金属的拉伸实验和压缩实验

合集下载

§2—1拉伸与压缩实验

§2—1拉伸与压缩实验
1 2 3 4 5 6
7
1.主机
2.手动操作盒
3.EDC 控制器
4.功率放大器
5.计算机显示器
6.打印机
7.计算机主机
图 1-ቤተ መጻሕፍቲ ባይዱ 电子万能试验机布局图
(1) 主机部分
电子万能试验机主机由负荷机架、传动系统、夹持系统和位置保护装置等四部分组成。
如图 1-4。
1) 负荷机架
负荷机架由四立柱支承上横梁与工作台板构成门式框架,两丝杠穿过动横梁两端并安装
只受到沿轴线方向的单向力,并使该力准确地传递给负荷传感器。但是 500kN 规格的电子
万能试验机的夹具不用万向连轴节,而是通过连杆直接与夹具刚性连接。对于双空间结构的
电子万能试验机(如 100kN 和 200kN 规格的试验机),下夹头安装在动横梁上。对于单空间
3.万向联轴节 6.立柱 9.活动横梁 12.弯曲试台 15.圆弧齿形带 18.导向节
图 1-4 电子式万能试验机主机结构图
3) 夹持系统
对于 100kN 和 200kN 规格的电子万能试验机,在拉伸夹具的上夹头均安装有万向连轴
节,它的作用是消除由于上、下拉伸夹具的不同轴度误差带来的影响,使试样在拉伸过程中
一、 实验目的
1、 通过对低碳钢和铸铁这两种不同性能的材料在拉伸、压缩破坏过程的观察和对试验 数据、断口特征的分析,了解它们的力学性能特点。
2、 了解电子万能试验机的构造、原理和操作。 3、 测定低碳钢拉伸时的弹性模量 E、下屈服强度 σ sL 、抗拉强度 σ b 、断后伸长率 δ 5 和 断面收缩率ψ ①;测定低碳钢压缩时的屈服强度 σ sc ,以及测定铸铁拉伸时的抗拉强度 σ b 和 压缩时的抗压强度 σ bc ①。

金属材料的拉伸与压缩实验报告

金属材料的拉伸与压缩实验报告

金属材料的拉伸与压缩实验报告
一、前言
拉伸与压缩实验是金属材料力学性能测试中常用的方法之一。

通过实验可以得到金属材料的抗拉强度、屈服强度、延伸率等性能参数。

本实验旨在通过对不同金属材料的拉伸与压缩实验,探索金属材料的力学特性。

二、实验原理
拉伸与压缩实验的原理是将金属样本放入拉力机中,通过施加相应的拉伸或压缩力,在不同的应变下测量样本的力学性能。

应变可以通过求解样本的伸长量与原始长度的比值得到。

三、实验步骤
1. 将金属样本放置在拉力机上,并调整夹具使样本稳固;
2. 开始拉伸实验,慢慢增加加载量,记录下载荷和伸长量;
3. 当样本出现明显的变形时停止拉伸,记录此时的载荷和伸长量;
4. 根据记录数据计算拉力与伸长量之间的比值,得到材料的抗拉强度和延伸率;
5. 进行压缩实验,步骤同拉伸实验;
6. 根据实验数据计算压力与压缩量之间的比值,得到材料的抗压强度和压缩率。

