2012届中考数学专项复习训练题12-一元一次方程和二元一次方程组

合集下载

江苏省2012年中考数学深度复习讲义 一元一次方程(教案+中考真题+模拟试题+单元测试)

江苏省2012年中考数学深度复习讲义 一元一次方程(教案+中考真题+模拟试题+单元测试)

(备战中考)某某省2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试)一元一次方程◆知识讲解1.等式和它的性质等式:表示相等关系的式子,叫做等式.等式的性质:①等式两边都加上(或减去)同一个数或同一个整式所得的结果仍是等式;②等式两边都乘以(或除以)同一个数(除数不为零)所得的结果仍是等式.2.方程方程:含有未知数的等式叫做方程.一元一次方程:在整式方程中,只含有一个未知数,并且未知数的次数是1•,系数不等于0的方程叫做一元一次方程.ax+b=0(a≠0)是一元一次方程的标准形式.方程的解:使方程左右两边相等的未知数的值叫做方程的解.一元方程的解也叫方程的根.解方程:求方程解的过程叫做解方程.3.解一元一次方程的一般步骤①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.4.列一元一次方程解应用题的一般步骤(1)弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;(2)找出能够表示应用题全部含义的一个相等关系;(3)根据这个相等关系列出需要的代数式,从而列出方程;(4)解这个方程,求出未知数的值;(5)检验方程的解是不是符合应用题题意的解;(6)写出答案(包括单位名称).◆例题解析例1 (2011某某某某,28,10分)(本题满分10分)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的1~5级税率情况见下表:现行征税方法草案征税方法税月应纳税额x 税率速算扣除数月应纳税额x 税率速算扣除数1 x≤ 500 5% 0 x≤ 1 500 5% 02 500<x≤2 000 10% 25 1 500<x≤4 500 10% ▲3 2 000<x≤5 000 15% 1254 500<x≤9 000 20% ▲4 5 000<x≤20 000 20% 375 9 000<x≤35 000 25% 9755 20 000<x≤40 000 25% 1375 35 000<x≤55 000 30% 2 725注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额。

中考数学总复习《二元一次方程组》专项提升练习(附答案)

中考数学总复习《二元一次方程组》专项提升练习(附答案)

中考数学总复习《二元一次方程组》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________知识点复习一、二元一次方程组定义1:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。

定义2:把两个方程合在一起,就组成了方程组。

定义3:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。

定义4:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

定义5:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

二、解二元一次方程组的方法(1)代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这种方法叫做代入消元法,简称代入法。

