2012北京高考理科试题及详细解析版(word版)
2012年高考物理(北京卷)真题及详细答案(word版)
2012年普通高等学校招生全国统一考试(北京卷)理科综合测试(物理)本试卷共14页.共300分。
考试时长150分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共120分)本部分共20小题,每小题6分,共120分。
在每小题列出的四个选项中,选出最符合题目要求的一项。
13.一个氢原子从n=3能级跃迁到n=2能级,该氢原子A .放出光子,能量增加B .放出光子,能量减少C .吸收光子,能量增加D .吸收光子,能量减少 【答案】B【解析】原子由高能级3跃迁到低能级2的过程中,原子能量减少,放出光子。
答案B 。
14.一束单色光经由空气射入玻璃,这束光的A .速度变慢,波长变短B .速度不变,波长变短C .频率增高,波长变长D .频率不变,波长变长 【答案】A【解析】单色光由光疏介质空气进入光密介质玻璃,频率不变,但介质对光的折射率增大,由c n v=及v f λ=,可知光的波长和速度都减小,答案A 。
15.一个小型电热器若接在输出电压为10V 的直流电源上,消耗电功率为P ;若把它接在某个正弦交流电源上,其消耗的电功率为2P。
如果电热器电阻不变,则此交流电源输出电压的最大值为A .5VB .C .10VD .V 【答案】C【解析】电热器电阻不变,根据功率表达式和交流电的有效值得:2(10)V P R=;2(/2m U P R=可求得10m U V =,答案C 。
16.处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值A .与粒子电荷量成正比B .与粒子速率成正比C .与粒子质量成正比D .与磁感应强度成正比 【答案】D【解析】粒子的运动可等效为环形电流,粒子在一个周期只通过某一个截面一次,则环形电流在一个周期T 内的电量为q ,由电流定义式:q I T=,粒子在洛伦兹力作用下做匀速圈周运动,2m v qvB r=2r T vπ=,联立解得:22BqI mπ=,环形电流与磁感应强度成正比,与粒子质量成反比,与粒子电荷量的平方成正比,而与粒子速率无关,答案D 。
2012年北京市高考数学试卷(理科)
2012年北京市高考数学试卷(理科)一、选择题共 小题.每小题 分 共 分 在每小题列出的四个选项中,选出符合胜目要求的一项.已知集合{}()(){}320,130A x x B x x x =∈+>=∈+->R R ,则 ∩ ( ).(),1-∞-.21,3⎛⎫-- ⎪⎝⎭.2,33⎛⎫- ⎪⎝⎭.()3,+∞.设不等式组0202x y ≤≤⎧⎨≤≤⎩,表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ).4π .22π- .6π .44π- .设,a b ∈R . 0a = 是 复数a bi +是纯虚数 的( ) .充分而不必要条件 .必要而不充分条件.充分必要条件.既不充分也不必要条件.执行如图所示的程序框图,输出的S 值为( ).2 .4 .8 .16.如图,,9 0ACB CD AB ︒=⊥于点D ,以BD 为直径的圆与BC 交于点E .则( ).CE CB AD DB ⋅=⋅ .CE CB AD AB ⋅=⋅.2AD AB CD ⋅=.2CE EB CD ⋅=.从0,2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( ).24.18.12.6.某三棱锥的三视图如图所示,该三棱锥的表面积是( ).2865+ .3065+ .56125+ .60125+.某棵果树前n 年的总产量Sn 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为( ).5 .7 .9 .11二 填空题共6小题.每小题5分.共30分.直线21x t y t =+⎧⎨=--⎩(t 为参数)与曲线3cos 3sin x y αα=⎧⎨=⎩ (α为参数)的交点个数为 ..已知{}n a 是等差数列,n S 为其前n 项和.若1231,2a S a ==,则2a ..在ABC 中,若12,7,cos 4a b c B =+==- ,则b ..在直角坐标系xOy 中.直线l 过抛物线24y x =的焦点F .且与该抛物线相交于A 、B 两点.其中点A 在x 轴上方.若直线l 的倾斜角为60︒.则OAF 的面积为 ..己知正方形ABCD 的边长为1,点E 是AB 边上的动点.则DE CB ⋅的值为 ..已知()()()23,()22x f x m x m x m g x =-++=- 若同时满足条件: ①,()0x f x ∀∈<R 或()0g x <; ②(),4,()()0x f x g x ∃∈-∞-<. 则m 的取值范围是 .三、解答题公 小题,共 分.解答应写出文字说明,演算步骤或证明过程..已知函数()sin cos sin 2()sin x x xf x x-=( )求()f x 的定义域及最小正周期; ( )求()f x 的单调递增区间..如图1,在Rt ABC 中, 90C ︒∠=,3,6BC AC ==,,D E 分别是,AC AB 上的点,且DE ∥,2BC DE =,将ADE 沿DE 折起到1A DE 的位置,使1A C CD ⊥,如图2.( )求证:1A C ⊥平面BCDE ;( )若M 是1A D 的中点,求CM 与平面1A BE 所成角的大小;( )线段BC 上是否存在点P ,使平面1A DP 与平面1A BE 垂直?说明理由..近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨);厨余垃圾 箱可回收物 箱其他垃圾 箱厨余垃圾 可回收物 其他垃圾( )试估计厨余垃圾投放正确的概率; ( )试估计生活垃圾投放错误的概率;( )假设厨余垃圾在 厨余垃圾 箱、 可回收物 箱、 其他垃圾 箱的投放量分别为,,a b c ,其中0,600a a b c >++=.当数据,,a b c 的方差2s 最大时,写出,,a b c 的值(结论不要求证明),并求此时2s 的值. (求:()()()2222121n S x x x x x x n ⎡⎤=-+-++-⎣⎦,其中x 为数据12,,,n x x x 的平均数).已知函数()()23()10,f x ax a g x x bx =+>=+( )若曲线()y f x =与曲线()y g x =在它们的交点()1,c 处具有公共切线,求,a b 的值;( )当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(),1-∞-上的最大值..已知曲线()()()22:528C m x m y m -+-=∈R( )若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;( )设4m =,曲线C 与y 轴的交点为,A B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点,M N ,直线1y =与直线BM 交于点G .求证:,,A G N 三点共线..设 是由 × 个实数组成的 行 列的数表,满足:每个数的绝对值不大于 ,且所有数的和为零,记 ( , )为所有这样的数表构成的集合.对于 ∈ ( , ),记 ( )为 的第 行各数之和( ≤ ≤ ), ( )为 的第 列各数之和( ≤ ≤ );记 ( )为 ( ) , ( ) , , ( ) , ( ) , ( ) , , ( ) 中的最小值.( )如表 ,求 ( )的值;﹣ ﹣ ﹣( )设数表 ∈ ( , )形如﹣求 ( )的最大值;( )给定正整数 ,对于所有的 ∈ ( , ),求 ( )的最大值.年北京市高考数学试卷(理科)参考答案与试题解析一、选择题共 小题.每小题 分 共 分 在每小题列出的四个选项中,选出符合胜目要求的一项.( 北京)已知集合 ∈ > , ∈ ( )( ﹣ )> ,则 ∩ ().(﹣∞,﹣ ) .(﹣ ,) .﹙, ﹚ .( , ∞)【分析】求出集合 ,然后直接求解 ∩ .【解答】解:因为 ∈ ( )( ﹣ )> ﹜ <﹣ 或 > ,又集合 ∈ > ﹜ ,所以 ∩ ∩ <﹣ 或 > > ,故选: ..( 北京)设不等式组,表示的平面区域为 ,在区域 内随机取一个点,则此点到坐标原点的距离大于 的概率是() . . . .【分析】本题属于几何概型,利用 测度 求概率,本例的测度即为区域的面积,故只要求出题中两个区域:由不等式组表示的区域 和到原点的距离大于 的点构成的区域的面积后再求它们的比值即可.【解答】解:其构成的区域 如图所示的边长为 的正方形,面积为 ,满足到原点的距离大于 所表示的平面区域是以原点为圆心,以 为半径的圆外部,面积为 ﹣ ,∴在区域 内随机取一个点,则此点到坐标原点的距离大于 的概率故选: ..( 北京)设 , ∈ . 是 复数 是纯虚数 的().充分而不必要条件 .必要而不充分条件.充分必要条件 .既不充分也不必要条件【分析】利用前后两者的因果关系,即可判断充要条件.【解答】解:因为 , ∈ . 时 复数 不一定是纯虚数 .复数 是纯虚数 则 一定成立.所以 , ∈ . 是 复数 是纯虚数 的必要而不充分条件.故选 ..( 北京)执行如图所示的程序框图,输出的 值为(). . . .【分析】列出循环过程中 与 的数值,不满足判断框的条件即可结束循环.【解答】解:第 次判断后 , ,第 次判断后 , ,第 次判断后 , ,第 次判断后 < ,不满足判断框的条件,结束循环,输出结果: .故选 ..( 北京)如图,∠ , ⊥ 于点 ,以 为直径的圆与 交于点 .则(). . . .【分析】连接 ,以 为直径的圆与 交于点 , ⊥ ,由∠, ⊥ 于点 ,△ ∽△ ,由此利用三角形相似和切割线定理,能够推导出 .【解答】解:连接 ,∵以 为直径的圆与 交于点 ,∴ ⊥ ,∵∠ , ⊥ 于点 ,∴△ ∽△ ,∴,∴ .∵ ,∴ ,故选 ..( 北京)从 、 中选一个数字.从 、 、 中选两个数字,组成无重复数字的三位数.其中奇数的个数为(). . . .【分析】分类讨论:从 、 中选一个数字 ,则 只能排在十位;从 、 中选一个数字 ,则 排在十位或百位,由此可得结论.【解答】解:从 、 中选一个数字 ,则 只能排在十位,从 、 、 中选两个数字排在个位与百位,共有 种;从 、 中选一个数字 ,则 排在十位,从 、 、 中选两个数字排在个位与百位,共有 种;排在百位,从 、 、 中选两个数字排在个位与十位,共有 种;故共有 种故选 ..( 北京)某三棱锥的三视图如图所示,该三棱锥的表面积是(). . ..【分析】通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可.【解答】解:三视图复原的几何体是底面为直角边长为 和 的三角形,一个侧面垂直底面的等腰三角形,高为 ,底边长为 ,如图,所以底,后 ,右 ,左 .几何体的表面积为:底后右左.故选: ..( 北京)某棵果树前 年的总产量 与 之间的关系如图所示.从目前记录的结果看,前 年的年平均产量最高,则 的值为(). . . .【分析】由已知中图象表示某棵果树前 年的总产量 与 之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.【解答】解:若果树前 年的总产量 与 在图中对应 ( , )点则前 年的年平均产量即为直线 的斜率由图易得当 时,直线 的斜率最大即前 年的年平均产量最高,故选二 填空题共 小题.每小题 分.共 分.( 北京)直线( 为参数)与曲线 ( 为参数)的交点个数为 .【分析】将参数方程化为普通方程,利用圆心到直线的距离与半径比较,即可得到结论.【解答】解:直线( 为参数)化为普通方程为 ﹣ 曲线 ( 为参数)化为普通方程为∵圆心( , )到直线 ﹣ 的距离为∴直线与圆有两个交点故答案为:.( 北京)已知﹛ ﹜是等差数列, 为其前 项和.若 , ,则 .【分析】由﹛ ﹜是等差数列, , ,知 ,解得 ,由此能求出 .【解答】解:∵﹛ ﹜是等差数列, , ,∴ ,解得 ,.故答案为: ..( 北京)在△ 中,若 , , ﹣,则 .【分析】根据 , , ﹣,利用余弦定理可得,即可求得 的值.【解答】解:由题意,∵ , , ﹣,∴∴故答案为:.( 北京)在直角坐标系 中.直线 过抛物线 的焦点 .且与该抛物线相交于 、 两点.其中点 在 轴上方.若直线 的倾斜角为 .则△ 的面积为.【分析】确定直线 的方程,代入抛物线方程,确定 的坐标,从而可求△ 的面积.【解答】解:抛物线 的焦点 的坐标为( , )∵直线 过 ,倾斜角为∴直线 的方程为:,即代入抛物线方程,化简可得∴ ,或 ﹣∵ 在 轴上方∴△ 的面积为故答案为:.( 北京)己知正方形 的边长为 ,点 是 边上的动点.则的值为 .【分析】直接利用向量转化,求出数量积即可.【解答】解:因为 .故答案为:.( 北京)已知 ( ) ( ﹣ )( ), ( ) ﹣ ,若同时满足条件:①∀ ∈ , ( )< 或 ( )< ;②∃ ∈(﹣∞,﹣ ), ( ) ( )< .则 的取值范围是(﹣ ,﹣ ).【分析】①由于 ( ) ﹣ ≥ 时, ≥ ,根据题意有 ( ) ( ﹣ )( )< 在 > 时成立,根据二次函数的性质可求②由于 ∈(﹣∞,﹣ ), ( ) ( )< ,而 ( ) ﹣ < ,则 ( ) ( ﹣ )( )> 在 ∈(﹣∞,﹣ )时成立,结合二次函数的性质可求【解答】解:对于①∵ ( ) ﹣ ,当 < 时, ( )< ,又∵①∀ ∈ , ( )< 或 ( )<∴ ( ) ( ﹣ )( )< 在 ≥ 时恒成立则由二次函数的性质可知开口只能向下,且二次函数与 轴交点都在( , )的左面则∴﹣ < < 即①成立的范围为﹣ < <又∵② ∈(﹣∞,﹣ ), ( ) ( )<∴此时 ( ) ﹣ < 恒成立∴ ( ) ( ﹣ )( )> 在 ∈(﹣∞,﹣ )有成立的可能,则只要﹣ 比 , 中的较小的根大即可,( )当﹣ < < 时,较小的根为﹣ ﹣ ,﹣ ﹣ <﹣ 不成立,( )当 ﹣ 时,两个根同为﹣ >﹣ ,不成立,( )当﹣ < <﹣ 时,较小的根为 , <﹣ 即 <﹣ 成立.综上可得①②成立时﹣ < <﹣ .故答案为:(﹣ ,﹣ ).三、解答题公 小题,共 分.解答应写出文字说明,演算步骤或证明过程..( 北京)已知函数 ( ) .( )求 ( )的定义域及最小正周期;( )求 ( )的单调递增区间.【分析】通过二倍角与两角差的正弦函数,化简函数的表达式,( )直接求出函数的定义域和最小正周期.( )利用正弦函数的单调增区间,结合函数的定义域求出函数的单调增区间即可.【解答】解:﹣ ﹣ ( ﹣)﹣ ∈ , ≠ , ∈( )原函数的定义域为 ≠ , ∈ ,最小正周期为 .( )由, ∈ ,解得, ∈ ,又 ≠ , ∈ ,原函数的单调递增区间为, ∈ ,, ∈.( 北京)如图 ,在 △ 中,∠ , , , , 分别是 , 上的点,且 ∥ , ,将△ 沿 折起到△ 的位置,使 ⊥ ,如图 .( )求证: ⊥平面 ;( )若 是 的中点,求 与平面 所成角的大小;( )线段 上是否存在点 ,使平面 与平面 垂直?说明理由.【分析】( )证明 ⊥平面 ,因为 ⊥ ,只需证明 ⊥ ,即证明 ⊥平面 ;( )建立空间直角坐标系,用坐标表示点与向量,求出平面 法向量, (﹣ , ,),利用向量的夹角公式,即可求得 与平面 所成角的大小;( )设线段 上存在点 ,设 点坐标为( , , ),则 ∈ , ,求出平面 法向量为假设平面 与平面 垂直,则,可求得 ≤ ≤ ,从而可得结论.【解答】( )证明:∵ ⊥ , ⊥ , ∩ ,∴ ⊥平面 ,又∵ ⊂平面 ,∴ ⊥又 ⊥ , ∩∴ ⊥平面( )解:如图建系,则 ( , , ), (﹣ , , ), ( , , ), ( , , ), (﹣ , , )∴,设平面 法向量为则∴∴∴又∵ (﹣ , ,),∴ (﹣ , ,)∴∴ 与平面 所成角的大小( )解:设线段 上存在点 ,设 点坐标为( , , ),则 ∈ ,∴,设平面 法向量为则∴∴假设平面 与平面 垂直,则,∴ , ﹣ , ﹣∵ ≤ ≤∴不存在线段 上存在点 ,使平面 与平面 垂直.( 北京)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计 吨生活垃圾,数据统计如下(单位:吨);厨余垃圾 箱 可回收物 箱 其他垃圾 箱厨余垃圾可回收物其他垃圾( )试估计厨余垃圾投放正确的概率;( )试估计生活垃圾投放错误的概率;( )假设厨余垃圾在 厨余垃圾 箱、 可回收物 箱、 其他垃圾 箱的投放量分别为 , , ,其中 > , .当数据 , , 的方差 最大时,写出 , , 的值(结论不要求证明),并求此时 的值.(求: ,其中为数据 , , , 的平均数)【分析】( )厨余垃圾 吨,投放到 厨余垃圾 箱 吨,故可求厨余垃圾投放正确的概率;( )生活垃圾投放错误有 ,故可求生活垃圾投放错误的概率;( )计算方差可得,因此有当 , , 时,有 .【解答】解:( )由题意可知:厨余垃圾 吨,投放到 厨余垃圾 箱 吨,故厨余垃圾投放正确的概率为;( )由题意可知:生活垃圾投放错误有 ,故生活垃圾投放错误的概率为;( )由题意可知:∵ ,∴ , , 的平均数为 ∴ ,∵( ) ≥ ,因此有当 , , 时,有 ..( 北京)已知函数 ( ) ( > ), ( )( )若曲线 ( )与曲线 ( )在它们的交点( , )处具有公共切线,求 、 的值;( )当 时,求函数 ( ) ( )的单调区间,并求其在区间(﹣∞,﹣ )上的最大值.【分析】( )根据曲线 ( )与曲线 ( )在它们的交点( , )处具有公共切线,可知切点处的函数值相等,切点处的斜率相等,故可求 、 的值;( )根据 ,构建函数,求导函数,利用导数的正负,可确定函数的单调区间,进而分类讨论,确定函数在区间(﹣∞,﹣ )上的最大值.【解答】解:( ) ( ) ( > ),则 ( ) , , ( ) ,则 ( ) , ,由( , )为公共切点,可得: ①又 ( ) , ( ) ,∴ ,即 ,代入①式可得:.