四、实验结果分析
本实验对不同金属材料进行了拉伸与压缩实验。

实验结果表明,不同材料的力学
性能存在较大的差异。

其中,钢材的抗拉强度最高,铝材的延伸率较高。

对于同一材料,在拉伸和压缩实验中得到的结果存在差异,这是由于材料在不同的加载形式下会表现出不同的力学特性。

五、实验总结
拉伸与压缩实验是研究金属材料力学性能的重要手段。

通过实验可以得到材料的抗拉强度、屈服强度、延伸率等性能参数,有助于了解不同材料的应用范围和性能要求。

在实验中需要注意样本的选择和制备,以及试验过程中的操作规范和数据记录精确。

拉伸压缩实验报告

拉伸压缩实验报告

3.1 金属材料的拉伸与压缩实验
一、实验目的
1. 了解液压式材料试验机的工作原理,初步掌握试验机的操作规程。

2. 测定低碳钢的屈服(流动)极限σS ,强度极限σb ,延伸率δ和截面收缩率Ψ。

观察试件在拉伸过程中的各种现象(弹性、屈服、强化、颈缩)。

3. 测定铸铁材料的拉伸和压缩强度极限σb 。

4. 比较低碳钢和铸铁的机械性质及破坏时的断口形式。

二、实验主要设备及实验原理
1.主要设备:改装后的WE-300液压式材料试验机
2.实验原理:测定金属材料的机械性质需要将试件制成符合国家标准的形状和尺寸。

低碳钢试件在拉伸过程中,可分为四个阶段:弹性阶段;屈服阶段: 强化阶段;颈缩阶段。

由于铸铁是一种典型的脆性材料,不论是拉伸还是压缩,它均只有一个强度指标,而且无塑性指标δ和Ψ,铸铁的唯一强度指标为强度极限σb ,但是铸铁的抗拉和抗压能力是大不相同的。

三、实验数据记录及处理
1.拉伸实验前试件尺寸
2.拉伸实验后的尺寸及数据
3.压缩实验尺寸及数据
4.计算结果
四、问题思考
σ—曲线,叙述并标明低碳钢在1.根据实验结果,绘制低碳钢和铸铁的ε
拉伸过程中的四个变形阶段。

2.比较低碳钢和铸铁拉伸时的机械性质及破坏形式。

3.比较铸铁在拉伸和压缩时的强度极限σ
b
4.为何铸铁试件在压缩时的破坏断面与轴线大致成︒
45。

金属材料的拉伸、压缩实验

金属材料的拉伸、压缩实验
6、选择合适的控制试验程序,控制横梁上升。
s

Ps A
(Mpa )
b

Pb A
(Mpa )
金属材料的拉伸、压缩实验
3、延伸率 及断面收缩率 的测定
L1 L0 100% L0
A0二、实验步骤
1、通电打开计算机与显示器,进入WDW测试软件。 2、打开控制器开关,按下试验机右立柱下方 “启动”按钮 。 3、需预热30分钟。
三、实验原理 低碳钢
P
铸铁
P
Ps Pb
拉伸图
Pb
L
Pb PS
L
压缩图
金属材料的拉伸、压缩实验
材料的力学性能E、 s 、b 、 和 是由拉伸 破坏试验来测定的。 1、弹性模量E的测定 E是材料在比例极限内应力和应变的比值,即:
E PL A0L
金属材料的拉伸、压缩实验
金属材料的拉伸、压缩实验
金属材料的拉伸、压缩实验
金属材料的拉伸、压缩实验
二、实验仪器及试样
1、试样 (低碳钢、铸铁)
拉伸试样(10:1 标准试样) 压缩试样(1 h / d 3)
金属材料的拉伸、压缩实验
2、设备和仪器
1.电子式万能试验机 2. 电子引伸计 3. 游标卡尺
金属材料的拉伸、压缩实验
试验用增量法,即把载荷分成若干相等的加载 等级,加载P 时由引伸仪读出与载荷对应的变 形 L ,最后取载荷、变形的增量平均值 P 和 L。 则弹性模量E为:
E PL (Gpa ) A0 (L)
试验中若 (L) 为常数,说明虎克定律成立。
金属材料的拉伸、压缩实验
2、屈服极限 s 及强度极限 b的测定
金属材料的拉伸、压缩实验

金属材料的拉伸与压缩实验

金属材料的拉伸与压缩实验

机械学基础实验指导书力学实验中心金属材料的拉伸与压缩实验1.1 金属材料的拉伸实验拉伸实验是材料力学实验中最重要的实验之一。

任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。

材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。

通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。

例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。

除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。

我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。

这个实验是研究材料在静载和常温条件下的拉断过程。

利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。

试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。

例如:对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。

为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。

按国标GB/T228-2002、GB/P7314-2005的要求,拉伸试件一般采用下面两种形式:图1-11. 10倍试件;圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S 2. 5倍试件圆形截面时,L 0=5d 矩形截面时, L 0=5.650S =45Sd 0——试验前试件计算部分的直径; S 0——试验前试件计算部分断面面积。

