实数拓展训练培优提高练习题
实数培优训练含答案
![实数培优训练含答案](https://img.taocdn.com/s3/m/6bec4895d0d233d4b14e6990.png)
浙教七上数学第三章:实数培优训练一.选择题:1.下列各数中无理有( )10 π 14159.3 81327 32+73 169121A. 2个B. 3个C. 4个D. 5个2.①64的立方根是4±;②x x =33;③64的平方根为8±;④()4832±=±其中正确的有( )个A. 0B. 1C. 2D. 3 3. 的值等于则若n m n m --==,3,23( ) A. 31 B. 31- C.332+ D. 332-4.计算:=---+-π14.35351( )A.π+-5286.0B. π-14.5C. π+-14.752D. π+-14.1的整数有而小于大于53.5-( )A. 2,1,0,1,2--B. 3,2,1,0,1-C. 3,2,1,0,1,2--D. 2,1,0,1-则下列各式正确的是若,0.6>a ( )A. a a >B.a a >1 C. aa 11< D. a a < 的大小关系是则若cb ac b a ,,2,3),3(22.72--=-=-⨯+-=( )A. c a b >>B. c a b >>C. c b a >>D. b c a >>=-=+xx x x 1,71.8则已知( ) A.3 B. 3- C. 3± D. 5±9.一个自然数的算术平方根是a ,则与这个自然数相邻的后续自然数的平方根是( ) A.1+a B.12+a C. 1+±a D. 12+±a10.若1212=a ,1692=b ,且0<ab ,则b a -的值为( ) A.24± B.24- C.24 D.2±二.填空题:________,,25210.11的值是那么是整数且如果xxx<<-12.如果32x-和56x+是一个数的平方根,那么这个数是____________13、若225a=,3=b,则ba+的值是______________14. 20153的未位数字是_____________15.有一个数值转换器,原理如图所示:当输入错误!未找到引用源。
初中数学数学第六章 实数的专项培优练习题(含答案
![初中数学数学第六章 实数的专项培优练习题(含答案](https://img.taocdn.com/s3/m/cabd24c6a216147916112852.png)
初中数学数学第六章 实数的专项培优练习题(含答案一、选择题1.在有理数中,一个数的立方等于这个数本身,这种数的个数为( )A .1B .2C .3D .42.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 3.现定义一种新运算:a ★b=ab+a-b ,如:1★3=1×3+1-3=1,那么(-2)★5的值为( ) A .17B .3C .13D .-17 4.280x y -+=,则x y +的值为( ) A .10 B .-10 C .-6 D .不能确定5.下列各组数中,互为相反数的是( )A .22B .2-与12-C .()23-与23-D 38-38-6.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个7.设n 为正整数,且n 65n+1,则n 的值为( ) A .5 B .6 C .7D .8 8.下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行;②立方根等于它本身的数只有0;③两条边分别平行的两个角相等;④互为邻补角的两个角的平分线互相垂直A .4个B .3个C .2个D .1个9.下列各数中3.145,0.1010010001…,﹣17,2π38有理数的个数有( ) A .1个 B .2个 C .3个 D .4个10.下列运算正确的是( ) A 42=± B 222()-=- C 382-=-D .|2|2--= 二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.64的立方根是___________. 13.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________.14.估计512-与0.5的大小关系是:512-_____0.5.(填“>”、“=”、“<”) 15.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___16.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.17.31.35 1.105≈3135 5.130≈30.000135-≈________.18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.若x <0323x x ____________.20.若x 、y 分别是811-2x -y 的值为________.三、解答题21.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; .请选择其中一个立方根写出猜想、验证过程。
初中数学数学第六章 实数的专项培优练习题(及解析
![初中数学数学第六章 实数的专项培优练习题(及解析](https://img.taocdn.com/s3/m/e4c51e0676a20029bc642d1d.png)
初中数学数学第六章 实数的专项培优练习题(及解析一、选择题1.下列式子正确的是( )A .25=±5B .81=9C .2(10)-=﹣10D .±9=3 2.2-是( )A .负有理数B .正有理数C .自然数D .无理数3.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣5 4.若|x-2|+3y +=0,则xy 的值为( ) A .8B .2C .-6D .±2 5.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .66.下列实数中的无理数是( )A . 1.21B .38-C .33-D .2277.3的平方根是( )A .±3B .9C .3D .±98.若a 、b 为实数,且满足|a -2|+2b -=0,则b -a 的值为( )A .2B .0C .-2D .以上都不对 9.下列判断中不正确的是( )A .37是无理数B .无理数都能用数轴上的点来表示C .﹣17>﹣4D .﹣5的绝对值为510.16的平方根是( )A .4B .4-C .4±D .2± 二、填空题11.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2k n 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .12.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f (12)=2,f (13)=3,f (14)=4,f (15)=5,… 利用以上规律计算:1(2019)()2019f f ____. 13.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________.14.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.15.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.16.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____. 17.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.18.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.19.若x 、y 分别是811-的整数部分与小数部分,则2x -y 的值为________.20.观察下列各式:111233+=,112344+=,113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题21.如图,长方形ABCD 的面积为300cm 2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm 2的圆(π取3),请通过计算说明理由.22.在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a ⊕b ⊕c =2a b c a b c --+++.如:(1)-⊕2⊕3=123(1)2352---+-++=. ①根据题意,3⊕(7)-⊕113的值为__________; ②在651128,,,,0,,,,777999---这15个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,在所有计算结果中的最大值为__________;最小值为__________.23.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ , 将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = . (2)直接写出下列各式的计算结果:①1111 (12233420152016)++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯. 24.定义☆运算:观察下列运算:两数进行☆运算时,同号 ,异号 .特别地,0和任何数进行☆运算,或任何数和0进行☆运算, .(2)计算:(﹣11)☆ [0☆(﹣12)]= .(3)若2×(﹣2☆a )﹣1=8,求a 的值.25.是无理数,而无理数是无限不循环小数,﹣1的小数部的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为2<3的整数部分为2﹣2) 请解答:(1的整数部分是 ,小数部分是 ;(2a b ,求a +b26.已知2a -的平方根是2±,33a b --的立方根是3,整数c 满足不等式1c c <+. (1)求,,a b c 的值.(2)求2232a b c ++的平方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平方根、算术平方根的定义求出每个式子的值,再进行判断即可.【详解】A 5,故选项A 错误;B9,故选项B 正确;C =10,故选项C 错误;D 、=±3,故选项D 错误.故选:B .【点睛】本题主要考查平方根和算术平方根,解题的关键是掌握平方根和算术平方根的定义与性质.2.A解析:A【解析】【分析】由于开不尽方才是无理数,无限不循环小数为无理数,根据有理数和无理数的定义及分类作答.【详解】∵2-是整数,整数是有理数,∴D 错误;∵2-小于0,正有理数大于0,自然数不小于0,∴B 、C 错误;∴2-是负有理数,A 正确.故选:A .【点睛】本题考查了有理数和实数的定义及分类,其中开不尽方才是无理数,无限不循环小数为无理数.3.B解析:B【分析】根据a ★b=a 2-ab 可得(x+2)★(x -3)=(x+2)2-(x+2)(x -3),进而可得方程:(x+2)2-(x+2)(x -3)=5,再解方程即可.【详解】解:由题意得:(x+2)2-(x+2)(x -3)=5,x 2+4x+4-(x 2-x -6)=5,x 2+4x+4-x 2+x+6=5,5x=-5,解得:x=-1,故选:B .【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a ★b=a 2-ab 所表示的意义.4.C解析:C【分析】根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可.【详解】根据题意得:2030x y -⎧⎨+⎩==, 解得:23x y ⎧⎨-⎩==, 则xy=-6.故选:C .【点睛】此题考查绝对值和偶次方非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.5.C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….6.C解析:C【分析】无限不循环小数是无理数,根据定义解答.【详解】=1.1是有理数;,是有理数;是无理数; D.227是分数,属于有理数, 故选:C.【点睛】 此题考查无理数的定义,熟记定义是 解题的关键.7.A解析:A【分析】直接根据平方根的概念即可求解.【详解】解:∵(2=3,∴3的平方根是为.故选A .【点睛】本题主要考查了平方根的概念,比较简单.8.C解析:C【详解】根据绝对值、算术平方根的非负性得a-2=0,20b -=,所以a=2,b=0.故b -a 的值为0-2=-2.故选C.9.C解析:C【分析】运用实数大小的比较、绝对值有理数和无理数的定义和性质逐项分析即可.【详解】解:A是无理数,原说法正确,故此选项不符合题意;B、无理数都能用数轴上的点来表示,原说法正确,故此选项不符合题意;C44,原说法错误,故此选项符合题意;D故答案为C.【点睛】本题主要考查了实数大小的比较、绝对值有理数和无理数的定义和性质等知识点,灵活运用相关定义和性质是解答本题的关键.10.D解析:D【分析】,再求出4的算术平方根即可【详解】,4的平方根是±2,2故选D.【点睛】本题主要考查了算术平方根与平方根的求法,求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.二、填空题11..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.12.-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f()=2,f()=3,f()=4,f()解析:-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f(12)=2,f(13)=3,f(14)=4,f(15)=5,…,∴1()2019f2019,∴1(2019)()2019f f2018-2019=-1.故答案为:-1.【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键.13.-5【解析】∵32<10<42,∴的整数部分a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.解析:-5【解析】∵32<10<42,a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.14.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 15.-2【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定.【详解】解:=……所以数列以,,三个数循环,所以==故答案为:.【解析:-2【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =13 2131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.16.【分析】根据公式代入计算即可得到答案.【详解】∵a ⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.【点睛】此题考查新定义计算公式,正解析:【分析】根据公式代入计算即可得到答案.【详解】∵a ⊗b =a 2﹣2b +1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.【点睛】此题考查新定义计算公式,正确理解公式并正确计算是解题的关键.17.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 18.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.19.【分析】估算出的取值范围,进而可得x,y的值,然后代入计算即可.【详解】解:∵,∴,∴的整数部分x=4,小数部分y=,∴2x-y=8-4+,故答案为:.【点睛】本题考查了估算无理解析:4+【分析】估算出8-x,y的值,然后代入计算即可.【详解】解:∵34<<,∴4<85,∴8x=4,小数部分y=448=∴2x-y=8-44=故答案为:4【点睛】本题考查了估算无理数的大小,解题的关键是求出x,y的值.20.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找n n=+≥(1)【分析】=+=(2=+n(n≥1)的等式表示出来是(3=+≥(1)n n【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是=+≥(1)n n(1)=+≥n n【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.三、解答题21.不能,说明见解析.【分析】根据长方形的长宽比设长方形的长DC为3xcm,宽AD为2xcm,结合长方形ABCD的面积为300cm2,即可得出关于x的一元二次方程,解方程即可求出x的值,从而得出AB的长,再根据圆的面积公式以及圆的面积147cm2,即可求出圆的半径,从而可得出两个圆的直径的长度,将其与AB的长进行比较即可得出结论.【详解】解:设长方形的长DC为3xcm,宽AD为2xcm.由题意,得3x•2x=300,∵x>0,∴x=∴AB=,BC=cm .∵圆的面积为147cm 2,设圆的半径为rcm ,∴πr 2=147,解得:r=7cm .∴两个圆的直径总长为28cm .∵382428<=⨯=<,∴不能并排裁出两个面积均为147cm 2的圆.22.(1)3(2)53(3)117-【分析】 (1)根据给定的新定义,代入数据即可得出结论;(2)分a-b-c≥0和a-b-c≤0两种情况考虑,分别代入定义式中找出最大值,比较后即可得出结论.【详解】解:①根据题中的新定义得:3⊕()7-⊕113=()()111137373332---++-+= ②当a-b-c≥0时,原式()12a b c a b c a =--+++=, 则取a 的最大值,最小值即可,此时最大值为89,最小值为67-; 当a-b-c≤0时,原式()12a b c a b c b c =-+++++=+, 此时最大值为785993b c +=+=,最小值为6511777b c ⎛⎫⎛⎫+=-+-=- ⎪ ⎪⎝⎭⎝⎭, ∵586113977>>->- ∴综上所述最大值为53,最小值为117-. 【点睛】本题考查了有理数的混合运算,读懂题意弄清新定义式的运算是解题的关键.23.(1)111n n -+;(2)①20152016;②1n n +;(3)10074032. 【分析】 (1)观察所给的算式可得:分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,由此即可解答;(2)根据所得的规律把各分数进行转化,再进行分数的加减运算即可解答;(3)先提取14,类比(2)的运算方法解答即可. 【详解】 (1)()11n n + =111n n -+; (2)①1111...12233420152016++++⨯⨯⨯⨯=11111122334-+-+-+…+1120152016-=112016-=20152016; ②()1111...1223341n n ++++⨯⨯⨯⨯+=11111122334-+-+-+…+111n n -+=111n -+=1n n +; (3)1111 (24466820142016)++++⨯⨯⨯⨯ =14(1111 (12233410071008)++++⨯⨯⨯⨯), =14(11111122334-+-+-+…+1110071008-), =14(111008-), =14×10071008 =10074032. 【点睛】本题考查了有理数的运算,根据题意找出规律是解决问题的关键.24.(1)得正,再把绝对值相加;得负,再把绝对值相加;等于这个数的绝对值;(2)-23;(3)a=-52【分析】(1)通过观察表中各算式,然后从两数的符号关系或是否有0出发归纳出☆运算的法则; (2)根据(1)归纳的☆运算的法则进行计算,注意先算括号内的,再与括号外的计算; (3)根据(1)归纳出的运算法则对a 的取值进行分类讨论即可得到答案.【详解】(1)由表中各算式,可以得到:同号得正,再把绝对值相加; 异号得负,再把绝对值相加;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值; (2)由(1)归纳的☆运算的法则可得:原式=(﹣11)☆|-12|=(﹣11)☆12= -(|(﹣11)|+|12|)= -23;(3)①当a=0时,左边=()22012213⨯--=⨯-=☆,右边=8,两边不相等,∴a≠0; ②当a>0时,2×(﹣2☆a)﹣1=2×[-(2+a )]﹣1=8,可解得132a =-(舍去), ③当a<0时,2×(﹣2☆a)﹣1=2×(|﹣2|+|a|)﹣1=8,可解得a=52-, 综上所述:a=-52. 【点睛】本题考查新定义的实数运算,通过观察实例归纳出运算规律是解题关键.25.(1)3,﹣3;(2)1.【分析】(1)根据34<解答即可;(2)根据23得出a ,根据34得出b ,再把a ,b 的值代入计算即可.【详解】(1)∵34<<,3﹣3,故答案为:3﹣3;(2)∵23,a 2,∵34,∴b =3,a +b 2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.26.(1)6a =,8b =-,2c =;(2)12±【分析】(1)利用平方根,立方根定义以及估算方法确定出a ,b ,c 的值即可;(2)把a ,b ,c 的值代入计算即可求出所求.【详解】解:(1)根据题意得:a−2=4,a−3b−3=27,23<<,∴a=6,b=−8,c=2;(2)原式=2×62+(-8)2+23=72+64+8=144,144的平方根是±12.∴223++的平方根是±12.2a b c【点睛】此题考查了估算无理数的大小,平方根以及立方根的定义,熟练掌握运算法则是解本题的关键.。