( )由题设 ,设则,令 ( ) ,解得:,;∵ > ,∴,(﹣∞,﹣)﹣)( ) ﹣( ) 极大值 极小值∴原函数在(﹣∞,﹣)单调递增,在单调递减,在)上单调递增①若,即 < ≤ 时,最大值为;②若<﹣,即 < < 时,最大值为③若﹣ ≥﹣时,即 ≥ 时,最大值为 (﹣)综上所述:当 ∈( , 时,最大值为;当 ∈( , ∞)时,最大值为..( 北京)已知曲线 :( ﹣ ) ( ﹣ )( ∈ )( )若曲线 是焦点在 轴点上的椭圆,求 的取值范围;( )设 ,曲线 与 轴的交点为 , (点 位于点 的上方),直线 与曲线 交于不同的两点 、 ,直线 与直线 交于点 .求证: , , 三点共线.【分析】( )原曲线方程,化为标准方程,利用曲线 是焦点在 轴点上的椭圆可得不等式组,即可求得 的取值范围;( )由已知直线代入椭圆方程化简得:( ) ,△ ( ﹣ ),解得:,设 ( , ), ( , ), ( , ), 方程为:,则,从而可得, ( , ),欲证 , , 三点共线,只需证,共线,利用韦达定理,可以证明.【解答】( )解:原曲线方程可化简得:由题意,曲线 是焦点在 轴点上的椭圆可得:,解得:( )证明:由已知直线代入椭圆方程化简得:( ) ,△ ( ﹣ )> ,解得:由韦达定理得:①,,②设 ( , ), ( , ), ( , ), 方程为:,则,∴, ( , ),欲证 , , 三点共线,只需证,共线即成立,化简得:( ) ﹣ ( )将①②代入可得等式成立,则 , , 三点共线得证..( 北京)设 是由 × 个实数组成的 行 列的数表,满足:每个数的绝对值不大于 ,且所有数的和为零,记 ( , )为所有这样的数表构成的集合.对于 ∈ ( , ),记 ( )为 的第 行各数之和( ≤ ≤ ), ( )为 的第 列各数之和( ≤ ≤ );记 ( )为 ( ) , ( ) , , ( ) , ( ) , ( ) , , ( ) 中的最小值.( )如表 ,求 ( )的值;﹣ ﹣ ﹣( )设数表 ∈ ( , )形如﹣求 ( )的最大值;( )给定正整数 ,对于所有的 ∈ ( , ),求 ( )的最大值.【分析】( )根据 ( ), ( ),定义求出 ( ), ( ), ( ), ( ), ( ),再根据 ( )为 ( ) , ( ) , ( ) , ( ) , ( ) , ( ) 中的最小值,即可求出所求.( )先用反证法证明 ( )≤ ,然后证明 ( ) 存在即可;( )首先构造满足的( , , ,,, , ),然后证明是最大值即可.【解答】解:( )由题意可知 ( ) , ( ) ﹣ , ( ) , ( ) , ( ) ﹣∴ ( )( )先用反证法证明 ( )≤ :若 ( )>则 ( ) > ,∴ >同理可知 > ,∴ >由题目所有数和为即 ﹣∴ ﹣ ﹣ ﹣ <﹣与题目条件矛盾∴ ( )≤ .易知当 时, ( ) 存在∴ ( )的最大值为( ) ( )的最大值为.首先构造满足的( , , , , ,,):,.经计算知, 中每个元素的绝对值都小于 ,所有元素之和为 ,且,,.下面证明是最大值.若不然,则存在一个数表 ∈ ( , ),使得.由 ( )的定义知 的每一列两个数之和的绝对值都不小于 ,而两个绝对值不超过 的数的和,其绝对值不超过 ,故 的每一列两个数之和的绝对值都在区间 , 中.由于 > ,故 的每一列两个数符号均与列和的符号相同,且绝对值均不小于 ﹣ .设 中有 列的列和为正,有 列的列和为负,由对称性不妨设 < ,则 ≤ , ≥ .另外,由对称性不妨设 的第一行行和为正,第二行行和为负.考虑 的第一行,由前面结论知 的第一行有不超过 个正数和不少于 个负数,每个正数的绝对值不超过 (即每个正数均不超过 ),每个负数的绝对值不小于 ﹣ (即每个负数均不超过 ﹣ ).因此 ( ) ( )≤ ( )( ﹣ ) ﹣( ) ( ﹣( ) )< ,故 的第一行行和的绝对值小于 ,与假设矛盾.因此 ( )的最大值为.参与本试卷答题和审题的老师有: ;邢新丽; ;刘长柏;豫汝王世崇; (排名不分先后)菁优网年 月 日。
2012年高考理科数学北京卷(含详细答案)
A B=1,0}1,0,1}xy e=关于y轴对称,则()f x=()B.1x e-D.1xe--( )B.y=D.y=l与C所围成的图形的面积等于( )C.83D.表示的平面区域内存在点00(,)P x y,满足( )B.1(,)3-∞D.5(,)3-∞-第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中的横线上.9.在极坐标系中,点π(2,)6到直线sin2ρθ=的距离等于___________.10.若等比数列{}na满足2420a a+=,3540a a+=,则公比q=____;前n项和nS=____.11.如图,AB为圆O的直径,P A为圆O的切线,PB与圆O相交于D.若3PA=,:PD9:16DB=,则PD=___________;AB=___________.12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张.如果分给同一人的2张参观券连号,那么不同的分法种数是___________.13.向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则λμ=________.14.如图,在棱长为2的正方体1111ABCD A B C D-中,E为BC的中点,点P在线段1D E上.点P到直线1CC的距离的最小值为___________.4的正方形,平面ABC ⊥平面,并求1BDBC 的值.. 19.(本小题满分14分)已知A ,B ,C 是椭圆22:14x W y +=上的三个点,O 是坐标原点.(Ⅰ)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (Ⅱ)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.20.(本小题满分13分)已知{}n a 是由非负整数组成的无穷数列,该数列前n 项的最大值记为n A ,第n 项之后各项1n a +,2n a +,…的最小值记为n B ,n n n d A B =-.(Ⅰ)若{}n a 为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意*n N ∈,4n n a a +=),写出1d ,2d ,3d ,4d 的值; (Ⅱ)设d 是非负整数,证明:()1,2,3,n d d n =-=的充分必要条件是{}n a 是公差为d 的等差数列;(Ⅲ)证明:若12a =,1(1,2,3,)n d n ==,则{}n a 的项只能是1或者2,且有无穷多项为1.2012年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】2|3A x x ⎧⎫=>-⎨⎬⎩⎭,利用二次不等式的解法可得{|3B x x =>或}1x <-,易得{}|3AB x x =>.【提示】求出集合B ,然后直接求解A B .【考点】集合间的基本运算. 2.【答案】D【解析】题目中0202x y ≤≤⎧⎨≤≤⎩表示的区域表示正方形区域,而动点D 可以存在的位置为正方形面积减去四分之一的圆的面积部分,因此2122π24π4224P ⨯-⨯-==⨯,故选D .【提示】本例的测度即为区域的面积,故只要求出题中两个区域:由不等式组表示的区域和到原点的距离大于2的点构成的区域的面积后再求它们的比值即可. 【考点】不等式组,平面区域与几何概率. 3.【答案】B【解析】当0a =时,如果0b =,此时i 0a b +=是实数,不是纯虚数,因此不是充分条件;而如果i a b +已经是纯虚数,由定义实部为零,虚部不为零可以得到0a =,因此是必要条件,故选B . 【提示】利用前后两者的因果关系,即可判断充要条件. 【考点】复数的概念,充分、必要条件. 4.【答案】C【解析】0,11,12,23,8k s k s k s k s ==⇒==⇒==⇒==,循环结束,输出的s 为8,故选C . 【提示】列出循环过程中s 与k 的数值,不满足判断框的条件即可结束循环. 【考点】循环结构的程序框图. 5.【答案】A【解析】由切割线定理可知2CE CB CD =,在直角ABC △中90,ACB CD AB ∠=⊥,则由射影定理可知2CD AD DB =,所以CE CB AD DB =.数学试卷 第10页(共36页)【提示】由题中三角形和圆的位置关系,通过条件求解即可. 【考点】几何证明选讲. 6.【答案】B【解析】由于题目要求是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析3种选择,之后二位,有2种选择,最后百位2种选择,共12种;如果是第二种情况偶奇奇,分析同理,个位有3种选择,十位有2种选择,百位有一种选择,共6种,因此总共12618+=种,选B .【提示】选择数字进行排列,判断奇偶性即可. 【考点】排列组合. 7.【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,本题所求表面积为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:10,10,10,65S S S S ====后右底左,因此该几何体表面积3065S =+,故选B .【提示】通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可. 【考点】由三视图求几何体的表面积. 8.【答案】C【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C . 【提示】由已知中图像表示某棵果树前n 年的总产量S 与n 之间的关系,结合图像可得答案. 【考点】函数图像的应用.第Ⅱ卷二、填空题 9.【答案】2【解析】直线转化为1x y +=,曲线转化为圆229x y +=,圆心(0,0)到直线1x y +=的距离132d =<,所以有两个交点.【提示】将参数方程化为普通方程,利用圆心到直线的距离与半径比较,即可得到结论. 【考点】直线和圆的位置关系. 10.【答案】1 【解析】23S a =,所以111211212a a d a d d a a d ++=+⇒=⇒=+=.【提示】由{}n a 是等差数列23S a =,解得12d =,由此能求出2a . 【考点】等差数列的通项. 11.【答案】4【解析】在△ABC 中,得用余弦定理22214()()47()cos 2444a c b c b c b c b B ac c c+-++-+-=⇒-==,化简得8740c b -+=,与题目条件7b c +=联立,可解得4,3b c ==,答案为4.【提示】根据27a b c =+=,,1cos 4B =-,利用余弦定理可得,即可求得b 的值 【考点】余弦定理的运用. 12.【答案】3【解析】由24y x =,可求得焦点坐标为(1,0)F ,因为倾斜角为60,所以直线的斜率为tan603k ==,利用点斜式,直线的方程为33y x =-,将直线和曲线方程联立233123(3,23),,334y x A B y x⎧⎛⎫=-⎪⇒- ⎪⎨ ⎪=⎪⎝⎭⎩,因此11123322OAF A S OF y =⨯⨯=⨯⨯=△. 【提示】确定直线l 的方程,代入抛物线方程,确定A 的坐标,从而可求OAF △的面积.. 【考点】抛物线的简单性质,直线与抛物线的位置关系. 13.【答案】1【解析】根据平面向量的点乘公式cos DE CB DE DA DE DA θ==,可知cos DE DA θ=,所以21DE CB DA ==;||||cos ||cos DE DC DE DC DE αα==,又因为cos DE α就是向量DE 在DC 边上的射影,要想让DE DC 最大,即让射影最大,此时E 点与B 点重合,射影为||DC ,所以长度为1. 【提示】直接利用向量转化,求出数量积即可. 【考点】平面向量在平面几何中的运用. 14.【答案】(4,2)--【解析】对于①∵()22xg x =-,当1x <时,()0g x <,又∵①()0x R f x ∀∈<,或()0g x <∴()(2)(3)0f x m x m x m =-++<在1x ≥时恒成立,则由二次函数的性质可知开口只能向下,且二次函数与x 轴交点都在(1,0)的左边,则03121m m m <⎧⎪--<⎨⎪<⎩,∴40m -<<,即①成立的范围为40m -<<,数学试卷 第16页(共36页)又∵②(,4)x ∈∞--,()()0f x g x <, ∴此时()220x g x =-<恒成立∴()(2)(3)0f x m x m x m =-++>在(,4)x ∈-∞-有成立的可能,则只要4-比12x x ,中的较小的根大即可,(i )当10m -<<时,较小的根为3m --,34m --<-不成立, (ii )当1m =-时,两个根同为24->-,不成立,(iii )当41m -<<-时,较小的根为224m m <,-即2m <-成立. 综上可得①②成立时42m -<<-.【提示】①由于()220x g x =->时,1x ≥,根据题意有()(2)(3)0f x m x m x m =-++<在1x >时成立,根据二次函数的性质可求.②由于(,4)x ∈∞--,()()0f x g x <,而()220xg x =-<,则()(2)(3)0f x m x m x m =-++>在(,4)x ∈∞--时成立,结合二次函数的性质可求 【考点】指数函数的性质,二次函数的性质. 三、解答题15.【答案】(Ⅰ){|π,}x x k k ≠∈Z π(Ⅱ)ππ,π8k k k ⎡⎫-+∈⎪⎢⎭⎣Z 和3ππ,π8k k k ⎛⎤+∈ ⎥⎦⎝Z 【解析】(Ⅰ)(sin cos )sin2()sin x x xf x x-=(sin cos )2sin cos sin x x x xx-=2(sin cos )cos x x x =-sin 21cos 2x x =--π2sin 214x ⎛⎫=-- ⎪⎝⎭,{|π}x x k k ≠∈Z ,原函数的定义域为{|π,}x x k k ≠∈Z ,最小正周期为π;(Ⅱ)由πππ2π22π+,242k x k k -≤-≤∈Z . 解得π3πππ,,88k x k k -≤≤+∈Z 又{|π,}x x k k ≠∈Z ,原函数的单调递增区间为ππ,π8k k k ⎡⎫-+∈⎪⎢⎭⎣Z ,3ππ,π8k k k ⎛⎤+∈ ⎥⎦⎝Z . 【提示】(Ⅰ)直接求出函数的定义域和最小正周期.(Ⅱ)利用正弦函数的单调增区间,结合函数的定义域求出函数的单调增区间即可. 【考点】三角函数的定义域,周期,单调性. 16.【答案】(Ⅰ)证明CD DE ⊥,1A D DE ⊥,又1CDA D D =,∴DE ⊥平面1A CD ,又1AC ⊂平面1A CD , ∴1AC ⊥DE ,又1AC CD ⊥,CD DE D =∴1AC ⊥平面BCDE . (Ⅱ)如图建立空间直角坐标系C xyz -,则(2,0,0)D -,1(00,23)A ,,(0,3,0)B ,(2,2,0)E -,(0,0,0)C , ∴1(0,3,23)A B =-,1(2,2,23)A E =--,设平面1A BE 法向量为(,,)n x y z =,则1100A B n A E n ⎧=⎪⎨=⎪⎩∴323022230y z x y z ⎧-=⎪⎨---=⎪⎩∴322z y y x ⎧=⎪⎪⎨⎪=-⎪⎩∴(1,2,3)n =-又∵(1,0,3)M -∴(1,0,3)CM =-∴1342cos 2||||14313222CM n CM n θ+====+++∴CM 与平面1A BE 所成角的大小45数学试卷 第22页(共36页)(Ⅲ)设线段BC 上存在点P ,设P 点坐标为(0,,0)a ,则[0,3]a ∈则1(0,,23)A P a =-,(2,,0)DP a =设平面1A DP 法向量为1111(,,)n x y z =,则111123020ay z x ay ⎧-=⎪⎨+=⎪⎩∴11113612z ay x ay⎧=⎪⎪⎨⎪=-⎪⎩∴1111(,,)(3,6,3)n x y z a a ==-,假设平面1A DP 与平面1A BE 垂直,则10n n =, ∴31230a a ++=,612a =-,2a =- ∵03a ≤≤,∴不存在线段BC 上存在点P ,使平面1A DP 与平面1A BE 垂直.【提示】(Ⅰ)证明1A C ⊥平面BCDE ,因为1A C CD ⊥,只需证明1AC DE ⊥,即证明DE ⊥平面1A CD . (Ⅱ)建立空间直角坐标系,用坐标表示点与向量,求出平面1A BE 法向量(1,2,3)n =-,(1,0,3)CM =-,利用向量的夹角公式,即可求得CM 与平面1A BE 所成角的大小;(Ⅲ)设线段BC 上存在点P ,设P 点坐标为(0,,0)a ,则[0,3]a ∈,求出平面1A DP 法向量为1(3,6,3)n a a =-, 假设平面1A DP 与平面1A BE 垂直,则10n n =,可求得03a ≤≤,从而可得结论.. 【考点】平面图形的折叠问题,立体几何.17.【答案】(Ⅰ)由题意可知,厨余垃圾600吨,投放到“厨余垃圾”箱400吨, 故生活垃圾投放错误的概率为:40026003= (Ⅱ)由题意可知,生活垃圾投放错误有200602020300+++=, 故生活垃圾投放错误的概率:20060403100010++=(Ⅲ)由题意可知:600a b c ++=,,,a b c 的平均数为200,222222211[(200)(200)(200)](120000)33S a b c a b c =-+-+-=++-,因此有当600a =,0b =,0c =时有280000S =.【提示】(Ⅰ)厨余垃圾600吨,投放到“厨余垃圾”箱400吨,故可求厨余垃圾投放正确的概率. (Ⅱ)生活垃圾投放错误有2006040300++=,故可求生活垃圾投放错误的概率.(Ⅲ)计算方差可得22221(120000)3S a b c =++-,因此有当600a =,0b =,0c =时,有280000S =. 