基于SPSS的主成分分析与因子分析的辨析主成分分析和因子分析是两种常用的多元统计分析方法,用于处理多个变量之间的关系和结构。
尽管它们在一些方面相似,但它们有着不同的目标、假设和应用领域。
主成分分析(PCA)是一种降维技术,旨在将多个相关的变量转化为较少数量的互相无关的新变量,称为主成分。
主成分是原始变量线性组合的结果,它们按照方差的大小递减排序,第一个主成分解释了尽可能多的方差,第二个主成分解释了剩余的方差,依此类推。
主成分分析的目标是找到最重要的成分,以减少数据维度并保留尽可能多的信息。
因子分析(FA)是一种探索性分析方法,旨在找到观察到的变量背后潜在的隐藏因子及其之间的关系。
它假设每个观察到的变量受到几个潜在因子的影响,并通过解释方差-共方差矩阵来确定这些因子。
因子分析的目标是解释数据的系统结构,并识别变量之间的潜在关系。
下面是主成分分析和因子分析的几个区别:1.假设:主成分分析假设所有的变量都是线性相关的,而因子分析假设变量之间存在潜在的隐藏因子。
2.目标:主成分分析的目标是减少数据的维度,使用少量的主成分来解释尽可能多的方差。
因子分析的目标是找出潜在因子,并解释数据的结构。
3.变量解释:在主成分分析中,每个主成分解释了数据中的方差,而在因子分析中,每个因子代表了一个潜在原因,描述了观察到的变量之间的共同性。
4.变换:在主成分分析中,通过线性组合原始变量来创建主成分。
在因子分析中,每个观察到的变量都被假设为由潜在因子和特定的误差项组合而成。
5.前提要求:主成分分析对变量之间的线性关系没有特定的要求,可以处理混合类型的数据。
因子分析假设线性关系是必需的,且数据应满足正态分布。
尽管主成分分析和因子分析在一些方面不同,但它们也有一些共同之处。
它们都可以用于数据降维和构建新的变量,以更好地解释和理解数据。
此外,它们都是无监督学习方法,不需要以前的假设。
在实际应用中,选择主成分分析还是因子分析取决于具体的研究目标和数据属性。
统计分析软件应用SPSS-主成分分析实验报告
![统计分析软件应用SPSS-主成分分析实验报告](https://img.taocdn.com/s3/m/76fc4b893b3567ec112d8a89.png)
本科学生综合性、设计性实验报告实验课程名称统计分析软件应用开课学期2010至2011学年下学期上课时间2011 年4 月25 日辽宁师范大学教务处编印、实验方案、实验目的:掌握主成分分析的思想和具体步骤。
掌握SPSS实现主成分分析的具体操作,并对处理结果做出解释。
5、参考文献:[1]卢纹岱.SPSS for Window銃计分析[M].电子工程出版社,2006[2]郭显光.如何用SPS歎件进行主成分分析[J].统计与信息论坛,1998, (2)[3]何晓群.现代统计分析方法与应用[M].中国人民大学出版社,1998[4]余建英、何旭宏.数据统计分析与SPSS^用[M].人民邮电出版社,2003、实验报告1、 实验目的、设备与材料、理论依据、实验方法步骤见实验设计方案2、 实验现象、数据及结果表1描述性统计量表表2主成分因子荷载矩阵表表3相关系数矩阵表表4公因子方差表Descriptive Statistics图1碎石图Component U 刨乡至拜占,3 GQmponenls extrudedCommunalitiesExtraction Method: Principal Component Analysis.表总方差分解表Total Variance ExplainedCompoiieint initial EigenvaluesExtraction Sums of Squared Loadings Tota J cf Variance Cumulabv? % Total % of '/a™nee Cumulative %1 3&14 48.929 +£.929 3.914 4S929 48.92921 312 23.BSS 723271.912 23B96 72 S2? 3■1.430 17.9911.43917 曲■!&G.S1B4 S79 7.335 SB.'353 5,1441,797 9^.3506.012150 100.000 76 13E-Q13 7.66E-017 1Q0JO0S-4.2E-016-4.25E-015IQO.OOQExtraction Method: Prkicipal Component AnalysisInitial Extraction赔付率1.000 .964 净收入与总收入之比 1.000 .993 投资收益率 1.000 .923 再保险率 1.000 .968 总资产报酬率 1.000 .919 两年保费收入收益率 1.000 .659 保费收入变化率 1.000 .961 流动性比率 1.000.879Plolb1= *X1+*X2+**X4+*X5+***X8b2=*X1+**X3+***X6+*X7+*X8 b3=*X1+*X2+*X3+***X6+**X8表7Y1= *x1+*x2+**x4+*x5+***x8 Y2=*xi+*x2- **x4+*x5+***x8 Y3=*x1+*x2+*x3+*x4+**x6+**x8加权:输出结果,并从高到低进行排序:表81:人保2:平安3:太平洋4:大众5:华泰6:永安7:华安 Z 主成分综合得分Num 1 Z 主成分综合得分 | Num华泰1:人保可以如上所述计算主成分得分,还可以通过综合评价函数计算综合得分综合评价函数:Z=%*Y1+%*Y2+%*Y34、结论:表8中,综合得分出现负值,这只表明该保险公司的综合水平处于平均水平之下。
