一元一次方程知识点总结(供参考)
七年级上册数学一元一次方程的总结
七年级上册数学一元一次方程的总结一元一次方程是数学中的基础内容,它由一个未知数和一次方程组成。
在七年级上册的数学课程中,我们学习了一元一次方程的基本概念、求解方法和应用。
一、基本概念一元一次方程是指只有一个未知数,并且未知数的最高次数为1的等式。
一元一次方程的一般形式可以表示为ax + b = 0,其中a和b是已知数,a≠0,x是未知数。
二、解方程的基本方法1.同加同减法:通过同加同减法可以将含有未知数的项移至方程的一边,使得另一边变为0,从而简化求解过程。
2.同乘同除法:通过同乘同除法可以将方程中的系数约分或整理,使得未知数的系数变为1,从而简化求解过程。
三、解方程的步骤1.将方程移项,即将含有未知数x的项移到方程等式的一边,使得另一边为0。
2.化简方程,通过同加同减法和同乘同除法化简方程,使得未知数的系数变为1。
3.求解方程,从化简后的方程中可以直接得到未知数的解。
4.验证解,将得到的解代入原方程中,检验是否满足原方程。
四、方程的应用1.问题的建立:将问题中的已知条件和未知数用代数符号表示,建立一元一次方程。
2.方程的求解:通过解一元一次方程,得到未知数的解。
3.解的验证:将得到的解代入原问题中,检验是否满足原问题。
4.问题的回答:根据解的意义,给出问题的答案,并进行必要的分析和总结。
五、方程的解的分类1.有解方程:经过化简后能得到一个明确的解。
2.无解方程:经过化简后不会得到解。
3.恒等方程:对于所有的x,方程都成立。
六、解方程时的常见错误1.漏解:没有找到全部的解。
2.冗余解:方程与原问题不相符,解不满足。
3.解不符合题意:解与原问题不相符,无法解决问题。
4.算式错误:在计算过程中出现错误。
七、练习题技巧1.注意思维导图的绘制,即将已知条件和未知数用图形方式呈现,更清晰地理解问题。
2.细心审题,注意问题中的关键词和要求。
3.巩固基本运算,特别是消去法和整理运算的基础知识。
4.多做例题,加深对一元一次方程的理解和掌握。
一元一次方程知识点总结
一元一次方程知识点总结方程是数学中的重要概念,它描述了一个等式中未知数与已知数之间的关系。
在代数学中,一元一次方程是最简单的方程形式,它包含一个未知数及其系数和常数项。
学好一元一次方程,对于进一步学习代数以及解决实际问题都具有重要意义。
本文将总结一元一次方程的基本概念、解法和应用。
一、基本概念一元一次方程的一般形式为ax + b = 0,其中a和b分别为已知系数和常数项,x为未知数。
方程中的x是未知数,我们要找到一个解使得方程成立。
当x满足方程时,称x为方程的解。
一元一次方程的重要性在于它描述了直线上的点,这条直线称为解空间。
解空间是一个自变量和因变量之间的关系集合。
二、解法方法1. 移项法:通过移项将方程化简为x = c的形式,其中c为常数。
移项法是最常用也是最简单的解法方法。
通过逐步迭代将常数项和未知数项移到等式两侧,直到x的系数为1,就得到方程的解。
例如:2x + 3 = 7,可以先将3移到等式的右边,得到2x = 7 - 3,再将2移到等式的右边,得到x = (7 - 3) / 2,最终解得x = 2。
2. 因式分解法:如果方程可以进行因式分解,我们可以很快地求解方程。
例如:2x + 4 = 0,可以将方程两边都除以2,得到x + 2 = 0,然后通过因式分解得到(x + 2) = 0,进一步解得x = -2。
3. 消元法:当方程中存在多个未知数时,可以通过消元法将未知数相互抵消,留下只含一个未知数的方程。
例如:3x + 2y = 8,2x - 5y = -7,可以先将其中一条方程乘以适当的常数,使得两个方程中未知数的系数相等或相差一个整数倍,然后将两个方程相加或相减,得到只含一个未知数的方程,进而解得未知数。
三、应用一元一次方程在实际问题中有广泛应用。
举例如下:1. 速度问题:速度等于路程除以时间。
通过设定未知数的含义,可以建立一元一次方程求解速度。
例如:小明骑自行车以每小时10公里的速度向前行x小时后,骑行的总路程为100公里。
一元一次方程知识点总结(供参考)
一元一次方程方程的有关概念夯实基础一.等式用等号(“=”)来表示相等关系的式子叫做等式。
温馨提示①等式能够是数字算式,能够是公式、方程,也能够是运算律、运算法那么等,因此等式能够表示不同的意义。
②不能将等式与代数式混淆,等式含有等号,是表示两个式子的“相等关系”,而代数式不含等号,它只能作为等式的一边。
如x x 2735-=+才是等式。
二.等式的性质性质1:等式两边同时加(或减)同一个数(或式子),结果仍相等。
即若是b a =,那么c b c a ±=±。
性质2:等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
即若是b a =,那么bc ac =;若是b a =()0≠c ,那么cbc a =。
温馨提示①等式类似天平,当天平两头放有相同质量的物体时,天平处于平稳状态。
假设在天平的两头各加(或减)相同质量的物体,那么天平仍处于平稳状态。
因此运用等式性质1时,当等式两边都加上(或减去)同一个数或同一个整式时,才能保证所得的结果仍是等式,应专门注意“都”和“同一个”。
如31=+x ,左侧加2,右边也加2,那么有2321+=++x 。
②运用等式的性质2时,等式两边不能同除以0,因为0不能作除数或分母。