数学第六章 实数的专项培优练习题(及解析
![数学第六章 实数的专项培优练习题(及解析](https://img.taocdn.com/s3/m/bd7758e5b90d6c85ed3ac63f.png)
数学第六章 实数的专项培优练习题(及解析一、选择题1.对于实数a ,我们规定,用符号为a 的根整数,例如:3=,3=.我们可以对一个数连续求根整数,如对5连续两次求根整数:5221.若对x 连续求两次根整数后的结果为1,则满足条件的整数x 的最大值为( ) A .5B .10C .15D .16 2.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( )A .4mB .4m +4nC .4nD .4m ﹣4n3.2,估计它的值( )A .小于1B .大于1C .等于1D .小于0 4.下列说法正确的是 ( ) A .m -一定表示负数B .平方根等于它本身的数为0和1C .倒数是本身的数为1D .互为相反数的绝对值相等 5.定义a *b =3a -b ,2a b b a ⊕=-则下列结论正确的有( )个. ①3*2=11.②()215⊕-=-. ③(13*25)712912425⎛⎫⊕⊕=- ⎪⎝⎭. ④若a *b=b *a ,则a=b. A .1个B .2个C .3个D .4个 6.下面说法错误的个数是( )①a -一定是负数;②若||||a b =,则a b =;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.A .1个B .2个C .3个D .4个7.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .4 8.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6 9.下列各组数的大小比较正确的是( )A .﹣5>﹣6B .3>πC .5.3>29D . 3.1->﹣3.1 10.已知m 是整数,当|m ﹣40|取最小值时,m 的值为( )A .5B .6C .7D .8二、填空题11.若实数a 、b 满足240a b ++-=,则a b=_____. 12.一个正数的平方根是21x -和2x -,则x 的值为_______.13.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.14.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.15.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.16.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.17.已知72m =-,则m 的相反数是________.18.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+++=_____.19.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a ,则2x y +的值为______.20.如图所示的运算程序中,若开始输入的x 值为7,我们发现第1次输出的结果为10,第2次输出的结果为5,……,第2019次输出的结果为_____.三、解答题21.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 22.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③= ,(﹣12)⑤= ; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④= ;5⑥= ;(﹣12)⑩= . (2)想一想:将一个非零有理数a 的圈n 次方写成乘方的形式等于 ;23.观察下列各式﹣1×12=﹣1+12﹣1123⨯=﹣11+23 ﹣1134⨯=﹣11+34(1)根据以上规律可得:﹣1145⨯= ;11-1n n += (n ≥1的正整数). (2)用以上规律计算:(﹣1×12)+(﹣1123⨯)+(﹣1134⨯)+…+(﹣1120152016⨯). 24.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n a a a a a ÷÷÷⋯÷个 (a≠0)记作a ⓝ,读作“a 的圈 n 次方”. (初步探究)(1)直接写出计算结果:2③=___,(12)⑤=___; (2)关于除方,下列说法错误的是___ A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1ⓝ=1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(-3)④=___; 5⑥=___;(-12)⑩=___. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于___;(3)算一算:212÷(−13)④×(−2)⑤−(−13)⑥÷33 25.对于实数a,我们规定用{a }表示不小于a 的最小整数,称{a}为 a 的根整数.如{10}=4.(1)计算{9}=?(2)若{m}=2,写出满足题意的m 的整数值;(3)现对a 进行连续求根整数,直到结果为2为止.例如对12进行连续求根整数,第一次{12}=4,再进行第二次求根整数{4}=2,表示对12连续求根整数2次可得结果为2.对100进行连续求根整数, 次后结果为2.26.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】对各选项中的数分别连续求根整数即可判断得出答案.【详解】解:当x=5时,5221,满足条件;当x=10时,10331,满足条件;当x=15时,15331,满足条件;当x=16时,16442,不满足条件;∴满足条件的整数x的最大值为15,故答案为:C.【点睛】本题考查了无理数估算的应用,主要考查学生的阅读能力和理解能力,解题的关键是读懂题意.2.C解析:C【分析】根据题意得到m,n的相反数,分成三种情况⑴m,n;-m,-n ⑵m,-m;n,-n⑶m,-n;n,-m 分别计算,最后相加即可.【详解】解:依题意,m,n(m<n)的相反数为﹣m,﹣n,则有如下情况:m,n为一组,﹣m,﹣n为一组,有A=|m+n|+|(﹣m)+(﹣n)|=2m+2nm,﹣m为一组,n,﹣n为一组,有A=|m+(﹣m)|+|n+(﹣n)|=0m,﹣n为一组,n,﹣m为一组,有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m所以,所有A的和为2m+2n+0+2n﹣2m=4n故选:C.【点睛】本题主要考查了新定义的理解,注意分类讨论是解题的关键.3.A解析:A【分析】首先根据479<<可以得出23<<2的范围即可. 【详解】∵23<<,∴22232-<<-,∴021<<,2-的值大于0,小于1.所以答案为A 选项.【点睛】本题主要考查了无理数的估算,熟练找出无理数的整数范围是解题关键.4.D解析:D【分析】当m 是负数时,-m 表示正数;平方根等于本身的数是0;倒数等于本身的数是±1;互为相反数的绝对值相等.【详解】A. 若m=﹣1,则﹣m=﹣(﹣1)=1,表示正数,故A 选项错误;B. 平方根等于它本身的数为0,故B 选项错误;C. 倒数是本身的数为1和﹣1,故C 选项错误;D. 互为相反数的绝对值相等,故D 选项正确;故选D【点睛】本题考查了平方根、倒数以及相反数的概念,熟练掌握各个知识点是解题关键. 5.B解析:B【分析】根据新定义的运算把各式转化成混合运算进行计算,即可得出结果.【详解】解:∵a *b =3a -b ,2a b b a ⊕=-,∴①3*2=3×3-2=7,故①错误;②()22112145,⊕-=--=--=-故②正确; ③(13*25)7124⎛⎫⊕⊕ ⎪⎝⎭. 21217(3)()3542⎡⎤=⨯-⊕-⎢⎥⎣⎦3(12)5=⊕- 2312()5=-- 30925=- 故③错误;④若a *b=b *a ,则有3a -b=3b-a,化简得a=b,故④正确;正确的有②④,故选:B【点睛】本题考查了含有乘方的有理数的混合运算,熟练掌握计算法则是解题关键.6.C解析:C【分析】①举例说明命题错误;②举例说明命题错误;③根据有理数的概念判断即可;④根据有理数的概念判断即可.【详解】①当a≤0时,-a≥0,故-a 一定是负数错误;②当a=2,b=-2时, ||||a b = ,但是a≠b ,故②的说法错误;③一个有理数不是整数就是分数,此选项正确;④一个有理数不是正数就是负数还有可能是0,故④的说法错误.所以错误的个数是3个.故答案为C【点睛】本题考查了有理数的概念,熟练掌握概念是解题的关键.7.C解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;2=;③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C .本题主要考查了实数的有关概念,正确把握相关定义是解题关键.8.C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….9.A解析:A【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】,∴选项A 符合题意;,∴选项B 不符合题意;∵5.3∴选项C 不符合题意;∵ 3.1-<﹣3.1,∴选项D 不符合题意.故选A .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.10.B解析:B根据绝对值是非负数,所以不考虑m为整数,则m取最小值是0,又0的绝对值为0,令0m=,得出m=m的整数可得:m =6.【详解】解:因为m取最小值,m∴=,m∴=,解得:m=240m=,67m∴<<,且m更接近6,∴当6m=时,m有最小值.故选:B.【点睛】本题考查绝对值的非负性,以及估算二次根式的大小,理解并熟练掌握绝对值的非负性是本题解题关键;在估算二次根式大小的时候,先算出二次根式的平方,再看这个平方在哪两个平方数之间,就相应的得出二次根式在哪两个整数之间,即可估算出二次根式的大小.二、填空题11.﹣【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.解析:﹣12【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则ab=﹣12.故答案是﹣12.12.-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-解析:-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-1.【点睛】本题主要考查的是平方根的性质以及解一元一次方程,熟练掌握平方根的性质是解题的关键.13.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.14.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果.【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2,则x ﹣y =1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x )=0,[x )=-1或0,∴[x]+(x )+[x )=-2或-1;②当时,[x]=0,(x )=0,[x )=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x -<<时,[x ]=-1,(x )=0,[x )=-1或0,∴[x ]+(x )+[x )=-2或-1;②当0x =时,[x ]=0,(x )=0,[x )=0,∴[x ]+(x )+[x )=0;③当01x <<时,[x ]=0,(x )=1,[x )=0或1,∴[x ]+(x )+[x )=1或2;综上所述,化简[x ]+(x )+[x )的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!16.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.17.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:.【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】-=,解:m的相反数是2)2故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.18.【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.【详解】∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.19.3【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴,,故答案为:3.【点睛】本题考查了平方根和立方根,熟解析:3【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】 本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.20.1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x=7时,第1次输出的结果为解析:1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x =7时,第1次输出的结果为10,x =10时,第2次输出的结果为11052⨯=, x =5时,第3次输出的结果为5+3=8,x =8时,第4次输出的结果为1842⨯=, x =4时,第5次输出的结果为1422⨯=, x =2时,第6次输出的结果为1212⨯=, x =1时,第7次输出的结果为1+3=4,……,由此发现,从第4次输出的结果开始,每三次结果开始循环一次,∵(2019﹣3)÷3=672,∴第2019次输出的结果与第6次输出的结果相同,∴第2019次输出的结果为1,故答案为:1.【点睛】本题考查了程序框图和与实数运算相关的规律题;根据题意,求出一部分输出结果,从而发现结果的循环规律是解题的关键.三、解答题21.(1)-(-2)n ;(2)第②行数等于第①行数相应的数减去2;第③行数等于第①行数相应的数除以(-2);(3)-783【分析】第一个有符号交替变化的情况时,可以考虑在你所找到的规律代数式中合理的加上负号,并检验计算结果。
(必考题)初中七年级数学下册第六单元《实数》经典练习题(提高培优)
![(必考题)初中七年级数学下册第六单元《实数》经典练习题(提高培优)](https://img.taocdn.com/s3/m/6118cd80a26925c52dc5bfa1.png)