实验:SPSS主成分分析和因子分析
![实验:SPSS主成分分析和因子分析](https://img.taocdn.com/s3/m/8c28621c905f804d2b160b4e767f5acfa0c7834f.png)
实验:SPSS主成分分析和因子分析实验:SPSS主成分分析和因子分析实验目的:1、掌握如何确定主成分的个数;2、熟练解释主成分分析的结果:载荷矩阵、共同度、方差贡献率等;3、掌握应用主成分分析进行数据降维和综合评价的方法。
4、了解因子分析法的应用条件5、掌握因子分析法的应用;6、掌握因子分析法输出结果的解释。
实验内容:1、(主成分分析)P253见实验数据8-1 PCA20.sav某公司有20个工厂,现在要对每个工厂作经济效益分析。
从所取得的生产成果和所消耗的人力、物力、财力的比率等指标中,选取5个指标(变量)进行分析。
X1——固定资产的产值率;X2——净产值的劳动生产率;X3——百元产值的流动资金占用率;X4——百元产值的利润率;X5——百元资金的利润率。
现在对这20个工厂同时按照这5项指标收集数据,然后找出1个综合指标对它们的经济效益进行排序,找出经济效益较高的工厂。
应用主成分分析法,要求主成分只要能够反映出全部信息的85%就可以了。
2、(主成分分析)实验数据8-2 给出了中国历年国民经济主要指标统计(2005-2012)。
试用主成分分析法对这些指标提取主成分并写出提取的主成分与这些指标之间的表达式。
3、(因子分析)P281见实验数据8-3 cereals.sav 某市场调查项目需要了解消费者是否偏爱某个谷物品牌。
现有117个受访者对12个销量比较好的谷物产品的25个属性进行评分。
现在用因子分析法对消费者的偏好习惯进行分析。
哪些品牌的谷物产品易受消费者青睐?消费者喜欢哪些属性?这些属性之间有什么关系?4、(因子分析)见实验数据8-4给出了中国历年国民经济主要指标统计(2004-2012)。
试用因子分析法对这些指标提取公因子并写出提取的公因子与这些指标之间的表达式。
实验要求:题目1写一份实验报告;题目3写一份实验报告。
实验数据:见实验八数据文件夹实验步骤、结论:学生填写实验成绩:教师填写。
主成分分析、因子分析实验报告--SPSS
![主成分分析、因子分析实验报告--SPSS](https://img.taocdn.com/s3/m/a49a30fbb1717fd5360cba1aa8114431b90d8eee.png)
主成分分析、因子分析实验报告--SPSS主成分分析、因子分析实验报告SPSS一、实验目的主成分分析(Principal Component Analysis,PCA)和因子分析(Factor Analysis,FA)是多元统计分析中常用的两种方法,旨在简化数据结构、提取主要信息和解释变量之间的关系。
本次实验的目的是通过使用 SPSS 软件对给定的数据集进行主成分分析和因子分析,深入理解这两种方法的原理和应用,并比较它们的结果和差异。
二、实验原理(一)主成分分析主成分分析是一种通过线性变换将多个相关变量转换为一组较少的不相关综合变量(即主成分)的方法。
这些主成分是原始变量的线性组合,且按照方差递减的顺序排列。
主成分分析的主要目标是在保留尽可能多的数据信息的前提下,减少变量的数量,从而简化数据分析和解释。
(二)因子分析因子分析则是一种探索潜在结构的方法,它假设观测变量是由少数几个不可观测的公共因子和特殊因子线性组合而成。
公共因子解释了变量之间的相关性,而特殊因子则代表了每个变量特有的部分。
因子分析的目的是找出这些公共因子,并估计它们对观测变量的影响程度。
三、实验数据本次实验使用了一份包含多个变量的数据集,这些变量涵盖了不同的领域和特征。
数据集中的变量包括具体变量 1、具体变量 2、具体变量 3等,共X个观测样本。
四、实验步骤(一)主成分分析1、打开 SPSS 软件,导入数据集。
2、选择“分析”>“降维”>“主成分分析”。
3、将需要分析的变量选入“变量”框。
4、在“抽取”选项中,选择主成分的提取方法,如基于特征值大于1 或指定提取的主成分个数。
5、点击“确定”,运行主成分分析。
(二)因子分析1、同样在 SPSS 中,选择“分析”>“降维”>“因子分析”。
2、选入变量。
3、在“描述”选项中,选择相关统计量,如 KMO 检验和巴特利特球形检验。
4、在“抽取”选项中,选择因子提取方法,如主成分法或主轴因子法。
主成分分析与因子分析详细的异同和SPSS软件
![主成分分析与因子分析详细的异同和SPSS软件](https://img.taocdn.com/s3/m/ebe8d5c7bdeb19e8b8f67c1cfad6195f312be8d1.png)
主成分分析与因子分析详细的异同和SPSS软件1.目的不同:主成分分析的目的是通过将原始变量转化为一组线性无关的主成分来解释数据的变异;而因子分析的目的是通过将原始变量解释为一组潜在的因子来揭示数据背后的结构。