③等式性质的延伸:a.对称性:等式左、右两边互换,所得结果仍是等式,即若是b a =,那么a b =。
b.传递性:若是c b b a ==,,那么c a =(也叫等量代换)。
例1:用适当的数或整式填空,使所得的结果仍为等式,并说明依照等式哪一条性质,和如何变形取得的。
(1)若是51134=-x ,那么+=534x ;(2)若是c by ax -=+,那么+-=c ax ;(3)若是4334=-t ,那么=t 。
三.方程含有未知数的等式叫做方程。
温馨提示方程有两层含义:①方程必需是一个等式,即是用等号连接而成的式子。
②方程中必有一个待确信的数,即未知的字母,那个字母确实是未知数。
一元一次方程的笔记
一元一次方程的笔记
一、概念
1.一元一次方程:只含有一个未知数,并且未知数的次数是1的
方程。
2.方程的解:使方程左右两边相等的未知数的值。
二、一元一次方程的解法
1.去分母:在方程两边都乘以各分母的最小公倍数,把分式方程
转化为整式方程。
2.去括号:利用分配律去括号,注意括号前面是“一”号时,去掉
括号后,括号里的各项都要改变符号。
3.移项:根据等式的基本性质1,将方程两边的同类项分别合并。
4.合并同类项:把方程化成ax=b(a≠0)的形式。
5.系数化成1:根据等式的基本性质2,方程两边都除以未知数的
系数a,得到方程的解x=b/a。
三、解一元一次方程的应用
1.实际问题中的一元一次方程:根据实际问题的条件列出一元一
次方程,然后求解。
2.列方程解决实际问题的步骤:审题、设未知数、找相等关系、
列方程、解方程、写出答案。
四、注意事项
1.解一元一次方程时,要注意去分母、去括号、移项和合并同类
项的顺序,不能颠倒。
2.解一元一次方程时,要注意检验解的合理性,不符合实际意义
的解要舍去。
3.列一元一次方程解决实际问题时,要注意分析问题的条件和要
求,找出相等关系,列出正确的方程。
4.解一元一次方程时,要注意解题的格式和规范,写清解题过程
和结果。
一元一次方程(知识点完整版)
第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程.注意未知数的理解,n m x ,,等,都可以作为未知数。
题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次); ③这样的整式方程叫做一元一次方程。
题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0. 例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等.即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等.即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b,那么a —c=b-cB 、如果a=b,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解例7、解方程284=-练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。
一元一次方程知识点总结
牛娃出品、必属精品一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式不变.若a b=那么a c b c+=+②等式两边同时乘以或除以同一个不为0的整式,等式不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.牛娃出品、必属精品二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了牛娃出品、必属精品要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax ba≠)的形式.=(0⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.牛娃出品、必属精品(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
数学中的一元一次方程知识点
数学中的一元一次方程知识点一元一次方程是数学中的基础概念,也是初等代数中的重要内容。
它在解决实际问题和建立数学模型时起到了关键的作用。
本文将介绍一元一次方程的基本定义、性质和求解方法。
1. 一元一次方程的定义一元一次方程是指一个变量的一次方程,形式通常为ax + b = 0,其中a和b是已知的常数,而x是未知数。
一元一次方程的问题通常是要求解未知数的值。
2. 一元一次方程的性质一元一次方程具有以下几个性质:- 一元一次方程只有一个未知数。
- 方程中的系数和常数可以是任意实数,但未知数通常是实数。
- 方程中的系数不能同时为零,即a ≠ 0。
- 一元一次方程的解通常是唯一的,也就是只有一个解或无解。
3. 一元一次方程的求解方法解一元一次方程的常用方法有以下几种:- 原始解法:通过移项和消元的方式,将方程变形为x = 数字的形式,得到方程的解。
- 代入法:将已知的解代入方程,验证解是否满足方程的等式关系。
- 叠减法:通过两个方程相减,消去一个未知数,得到一个一元一次方程,从而求解未知数的值。
- 等价方程法:通过变形,将原方程转化为一个等价的方程,使得求解过程更简单。