一、选择题 1.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个B解析:B【分析】 根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】解:364=4,所给数据中无理数有:3-,π,共2个.故选:B .【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式.2.实数a ,b 在数轴上的位置如图所示,那么化简33a b a b ++-+的结果为( )A .2a -B .22b a -C .0D .2b A解析:A【分析】先根据数轴上点的坐标特点确定a ,b 的符号,再去绝对值符号和开立方根,化简即可.【详解】由图可知:0a b <<,且a b >,∴0a b +<,0a ->,原式()()a b a b =-++-+ a b a b =---+2a =-.故选:A .【点睛】考查了数轴,解答此题时可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.3.下列命题中,①81的平方根是9;16±2;③−0.003没有立方根;④−64的立方根为±4;5 )A .1B .2C .3D .4A解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;16的平方根是±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;5不符合命题定义,所以⑤正错误.故选:A.【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.4.下列说法中,正确的是()A.正数的算术平方根一定是正数B.如果a表示一个实数,那么-a一定是负数C.和数轴上的点一一对应的数是有理数D.1的平方根是1A解析:A【分析】根据算术平方根、实数与数轴上的点是一一对应关系、实数、平方根,即可解答.【详解】A、正数的算术平方根一定是正数,故选项正确;B、如果a表示一个实数,那么-a不一定是负数,例如a=0,故选项错误;C、和数轴上的点一一对应的数是实数,故选项错误;D、1的平方根是±1,故选项错误;故选:A.【点睛】本题主要考查了实数,实数与数轴,解决本题的关键是熟记实数的有关性质.5.数轴上表示下列各数的点,能落在A,B两个点之间的是()A.3B7C11D13解析:B【分析】首先确定A,B对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A 点对应的数是1,B 点对应的数是3,A.-2<<-1,不符合题意;B.2<3,符合题意;C 、34,不符合题意;D. 34,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.6.下列实数31,7π-,3.14,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( )A .5个B .4个C .3个D .2个C 解析:C【分析】根据无理数的定义、算术平方根与立方根逐个判断即可得.【详解】31 4.4285717=小数点后的428571是无限循环的,属于有理数,3=-属于有理数,=则无理数为π-⋯,共有3个,故选:C .【点睛】本题考查了无理数、算术平方根与立方根,熟记各定义是解题关键.7.在下列各数中是无理数的有( )0.111-43π,3.1415926,2.010101(相邻两个0之间有1个1),76.0102030405060732 A .3个B .4个C .5个D .6个B解析:B【分析】 根据无理数是无限不循小数,可得答案.【详解】3π,76.0102030405060732故选:B .【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.8.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .3± C 解析:C【分析】将两个多项式相加,根据相加后不含x 的二次和一次项,求得m 、n 的值,再进行计算.【详解】 32711159x mx x --++22257x nx --=()()32722111552x m x n x +--++ 由题意知,2211=0m -, 155=0n +, ∴=2m ,=3n -,∴()()=323=9mn n -+--⨯-,9的平方根是3±,∴()mn n -+平方根为3±,故选:C .【点睛】此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键,同时考查了平方根的定义,熟练掌握正数有两个平方根,0的平方根是0,负数没有平方根.9.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B 7C 11D .无法确定B 解析:B【分析】首先利用估算的方法分别得到2-711间),从而可判断出被覆盖的数.【详解】∵221,273<<,3114<<而墨迹覆盖的范围是1-3∴7故选B.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.10.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个B 解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误;③﹣2 是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确;⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误;故其中错误的说法的个数为6个.故选:B .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.二、填空题11.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(1)解方程:log x 4=2;(2)求值:log 48;(3)计算:(lg 2)2+lg 2•1g 5+1g 5﹣2018(1)x=2;(2);(3)-2017【分析】(I)根据对数的定义得出x2=4求解即可;(Ⅱ)根据对数的定义求解即可;(Ⅲ)根据loga(M•N)=logaM+logaN 求解即可【详解】解:(I)解解析:(1)x =2;(2)32;(3)-2017 【分析】(I )根据对数的定义,得出x 2=4,求解即可;(Ⅱ)根据对数的定义求解即可;(Ⅲ)根据log a (M •N )=log a M +log a N 求解即可.【详解】解:(I )解:∵log x 4=2,∴x 2=4,∴x =2或x =-2(舍去)(II )解法一:log 48=log 4(4×2)=log 44+log 42=1+12=32; 解法二:设log 48=x ,则4x =8,∴22x =32,∴2x =3,x =32, 即log 48=32; (Ⅲ)解:(lg 2)2+lg 2•1g 5+1g 5﹣2018= lg 2•( lg 2+1g 5) +1g 5﹣2018= lg 2 +1g 5﹣2018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义和运算法则.12.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.(1);(2);(3)【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知再利用绝对值的性质化简绝对值号继而求得答案;(3)根据非负数的性质求出的值再代入进而求其平方根【详解】解:(1)∵解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示∴点B 表示∴m =.(2)∵m = ∴12130m +=+=>,12110m -=-=< ∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +∴20c d +=∴2040c d d +=⎧⎨+=⎩ ∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.13.计算:(1)(23)(41)----;(2)1111115()13()3()555-⨯-+⨯--⨯-;(3)2(2)|1|-+; (4)311()()(2)424-⨯-÷-.(1)4;(2)-11;(3);(4)【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)逆用分配律直接提取公因数-进而计算得出答案;(3)直接利用绝对值和立方根的性质分别化简得出答案;(解析:(1)4;(2)-11;(3)2;(4)16 -.【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)逆用分配律,直接提取公因数-115,进而计算得出答案;(3)直接利用绝对值和立方根的性质分别化简得出答案;(4)直接利用有理数的混合运算法则计算得出答案.【详解】解:(1)(23)(41)----15=-+4=;(2)原式11()(5133) 5=-⨯-+-1155=-⨯11=-;(3)原式4213=+--2=;(4)原式314429 =-⨯⨯16=-.【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.14.如图,数轴上点A,B,C 所对应的实数分别为a,b,c,试化简()323|-|b ac a b-++.2a-c【分析】根据数轴得到a<b<0<c由此得到a-c<0a+b<0依此化简各式再合并同类项即可【详解】由数轴得a<b<0<c∴a-c<0a+b<0∴=-b-(c-a)+(a+b)=-b-c+a+解析:2a-c【分析】根据数轴得到a<b<0<c,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可.【详解】由数轴得a<b<0<c,∴a-c<0,a+b<0,∴|-|a c =-b-(c-a )+(a+b)=-b-c+a+a+b=2a-c.【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式. 15.解方程:(1)24(1)90--=x(2)31(1)7x +-=-(1);(2)x =﹣1【分析】(1)方程整理后利用平方根性质计算即可求出解;(2)方程整理后利用立方根性质计算即可求出解【详解】解:(1)方程整理得:开方得:解得;(2)方程整理得:(x ﹣1)3=﹣ 解析:(1)152x =,212x =-;(2)x =﹣1. 【分析】(1)方程整理后,利用平方根性质计算即可求出解;(2)方程整理后,利用立方根性质计算即可求出解.【详解】解:(1)24(1)90--=x 方程整理得:2(1)9=4x -, 开方得:321=x -±解得,152x =,212x =-; (2)31(1)7x +-=-方程整理得:(x ﹣1)3=﹣8,开立方得:x ﹣1=﹣2,解得:x =﹣1.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解本题的关键.16.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14. (1)请根据以上式子填空: ①189⨯= ,②1(1)n n ⨯+= (n 是正整数) (2)由以上几个式子及你找到的规律计算:1 12⨯+123⨯+134⨯+............+120152016⨯(1)①②;(2)【分析】(1)仔细观察所给式子的结构发现规律即可解答;(2)根据发现的规律变形原式进行合并化简即可解答【详解】(1)仔细观察发现则故答案为:①②;(2)根据则++++===【点睛】解析:(1)①1189-,②111n n-+;(2)20152016【分析】(1)仔细观察所给式子的结构,发现规律111=(1)1n n n n-⨯++,即可解答;(2)根据发现的规律变形原式,进行合并化简即可解答.【详解】(1)仔细观察,发现111=(1)1n n n n-⨯++,则1118989=-⨯,故答案为:①1189-,②111n n-+;(2)根据111=(1)1 n n n n-⨯++,则112⨯+123⨯+134⨯+............+120152016⨯=1111111 (1)()()()2233420152016 -+-+-++-=1 12016 -=2015 2016.【点睛】本题考查数字规律的探索、有理数的混合运算,解答的关键是发现式子的变化规律,根据规律变形原式,从而使计算简单化.17.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.【分析】分别根据平方根立方根的定义可以求出甲数乙数进而即可求得题目结果【详解】甲数是的平方根甲数等于;乙数是的立方根乙数等于∵甲乙两个数的积是故答案:【点睛】此题主要考查了立方根平方根的定义解题的关解析:2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果.【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.18.把下列各数填入相应的集合里:﹣3,|﹣5|,+(13-),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|45-|,3π 正数集合:{_____________…};整数集合:{_____________…};负分数集合:{_____________…};无理数集合:{_____________…}.|﹣5|﹣(﹣25)3π﹣3|﹣5|0+()﹣314﹣||﹣12121121112…3π【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号再根据正数整数负分数无理数的定义求解即可【解析:|﹣5|,﹣(﹣2.5),34,3π ﹣3,|﹣5|,0 +(13-),﹣3.14,﹣|45-| ﹣1.2121121112 (3)【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号,再根据正数、整数、负分数、无理数的定义求解即可.【详解】 解:|﹣5|=5,+(13-)13=-,﹣(﹣2.5)=2.5,﹣|45-|45=-, 19.求下列各式中的x :(1)2940x -=; (2)3(1)8x -=1);(2)3【分析】(1)先将原方程移项系数化为1后再利用平方根的定义求解即可;(2)先利用立方根的定义求得解此方程即可【详解】解:(1);(2)【点睛】此题考查了利用平方根立方根解方程解答此题的解析:1)23x =±;(2)3 【分析】(1)先将原方程移项、系数化为1后,再利用平方根的定义求解即可;(2)先利用立方根的定义求得12x -=,解此方程即可.【详解】解:(1)2940x -= 294x =249x = 23x =±; (2)3(1)8x -=12x -=3x =.【点睛】此题考查了利用平方根、立方根解方程,解答此题的关键是掌握平方根与立方根的定义并能准确理解题意.20.若3109,b a =-且b 的算术平方根为4,则a =__________.5【分析】先求出b=16再代入根据立方根的定义即可解答【详解】解:∵的算术平方根为∴b=16∴∴∴a=5故答案为5【点睛】本题考查算术平方根的定义和立方根的定义熟知定义是解题关键解析:5【分析】先求出b=16,再代入3109b a =-,根据立方根的定义即可解答.【详解】解:∵b 的算术平方根为4,∴b=16,∴316109a =-,∴3125a =,∴a =5.故答案为5.【点睛】本题考查算术平方根的定义和立方根的定义,熟知定义是解题关键.三、解答题21.1解析:1【分析】 先根据开方的意义,绝对值的意义进行化简,最后计算即可求解.【详解】解:原式123122=-+++⨯1=+ 【点睛】本题考查了实数的混合运算,理解开方的意义,能正确去绝对值是解题关键. 22.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.) 解析:3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3), 即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程.23.已知21a -的平方根是31a b +-的算术平方根是6,求4a b +的平方根. 解析:7±【分析】根据算术平方根和平方根的定义列式求出a 、b 的值,然后代入代数式求出4a b +的值,再根据平方根的定义解答即可.【详解】解:根据题意,得2117a -=,2316a b +-=,解得9a =,10b =,所以,4941094049a b +=+⨯=+=,∵()2749±=, ∴4a b +的平方根是7±.【点睛】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a 、b 的值是解题的关键.24.计算:(1)36 1.754⎛⎫--+ ⎪⎝⎭; (2)()()232524-⨯--÷;(3)()225--.解析:(1)182;(2)22;(3-1 【分析】(1)先去括号,同时将小数化为分数,再计算加减法;(2)先计算乘方,再计算乘除法,最后计算加减法;(3)先计算乘方和绝对值,再计算加减法.【详解】 (1)36 1.754⎛⎫--+ ⎪⎝⎭=336144++ =182; (2)()()232524-⨯--÷=()4584⨯--÷=20+2=22;(3)()225--=4-()=【点睛】此题考查运算能力,掌握有理数的加减法计算法则,乘方的计算法则,实数的绝对值化简,有理数的混合运算法则是解题的关键.25.求出x 的值:()23227x += 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.26.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.解析:1【分析】根据新运算的运算法则计算即可.【详解】解:()()()2322231-⊕=⨯---⨯-()4614611=----=-+-=.【点睛】本题考查新定义下的有理数运算,通过阅读材料掌握新运算的运算法则是解题关键. 27.(1)计算:|3|-.(2)求下列各式中x 的值:③22536x =;④3(1)64x --=.解析:(1)①13;②9-;(2)③65x =±;④5x =. 【分析】①先计算根式,再加减计算.②先计算根式和绝对值,再加减计算.(2)③两边除以25,再开算术平方根.④先除以-1,再开立方根.【详解】(1)-+1322=-+13=|3|-1153=-+-9=-(2)③22536x =23625x = 65x =± ④3(1)64x --=3(641)x -=-14x -=-5x =【点睛】本题考查根式的化简求值,关键在于化简.28.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14. (1)请根据以上式子填空: ①189⨯= ,②1(1)n n ⨯+= (n 是正整数) (2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯ 解析:(1)①1189-,②111n n -+;(2)20152016 【分析】(1)仔细观察所给式子的结构,发现规律111=(1)1n n n n -⨯++,即可解答; (2)根据发现的规律变形原式,进行合并化简即可解答.【详解】(1)仔细观察,发现111=(1)1n n n n -⨯++,则1118989=-⨯, 故答案为:①1189-,②111n n -+; (2)根据111=(1)1n n n n -⨯++,则112⨯+123⨯+134⨯+............+120152016⨯=1111111 (1)()()()2233420152016 -+-+-++-=1 12016 -=2015 2016.【点睛】本题考查数字规律的探索、有理数的混合运算,解答的关键是发现式子的变化规律,根据规律变形原式,从而使计算简单化.。
完整版)实数培优专题
![完整版)实数培优专题](https://img.taocdn.com/s3/m/6c525ff5ab00b52acfc789eb172ded630b1c9881.png)
完整版)实数培优专题实数培优拓展1、利用概念解题:例1.已知:$M=b^{-1}a+8$是$a+8$的算术数平方根,$N=2a-b+4b-3$是$b-3$的立方根,求$M+N$的平方根。
练:1.若一个数的立方根等于它的算术平方根,则这个数是多少?34x-3y=-2,求$x+y$的算术平方根与立方根。
2.已知$x+2y=3$,求$(x+y)x$的值。
3.若$2a+1$的平方根为$\pm3$,$a-b+5$的平方根为$\pm2$,求$a+3b$的算术平方根。
例2、解方程$(x+1)^2=36$.练:(1)$(x-1)^2=9$(2)$(x+1)^2=25$2、利用性质解题:例1已知一个数的平方根是$2a-1$和$a-11$,求这个数.变式:①已知$2a-1$和$a-11$是一个数的平方根,则这个数是多少;②若$2m-4$与$3m-1$是同一个数的两个平方根,则$m$为多少。
例2.若$y=3-x+x-3+1$,求$(x+y)x$的值。
例3.$x$取何值时,下列各式在实数范围内有意义:⑴⑵⑶⑷例4.已知$31-2x$与$33y-2$互为相反数,求$\frac{1+2x}{y}$的值。
例5.若$(a+3)^2=3+a$,则$a$的取值范围是多少?例6.对于每个非零有理数$a,b,c$,式子$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}$的所有可能的值是什么?练:1.若一个正数$a$的两个平方根分别为$x+1$和$x+3$,求$a$。
2.若$(x-3)^2+\frac{2005abcabc}{abcabc}$的值为$y-1=0$,求$x+y$的平方根。
3.已知$y=1-2x+4x^{-2}+2$,求$x$的值。
4.当$x$满足下列条件时,求$x$的范围:①$(2-x)^2=x-2$;②$3-x=x-3$;③$x=x^7$。
5.若$-3a=3y+2$,求$a$与$y$的大小关系。
3、利用取值范围解题:例1.已知$2\leq x\leq 5$,$3\leq y\leq 6$,求$\frac{(x+y)^3-20}{7}$的取值范围。
初中数学数学第六章 实数的专项培优练习题(及答案
![初中数学数学第六章 实数的专项培优练习题(及答案](https://img.taocdn.com/s3/m/d57c906369dc5022abea005c.png)