此外,试件的表面要求一定的光洁度。

光洁度对屈服点有影响。

因此,试件表面不应有刻痕、切口、翘曲及淬火裂纹痕迹等。

一、实验目的:1.研究低碳钢、铸铁的应力——应变曲线拉伸图。

材料力学实验

材料力学实验

同时受到弯曲和扭转两种载荷作用下,用应变仪
测定已知点在不同方向上的应变值,并计算出实
验的正应力,从而验证理论计算值。
理论值计算主应力公式
1, 2
1 2
(
x
( x )2 4(t xy)2 )

tg 2 2t xy x
实验六 弯扭组合变形主应力测试 实验
利用已知参数的材料和专用设备,在标准试件
选择测力度盘。调整指针,对准零点,并调整自 动绘图器。
实验二 金属材料的压缩实验
四、实验步骤
3)安装试件 将试件两端面涂以润滑剂,然后准确地放在试验
机球形承垫的中心处。 4)检查试件 5)进行试验
缓慢均匀地加载,注意观察测力指针的转动情况 和绘图纸上的压缩图,以便及时而正确地测定屈服载 荷,并记录下来。
4、记下试验中试样屈服时的扭矩Ts和破坏时的最大扭矩Tb。
5、试样扭断后,立即关机,取下试样,试验结束。
实验三 金属材料的扭转实验
五、思考题
1.铸铁试件扭转实验,从加载到破坏你看到哪些现象。 2.为什么铸铁试件在扭转时沿着与轴线大致成45°的斜截 面上破坏? 3.低碳钢试件扭转实验,从加载到破坏你看到哪些现象。 4.分析两种材料的断口形状及产生原理。 5.铸铁在压缩和扭转破坏时,其断口方位均与轴线大致 成45°角,其破坏原因是否相同?
实验五 测定材料的剪切弹性模量
四、实验步骤
1.卡取试件直径,为了避免试件加工的锥度和椭圆度 影响,在标距 内选取3个卡点,3个卡点的位置分别选 在标距中间和接近标距的两端。
2.将已卡取直径为 、长为260mm的试件安装在NY— 4型测G扭转试验机上,并固紧。
3.调整两悬臂杆的位置。 4.调整设备加码进行试验。

金属材料的拉伸与压缩试验

金属材料的拉伸与压缩试验

试验一 金属材料的拉伸与压缩试验1.1概 述拉伸实验是材料力学实验中最重要的实验之一。

任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。

材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。

通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。

例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。

除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。

我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。

这个实验是研究材料在静载和常温条件下的拉断过程。

利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。

试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。

例如:对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。

为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。

按国标GB/T228-2002、GB/P7314-1987的要求,拉伸试件一般采用下面两种形式:图1.11. 10倍试件;圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S2. 5倍试件 圆形截面时,L 0=5d 矩形截面时, L 0=5.650S =π045S d 0——试验前试件计算部分的直径;S 0——试验前试件计算部分断面面积。

此外,试件的表面要求一定的光洁度。

光洁度对屈服点有影响。

因此,试件表面不应有刻痕、切口、翘曲及淬火裂纹痕迹等。

1.2拉伸实验一、实验目的:1.研究低碳钢、铸铁的应力——应变曲线拉伸图。

金属的拉伸实验和压缩实验

金属的拉伸实验和压缩实验

金属的拉伸实验和压缩实验 金属的拉伸实验和压缩实验大纲1.通过低碳钢的拉伸实验,测定低碳钢的比例极限σP ,屈服极限σS,强度极限σb,延伸率δ,截面收缩率ψ和弹性模量E,并绘出低碳钢的应力—应变曲线,从而了解塑性材料的基本力学性能。

2.通过铸铁的拉伸实验,测定强度极限σb,绘制出铸铁拉伸时的拉伸曲线,理解铸铁拉伸时的破坏性质.3.通过铸铁和低碳钢的压缩实验,测定铸铁的强度极限σb,比较铸铁和低碳钢压缩时变形和破坏现象,进一步了解塑性材料和脆性材料的力学性能。