4. 一元一次方程在实际问题中的应用一元一次方程在实际问题中有广泛的应用,比如:- 财务问题:计算投资回报率、利润分配等问题时,通常可以建立一元一次方程来求解。
- 几何问题:用一元一次方程可以计算图形的面积、周长、对角线长度等。
- 物理问题:用一元一次方程可以描述速度、加速度、力等物理量之间的关系。
总结:一元一次方程是数学中的重要概念,它帮助我们解决实际问题,建立数学模型,以及理解数学中的基本性质和求解方法。
通过掌握一元一次方程的知识,我们可以更好地理解和应用数学,提高解决问题的能力。
一元一次方程笔记整理
一元一次方程笔记整理摘要:一、一元一次方程的定义和基本概念1.一元一次方程的定义2.方程中各部分的名称3.解方程的基本方法二、一元一次方程的解法1.移项法2.合并同类项法3.系数化为1 法三、一元一次方程的应用1.实际问题中的应用2.行程问题中的应用3.工程问题中的应用四、一元一次方程的检验1.代入法检验2.带回原方程检验正文:一、一元一次方程的定义和基本概念一元一次方程是指形如ax+b=0 的方程,其中a 和b 是已知数,x 是未知数。
在解一元一次方程时,我们需要将方程移项,使未知数x 的项单独出现在等式的一边,从而求得x 的值。
方程中各部分的名称包括:未知数(x)、系数(a 和b)、常数项(b)和等式(=)。
解一元一次方程的基本方法有移项法、合并同类项法和系数化为1 法。
这些方法各有特点,适用于不同类型的方程。
二、一元一次方程的解法1.移项法:通过加减法操作,将方程中的未知数项移到等式的一边,从而求得未知数的值。
2.合并同类项法:将方程中的同类项合并,简化方程,然后通过移项求解未知数。
3.系数化为1 法:通过除以系数,将方程的系数化为1,从而简化方程并求解未知数。
三、一元一次方程的应用一元一次方程在实际问题中有广泛的应用,例如在商品销售、工程建设和行程规划等方面。
通过建立一元一次方程,我们可以更直观地理解问题,并求解未知数,为实际问题的解决提供依据。
四、一元一次方程的检验在求解一元一次方程后,我们通常需要检验求得的解是否符合原方程。
检验方法有代入法检验和带回原方程检验。
1.代入法检验:将求得的解代入原方程,看是否能使方程成立。
2.带回原方程检验:将求得的解带回原方程,进行加减乘除等运算,看是否能得到原方程。
一元一次方程知识点及经典例题
一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c 为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。
方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。
七年级数学上册一元一次方程重点
七年级数学上册一元一次方程重点
一元一次方程是初中数学的重要内容,也是解方程的基础。
下面是七年级数学上册中关于一元一次方程的重点内容:
1. 方程的概念:方程是用等号连接的含有未知数的代数式。
一元一次方程指只含有一个未知数,并且该未知数的最高次数为1的方程。
2. 解一元一次方程的基本方法:通过逆运算的方式将方程变形,使得未知数单独出现在等号的一边,从而求得未知数的值。
3. 消元法:当方程中存在多个未知数时,可以利用加减消元和倍加倍减消元的方法,将方程化简为只含有一个未知数的一元一次方程,然后进行解方程。
4. 方程的解的判定:解方程时需要注意方程是否有解,以及解的唯一性。
如果一个方程没有解,我们称其为无解方程;如果一个方程有无限多个解,我们称其为恒等方程;如果一个方程只有一个解,我们称其为一般方程。
5. 方程的应用:一元一次方程在实际生活中有很多应用,例如物品的定价、速度与时间之间的关系等。
通过解方程可以求解这些实际问
题。
一元一次方程知识点总结
一元一次方程知识点总结一元一次方程是高中数学的基础内容,也是解决实际问题中常见的一种数学模型。
下面是我对一元一次方程的知识点的总结:一、一元一次方程的基本概念1. 方程的定义和基本性质:方程是由等号连接的两个代数式构成的等式,方程中含有一个未知数。
2. 一元一次方程的定义:一元一次方程是含有一个未知数,且未知数的最高次数为1的方程。
3. 方程的解:对于一元一次方程,其解就是使得方程成立的未知数的值,也即方程中满足等号两边相等的数值。
二、一元一次方程的解法1. 移项法:将方程中的项移到等号两侧,使等号两边只有未知数。
2. 合并同类项:将方程中同类项合并,使方程简化。
3. 消元法:通过加减乘除等运算来消去方程中的系数和常数,最终得到未知数的值。
三、解一元一次方程的常用方法1. 原方程法:直接将原方程逐步化简,最终解得未知数的值。
2. 换元法:引入一个新的未知数,通过替换的方式简化方程,使得方程能够更容易求解。
3. 系数比较法:将方程与其他已知的一元一次方程进行系数的比较,从而求得未知数的值。
四、解一元一次方程的步骤1. 观察方程:确定方程的类型和形式。
2. 移项:将方程中未知数的项移到等号两侧。
3. 合并同类项:对方程中的同类项进行合并。
4. 消元:通过加减乘除等运算,将方程化简为未知数的项和常数项。
5. 求解:根据简化后的方程,求得未知数的值。
6. 检验:将求得的未知数代入原方程,验证解的正确性。
7. 唯一解、无解和无数解:根据方程的求解结果,判断方程的解的情况。
五、一元一次方程的应用1. 简单的实际问题:例如,甲、乙两个数之和是10,甲比乙多2,求甲和乙分别是多少。