【考点】概率,方差18.【答案】(Ⅰ)33a b =⎧⎨=⎩(Ⅱ)12a h ⎛⎫-= ⎪⎝⎭【解析】(Ⅰ)由(1,)c 为公共切点可得:2()1(0)f x ax a =+>,则()2f x ax '=,12k a =,3()g x x bx =+,则2()=3g x x b '+,23k b =+,∴23a b =+①又(1)1f a =+,(1)1g b =+,∴11a b +=+,即a b =,代入①式可得:33a b =⎧⎨=⎩.(Ⅱ)24a b =,∴设3221()()()14h x f x g x x ax a x =+=+++则221()324h x x ax a '=++,令()0h x '=,解得:12a x =-,26ax =-;0a >,∴26a a-<-,∴原函数在2a ⎛⎫-∞- ⎪⎝⎭,单调递增,在26a a ⎛⎫-- ⎪⎝⎭,单调递减,在6a ⎛⎫-+∞ ⎪⎝⎭,上单调递增 ①若12a -≤-,即2a ≤时,最大值为2(1)4a h a =-;②若126aa -<-<-,即26a <<时,最大值为12a h ⎛⎫-= ⎪⎝⎭③若16a -≥-时,即6a ≥时,最大值为12a h ⎛⎫-= ⎪⎝⎭. 综上所述:当(02]a ∈,时,最大值为2(1)4a h a =-; 当(2,)a ∈+∞时,最大值为12a h ⎛⎫-= ⎪⎝⎭.【提示】(Ⅰ)根据曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,可知切点处的函数值相等,切点处的斜率相等,故可求a b ,的值.(Ⅱ)根据24a b =,构建函数3221()()()14h x f x g x x ax a x =+=+++,求导函数,利用导数的正负,可确数学试卷 第28页(共36页)定函数的单调区间,进而分类讨论,确定函数在区间(,1)-∞-上的最大值. 【考点】利用导数求函数单调区间及最值.19.【答案】(Ⅰ)原曲线方程可化简得:2218852x y m m +=--, 由题意可得:8852805802m m mm ⎧>⎪--⎪⎪>⎨-⎪⎪>⎪-⎩,解得:75.2m <<(Ⅱ)证明:由已知直线代入椭圆方程化简得:22(21)16240k x kx +++=,2=32(23)0k ∆->,解得:232k >.由韦达定理得:21621M N k x x k +=-+①,22421M Nx x k =+,② 设(,4)N N N x k x +,(,4)M M M x kx +,(,1)G G x 则MB 方程为:62M Mkx y x x +=-,则3,16M M x G kx ⎛⎫ ⎪+⎝⎭, ∴316M M x AG x k ⎛⎫=- ⎪+⎝⎭,,(),2N N AN x x k =+,欲证A G N ,,三点共线,只需证AG ,AN 共线 即3(2)6MN N M x x k x x k +=-+成立,化简得:(3)6()M N M N k k x x x x +=-+ 将①②代入易知等式成立,则A G N ,,三点共线得证. 【提示】(Ⅰ)原曲线方程,化为标准方程,利用C 是焦点在x 轴点上的椭圆可得不等式组,即可求得m 的取值范围.(Ⅱ)由已知直线代入椭圆方程化简得:22(21)16240k x kx +++=,2=32(23)0k ∆->,解得232k >设(,4)N N N x k x +,(,4)M M M x kx +,(,1)G G x ,则MB 方程为:62M Mkx y x x +=-,则3,16M M x G kx ⎛⎫⎪+⎝⎭, 从而可得316M M x AG x k ⎛⎫=- ⎪+⎝⎭,,(),2N N AN x x k =+,欲证A G N ,,三点共线,只需证AG ,AN 共线,利用韦达定理,可以证明.【考点】椭圆的性质,直线与椭圆的位置关系.11 / 1220.【答案】(Ⅰ)0.7(Ⅱ)1(Ⅲ)212t t ++ 【解析】(Ⅰ)由题意可知1() 1.2r A =,2() 1.2r A =-,1() 1.1c A =,2()0.7c A =,3() 1.8c A =-∴()0.7k A =(Ⅱ)先用反证法证明()1k A ≤:若()1k A >,则1|()||1|11c A a a =+=+>,∴0a >同理可知0b >,∴0a b +>,由题目所有数和为0,即1a b c ++=-,∴11c a b =---<-与题目条件矛盾∴()1k A ≤.易知当0a b ==时,()1k A =存在∴()k A 的最大值为1.(Ⅲ)()k A 的最大值为212t t ++. 首先构造满足21()2t k A t +=+的,{}(1,2,1,2,...,21)i j A a i j t ===+: 1,11,21,1,11,21,211...1,...2t t t t t a a a a a a t +++-========-+,22,12,22,2,12,22,211...,...1(2)t t t t t t a a a a a a t t +++++========-+. 经计算知,A 中每个元素的绝对值都小于1,所有元素之和为0,且1221|()||()|2t r A r A t +==+,2121121|()||()|...|()|11(2)22t t t t t c A c A c A t t t t ++++====+>+>+++,1221121|()||()|...|()|122t t t t t c A c A c A t t +++-+====+=++. 下面证明212t t ++是最大值. 若不然,则存在一个数表(2,21)A S t ∈+,使得21()2t k A x t +=>+. 由()k A 的定义知A 的每一列两个数之和的绝对值都不小于x ,而两个绝对值不超过1的数的和,其绝对值不超过2,故A 的每一列两个数之和的绝对值都在区间[,2]x 中. 由于1x >,故A 的每一列两个数符号均与列和的符号相同,且绝对值均不小于1x -.设A 中有g 列的列和为正,有h 列的列和为负,由对称性不妨设g h <,则1g t h t ≤≥+,. 另外,由对称数学试卷 第34页(共36页)数学试卷 第35页(共36页) 数学试卷 第36页(共36页) 性不妨设A 的第一行行和为正,第二行行和为负.考虑A 的第一行,由前面结论知A 的第一行有不超过t 个正数和不少于1t +个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于1x -(即每个负数均不超过1x -). 因此11|()|()1(1)(1)21(1)[21(2)]r A r A t t x t t x x t t x x =≤++-=+-+=++-+<,故A 的第一行行和的绝对值小于x ,与假设矛盾.因此()k A 的最大值为212t t ++ 【提示】(Ⅰ)由题意可知1() 1.2r A =,2() 1.2r A =-,1() 1.1c A =,2()0.7c A =,3() 1.8c A =-,其中的最小值,即可求出所求.(Ⅱ)先用反证法证明()1k A ≤,然后证明()1k A =存在即可.(Ⅲ)首先构造满足21()2t k A t +=+的,{}(1,2,1,2,...,21)i j A a i j t ===+,然后证明212t t ++是最大值即可. 【考点】合情推理.。
北京市高考数学理科试卷及答案解析
北京市高考数学理科试卷及答案解析2012 北京理科高考试卷及答案分析精校版一、选择题共 8小题。
每题5分.共 40分 .在每题列出的四个选项中,选出吻合胜目要求的一项.1.已知会集 A={x ∈ R | 3x+2>0﹜, B={x ∈ R | (x+1)(x-3)>0﹜则 A ∩B=( ) A .(﹣∞,﹣ 1)B.{ 1,2} C. ﹙2,3 ﹚ D.( 3,+∝)332. 设不等式组0 x 2表示的平面地域为 D ,在地域 D 内随机取一个0 y 2点,则此点到坐标原点的距离大于 2的概率是()A.B.2 4C.D.42643.设a,b R .“0 ”是 ‘复数a bi是纯虚数 ”的()aA.充分而不用要条件B.必需而不充分条件C.充分必需条件D.既不充分也不用要条件4.履行以下列图的程序框图,输出的 S 值为( )A. 2B .4D. 165.如图 . ∠ ACB=90o , CD ⊥ AB 于点 D ,以 BD 为直径的圆与 BC 交于点 E.则( )A. CE · CB=AD · DBB. CE · CB=AD · ABC. AD AB CD 2D.CE EB CD 26.从0, 2中选一个数字 .从中选两个数字,构成无重复数字的三位数.此中奇数的个数为 ( )7.某三梭锥的三视图以下列图,该三梭锥的表面积是( )A.286 5 B.30 65C.56 12 5D. 60 12 5S n8.某棵果树前 n 前的总产量 S 与 n 之间的关系以下列图 . 从目前记录的结果 看,前 m 年的年均匀产量最高。
m 值为()O1 2 3 4 5 6 7 8 9 10 11n152二 .填空题共 6小题。
每题 5分。
共 30分 .x 2 t x3cos9.直线1 ( t 为参数 )与曲线y( 为参数 )的交点个数为yt3sin10.已知 { a n } 等差数列 S n 为其前 n 项和,若 a 11 a 3 ,则 a2 = , S n, S 2211.在△ ABC 中,若 a 2 , b c 7, cos B1,则 b =412.在直角坐标系 xOy 中,直线 l 过抛物线 y 2 4x 的焦点 F ,且与该抛物线订交于A 、B 两点,此中点 A 在 x 轴上方,若直线l 的倾斜角为 60o.则 OAF 的面积为13.己知正方形 ABCD 的边长为 1,点 E 是 AB 边上的动点 .则 DE CB 的值为14. 已知 f ( x) m( x 2m)( x m 3), g( x)2x 2 ,若同时满足条件:① x R ,有 f ( x)0 或g (x) 0;② x (, 4) ,使得 f (x) g( x)则 m 的取值范围是三、解答题公 6小题,共 80分。
2012年理数高考试题答案及解析-北京
2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题。
每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= A (-,-1)B (-1,-) C (-,3)D (3,+) 【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。
因为,利用二次不等式可得或画出数轴易得:.故选D . 【答案】D2.设不等式组,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 (A )(B ) (C ) (D )【解析】题目中表示的区域如图正方形所示,而动点D 可以存在的位置为正方形面积减去四分之一圆的面积部分,因此,故选D 。
【答案】D3.设a ,b ∈R 。
“a=0”是“复数a+bi 是纯虚数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件【解析】当时,如果同时等于零,此时是实数,不是纯虚数,因此不是充分条件;而如果已经为纯虚数,由定义实部为零,虚部不为零可以得到,因此想必要条件,故选B 。
【答案】B4.执行如图所示的程序框图,输出的S 值为( )∞2323∞32}023|{->⇒>+∈=x x R x A 1|{-<=x x B }3>x }3|{>=x x B A I ⎩⎨⎧≤≤≤≤20,20y x 4π22π-6π44π-⎩⎨⎧≤≤≤≤2020y x 4422241222ππ-=⨯⋅-⨯=P 0=a 0=b 0=+bi a bi a +0=aA. 2 B .4 C.8 D. 16【解析】,,,,,循环结束,输出的s 为8,故选C 。
2012年北京高考数学真题及答案(理科)
绝密★使用完毕前2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{A x=∈R|320}x+>,{B x=∈R|(1)(3)0}x x+->,则A B=I(A)(,1)-∞-(B)2(1,)3--(C)2(,3)3-(D)(3,)+∞(2)设不等式组2,2xy⎧⎨⎩≤≤≤≤表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是(A)π4(B)π22-(C)π6(D)4π4-(3)设,a b∈R.“0a=”是“复数ia b+是纯虚数”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(4)执行如图所示的程序框图,输出的S值为(A)2(B)4(C)8(D)16数学(理)(北京卷)第1 页(共11 页)(5)如图,90ACB∠=︒,CD AB⊥于点D,以BD为直径的圆与BC交于点E.则(A)CE CB AD DB⋅=⋅(B)CE CB AD AB⋅=⋅(C)2AD AB CD⋅=(D)2CE EB CD⋅=(6)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为(A)24(B)18(C)12(D)6(7)某三棱锥的三视图如图所示,该三棱锥的表面积是(A)28+(B)30+(C)56+(D)60+(8)某棵果树前n年的总产量nS与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高,m的值为(A)5(B)7(C)9(D)11BA DCE正(主)视图侧(左)视图俯视图42 3 4数学(理)(北京卷)第2 页(共11 页)数学(理)(北京卷) 第 3 页(共 11 页)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2012年北京高考数学试题与标准答案(理科)已校对
个人收集整理仅供参考学习2012 年普通高等学校招生全国统一考试数学 (理) (北京卷 )本试卷共 5 页, 150 分 .考试时长120 分钟 .考生务必将答案答在答题卡上,在试卷上作答无效 .考试结束后,将本试卷和答题卡一并交回.b5E2RGbCAP第一部分(选择题共40 分)一、选择题共8 小题,每小题 5 分,共 40 分.在每小题列出地四个选项中,选出符合题目要求地一项.(1)已知集合A{ x R 3x 20}, B{ x R (x 1)( x 3) 0},则AIB(A)(,1)(B)(1,2)(C)(2,3)(D)(3,)33(2)设不等式组0x2,D .在区域 D 内随机取一个点,则此点到坐0y表示地平面区域为2标原点地距离大于 2 地概率是( A)( B )2( C)4 2(D )464(3)设a,b R .“a0 ”是“复数 a bi 是纯虚数”地( A)充分而不必要条件( B)必要而不充分条件( C)充分必要条件( D)既不充分也不必要条件(4)执行如图所示地程序框图,输出地S 值为开始(A)2k= 0, S=1(B)4k=k+ 1(C)8(D)16S=S?2kk<3是否输出 S结束(5)如图,ACB 90 , CD AB 于点D,以 BD 为直径地圆与交BC于点E.则个人收集整理仅供参考学习(A)CE CB AD DB(B)CE CB AD AB(C)AD AB CD 2(D)CE EB CD 2( 6)从0, 2中选一个数字,从1,3, 5 中选两个数字,组成无重复数字地三位数,其中奇数地个数为( A)24(B)18(C)12(D)6(7)某三棱锥地三视图如图所示,该三棱锥地表面积是4(A)2865234(B)3065正(主)视图侧(左)视图(C)56 12 5(D)6012 5俯视图(8)某棵果树前n年地总产量S n与n之间地关系S n如图所示.从目前记录地结果看,前m 年地年平均产量最高,m 地值为(A)5(B)7第二部分(非选择题共110 分)(C)9(D)11O 1 2 3 4 5 6 7 8 9 10 11 n 二、填空题共6小题,每小题 5分,共 30 分.个人收集整理仅供参考学习x 2 t 为参数 ) 与曲线x 3cos 为参数 ) 地交点个数为.(9)直线1 (t y 3sin (yt(10)已知 { a } 为等差数列, S为其前项和.若 a 1 a ,则 a.n , S21 2(11)在 ABC 中,若 a2 , b c7 , cos B,则 b .4(12)在直角坐标系xoy 中,直线 l 过抛物线 y 24x 地焦点 F ,且与该抛物线相交于A 、 B两点,其中, A 点在 x 轴上方.若直线 l 地倾斜角为 60 ,则 OAF 地面积为.ABCD 地边长为 1,点 E 是 AB 边上地动点,则 uuur uur(13)已知正方形 DE CB 地值为.(14)已知 f ( x)m( x2m)( x m 3) ,xg x) 22 .若同时满足条件:(① x R , f ( x) 0 或 g( x) 0 ;② x (, 4) , f ( x) g( x) 0 .则 m 地取值范围是.三、解答题共 6 小题 ,共 80 分 . 解答应写出文字说明 ,演算步骤或证明过程 .(15)(本小题共 13 分)已知函数 f ( x)(sin x cos x)sin 2x.sin x(Ⅰ)求 f ( x) 地定义域及最小正周期;(Ⅱ)求 f ( x) 地单调递增区间.(16)(本小题共 14 分)如图 1,在 Rt ABC 中,C 90 , BC 3, AC 6 ,D 、E 分别为 AC 、 AB 上地点,且 DE //BC ,DE 2 ,将 ADE沿 DE 折起到 A DE 地位置,使 AC CD ,如图2.11(Ⅰ)求证:AC1平面BCDE;(Ⅱ)若 M 是 A1D 地中点,求 CM 与平面A1BE所成角地大小;(Ⅲ)线段 BC 上是否存在点P,使平面A1DP 与平面 A1BE 垂直?说明理由.