(2)加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

这种方法叫做加减消元法,简称加减法。

三、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。

认真读题,分析题中各个量之间的关系。

第2步:设未知数。

根据题意及各个量的关系设未知数。

第3步:列方程(组)。

根据题中各个量的关系列出方程(组)。

第4步:解方程(组)。

根据方程(组)的类型采用相应的解法。

第5步:答。

专题练习一、单选题1.已知关于x ,y 的二元一次方程组3221ax y x y +=⎧⎨-=⎩无解,则a 的值是( ) A .2 B .6 C .2- D .6-2.已知23a b -=,1a b +=则36a b -的值为( )A .6B .4C .3D .23.某班有x 人,分y 组活动,若每组7人,则余下3人;每组8人,则有一组差5人,根据题意下列方程组正确的是( )A .7385y x y x =+⎧⎨=+⎩B .7385y x x y =+⎧⎨=-⎩C .7385y x y x =-⎧⎨=+⎩D .7385x y x y =-⎧⎨=+⎩ 4.文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元.已知第1天和第2天的记录无误,第3天和第4天有一天的记录有误,则记录有误的一天收入( )A .多记1元B .多记2元C .少记1元D .少记2元5.两位同学在解方程组273ax by cx y +=⎧⎨+=⎩时,甲同学正确地解出11x y =-⎧⎨=-⎩,乙同学因把c 抄错了解得32x y =-⎧⎨=-⎩,则a 、b 、c 正确的值应为( )A .315a b c =-=-=-,,B .115a b c ==-=-,,C .2410a b c ==-=-,,D .315a b c ===-,,6.小华准备购买单价分别为4元和5元的两种瓶装饮料,且每种瓶装饮料的购买数量不为0.若小华将50元恰好用完,则购买方案共有( )A .2种B .3种C .4种D .5种7.在一个停车场,停了小轿车和摩托车一共32辆,这些车一共有108个轮子,则该停车场小轿车和摩托车的辆数分别为( )A .21,11B .22,10C .23,9D .24,8 8.已知关于x ,y 的方程2|18|(26)(2)0n m m x n y +--++=是二元一次方程,则m n +的值(若29m =,则3m =±)是( )A .5-B .3-C .1D .3二、填空题9.当方程组2520x ay x y +=⎧⎨-=⎩解是正整数时,整数a 值为 . 10.如果35x y =⎧⎨=-⎩是方程22mx y +=-的一组解,那么m 的值为 . 11.若关于x y ,的方程组1235x y c x y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组()()()()12113151x y c x y c ⎧-++=⎪⎨-++=⎪⎩的解为 .12.A,B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B出发逆水行驶5小时才能到达A,则船在静水中的航行速度是千米/时.13.若关于x的不等式组20,21xx m-<⎧⎨-≥-⎩恰有三个整数解,关于x的方程组26,3x yx y m+=⎧⎨-=⎩的解是正数,则m的取值范围是.三、解答题14.解方程组:(1)25 328 y xx y=-⎧⎨-=⎩(2)434 2312x yx y⎧+=⎪⎨⎪-=⎩15.已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求222a ab b-+的值.16.用加减法解方程组344328x y x y -=⎧⎨-=⎩①②其解题过程如下: 第一步:-①②,得4248y y --=-,解得23y =. 第二步:把23y =,代入①,得8343x -=,解得209x =. 第三步:所以这个方程组的解为20923x y ⎧=⎪⎪⎨⎪=⎪⎩上述解题过程是否正确?若不正确,则从第几步开始出现错误?请写出正确的解题过程.17.印江河是印江的母亲河,为了确保河道畅通,现需要对一段长为180米的河道进行清淤处理,清淤任务由A 、B 两个工程队先后接力完成,A 工程队每天完成12米,B 工程队每天完成8米,共用时20天. 根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩ 乙:128x y x y ⎧+=⎪⎨+=⎪⎩(1)根据甲同学所列的方程组,请你指出未知数x 、y 表示的意义.x 表示______,y 表示______;请你补全乙同学所列的方程组______(2)求A 、B 两工程队分别完成河道清淤多少米?(写出完整的解答过程)18.“一盔一带”安全守护行动在我县开展以来,市场上头盔出现了热销,某商场购进了一批头盔.已知购进6个A型头盔和4个B型头盔需要440元,购进4个A型头盔和6个B型头盔需要510元.(1)购进1个A型头盔和1个B型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,那么最多可购买B型头盔多少个?(3)在(2)的条件下,若该商场分别以售价为58元/个、98元/个的售价销售完A、B两类型号的头盔共200个,能否实现利润不少于6190元的目标?若能,直接写出相应的采购方案;若不能,请说明理由.参考答案:1.D2.A3.C4.C5.C6.A7.B8.B9.1或3-10.83/22311.65 xy⎧=⎨=⎩12.1813.21m-<≤-14.(1)21 xy=⎧⎨=-⎩(2)1083 xy=⎧⎪⎨=⎪⎩15.116.不正确,从第一步开始出现错误;正确的解题过程见解析,原方程组的解为:42 xy=⎧⎨=⎩17.(1)x表示A工程队工作的天数,y表示B工程队工作的天数,18020 128x yx y+=⎧⎪⎨+=⎪⎩(2)A工程队完成河道清淤60米,B工程队完成河道清淤120米18.(1)购进1个A型头盔30元,1个B型头盔65元;(2)最多可购买B型头盔120个;(3)三种购买方案。

中考数学方程组与不等式组练习题

中考数学方程组与不等式组练习题

一元一次方程与二元一次方程组1、理解并掌握不等式的性质,理解它们与等式性质的区别。

2、能用数形结合的思想理解一元一次不等式(组)解集的含义。

3、正确熟练地解一元一次不等式(组),并会求其特殊解。

4、会利用一元一次不等式(组)解综合题、应用题。

1.(宁夏)雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,那么下面列出的方程组中正确的是( )A . 4150048000x y x y +=⎧⎨+=⎩B .4150068000x y x y +=⎧⎨+=⎩ C .1500468000x y x y +=⎧⎨+=⎩ D .1500648000x y x y +=⎧⎨+=⎩ 2.(随州)我市围绕“科学节粮减损,保障食品安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分是农户实际出资的三倍还多30元,则购买一套小货仓农户实际出资是( )A .80元B .95元C .135元D .270元8.(黑龙江)今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有( )A .3种B .4种C .5种D .6种3.(南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )学习目标课前检测A.19 B.18 C.16 D.154.(泰安,)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式。

3 2012年中考 二元一次方程组(含答案)

3   2012年中考 二元一次方程组(含答案)

二元一次方程组及其应用考点1: 二元一次方程(组)的概念 相关试题:1. (2011四川凉山州,3,4分)下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x-=⎧⎪⎨+=⎪⎩ C .20135x z x y +=⎧⎪⎨-=⎪⎩ D .5723z x y=⎧⎪⎨+=⎪⎩ 【答案】D考点2: 二元一次方程(组)的解 相关试题:1. (2011河北,19,8分)已知2x y =⎧⎪⎨=⎪⎩x ,yy a =+的解,求(a+1)(a -1)+7的值【答案】将x=2,y=3代入a y x 3+=中,得a=3。