2.数据处理方式不同:主成分分析是以变量为基础进行分析,对变量进行线性组合,通过找到方差最大的主成分来解释原始数据;而因子分析是以样本为基础进行分析,通过将变量分解为共同因子和唯一因素来解释原始数据。
3.解释度不同:主成分分析主要关注每个主成分所解释的原始数据的方差贡献率,即主成分的量变解释;而因子分析主要关注因子与原始变量之间的相关性解释,即因子的质变解释。
4.假设不同:主成分分析假设主成分是线性组合变量,变量之间相互独立;而因子分析假设变量是从潜在因子派生出来的,潜在因子之间可以相关。
SPSS软件是一种功能强大的统计分析工具,可用于进行主成分分析和因子分析。
1.打开SPSS软件并导入数据集。
2.选择“分析”菜单,然后选择“降维”子菜单,再选择“主成分”或“因子”。
3.在主成分分析或因子分析对话框中,选择需要进行分析的变量,并选择相应的分析方法和选项(例如,提取条件、旋转方法等)。
4.点击“确定”按钮,SPSS将根据选择的参数进行分析,并生成结果报告。
5.解读结果报告,包括各个主成分或因子的【特征值】、【所解释的方差】、【载荷矩阵】等。
6.根据需求进行进一步分析和解释,例如提取特定数量的主成分或因子,对主成分或因子进行旋转等。
总之,主成分分析和因子分析是常用的数据降维和特征提取方法,它们在目的、数据处理方式、解释度和假设等方面存在一定的异同。
在使用SPSS进行主成分分析和因子分析时,需要选择合适的参数和方法,并解读分析结果以获得有效的结论。
管理统计 SPASS 第11章 主成分分析与因子分析
![管理统计 SPASS 第11章 主成分分析与因子分析](https://img.taocdn.com/s3/m/9144dc4ebe1e650e52ea9950.png)
1. 判断原始变量是否适合进行因子分析
(1)巴特利特球度检验(Bartlett test of sphericity) •巴特利特球度检验原假设H0是:相关阵是单位阵,即各变量 各自独立。巴特利特球度检验的统计量根据相关系数矩阵的行 列式计算得到。如果该统计量值比较大,且其对应的相伴概率 值小于用户心中的显著性水平,则应拒绝H0 ,认为相关系数 矩阵不太可能是单位阵,适合作因子分析;相反,如果该统计 量值比较小,且其对应的相伴概率值大于用户心中的显著性水 平,则不能拒绝H0 ,可以认为相关系数矩阵可能是单位阵, 不适合作因子分析。
因子变量的特点:
(1)因子变量的数量远少于原有变量的数量,对因子变量的分析可 以减少分析中的计算工作量。 (2)因子变量并不是原有变量简单的取舍,而是对原始变量的重新 组构,他们能够反映原始众多变量的绝大部分信息,不会产生重 要信息的丢失。 (3)因子变量之间没有线性相关关系,对因子变量的分析就能避开 原始变量的共线性问题,使研究工作更加简便。 (4)因子变量具有命名解释性。因子变量的命名解释性可以理解为 某个因子变量是对某些原始变量的总和,它能够反映这些原始变 量的绝大部分信息。因此我们可以对因子变量根据专业知识和其 所反映的独特含义给予命名。
失尽可能的少。
主成分分析小结:
(1)从相关的多个指标 X 1 , X 2 ,, X k 中,求出相互独立 的多个指标 Y1 , Y2 ,, Yk 。
(2) Y (Y1 , Y2 ,, Yk )T 的方差信息不损失,尽可能等同于
X ( X 1 , X 2 ,, X k )T 的方差。
因子分析的基本步骤
因子分析的标准分析步骤为: (1)根据具体问题,判断待分析的原始若干变量是否适合作因 子分析,并采用某些检验方法来判断数据是否符合分析要求。 (2)选择提取公因子的方法,并按一定标准确定提取的公因子 数目。 (3)考察公因子的可解释性,并在必要时进行因子旋转,以寻 求最佳的解释方式。 (4)计算出因子得分等中间指标进一步分析使用。
统计分析软件应用SPSS-主成分分析实验报告
![统计分析软件应用SPSS-主成分分析实验报告](https://img.taocdn.com/s3/m/7c7f518bf424ccbff121dd36a32d7375a417c6c5.png)
统计分析软件应用SPSS-主成分分析实验报告本实验采用SPSS软件搭配PCA算法,运用主成分分析(Principal Component Analysis)对数据建模,从而对原始数据进行数据挖掘,挖掘出其内在关联性及约束条件。
1.实验介绍主成分分析分析的数据主要是离散(或连续)的变量矩阵,它是将一组变量转换成一组新的变量,称为主成分,这些新变量有不同程度的解释能力,可以代表输入变量的内在趋势。
2.实验方法以SPSS软件中的主成分分析为例,具体进行主成分分析如下:(1)通过点击“分析”菜单栏的“统计方法”按钮打开对话框;(2)在统计方法中选择“主成分分析”;(3)选择变量;(4)设置相关的参数,其中的设置包括是否对输入变量进行标准化或是与原来输入变量一样不标准化等;(5)然后点击“OK”运行。
3.实验结果运行之后,SPSS软件就会给出主成分分析的结果,其主要内容有:载荷矩阵、方差表、方差序列图、因子得分表。
4.载荷矩阵载荷矩阵主要是列出每个原始变量与主成分的相关性,矩阵中的值代表相关系数,是两个变量之间的变化关系,相关系数的大小代表其相关性。