初中数学数学第六章 实数的专项培优练习题(及答案一、选择题1.表面积为12dm 2的正方体的棱长为( )A dmB .dmC .1dmD .2dm2.下列说法错误的是( )A .﹣4是16的平方根B 2C .116的平方根是14D 5 3.下列说法正确的是( )A .有理数是整数和分数的统称B .立方等于本身的数是0,1C .a -一定是负数D .若a b =,则a b =4.下列选项中的计算,不正确的是( )A 2=±B 2=-C .3=±D 4=5.实数 )A 3<<B .3<C 3<<D 3<<6.下列说法正确的个数是( ).(1)无理数不能在数轴上表示(2)两条直线被第三条直线所截,那么内错角相等(3)经过一点有且只有一条直线与已知直线平行(4)两点之间线段最短A .0个B .1个C .2个D .3个7.若m 、n 满足()210m -+=的平方根是( )A .4±B .2±C .4D .2 8.下列各组数的大小比较正确的是( )A B C .5.3 D . 3.1->﹣3.1 9.比较552、443、334的大小( )A .554433234<<B .334455432<<C .553344243<<D .443355342<<10.已知实数x ,y y 2﹣9|=0 )A .±3B .3C .﹣3D .3二、填空题11.若已知()2120a b -++=,则a b c -+=_____.12.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f (12)=2,f(13)=3,f(14)=4,f(15)=5,…利用以上规律计算:1(2019)()2019f f____.13.若实数a、b满足240a b++-=,则ab=_____.14.若|x|=3,y2=4,且x>y,则x﹣y=_____.15.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k棵树种植在点k x处,其中11x=,当2k≥时,112()()55k kk kx x T T---=+-,()T a表示非负实数a的整数部分,例如(26)2T.=,(02)0T.=. 按此方案,第6棵树种植点6x为________;第2011棵树种植点2011x________.16.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O'点,那么O'点对应的数是______.你的理由是______.17.已知2(21)10a b++-=,则22004a b+=________.18.11133+=112344+=113455+=,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.19.若一个正数的平方根是21a+和2a+,则这个正数是____________.20.如果36a=b7的整数部分,那么ab=_______.三、解答题21.观察以下一系列等式:①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;④_____:…(1)请按这个顺序仿照前面的等式写出第④个等式:_____;(2)根据你上面所发现的规律,用含字母n的式子表示第n个等式:_____;(3)请利用上述规律计算:20+21+22+23+ (2100)22.探究:()()()211132432222122222222-=⨯-⨯=-==-==……(1)请仔细观察,写出第5个等式;(2)请你找规律,写出第n 个等式;(3)计算:22018201920202222-2++⋅⋅⋅++.23.观察下列各式,回答问题21131222-=⨯, 21241333-=⨯ 21351444-=⨯ ….按上述规律填空:(1)211100-= × ,2112005-= × , (2)计算:21(1)2-⨯21(1)...3-⨯21(1)2004-⨯21(1)2005-= . 24.(1的一系列不足近似值和过剩近似值来估计它的大小的过程如下:因为2211,24==,所以12,<<因为21.4 1.96=,21.5 2.25=,所以1.4 1.5,<< 因为221.41 1.9881,1.42 2.0164==,所以1.41 1.42<< 因为221.414 1.999396,1.415 2.002225==,所以1.414 1.415,<<1.41≈(精确到百分位),(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定2⎤⎦= ;a ,b 求a b -的值.25.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a b a b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则;2与2的大小∵224-= << 则45<< ∴2240-=> ∴22>请根据上述方法解答以下问题:比较2-与3-的大小.26.观察下列解题过程:计算231001555...5+++++解:设231001555...5S =+++++①则23410155555....5S =+++++②由-②①得101451S =-101514S -∴= 即10123100511555 (54)-+++++= 用学到的方法计算:2320191222...2+++++【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据正方体的表面积公式:S =6a 2,解答即可.【详解】解:根据正方体的表面积公式:S =6a 2,可得:6a 2=12,解得:a .dm .故选:A .【点睛】此题主要考查正方体的表面积公式的灵活运用,解题的关键是根据公式进行计算.2.C解析:C【分析】分别根据平方根的定义,算术平方根的定义判断即可得出正确选项.【详解】A .﹣4是16的平方根,说法正确;B .2,说法正确;C . 116的平方根是±14,故原说法错误;D .,说法正确.故选:C .【点睛】此题考查了平方根以及算术平方根的定义,熟记相关定义是解题的关键.3.A解析:A【分析】根据有理数的定义、立方的性质、负数的性质、绝对值的性质对各项进行分析即可.【详解】A. 有理数是整数和分数的统称,正确;B. 立方等于本身的数是-1,0,1,错误;C. a -不一定是负数,错误;D. 若a b =,则a b =或=-a b ,错误;故答案为:A .【点睛】本题考查了判断说法是否正确的问题,掌握有理数的定义、立方的性质、负数的性质、绝对值的性质是解题的关键.4.A解析:A【分析】根据平方根与立方根的意义判断即可.【详解】解:2=2=±错误,本选项符合题意;2=-,本选项不符合题意;C. 3=±,本选项不符合题意;D. 4=,本选项不符合题意.故选:A.【点睛】本题考查了平方根与立方根,正确理解平方根与立方根的意义是解题的关键.5.D解析:D【分析】先把3化成二次根式和三次根式的形式,再把3做比较即可得到答案.【详解】解:∵3==∴3=<3=><<,3故D为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较. 6.B解析:B【分析】根据数轴与实数,平行线的性质与判定以及两点之间线段最短对每个说法逐一判断后即可得到答案.【详解】(1)实数与数轴上的点一一对应,故无理数能在数轴上表示出来,故原说法错误;(2)两条平行直线被第三条直线所截,那么内错角相等,故原说法错误;(3)经过直线外一点有且只有一条直线与已知直线平行,故原说法错误;(4)两点之间线段最短,正确.故选B.【点睛】本题考查了命题与定理的知识,解题的关键是熟知课本上的一些定义与定理.7.B解析:B【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【详解】由题意得,m-1=0,n-15=0,解得,m=1,n=15,=4,4的平方根的±2,故选B.【点睛】考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.8.A解析:A【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】,∴选项A符合题意;,∴选项B不符合题意;∵5.3∴选项C不符合题意;-<﹣3.1,∵ 3.1∴选项D不符合题意.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.9.C解析:C【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.10.D解析:D【分析】由非负数的性质可得y2=9,4x-y2+1=0,分别求出x与y的值,代入所求式子即可.【详解】2﹣9|=0,∴y2=9,4x﹣y2+1=0,∴y =±3,x =2,∴y+6=9或y+6=3,3=故选:D .【点睛】本题考查绝对值、二次根式的性质;熟练掌握绝对值和二次根式的性质,能够准确计算是解题的关键.二、填空题11.6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为,所以,解得,故,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方解析:6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为()2120a b -+++=,所以10,20,30a b c -=+=-=,解得1,2,3a b c ==-=,故1(2)36a b c -+=--+=,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键. 12.-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f()=2,f()=3,f()=4,f()解析:-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f(12)=2,f(13)=3,f(14)=4,f(15)=5,…,∴1()2019f2019,∴1(2019)()2019f f2018-2019=-1.故答案为:-1.【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键.13.﹣【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.解析:﹣12【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则ab=﹣12.故答案是﹣12.14.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2,则x ﹣y =1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.403【解析】当k=6时,x6=T (1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011x =T(20105)+1=403. 故答案是:2,403. 【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.16.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.17.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a+1=0,b −1=0,∴a=,b =1,∴,故答案为:.【点睛】本题考查了非负数 解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭, 故答案为:54. 【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.18.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找(1)n n =+≥ 【分析】=(2=+(3=+n(n ≥1)的等式表示出来是(1)n n =+≥ 【详解】由分析可知,发现的规律用含自然数n(n ≥1)的等式表示出来是(1)n n =+≥(1)n n =+≥ 【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.19.1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1解析:1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1,∴这个正数是22(2)11a +==,故答案为:1.【点睛】此题考查平方根的性质:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根. 20.12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】6a==<<479<<<<23∴的整数部分是2,即2b=ab=⨯=则6212故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b的值是解题关键.三、解答题21.24-23=16-8=23 24﹣23=16﹣8=23 2n﹣2(n﹣1)═2(n﹣1)【解析】试题分析:(1)根据已知规律写出④即可.(2)根据已知规律写出n个等式,利用提公因式法即可证明规律的正确性.(3)写出前101个等式,将这些等式相加,整理即可得出答案.试题解析:(1)根据已知等式:①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;得出以下:④24-23=16-8=23,(2)①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;④24-23=16-8=23;得出第n 个等式:2n -2(n-1)=2(n-1);证明:2n -2(n-1), =2(n-1)×(2-1), =2(n-1);(3)根据规律:21-20=2-1=20;22-21=4-2=21;23-22=8-4=22;24-23=16-8=23;…2101-2100=2100;将这些等式相加得:20+21+22+23+ (2100)=2101-20,=2101-1.∴20+21+22+23+…+2100=2101-1.22.(1)655552222122-=⨯-⨯=;(2)12222122n n n n n +--=⨯⨯=;(3)-2【分析】(1)直接根据规律即可得出答案;(2)根据前3个式子总结出来的规律即可求解;(3)利用规律进行计算即可.【详解】解(1)26﹣25=2×25﹣1×25=25 ,(2)2n +1﹣2n =2×2n ﹣1×2n =2n ,(3)21+22+…+22018+22019﹣22020=21+22+…+22018+(22019﹣22020)=21+22+…+22018﹣22019=21+22+…+22017+(22018﹣22019)=…=21﹣22=-2.【点睛】本题主要考查有理数的运算与规律探究,找到规律是解题的关键.23.(1)99101100100⨯,2004200620052005⨯;(2)10032005. 【分析】(1)观察已知等式可知等式右边为两个分数的积,其分母相等且与等式左边分母的底数相等,分子一个比分母小1,一个比分母大1,由此填空(2)根据(1)发现的规律将每个括号部分分解为两个分数的积再寻找约分规律.【详解】解:(1)211100-=99101100100⨯,2112005-=2004200620052005⨯. (2)2112⎛⎫-⨯ ⎪⎝⎭ 211...3⎛⎫-⨯ ⎪⎝⎭ 2112004⎛⎫-⨯ ⎪⎝⎭ 2112005⎛⎫- ⎪⎝⎭ =1322⨯ ×2433⨯ ×…×2003200520042004⨯×2004200620052005⨯ =12×20062005. =10032005.. 【点睛】本题考查的是有理数的运算能力,关键是根据已知等式由特殊到一般得出分数的拆分规律和约分规律.24.(1)2.24;(2)①5,②3-【分析】(1近似值的方法解答即可;(22的范围,再根据规定解答即可;的整数部分a b 的值,再代入所求式子化简计算即可.【详解】解:(1)因为2224,39==,所以23,<<因为222.2 4.84,2.3 5.29==,所以2.2 2.3<<,因为222.23 4.9729,2.24 5.0176==,所以2.23 2.24,<< 因为222.236 4.999696,2.237 5.004169==,所以2.236 2.237<<,2.24≈.(2)①因为3.12=9.61,3.22=10.24,所以3.1 3.2<<,所以5.12 5.2<<,所以2⎤⎦=5;故答案为:5;②因为12,23<<<,所以1,2a b ==,所以原式12=)12123=-== 【点睛】本题考查了利用夹逼法求算术平方根的近似值、对算术平方根的整数和小数部分的认识以及实数的简单计算,属于常考题型,正确理解题意、熟练掌握算术平方根的相关知识是解题关键.25.23>-【分析】根据例题得到2(3)5--=-5.【详解】解:2(3)5--=- ∵<,∴45<<,∴2(3)50-=->, ∴23>-.【点睛】此题考查实数的大小比较方法,两个实数可以利用做差法比较大小.26.22020−1【分析】根据题目提供的求解方法进行计算即可得解.【详解】设S =2320191222...2+++++①则2S =2+22+23+…+22019+22020,②②−①得,S =(2+22+23+…+22019+22020)-(2320191222...2+++++)=22020−1 即2320191222...2+++++=22020−1.【点睛】本题考查了规律型:数字的变化类,有理数的混合运算,读懂题目信息,理解并掌握求解方法是解题的关键.。
(完整版)实数提高练习题
![(完整版)实数提高练习题](https://img.taocdn.com/s3/m/59bc19876aec0975f46527d3240c844768eaa040.png)
(完整版)实数提⾼练习题实数提⾼练习题⼀、选择题1.在实数5、37 ().A .5B .37C D 2.-3216-的⽴⽅根是()(A )6(B)-6(C)36(D) -363.估算24+3的值()(A )在5和6之间(B )在6和7之间(C )在7和8之间(D )在8和9之间 4.下列说法正确的个数是()①⽆理数都是实数;②实数都是⽆理数;③⽆限⼩数都是有理数;④带根号的数都是⽆理数;⑤除了π之外不带根号的数都是有理数.(A)1个(B )2个(C )3个(D )4个5. ⽆理数3-的相反数是()A .3-B .3.C .31 D .31-6.若a 2=9,b 3=-64,则 a +b 的所有可能情况为()(A )7 (B )-7 (C )-1 (D )-7或-1 7.若2a b =.则下列等式中成⽴的是()(A )a b = (B )33a b = (C )a b = (D)=8.实数13、4、6π中,分数的个数是()(A )0 (B )1 (C )2 (D )39.若x <2,化简2)2(-x -|3-x |的正确结果是()(A )-1 (B )1 (C )2x -5 (D )5-2x10.如图,若A 是实数a 在数轴上对应的点,则关于a ,-a ,1的⼤⼩关系表⽰正确的是() A .a <1<-aB .a <-a <1C .1<-a <aD .-a <a <11A(第10题图)11.若225a =,3b =,则a b +=()A .-8B .±8C .±2D .±8或±2 ⼆、填空题12.数轴上-5到原点的距离为___________,表⽰-3.14的点在-π点的___ ____边.13.若将三个数11,7,3-表⽰在数轴上,其中能被如图所⽰的墨迹覆盖的数是__________________. 14.当m <0时,则2m +33m 的值为________. 15.若m >1,则m _______3m .(填“>”或“<”)16. ⼀个⾃然数的算术平⽅根为a,则⽐它⼤4的⾃然数的平⽅根为____。
浙教版七年级上册数学第三章实数培优提高练习题(含答案)
![浙教版七年级上册数学第三章实数培优提高练习题(含答案)](https://img.taocdn.com/s3/m/bedec2e25122aaea998fcc22bcd126fff7055dfd.png)