(17)(本小题共 13 分)近年来,某市为了促进生活垃圾地分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应地垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000 吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060(Ⅰ)试估计厨余垃圾投放正确地概率;(Ⅱ)试估计生活垃圾投放错误地概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱地投放量分别为a, b, c,其中 a0 , a b c 600a, b, c地方差s2 最大时,写出a, b, c .当数据地值(结论不要求证明),并求此时 s2地值.(注: s21[( x1 x)2(x2x) 2( x n x ) 2 ] ,其中 x 为数据 x1, x2 ,, x n地平均数)n(18)(本小题共 13 分)已知函数 f ( x) ax21( a0) , g( x) x3bx .(Ⅰ)若曲线 yf ( x) 与曲线 y g( x) 在它们地交点 (1, c) 处具有公共切线,求 a, b 地值;(Ⅱ)当 a 24b 时,求函数 f ( x) g( x) 地单调区间,并求其在区间--1 上地最大值.(19)(本小题共 14 分)已知曲线 C : (5m) x 2 (m 2) y 2 8 ( m R ) .(Ⅰ)若曲线 C 是焦点在 x 轴点上地椭圆,求m 地取值范围;(Ⅱ) 设 m 4 ,曲线 C 与 y 轴地交点为A 、B (点 A 位于点 B 地上方),直线 ykx 4与曲线 C 交于不同地两点M 、 N ,直线 y 1与直线 BM 交于点 G .求证: A, G, N 三点共线.(20)(本小题共 13 分)设 A是由 m n 个实数组成地 m 行 n 列地数表,满足:每个数地绝对值不大于1,且所有数地和为零.记 S( m, n) 为所有这样地数表构成地集合. p1EanqFDPw对于 A S(m, n) ,记 r i ( A) 为 A 地第 i 行各数之和 (1≤ i ≤ m) , c j ( A) 为 A 地第 j 列各数之和 (1 ≤ j ≤ n) .记 k (A) 为| r1( A) |,| r2( A) |,,| r m( A) |,| c1( A) |,| c2( A) |,,| c n( A) |中地最小值.(Ⅰ)对如下数表 A ,求k( A)地值;110.80.10.31(Ⅱ)设数表A S(2, 3) 形如11Ca b1求 k ( A) 地最大值;(Ⅲ)给定正整数t ,对于所有地 A S(2, 2t1) ,求 k ( A) 地最大值.2012高考北京数学真题答案及简析一、选择题题号12345678答案D D B C A B B C二、填空题题号91011121314答案21; n2n431; 1 4 , 24三、解答题15.解:(sin x cos x)sin 2x(sin x cos x)2sin xcos x2(sin x cos x)cos xf ( x)sin x sin xsin 2x1cos2 x 2 sin 2 x π1, x | x kπ,k Z 4(1)原函数地定义域为x | x kπ,k Z ,最小正周期为.π(2)原函数地单调递增区间为π,k Z,3πkπk Z,8816.解:(1)CD DE , A1E DEDE平面 A1CD ,又 A1C平面 ACD1,A1 C DE又 A1C CD,A1 C 平面 BCDE( 2 )如图建系 C xyz ,则 D 2 ,0 ,0 ,A 0,0,2 3 ,B 0,3,0 , E2,2,0zA1(0,0,2 3)∴ A1B 0,3, 2 3 , A1E2, 1,0设平面 A1 BE 法向量为n x ,y ,z则A1B n0∴3y 2 3z 0z 3 y∴2A1E n 02 x y0x y2ME (-2,2,0)D (-2,0,0)C (0,0,0)yxB (0,3,0)∴n1,2, 3又∵M 1,0, 3 ∴CM1,0, 3∴ cosCM n1342 |CM | | n |143 13 2222∴ CM 与平面A1BE所成角地大小45(3)设线段 BC 上存在点P,设P点坐标为0 ,a ,0,则 a0 ,3则 A1P0,a , 2 3 ,DP 2 ,a ,0设平面 A1 DP 法向量为n1x1,y1,z1ay1 2 3z1 0z13ay1则∴62 x1ay1 0x11ay1 2∴ n13a ,6 , 3a假设平面1与平面1垂直A DP A BE则 n 1 n 0 ,∴ 3a 12 3a 0 , 6 a 12 , a 2 ∵ 0 a 3∴不存在线段 BC 上存在点 P ,使平面 A 1 DP 与平面 A 1BE 垂直17.( )由题意可知: 4002= 3600( )由题意可知:200+60+4031000=10( )由题意可知: s 21 (a2 b 2 c 2 120000) ,因此有当 a 600, b 0 , c0 时,有s2380000 .18.解:( )由 1,c为公共切点可得:f ( x) ax 2 1(a 0) ,则 f ( x)2ax , k 12a ,g( x) x 3bx ,则 f ( x)=3 x 2 b , k 23 b ,2a 3 b又 f (1) a 1 , g(1) 1 b ,a 1 1b ,即 ab ,代入①式可得:a 3 .b 3(2) a24b , 设 h( x) f ( x) g( x) x 3ax21a 2 x 114a, x 2a ;则 h ( x) 3x 22axa 2,令 h ( x)0 ,解得: x 14 26a 0 ,a a ,26原函数在,a单调递增, 在a , a 单调递减, 在a , 上单调递增22 6 6①若 1≤ a ,即 a ≤2 时,最大值为 h(1) a 2a ;2 4②若 a 1 a ,即2 a 6 时,最大值为 ha 122 6③若 a a .1 时,即 a ≥6 时,最大值为 h 126综上所述:当 a0 ,2 时,最大值为h(1)aa 2 ;当 a 2 ,时,最大值为 ha4 1 .219.( 1)原曲线方程可化简得:x2y 218 85 m m 2885 m m 2 由题意可得:8 0 ,解得:7m 55 m28m2(2)由已知直线代入椭圆方程化简得:(2k 21)x 2 16kx24 0 ,=32(2 k 23) ,解得: k 232由韦达定理得: x Mx N16k ①, x M x N 24 ,②12k 22k 2 1设 N( x N , k x N 4) , M (x M , kx M 4) , G( x G ,1)MB 方程为: ykx M 63x M ,1 ,x2,则 G6x Mkx MAG3x M ,1,ANx N ,x N k 2 ,x M k6欲证 A ,G ,N 三点共线,只需证 AG , AN 共线即 3x M( x N k 2) x N 成立,化简得: (3k k) x M x N6( x M x N )x M k 6将①②代入易知等式成立,则A ,G ,N 三点共线得证 .20. 解:(1)由题意可知 r 1 A1.2 , r 2 A 1.2 , c 1 A 1.1, c 2 A 0.7 , c 3 A1.8∴ k A 0.7( 2)先用反证法证明 k A ≤1:若 k A 1 则 | c 1 A | | a1| a 1 1 ,∴ a同理可知 b 0 ,∴ a b 0 由题目所有数和为 0即 a b c 1 ∴ c 1 a b 1与题目条件矛盾 ∴ k A ≤1.易知当 ab0 时, k A 1 存在∴ k A 地最大值为 1(3) k A 地最大值为2t1 .t2首先构造满足 k( A)2t 1地 A { a i , j }( i 1,2, j 1,2,..., 2t 1) :t 2a1,1a1,2...a1,t1,a1,t 1a1,t2...a1,2 t 1t 1 ,t 2aa... at 2t 1, a2,t 1a... a1 .2,12,22,t t (t 2) 2,t 22,2 t 1经计算知, A 中每个元素地绝对值都小于1,所有元素之和为0,且| r 1 ( A) | | r 2 ( A) |2t 1,t 2| c 1( A) | | c 2 ( A) | ... |c t ( A) | 1 t 2 t 1 1t 12t 1 ,t (t 2) t 2t 2| c t 1 ( A) | | c t 2(A)| ... | c 2 t 1 (A)| 1t 1 2t1t2. 下 面 证 明2t1是最大值.t 2若不然,则存在一个数表 AS(2, 2t 1) , 使 得t 2 2t 1 .k ( A) x2t由 k (A) 地定义知 A 地每一列两个数之和地绝对值都不小于x ,而两个绝对值不超过 1地数地和,其绝对值不超过,故 A 地每一列两个数之和地绝对值都在区间 [ x,2] 中.由于2x 1 ,故 A 地每一列两个数符号均与列和地符号相同,且绝对值均不小于x 1.DXDiTa9E3d设 A 中 有 g 列 地 列 和 为 正 , 有 h 列 地 列 和 为 负 , 由 对 称 性 不 妨 设 g h , 则g t, h t 1. 另外,由对称性不妨设 A 地第一行行和为正,第二行行和为负.RTCrpUDGiT考虑 A 地第一行, 由前面结论知 A 地第一行有不超过 t 个正数和不少于 t1个负数,每个正数地绝对值不超过 1(即每个正数均不超过 1),每个负数地绝对值不小于x 1 (即每个负数均不超过 1x ) . 因此 5PCzVD7HxA| r 1 ( A) | r 1( A) t 1 (t 1)(1x) 2t1 (t 1)x x 2t 1 (t 2) x x ,故 A 地第一行行和地绝对值小于x ,与假设矛盾 . 因此 k A 地最大值为2t 1.t2版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This articleincludes some parts, including text, pictures,and design. Copyright is personal ownership.jLBHrnAILg用户可将本文地内容或服务用于个人学习、 研究或欣赏,以及其个人收集整理仅供参考学习他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利. 除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬 . xHAQX74J0XUsers may use the contents or services of this articlefor personal study, research or appreciation, and other non-commercial or non-profit purposes, but at the same time,they shall abide by the provisions of copyright law and otherrelevant laws, and shall not infringe upon the legitimaterights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevantobligee.LDAYtRyKfE转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任. Zzz6ZB2LtkReproduction or quotation of the content of this articlemust be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content个人收集整理仅供参考学习of this article, and shall bear legal liability such as copyright.dvzfvkwMI1。
2012北京高考理科试题和详细解析版(word版)
2012年普通高等学校招生全国统一考试 数学 (理)(北京卷)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B = ( )A .(,1)-∞-B .2(1,)3-- C .2(,3)3-D .(3,)+∞ 2.设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A .4π B .22π- C .6πD .44π- 3.设,a b R ∈, “0a =”是“复数a bi +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件4. 执行如图所示的程序框图,输出的S 值为( ) A . 2 B . 4 C . 8 D . 165.如图,∠ACB=90°,CD ⊥AB 于点D,以BD 为直径的圆与BC 交于点E ,则() A .CE ·CB=AD ·DB B .CE ·CB=AD ·AB C .AD ·AB= 2CD D .CE ·EB= 2CD6.从0,2 中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数, 其中奇数的个数为( )A . 24B . 18C . 12D . 67. 某三棱锥的三视图如图所示,该三棱锥的表面积是( ) A.28+ B.30+ C.56+.60+8. 某棵果树前n 年得总产量n S 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为( )A .5B . 7C . 9D .11(第4题图)B第二部分(非选择题 共110分) 二、填空题:本大题共6小题,每小题5分,共30分. 9. 直线2,1x t y t =+⎧⎨=--⎩(t 为参数)与曲线3cos 3sin x y =α⎧⎨=α⎩(α为参数)的交点个数为 .10.已知{}n a 为等差数列,n S 为其前n 项和.若112a =,23S a =,则2a = . 11.在△ABC 中,若2a =,7bc +=,1cos 4B =-,则b = . 12.在直角坐标系xoy 中,直线l 过抛物线24y x =的焦点F,且与该抛物线相较于A 、B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为 .13.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为 ;DE DC ⋅的最大值为 .14.已知()(2)(3)f x m x m x m =-++,()22xg x =-.若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4)x ∃∈-∞- ,()()0f x g x <. 则m 的取值范围是 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题13分) 已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递增区间.16. (本小题14分)如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D,E 分别是AC ,AB 上的点, 且DE ∥BC ,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2. (1)求证:A 1C ⊥平面BCDE;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P,使平面A 1DP 与平面A 1BE 垂直?说明理由.17.(本小题13分)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,,a b c ,其中0a >,600a b c ++=.当数据,,a b c 的方差2S 最大时,写出,,a b c 的值(结论不要求证明),并求此时2S 的值. (注:方差2222121[()()()]n s x x x x x x n=-+-++-,其中x 为12,,n x x x 的平均数)18.(本小题13分)已知函数2()1f x ax =+(0a >),3()g x x bx =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,c )处具有公共切线,求,a b 的值; (2)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(,1]-∞-上的最大值.19.(本小题14分)已知曲线C: 22(5)(2)8()m x m y m R -+-=∈ (1)若曲线C 是焦点在x 轴的椭圆,求m 的范围;(2)设4m =,曲线C 与y 轴的交点为A,B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M,N,直线1y =与直线BM 交于点G 求证:A,G,N 三点共线.20.(本小题13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记(,)S m n 为所有这样的数表构成的集合.对于(,)A S m n ∈,记()i r A 为A 的第i 行各数之和1i m ≤≤,()j c A 为A 的第j 列各数之和1j n ≤≤;记()k A 为1|()|r A ,2|()|r A ,…,|()|m r A ,1|()|c A ,2|()|c A ,…,|()|n c A 中的最小值. (1)对如下数表A,求()k A 的值;(2)设数表A=(2,3)S 形如求()k A 的最大值;(3)给定正整数t ,对于所有的A ∈S(2,21t +),求()k A 的最大值。
2012年普通高考北京卷理科综合化学试题与解析
2012年普通高等学校招生全国统一考试理科综合能力测试(北京卷)化学试题第Ⅰ卷(选择题共120分)本卷共20小题,每小题6分,共120分。