4. 通过金属的拉伸和压缩实验,使学生对材料(金属和非金属材料)的力学性能的测试方法有一个初步的认识。

5. 主要设备:材料试验机;主要耗材:低碳钢和铸铁拉伸试样,每次实验消耗各1根。

低碳钢和铸铁压缩试样,每次实验消耗各1根。

金属的拉伸实验指导书一、概述常温、静载下的轴向拉伸试验是材料力学试验中最基本、应用最广泛的试验。

通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。

这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。

二、实验目的1、测定低碳钢的屈服强度R el、抗拉强度R m、断后延伸率A11.3和断面收缩率Z2、测定铸铁的抗拉强度R m3、观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图(F─L∆曲线)4、分析比较低碳钢和铸铁的力学性能特点与试样破坏特征三、实验设备及测量仪器1、万能材料试验机2、游标卡尺四、试样的制备试样的制备应按照相关的产品标准或GB/T 2975的要求切取样坯和制备试样。

试验表明,所用试样的形状和尺寸,对其性能测试结果有一定影响。

为了使金属材料拉伸试验的结果具有可比性与符合性,国家已制定统一标准。

依据此标准,拉伸试样分为比例试样和非比例试样两种,试样的横截面形状有圆形和矩形。

这两种试样便于机加工,也便于尺寸的测量和夹具的设计。

本试验所用的拉伸试样是经机加工制成的圆形横截面的长比例试样,即L0=10d。

金属材料拉伸与压缩实验报告

金属材料拉伸与压缩实验报告

金属材料拉伸与压缩实验报告金属材料拉伸与压缩实验报告引言:金属材料是工程领域中广泛应用的一类材料。

了解金属材料的力学性能对于设计和制造具有高强度和高可靠性的结构件至关重要。

本实验旨在通过拉伸和压缩实验,研究金属材料的力学性能,并分析其应力-应变曲线、屈服强度和延伸率等参数。

实验方法:1. 拉伸实验:首先,选择一块金属试样,将其夹紧在拉伸试验机上。

逐渐施加拉力,记录下拉伸过程中的应变和应力数据。

当试样断裂时,停止拉力施加,记录下断裂点的应变和应力。

2. 压缩实验:选择一块金属试样,将其夹紧在压缩试验机上。

逐渐施加压力,记录下压缩过程中的应变和应力数据。

当试样发生破坏时,停止压力施加,记录下破坏点的应变和应力。

实验结果与分析:通过拉伸实验得到的应力-应变曲线表明,金属材料在拉伸过程中呈现出弹性阶段、屈服阶段和断裂阶段。

在弹性阶段,应变与应力成正比,材料能够恢复原状。

在屈服阶段,应变增加速度减慢,材料开始发生塑性变形。

在断裂阶段,应变急剧增加,材料发生断裂。

通过测量屈服点的应力和应变,可以计算出材料的屈服强度。

通过压缩实验得到的应力-应变曲线与拉伸实验类似,也呈现出弹性阶段、屈服阶段和断裂阶段。