13.1 平方根(一)1.(1)求下列各数的算术平方根:① 64; ② 0.0001; ③ 125.(2)求下列各式的值:① 4√225; ② √49144⋅√1449; ③ √(−3)2(3)下列各式中正确的是( ).A .√25=±5 B.±√25=5C.±√25=±5D.±√(−5)2=-5课后练习1.求下列各数的算术平方根:(1)104; (2)√16; (3)10000.2.求下列各式的值:(1)√214+√0.25; (2)√(−2)2−√1.21.3下列说法:① 0.09是0.81的平方根;② -9的平方根是±3;③ (-5)2的算术平方根是-5;④ √−2是一个负数;⑤ 0的相反数和绝对值都是0;⑥ √4=±2;⑦ 全体实数和数轴上的点一一对应.其中正确的是_________.(填序号)24.已知√a −17+√17−a =b +8. (1)求a 的值.(2)求a 2−b 2的平方根.5.已知一个正数的平方根是3x-2和5x+6,则这个数是____________.6.已知(x −3)2+√y 2+2y +1=0,求x+y 的平方根.7.已知√23.5=a ,√2.35=b ,求下列各式的值(用含a 或b 的代数式表示): (1)√2350; (2)√235; (3)√0.000235.3.2平方根(二)1.(1)试估计√5的大小(精确到0.01); (2)试比较3√2与2√3的大小;(3)若0<x <1,则x,1x,√x,x 2的大小关系为( ).A .x <1x <√x <x 2 B.x 2<x <√x <1x C .1x <x <x 2<√x D .√x <1x <x <x 2 2.(1)设a =√15−1,a 在两个相邻整数之间,则这两个整数是( ). A.1和2 B.2和3 C.3和4 D.4和5(2)若√10在两个连续整数a 和b 之间,即a <√10<b ,则a+b =______.3.(1)比较大小:① √3−√2与√2−1,② √4−√3与√3−√2,③ √5−√4与√4−√3;(2)由(1)中比较的结果,猜想√(n +1)−√n 与√(n )−√(n −1)的大小关系.4.已知2a−1的算数平方根是3,3a+b−1的平方根是±4,c是√13的整数部分,求a+2b−c的平方根.5.若实数x满足|1-x|=1+|x|,则√(x−1)2=_______.36.求满足√x+√y=√99的正整数x、y的值.7.对于有理数a、b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当a>b时,min{a,b}=b.例如:min{1,-2}=-2,min{3,-1}=-1.已知min{√21,a}=√21,min{√21,b}=b,且a和b为两个连续正整数,则a+b的平方根为______.43.3 平方根(三)1.求下列各数的平方根:(1)64; (2)425; (3)0.0001.2.填空.(1)如果x 的一个平方根是7.12,那么它的另一个平方根是______;(2)一个正数的两个平方根的和是______.一个正数的两个平方根的商是______;(3)要使√(3x −5)有意义,则x 可以取的最小整数是______.3.若实数x 满足√(x −2)·|x+1|≤0,则x 的值为( ).A.2或-1B.2≥x ≥-1C.2D. -14.(1)如果b 是a 的一个平方根,那么a 的平方根是________,a 算术平方根是_______.(2).若一个正数的平方根是2a −1和−a +2,求a 的值.5.已知a 、b 、c 、x 、y 、z 都是非零实数,且满足a 2+b 2+c 2+x 2+y 2+z 2=2ax+2by+2cz,求√xa +yb +zc 的值.6.已知y =1+√2x −1+√1−2x ,则2x+3y 的平方根为_____.7.先观察下列等式,再回答下列问题: ① √1+112+122=1+11−11+1=112② √1+122+132=1+12−12+1=116 ③ √1+132+142=1+13−13+1=1112(1)请你根据上面三个等式提供的信息,猜想√1+142+152的结果,并验证;(2)请你将上面各等式反映的规律用含n 的等式表示(n 为正整数).53.4 立方根1.(1)求下列各数的立方根:① -64; ② 127; ③ -0.001.(2)计算:① √16+√0.25−√273 ② √144−√−83+√1692.计算:(1)√0.1253−√116+√(1−78)23; (2)√641253−√83+√1100−(−2)3×√0.0643.3.求下列各式中,x 的值.(1)(x+1)3=8; (2)√(x +3)33=|x +2|.4.(1)在实数范围内定义运算“⊕”,其法则为:a ⊕b =a 2-b 2,求方程(4⊕3)⊕x =24的解.(2)已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值.5.如果A=√a +3b a−2b+3为a +3b 的算数平方根,B=√1−a 22a−b−1为1−a 2的立方根,求A+B 的立方根.66.一个正方体的表面积是2400cm 2. (1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少? 7.若√a 3+633=2|a |,求a 的值.8.先观察下列各式:√1=1;√1+3=√4=2;√1+3+5=√9=3; √1+3+5+7=√16=4;(1)计算:√1+3+5+7+9+11=__________________;(2)已知n 为正整数,通过观察并归纳,请计算√1+3+5+7+9+11+⋯+(2n −1)=_________________;(3)应用上述结论,请计算√4+12+20+28+36+44+⋯+204的值.73.5 实数1.(1)下列各数中,是分数的有哪些?−23,√3 ,13,π3,√4 3,√22,227.(2)求下列各数的相反数与绝对值: ① √5−√6; ②√−643; ③ √3−1.73.2.把下列各数填在相应的大括号里:-|-2|, 0, -1.04, −23,−√54, -(-3), π2,√2,√36,√93, 0.1010010001…(小数点后面每两个1之间依次多一个0).分数:{______________________}整数:{______________________}负有理数:{_____________________}无理数:{______________________}3.实数a 、b 、c 在数轴上对应点的位置如图所示,以下结论中正确的是( ).A.ac <0B. |a+b|=a-bC. | c-a| =a - cD. | a |>|b |4.实数a 在数轴上的位置如图,则a 、-a 、1a、√a 3的大小关系是( ).A .a <−a <1a <√a 3B .−a <1a <a <√a 3C .1a <a <√a 3<-a D .1a <√a 3<a <−a 5.求证√2是无理数.86.已知a √33√2b √23+m √3+m c √33+m√2+m,其中m >0,那么a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.a >c >bD.b >c >a7.将下列循环小数化成分数:(1)0. 7 (2)3.13(3)0.238.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B,点A 表示−√2. 设点B 所表示的数为m.(1)实数m 的值是_______;(2)求|m+1|+|m-1|的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d,且有|2c+d|与√d 2−16互为相反数,求2c-3d 的平方根.3.6实数(二) 1.化简:(1)√5−√5×(√5−2+2√5); (2)|1−√2|+|√2−√3|-|2−√3|2.化简:(1)|√10−3|+|√10−4|; (2)|√2+√3−2|-|4−√2−√3|.93.计算:(1)|√2−3|+√(−3)2-(-1)2019+√−273, (2)14√16+√25−√−273-|√5−3|.4.已知a −1a=√10,则a +1a的值是_______.5.设x 、y 是有理数,并且x 、y 满足等式x 2+2y +√2y =17−4√2,求x+y 的值.6.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长:(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长;(3)把正方形ABCD 放到数轴上,如图2,使得A 与一1重合,求D 在数轴上表示的数.6.正方形网格中的每个小正方形边长都为1,每个小格的顶点称为格点,如图1中正方形的面积为5,则此正方形的边长为√5,我们通过画正方形可求出无理数的线段长度.(1)请在图2中画出一个面积为10的正方形,此正方形的边长为______; (2)求出图3中A 、B 、C 点为顶点的三角形的面积和AB 的长度.CBA图3图2图110 7.若a、b满足3√a+5|b|=7,求s=2√a−3|b|的取值范围.3.7 实数复习(一)1.解答下列各题(1)分别求下列各数的平方根、算术平方根和立方根.① 3; ② 16; ③ 8; ④√4.(2)把下列各数分别填入相应的集合里:2,π3, 1.414, −√5,−34,√43,54√3,76, 1.3.有理数集合:{________________________};无理数集合:{_______________________};实数集合:{________________________}.2.填空:(1)√−73的相反数是______;绝对值等于√3的数是_____;(2)当x_____时,√2x−3有意义,当x_____时,√1−x有意义;(3)当0≤x≤1时,化简√x2+|x-1|=________.3.选择题:(1)a、b的位置如图所示,则下列各式中有意义的是().A.√a+bB.√a−bC.√abD.√b−a11(2)下列运算中,错误的有( ). ① √125144=1512 . ② √(−4)2=±4. ③ √−22=−√22=−2; ④ √116+14=14+12=34.A.1个B.2个C.3个D.4个(3)下列命题中正确的是( ).A.两个无理数的和一定是无理数B.正数的平方根一定是正数C.开立方等于它本身的实数只有1D.负数的立方根是负数(4)已知a =2−√5,b =√5−2,c =5−2√5,则a 、b 、c 的大小关系是( ). A.a <c <b B.b <a <c C.c <a <b D.a <b <c4.(1)已知:10+√3=x +y ,其中x 是整数,且0<y <1,求x-y 的相反数;(2)已知y =√3x −1−√1−3x +9x ,求√3x +2y −3的平方根.5.细心观察图,认真分析各式,然后解答问题.(√1)2+1=2, S 1=√12;(√2)2+1=3.S 2=√22,(√3)2+1=4, S 3=√32;… …(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出s 12+S 22+S 3+22…+S 102的值.12A 1126.已知|2015-a|+√a −2016=a,求a-20152的值.7.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数“,如:4=22-02,12=42-22,20=62-42,因此,4、12、20都是”神秘数“. (1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k 取非负整数),由这两个连续偶数构成的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方和是神秘数吗?为什么?8.某同学在解答题目:“化简并求值1a+√1a2+a 2−2,其中a =15.”时,解答过程是: 1a +√1a 2+a 2−2=1a +√(a −1a )2=1a +a −1a =15. (1)请判断他的解答是否正确;如果不正确,请写出正确的解答过程; (2)设S =√12+112+122+√12+122+132+√12+132+142+…+ √12+1n 2+1(n+1)2(n 为正整数).考察所求式子的结构特征: ① 先化简通项公式√1+1n 2+1(n+1)2;② 求出与S 最接近的整数是多少133.8 实数复习(二) 1.计算:(1√32−2√50+4√12−4√18(2)|√2+√3−2|+|−4+√2+√3|;(3)[5-2×(√3−2)]-3×(√2+1).2.计算:(1)−√425−√−81253; (2)√5−√5×(√5−2×√5);(3)√−8273−(−12)3×√(−4)2+√(−4)33×(12)2−√9② 设a 、b 都是实数,且满是b =√a 2−1+√1−a 2+4a+1,求√2a −b 的值.3.已知实数a 、b 、c 在数轴上的位置如图所示,化简|-a|+|a+c|-|b-2a|+|b-c|的结果为( ).A.-2bB. -bC. -2aD.a144.已知√m +n +5+√(m −2n )2=m-2n,且√2m −n −2=0,求m-n 的值.5. 观察下列两个等式:2−13=2×13+1,5−23=5×23+1,给出定义如下:我们称使等式a-b =ab+1成立的一对有理数a 、b 为“共生有理数对”,记为(a, b),如:数对(2,13),(5,23),都是“共生有理数对”.(1)判断数对(-2,1),(3,12)是不是“共生有理数对”,写出过程;(2)若(a,3)是“共生有理数对”,求a 的值;(3)若(m,n)是“共生有理数对”,则(-n,-m)_____“共生有理数对”(填“是”或“不是”);说明理由;(4)请再写出一对符合条件的“共生有理数对”_________________.(注意:不能与题目中已有的“共生有理数对”重复)6.已知整数a 0,a 1,a 2,a 3,a 4,…满足下列条件:a 0=0,a 1=-|a 0+1|,a 2=-|a 1+2|,a 3=-|a 2+3|,…,以此类推,则a 2018的值为( ).A.-1007B.-1008C.-1009D.-20167.设a 、b 是两个不相等的有理数,求证:+√2b +√2必为无理数.153.1 平方根(一)1.(1)求下列各数的算术平方根:① 64;=8 ② 0.0001;=0.01 ③ 125.=15 (2)求下列各式的值: ① 4√225;=60 ② √49144⋅√1449; =73 ③ √(−3)2=3(3)下列各式中正确的是( C ).A .√25=±5 B.±√25=5C.±√25=±5D.±√(−5)2=-5课后练习1.求下列各数的算术平方根:(1)104;=100 (2)√16;=4 (3)10000.=100 2.求下列各式的值:(1)√214+√0.25;=2 (2)√(−2)2−√1.21.=0.93下列说法:① 0.09是0.81的平方根;② -9的平方根是±3;③ (-5)2的算术平方根是-5;④ √−2是一个负数;⑤ 0的相反数和绝对值都是0;⑥ √4=±2;⑦ 全体实数和数轴上的点一一对应.其中正确的是⑤⑦(填序号4.已知√a −17+√17−a =b +8. (1)求a 的值.(2)求a 2−b 2的平方根.(1)a 的值为17.b 的值为-8.(2)a 2−b 2=225,所以±√225=±15.5.已知一个正数的平方根是3x-2和5x+6,则这个数是494. 6.已知(x −3)2+√y 2+2y +1=0,求x+y 的平方根.x=3,y=-1,x+y=2,±√2=±√27.已知√23.5=a ,√2.35=b ,求下列各式的值(用含a 或b 的代数式表示): (1)√2350;=10a (2)√235;=10b (3)√0.000235.=b 1003.2平方根(二)1.(1)试估计√5的大小(精确到0.01);√5≈2.24 (2)试比较3√2与2√3的大小;3√3>2√3(3)若0<x <1,则x,1x,√x,x 2的大小关系为( B ).A .x <1x <√x <x 2 B.x 2<x <√x <1xC .1x <x <x 2<√x D .√x <1x <x <x 22.(1)设a =√15−1,a 在两个相邻整数之间,则这两个整数是( B ). A.1和2 B.2和3 C.3和4 D.4和(2)若√10在两个连续整数a 和b 之间,即a <√10<b ,则a+b =7.3.(1)比较大小:① √3−√2与√2−1,② √4−√3与√3−√2,③ √5−√4与√4−√3;(2)由(1)中比较的结果,猜想√(n +1)−√n 与√(n )−√(n −1)的大小关系.√(n +1)−√n <√(n )−√(n −1)164.已知2a −1的算数平方根是3,3a +b −1的平方根是±4,c 是√13的整数部分,求a +2b −c 的平方根.a =5,b =2,c =3,a +2b −c =6,∴±√a +2b −c =±√65.若实数x 满足|1-x|=1+|x|,则√(x −1)2=1−x .6.求满足√x +√y =√99的正整数x 、y 的值.{x =11y =44 {x =44y =117.对于有理数a 、b,定义min{a,b}的含义为:当a <b 时,min{a,b}=a,当a >b 时,min{a,b}=b.例如:min{1,-2}=-2,min{3,-1}=-1.已知min{√21,a}=√21,min{√21,b}=b,且a 和b 为两个连续正整数,则a+b 的平方根为±3.a =5,b =4,a +b =9,±√9=±33.3 平方根(三)1.求下列各数的平方根:(1)64;±√64=±8 (2)425;±√425=±25 (3)0.0001.±√0.0001=±0.01 2.填空.(1)如果x 的一个平方根是7.12,那么它的另一个平方根是-7.12;(2)一个正数的两个平方根的和是0.一个正数的两个平方根的商是-1; (3)要使√(3x −5)有意义,则x 可以取的最小整数是2.3.若实数x 满足√(x −2)·|x+1|≤0,则x 的值为( C ).A.2或-1B.2≥x ≥-1C.2D. -1 4.(1)如果b 是a 的一个平方根,那么a 的平方根是±b ,a 算术平方根是|b |. (2).若一个正数的平方根是2a −1和−a +2,求a 的值.a =−15.已知a 、b 、c 、x 、y 、z 都是非零实数,且满足a 2+b 2+c 2+x 2+y 2+z 2=2ax+2by+2cz,求√xa +yb +zc 的值.a =x,b =y,c =z,∴√x a +√y b +√zc=√36.已知y =1+√2x −1+√1−2x ,则2x+3y 的平方根为±2.7.先观察下列等式,再回答下列问题: ① √1+112+122=1+11−11+1=112② √1+122+132=1+12−12+1=116 ③ √1+132+142=1+13−13+1=1112 (1)请你根据上面三个等式提供的信息,猜想√1+142+152的结果,并验证;(2)请你将上面各等式反映的规律用含n 的等式表示(n 为正整数).(1) √1+142+152=1+14−14+1=1+14−15=1120(2)√1+1n 2+1(n+1)2=1+1n×(n+1)173.4 立方根1.(1)求下列各数的立方根:① -64;=-4 ② 127;=13 ③ -0.001.=-0.1(2)计算:① √16+√0.25−√273=1.5 ② √144−√−83+√169=27 2.计算:(1)√0.1253−√116+√(1−78)23;=0.5 (2)√641253−√83+√1100−(−2)3×√0.0643.=2.13.求下列各式中,x 的值.(1)(x+1)3=8; (2)√(x +3)33=|x +2|.x =1 x +3=|x +2|,解得x =−524.(1)在实数范围内定义运算“⊕”,其法则为:a ⊕b =a 2-b 2,求方程(4⊕3)⊕x =24的解. 72−x 2=24,x =±5(2)已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值.a =2,b =21,a −2b =−405.