在每小题列出的四个选项中,选出最符合题目要求的一项。
相对原子质量(原子量):H 1 C 12O 16Na 23Cl 35.5Br 80⒍下列用品的有效成分及用途对应错误的是()A B C D用品有效成分NaCl Na2CO3Al(OH)3Ca(ClO)2用途做调味品做发酵粉做抗酸药做消毒剂A.切开的金属Na暴露在空气中,光亮表面逐渐变暗2Na+O2=Na2O2B.向AgCl悬浊液中滴加Na2S溶液,白色沉淀变成黑色2AgCl+S2-=Ag2S↓+2Cl-C.Na2O2在潮湿的空气中放置一段时间,变成白色黏稠物2Na2O2+2CO2=2Na2CO3+O2D.向NaHCO3溶液中加入过量的澄清石灰水,出现白色沉淀2HCO3-+Ca2++2OH-=CaCO3↓+ CO32-+2H2O ⒏下列实验中,所选装置不合理...的是()A.分离NaCO3溶液和CH3COOC2H5,选④B.用CCl4提取碘水中的碘,选③C.用FeCl2,溶液吸收Cl2,选⑤D.粗盐提纯,选①和②⒐已知33As、35Br位于同一周期。
下列关系正确的是()A.原子半径:As>Cl>P B.热稳定性:HCl>AsH3>HBrC.还原性:As3->S2->Cl-D.酸性:H3AsO4>H2SO4>H3PO4⒑用下图所示装置进行下列实验,实验结果与预测的现象不一致的是()①中的物质②中的物质预测①的现象A 淀粉KI溶液浓硝酸无明显变化B 酚酞溶液浓盐酸无明显变化C AlCl3溶液浓氨水有白色沉淀D 湿润红纸条饱和氯水红纸条褪色A.天然植物油常温下一般呈液态,难溶于水,有恒定的熔点、沸点B.麦芽糖与蔗糖的水解产物均含葡萄糖,故二者均为还原型二糖C.若两种二肽互为同分异构体,则二者的水解产物不一致D.乙醛、氯乙烯和乙二醇均可作为合成聚合物的单体⒓人工光合作用能够借助太阳能,用CO2和H2O制备化学原料。
2012年北京市高考数学试卷(理科)(含解析版)
17.(13 分)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其 他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了
该市三类垃圾箱总计 1000 吨生活垃圾,数据统计如下(单位:吨);
“厨余垃圾”箱
“可回收物”箱
“其他垃圾”箱
厨余垃圾
400
CE•EB=CD2
6.(5 分)从 0、2 中选一个数字.从 1、3、5 中选两个数字,组成无重复数字的三位数.其中奇
数的个数为( )
A.24
B.18
C.12
D.6
7.(5 分)某三棱锥的三视图如图所示,该三棱锥的表面积是( )
第 1页(共 14页)
则 m 的取值范围是
.
三、解答题公 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程.
15.(13 分)已知函数 f(x)=
.
(1)求 f(x)的定义域及最小正周期; (2)求 f(x)的单调递增区间.
A.28+6
B.30+6
C.56+12
D.60+12
8.(5 分)某棵果树前 n 年的总产量 Sn 与 n 之间的关系如图所示.从目前记录的结果看,前 m 年
的年平均产量最高,则 m 的值为( )
(1)求证:A1C⊥平面 BCDE; (2)若 M 是 A1D 的中点,求 CM 与平面 A1BE 所成角的大小; (3)线段 BC 上是否存在点 P,使平面 A1DP 与平面 A1BE 垂直?说明理由.
第 2页(共 14页)
18.(13 分)已知函数 f(x)=ax2+1(a>0),g(x)=x3+bx (1)若曲线 y=f(x)与曲线 y=g(x)在它们的交点(1,c)处具有公共切线,求 a、b 的值; (2)当 a2=4b 时,求函数 f(x)+g(x)的单调区间,并求其在区间(﹣∞,﹣1)上的最大值.
2012高考北京理科数学试题及答案(高清版)
2012年普通高等学校夏季招生全国统一考试数学理工农医类(北京卷)本试卷共150分.考试时长120分钟.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x-3)>0},则A∩B=()A.(-∞,-1) B.{-1,2 3 -}C.(23-,3) D.(3,+∞)2.在复平面内,复数10i3i+对应的点的坐标为()A.(1,3) B.(3,1)C.(-1,3) D.(3,-1)3.设a,b∈R,“a=0”是“复数a+b i是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S值为()A.2 B.4 C.8 D.165.如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于点E,则()A.CE·CB=AD·DBB.CE·CB=AD·ABC.AD·AB=CD2D.CE·EB=CD26.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24 B.18 C.12 D.67.某三棱锥的三视图如图所示,该三棱锥的表面积是()A .28+B .30+C .56+D .60+8.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为( )A .5B .7C .9D .11第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.直线2,1x t y t =+⎧⎨=--⎩(t 为参数)与曲线3cos 3sin x y αα=⎧⎨=⎩(α为参数)的交点个数为________.10.已知{a n }为等差数列,S n 为其前n 项和.若112a =,S 2=a 3,则a 2=________,S n=________.11.在△ABC 中,若a =2,b +c =7,1cos 4B =-,则b =________. 12.在直角坐标系xOy 中,直线l 过抛物线 y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60°,则△OAF 的面积为________.13.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为________,DE DC ⋅的最大值为________.14.已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2.若同时满足条件:①x ∈R ,f (x )<0或g (x )<0; ②x ∈(-∞,-4),f (x )g (x )<0. 则m 的取值范围是________.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.已知函数(sin cos )sin2()sin x x xf x x-=.(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递增区间.16.如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6.D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.图1图2(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.17.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600,当数据a,b,c的方差s2最大时,写出a,b,c 的值(结论不要求证明),并求此时s2的值.(求:s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],其中x为数据x1,x2,…,x n的平均数)18.已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1]上的最大值.19.已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.20.设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记S(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记r i(A)为A的第i行各数之和(1≤i≤m),c j(A)为A的第j列各数之和(1≤j≤n);记k(A)为|r1(A)|,|r2(A)|,…,|r m(A)|,|c1(A)|,|c2(A)|,…,|c n(A)|中的最小值.(1)对如下数表A,求k(A)(2)设数表A ∈S (2,3)形如求k (A )的最大值;(3)给定正整数t ,对于所有的A ∈S (2,2t +1),求k (A )的最大值.1.D 由题意得,A ={x |x >23-},B ={x |x <-1或x >3},所以A ∩B =(3,+∞). 2.D 由题意知此概型为几何概型,设所求事件为A ,如图所示,边长为2的正方形区域为总度量μΩ,满足事件A 的是阴影部分区域μA ,故由几何概型的概率公式得:()22212π24π424P A -⨯⨯-==.3. B 由已知得,“a +b i 是纯虚数”“a =0”,但“a =0”“复数a +b i 是纯虚数”,因此“a =0”是“复数a +b i 是纯虚数”的必要而不充分条件.4.C 初始:k =0,S =1,第一次循环:由0<3,得S =1×20=1,k =1; 第二次循环:由1<3,得S =1×21=2,k =2; 第三次循环:由2<3,得S =2×22=8,k =3. 经判断此时要跳出循环,因此输出的S 值为8. 5. A 由切割线定理得,CD 2=CE ·CB , 又在Rt △CAB 中,△ACD ∽△CBD , ∴CD 2=AD ·DB ,∴CE ·CB =AD ·DB .6. B 先分成两类:(一)从0,2中选数字2,从1,3,5中任选两个所组成的无重复数字的三位数中奇数的个数为23C 412⨯=; (二)从0,2中选数字0,从1,3,5中任选两个所组成的无重复数字的三位数中奇数的个数为23C 26⨯=.故满足条件的奇数的总个数为12+6=18.7.B 根据三棱锥的三视图可还原此几何体的直观图为此几何体为一个底面为直角三角形,高为4的三棱锥,因此表面积为S =12×(2+3)×4+12×4×5+12×4×(2+3)+1302⨯=+ 8.C 结合S n 与n 的关系图象可知,前2年的产量均为0,显然202S =为最小,在第3年~第9年期间,S n 的增长呈现持续稳定性,但在第9年之后,S n 的增速骤然降低.因为当n =9时,99S 的值为最大,故m 值为9. 9.答案:2解析:由题意知直线与曲线的参数方程可分别化为x +y -1=0,x 2+y 2=9,进而求出圆心(0,0)到直线x +y -1=0的距离32d ==<,∴交点个数为2. 10.答案:121()4n n + 解析:由112a =,S 2=a 3得,a 1+a 2=a 3,即a 3-a 2=12,∴{a n }是一个以112a =为首项,以12为公差的等差数列.∴111(1)222n a n n ⨯=+-=.∴a 2=1,221111()()2444n n n S a a n n n n =+=+=+.11.答案:4解析:由余弦定理得,222224(7)1cos 222(7)4a cb b b B ac b +-+--===-⨯⨯-,解得b =4. 12.解析:由已知得抛物线的焦点坐标为(1,0),直线l 的方程为y =tan 60°(x -1),即y =-联立得2 4. y y x ⎧=-⎪⎨=⎪⎩①②由①得1x y =+,③ 将③代入②并整理得240y y --=,解得1y =2y =又点A 在x 轴上方, ∴A(3,.∴111||||122OAF S OF y ∆=⋅⋅=⨯⨯= 13.答案:1 1解析:DE ·CB =(DA +AE )·CB =(CB +AE )·CB =|CB |2+AE ·CB . 因为AE ⊥CB ,所以AE ·CB =0. 所以DE ·CB =12+0=1. DE ·DC =(DA +AE )·DC =DA ·DC +AE ·DC =λ|DC |2(0≤λ≤1), ∴DE ·DC 的最大值为1. 14.答案:(-4,-2)解析:(一)由题意可知,m ≥0时不能保证对x ∈R ,f (x )<0或g (x )<0成立. (1)当m =-1时,f (x )=-(x +2)2,g (x )=2x -2,此时显然满足条件①; (2)当-1<m <0时,2m >-(m +3),要使其满足条件①, 则需10,21,m m -<<⎧⎨<⎩解得-1<m <0;(3)当m <-1时,-(m +3)>2m ,要使其满足条件①, 则需1,(3)1,m m <-⎧⎨-+<⎩解得-4<m <-1.因此满足条件①的m 的取值范围为(-4,0).(二)在满足条件①的前提下,再探讨满足条件②的m 的取值范围. (1)当m =-1时,在(-∞,-4)上,f (x )与g (x )均小于0,不合题意; (2)当m <-1时,则需2m <-4,即m <-2,所以-4<m <-2; (3)当-1<m <0时,则需-(m +3)<-4,即m >1,此时无解. 综上所述满足①②两个条件的m 的取值范围为(-4,-2). 15.解:(1)由sin x ≠0得x ≠k π(k ∈Z ), 故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }. 因为(sin cos )sin2()sin x x xf x x-==2cos x (sin x -cos x ) =sin2x -cos2x -1π)14x --, 所以f (x )的最小正周期2ππ2T ==. (2)函数y =sin x 的单调递增区间为[2k π-π2,2k π+π2](k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ),得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ).所以f (x )的单调递增区间为[k π-π8,k π)和(k π,k π+3π8](k ∈Z ). 16.解:(1)因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC .所以DE ⊥A 1D ,DE ⊥CD . 所以DE ⊥平面A 1DC . 所以DE ⊥A 1C .又因为A 1C ⊥CD ,所以A 1C ⊥平面BCDE .(2)如图,以C 为坐标原点,建立空间直角坐标系C -xyz ,则A 1(0,0,,D (0,2,0),M (0,1,B (3,0,0),E (2,2,0). 设平面A 1BE 的法向量为n =(x ,y ,z ), 则n ·1A B =0,n ·BE =0.又1A B =(3,0,-),BE =(-1,2,0),所以30,20.x x y ⎧-=⎪⎨-+=⎪⎩令y =1,则x =2,z =所以n =(2,1).设CM 与平面A 1BE 所成的角为θ.因为CM =(0,1),所以sin cos ,28CM CMCMθ⋅====n n n , 所以CM 与平面A 1BE 所成角的大小为π4. (3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直. 理由如下:假设这样的点P 存在,设其坐标为(p ,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ,y ,z ),则m ·1A D =0,m ·DP =0.又1A D =(0,2,-,DP =(p ,-2,0),所以20,20.y px y ⎧-=⎪⎨-=⎪⎩令x =2,则y =p ,z =.所以m =(2,p. 平面A 1DP ⊥平面A 1BE ,当且仅当m·n =0, 即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.所以线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直. 17.解:(1)厨余垃圾投放正确的概率约为4002=4001001003=++“厨余垃圾”箱里厨余垃圾量厨余垃圾总量.(2)设生活垃圾投放错误为事件A ,则事件A 表示生活垃圾投放正确.事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )约为400240600.71000++=,所以P (A )约为1-0.7=0.3.(3)当a =600,b =c =0时,s 2取得最大值.因为x =13(a +b +c )=200, 所以s 2=13×[(600-200)2+(0-200)2+(0-200)2]=80 000.18.解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b .因为曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线, 所以f (1)=g (1),且f ′(1)=g ′(1). 即a +1=1+b ,且2a =3+b . 解得a =3,b =3. (2)记h (x )=f (x )+g (x ),当b =14a 2时,h (x )=x 3+ax 2+14a 2x +1, h ′(x )=3x 2+2ax +14a 2.令h ′(x )=0,得12a x =-,26ax =-.a >0时,h (x )与h ′(x )的情况如下:所以函数h (x )的单调递增区间为(-∞,2-)和(6-,+∞);单调递减区间为(2a -,6a -). 当2a-≥-1,即0<a ≤2时, 函数h (x )在区间(-∞,-1]上单调递增,h (x )在区间(-∞,-1]上的最大值为h (-1)=a -14a 2. 当2a -<-1,且6a-≥-1,即2<a ≤6时,函数h (x )在区间(-∞,2a -)内单调递增,在区间(2a-,-1]上单调递减,h (x )在区间(-∞,-1]上的最大值为()12ah -=.