∴(a+1)(a -1)+7=a 2-1+7=a 2+6=92. (2011湖南益阳,2,4分)二元一次方程21-=x y 有无数多个解,下列四组值中不是..该方程的解的是A .012x y =⎧⎪⎨=-⎪⎩B .11x y =⎧⎨=⎩C .10x y =⎧⎨=⎩D .11x y =-⎧⎨=-⎩【答案】B3. (2011广东肇庆,4,3分)方程组⎩⎨⎧=+=-422y x y x 的解是A .⎩⎨⎧==21y x B .⎩⎨⎧==13y xC .⎩⎨⎧-==20y xD .⎩⎨⎧==02y x 【答案】D4. (2011山东东营,4,3分)方程组31x y x y +=⎧⎨-=-⎩,的解是A .12.x y =⎧⎨=⎩,B .12.x y =⎧⎨=-⎩,C .21.x y =⎧⎨=⎩,D .01.x y =⎧⎨=-⎩,【答案】A5. (2011山东枣庄,6,3分)已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( )A .-1B .1C .2D .3 【答案】A考点3: 二元一次方程组的解法 相关试题:1. (2011安徽芜湖,13,5分)方程组237,38.x y x y +=⎧⎨-=⎩的解是 .【答案】5,1.x y =⎧⎨=-⎩2. (2011山东潍坊,15,3分)方程组524050x y x y --=⎧⎨+-=⎩的解是___________________.【答案】23x y =⎧⎨=⎩3. (2011江西南昌,12,3分)方程组257x y x y ì+=ïïíï-=ïî的解是 .【答案】43x y ì=ïïíï=-ïî 4. (2011湖南永州,18,6分)解方程组:⎩⎨⎧=+=②13y 2x ①113y -4x【答案】解:①+②×3,得10x=50, 解得x=5, 把x=5代入②,得2×5+y=13, 解得y=3. 于是,得方程组的解为⎩⎨⎧==3y 5x .5. (2011广东中山,12,6分)解方程组:2360y x x xy =-⎧⎨--=⎩.【解】把①代入②,得2(3)60x x x ---=,解得,x=2 把x=2代入①,得y=-1所以,原方程组的解为21x y =⎧⎨=-⎩.6. (2011湖北宜昌,17,7分)解方程组⎩⎨⎧ x -y =12x +y =2【答案】解:①+②,得3x =3,∴x =1. 将x =1代入①,得1-y =1, ∴y =0. ∴原方程组的解是x=1,y=0.(7分)考点4: 二元一次方程(组)的数学应用 相关试题:1. (2011福建泉州,12,4分)已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩则x -y 的值为.【答案】1;考点5: 二元一次方程(组)的实际应用 相关知识: 相关试题:1. (2011山东泰安,11 ,3分)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则方程组正确的是( )A.⎩⎨⎧x+y=3012x+16y=400 B.⎩⎨⎧x+y=3016x+12y=400 C.⎩⎨⎧12x+16y=30x+y=400 D.⎩⎨⎧16x+12y=30x+y=400 【答案】B2. (2011台湾台北,30)某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元。