然而,与拉伸实验相比,压缩实验中的屈服点通常较难确定。

这是因为在压缩过程中,试样受到的应力分布不均匀,可能会导致试样的局部塑性变形和失稳。

根据实验数据计算得到的屈服强度和延伸率等参数可以用来评估金属材料的机械性能。

屈服强度是材料在发生塑性变形之前能够承受的最大应力。

延伸率是材料在拉伸过程中能够延展的程度,通常以百分比表示。

这些参数对于工程设计和材料选择非常重要,可以帮助工程师确定合适的金属材料以满足特定的应用需求。

结论:通过拉伸和压缩实验,我们可以获得金属材料的应力-应变曲线,并计算出屈服强度和延伸率等参数。

这些参数对于评估金属材料的力学性能至关重要。

在工程设计和材料选择过程中,我们应该根据特定应用的需求,选择具有适当力学性能的金属材料,以确保结构的安全性和可靠性。

§4—1材料在拉伸和压缩时力学性能测定实验

§4—1材料在拉伸和压缩时力学性能测定实验

金属材料的拉伸、压缩实验承受轴向拉伸和压缩是工程构件最常见的受力方式之一,材料在拉伸和压缩时的力学性能也是材料最重要的力学性能之一。

常温、静载下金属材料的单向拉伸和压缩实验也是测定材料力学性能的最基本、应用最广泛、方法最成熟的试验方法。

通过拉伸实验所测定的材料的弹性指标E、μ,强度指标σs、σb,塑性指标δ、ψ,是工程中评价材质和进行强度、刚度计算的重要依据。

下面以典型的塑性材料——低碳钢和典型的脆性材料——铸铁为例介绍实验的详细过程和数据处理方法。

一、预习要求1、电子万能材料试验机在实验前需进行哪些调整?如何操作?2、简述测定低碳钢弹性模量E的方法和步骤。

3、实验时如何观察低碳钢拉伸和压缩时的屈服极限?二、材料拉伸时的力学性能测定拉伸时的力学性能实验所用材料包括塑性材料低碳钢和脆性材料铸铁。

(一)实验目的1、在弹性范围内验证虎克定律,测定低碳钢的弹性模量E。

2、测定低碳钢的屈服极限σs、强度极限σb、延伸率δ和断面收缩率ψ;测定铸铁拉伸时的强度极限σb。

3、观察低碳钢和铸铁拉伸时的变形规律和破坏现象。

4、了解万能材料试验机的结构工作原理和操作。

(二)设备及试样1、电子万能材料试验机。

2、杠杆式引伸仪或电子引伸仪。

3、游标卡尺。

4、拉伸试样。

GB6397—86规定,标准拉伸试样如图1所示。

截面有圆形(图1a)和矩形(图1b)两种,标距l0与原始横截面积A0比值为11.3的试样称为长试样,标距l0与原始横截面积A0比值为5.56的试样称为短试样。

对于直径为d0的长试样,l0=10d0;对于直径为d0的短试样,l0=5d0。

实验前要用划线机在试样上画出标距线。

(三)低碳钢拉伸实验1、实验原理与方法常温下的拉伸实验是测定材料力学性能的基本实验,可用以测定弹性模量E、屈服极限σs、强度极限σb、延伸率δ和断面收缩率ψ等力学性能指标。