当6a-<-1,即a >6时,函数h (x )在区间(-∞,2a -)内单调递增,在区间(2a -,6a -)内单调递减,在区间(6a-,-1]上单调递增,又因为h (2a -)-h (-1)=1-a +14a 2=14(a -2)2>0, 所以h (x )在区间(-∞,-1]上的最大值为()12ah -=.19.解:(1)曲线C 是焦点在x 轴上的椭圆,当且仅当50208852m m m m ⎧⎪->⎪->⎨⎪⎪>--⎩,,,解得72<m <5,所以m 的取值范围是(72,5).(2)当m =4时,曲线C 的方程为x 2+2y 2=8,点A ,B 的坐标分别为(0,2),(0,-2). 由22428y kx x y =+⎧⎨+=⎩,,得(1+2k 2)x 2+16kx +24=0. 因为直线与曲线C 交于不同的两点, 所以∆=(16k )2-4(1+2k 2)×24>0,即232k >. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2), 则y 1=kx 1+4,y 2=kx 2+4,x 1+x 2=21612k k -+,x 1x 2=22412k+. 直线BM 的方程为1122y y x x ++=,点G 的坐标为(1132x y +,1).因为直线AN 和直线AG 的斜率分别为222AN y k x -=,1123AG y k x +=-, 所以k AN -k AG =21212121222633y y kx kx x x x x -++++=+ =2121221622()4412=0243312kx x k k k x x k -⨯⨯+++=++, 即k AN =k AG .故A ,G ,N 三点共线.20.解:(1)因为r 1(A )=1.2,r 2(A )=-1.2,c 1(A )=1.1,c 2(A )=0.7,c 3(A )=-1.8, 所以k (A )=0.7.(2)不妨设a ≤b .由题意得c =-1-a -b . 又因为c ≥-1,所以a +b ≤0.于是a ≤0. r 1(A )=2+c ≥1,r 2(A )=-r 1(A )≤-1,c 1(A )=1+a ,c 2(A )=1+b ,c 3(A )=-(1+a )-(1+b )≤-(1+a ). 所以k (A )=1+a ≤1.当a =b =0且c =-1时,k (A )取得最大值1. (3)对于给定的正整数t ,任给数表A ∈S (2,2t +1)如下:任意改变A 的行次序或列次序,或把A 中的每个数换成它的相反数,所得数表A *∈S (2,2t +1),并且k (A )=k (A *).因此,不妨设r 1(A )≥0,且c j (A )≥0(j =1,2,…,t +1). 由k (A )的定义知,k (A )≤r 1(A ),k (A )≤c j (A )(j =1,2,…,t +1). 又因为c 1(A )+c 2(A )+…+c 2t +1(A )=0,所以(t +2)k (A )≤r 1(A )+c 1(A )+c 2(A )+…+c t +1(A ) =r 1(A )-c t +2(A )-…-c 2t +1(A )=12112t t j jj j t a b++==+-∑∑≤(t +1)-t ×(-1)=2t +1. 所以21()2t k A t +≤+. 对数表A 0:则A 0∈S (2,2t +1),且0()2k A t =+.。
2012年高考理科数学北京卷(含详细答案)
数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2012年普通高等学校招生全国统一考试(北京卷)数学(理科)本试卷共6页,150分.考试时长120分钟.考试生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{320}A x x =∈+>R |,{|(1)(3)0}B x x x =∈+->R ,则A B =( )A . (,1)-∞-B . 2(1,)3-- C . 2(,3)3-D . (3,)+∞2. 设不等式组02,02x y ⎧⎨⎩≤≤≤≤表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A .π4B .π22-C . π6D . 4π4-3. 设,a b ∈R .“0a =”是“复数i a b +是纯虚数”的 ( ) A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件D . 既不充分也不必要条件4. 执行如图所示的程序框图,输出的S 值为 ( )A . 2B . 4C . 8D . 165. 如图,90ACB ∠=,CD AB ⊥于点D ,以BD 为直径的圆与BC 交于点E ,则( )A . CE CB AD DB = B . CE CB AD AB =C . 2 AD AB CD =D . 2 CE EB CD =6. 从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A . 24B . 18C . 12D . 67. 某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+ B .30+C .56+D .60+8. 某棵果树前n 年的总产量n S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,m 值为( )A . 5B . 7C . 9D . 11第Ⅱ卷(选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡相应位置上.9. 直线2,1x t y t =+⎧⎨=--⎩(t 为参数)与曲线3cos ,3sin x y αα=⎧⎨=⎩(α为参数)的交点个数为________.10. 已知{}n a 为等差数列,n S 为其前n 项和.若112a =,23S a =,则2a =________; n S =________.11. 在ABC △中,若2a =,7b c +=,1cos 4B =-,则b =________.12. 在直角坐标系xOy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60,则OAF △的面积为________.13. 已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则 DE CB 的值为________;DE DC 的最大值为________.14. 已知()(2)(3)f x m x m x m =-++,()22x g x =-.若同时满足条件:①x ∀∈R ,()0f x <或()0g x <;②(,4)x ∃∈-∞-,()()0f x g x <. 则m 的取值范围是________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(本小题共13分) 已知函数(sin cos )sin 2()sin x x xf x x-=.(Ⅰ)求()f x 的定义域及最小正周期; (Ⅱ)求()f x 的单调递增区间.E BDAC34正(主)视图侧(左)视图俯视图姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------数学试卷 第4页(共21页)数学试卷 第5页(共21页) 数学试卷 第6页(共21页)16.(本小题共14分)如图1,在Rt ABC △中,90C ∠=,3BC =,6AC =.D ,E 分别是AC ,AB 上的点,且DE BC ∥,2DE =,将ADE △沿DE 折起到1A DE △的位置,使1AC CD ⊥,如图2.(Ⅰ)求证:1A C ⊥平面BCDE ;(Ⅱ)若M 是1A D 的中点,求CM 与平面1A BE 所成角的大小;(Ⅲ)线段BC 上是否存在点P ,使平面1A DP 与平面1A BE 垂直?请说明理由.17.(本小题共13分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机(Ⅰ)试估计厨余垃圾投放正确的概率; (Ⅱ)试估计生活垃圾投放错误的概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a ,b ,c ,其中0a >,600a b c ++=.当数据a ,b ,c 的方差2s 最大时,写出a ,b ,c 的值 (结论不要求证明),并求此时2s 的值.(求:2222121[()()()]n s x x x x x x n=-+-++-,其中x 为数据1x ,2x ,,n x 的平均数)18.(本小题共13分)已知函数2()1(0)f x ax a =+>,3()g x x bx =+.(Ⅰ)若曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,求a ,b 的值; (Ⅱ)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(,1]-∞-上的最大值.19.(本小题共14分)已知曲线C :22(5)(2)8()m x m y m -+-=∈R .(Ⅰ)若曲线C 是焦点在x 轴上的椭圆,求m 的取值范围;(Ⅱ)设4m =,曲线C 与y 轴的交点为A ,B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M ,N ,直线1y =与直线BM 交于点G .求证:A ,G ,N 三点共线.20.(本小题共13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记(,)S m n 为所有这样的数表构成的集合.对于(,)A S m n ∈,记()i r A 为A 的第i 行各数之和(1)i m ≤≤,()j c A 为A 的第j 列各数之和(1)j n ≤≤;记()k A 为1|()|r A ,2|()|r A ,…,|()|m r A ,1|()|c A ,2|()|c A ,…,|()|n c A中的最小值.(Ⅰ)对如下数表A ,求()k A 的值;(Ⅱ)设数表(2,3)A S ∈形如求()k A 的最大值;(Ⅲ)给定正整数t ,对于所有的(2,21)A S t ∈+,求()k A 的最大值.ACDEBA 1MCBE D图1图22012年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷{|AB x x =A B .2CE CB CD =90,CD ⊥AD DB ,所以CE CB AD DB =.【提示】由题中三角形和圆的位置关系,通过条件求解即可.【考点】几何证明选讲.第Ⅱ卷【解析】23S a =,所以【提示】由{}n a 是等差数列23S a =,解得60,所以直线的斜率为603=1⎛【解析】根据平面向量的点乘公式cos DE CB DE DA DE DA θ==,可知cos DE DA θ=,所以21DE CB DA ==;||||cos ||cos DE DC DE DC DE αα==,又因为cos DE α就是向量DE 在DC 边上的射影,要想让DE DC 最大,即让射影最大,此时E 点与B 点重合,射影为||DC ,所以长度为【提示】直接利用向量转化,求出数量积即可. 【考点】平面向量在平面几何中的运用.)()0g x <,恒成立3)0+>在综上可得①②成立时42m -<<-.)()0g x <,而【考点】指数函数的性质,二次函数的性质.(Ⅰ)证明CD 1CDA D D =,,又A ⊥DE ,又CD DE D =⊥平面BCDE (Ⅱ)如图建立空间直角坐标系C xyz -,则,23),(0B ∴1(0,3,2A B =-,(2,2,A E =-法向量为(,,)n x y z =100A B n A E n ⎧=⎪⎨=⎪⎩∴3223y ⎧⎪⎨---⎪⎩2⎪⎩∴(1,2,3)n =-又∵M ∴(1,0,CM =-cos 2||||1313222CM n CM n θ====++∴CM 与平面1A BE 所成角的大小45(Ⅲ)设线段上存在点P ,设则(0,A P a =,(2,DP a =设平面A DP 法向量为(,n x y =∴1(,,n x y =垂直,则10n n =, DE ,即证明DE ⊥平面1A CD 法向量(1,2,n =-,(1,0,CM =-A DP 法向量为(3n a =-垂直,则10n n =,可求得【考点】平面图形的折叠问题,立体几何.(Ⅰ)由题意可知,厨余垃圾600吨,投放到“厨余垃圾”箱(Ⅱ)a a∴3AG⎛= ,(AN x=三点共线,只需证AG,AN共线3(6Mxx k+成立,化简得:从而可得3AG⎛= ,(AN x=三点共线,只需证AG,AN共线,利用韦达定理,可以证明.【考点】椭圆的性质,直线与椭圆的位置关系.1(1)(1t t++数学试卷第19页(共21页)数学试卷第20页(共21页)数学试卷第21页(共21页)。
2012高考北京数学理科真题答案及简析
2012高考北京数学真题答案及简析三、解答题 15. 解:(sin cos )sin 2(sin cos )2sin cos ()2(sin cos )cos sin sin x x x x x x xf x x x x x x--===-{}πsin 21cos 221|π4x x x x x k k ⎛⎫=-+=--≠∈ ⎪⎝⎭Z ,,(1)原函数的定义域为{}|πx x k k ≠∈Z ,,最小正周期为π.(2)原函数的单调递增区间为πππ8k k ⎡⎫-+⎪⎢⎣⎭,k ∈Z ,3πππ8k k ⎛⎤+ ⎥⎝⎦,k ∈Z 16. 解:(1) CD DE ⊥,1A E DE ⊥∴DE ⊥平面1ACD , 又 1A C ⊂平面1A CD , ∴1A C ⊥DE 又1A C CD ⊥,∴1A C ⊥平面BCDEy C(2)如图建系C xyz -,则()200D -,,,(00A ,,,()030B ,,,()220E -,,∴(103A B =-,,,()1210A E =-- ,,设平面1A BE 法向量为()n x y z =,,则1100A B n A E n ⎧⋅=⎪⎨⋅=⎪⎩∴3020y x y ⎧-=⎪⎨--=⎪⎩∴2z y y x ⎧=⎪⎪⎨⎪=-⎪⎩∴(12n =-,又∵(10M -,∴(10CM =-,∴cos ||||CM n CM n θ⋅====⋅∴CM 与平面1A BE 所成角的大小45︒(3)设线段BC 上存在点P ,设P 点坐标为()00a ,,,则[]03a ∈,则(10A P a =- ,,,()20DP a =,, 设平面1A DP 法向量为()1111n x y z =,,则1111020ay x ay ⎧-=⎪⎨+=⎪⎩∴111112z x ay ⎧=⎪⎪⎨⎪=-⎪⎩∴()136n a =-,假设平面1A DP 与平面1A BE 垂直则10n n ⋅=,∴31230a a ++=,612a =-,2a =- ∵03a <<∴不存在线段BC 上存在点P ,使平面1A DP 与平面1A BE 垂直 17.(1)由题意可知:4002=6003(2)由题意可知:200+60+403=100010(3)由题意可知:22221(120000)3s a b c =++-,因此有当600a =,0b =,0c =时,有280000s =.18. 解:(1)由()1c ,为公共切点可得:2()1(0)f x ax a =+>,则()2f x ax '=,12k a =, 3()g x x bx =+,则2()=3f x x b '+,23k b =+,∴23a b =+⎺又(1)1f a =+,(1)1g b =+,∴11a b +=+,即a b =,代入①式可得:33a b =⎧⎨=⎩. (2) 24a b =,∴设3221()()()14h x f x g x x ax a x =+=+++则221()324h x x ax a '=++,令()0h x '=,解得:12a x =-,26a x =-;0a >,∴26a a-<-,∴原函数在2a ⎛⎫-∞- ⎪⎝⎭,单调递增,在26a a ⎛⎫-- ⎪⎝⎭,单调递减,在6a ⎛⎫-+∞ ⎪⎝⎭,上单调递增①若12a--≤,即2a ≤时,最大值为2(1)4a h a =-;②若126a a-<-<-,即26a <<时,最大值为12a h ⎛⎫-= ⎪⎝⎭ ③若16a--≥时,即6a ≥时,最大值为12a h ⎛⎫-= ⎪⎝⎭.综上所述:当(]02a ∈,时,最大值为2(1)4a h a =-;当()2,a ∈+∞时,最大值为12a h ⎛⎫-= ⎪⎝⎭. 19.(1)原曲线方程可化简得:2218852x y m m +=--由题意可得:8852805802m m mm ⎧>⎪--⎪⎪>⎨-⎪⎪>⎪-⎩,解得:752m <<(2)由已知直线代入椭圆方程化简得:22(21)16240k x kx +++=,2=32(23)k ∆-,解得:232k >由韦达定理得:21621M N k x x k +=+①,22421M N x x k =+,② 设(,4)N N N x k x +,(,4)M M M x kx +,(1)G G x ,MB 方程为:62M M kx y x x +=-,则316M M x G kx ⎛⎫⎪+⎝⎭,, ∴316M M x AG x k ⎛⎫=-⎪+⎝⎭,,()2N N AN x x k =+,,欲证A G N ,,三点共线,只需证AG ,AN共线即3(2)6MN N M x x k x x k +=-+成立,化简得:(3)6()M N M N k k x x x x +=-+ 将①②代入易知等式成立,则A G N ,,三点共线得证。
2012年北京卷理科数学高考试卷(原卷 答案)