如果A=√a +3b a−2b+3为a +3b 的算数平方根,B=√1−a 22a−b−1为1−a 2的立方根,求A+B 的立方根.{a −2b +3=22a −b −1=3,解得{a =3b =2.∴A =3,B =−2,∴√A +B 3=√3−23=1.6.一个正方体的表面积是2400cm 2.(1)求这个正方体的体积; 6a 2=2400,a =20(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少? 6a 2=1200,a =10√2.体积:10√2×10√2×10√2=2000√2 原体积 20×20×20=8000 体积变为原来的2000√28000=√247.若√a 3+633=2|a |,求a 的值.分a ≥0,a =√93. 当a <0,a =−√73.8.先观察下列各式:√1=1;√1+3=√4=2;√1+3+5=√9=3; √1+3+5+7=√16=4;(1)计算:√1+3+5+7+9+11=√62=6;(2)已知n 为正整数,通过观察并归纳,请计算 √1+3+5+7+9+11+⋯+(2n −1)=√n 2=n ;(3)应用上述结论,请计算√4+12+20+28+36+44+⋯+204.的值.√4×(1+3+5+7+⋯+51)=√4×262=2×26=52.181.(1)下列各数中,是分数的有哪些?(2)求下列各数的相反数与① √5−√6; ②√−643; ③ √3−1.73.相反数√6−√5 4 1.73−√3 绝对值√6−√5 4 √3−1.732.把下列各数填在相应的大括号里:-|-2|, 0, -1.04, −23,−√54, -(-3), π2,√2,√36,√93, 0.1010010001…(小数点后面每两个1之间依次多一个0).分数:{−23,−1.04}整数:{−|−2|,0,−(−3),√36}负有理数:{ −23,−1.04,−|−2|} 无理数:{−√54,π2,√2,√93,0.1010010001……} 3.实数a 、b 、c 在数轴上对应点的位置如图所示,以下结论中正确的是( C ).A.ac <0B. |a+b|=a-bC. | c-a| =a - cD. | a |>|b |4.实数a 在数轴上的位置如图,则a 、-a 、1a、√a 3的大小关系是( D ).A .a <−a <1a <√a 3B .−a <1a <a <√a 3C .1a <a <√a 3<-a D .1a <√a 3<a <−a 5.求证√2是无理数.假设√2不是无理数,则它一定可以用最简分数表示出来,则设√2=q p,所以(√2)2=q 2p 2,∴q 2=2p 2.∴p 2为偶数,q 2也为偶数,令q =2k,所以4k 2=2p 2,∴p 2=2k 2,∴P 2为偶数,则P 为偶数,q 也为偶数,所以q p可以化简,不是最简分数,所以假设不成立.6.已知a √33√2b √23+m √3+m c √33+m√2+m,其中m >0,那么a 、b 、c 的大小关系是( C ).A.a >b >cB.c >a >bC.a >c >bD.b >c >a 7.将下列循环小数化成分数:(1)0. 7 =79 (2)3.13 =4715 (3)0.23=2399 3.13 ×100−3.13 ×10=3.13 ×908.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B,点A 表示−√2. 设点B 所表示的数为m.(1)实数m 的值是2−√2; (2)求|m+1|+|m-1|的值;=4-2√2.(3)在数轴上还有C 、D 两点分别表示实数c 和d,且有|2c+d|与√d 2−16互为相反数,求2c-3d 的平方根.±4 解得d =±4,c =±2.191.化简:(1)√5−√5×(√5−2+2√5); (2)|1−√2|+|√2−√3|-|2−√3| =3√5−15 =2√3−3 2.化简:(1)|√10−3|+|√10−4|; (2)|√2+√3−2|-|4−√2−√3|. =1 =2√2+2√3−6 3.计算:(1)|√2−3|+√(−3)2-(-1)2019+√−273, (2)14√16+√25−√−273-|√5−3|.=4−√2 =6+√54.已知a −1a =√10,则a +1a的值是±√14.(a −1a )2=10,(a +1a)2−4=105.设x 、y 是有理数,并且x 、y 满足等式x 2+2y +√2y =17−4√2,求x+y 的值.{x 2+2y −17=0−(y +4)=0解得{y =−4x =5或{y =−4x =−5∴x +y 的值为1或-9.6.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长:√643=4(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长;2√2 (3)把正方形ABCD 放到数轴上,如图2,使得A 与一1重合,求D 在数轴上表示的数.AD =2√2,点D 表示的数为−1−2√2.6.正方形网格中的每个小正方形边长都为1,每个小格的顶点称为格点,如图1中正方形的面积为5,则此正方形的边长为√5,我们通过画正方形可求出无理数的线段长度.(1)请在图2中画出一个面积为10的正方形,此正方形的边长为√10;(2)求出图3中A 、B 、C 点为顶点的三角形的面积和AB 的长度.AB =√57.若a 、b 满足3√a +5|b|=7,求s =2√a −3|b|的取值范围.联立{3√a +5|b|=7s =2√a −3|b|,可求得√a =21+5s 19,|b |=14−3s 19.从而{21+5s19≥014−3s 19≥0,解得−215≤s ≤143.CBA图3图2图1203.7 实数复习(一) 1.解答下列各题(1)分别求下列各数的平方根、算术平方根和立方根.① 3; ② 16; ③ 8; ④ √4. 平方根±√3 ±4 ±√8 ±√2 算数平方根√3 4 √8 √2立方根√33 √163 (2√23) 2 √2 3(2)把下列各数分别填入相应的集合里: 2, π3, 1.414, −√5,−34,√43,54√3,76, 1.3.有理数集合:{ 2, 1.414, −34,√43, 76, 1.3}; 无理数集合:{ π3,−√5,54√3};实数集合:{ 2, π3, 1.414, −√5,−34,√43,54√3,76, 1.3}2.填空:(1)√−73的相反数是√73;绝对值等于√3的数是±√3; (2)当x ≥32时,√2x −3有意义,当x <1时,√1−x 有意义;(3)当0≤x ≤1时,化简√x 2+|x-1|=1. 3.选择题:(1)a 、b 的位置如图所示,则下列各式中有意义的是( D ).A .√a +bB .√a −bC .√abD .√b −a (2)下列运算中,错误的有( D ). ① √125144=1512 . ② √(−4)2=±4. ③ √−22=−√22=−2; ④ √116+14=14+12=34.A.1个B.2个C.3个D.4个(3)下列命题中正确的是( D ).A.两个无理数的和一定是无理数B.正数的平方根一定是正数C.开立方等于它本身的实数只有1D.负数的立方根是负数(4)已知a =2−√5,b =√5−2,c =5−2√5,则a 、b 、c 的大小关系是( D ). A.a <c <b B.b <a <c C.c <a <b D.a <b <c 4.(1)已知:10+√3=x +y ,其中x 是整数,且0<y <1,求x-y 的相反数;x =11,y =√3−1,x −y =12−√3.∴x −y 的相反数为√3−12.(2)已知y =√3x −1−√1−3x +9x ,求√3x +2y −3的平方根.x =13,y =3,3x +2y −3=2,±√2215.细心观察图,认真分析各式,然后解答问题. (√1)2+1=2, S 1=√12;(√2)2+1=3. S 2=√22, (√3)2+1=4,S 3=√32;… …(1) 请用含有n(n 是正整数)的等式表示上述变化规律; 可推知(√n)2+1=n +1,s n =√n2(2)推算出OA 10的长;OA 10=√10(3)求出s 12+S 22+S 3+22…+S 102的值.(√12)2+(√22)2+(√32)2+⋯+(√102)2=14(1+2+3+⋯+10)=5546.已知|2015-a|+√a −2016=a,求a-20152的值.a −2016≥0,解得a −20152=20167.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数“,如:4=22-02,12=42-22,20=62-42,因此,4、12、20都是”神秘数“. (1)28和2012这两个数是“神秘数”吗?为什么? 28=82−62,2012=5042−5022,都是神秘数.(2)设两个连续偶数为2k+2和2k(其中k 取非负整数),由这两个连续偶数构成的神秘数是4的倍数吗?为什么?(2k +2)2−(2k )2=4(2k +1),是4的倍数.(3)两个连续奇数的平方和是神秘数吗?为什么? 不是,(2k +1)2−(2k −1)2=8k8.某同学在解答题目:“化简并求值1a+√1a2+a 2−2,其中a =15.”时,解答过程是: 1a +√1a 2+a 2−2=1a +√(a −1a )2=1a +a −1a =15. (1) 请判断他的解答是否正确;如果不正确,请写出正确的解答过程;他的解答不正确,原式=1a +√(a −1a )2=1a +|a −1a |,当a =15时,1a −a +1a =10−15=945(2)设S =√12+112+122+√12+122+132+√12+132+142+…+ √12+1n 2+1(n+1)2(n 为正整数).考察所求式子的结构特征: ① 先化简通项公式√1+1n 2+1(n+1)2;√1+1n 2+1(n+1)2=√(n 2+n+1)2[n (n+1)]2=√n (n+1)2+2n (n+1)+1[n (n+1)]2=√(n 2+n+1)2[n (n+1)]2=n 2+n+1n (n+1)=1+1n (n+1)② 求出与S 最接近的整数是多少S =(1+11×2)+(1+12×3)+⋯+(1+1n (n+1)) =n +1−12+12−13+13−14+⋯+1n −1n+1=n +1−1n+1当n =1时,S 最接近的整数是1和2;当n >1时,S 最接近的整数是n +1.2A 1223.8 实数复习(二) 1.计算:(1)√32−2√50+4√12−4√18=−5√2 (2)|√2+√3−2|+|−4+√2+√3|;=(3)[5-2×(√3−2)]-3×(√2+1).=6−2√3−3√22.计算:(1)−√425−√−81253; =0 (2)√5−√5×(√5−2×√5);=√5+5(3)√−8273−(−12)3×√(−4)2+√(−4)33×(12)2−√9=−256 ② 设a 、b 都是实数,且满是b =√a 2−1+√1−a 2+4a+1,求√2a −b 的值.解得a =1,b =2,√2a −b =03.已知实数a 、b 、c 在数轴上的位置如图所示,化简|-a|+|a+c|-|b-2a|+|b-c|的结果为( A ).A.-2bB. -bC. -2aD.a4.已知√m +n +5+√(m −2n )2=m-2n,且√2m −n −2=0,求m-n 的值.{m +n +5=02m −n −2=0解得{m =−1n =−4 m −n =35. 观察下列两个等式:2−13=2×13+1,5−23=5×23+1,给出定义如下:我们称使等式a-b =ab+1成立的一对有理数a 、b 为“共生有理数对”,记为(a, b),如:数对(2,13),(5,23),都是“共生有理数对”.(1)判断数对(-2,1),(3,12)是不是“共生有理数对”,写出过程;−2−1=−3,(−2)×1+1=−1,−3≠−1,故(-2,1)不是共生有理数对. (2)若(a,3)是“共生有理数对”,求a 的值;a −3=3a +1,解得a =−2.(3)若(m,n)是“共生有理数对”,则(-n,-m)是“共生有理数对”(填“是”或“不是”);说明理由;−n—(−m)=−n +m,−n ⋅(−m )+1=mn +1,m −n =mn +1即−n +m =mn +1,所以(-n,-m)是“共生有理数对” (4)请再写出一对符合条件的“共生有理数对”(4,35)(6,57).(注意:不能与题目中已有的“共生有理数对”重复)答案不唯一6.已知整数a 0,a 1,a 2,a 3,a 4,…满足下列条件:a 0=0,a 1=-|a 0+1|,a 2=-|a 1+2|,a 3=-|a 2+3|,…,以此类推,则a 2018的值为( C ).A.-1007B.-1008C.-1009D.-2016 a 0=0,a 1=−1,a 2=−1,a 3=−2,a 4=−2,a 5=−3,a 6=−3,由此可得a 2n−1=−na 2n =−n ,a 2018=−10097.设a 、b 是两个不相等的有理数,求证:+√2b +√2必为无理数.设+√2b +√2=A,若A 为有理数,去分母得(A-1)√2=a −Ab.当A=1时,则a =b.与已知矛盾,所以A≠1,故原式可化为√2=a−Ab A−1,由于a,b,A,1均为有理数,所以上述等式右边为有理数,而左边√2是无理数,故等式不可能成立,所以+√2b +√2是无理数.。
七年级数学下册第六章【实数】经典练习卷(培优提高)
![七年级数学下册第六章【实数】经典练习卷(培优提高)](https://img.taocdn.com/s3/m/49dc8f3cb6360b4c2e3f5727a5e9856a5612261d.png)
一、选择题1.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( ) A .2B .4C .6D .82.在0、3、0.536、39、227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是( )A .3B .4C .5D .63.下列各数中比3-小的数是( ) A .2-B .1-C .12-D .04.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n5.64的平方根为( ) A .8B .8-C .22D .22±6.下列各数中,属于无理数的是( ) A .227B .3.1415926C .2.010010001D .π3-7.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B 7C 11D .无法确定8.已知下列结论:①2;②无理数是无限小数;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ) A .① ③B .②③C .③④D .②④9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n10.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1B .-5或5C .11或7D .-11或﹣711.估计511-的值在( ) A .5~6之间B .6~7之间C .7~8之间D .8~9之间二、填空题12.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N . (1)解方程:log x 4=2; (2)求值:log 48;(3)计算:(lg 2)2+lg 2•1g 5+1g 5﹣201813.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________; (2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.14.计算:(1)(23)(41)----; (2)1111115()13()3()555-⨯-+⨯--⨯-; (3)23(2)|21|27-+;(4)311()()(2)424-⨯-÷-.15.3<x 6的所有整数x 的和是_____.16________,2的相反数是________. 17.若2x =,29y =,且0xy <,则x y -等于______.18.已知5的整数部分为a ,5-b ,则2ab b +=_________. 19.(1)求x 的值:2490x -=;(220.计算:(1)(1)|2|3-⨯-+ (2)2111(3)2⎛⎫-+--- ⎪⎝⎭21.比较3、4 _______________.(用“<”连接)三、解答题22.计算:(1)7|2|--(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭23.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-0,4-24.计算:(12)-+(225.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.一、选择题1.若2x -+|y+1|=0,则x+y 的值为( ) A .-3B .3C .-1D .12.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40B .﹣32C .18D .103.64的算术平方根是( ) A .8B .±8C .22D .22±4.下列各数中比3-小的数是( ) A .2-B .1-C .12-D .05.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >>6.如果32.37≈1.333,323.7≈2.872,那么32370约等于( ) A .287.2 B .28.72C .13.33D .133.37.下列实数31,7π-,3.14,38,27,0.2-,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( ) A .5个B .4个C .3个D .2个8.和数轴上的点一一对应的数是( ) A .自然数B .有理数C .无理数D .实数9.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n -10.若将2-711 )A .2-B .7C .11D .无法确定11.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1B .-5或5C .11或7D .-11或﹣7二、填空题12.已知31a +的算数平方根是4,421c b +-的立方根是3,c 是13的整数部分.求22a b c +-的平方根.13.(1)计算:①231698(2)-+-; ②3121125|63|6+-+--.(2)求下列各式中x 的值: ③22536x =; ④3(1)64x --=.14.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14.(1)请根据以上式子填空:①189⨯= ,②1(1)n n ⨯+= (n 是正整数)(2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯15.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2,其中1a <-,且AB BC =,则a =_______.16.比较大小:221(填“>”、“=”或“<”). 17.比较大小:3-_______-2.(填“>”“=”或“<”)18.设a ,b 是两个连续的整数,已知8是一个无理数,若8a b <<,是,则a b =____.19.观察下面一列数:-1,2,-3,4,-5,6,-7……,将这列数排成下图形式.按照此规律排下去,那么第_________行从坐标数第_________个数是-2019.20.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________.212(2)-的平方根是 _______ ;38a 的立方根是 __________.三、解答题22.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.23.