这些指标都是工程设计中常用的力学性能参数。

现以液压式万能材料试验机为例说明其测量原理和方法。

金属的压缩与拉伸实验原理

金属的压缩与拉伸实验原理

金属的压缩与拉伸实验原理
金属的压缩与拉伸实验是一种用来研究金属材料力学性质的常见方法。

其原理基于材料的弹性变形和塑性变形。

1. 压缩实验原理:
在金属压缩实验中,一块金属样品被置于压力加载机械设备中。

由于外部加载的作用力,金属样品会受到压缩力,导致其体积减小。

这种压缩力会使原子间的距离减小,从而引起金属晶格的弹性变形。

当外部力撤离时,金属样品会恢复到其原始形状,这是因为金属具有弹性特性,即当外部力移除时,金属会通过恢复原始晶格结构的方式恢复到原始形态。

2. 拉伸实验原理:
在金属拉伸实验中,一块金属样品被置于拉伸加载机械设备中。

加载设备会施加拉力,导致金属样品逐渐变长、变细。

这种拉伸力会引起金属晶格的弹性和塑性变形。

当外部力撤离时,在金属线性范围内,金属会恢复到其原始形状,表现出弹性变形。

然而,当所施加的拉力超过金属的弹性限度时,金属会发生塑性变形,此时金属无法完全恢复到原始形态。

通过测量金属样品在不同应力下的变形情况,可以得到应力-应变曲线,该曲线
可以反映出金属的力学性质,如屈服强度、延伸率和断裂强度等。

总结来说,金属的压缩与拉伸实验原理是基于金属材料的弹性和塑性变形,通过施加外部力对金属样品进行压缩或拉伸,以研究其力学性质。

金属材料力学性能测试——拉伸、压索和扭转实验

金属材料力学性能测试——拉伸、压索和扭转实验

0/A P =s s σ金属材料力学性能测试——拉伸实验拉伸实验是测定材料力学性质基本的重要实验之一。

根据国家标准金属拉力实验法的规定,拉伸试件必须做成标准试件。

圆截面试件如图1-1所示:长试件L=10d 0,短试件L=5d 0。

拉伸时材料的强度指标和塑性指标测定: 1、强度指标的测定:材料拉伸时的力学性能指标(如s σ,b σ,δ,ψ ),由拉伸破坏实验来确定。

图1-2是低碳钢拉伸实验时的拉伸图。

OA 段为弹性变形阶段,过了A 点,材料进入屈服阶段,材料进入上屈服点,A 点对应上屈服点的载荷Psu ,B 点对应 屈服点的载荷Psl 。

由于上屈服点的值不稳定(对同一批材料而言) ,下屈服点较稳定,因此在没有特别说明的情况下,规定下屈服点的载荷为屈服载荷Ps ,则屈服极限为: MPa 。

其中:A0为试件的初始横截面面积,拉伸图上D 点对应的最大荷载值为Pb,此后试件发生劲缩现象,迅速破坏。

材料的抗拉强度极限为:0/A P =b b σMPa 。

铸铁的拉伸实验图如图1-3所示。

试件变形很小,到达一定的载荷突然断裂,拉断时的最大载荷,即为强度的载荷Pb 铸铁拉伸强度极限为:0/A P =b b σMPa 。

2、塑性指标测定:将拉断后的低碳钢试件拼接后,测量断后标距L1;劲缩处的平均值径d1,由下列公式计算延伸率δ和断面收缩率ψ;%100/)(%100/)(010001⨯A A -=ψ⨯-=A L L L δ其中:A1为试件断开处的横截面积,L 1为试件断后的标距。

拉伸时材料机械性质的测定室温_____℃ 日期____年___月___日实验目的:1.测定低碳钢的屈服极限s σ,极限强度b σ,延伸率δ,面积收缩率ψ,铸铁的极限强度b σ。

2.观察拉伸过程中的实验现象。

实验设备:电子万能试验机。

游标卡尺。

实验主要步骤:1.分别测量两种材料的上、中、下横截面直径并填入表格。

2.安装试件,然后开始实验。

3.记录拉伸载荷,测量断后标距及收缩直径,代入公式计算。

拉伸、压缩和扭转实验(对外)

拉伸、压缩和扭转实验(对外)

平面断口, 平面断口,正应力引起
铸 铁
铸铁试样拉伸破坏后,断口在横截面上,呈平口状。 铸铁试样拉伸破坏后,断口在横截面上,呈平口状。 样拉伸破坏后
金属材料拉伸、压缩和扭转实验 金属材料拉伸、
压缩实验——观察现象 压缩实验——观察现象 ——
低碳钢压缩变形,不会断裂, 低碳钢压缩变形,不会断裂,由于受 压缩变形 到上下两端摩擦力影响,形成“鼓形” 到上下两端摩擦力影响,形成“鼓形”。
6.测定铸铁强度极限τb
T
Tb
Tb 强度极限 τ b = WΡ
O
ϕ
铸铁扭转曲线
铸铁扭转实验观察
断裂现象 拉应力引起
金属材料拉伸、压缩和扭转实验 金属材料拉伸、
拉伸实验——观察现象 拉伸实验——观察现象 ——
颈缩现象, 杯口” 颈缩现象,“杯口”
低碳钢
低碳钢试样拉伸破坏后,断口呈“杯口”状。 低碳钢试样拉伸破坏后,断口呈“杯口” 样拉伸破坏后
测定铸铁强度极限t铸铁扭转实验观察断裂现象拉应力引起铸铁扭转曲线金属材料拉伸压缩和扭转实验拉伸实验观察现象颈缩现象杯口低碳钢试样拉伸破坏后断口呈杯口状
金属材料拉伸、压缩和扭转实验 金属材料拉伸、
拉伸、 拉伸、压缩和扭转实验
(验证性实验) 验证性实验)
重庆大学力学实验教学中心

d0
2. 压缩试样 — 采用标准圆柱体试样
d0
h0 =(1-3)d0 ( )
h0
金属材料拉伸、压缩和扭转实验 金属材料拉伸、
三、实验原理 1.测定低碳钢拉伸强度指标和塑性指标
F
① 强度指标
K
Fb
Fs σs = A0
Fb σb = A0
Fs
卸载线