2. 代数表达式的求解:例如,求一个数的三倍加2等于11,求这个数是多少。
3. 几何问题的求解:例如,某直角三角形的两条直角边长度之和是10,求这两条直角边的长度。
综上所述,一元一次方程是高中数学中的重要内容,解一元一次方程是我们解决实际问题的常用方法。
一元一次方程归纳总结
一元一次方程只含有一个未知数(即“元”),并且未知数的最高次数为1(即“次”)的整式方程叫做一元一次方程(英文名:linear equation with one unknown)。
一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0)。
求根公式:x=-b/a。
一、基本信息标准形式一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0)。
其中a是未知数的系数,b是常数,x是未知数。
未知数一般设为x,y,z。
方程特点(1)该方程为整式方程。
(2)该方程有且只含有一个未知数。
(3)该方程中未知数的最高次数是1。
满足以上三点的方程,就是一元一次方程。
判断方法要判断一个方程是否为一元一次方程,先看它是否为整式方程。
若是,再对它进行整理。
如果能整理为 ax+b=0(a≠0)的形式,则这个方程就为一元一次方程。
里面要有等号,且分母里不含未知数。
变形公式ax=-b(a,b为常数,x为未知数,且a≠0)求根公式通常解法去分母→去括号→移项→合并同类项→系数化为1。
两种类型(1)总量等于各分量之和。
将未知数放在等号左边,常数放在右边。
如:x+2x+3x=6。
(2)等式两边都含未知数。
如:300x+400=400x,40x+20=60x。
方程举例2a=4a-63b=-1x=1都是一元一次方程。
方程起源“方程”一词来源于中国古算术书《九章算术》。
在这本著作中,已经列出了一元一次方程。
法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。
在19世纪以前,方程一直是代数的核心内容。
主要用途一元一次方程通常可用于做应用题,如工程问题、行程问题、分配问题、盈亏问题、球赛积分表问题、电话(水表、电表)计费问题、数字问题等。
[2]二、补充说明合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的项合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。
初中一元一次方程知识点归纳
初中一元一次方程知识点归纳
初中一元一次方程知识点归纳如下:
1. 一元一次方程的定义:一元一次方程是指方程中只有一个变量,且变量的最高次数为1的方程。
2. 方程的基本形式:一元一次方程的基本形式为ax+b=0,其
中a和b是已知实数,且a≠0。
3. 解方程的步骤:解一元一次方程的步骤主要包括去括号、合并同类项、移项、合并同类项、化简等。
4. 解方程的性质:一元一次方程的解具有唯一性,即要么无解,要么有唯一解。
5. 方程的解表示形式:一元一次方程的解有三种表示形式,即唯一解、无解和无穷多解。
6. 解方程的方法:解一元一次方程的方法主要包括正向代入、逆向代入、等式交换等。
7. 使用方程解实际问题:一元一次方程可以应用于实际问题中,通过建立方程并解方程可以求解实际问题。
8. 方程的应用领域:一元一次方程在代数、几何、物理等领域中都有广泛的应用。
9. 方程的相关概念:一元一次方程与方程的根、方程的系数、方程的次数等相关概念有着密切的联系。
10. 方程的扩展:一元一次方程是一元线性方程的特殊情况,线性方程还有更高次数的形式,如二次方程、三次方程等。
中考知识点一元一次方程
中考知识点一元一次方程一元一次方程,是中学数学中最基础的代数方程之一,也是中考数学中必考的知识点。
学好一元一次方程,对于理解代数方程的基本概念和解题方法,以及培养逻辑思维和数学推理能力至关重要。
本文将从一元一次方程的定义、解题步骤和应用领域三个方面探讨中考知识点一元一次方程。
一、一元一次方程的定义一元一次方程是指一个未知数(通常用x表示)的系数为常数、次数为一的代数方程。
它的一般形式为ax + b = 0,其中a和b是已知常数,a ≠ 0。
在方程中,a称为方程的系数,b称为常数项。
二、一元一次方程的解题步骤解一元一次方程的基本步骤如下:1. 将方程化简为形如ax = b的等式。
此时,通过变量的移项和合并同类项,将方程转化为最简形式。
2. 通过系数互除,将方程化简为x = k的形式,其中k是一个已知的数。
这一步的目的是为了让未知数x的系数变为1。
3. 检验解的正确性。
将求解得到的x值代入原方程,检验方程是否成立。
如果成立,则该解是方程的真解;如果不成立,则需重新检查求解过程,并找到错误之处。
三、一元一次方程的应用领域1. 实际问题中的应用:一元一次方程常常被应用于解决实际生活中的问题,如货币兑换、比例关系、运动问题等。
通过设置未知数和方程来建立实际问题与数学模型的联系,进而求解未知数的值。
2. 几何问题的应用:几何问题中的长度、面积、体积等关系,常可转化为一元一次方程求解。
通过代数方程的建立和求解,可以解决诸如平面几何和立体几何等问题。
3. 经济学中的应用:一元一次方程可以应用于经济学中的成本、收益、价格等变量之间的关系。
通过建立方程,可以分析经济问题,并求解相关的未知数。
综上所述,一元一次方程在中考数学中是一个重要的知识点。