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)24.计算下列各题(1)38-163﹣2; (2)35﹣0.04(结果保留2位有效数字). 25.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简a b ;②当a b a c =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.一、选择题1.在00.536227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是( )A .3B .4C .5D .62) A .3B .﹣3C .±3D .63.下列各式中,正确的是( )A B .C 3=-D 4=-4.8 ) A .4B .5C .6D .75.下列说法中,错误的有( ) ①符号相反的数与为相反数; ②当0a ≠时,0a >; ③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远; ⑤数轴上的点不都表示有理数. A .0个 B .1个C .2个D .3个6.若3a =,则a 在( )A .3-和2-之间B .2-和1-之间C .1-和0之间D .0和1之间7.已知无理数m 5π-的整数部分相同,则m 为( )A BC 1D .π-8.下列实数是无理数的是( ) A . 5.1-B .0C .1D .π9.0.31,3π,27-12- 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .410.设,A B 均为实数,且33,3A m B m =-=-,则,A B 的大小关系是( )A .AB >B .A B =C .A B <D .A B ≥11.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1B .-5或5C .11或7D .-11或﹣7二、填空题12.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-,38,0,13-,4-13.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.14.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9. 问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证. 15.计算:(1)(23)(41)----; (2)1111115()13()3()555-⨯-+⨯--⨯-;(3)2(2)|1|-+;(4)311()()(2)424-⨯-÷-. 16.观察下列各式:322111124==⨯⨯,33221129234+==⨯⨯,33322112336344++==⨯⨯,33332211234100454+++==⨯⨯;…回答下面的问题:(1)猜想:33333123(1)n n ++++-+=_________;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+......+93+103的值是_________; (3)计算:213+223+233+......+293+303的值. 17.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π等,而常用“……”或者“≈”1的小数部分,你同意小刚的表示方法吗?事实上,小刚的表示方法是有道理的,的整数部分是1,将这个数减去其整数部分,差就是小数部分.<<,即23<<,22也就是说,任何一个无理数,都可以夹在两个相邻的整数之间. 根据上述信息,请回答下列问题:(1______,小数部分是_______;(2)10+10a b <+<,则a b +=_____;(34x y =+,其中x 是整数,且01y <<.求:x y -的相反数. 18.(1)计算:|3|-.(2)求下列各式中x 的值:③22536x =;④3(1)64x --=.19.已知mn 、是两个连续的整数,且m n <,则m n +=_______________________. 20.|2|π-=________.21_____;16的平方根为_____;()34-的立方根是_____. 三、解答题22.已知(25|50x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.23)10152-⎛⎫-+︒ ⎪⎝⎭24.求下列各式中的x 的值.(1)4x 2=9; (2)(2x ﹣1)3=﹣27.25.“*”是规定的一种运算法则:a*b=a 2-3b .(1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;。
初中数学《实数》课外拓展训练题附参考答案
![初中数学《实数》课外拓展训练题附参考答案](https://img.taocdn.com/s3/m/9f1cabd5910ef12d2af9e7cf.png)
一、选择题《实数》课外拓展训练题班级姓名1.化简 1−|1− 2 ||的结果是( )A. − 2B. 2− 2 C. 2 D. 2+ 2 .2.若−1<a<0,则 a,a3, 3 a , 1 一定是( ) aA. 1 最小,a3 最大 aB. 3 a 最小,a 最大C. 1 最小,a 最大 aD. 1 最小, 3 a 最大 a3.若 a 和 a 都有意义,则 a 的值是( )A.a≥0 B.a≤0 C.a=0 D.a≠04. 比较三个数−3,−π,− 10 的大小,下列结论正确的是( )A. −π>−3>− 10 B. − 10 >−π>−3C. − 10 >−3>−π D. −3>−π> 105. 设边长为 3 的正方形的对角线长为 a.下列关于 a 的四种说法: ①a 是无理数;②a 可以用数轴上的一个点来表示;③3<a<4; ④a 是 18 的算术平方根。
其中所有正确说法的序号是( )A. ①④ B. ②③ C. ①②④ D. ①③④3. 6.如图,数轴上 A,B 两点表示的数分别为−1 和 3 ,点 B 关于点 A 的对称点为 C,则点 C 所表示的数为()A. −2− 3B. −1− 3 C. −2+ 3 D. 1+ 3(第 6 题)7.已知 20m 是整数,则满足条件的最小正整数 m 为( )A. 2 B. 3 C. 4 D. 58 已知 x 是实数,则 x x x 1 的值是( ) 1A. 1−11B. 1+ C. −1D. 无法确定的9. 若 k< 90 <k+1(k 是整数),则 k 的值为( )A.6 B.7 C.8 D.910.实数:- 5 ,2 2 ,2- 2 , , 3 2 , 3 9 在数轴(如图)上的对应点中,既在点 A、C 之 2间,又在点 B、D 之间的有( )A.3 个 B.4 个 C.5 个 二、填空题D.2 个11.满足< x < 的整数 x 是 __________12.已知:a 和 b 都是无理数,且 a≠b,下面提供的 6 个数 a+b,a−b,ab, a ,ab+a−b, bab+a+b 可能成为有理数的个数有_ __个。
数学第六章 实数的专项培优练习题(及解析
![数学第六章 实数的专项培优练习题(及解析](https://img.taocdn.com/s3/m/a7f79eb627d3240c8547ef53.png)
数学第六章 实数的专项培优练习题(及解析一、选择题1.有一个数阵排列如下:1 2 4 7 11 16 223 5 8 12 17 236 9 13 18 2410 14 19 25 15 20 2621 2728则第20行从左至右第10个数为( )A .425B .426C .427D .4282.在下面各数中无理数的个数有( )-3.14,23,227,0.1010010001...,+1.99,-3π A .1个 B .2个 C .3个 D .4个3.如图将1、2、3、6按下列方式排列.若规定(,)m n 表示第m 排从左向右第n 个数,则(5,4)与(15,8)表示的两数之积是( ).A .1B 2C 3D 6 4.若()2320m n -++=,则m n +的值为( )A .5-B .1-C .1D .5 5.计算:122019(1)(1)(1)-+-++-的值是( ) A .1-B .1C .2019D .2019- 6.若2(1)|2|0x y -++=,则x y +的值等于( )A .-3B .3C .-1D .17.下列各组数中,互为相反数的是( )A .2-与12-B .|2-2C 2(2)-38-D 38-38-8.下列各式正确的是( )A .164=±B .1116493=C .164-=-D .164=9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n10.下列命题中,是真命题的有( ) ①两条直线被第三条直线所截,同位角的角平分线互相平行;②立方根等于它本身的数只有0;③两条边分别平行的两个角相等;④互为邻补角的两个角的平分线互相垂直 A .4个 B .3个 C .2个 D .1个二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).13.实数,,a b c 在数轴上的点如图所示,化简()()222a a b c b c ++---=__________.14.观察下列各式:123415⨯⨯⨯+=;2345111⨯⨯⨯+=;3456119⨯⨯⨯+=;121314151a ⨯⨯⨯+=,则a =_____.15.将2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___16.如果某数的一个平方根是﹣5,那么这个数是_____.17.一个数的立方等于它本身,这个数是__.18116的算术平方根为_______. 19.34330035.12=30.3512x =-,则x =_____________.20.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题21.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<332768______位数;(2)由32768的个位上的数是8332768________,划去32768后面的三位数768得到32,因为333=27,4=64332768_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:3327683-110592________=22.在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a ⊕b ⊕c =2a b c a b c --+++.如:(1)-⊕2⊕3=123(1)2352---+-++=. ①根据题意,3⊕(7)-⊕113的值为__________; ②在651128,,,,0,,,,777999---这15个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,在所有计算结果中的最大值为__________;最小值为__________.23.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n aa a a a ÷÷÷⋯÷个 (a≠0)记作a ⓝ,读作“a 的圈 n 次方”. (初步探究)(1)直接写出计算结果:2③=___,(12)⑤=___; (2)关于除方,下列说法错误的是___A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1ⓝ=1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(-3)④=___; 5⑥=___;(-12)⑩=___. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于___;(3)算一算:212÷(−13)④×(−2)⑤−(−13)⑥÷33 24.请回答下列问题:(1介于连续的两个整数a 和b 之间,且a b <,那么a = ,b = ;(2)x 2的小数部分,y 1的整数部分,求x = ,y = ;(3)求)yx -的平方根. 25.让我们规定一种运算a b ad cb c d =-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335xx =-(2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程). 26.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”.(1)请直接写出最小的四位依赖数;(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.(3)已知一个大于1的正整数m 可以分解成m =pq+n 4的形式(p≤q ,n≤b ,p ,q ,n 均为正整数),在m 的所有表示结果中,当nq ﹣np 取得最小时,称“m =pq+n 4”是m 的“最小分解”,此时规定:F (m )=q n p n++,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F (20)=2222++=1,求所有“特色数”的F (m )的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题解析:寻找每行数之间的关系,抓住每行之间的公差成等差数列,便知第20行第一个数为210,而每行的公差为等差数列,则第20行第10个数为426,故选B.2.C解析:C【分析】根据无理数的三种形式求解.【详解】-3.14,,227,0.1010010001...,+1.99,-3π无理数的有:,0.1010010001...,-3π共3个 故选:C【点睛】 本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行.初中范围内学习的无理数有三类:①π类,如2π,3π等;②③虽有规律但是无限不循环的数,如0.1010010001…,等.3.B解析:B【分析】首先从排列图中可知:第1排有1个数,第2排有2个数,第3排有3个数,然后抽象出第5排第4个数,第15排第8个数,然后可以得到答案.【详解】解:(5,4)表示第5排从左往右第4,(15,8) 表示第15排第8个数,从上面排列图中可以看出奇数行1排在最中间,所以第15行最中间是1,且为第8个,所以1和.故本题选B .【点睛】本题是规律题的呈现,考查学生的从具体情境中抽象出一般规律,考查学生观察与归纳能力.4.C解析:C【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m-3=0,n+2=0,解得m=3,n=-2,所以,m+n=3+(-2)=1.故选:C .【点睛】此题考查非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.5.A解析:A【分析】根据题意,1-的奇数次幂等于1-,1-的偶数次幂等于1,然后两个加数作为一组和为0,即可得到答案.【详解】解:∵1-的奇数次幂等于1-,1-的偶数次幂等于1,∴122019(1)(1)(1)-+-++-=1234201720182019[(1)(1)][(1)(1)][(1)(1)](1)-+-+-+-++-+-+- =2019(1)-=1-;故选:A.【点睛】本题考查了数字规律性问题,有理数的混合运算,解题的关键是熟练掌握1-的奇数次幂等于1-,1-的偶数次幂等于1.6.C解析:C【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】根据题意得,x-1=0,y+2=0,解得x=1,y=-2,所以x+y=1-2=-1.故选:C.【点睛】此题考查绝对值和算术平方根的非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.7.C解析:C【分析】先化简,然后根据相反数的意义进行判断即可得出答案.【详解】解:A. 2-与12-不是一组相反数,故本选项错误;B. |,所以|不是一组相反数,故本选项错误;,故选:C【点睛】本题考查了相反数,能将各数化简并正确掌握相反数的概念是解题关键. 8.D解析:D【分析】根据算术平方根的定义逐一判断即可得解.【详解】4=,故原选项错误;=,故原选项错误;D. 4=,计算正确,故此选项正确.故选D.【点睛】此题主要考查了算术平方根,解题的关键是掌握算术平方根的定义. 9.B解析:B根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.10.D解析:D【分析】利用平行线的性质、立方根及互补的定义分别判断后即可确定正确的选项.【详解】解:①两条平行直线被第三条直线所截,同位角的角平分线互相平行,故错误,是假命题;②立方根等于它本身的数有0,±1,故错误,是假命题;③两条边分别平行的两个角相等或互补,故错误,是假命题;④互为邻补角的两个角的平分线互相垂直,正确,是真命题,真命题有1个,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、立方根及互补的定义等知识,难度不大.二、填空题11.-4【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.解析:-4【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.12..【解析】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=. 解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“ 解析:12++n n . 【解析】【详解】 根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.13.0【分析】由数轴可知,,则,即可化简算术平方根求值.【详解】解:由数轴可知,,则,,故答案为:0.【点睛】此题考查数轴上数的大小关系,算术平方根的性质,整式的加减计算. 解析:0【分析】由数轴可知,0b c a <<<,则0,0a b b c +<-<,即可化简算术平方根求值.【详解】解:由数轴可知,0b c a <<<,则0,0a b b c +<-<,||()()0c a a b c b c a a b c b c =-+++-=--++-=, 故答案为:0.【点睛】此题考查数轴上数的大小关系,算术平方根的性质,整式的加减计算.14.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】n=求解即可.观察各式得出其中的规律,再代入12【详解】由题意得()31=⨯++n nn=代入原式中将12a==⨯+=12151181故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.15.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,÷=……,即1中第三个数∵1994493故答案为.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.16.25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.解析:25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.17.0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的解析:0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.18.【分析】利用算术平方根的定义计算得到的值,求出的算术平方根即可..