5.方差表方差表包括每个主成分的方差以及其贡献率,贡献率表示每个成分在总方差中所占的比重,通过该表可以较好地分析出因子各自所占方差比重。
6.方差序列图方差序列图是指把所有主成分的方差按从高到低的顺序排列,从而构成的图形,它可以清晰地展示每个成分的贡献率。
7.因子得分表因子得分表主要是列出每个观测值在每个主成分上的因子得分,利用因子得分可以更精确地表征观测值的差异,从而更好地挖掘出内在的数据关联。
5.结论本实验使用SPSS软件中的主成分分析对数据进行建模,分析出数据内在的关联关系。
通过矩阵载荷分析、方差表、方差序列图以及因子得分表等计算出来的数值,可以观察出原始变量间的内在关联,从而发现其内在的趋势,从而实现数据挖掘。
SPSS因子分析实验报告(精品)
![SPSS因子分析实验报告(精品)](https://img.taocdn.com/s3/m/b6d6a44826d3240c844769eae009581b6bd9bd80.png)
SPSS因子分析实验报告(精品)本文旨在通过SPSS因子分析对数据进行分析,以提高对一组变量的了解。
首先,我们首先对数据进行了可视化和描述性统计分析。
接着,我们使用SPSS的因子分析来简化数据的结构,以找出隐藏的因子,并将所有变量归纳到几个因子中去。
该分析采用假设测试方法,估计了最小平方法和密度估计的参数,使用KMO指标来测量每个变量的内在相关性,使用Bartlett测试来衡量变量之间的统计相关性,以及主成分法和因子载荷法获得因子载荷。
经过这些步骤,可以看出,数据共有三个因子,每个因子包含五个变量,其权重随时间变化而改变。
KMO值为0.746,Bartlett测试p值介于0.000和0.013之间,满足要求,表明变量之间存在显著相关性。
这些因子的含义为:第一个因子被称为奖励;第二个因子表示社会支持;第三个因子则表示工作环境的承诺。
我们发现,在数据中,与绩效关系最密切的变量是第一个因子中的变量,它们取得了最高的因子负荷,分别为0.860、0.740、0.723、0.712和0.665,这些变量被认为是对员工设置奖励的重要变量。
此外,第二个因子中的变量也可以在团队合作当中起到重要作用,它们的因子负荷分别为0.476、0.434、0.411、0.331和0.326,揭示了社会支持对绩效的重要性。
最后,第三个因子中的变量可以代表工作环境的特性,其因子负荷分别为0.534、0.513、0.480、0.395和0.374,表明它们对于员工的表现也有重大影响。
通过本次SPSS因子分析,我们发现,数据背后有三种主要因素:奖励、社会支持和工作环境承诺,而且这三种因素中的每一项都可以在一定程度上影响员工表现。
因此,可以利用本次分析的结果,完善绩效管理,提高工作环境的质量,以期获得更佳的绩效。
SPSS试验五(因子分析报告)
![SPSS试验五(因子分析报告)](https://img.taocdn.com/s3/m/b74a21c7a1c7aa00b52acb3b.png)
试验五因子分析一、实验目的:运用因子分析方法分析数据。
二、实验内容:1.SPSS操作2.因子分析下表资料为25名健康人的7项生化检验结果,7项生化检验指标依次命名为X1至X7,请对该资料进行因子分析。
三、实验步骤:1.确定数据类型,建立数据文件。
3.点击“分析”菜单Analyze,选择Data Reduction(降维)中的的Facto (因子分析)命令项,弹出如下图对话框。
在对话框左侧的变量列表中选变量X1至X7,使之进入Variables变量框。
4.点击Descriptives钮,弹出 Factor Analyze :Descriptives对话框,在对话框选中Univariate descriptive项要求输出各变量的均数与标准差,在相关系数栏内选Coefficients项要求计算相关系数矩阵,并选Kmo and bartlett’s test of sphericity检验项,要求对相关系数矩阵进行kmo和bartlett统计学检验。
点击Continue按钮返回因子分析对话框。
5.点击Extraction选项,弹出Factor Analyze : Extraction对话框,选用(主成份)方法,并勾选Unrotated factor solutionScree plot显示没有旋转的因子载荷、公共因子和特征值,并显示碎石图,在Extract中设置Eivgenvalues over的值为1,之后点击Continue钮返回之前对话框。
6.点击Rotation按钮,进行矩阵旋转设置。
选择None,不旋转矩阵。
选择Loading plot用于显示前3个因子的三维因子载荷图;对于两因子求解,输出二维图。
选择完毕后,单击continue。
7.选择Scores按钮,进行因子得分选项设置。
点击Save as variables,将因子得分保存为新变量。
在Method中选中Regression,用回归的方法计算因子得分,同时勾选Display factor score coefficient matrix,计算因子得分系数矩阵,选择完毕后,单击continue按钮。
主成分分析、因子分析实验报告--SPSS
![主成分分析、因子分析实验报告--SPSS](https://img.taocdn.com/s3/m/2ed2f49e4028915f814dc240.png)