掌握一元一次方程的定义、解题步骤和应用领域,对于学生理解代数方程的基本概念和解题方法,以及培养逻辑思维和数学推理能力都具有重要的意义。
因此,在复习阶段要重点加强对一元一次方程的学习和掌握,以提高数学解题能力和应用能力。
一元一次方程知识点总结
一元一次方程知识点总结一元一次方程是由一个未知数和其系数构成的方程,其中未知数的最高次数为1。
它是初中数学的基础内容,也是解决实际问题的重要工具。
本文将对一元一次方程的定义、解法、性质以及应用进行总结。
一、一元一次方程的定义一元一次方程的一般形式为ax + b = 0,其中a和b为已知常数,x 为未知数。
在方程中,a称为x的系数,b称为常数项。
1. 解的定义:对于一元一次方程ax + b = 0,满足这个方程的实数x 称为方程的解。
2. 解集表示:方程的解可以通过求解过程得到,解集用花括号{}表示。
二、一元一次方程的解法1. 移项法:对于一元一次方程ax + b = 0,我们可以通过移项的方式求解。
- 如果方程中未知数x的系数不为0,我们可以将常数项b移到等号的另一侧,即ax = -b,再通过除以系数a的操作得到x的值。
- 如果方程中未知数x的系数为0,方程变为0 = 0,这种情况下方程的解是任意实数。
2. 消元法:如果给定的一元一次方程有两个未知数和两个方程,我们可以利用消元法求解。
- 通过消元,将两个方程中的一个未知数消去,得到只含有一个未知数的一元一次方程,然后利用移项法求解。
三、一元一次方程的性质1. 唯一解:一元一次方程只有一个解或者无解。
如果方程的系数是非零实数,那么方程有且只有一个解;如果方程的系数为0,那么方程有无穷多个解。
2. 一次性质:一元一次方程的最高次数为1,即方程中未知数的指数为1,没有其他次数的项。
3. 等式性质:一元一次方程可以通过等式性质进行等式运算,即可以在等式两边同时加减相同的数、乘除相同的非零数,仍然保持等式成立。
四、一元一次方程的应用1. 解决实际问题:一元一次方程可以应用于各种实际问题的求解,如速度、距离、时间等之间的关系问题。
- 例如,已知某车以每小时60公里的速度行驶,行驶t小时后的总路程为100公里,可以通过建立一元一次方程来求解t的值,进而得到行驶的时间。
一元一次方程知识点总结
一元一次方程知识点总结一、一元一次方程的概念1. 定义- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。
- 一元一次方程的一般形式是ax + b=0(a≠0),其中x是未知数,a是未知数的系数,b是常数项。
例如2x + 3 = 0就是一个一元一次方程,这里a = 2,b=3。
2. 方程的解- 使方程左右两边相等的未知数的值叫做方程的解。
例如方程x+1 = 3,当x = 2时,方程左边=2 + 1=3,方程右边=3,所以x = 2就是方程x + 1=3的解。
二、一元一次方程的解法1. 移项- 把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
例如在方程2x+3 = 5x - 1中,为了求解x,我们把5x移到左边变为-5x,把3移到右边变为-3,得到2x-5x=-1 - 3。
- 移项的依据是等式的基本性质1:等式两边同时加上(或减去)同一个整式,等式仍然成立。
2. 合并同类项- 在移项后,我们需要对同类项进行合并。
例如在2x-5x=-1 - 3中,2x-5x=-3x,-1-3 = -4,方程就变为-3x=-4。
3. 系数化为1- 方程两边同时除以未知数的系数,将未知数的系数化为1,从而得到方程的解。
在方程-3x=-4中,两边同时除以-3,得到x=(4)/(3)。
这一步的依据是等式的基本性质2:等式两边同时乘(或除以)同一个不为0的整式,等式仍然成立。
三、一元一次方程的应用1. 列方程解应用题的一般步骤- 审:审题,理解题意,找出题目中的已知量、未知量以及它们之间的关系。
- 设:设未知数,一般有直接设元和间接设元两种方法。
例如,若要求某个数,可直接设这个数为x;若通过某个数与其他数的关系来求解,可间接设与这个数有关的量为x。
- 列:根据题目中的等量关系列出方程。
- 解:解这个方程,求出未知数的值。
- 验:检验方程的解是否符合题意,包括是否满足方程本身以及实际问题中的条件。
一元一次方程知识点总结和例题讲解
第六章 一元一次方程知识点汇总(一)、方程的有关概念1. 方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程. 例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程. (例1)3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. (例2)注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.(二)、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等. 等式的性质(1)用式子形式表示为:如果a=b ,那么a ±c=b ±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c ≠0),那么a c =bc(三)、移项法则:把等式一边的某项变号后移到另一边,叫做移项.