绝密★启用前2012年普通高等学校招生全国统一考试(北京卷)理科数学本试卷共20题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合,,则( )A .B .C .D .2.设不等式组表示的平面区域为.在区域内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A .B .C .D .3.设.“”是“复数是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4.执行如图所示的程序框图,输出的值为( ) A .2B .4C .8D .16 5.如图,,于点,以为直径的圆与交于点,则( ) A .B .C .D .6.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( ) A .24 B .18 C .12 D .6 7.某三棱锥的三视图如图所示,该三棱锥的表面积是( ){}|320A x x =∈+>R ()(){}|130B x x x =∈+−>R A B =()1−∞−,213⎧⎫−−⎨⎬⎩⎭,233⎛⎫− ⎪⎝⎭,()3+∞,0202x y ⎧⎨⎩≤≤,≤≤D D π4π22−π64π4−a b ∈R ,0a =i a b +S 90ACB ∠=︒CD AB ⊥D BD BC E CE CB AD DB ⋅=⋅CE CB AD AB ⋅=⋅2AD AB CD ⋅=2CE EB CD ⋅=EBDACA .B .C .D .8.某棵果树前前的总产量与之间的关系如图所示.从目前记录的结果看,前年的年平均产量最高,值为( )A .5B .7C .9D .11第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9直线(为参数)与曲线(为参数)的交点个数为 .10.已知为等差数列,为其前项和.若,,则 . 11.在中,若,,,则 .12.在直角坐标系中,直线过抛物线的焦点,且与该抛物线相交于,两点,其中点 在轴上方,若直线的倾斜角为.则的面积为 .13.已知正方形的边长为1,点是边上的动点,则的值为 ;的最大值为 .14.已知,.若同时满足条件:①,或; ②,则的取值范围是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数.(1)求的定义域及最小正周期;28+30+56+60+n n S n m m 21x t y t =+⎧⎨=−−⎩t 3cos 3sin x y αα=⎧⎨=⎩α{}n a n S n 112a =23S a =2a =ABC △2a =7b c +=1cos 4B =−b =xOy l 24y x =F A B A x l 60︒OAF △ABCD E AB DE CB ⋅DE DC ⋅()()()23f x m x m x m =−++()22x g x =−x ∀∈R ()0f x <()0g x <()()()40x f x g x ∃∈−∞−<,,m ()()sin cos sin 2sin x x xf x x −=()fx 34正(主)视图侧(左)视图俯视图(2)求的单调递增区间.16.(本小题共14分) 如图1,在中,,,.,分别是,上的点,且,,将沿折起到的位置,使,如图2. (1)求证:平面; (2)若是的中点,求与平面所成角的大小;(3)线段上是否存在点,使平面与平面垂直?说明理由.17.(本小题共13分) 近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率; (3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,其中,.当数据的方差最大时,写出的值(结论不要求证明),并求此时的值. (求:,其中为数据,,…,的平均数)18.(本小题共13分) 已知函数,.(1)若曲线与曲线在它们的交点处具有公共切线,求,的值; (2)当时,求函数的单调区间,并求其在区间上的最大值. 19.(本小题共14分)已知曲线(1)若曲线是焦点在轴上的椭圆,求的取值范围; (2)设,曲线与轴的交点为(点位于点的上方),直线与曲线交于不同的两点,,直线与直线交于点.求证:三点共线.()f x Rt ABC △90C ∠=︒3BC =6AC =D E AC AB DE BC ∥2DE =ADE △DE 1A DE △1AC CD ⊥1AC ⊥BCDE M 1A D CM 1A BE BC P 1A DP 1A BE a b c ,,0a >600a b c ++=a b c ,,2s a b c ,,2s ()()()2222121n s x x x x x x n ⎡⎤=−+−++−⎢⎥⎣⎦x 1x 2x n x ()()210f x ax a =+>()3g x x bx =+()y f x =()y g x =()1c ,a b 24a b =()()f x g x +(]1−∞−,()()()22:528C m x m y m −+−=∈R C x m 4m =C y A B ,A B 4y kx =+C M N 1y =BM G A G N ,,AC D E B A 1MC B ED 图1图220.(本小题共13分)设是由个实数组成的行列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记为所有这样的数表构成的集合. 对于,记为的第行各数之和,为的第列各数之和;记为,,…,,,,…,中的最小值. (1)对如下数表,求的值;(2)设数表求的最大值;(3)给定正整数,对于所有的,求的最大值.A m n ⨯m n ()S m n ,()A S m n ∈,()i r A A i ()1i m ≤≤()j c A A j ()1j n ≤≤()k A ()1||r A ()2||r A ()||m r A ()1||c A ()2||c A ()||n c A A k A (23A S ∈,()k A t ()221A S t ∈+,()k A2012年普通高等学校招生全国统一考试(北京卷)理科数学(参考答案)1.D 【解析】 试题分析:,或,所以,故选D.考点:集合的运算 2.D 【解析】 【分析】试题分析:阴影部分的面积为:4π−,故选.D 考点:1、几何概型的计算,面积比【方法点晴】本题主要考查的是几何概型,属于中等题,由题作出所对应的图像,可得平面区域D 为如图所示的正方形区域,而区域内的任意点到原点的距离大于的区域为图中的阴影部分,由几何概型的公式可知概率即为面积之比,易得答案. 【详解】 3.B 【解析】 【分析】 【详解】当a=0时,如果b=0,此时0a bi +=是实数,不是纯虚数,因此不是充分条件;而如果a bi +已经是纯虚数,由定义实部为零,虚部不为零可以得到a=0,因此是必要条件,故选B 【考点定位】本小题主要考查的是充分必要条件,但问题中又涉及到了复数问题,复数部分本题所考查的是纯虚数的定义 4.C 【解析】 【分析】 【详解】试题分析:列出循环过程中S 与k 的数值,不满足判断框的条件即可结束循环. 解:第1次判断后S=1,k=1, 第2次判断后S=2,k=2, 第3次判断后S=8,k=3,第4次判断后3<3,不满足判断框的条件,结束循环,输出结果:8. 故选C .考点:循环结构. 5.A 【解析】如图所示,由切割线定理可知2•CE CB CD =,在直角△ACB 中,090ACB ∠=,CD AB ⊥,则由射影定理可知2=?,CD AD DB ∴••CE CB AD DB =. 【考点定位】本题考查的是平面几何的知识,具体到本题就是射影定理的各种情况,需要学生对于垂直的变化有比较深刻的印象. 6.B 【解析】 【分析】【详解】由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共12种;如果是第二种情况偶奇奇,分析同理:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共12+6=18种情况. 7.B 【解析】从所给的三视图可以得到该几何体为三棱锥,如右图所示.图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长,本题所求表面积应为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:10,10,10S S S S ====后右底左,,因此该几何体表面积30S S S S S =+++=+后右底左B .【考点定位】本小题主要考查的是三棱锥的三视图问题,原来考查的是棱锥或棱柱的体积而今年考得是表面积,因此考查了学生的计算基本功和空间想象的能力. 8.C 【解析】 【分析】由题意利用三角函数的图象变换原则,即可得出结论. 【详解】由题意,将函数()sin 2f x x =的图象向右平移6π个单位长度, 可得()sin 2()sin(2)63g x x x ππ=−=−.故选C . 【点睛】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型. 9.2 【解析】 【分析】试题分析:将参数方程化为普通方程,利用圆心到直线的距离与半径比较,即可得到结论.根据题意,由于直线2{1x ty t=+=−−(t 为参数)与曲线3cos {3sin x y αα==(α为参数)化为普通方程分别是x+y-1=0和x 2+y 2=9,那么可知∵圆心(0,0)到直线x+y-1=0的距离为d=<3,∴直线与圆有两个交点,故答案为2考点:参数方程与普通方程点评:本题考查参数方程与普通方程的互化,考查直线与圆的位置关系,属于基础题 【详解】请在此输入详解!10.1 ,【解析】【考点定位】本小题主要考查等差数列的基本运算,考查通项公式和前n 项和公式的计算 11.4 【解析】在△ABC 中,利用余弦定理222cos 2a c b B ac+−=,14()()47()444c b c b c b c c ++−+−−==,化简得:,与题目条件7b c +=联立,可解得2,4,3a b c ===,【考点定位】本题考查的是解三角形,考查余弦定理的应用.利用题目所给的条件列出方程组求解 12【解析】由24y x =可求得焦点坐标(1,0)F ,因为倾角60º,所以直线的斜率为0tan 60k ==,利用点斜式,直线方程为y =2{4y y x =={1(,33A B ⇒−,因此11122OAF A S OF y ∆=⨯⨯=⨯⨯=.【考点定位】本题考查的是解析几何中抛物线的问题,根据交点弦问题求围成面积.此题把握住抛物线的基本概念,熟练的观察出标准方程中的焦点和准线坐标和方程是成功的关键,当然还要知道三角形面积公式. 13. 1,1 【解析】根据平面向量的点乘公式•••cos DE CB DE DA DE DA θ==,由图可知,•cos DE DA θ=, 因此•DE CB =2||1DA =;••cos cos DE DC DE DC DE αα==,而•cos DE α就是向量DE 在DC 边上的射影,要想让•DE DC 最大,即让射影最大,此时E 点与B 点重合,射影为DC ,所以长度为1.【考点定位】本题是平面向量问题,考查学生对于平面向量点乘知识的理解,其中包含动点问题,考查学生最值的求法. 14.()4,2m ∈−− 【解析】根据()220xg x =−<可解得x<1,由于题目中第一个条件的限制,导致f(x)在1x ≥是必须是()0f x <,当m=0时,()0f x =不能做到f(x)在1x ≥时()0f x <,所以舍掉,因此,f(x)作为二次函数开口只能向下,故m<0,且此24n n +时2个根为122,3x m x m ==−−,为保证条件成立,只需1221{31x m x m =<=−−<1{24m m <⇒>−,和大前提m<0取交集结果为40m −<<;又由于条件2的限制,可分析得出在(,4),()x f x ∃∈−∞−恒负,因此就需要在这个范围内g(x)有得正数的可能,即-4应该比12x x 两个根中较小的来的大,当(1,0)m ∈−时,34m −−<−,解得交集为空,舍.当m=-1时,两个根同为24−>−,舍.当(4,1)m ∈−−时,24m <−,解得2m <−,综上所述,(4,2)m ∈−−.【考点定位】本题考查学生函数的综合能力,涉及到二次函数的图像开口,根大小,涉及到指数函数的单调性,还涉及到简易逻辑中的“或”,还考查了分类讨论思想. 15.2==2T ππ 单调递增区间为[,)8k k πππ−和(k Z ∈)【考点定位】本题考查三角函数知识,此类型题在平时练习时练的较多,考生应该觉得非常容易入手。
2012年普通高等学校招生全国统一考试北京文科数学和理科数学整编卷详细解析(精品回顾)
2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考试生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}|320A x x =∈+>R ,()(){}|130B x x x =∈+->R ,则A B = ( )A .()1-∞-,B .213⎧⎫--⎨⎬⎩⎭,C .233⎛⎫- ⎪⎝⎭,D .()3+∞,2.设不等式组0202x y ⎧⎨⎩≤≤,≤≤表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A .π4B .π22-C .π6D .4π4- 3.设a b ∈R ,.“0a =”是“复数i a b +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4.执行如图所示的程序框图,输出的S 值为( )A .2B .4C .8D .165.如图,90ACB ∠=︒,CD AB ⊥于点D ,以BD 为直径的圆与BC 交于点E ,则( )A .CE CB AD DB ⋅=⋅ B .CE CB AD AB ⋅=⋅C .2AD AB CD ⋅= D .2CE EB CD ⋅=回归往日精品,再现今日辉煌EBDAC6.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A .24B .18C .12D .67.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+ B.30+C.56+D.60+8.某棵果树前n 前的总产量n S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,m 值为()A .5B .7C .9D .1134主主主主主主主主主主主主主主主回归往日精品,再现今日辉煌第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9直线21x t y t =+⎧⎨=--⎩(t 为参数)与曲线3cos 3sin x y αα=⎧⎨=⎩(α为参数)的交点个数为.10.已知{}n a 为等差数列,n S 为其前n 项和.若112a =,23S a =,则2a =.11.在ABC △中,若2a =,7b c +=,1cos 4B =-,则b =.12.在直角坐标系xOy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于A ,B两点,其中点A 在x 轴上方,若直线l 的倾斜角为60︒.则OAF △的面积为.13.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为 ;DE DC ⋅的最大值为.14.已知()()()23f x m x m x m =-++,()22x g x =-.若同时满足条件:①x ∀∈R ,()0f x <或()0g x <; ②()()()40x f x g x ∃∈-∞-<,,, 则m 的取值范围是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数()()sin cos sin 2sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递增区间. 16.(本小题共14分)如图1,在Rt ABC △中,90C ∠=︒,3BC =,6AC =.D ,E 分别是AC ,AB 上的点,且DE BC ∥,2DE =,将ADE △沿AEA 1MDE 折起到1A DE △的位置,使1A C CD ⊥,如图2. (1)求证:1A C ⊥平面BCDE ;(2)若M 是1A D 的中点,求CM 与平面1A BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面1A DP 与平面1A BE 垂直?说明理由.17.(本小题共13分)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾 400 100 100 可回收物 30 240 30 其他垃圾202060(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a b c ,,,其中0a >,600a b c ++=.当数据a b c ,,的方差2s 最大时,写出a b c ,,的值(结论不要求证明),并求此时2s 的值. (求:()()()2222121n s x x x xx x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 为数据1x ,2x ,…,n x 的平均数)18.(本小题共13分)已知函数()()210f x ax a =+>,()3g x x bx =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点()1c ,处具有公共切线,求a ,b 的值; (2)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(]1-∞-,上的最大值.19.(本小题共14分)已知曲线()()()22:528C m x m y m -+-=∈R(1)若曲线C 是焦点在x 轴上的椭圆,求m 的取值范围;(2)设4m =,曲线C 与y 轴的交点为A B ,(点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M ,N ,直线1y =与直线BM 交于点G .