初中数学:一元一次方程及二元一次方程组专练含详细答案

初中数学:一元一次方程及二元一次方程组专练含详细答案

目录第一套:一次方程基础巩固第二套:一次方程提升专练第三套:二元一次方程组专练第四套:中考数学:一次方程试题汇编第一套:《一元一次方程》基础测试一 判断正误(每小题3分,共15分):1.含有未知数的代数式是方程……………………………………………………………( )2.-1是方程x 2-5x -6=0的一个根,也可以说是这个方程的解……………………( )3.方程 | x |=5的解一定是方程 x -5=0的解…………………………………………( )4.任何一个有理数都是方程 3x -7=5x -(2x +7 ) 的解……………………………( )5.无论m 和n 是怎样的有理数,方程 m x +n =0 都是一元一次方程…………………( )答案:1.×;2.√;3.×;4.√;5.×.二 填空题(每小题3分,共15分):1.方程x +2=3的解也是方程ax -3=5的解时,a = ;答案:8;解:方程x +2=3的解是 x =1,代入方程ax -3=5得关于a 的方程a -3=5,所以有 a =8;2.某地区人口数为m ,原统计患碘缺乏症的人占15%,最近发现又有a 人患此症,那么现在这个地区患此症的百分比是 ;答案:%100%15⨯+ma m ; 提示:现在这个地区患此症的人数是15%m +a ,总人口仍为m .3.方程|x -1|=1的解是 ;答案: x =2或x=0;提示:由绝对值的意义可得方程 x -1=1 或 x -1=-1.4.若3x -2 和 4-5x 互为相反数,则x = ;答案:1;提示:由相反数的意义可得方程(3x -2)+(4-5x )=0,解得x =1.5.|2x -3y |+(y -2)2 =0 成立时,x 2+y 2 = .答案:13.提示:由非负数的意义可得方程2x -3y =0 且 y -2=0 ,于是可得x =3,y =2.三 解下列方程(每小题6分,共36分):1.x 21-10754=; 2. 3-53175=x ; 略解:去分母,得 5x -8=7, 略解:去分母,得 105-25x =56,移项得 5x =15, 移项得 -25x =-49,把系数化为1,得x =3; 把系数化为1,得 x =2549;3.2(0.3x +4)=5+5(0.2x -7); 4. 815612+=-x x ; 略解:去括号,得 0.6x +8=5+ x -35, 略解:去分母,得 8x -4=15 x + 3,移项,合并同类项,得-0.4x =-38, 移项,合并同类项,得-7x =7,把系数化为1,得x =95; 把系数化为1,得 x =-1;5. x -32221+-=-x x ; 略解:去分母,得6x -3(x -1)=12-2(x +2)去括号,得 3x +3=8-2x , 移项,合并同类项,得 5x =5, 把系数化为1,得x =1;6.7x -)1(32)1(2121-=⎥⎦⎤⎢⎣⎡--x x x . 略解:第一次去分母,得42x -)1(4)1(213-=⎥⎦⎤⎢⎣⎡--x x x 第一次去括号,得 42x -44)1(233-=-+x x x , 第二次去分母,得78x +3x -3=8x -8,移项,合并同类项,得73x =-5,把系数化为1,得x =735-.四 解关于x 的方程(本题6分):b (a +x )-a =(2b +1)x +ab (a ≠0).解:适当去括号,得ab +bx -a =(2b +1)x +ab , 移项,得bx -(2b +1) x =a +ab -ab , 合并同类项,得(b -2b -1) x =a ,即 -(b +1) x =a ,当b ≠-1时,有b +1 ≠0,方程的解为x =1+-b a . 当b =-1 时,有b +1=0, 又因为 a ≠0, 所以方程无解.(想一想,若a =0,则如何?五 列方程解应用题(每小题10分,共20分):1. 课外数学小组的女同学原来占全组人数的31,后来又有4个女同学加入,就占全组人数的21,问课外数学小组原来有多少个同学.答案:12.提示:计算女同学的总人数,她们占全体人数的一半.设原来课外数学小组的人数为x ,方程为)4(21431+=+x x 解得 x =12.2. A 、B 两地相距49千米,某人步行从A 地出发,分三段以不同的速度走完全程,共用10小时.已知第一段,第二段,第三段的速度分别是6千米/时,4千米/时,5千米/时,第三段路程为15千米,求第一段和第二段的路程.答案:第一段路程长为18千米,第二段路程长为16千米. 提示:思路一:三段路程之和为49千米,而路程等于时间与速度的乘积.可设第一段路程长为 x 千米,则第二段路程为(49-x -15)千米,用时间的相等关系列方程,得10515415496=+--+x x , 解得 x =18(千米);由此可知,第一段路程长为18千米,第二段路程长为16千米.思路二:又可设走第一段所用时间为t 小时,由于第三段所用时间为 3515=(小时), 则第二段所用时间为(10-3-t )小时,于是可用路程的相等关系列方程:6t +(10-t -515)×4+15=49, 解得 t =3,由此可知,第一段路程长为18千米,第二段路程长为16千米.六 (本题8分):当x =4时,代数式 A =ax 2-4x -6a 的值是-1,那么当x=-5 时,A 的值是多少?提示:关键在于利用一元一次方程求出a 的值. 据题意,有关于a 的方程16a -16-6a =-1,解得a =1.5;所以关于x 的代数为A =1.5x 2-4x -9,于是,当x =-5时,有A =1.5×(-5)2-4×(-5)-9=37.5+20-9=48.5.第二套:《一元一次方程》提高测试一 填空题(本题共20分,每小题4分):1.x = 时,代数式532-x 与代数式332-x 的差为0;答案:9;提示:得方程532-x -(332-x )=0,解得x =9. 