金属材料的拉伸与压缩实验

金属材料的拉伸与压缩实验

机械学基础实验指导书力学实验中心1金属材料的拉伸与压缩实验1.1 金属材料的拉伸实验拉伸实验是材料力学实验中最重要的实验之一。

任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。

材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。

通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。

例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。

除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。

我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。

这个实验是研究材料在静载和常温条件下的拉断过程。

利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。

试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。

例如:对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。

为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。

按国标GB/T228-2002、GB/P7314-2005的要求,拉伸试件一般采用下面两种形式:图1-11. 10倍试件;圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S 2. 5倍试件圆形截面时,L 0=5d 矩形截面时, L 0=5.650S =45Sd 0——试验前试件计算部分的直径; S 0——试验前试件计算部分断面面积。

此外,试件的表面要求一定的光洁度。

光洁度对屈服点有影响。

因此,试件表面不应有刻痕、切口、翘曲及淬火裂纹痕迹等。

一、实验目的:1.研究低碳钢、铸铁的应力——应变曲线拉伸图。

拉伸压缩实验报告

拉伸压缩实验报告
铸铁试件
标距L0= (mm)
标距L1= (mm)
直径(mm)



最小截面面积A0= mm
(2)加载力值
试件
上屈服荷载
下屈服荷载
屈服荷载
断裂时最大荷载
低碳钢
铸铁



2、压缩实验数据记录
(1)试件尺寸:
实验前
材料
长度mm
直径mm
横截面面积mm2
1
2
平均
低碳钢
铸铁
实验后
材料
长度mm
最大直径mm
断面与轴线夹角°
批阅报告教师(签名):
1
2
平均
低碳钢





铸铁
(2)加载力值
材料
屈服荷载KN
最大荷载KN
低碳钢

铸铁

实验指导教师(签名):
四、数据处理:
材料
屈服强度MPa
抗拉强度MPa
断后伸长率%
断面收缩率%
低碳钢
铸铁


1、拉伸试验数据处理
2、压缩试验数据处理
材料
屈服限MPa
抗压强度MPa
低碳钢

铸铁

3、试样拉伸曲线简图:
4、试样压缩曲线简图:
金属材料的拉压试验
实验日期实验地点报告成绩
分组编号-环境温、湿度℃、%RH
一、实验目的:
二、使用仪器设备:
三、数据记录
1、拉伸实验数据记录
(1)试件尺寸
试验前
试验后
低碳钢试件
标距L0= (mm)
标距L1= (mm)

金属的拉伸实验和压缩实验方法

金属的拉伸实验和压缩实验方法

金属的拉伸实验和压缩实验方法2008-9-4一)、金属的拉伸实验和压缩实验金属的拉伸实验和压缩实验大纲1.通过低碳钢的拉伸实验,测定低碳钢的比例极限σP ,屈服极限σS ,强度极限σb,延伸率δ,截面收缩率ψ和弹性模量E,并绘出低碳钢的应力—应变曲线,从而了解塑性材料的基本力学性能。

2.通过铸铁的拉伸实验,测定强度极限σb,绘制出铸铁拉伸时的拉伸曲线,理解铸铁拉伸时的破坏性质.3.通过铸铁和低碳钢的压缩实验,测定铸铁的强度极限σb,比较铸铁和低碳钢压缩时变形和破坏现象,进一步了解塑性材料和脆性材料的力学性能。

4. 通过金属的拉伸和压缩实验,使学生对材料(金属和非金属材料)的力学性能的测试方法有一个初步的认识。

5. 主要设备:材料试验机;主要耗材:低碳钢和铸铁拉伸试样,每次实验消耗各1根。

低碳钢和铸铁压缩试样,每次实验消耗各1根。

金属的拉伸实验指导书一、概述常温、静载下的轴向拉伸试验是材料力学试验中最基本、应用最广泛的试验。

通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。

这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。

二、实验目的1、测定低碳钢的屈服强度Rel、抗拉强度Rm、断后延伸率A11.3和断面收缩率Z2、测定铸铁的抗拉强度Rm3、观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图(F─曲线)4、分析比较低碳钢和铸铁的力学性能特点与试样破坏特征三、实验设备及测量仪器1、万能材料试验机2、游标卡尺四、试样的制备试样的制备应按照相关的产品标准或GB/T2975的要求切取样坯和制备试样。