对2009年我国88个房地产上市公司的因子分析分析结果:表1 KMO 和Bartlett 的检验取样足够度的Kaiser-Meyer-Olkin 度量。
.637 Bartlett 的球形度检验近似卡方398.287df 45Sig. .000 由表1可知,巴特利特球度检验统计量的观测值为398.287,相应的概率p值接近0,小于显著性水平 (取0.05),所以应拒绝原假设,认为相关系数矩阵与单位矩阵有显著差异。
同时,KMO值为0.637,根据Kaiser给出的KMO度量标准(0.9以上表示非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合)可知原有变量不算特别适合进行因子分析。
表2 公因子方差初始提取市盈率 1.000 .706 净资产收益率 1.000 .609 总资产报酬率 1.000 .822 毛利率 1.000 .280 资产现金率 1.000 .731 应收应付比 1.000 .561 营业利润占比 1.000 .782 流通市值 1.000 .957 总市值 1.000 .928 成交量(手) 1.000 .858 提取方法:主成份分析。
表2为公因子方差,即因子分析的初始解,显示了所有变量的共同度数据。
第一列是因子分析初始解下的变量共同度,它表明,对原有10个变量如果采用主成分分析方法提取所有特征根(10个),那么原有变量的所有方差都可被解释,变量的共同度均为1(原有变量标准化后的方差为1)。
事实上,因子个数小于原有变量的个数才是因子分析的目标,所以不可提取全部特征根;第二列是在按指定提取条件(这里为特征根大于1)提取特征根时的共同度。
可以看到,总资产报酬率、成交量、流通市值、总市值的绝大部分信息可被因子解释,这些变量的信息丢失较少。
但毛利率这一变量的信息丢失相当严重(近70%),净资产收益率、应收应付比率两个变量的信息丢失较为严重(近40%)。
因此本次因子提取的总体效果并不理想。
主成分分析、因子分析实验报告--SPSS
![主成分分析、因子分析实验报告--SPSS](https://img.taocdn.com/s3/m/b4abfa8dce2f0066f53322fa.png)
对2009年我国88个房地产上市公司的因子分析分析结果:表1 KMO 和 Bartlett 的检验取样足够度的 Kaiser-Meyer-Olkin 度量。
.637 Bartlett 的球形度检验近似卡方398.287df45Sig..000由表1可知,巴特利特球度检验统计量的观测值为398.287,相应的概率p值接近0,小于显著性水平 (取0.05),所以应拒绝原假设,认为相关系数矩阵与单位矩阵有显著差异。
同时,KMO值为0.637,根据Kaiser给出的KMO度量标准(0.9以上表示非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合)可知原有变量不算特别适合进行因子分析。
表2 公因子方差初始提取市盈率 1.000.706净资产收益率 1.000.609总资产报酬率 1.000.822毛利率 1.000.280资产现金率 1.000.731应收应付比 1.000.561营业利润占比 1.000.782流通市值 1.000.957总市值 1.000.928成交量(手) 1.000.858提取方法:主成份分析。
表2为公因子方差,即因子分析的初始解,显示了所有变量的共同度数据。
第一列是因子分析初始解下的变量共同度,它表明,对原有10个变量如果采用主成分分析方法提取所有特征根(10个),那么原有变量的所有方差都可被解释,变量的共同度均为1(原有变量标准化后的方差为1)。
事实上,因子个数小于原有变量的个数才是因子分析的目标,所以不可提取全部特征根;第二列是在按指定提取条件(这里为特征根大于1)提取特征根时的共同度。
可以看到,总资产报酬率、成交量、流通市值、总市值的绝大部分信息可被因子解释,这些变量的信息丢失较少。
但毛利率这一变量的信息丢失相当严重(近70%),净资产收益率、应收应付比率两个变量的信息丢失较为严重(近40%)。
因此本次因子提取的总体效果并不理想。
表3展示了特征根及累积贡献率情况,按照特征根大于1的原则,选入了4个公共因子,其累积方差贡献率为72.343%,同时也可以看出,因子旋转后,累计方差比并没有改变,也就是没有影响原有变量的共同度,但却重新分配了各个因子解释原有变量的方差,改变了各因子的方差贡献,使各因子更易于解释。
主成分分析SPSS操作步骤
![主成分分析SPSS操作步骤](https://img.taocdn.com/s3/m/c3200948854769eae009581b6bd97f192379bf69.png)
主成分分析SPSS操作步骤步骤一:准备数据1.打开SPSS软件并导入需要进行主成分分析的数据文件。
可以通过点击“文件”->“打开”->“数据”来导入数据文件。
2.确保数据文件中的每个变量是数值型数据,并且不存在缺失值。
如果有缺失值,可以进行数据清洗或者填补缺失值。
步骤二:设置主成分分析选项1.在SPSS软件的“分析”菜单中选择“降维”->“主成分”->“因子”。