(例3) (四)、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号相应各项的符号改变. (五)、解方程的一般步骤(例4)1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a ≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=ba ).一.列一元一次方程解应用题的一般步骤 (1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.第七章 二元一次方程组 一、知识点总结 1、二元一次方程:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程,它的一般形式是(0,0)ax by c a b +=≠≠.2、二元一次方程的解:一般地,能够使二元一次方程的左右两边相等的两个未知数的值,叫做二元一次方程的解. 【二元一次方程有无数组解】 3、二元一次方程组:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组.4、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解.【二元一次方程组解的情况:①无解,例如:16x y x y +=⎧⎨+=⎩,1226x y x y +=⎧⎨+=⎩;②有且只有一组解,例如:122x y x y +=⎧⎨+=⎩;③有无数组解,例如:1222x y x y +=⎧⎨+=⎩】5、二元一次方程组的解法:代入消元法和加减消元法。
【数学知识点】初中数学一元一次方程式必考重点总结
【数学知识点】初中数学一元一次方程式必考重点总结一元一次方程是初中数学考试的重点章节,一起来看以下有哪些必考知识点吧。
(一)一元一次方程1.一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
2.判断一元一次方程的条件(1)首先必须是方程。
(2)其次必须含有一个未知数。
(3)分母中不含有未知数。
3.解使方程式左右两边值相等的未知数的值叫做方程的解。
检验方程的解的办法:把未知数分别代入方程的左、右两边计算他们的值是否相等。
4.一元一次方程写成:ax+b=0(a≠0)(二)等式的性质1.等式两边同时加上(或减去)同一个整式,等式仍然成立。
若a=b那么a+c=b+c2.等式两边同时乘或除以同一个不为0的整式,等式仍然成立。
若a=b那么有a·c=b·c或a÷c=b÷c (c≠0)3.等式具有传递性。
若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an(三)解方程式的步骤解一元一次方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。
1.去分母:去分母是指等式两边同时乘以分母的最小公倍数。
2.去括号(1)括号前是"+",把括号和它前面的"+"去掉后,原括号里各项的符号都不改变。
(2)括号前是"-",把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。
(改成与原来相反的符号,例:-(x-y)=-x+y。
3.移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
4.合并同类项合并同类项就是利用乘法分配律,同类项的系数相加,所得的结果作为系数,字母和指数不变。
通过合并同类项把一元一次方程式化为最简单的形式:ax=b (a≠0)5.系数化为1设方程经过恒等变形后最终成为ax=b型(a≠1且a≠0),那么过程ax=b→x=b/a叫做系数化为1。
初中数学一元一次方程知识点总结
初中数学一元一次方程知识点总结初中数学一元一次方程知识点总结一、方程的有关概念1.方程:含有未知数的等式就叫做方程。
2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。
注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。
⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。
二、等式的性质(1)等式两边都加上(或减去)同个数(或式子),结果仍相等。
用式子形式表示为:如果a=b,那么a±c=b±c(2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc三、移项法则:把等式一边的某项变号后移到另一边,叫做移项。
四、去括号法则1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1.去分母(方程两边同乘各分母的最小公倍数)2.去括号(按去括号法则和分配律)3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4.合并(把方程化成ax=b(a≠0)形式)5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=ba)。
六、用方程思想解决实际问题的一般步骤1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系。
2.设:设未知数(可分直接设法,间接设法)。