2.x =3是方程4x -3(a -x )=6x -7(a -x )的解,那么a = ; 答案:29; 提示:据方程的解的意义得关于a 的方程12-3(a -3)=18-7(a -3),解得 a =29. 3.x =9 是方程b x =-231的解,那么=b ,当=b 1时,方程的解 ;答案:1,x =9或x =3. 提示:当=b 1时,方程b x =-231转化为两个一元一次方程 1231=-x 或 1231-=-x ,解得 9=x 或3=x .4.若是2ab 2c 3x -1与-5ab 2c 6x +3是同类项,则x = ; 答案:34-. 提示:据同类项的意义得方程 3x -1= 6x +3,解得x =34-. 5.x =43是方程|k |(x +2)=3x 的解,那么k = . 答案:119±. 提示:根据方程的解的意义得关于 k 的方程|k |(43+2)=3×43,解得|k |=119所以 119±=k . 二 解下列方程(本题50分,每小题10分):1.2{3[4(5x -1)-8]-20}-7=1;解:2{3[4(5x -1)-8]-20}-7=1, 2{3[20x -12]-20}-7=1, 2{60x -56}-7=1,60x -56=4, 60x =60, x =1;2.⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-46151413121x =1; 解:先去分母,得 ⎢⎢⎣⎡ ⎝⎛+⎥⎦⎤-⎪⎪⎭⎫-461514131x =2, ⎝⎛-=-⎪⎪⎭⎫-6615141x ,0151=-x , 5=x ; 3.x -2[x -3(x +4)-5]=3{2x -[x -8(x -4)]}-2; 解:先去小括号,再去中括号、大括号,及时合并同类项,得x -2[x -3x -12-5]=3{2x -[x -8x +32]}-2, x +4x +34=3{2x +7x -32}-2, 5x +34=27x -98,-22x =-132,x =6;4.03.04.05233.12.188.1=-----x x x ; 解:先把系数化为整数,得 03450203013128018=-----x x x , 再去分母,两边都乘以60,得0)450(20)313(3)8018(5=-----x x x ,去括号,合并同类项,得01311310=+-x , 101=x ; 6.45234x x x x =---. 解:去分母,得 x x x x 5)234(4=---, x x x x 5)34(24=---, 去括号,整理,得x x 3382=-, 去分母3,解得78-=x . 三 解下列应用问题(本题30分,每小题10分):1.用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40 m 3, 第一架工作16小时,第二架工作24小时,共掘土8640 m 3,问每架掘土机每小时可以掘土多少m 3?解:设第一架掘土机每小时掘土x m 3 ,那么,第二架掘土机每小时掘土(x -40)m 3,依题意 ,有16x +24(x -40)= 8640,解得 x = 240所以,第一架掘土机每小时掘土240立方米,第二架掘土机每小时掘土200 m 32.甲、乙、丙三个工厂共同筹办一所厂办学校,所出经费不同,其中甲厂出总数的72,乙厂出甲丙两厂和的21,已知丙厂出了16000元.问这所厂办学校总经费是多少,甲乙两厂各出了多少元?解:设这所厂办学校总经费是x 万元,依题意,有 72x +21(72x +1.6)= x -1.6 , 解得 x = 4.2所以,总经费42000元,甲厂出12000元,乙厂出14000元.3.一条山路,从山下到山顶,走了1小时还差1km ,从山顶到山下,用50分钟可以走完.已知下山速度是上山速度的1.5倍,问下山速度和上山速度各是多少,单程山路有多少km .解:设上山速度为每小时x km ,那么下山速度为每小时1.5xkm ,依题意,有x +1=65×1.5x , 解得 x = 4所以,上山速度为每小时4 km ,下山速度为每小时6 km ,单程山路为5 km .第三套:《二元一次方程》基础测试(一)填空题(每空2分,共26分):1.已知二元一次方程1213-+y x =0,用含y 的代数式表示x ,则x =_________;当y =-2时,x =___ ____.【提示】把y 作为已知数,求解x .【答案】x =62y -;x =32. 2.在(1)⎩⎨⎧-==23y x ,(2)⎪⎩⎪⎨⎧-==354y x ,(3)⎪⎪⎩⎪⎪⎨⎧-==2741y x 这三组数值中,_____是方程组x -3y =9的解,______是方程2 x +y =4的解,______是方程组⎩⎨⎧=+=-4293y x y x 的解.【提示】将三组数值分别代入方程、方程组进行检验.【答案】(1),(2);(1),(3);(1).【点评】方程组的解一定是方程组中各个方程共同的解.3.已知⎩⎨⎧=-=54y x ,是方程41x +2 my +7=0的解,则m =_______.【提示】把⎩⎨⎧=-=54y x 代入方程,求m .【答案】-53. 4.若方程组⎩⎨⎧=-=+137by ax by ax 的解是⎩⎨⎧-=-=12y x ,则a =__,b =_.【提示】将⎩⎨⎧-=-=12y x 代入⎩⎨⎧=-=+137by ax by ax 中,原方程组转化为关于a 、b 的二元一次方程组,再解之.【答案】a =-5,b =3.5.已知等式y =kx +b ,当x =2时,y =-2;当x =-21时,y =3,则k =____,b =____.【提示】把x 、y 的对应值代入,得关于k 、b 的二元一次方程组.【答案】k =-2,b =2.【点评】通过建立方程组求解待定系数,是常用的方法.6.若|3a +4b -c |+41(c -2 b )2=0,则a ∶b ∶c =_________.【提示】由非负数的性质,得3 a +4 b -c =0,且c -2b =0.