【详解】∵,,∴的算术平方根为;故答案为:.【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键. 解析:12【分析】14=的值,求出14的算术平方根即可.. 【详解】14=12=,的算术平方根为12; 故答案为:12. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.19.-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值.【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.20.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找=+≥n n(1)【分析】=+=(2=+n(n≥1)的等式表示出来是(3(1)=+≥n n【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是n n=+≥(1)=+≥(1)n n【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.三、解答题21.(1)两;(2)2,3;(3)24,-48.【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论.【详解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10100,故答案为:两;(2)∵只有个位数是2的立方数是个位数是8,2划去32768后面的三位数768得到32,因为33=27,43=64,∵27<32<64,∴3040.3.故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100,∵只有个位数是4的立方数是个位数是4,4划去13824后面的三位数824得到13,因为23=8,33=27,∵8<13<27,∴2030.;由103=1000,1003=1000000,1000<110592<1000000,∴10100,∵只有个位数是8的立方数是个位数是2,8,划去110592后面的三位数592得到110,因为43=64,53=125,∵64<110<125,∴4050.;故答案为:24,-48.【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.22.(1)3(2)53(3)117-【分析】 (1)根据给定的新定义,代入数据即可得出结论;(2)分a-b-c≥0和a-b-c≤0两种情况考虑,分别代入定义式中找出最大值,比较后即可得出结论.【详解】解:①根据题中的新定义得:3⊕()7-⊕113=()()111137373332---++-+= ②当a-b-c≥0时,原式()12a b c a b c a =--+++=, 则取a 的最大值,最小值即可,此时最大值为89,最小值为67-; 当a-b-c≤0时,原式()12a b c a b c b c =-+++++=+, 此时最大值为785993b c +=+=,最小值为6511777b c ⎛⎫⎛⎫+=-+-=- ⎪ ⎪⎝⎭⎝⎭, ∵586113977>>->- ∴综上所述最大值为53,最小值为117-. 【点睛】本题考查了有理数的混合运算,读懂题意弄清新定义式的运算是解题的关键.23.初步探究:(1)12,8;(2)C ;深入思考:(1)213,415,82;(2)21n a-;(3)-5.【分析】初步探究:(1)根据除方运算的定义即可得出答案;(2)根据除方运算的定义逐一判断即可得出答案;深入思考:(1)根据除方运算的定义即可得出答案;(2)根据(1)即可总结出(2)中的规律;(3)先按照除方的定义将每个数的圈n 次方算出来,再根据有理数的混合运算法则即可得出答案.【详解】解:初步探究:(1)2③=2÷2÷2=12 (12)⑤=11111822222÷÷÷÷= (2)A :任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A 错误; B :因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1,故选项B 错误; C :3④=3÷3÷3÷3=19,4③=4÷4÷4=14,3④≠4③,故选项C 正确; D :负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D 错误;故答案选择:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3) ÷(-3)=213 5⑥=5÷5÷5÷5÷5÷5=415 (-12)⑩=8111111111122222222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-÷-÷-÷-÷-÷-÷-÷-÷-÷-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)a ⓝ=a÷a÷a…÷a=21n a -(3)原式=()4252621111442711233---÷⨯-÷-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ =1144981278⎛⎫÷⨯--÷ ⎪⎝⎭=23--=-5【点睛】本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.24.(1)4;b =(2−4;3(3)±8【分析】((1)由16<17<25a ,b 的值; (2)根据(1)的结论即可确定x 与y 的值;(3)把(2)的结论代入计算即可.【详解】解:(1)∵16<17<25,∴4<5,∴a =4,b =5,故答案为:4;5;(2)∵4<5,∴6+2<7,由此整数部分为6,∴x −4,∵4<5,∴3-1<4,∴y =3;;3(3)当x ,y =3时,)y x =)3=64, ∴64的平方根为±8.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法.25.(1)1;-7;-x ;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()();2-3253310935xx x x x x x =⨯---⨯=---=--()()().故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3),=(6x 2-4x-2)-(6x 2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7. 【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.26.(1)1022;(2)3066,2226;(3)6736 【分析】(1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位=2×千位﹣百位,个位=2×千位+百位,分别求出十位和个位,即可求出最小的四位依赖数;(2)设千位数字是x ,百位数字是y ,根据“依赖数”定义,则有:十位数字是(2x ﹣y ),个位数字是(2x+y ),依据题意列出代数式然后表示为7的倍数加余数形式,然后求出x 、y 即可,从而求出所有特色数;(3)根据最小分解的定义可知: n 越小,p 、q 越接近,nq ﹣np 才越小,才是最小分解,此时F (m )=q n p n ++,故将(2)中特色数分解,找到最小分解,然后将n 、p 、q 的值代入F (m )=q n p n++,再比较大小即可. 【详解】解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:2×1-0=2,个位上的数字为:2×1+0=2则最小的四位依赖数是1022;(2)设千位数字是x ,百位数字是y ,根据“依赖数”定义,则有:十位数字是(2x ﹣y ),个位数字是(2x+y ),根据题意得:100y+10(2x ﹣y )+2x+y ﹣3y =88y+22x =21(4y+x )+(4y+x ), ∵21(4y+x )+(4y+x )被7除余3,∴4y+x =3+7k ,(k 是非负整数)∴此方程的一位整数解为:x=4,y=5(此时2x +y >10,故舍去);x =3,y =7(此时2x ﹣y <0,故舍去);x =3,y =0;x =2,y =2;x =1,y =4(此时2x ﹣y <0,故舍去); ∴特色数是3066,2226.(3)根据最小分解的定义可知: n 越小,p 、q 越接近,nq ﹣np 才越小,才是最小分解,此时F(m)=q np n ++,由(2)可知:特色数有3066和2226两个,对于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解时:n=2,p=50,q=61∴F(3066)=61263= 50252++对于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解时:n=2,p=34,q=65∴F(2226)=636 5267= 342++∵6367 5236<故所有“特色数”的F(m)的最大值为:67 36.【点睛】此题考查的是新定义类问题,理解题意,并根据新定义解决问题是解决此题的关键.。
七(下)培优训练(二)实数(提高版)
![七(下)培优训练(二)实数(提高版)](https://img.taocdn.com/s3/m/e60a870a5727a5e9856a6179.png)
培优训练二:实数(提高篇)(一)【内容解析】(1)概念:平方根、算术平方根、立方根、无理数、实数;要准确、深刻理解概念。
如平方根的概念:①文字概念:若一个数x 的平方是a ,那么x 是a 的平方根;②符号概念:若a x =2,那么a x ±=;③逆向理解:若x 是a 的平方根,那么a x =2。
(2)性质:①在平方根、算术平方根中,被开方数a ≥0⇔式子有意义;②在算术平方根中,其结果a 是非负数,即a ≥0; ③计算中的性质1:a a =2)((a ≥0);④计算中的性质2:⎩⎨⎧≤-≥==)0()0(2a a a a a a ;⑤在立方根中,33a a -=-(符号法则)⑥计算中的性质3:a a =33)(;a a =33(3)实数的分类:(二)【典例分析】1、利用概念解题:例1. 已知:18-+=b a M 是a +8的算术数平方根,423+--=b a b N 是b -3立方根,求N M +的平方根。
练习:1. 已知234323-=-=+y x y x ,,求x y +的算术平方根与立方根。
2.若2a +1的平方根为±3,a -b +5的平方根为±2,求a+3b 的算术平方根。
例2、已知x 、y 互为倒数,c 、d 互为相反数,a 的绝对值为3,z 的算术平方根是5,求22c d xy a -++的值。
2、利用性质解题:例1 已知一个数的平方根是2a -1和a -11,求这个数.变式:①已知2a -1和a -11是一个数的平方根,则这个数是 ;②若2m -4与3m -1是同一个数两个平方根,则m 为 。
例2.若y =x -3+3-x +1,求(x +y )x的值例3.x 取何值时,下列各式在实数范围内有意义。
⑴⑵⑶ ⑷例4.已知321x -与323-y 互为相反数,求yx21+的值. 练习: 1.若一个正数a 的两个平方根分别为x +1和x +3,求a2005的值。
第六章-实数培优训练试卷(含答案)
![第六章-实数培优训练试卷(含答案)](https://img.taocdn.com/s3/m/9ddd2d6750e2524de4187e84.png)
!第六章实数培优提高卷一、选择题。
(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.如图,数轴上A,B两点表示的数分别为-1和3,点B关于点A的对称点为C,则点C所表示的数为()A.-2-3 B.-1-3 C.-2+3 D.1+32.下列六种说法正确的个数是()!①无限小数都是无理数;②正数、负数统称有理数;③无理数的相反数还是无理数;④无理数与无理数的和一定还是无理数;⑤无理数与有理数的和一定是无理数;⑥无理数与有理数的积一定仍是无理数.A、1B、2C、3D、43.在实数12,30,π,161 161…,316中,无理数有()A.1 个 B.2个 C.3个 D.4个4.设[x)表示大于x的最小整数,如[3)=4,[-)=-1,则下列结论中正确的有()①[0)=0;②[x)-x的最小值是0;③[x)-x的最大值是0;·④存在实数x,使[x)-x=成立.A.1个 B.2个 C.3个 D.4个5.如图网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是()A.5B. 6C. 7D. 86.下列五种说法:①一个数的绝对值不可能是负数;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根;⑤两个无理数的和一定是无理数或零,其中正确的说法有( ) A .1个 B .2个 C .3个 D .4个 7.设42-的整数部分为a ,小整数部分为b ,则1a b-的值为( ) ;A .2-B .2C .212+D .212-8.若用湘教版初中数学教材上使用的某种计算器进行计算,则按键的结果为( )A .21B .15C .84D .679.观察下列计算过程:因为112=121,所以121=11,因为1112=12321,所以12321=111……,由此猜想12345678987654321=( )111 111 111 111 111 111 111 10.下列运算中, 正确的个数是( ) ①2551=114412②2222-=-= 1111+=+16442244=±(-)31255-=- |个 个 个 个二、填空题。
七年级初一数学 数学第六章 实数的专项培优练习题(含答案
![七年级初一数学 数学第六章 实数的专项培优练习题(含答案](https://img.taocdn.com/s3/m/47c58113aa00b52acfc7cadb.png)
七年级初一数学 数学第六章 实数的专项培优练习题(含答案一、选择题1.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( )A .132B .146C .161D .6662.设n 为正整数,且20191n n <<+,则n 的值为( ) A .42B .43C .44D .45 3.3164的算术平方根是( ) A .12 B .14 C .18 D .12± 4.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④ B .①②④ C .②④ D .②5.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个6.实数33,10,25的大小关系是( )A .310325<<B .331025<<C .310253<<D .325310<<7.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒8.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上9.如图,数轴上表示实数3的点可能是( )A .点PB .点QC .点RD .点S 10.下列说法:①±3都是27的立方根;②116的算术平方根是±14;③﹣38-=2;④16的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有( ) A .1个 B .2个C .3个D .4个 二、填空题11.一个数的平方为16,这个数是 .12.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________.13.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡⎤=⎣⎦,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡⎤=⎣⎦→2⎡⎤⎣⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.14.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数.例如:[]2.32=,[]1.52-=-.则下列结论: ①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2. 其中正确的结论有_____(写出所有正确结论的序号).15.一个数的立方等于它本身,这个数是__.16.27的立方根为 .17.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.20.7.071≈≈≈≈,按此规_____________三、解答题21.先阅读然后解答提出的问题:设a 、b 是有理数,且满足3+=-a b a 的值.解:由题意得(3)(0-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数,是无理数,所以a-3=0,b+2=0,所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足2210x y -+=+x+y 的值.22.观察下列各式:111122-⨯=-+; 11112323-⨯=-+; 11113434-⨯=-+; …(1)你发现的规律是_________________.(用含n 的式子表示;(2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯ ⎪ ⎪⎝⎭⎝⎭23.规定两数a ,b 之间的一种运算,记作(a ,b ):如果c a b =,那么(a ,b )=c . 例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=_______,(5,1)=_______,(2,14)=_______. (2)小明在研究这种运算时发现一个现象:(3n ,4n )=(3,4)小明给出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n所以3x =4,即(3,4)=x ,所以(3n ,4n )=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30)24.计算:2(1)|2|(3)-+--(2)||2||1|+-25.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences ).这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q = ;如果a n (n 为正整数)表示这个等比数列的第n 项,那么a 18= ,a n = ;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S =1+2+4+8+16+…+230…①等式两边同时乘以2,得2S =2+4+8+16++32+…+231…②由② ﹣ ①式,得2S ﹣S =231﹣1即(2﹣1)S =231﹣1 所以 3131212121S -==-- 请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a 1,a 2,a 3,…,a n ,从第二项开始每一项与前一项之比的常数为q ,请用含a 1,q ,n 的代数式表示a n ;如果这个常数q ≠1,请用含a 1,q ,n 的代数式表示a 1+a 2+a 3+…+a n .26.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而121的小数部分.请解答下列问题:(1_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y +-的平方根。