3.列:根据题意列方程。
4.解:解出所列方程。
5.检:检验所求的解是否符合题意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程方程的有关概念夯实基础一.等式用等号(“=”)来表示相等关系的式子叫做等式。
温馨提示①等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等,所以等式可以表示不同的意义。
②不能将等式与代数式混淆,等式含有等号,是表示两个式子的“相等关系”,而代数式不含等号,它只能作为等式的一边。
如x x 2735-=+才是等式。
二.等式的性质性质1:等式两边同时加(或减)同一个数(或式子),结果仍相等。
即如果b a =,那么c b c a ±=±。
性质2:等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
即如果b a =,那么bc ac =;如果b a =()0≠c ,那么cb c a =。
温馨提示①等式类似天平,当天平两端放有相同质量的物体时,天平处于平衡状态。
若在天平的两端各加(或减)相同质量的物体,则天平仍处于平衡状态。
所以运用等式性质1时,当等式两边都加上(或减去)同一个数或同一个整式时,才能保证所得的结果仍是等式,应特别注意“都”和“同一个”。
如31=+x ,左边加2,右边也加2,则有2321+=++x 。
②运用等式的性质2时,等式两边不能同除以0,因为0不能作除数或分母。
③等式性质的延伸:a.对称性:等式左、右两边互换,所得结果仍是等式,即如果b a =,那么a b =。
b.传递性:如果c b b a ==,,那么c a =(也叫等量代换)。
例1:用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式哪一条性质,以及怎样变形得到的。
(1)如果51134=-x ,那么+=534x ; (2)如果c by ax -=+,那么+-=c ax ;(3)如果4334=-t ,那么=t 。
三.方程含有未知数的等式叫做方程。
温馨提示 方程有两层含义:①方程必须是一个等式,即是用等号连接而成的式子。
②方程中必有一个待确定的数,即未知的字母,这个字母就是未知数。
如12=+x 。
四.方程与等式的区别与联系 五.方程的解与解方程例3:下列方程中解为2=x 的是( )A.x x =+33B.03=+-xC.62=xD.825=-x 例4:利用等式的性质解下列方程:(1)x x 726=+ (2)3265+=-x x掌握方法一.等量关系的确定方法列方程解应用题是初中数学的一个重点也是一个难点,要突破这一难关,学会寻找等量关系是关键,那么怎样寻找应用题中的等量关系呢? (1)从关键词中找等量关系;(2)对于同一个量,从不同角度用不同的方法表示,得到等量关系; (3)运用基本公式找等量关系; (4)运用不变量找等量关系。
例1:某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%,设把x 公顷旱地改为林地,则可列方程为( )。
A.108%2054⨯=-xB.)108%(2054x x +=-C.162%2054⨯=+xD.)54%(20108x x +=-二.利用方程的解求待定字母的方法利用方程的解求方程中的待定字母时,只要将方程的解代入方程,得到关于待定字母的方程,即可解决问题。
例2:已知2=x 是关于x 的方程)2(31+=+-x k k x 的解,则k 的值应为( )。
A.9 B.91C.31D.1一元一次方程解一元一次方程夯实基础一.一元一次方程1.定义:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。
2.标准形式:方程0=+b ax (其中x 是未知数,a 、b 是已知数,并且0≠a )叫做一元一次方程的标准形式。
温馨提示①一元一次方程中未知数所在的式子是整式,即分母不含未知数。
②一元一次方程只含有一个未知数,未知数的次数都为1。
如321=+x ,6=+y x ,+2x 06=-x 都不是一元一次方程。
例1:下列方程中,哪些是一元一次方程?哪些不是?(1)1145=+x ;(2)52=+y x ;(3)0652=+-x x ; (4)32=-x x ;(5)1321=+-yy 。
二.移项1.定义:把等式一边的某项变号后移到另一边,叫做移项。
2.示例:解方程5223+=-x x 时,可在方程的两边先加2,再减x 2,得=-+-x x 2223x x 2252-++,即变形为2523+=-x x 。
与原方程比较,这个变形过程如下:33 温馨提示①移项的原理就是等式的性质1。
②移项所移动的是方程中的项,并且是从方程的一边移到另一边,而不是方程的一边交换两个项的位置。
③移项时一定要改变所移动的项的符号,不移动的项不能变号。
如解方程1053-=x x ,若移项,得1035-=-x x 就出错了,原因是被移动的项“x 5”的符号没有改变,而改变了没有被移动的项“x 3”的符号。
④在移动时,最好先写左右两边不移动的项,再写移来的项。
例2:下列各题中的变形为移项的是( )。
A.由1)2(21=+x ,得1121=+x B.由5735+=-x x ,得3557-=+x x C.由625=+--x x ,得652=--x x D.由x x -=-85,得58+=+x x 三.去括号与去分母解一元一次方程的最终目标是要得到“a x =”这一结果。