再用含b 的代数式表示a 、c ,从而求出a 、b 、c 的值.【答案】a =-32b ,c =2b ;a ∶b ∶c =-2∶3∶6. 【点评】用一个未知数的代数式表示其余的未知数,是一种常用的有效方法.7.当m =_______时,方程x +2y =2,2x +y =7,mx -y =0有公共解.【提示】先解方程组⎩⎨⎧=+=+7222y x y x ,将求得的x 、y 的值代入方程mx -y =0,或解方程组⎪⎩⎪⎨⎧=-=+=+.07222y mx y x y x【答案】⎩⎨⎧-==14y x ,m =-41.【点评】“公共解”是建立方程组的依据.8.一个三位数,若百位上的数为x ,十位上的数为y ,个位上的数是百位与十位上的数的差的2倍,则这个三位数是_______________.【提示】将各数位上的数乘相应的位数,再求和.【答案】100 x +10 y +2(x -y ).(二)选择题(每小题2分,共16分):9.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,其中属于二元一次方程组的个数为………………………………………………( )(A )1 (B )2 (C )3 (D )4【提示】方程组(2)中含有三个未知数,方程组(3)中y 的次数都不是1,故(2)、(3)都不是二元一次方程组.【答案】B .10.已知 2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为………………………( )(A )2 (B )-2 (C )1 (D )-1【提示】由同类项定义,得⎩⎨⎧-==+b a ab 42325,解得⎩⎨⎧=-=21b a ,所以b a =(-1)2=1.【答案】C .11.已知方程组⎩⎨⎧-=-=+1242m ny x n y mx 的解是⎩⎨⎧-==11y x ,那么m 、n 的值为……( )(A )⎩⎨⎧-==11n m (B )⎩⎨⎧==12n m (C )⎩⎨⎧==23n m (D )⎩⎨⎧==13n m 【提示】将⎩⎨⎧-==11n m 代入方程组,得关于m 、n 的二元一次方程组解之.【答案】D . 12.三元一次方程组⎪⎩⎪⎨⎧=+=+=+651x z z y y x 的解是…………………………………………( )(A )⎪⎩⎪⎨⎧===501z y x (B )⎪⎩⎪⎨⎧===421z y x (C )⎪⎩⎪⎨⎧===401z y x (D )⎪⎩⎪⎨⎧===014z y x 【提示】把三个方程的两边分别相加,得x +y +z =6或将选项逐一代入方程组验证,由x +y =1知(B )、(D )均错误;再由y +z =5,排除(C ),故(A )正确,前一种解法称之直接法...;后一种解法称之逆推验证法......【答案】A . 【点评】由于数学选择题多为单选题——有且只有一个正确答案,因而它比一般题多一个已知条件:选择题中有且只有一个是正确的.故解选择题除了直接法以外,还有很多特殊的解法,随着学习的深入,我们将逐一向同学们介绍.13.若方程组⎩⎨⎧=+=-+14346)1(y x y a ax 的解x 、y 的值相等,则a 的值为……………( )(A )-4 (B )4 (C )2 (D )1【提示】把x =y 代入4x +3y =14,解得x =y =2,再代入含a 的方程.【答案】C .14.若关于x 、y 的方程组⎩⎨⎧=-=+k y x ky x 73的解满足方程2x +3y=6,那么k 的值为( )(A )-23 (B )23 (C )-32 (D )-23 【提示】把k 看作已知常数,求出x 、y 的值,再把x 、y 的值代入2 x +3 y =6,求出k .【答案】B .15.若方程y =kx +b 当x 与y 互为相反数时,b 比k 少1,且x =21,则k 、b 的值分别是…………( ) (A )2,1 (B )32,35 (C )-2,1 (D )31,-32【提示】由已知x =21,y =-21,可得⎪⎩⎪⎨⎧=-+=-.12121b k b k 【答案】D .16.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组……………………………( )(A )⎩⎨⎧=-=+y x y x 3847 (B )⎩⎨⎧=++=x y x y 3847(C )⎩⎨⎧+=-=3847x y x y (D )⎩⎨⎧+=+=3847x y x y 【提示】由题意可得相等关系:(1)7组的学生数=总人数-4;(2)8组的人数=总人数+3.【答案】C .(三)解下列方程组(每小题4分,共20分):17.⎩⎨⎧-=-=-.557832y x y x 【提示】用加减消元法先消去x .【答案】⎩⎨⎧-=-=.65y x18.⎪⎪⎩⎪⎪⎨⎧=+=+.15765545.04332y x y x 【提示】先整理各方程,化为整数系数的方程组,用加减法消去x .【答案】⎪⎩⎪⎨⎧=-=.223y x 19.⎪⎩⎪⎨⎧=+=4.1%40%2552y x y x 【提示】由第一个方程得x =52y ,代入整理后的第二个方程;或由第一个方程,设x =2 k ,y =5 k ,代入另一个方程求k 值.【答案】⎪⎪⎩⎪⎪⎨⎧==.15142528y x20.⎩⎨⎧-=++=+.b a y x b a y x 2127521257(a 、b 为非零常数) 【提示】将两个方程左、右两边分别相加,得x +y =2a ①,把①分别与两个方程联立求解.【答案】⎩⎨⎧-=+=.b a y b a x 【点评】迭加消元,是未知数系轮换方程组的常用解法.21.⎪⎩⎪⎨⎧=++=-+=+-.10076702302z y x z y x z y x 【提示】将第一个方程分别与另外两个方程联立,用加法消去y .【答案】⎪⎩⎪⎨⎧===.753z y x【点评】分析组成方程组的每个方程中各未知项系数的构成特点,是选择恰当解题方法的关键所在,因而解题前要仔细观察,才能找出解题的捷径.