2.在弹出的“因子分析”对话框中,将需要进行主成分分析的变量移动到“因子分析变量”框中。
可以通过点击变量名称并使用“箭头”按钮来移动变量。
3.在“因子分析变量”框下方的“选项”按钮中,可以设置主成分分析方法、提取因子的标准和旋转方法。
一般情况下,可以保持默认设置。
4.点击“确定”开始进行主成分分析。
步骤三:查看分析结果1.主成分分析结果会在SPSS软件的输出窗口中显示。
可以查看提取的因子数量、因子的方差解释比例和特征根。
2.在“公共性”表中,可以查看变量对每个因子的贡献情况,公共性值越接近1表示变量对因子的贡献越大。
3.在“言语编码”表中,可以查看每个变量在各个因子上的系数,系数绝对值较大的变量与该因子的相关性较高。
4.在“旋转过的因子载荷矩阵”表中,可以查看经过旋转后每个变量与因子之间的相关系数。
步骤四:解释主成分分析结果1.根据主成分分析结果,可以选择提取前几个因子进行解释。
一般情况下,可以选择提取方差解释比例较高的因子。
2.根据每个变量在各个因子上的系数和旋转后的因子载荷矩阵,可以解释每个因子的含义和各个变量对因子的贡献。
3.将解释后的因子作为新的变量,可以用于后续的统计分析。
步骤五:进行因子旋转(可选)1.在主成分分析之后,可以对因子进行旋转,以使得因子与变量之间的相关性更为清晰和直观。
2.在“因子分析”对话框中的“选项”按钮中,可以选择旋转方法。
常用的旋转方法有正交旋转和斜交旋转。
3.点击“计算”开始进行因子旋转,旋转后的结果将显示在“旋转过的因子载荷矩阵”表中。
主成分分析、因子分析实验报告--SPSS
![主成分分析、因子分析实验报告--SPSS](https://img.taocdn.com/s3/m/8715049577232f60dccca144.png)
对2009年我国88个房地产上市公司的因子分析分析结果:表1 KMO 和Bartlett 的检验取样足够度的Kaiser-Meyer-Olkin 度量。
.637 Bartlett 的球形度检验近似卡方398.287df 45Sig. .000 由表1可知,巴特利特球度检验统计量的观测值为398.287,相应的概率p值接近0,小于显著性水平 (取0.05),所以应拒绝原假设,认为相关系数矩阵与单位矩阵有显著差异。
同时,KMO值为0.637,根据Kaiser给出的KMO度量标准(0.9以上表示非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合)可知原有变量不算特别适合进行因子分析。
表2 公因子方差初始提取市盈率 1.000 .706 净资产收益率 1.000 .609 总资产报酬率 1.000 .822 毛利率 1.000 .280 资产现金率 1.000 .731 应收应付比 1.000 .561 营业利润占比 1.000 .782 流通市值 1.000 .957 总市值 1.000 .928 成交量(手) 1.000 .858 提取方法:主成份分析。
表2为公因子方差,即因子分析的初始解,显示了所有变量的共同度数据。
第一列是因子分析初始解下的变量共同度,它表明,对原有10个变量如果采用主成分分析方法提取所有特征根(10个),那么原有变量的所有方差都可被解释,变量的共同度均为1(原有变量标准化后的方差为1)。
事实上,因子个数小于原有变量的个数才是因子分析的目标,所以不可提取全部特征根;第二列是在按指定提取条件(这里为特征根大于1)提取特征根时的共同度。
可以看到,总资产报酬率、成交量、流通市值、总市值的绝大部分信息可被因子解释,这些变量的信息丢失较少。
但毛利率这一变量的信息丢失相当严重(近70%),净资产收益率、应收应付比率两个变量的信息丢失较为严重(近40%)。
因此本次因子提取的总体效果并不理想。
SPSS因子分析实验报告
![SPSS因子分析实验报告](https://img.taocdn.com/s3/m/d349963d69dc5022abea0045.png)
实验十一(因子分析)报告一、数据来源各地区年平均收入.sav二、基本结果(1)考察原有变量是否适合进行因子分析首先考察原有变量之间是否存在线性关系,是否采用因子分析提取因子。
借助变量的相关系数矩阵、反映像相关矩阵、巴特利球度检验和KMO检验方法进行分析,结果如表1、表2所示:表1原有变量相关系数矩阵 correlation matrix表1显示原有变量的相关系数矩阵,可以看出大部分的相关系数都比较高,各变量呈较强的线性关系,能够从中提取公共因子,适合进行因子分析。
表2 KMO and Bartlett's Test由表2可知,巴特利特球度检验统计量观测值为182.913,p值接近0,显著性差异,可以认为相关系数矩阵与单位阵有显著差异,同时KMO值为0.882,根据Kaiser给出的KMO度量标准可知原有变量适合进行因子分析。
(2)提取因子进行尝试性分析:根据原有变量的相关系数矩阵,采用主成分分析法提取因子并选取大于1的特征值。
具体结果见表3:可知,initial一列是因子分析初始解下的共同度,表明如果对原有7个变量采用主成分分析法提取所有特征值,那么原有变量的所有方差都可以被解释,变量的共同度均为1。
事实上,因子个数小于原有变量的个数才是因子分析的目的,所以不可以提取全部特征值。