试验表明,所用试样的形状和尺寸,对其性能测试结果有一定影响。

为了使金属材料拉伸试验的结果具有可比性与符合性,国家已制定统一标准。

依据此标准,拉伸试样分为比例试样和非比例试样两种,试样的横截面形状有圆形和矩形。

这两种试样便于机加工,也便于尺寸的测量和夹具的设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DKBA
华为技术有限公司企业技术规范
DKBA4031-2003.06
钣金结构件可加工性设计规范
2003-06-30发布
2003-07-XX实施
华 为 技 术 有 限 公 司发布
密级: 内部公开/秘密
DKBAXXXX.X-2002.XX

前 1

言.............................................................................................................................5 范围和简介.................................................................................................................. 6 1.1 1.2 1.3 范围................................................................................................... 6 简介................................................................................................... 6 关键词............................................................................................... 6
2011-03-0秘密
DKBAXXXX.X-2002.XX
4.2.2 4.2.3 4.3 4.4 4.4.1 4.4.2 4.5 4.6 4.7 4.8 4.9 4.9.1 4.9.2 5
特殊要求的直边高度............................................................. 11 弯边侧边带有斜角的直边高度............................................. 11 折弯件上的孔边距......................................................................... 11 局部弯曲的工艺切口..................................................................... 12 折弯件的弯曲线应避开尺寸突变的位置............................. 12 当孔位于折弯变形区内,所采取的切口形式..................... 12 带斜边的折弯边应避开变形区..................................................... 13 打死边的设计要求......................................................................... 13 设计时添加的工艺定位孔............................................................. 13 标注弯曲件相关尺寸时,要考虑工艺性..................................... 14 弯曲件的回弹................................................................................. 14 折弯件的内圆角半径与板厚之比越大,回弹就越大。..... 14 从设计上抑制回弹的方法示例............................................. 14
7
附录............................................................................................................................ 19 7.1 7.2 7.2.1 7.2.2 附录A:高碳钢、低碳钢对应的公司常用材料牌号列表........... 19 附录B 压印工艺、压花工艺简介................................................. 20 压印工艺................................................................................. 20 压花工艺................................................................................. 20
2 3
规范性引用文件.......................................................................................................... 6 冲裁.............................................................................................................................. 6 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.8.1 3.8.2 冲裁件的形状和尺寸尽可能简单对称,使排样时废料最少。... 6 冲裁件的外形及内孔应避免尖角。............................................... 6 冲裁件应避免窄长的悬臂与狭槽................................................... 7 冲孔优先选用圆形孔,冲孔有最小尺寸要求............................... 7 冲裁的孔间距与孔边距................................................................... 8 折弯件及拉深件冲孔时,其孔壁与直壁之间应保持一定的距离8 螺钉、螺栓的过孔和沉头座........................................................... 8 冲裁件毛刺的极限值及设计标注................................................... 9 冲裁件毛刺的极限值............................................................... 9 设计图纸中毛刺的标注要求................................................... 9
2011-03-01,22:30:58
3
密级: 内部公开/秘密
DKBAXXXX.X-2002.XX
5.6.2 6
拉伸件尺寸公差的标注方法................................................. 16
成形............................................................................................................................ 16 6.1 6.2 6.3 6.4 加强筋............................................................................................. 17 打凸间距和凸边距的极限尺寸..................................................... 17 百叶窗............................................................................................. 17 孔翻边............................................................................................. 18
4
折弯............................................................................................................................ 10 4.1 4.2 4.2.1 折弯件的最小弯曲半径................................................................. 10 弯曲件的直边高度......................................................................... 10 一般情况下的最小直边高度要求......................................... 10
拉伸............................................................................................................................ 15 5.1 5.2 5.3 5.4 5.5 拉伸件底部与直壁之间的圆角半径大小要求............................. 15 拉伸件凸缘与壁之间的圆角半径................................................. 15 圆形拉伸件的内腔直径................................................................. 15 矩形拉伸件相邻两壁间的圆角半径............................................. 15 圆形无凸缘拉伸件一次成形时,其高度与直径的尺寸关系要求 16 5.6 5.6.1 拉伸件设计图纸上尺寸标注的注意事项..................................... 16 拉伸件产品尺寸的标准方法................................................. 16
相关文档
最新文档