(四)解答题(每小题6分,共18分):22.已知方程组⎩⎨⎧+=+=+25332n y x n y x 的解x 、y 的和为12,求n 的值.【提示】解已知方程组,用n 的代数式表示x 、y ,再代入 x +y =12.【答案】n =14.23.已知方程组⎩⎨⎧-=+=-1332by ax y x 与⎩⎨⎧=+=+3321123by ax y x 的解相同,求a 2+2ab+b 2 的值.【提示】先解方程组⎩⎨⎧=+=-1123332y x y x 求得x 、y ,再代入方程组⎩⎨⎧=+-=+3321by ax by ax 求a 、b .【答案】⎩⎨⎧=-=52b a . 【点评】当n 个方程组的解相同,可将方程组中的任意两个方程联立成新的方程组.24.已知代数式x 2+ax +b 当x =1和x =-3时的值分别为0和14,求当x =3时代数式的值.【提示】由题意得关于a 、b 的方程组.求出a 、b 写出这个代数式,再求当x =3时它的值.【答案】5.【点评】本例在用待定系数法求出a 、b 的值后,应写出这个代数式,因为它是求值的关键步骤.(五)列方程组解应用问题(每1小题10分,共20分):25.某校去年一年级男生比女生多80人,今年女生增加20%,男生减少25%,结果女生又比男生多30人,求去年一年级男生、女生各多少人.【提示】设去年一年级男生、女生分别有x 人、y 人,可得方程组⎪⎩⎪⎨⎧=--+=-.30)100251()100201(80x y y x 【答案】x =280,y =200.26.A 、B 两地相距20千米,甲、乙两人分别从A 、B 两地同时相向而行,两小时后在途中相遇.然后甲返回A 地,乙继续前进,当甲回到A 地时,乙离A 地还有2千米,求甲、乙两人的速度.【提示】由题意,相遇前甲走了2小时,及“当甲回到A地时,乙离A 地还有2千米”,可得列方程组的另一个相等关系:甲、乙同向行2小时,相差2千米.设甲、乙两人的速度分别为x 千米/时,y 千米/时,则⎩⎨⎧=-=+.2)(220)(2y x y x【答案】甲的速度为5.5千米/时,乙的速度为4.5千米/时.第四套:中考数学试题汇编 一次方程(组)一、选择题1、(2019陕西课改)中国人民银行宣布,从2019年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2019年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x 元,则所列方程正确的是( )CA .50005000 3.06%x -=⨯B .500020%5000(1 3.06%)x +⨯=⨯+C .5000 3.06%20%5000(1 3.06%)x +⨯⨯=⨯+D .5000 3.06%20%5000 3.06%x +⨯⨯=⨯2、(2019浙江丽水)方程组5210x y x y +=⎧⎨+=⎩ ,由②-①,得正确的方程是( )BA .310x = B . 5x = C . 35x =- D . 5x =-3、(2019江苏苏州)方程组379475x y x y +=⎧⎨-=⎩的解是 ( )D A .21x y =-⎧⎨=⎩ B .237x y =-⎧⎪⎨=⎪⎩ C .237x y =⎧⎪⎨=-⎪⎩ D .237x y =⎧⎪⎨=⎪⎩4、(2019湖南株州)二元一次方程组320x y x y -=-⎧⎨+=⎩的解是:( ) AA. 12x y =-⎧⎨=⎩ B. 12x y =⎧⎨=-⎩ C. 12x y =-⎧⎨=-⎩ D. 21x y =-⎧⎨=⎩5、(2019山东淄博)若方程组 2313,3530.9a b a b -=⎧⎨+=⎩ 的解是 8.3,1.2,a b =⎧⎨=⎩ 则方程组 2(2)3(1)13,3(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是( )A(A ) 6.3,2.2x y =⎧⎨=⎩ (B )8.3,1.2x y =⎧⎨=⎩ (C )10.3,2.2x y =⎧⎨=⎩ (D )10.3,0.2x y =⎧⎨=⎩ 6、(2019广州)以11x y =⎧⎨=-⎩为解的二元一次方程组是( )CA .01x y x y +=⎧⎨-=⎩B .01x y x y +=⎧⎨-=-⎩ C .02x y x y +=⎧⎨-=⎩ D .02x y x y +=⎧⎨-=-⎩ 7、(2019四川东山)某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是( )D A.14016615x y x y +=⎧⎨+=⎩ B.14061615x y x y +=⎧⎨+=⎩ C.15166140x y x y +=⎧⎨+=⎩ D.15616140x y x y +=⎧⎨+=⎩ 8、(2019湖北宜宾)某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( )DA .⎩⎪⎨⎪⎧x –y = 49y =2(x +1)B .⎩⎪⎨⎪⎧x +y = 49y =2(x +1)C .⎩⎪⎨⎪⎧x –y = 49y =2(x –1) D .⎩⎪⎨⎪⎧x +y = 49y =2(x –1) 9、(2019浙江舟山)三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 .510x y =⎧⎨=⎩二、填空题1、(2019湖南湘潭)某市在端年节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x 人,那么可列出一元一次方程为 .答:15(x +2)=3302、(2019湖南怀化)方程组3520x y x y +=⎧⎨-=⎩的解是 .12x y =⎧⎨=⎩3、(2019浙江杭州)三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解。