第二列表明港澳台经济单位、集体经济单位以及外商投资经济单位等变量的绝大部分信息(大于83%)可被因子解释。
但联营经济、其他经济丢失较为严重。
因此,本次因子提取的总体效果不理想。
表3因子分析中的变量共同度(一)重新制定提取特征值的标准,指定提取2个因子,分析表4:可以看出,此时所有变量的共同度均较高,各个变量的信息丢失较少。
因此,本次因子提取的总体效果比较理想。
表4因子分析的变量共同度(二)表5中,第一列是因子编号,以后三列组成一组,每组中数据项为特征值、方差贡献率、累计方差贡献率。
第一组数据项(2-4列)描述因子分析初始解的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对2009年我国88个房地产上市公司的因子分析分析结果:表1 KMO 和 Bartlett 的检验取样足够度的 Kaiser-Meyer-Olkin 度量。
.637 Bartlett 的球形度检验近似卡方398.287df 45Sig. .000 由表1可知,巴特利特球度检验统计量的观测值为398.287,相应的概率p值接近0,小于显著性水平 (取0.05),所以应拒绝原假设,认为相关系数矩阵与单位矩阵有显著差异。
同时,KMO值为0.637,根据Kaiser给出的KMO度量标准(0.9以上表示非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合)可知原有变量不算特别适合进行因子分析。
表2 公因子方差初始提取市盈率 1.000 .706 净资产收益率 1.000 .609 总资产报酬率 1.000 .822 毛利率 1.000 .280 资产现金率 1.000 .731 应收应付比 1.000 .561 营业利润占比 1.000 .782 流通市值 1.000 .957 总市值 1.000 .928 成交量(手) 1.000 .858 提取方法:主成份分析。
表2为公因子方差,即因子分析的初始解,显示了所有变量的共同度数据。
第一列是因子分析初始解下的变量共同度,它表明,对原有10个变量如果采用主成分分析方法提取所有特征根(10个),那么原有变量的所有方差都可被解释,变量的共同度均为1(原有变量标准化后的方差为1)。
事实上,因子个数小于原有变量的个数才是因子分析的目标,所以不可提取全部特征根;第二列是在按指定提取条件(这里为特征根大于1)提取特征根时的共同度。
可以看到,总资产报酬率、成交量、流通市值、总市值的绝大部分信息可被因子解释,这些变量的信息丢失较少。
但毛利率这一变量的信息丢失相当严重(近70%),净资产收益率、应收应付比率两个变量的信息丢失较为严重(近40%)。
因此本次因子提取的总体效果并不理想。
表3展示了特征根及累积贡献率情况,按照特征根大于1的原则,选入了4个公共因子,其累积方差贡献率为72.343%,同时也可以看出,因子旋转后,累计方差比并没有改变,也就是没有影响原有变量的共同度,但却重新分配了各个因子解释原有变量的方差,改变了各因子的方差贡献,使各因子更易于解释。
图五为因子的碎石图,需要说明的是这里累积方差贡献率并不高,远没有达到85%,但是根据碎石图我们可以看出在这里选四个因子还是比较合适的。
表3 解释的总方差成份初始特征值提取平方和载入旋转平方和载入合计方差的 % 累积 % 合计方差的 % 累积 % 合计方差的 % 累积 %1 2.909 29.092 29.092 2.909 29.092 29.092 2.727 27.269 27.2692 1.907 19.069 48.162 1.907 19.069 48.162 1.904 19.043 46.3113 1.251 12.506 60.667 1.251 12.506 60.667 1.354 13.541 59.8524 1.168 11.676 72.343 1.168 11.676 72.343 1.249 12.491 72.3435 .972 9.718 82.0616 .730 7.299 89.3597 .520 5.201 94.5608 .305 3.050 97.6109 .192 1.925 99.53510 .047 .465 100.000提取方法:主成份分析。
图五表4 成份矩阵a成份1 2 3 4流通市值.934 -.253 .125 .067 总市值.926 -.257 .064 .013 成交量(手).849 -.357 .065 .082 总资产报酬率.322 .791 .295 .073 净资产收益率.269 .669 .125 -.271 市盈率-.333 -.582 .418 -.286 毛利率.202 .418 .222 .122 营业利润占比.198 .155 -.776 .341 应收应付比-.231 -.190 .019 .687 资产现金率.195 -.052 -.544 -.627 提取方法 :主成份。
a. 已提取了 4 个成份。
采用最大方差法对成份矩阵(因子载荷矩阵)实施正交旋转以使因子具有命名解释性。