求证:A G N ,,三点共线.20.(本小题共13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记()S m n ,为所有这样的数表构成的集合.对于()A S m n ∈,,记()i r A 为A 的第i 行各数之和()1i m ≤≤,()j c A 为A 的第j 列各数之和()1j n ≤≤;记()k A 为()1||r A ,()2||r A ,…,()||m r A ,()1||c A ,()2||c A ,…,()||n c A 中的最小值.(1)对如下数表A ,求()k A 的值;110.8-0.10.3-1-(2)设数表()23A S ∈,形如1 1 cab 1-求()k A 的最大值;(3)给定正整数t ,对于所有的()221A S t ∈+,,求()k A 的最大值.答案一、选择题 题号 1 2 3 4 5 6 7 8 答案 DDBCABBC二、填空题三、解答题 15. 解: (sin cos )sin 2(sin cos )2sin cos ()2(sin cos )cos sin sin x x x x x x xf x x x x x x--===-{}πsin 21cos 221|π4x x x x x k k ⎛⎫=-+--≠∈ ⎪⎝⎭Z ,,(1)原函数的定义域为{}|πx x k k ≠∈Z ,,最小正周期为π.(2)原函数的单调递增区间为πππ8k k ⎡⎫-+⎪⎢⎣⎭,k ∈Z ,3πππ8k k ⎛⎤+ ⎥⎝⎦,k ∈Z16. 解:(1) CD DE ⊥,1A E DE ⊥∴DE ⊥平面1A CD ,又 1A C ⊂平面1A CD ,∴1A C ⊥DE又1A C CD ⊥,∴1A C ⊥平面BCDEy C(2)如图建系C xyz -,则()200D -,,,(00A ,,,()030B ,,,()220E -,,∴(103A B =-,,,()1210A E =-- ,,设平面1A BE 法向量为()n x y z =,,则1100A B n A E n ⎧⋅=⎪⎨⋅=⎪⎩∴3020y x y ⎧-=⎪⎨--=⎪⎩ ∴2z y yx ⎧=⎪⎪⎨⎪=-⎪⎩∴(12n=-,又∵(10M -, ∴(10CM =-,∴cos ||||CM n CM n θ⋅====⋅ ∴CM 与平面1A BE 所成角的大小45︒(3)设线段BC 上存在点P ,设P 点坐标为()00a ,,,则[]03a ∈,则(10A P a =-,,,()20DP a = ,,设平面1A DP 法向量为()1111n x y z =,,则1111020ay x ay ⎧-=⎪⎨+=⎪⎩ ∴111112z x ay ⎧=⎪⎪⎨⎪=-⎪⎩∴()136n a =-,假设平面1A DP 与平面1A BE 垂直 则10n n ⋅=,∴31230a a ++=,612a =-,2a =- ∵03a <<∴不存在线段BC 上存在点P ,使平面1A DP 与平面1A BE 垂直 17.(1)由题意可知:4002=6003(2)由题意可知:200+60+403=100010(3)由题意可知:22221(120000)3s a b c =++-,因此有当600a =,0b =,0c =时,有280000s =.18. 解:(1)由()1c ,为公共切点可得:2()1(0)f x ax a =+>,则()2f x ax '=,12k a =, 3()g x x bx =+,则2()=3f x x b '+,23k b =+,∴23a b =+①又(1)1f a =+,(1)1g b =+,∴11a b +=+,即a b =,代入①式可得:33a b =⎧⎨=⎩. (2) 24a b =,∴设3221()()()14h x f x g x x ax a x =+=+++则221()324h x x ax a '=++,令()0h x '=,解得:12a x =-,26a x =-;0a >,∴26a a -<-,∴原函数在2a ⎛⎫-∞- ⎪⎝⎭,单调递增,在26a a ⎛⎫-- ⎪⎝⎭,单调递减,在6a ⎛⎫-+∞ ⎪⎝⎭,上单调递增 ①若12a--≤,即2a ≤时,最大值为2(1)4a h a =-;②若126a a -<-<-,即26a <<时,最大值为12a h ⎛⎫-= ⎪⎝⎭③若16a --≥时,即6a ≥时,最大值为12a h ⎛⎫-= ⎪⎝⎭. 综上所述:当(]02a ∈,时,最大值为2(1)4a h a =-;当()2,a ∈+∞时,最大值为12a h ⎛⎫-= ⎪⎝⎭.19.(1)原曲线方程可化简得:2218852x y m m +=--由题意可得:8852805802m m mm ⎧>⎪--⎪⎪>⎨-⎪⎪>⎪-⎩,解得:752m <<(2)由已知直线代入椭圆方程化简得:22(21)16240k x kx +++=,2=32(23)k ∆-,解得:232k >由韦达定理得:21621M N k x x k +=+①,22421M N x x k =+,② 设(,4)N N N x k x +,(,4)M M M x kx +,(1)G G x ,MB 方程为:62M M kx y x x +=-,则316M M x G kx ⎛⎫⎪+⎝⎭,, ∴316M M x AG x k ⎛⎫=-⎪+⎝⎭ ,,()2N N AN x x k =+,, 欲证A G N ,,三点共线,只需证AG ,AN共线即3(2)6MN N M x x k x x k +=-+成立,化简得:(3)6()M N M N k k x x x x +=-+将①②代入易知等式成立,则A G N ,,三点共线得证。
(69)2012年北京高考理科数学试题及答案
2012年普通高等学校招生全国统一考试(北京卷)数学(理科)本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题。
每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项. 1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= A (-∞,-1)B (-1,-23) C (-23,3)D (3,+∞)2.设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 (A )4π (B )22π- (C )6π (D )44π-3.设a ,b ∈R 。
“a=0”是“复数a+bi 是纯虚数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S 值为( )A. 2 B .4 C.8 D. 165.如图. ∠ACB=90º,CD ⊥AB 于点D ,以BD 为直径的圆与BC 交于点E.则( ) A . C E •CB=AD •DB B . C E •CB=AD •AB C . A D •AB=CD 2 D . C E •EB=CD 26.从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( ) A. 24 B. 18 C. 12 D. 67.某三棱锥的三视图如图所示,该三梭锥的表面积是( )A. 28+65B. 30+65C. 56+ 125D. 60+1258.某棵果树前n 前的总产量S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高。
m 值为( )A.5B.7C.9D.11第二部分(非选择题共110分)二.填空题共6小题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试 数学 (理)(北京卷)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B = ( ) A .(,1)-∞- B .2(1,)3-- C .2(,3)3-D .(3,)+∞ 2.设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A .4π B .22π- C .6πD .44π- 3.设,a b R ∈, “0a =”是“复数a bi +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件4. 执行如图所示的程序框图,输出的S 值为( ) A . 2 B . 4 C . 8 D . 165.如图,∠ACB=90°,CD ⊥AB 于点D,以BD 为直径的圆与BC 交于点E ,则() A .CE ·CB=AD ·DB B .CE ·CB=AD ·AB C .AD ·AB= 2CD D .CE ·EB= 2CD6.从0,2 中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数, 其中奇数的个数为( )A . 24B . 18C . 12D . 67. 某三棱锥的三视图如图所示,该三棱锥的表面积是( ) A.28+ B.30+ C.56+.60+8. 某棵果树前n 年得总产量n S 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为( )A .5B . 7C . 9D .11(第4题图)B第二部分(非选择题 共110分) 二、填空题:本大题共6小题,每小题5分,共30分. 9. 直线2,1x t y t =+⎧⎨=--⎩(t 为参数)与曲线3cos 3sin x y =α⎧⎨=α⎩(α为参数)的交点个数为 .10.已知{}n a 为等差数列,n S 为其前n 项和.若112a =,23S a =,则2a = . 11.在△ABC 中,若2a =,7bc +=,1cos 4B =-,则b = . 12.在直角坐标系xoy 中,直线l 过抛物线24y x =的焦点F,且与该抛物线相较于A 、B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为 .13.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为 ; DE DC ⋅的最大值为 .14.已知()(2)(3)f x m x m x m =-++,()22xg x =-.若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4)x ∃∈-∞- ,()()0f x g x <. 则m 的取值范围是 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题13分) 已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递增区间.16. (本小题14分)如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D,E 分别是AC ,AB 上的点, 且DE ∥BC ,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2. (1)求证:A 1C ⊥平面BCDE;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P,使平面A 1DP 与平面A 1BE 垂直?说明理由.17.(本小题13分)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,,a b c ,其中0a >,600a b c ++=.当数据,,a b c 的方差2S 最大时,写出,,a b c 的值(结论不要求证明),并求此时2S 的值.(注:方差2222121[()()()]n s x x x x x x n=-+-++- ,其中x 为12,,n x x x 的平均数)18.(本小题13分)已知函数2()1f x ax =+(0a >),3()g x x bx =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,c )处具有公共切线,求,a b 的值; (2)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(,1]-∞-上的最大值.19.(本小题14分)已知曲线C: 22(5)(2)8()m x m y m R -+-=∈ (1)若曲线C 是焦点在x 轴的椭圆,求m 的范围;(2)设4m =,曲线C 与y 轴的交点为A,B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M,N,直线1y =与直线BM 交于点G 求证:A,G,N 三点共线.20.(本小题13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记(,)S m n 为所有这样的数表构成的集合.对于(,)A S m n ∈,记()i r A 为A 的第i 行各数之和1i m ≤≤,()j c A 为A 的第j 列各数之和1j n ≤≤;记()k A 为1|()|r A ,2|()|r A ,…,|()|m r A ,1|()|c A ,2|()|c A ,…,|()|n c A 中的最小值. (1)对如下数表A,求()k A 的值;(2)设数表A=(2,3)S 形如求()k A 的最大值;(3)给定正整数t ,对于所有的A ∈S(2,21t +),求()k A 的最大值。
参考答案一、选择题 1.【答案】D【解析】2|3A x x ⎧⎫=>-⎨⎬⎩⎭,利用二次不等式的解法可得{}|31B x x x =><-或,画出数轴易得{}|3A x x ⋂=>。
【考点定位】本小题考查的是集合(交集)运算和一次和二次不等式的解法。
2.【答案】D【解析】题目中0202x y ≤≤⎧⎪⎨≤≤⎪⎩表示的区域表示正方形区域,而动点D 可以存在的位置为正方形面积减去四分之一的圆的面积部分,因此2122244224p ππ⨯-⨯-==⨯,故选D 【考点定位】 本小题是一道综合题,它涉及到的知识包括:线性规划,圆的概念和面积公式、概率。
3.【答案】B【解析】当0a =时,如果0b =,此时0a bi +=是实数,不是纯虚数,因此不是充分条件;而如果a bi +已经是纯虚数,由定义实部为零,虚部不为零可以得到0a =,因此是必要条件,故选B 。
4.【答案】C【解析】0,11,12,23,8k s k s k s k s ==⇒==⇒==⇒==,循环结束,输出的S 为8,故选C 【考点定位】 本小题主要考查程序框图,涉及到判断循环结束的时刻,以及简单整数指数幂的计算。
5.【答案】A【解析】由切割线定理可知2CE CB CD ⋅=,在直角ABC ∆中,90,ACB CD AB ∠=︒⊥,则由射影定理可知2CD AD DB =⋅,所以CE CB AD DB ⋅=⋅。
【考点定位】 本题考查的是平面几何的知识,具体到本题就是射影定理的各种情况,需要学生对于垂直的变化有比较深刻的印象。
6.【答案】B【解析】由于题目要求是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇。
如果是第一种奇偶奇的情况,可以从个位开始分析3种选择,之后二位,有2种选择,最后百位2种选择,共12种;如果是第二种情况偶奇奇,分析同理,个位有3种选择,十位有2种选择,百位有一种选择,共6种,因此总共12618+=种,选B 。
【考点定位】 本题是排列组合问题,属于传统的奇偶数排列的问题,解法不唯一,需先进行良好的分类之后再分步计算,该问题即可迎刃而解。
7.【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,本题所求表面积为三棱锥四个面的面积之和。
利用垂直关系和三角形面积公式,可得:10,10,10,S S S S ====后右左底30S =+,故选B 。
【考点定位】本小题主要考查的是三棱锥的三视图问题,原来考查的是棱锥或棱柱的体积而今年者的是表面积,因此考查了学生的计算基本功和空间想象能力。
8.【答案】C【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C 。
【考点定位】 本小题知识点考查很灵活,要根据图像识别看出变化趋势,判断变化速度可以用导数来解,当然此题若利用数学估计过于复杂,最好从感觉出发,由于目的是使平均产量最高,就需要随着n 的增大,n S 变化超过平均值的加入,随着n 增大,n S 变化不足平均值,故舍去。
二、填空题 9.【答案】2【解析】直线转化为1x y +=,曲线转化为圆229x y +=,将题目所给的直线和圆图形作出,易知有两个交点。
【考点定位】 本题考查直线和圆的位置关系,而且直线和圆是以参数方程的形式给出的,学生平时对消参并不陌生的话,此题应该是比较容易的。
10.【答案】1,1(1)4n n + 【解析】23S a = ,所以111211212a a d a d d a a d ++=+⇒=⇒=+=,1(1)4n S n n =+。
【考点定位】 本小题主要考查等差数列的基本运算,考查通项公式和前n 项和公式的计算。
11.【答案】4【解析】在ABC ∆中,得用余弦定理22214()()47()cos 2444a c b c b c b c b B ac c c+-++-+-=⇒-==,化简得【考点定位】 本题考查的是解三角形,考查余弦定理的应用。
利用题目所给的条件列出方程组求解。
12.【解析】由24y x =,可求得焦点坐标为(1,0)F ,因为倾斜角为60︒,所以直线的斜率为tan 60k =︒=,利用点斜式,直线的方程为y =,将直线和曲线方程联立21(,334y A B y x⎧=⎪⇒-⎨⎪=⎩,因此11122OAF A S OF y ∆=⨯⨯=⨯⨯=【考点定位】 本题考查的是解析几何中抛物线的问题,根据交点弦问题求围成的面积。