为了达到这一目标,方程中有括号就要根据去括号法则去掉括号,即为去括号;方程中有分母的,根据等式性质2去掉分母,即为去分母。
温馨提示(1)解含有括号的一元一次方程时,去括号时一般遵循去括号的基本法则。
但在实际去括号时,应根据方程的结构特点利用一些方法技巧,恰当地去括号,以简化运算。
对于一些特殊结构的方程,可采用以下去括号的技巧:①先去外再去内。
即在解题时,打破常规,不是由内到外去括号,而是由外到内去括号。
②整体合并去括号。
有些方程,把含有的某些多项式看作整体,先合并,再去括号,往往会简单。
如,解方程)8(23)8(21--=---x x x 时,可把8-x 看作整体先合并,再去括号。
(2)去分母时,在方程两边要同时乘以所有分母的最小公倍数,不要漏乘不含分母的项。
当分母时小数时,需要把分母化整。
同时注意分母化整只与这一项有关,而与其他项无关,要与去分母区分开。
例3:下列方程去括号正确的是( )。
A.由6)24(32=--x x 得62122=--x x B.由6)24(32=--x x 得66122=--x x C.由6)24(32=--x x 得66122=+-x x D.由6)24(32=--x x 得6632=+-x x例4:方程2133123+-=-+x x x ,去分母正确的是( )。
A.)1(318)12(218+-=-+x x x B.)1(3)12(3+-=-+x x x C.)1(18)12(18+-=-+x x x D.)1(33)12(23+-=-+x x x四.解一元一次方程的一般步骤例5:解一元一次方程123+=。
掌握方法一.一元一次方程概念的应用原方程为一元一次方程,即未知数的次数为1,系数不为0,由此来确定原方程中待定字母的值。
例1:(1)若2122=+-m x是关于x 的一元一次方程,则m = ;(2)若方程20152014)4(=+-x m 是关于x 的一元一次方程,则=m 。
二.利用合并同类项与移项解方程的方法(1)合并同类项时,不能用连等号与原方程相连。
(2)几个常数项也是同类项,移项时应该把它们放到一起。
(3)移项时把某项改变符号后移到等式的另一边,而不是等式一边的两项交换位置。
(4)移项必变号,不变号不能移项。
例2:解方程:(1)x x 23273-=+;(2)143621-=-a a 。
三.利用去分母解方程的方法利用等式的性质2,在方程的两边同时乘各分母的最小公倍数,将分母去掉,把系数为分数的方程转化为系数为整数的方程。
(1)分数线具有括号的作用,分子如果是一个多项式,去掉分母后,要把分母后,要把分子放在括号里。
(2)去分母时,不能漏乘不含分母的项。
例3:解方程353213+=+-x x 。
四.含小数的一元一次方程的解法将小数化成整数,是根据分数的基本性质把含小数的项的分子、分母乘同一个适当的数,而不是方程所有的项都乘这个数。
小数化成整数,是对分母含小数的项的恒等变形。
例4:解方程:03.002.003.0255.094.0xx x +=---。
五.有关同解方程的解题方法如果两个方程的解相同,那么我们把这两个方程称为同解方程。
已知两个一元一次方程是同解方程,求其中待定字母的取值,主要有两种常见题型,其解法有所不同。
(1)在两个同解方程中,如果只有一个方程中含有待定字母,一般先解不含待定字母的方程,再把未知数的值代入含有待定字母的方程中,求出待定字母的值。
(2)如果在两个同解方程中都含有相同的待定字母,一般是分别解两个方程,用这个待定字母分别表示两个方程的解,并建立等式,形成关于这个待定字母的方程,求出该待定字母的值。
例5:已知方程x+m=(3-x的解相同,求mm+x=-1)1)(2的解与关于x的方程1的值。
一元一次方程列一元一次方程解应用题夯实基础一.列一元一次方程解应用题的一般步骤(1)审:弄清题意和题目中的数量关系。
(2)设:用字母表示题目中的一个未知量。
(3)找:找出能够表示应用题全部含义的一个相等关系。
(4)列:根据这个相等关系列出方程。
(5)解:解所列的方程,求出未知数的值。
(6)验:检验方程的解是否符合问题的实际意义。
(7)答:写出答案。
二.设未知数的几种方法设未知数的方法有三种:(1)直接设未知数:题目求什么就设什么为未知数。
(2)间接设未知数:对于一些应用题,如果直接设所求的量为未知数,可能不容易列方程,这时可以间接地设一个或几个与所求的量有关系的量作为未知数,进而求出所求的量。
(3)设辅助未知数:如果前两种方法都行不通,便可设某个量为辅助未知数,辅助未知数仅作为题目中量与量之间关系的一种桥梁,一般情况下,解方程时不需要求出这个量。
温馨提示①采用直接设未知数的方法,原则是使分析条件更方便,列方程更简单,这样比较容易得到方程,同时还要兼顾所得到的方程求解时难易。
直接设未知数,好处是容易选取未知数,而且在解方程时可以直接得到问题的解。
②如果题目里涉及的几个量存在某种数量关系或某种比例关系,多采用间接设未知数的方法,间接设未知数是在直接设未知数、分析条件或列方程感到困难的时候才采取的方法。
其优点是列出方程和解方程的过程都比较容易。
③如果应用题涉及的量较多,各量之间的关系又不明显,若能设立适当的辅助未知数,把不明显的关系表示出来,就可以顺利地列出方程或方程组。
例1:通讯员原计划5h从甲地到乙地,因为任务紧急,他每小时比原计划快3km,结果提前1h 到达,求甲、乙两地间的距离。