指定按第一因子载荷降序的顺序输出旋转后的因子载荷矩阵如表5所示:表5 旋转成份矩阵a成份1 2 3 4流通市值.971 .110 .032 .042 总市值.952 .079 .058 .111 成交量(手).925 -.029 .041 .022 总资产报酬率.043 .903 .070 -.021 净资产收益率-.013 .707 .029 .328 毛利率.069 .513 .021 -.104 营业利润占比.055 -.090 .878 .020 市盈率-.060 -.458 -.701 -.017 资产现金率.070 -.208 .229 .794 应收应付比-.075 -.212 .162 -.696 提取方法 :主成份。
旋转法 :具有 Kaiser 标准化的正交旋转法。
a. 旋转在 5 次迭代后收敛。
可以看出流通市值、总市值、成交量在第一因子上有较高的载荷,第一因子主要解释了这几个变量,可解释为公司价值;总资产报酬率、净资产收益率、毛利率在第二因子上有较高的载荷,第二因子主要解释了这几个变量,可解释为公司运营效益;营业利润占比、市盈率在第三因子上有较高的载荷,第三因子主要解释了这几个变量,可解释为公司获利能力;资产现金率、应收应付比在第四因子上有较高的载荷,第四因子主要解释了这几个变量,可解释为公司获现能力。
表6 成份得分协方差矩阵成份 1 2 3 41 1.000 .000 .000 .0002 .000 1.000 .000 .0003 .000 .000 1.000 .0004 .000 .000 .000 1.000提取方法 :主成份。
旋转法 :具有 Kaiser 标准化的正交旋转法。
构成得分。
表6显示了四个因子的协方差矩阵,可以看出,四个因子之间没有线性相关性,实现了因子分析的目标。
采用回归法估计因子得分系数,并输出因子得分系数矩阵(成份得分系数矩阵),如表7所示。
表7 成份得分系数矩阵成份1234市盈率 .030 -.181 -.492 .048 净资产收益率 -.055 .367 -.060 .233 总资产报酬率 -.018 .487 -.034 -.073 毛利率 .014 .282 -.032 -.120 资产现金率 -.034 -.181 .156 .652 应收应付比 .021 -.091 .181 -.566 营业利润占比 -.021 -.136 .680 -.024 流通市值 .361 .020 -.036 -.042 总市值 .349 -.002 -.015 .017 成交量(手) .350-.054-.012-.048提取方法 :主成份。
旋转法 :具有 Kaiser 标准化的正交旋转法。
构成得分。
由表7得到四个因子1234f f f f 、、、的线性组合如下所示:(注:以下市盈率、净资产收益率、总资产报酬率、毛利率、资产现金率、应收应付比、营业利润占比、流通市值、总市值、成交量(手)依次用12345678910,,,,,,,,,x x x x x x x x x x 代替) 112345678910=0.0300.0550.0180.0140340.0210.0210.3610.3490.350f x x x x x x x x x x +--+-0. -+++212345678910=0.1810.3670.4870.2821810.0910.1360.0200.0020.054f x x x x x x x x x x --+++-0. -+--312345678910=0.4920.0600.0340.0320.1810.6800.0360.0150.012f x x x x x x x x x x +----+0.156 +---412345678910=0.0480.2330.0730.1200.6520.5660.0240.0420.0170.048f x x x x x x x x x x -+--+ --+-按以上四个线性组合计算因子得分,以各因子的方差贡献率占四个因子总方差贡献率的比重作为权重进行加权汇总,得到各企业的综合得分,即f =(1f *27.269+2f *19.043+3f *13.541+4f *12.491)/72.343下表显示了各个因子得分及综合得分中排在前十位的房地产上市公司:由该表我们可以看到就公司市场价值而言,最高的是万科A,其次是保利地产、然后是金地集团等,在公司运营效益上相对比较好的是陆家嘴和*ST华控,而在公司获利能力和获现能力上,相对较好的是成城股份及亿城股份、首开股份及园城股份。
就综合得分而言,排名最靠前的是万科A、保利地产和陆家嘴。
由此我们也可以看出:对于房地产上市为公司而言,公司的市场价值对公司综合能力的影响是比较显著的,其次是公司的运营效益和公司的获利能力,由于该行业不像一般的零售业及其他产业那么注重现金流的问题,所以自然公司获现能力对公司综合能力的影响也就不是很突出。
这也为房地产上市公司提供了一个参考,在他们以后的运营过程中,他们应该注重提高自己公司的市场价值和盈利能力,具体表现在流通市值、总市值、成交量(手)以及总资产报酬率、净资产收益率、毛利率、营业利润率和市盈率上。
附:四个因子的矩阵图从该图中我们不难发现几乎没有哪个公司是在这四个因子上都有很高的得分,但是万科A在第一因子(公司市场价值)上的得分明显远高于其他各公司,这也是为什么综合得分中它的得分最高,与上述分析吻合,其实这也为各房地产上市公司指明了一条前进的道路,在资源有限的情况下,优先提升公司的市场价值,其次是公司的运营效益和盈利能力。