中考数学复习《二元一次方程组》专项练习题及答案

中考数学复习《二元一次方程组》专项练习题及答案

中考数学复习《二元一次方程组》专项练习题及答案学校:___________班级:___________姓名:___________考号:___________温故而知新:二元一次方程组 1、二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是( 2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

3、二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。

4二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

5、二元一次方正组的解法 (1)代入法(2)加减法 6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。

7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。

练习题一、选择题:(本题共8小题,每小题5分,共40分.) 1.方程组02x y x y -=⎧⎨+=⎩的解为( )A .11x y =⎧⎨=-⎩B .11x y =-⎧⎨=⎩C .20x y =⎧⎨=⎩D .11x y =⎧⎨=⎩2.为响应“科教兴国”的战略号召,某学校计划成立创客实验室,现需购买航拍无人机和编程机器人,已知购买2架航拍无人机和3个编程机器人所需费用相同,购买4个航拍无人机和7个编程机器人共需3480元,设购买1架航拍无人机需x 元,购买1个编程机器人需y 元,则可列方程组为( )A .23473480x y x y =⎧⎨+=⎩B .3=24+7=3480x yx y ⎧⎨⎩C .2=37+4=3480x yx y ⎧⎨⎩D .3=27+4=3480x yx y ⎧⎨⎩3.小丽在用“加减消元法”解二元一次方程组524239x y x y -=⎧⎨+=⎩①②时,利用a b ⨯+⨯①②消去x ,则a 、b 的值可能是( ) A .2a =和5b = B .3a =和2b =C .3a =-和2b =D .2a =和=5b -4.有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币多少枚( ) A .22 B .16 C .14 D .12 5.已知 12x y =-⎧⎨=⎩是关于 x y 、 的二元一次方程 3mx y -= 的一个解,则 m 的值是( ) A .-1B .1C .-5D .56.若方程组31331x y ax y a +=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为( )A .-1B .1C .0D .无法确定7.已知关于x ,y 的方程组 111222a x b y c a x b y c +=⎧⎨+=⎩ 的解为 24x y =⎧⎨=⎩,则关于方程组()()()()11122212131213a x b y c a x b y c ++-=⎧⎪⎨++-=⎪⎩ 的解为( ) A .57x y =⎧⎨=⎩B .513x y =⎧⎨=⎩C .13x y =⎧⎨=⎩D .17x y =⎧⎨=⎩8.已知关于x ,y 的二元一次方程组2332x y a x y a +=-⎧⎨-=⎩,有下列说法:①当a =2时,方程的两根互为相反数;②不存在自然数a ,使得x ,y 均为正整数;③x ,y 满足关系式x -5y =6;④当且仅当a =-5时,解得x 为y 的2倍.其中正确的是( ) A .①②③④ B .①③④ C .②③ D .①②④ 二、填空题:(本题共5小题,每小题3分,共15分.)9.某班级为奖励网络课堂线上学习先进个人,花了800元钱购买甲、乙两种奖品共60件,其中甲种奖品每件16元,乙种奖品每件12元求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,根据题意可列方程组为 . 10.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买 支.11.以方程组 12y x y x =+⎧⎨=-+⎩的解为坐标的点(x,y)在第 象限.12.已知 21x y =⎧⎨=⎩ 是二元一次方程组 71ax by ax by +=⎧⎨-=⎩ 的解,则 a b - = 。

中考复习一(一元一次方程、分式方程、二元一次方程组)

中考复习一(一元一次方程、分式方程、二元一次方程组)

中考总复习(一)一.解答题(共30小题)1.(2014秋•望江县期末)解方程:﹣=1.2.(2013秋•白河县期末)3.(2013秋•江西期末).4.(2014秋•合水县校级期末)解方程:(1)(2)﹣=3.5.(2014秋•巩留县校级期末)(1)5x+2(﹣x+3)=﹣6(2).6.(2014秋•集美区校级期末)解方程.7.(2013秋•新洲区期末)x+=1﹣8.(2013秋•毕节地区校级期末)3x﹣2=1﹣2(x+1)9.(2013秋•江都市校级月考)已知关于x的方程5m+3x=1+x的解比关于x的方程2x+m=3m的解相同,求m的值.10.(2014秋•太和县期末)解方程:﹣=1.11.(2013•梧州)解方程:.12.(2014•淮阴区校级模拟)①解方程组:;②计算:﹣(π﹣1)0﹣2cos45°+.13.(2014春•界首市校级期末)已知方程组与方程x+y=1的解相同,求m的值.14.(2014春•富顺县校级期末)解方程组:(1);(2)2x﹣3y=4x+y=﹣6;(3).15.(2014春•宜宾校级期末)解方程和方程组①②.16.(2014春•吴兴区期末)解方程或方程组(1);(2)+2=.第1页(共2页)17.(2014春•仪征市校级期末)解方程组(1);(2).18.(2014春•沧浪区校级期末)解方程组与不等式:(1)(2)解不等式:﹣>1.19.(2013秋•本溪期末)(1)计算:2+﹣;(2)解方程组:.20.(2014•湖州)解方程组.21.(2014•满洲里市模拟)解不等式组:.22.(2014•白云区校级模拟)求不等式组的整数解.23.(2014•黄冈模拟)求不等式组的整数解.24.(2014•溧水县校级模拟)解不等式组.25.(2014•苏州)解分式方程:+=3.26.(2015•茂名模拟)解方程:27.(2014秋•西城区校级期中).28.(2014•仙桃)解方程:.29.(2014•宿迁)解方程:.30.(2013秋•通州区期末)解分式方程:.第2页(共2页)。

2012年中考数学一元一次方程试题解析

2012年中考数学一元一次方程试题解析

2012年中考数学一元一次方程试题解析2011-2012全国各中考数学试题分考点解析汇编一元一次方程一、选择题 1.(2011重庆江津4分)已知3是关于的方程2 - =1的解,则的值是[ A、�5 B、5 C、7 D、2 【答案】B。

【考点】一元一次方程的解的解一元一次方程。

【分析】首先根据一元一次方程的解的定义,将 =3代入关于的方程2 - =1,然后解关于的一元一次方程即可:6- =1, =5。

故选B。

2.(2011x疆自治区、兵团5分)已知:a=-a,则数a等于 A.0 B.-1 C.1 D.不确定【答案】A。

【考点】解一元一次方程。

【分析】因为a=-a,所以a+a=0,即2a=0,则a=0。

故选A。

二、填空题 1.(2011广西柳州3分)把方程改写成用含的式子表示的形式,得y=_ ▲ .【答案】3-2 。

【考点】方程变形。

【分析】将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1即可。

2.(2011湖南郴州3分)一元一次方程2 +4=0解是▲ .【答案】 =�2。

【考点】解一元一次方程。

【分析】移项得,2 =�4,系数化为1得, =�2。

3.(2011广东湛江4分)若 =2是关于的方程2 +3m -1=0的解,则m的值等于▲.【答案】-1。

【考点】方程的解。

【分析】使方程左右两边的值相等的未知数的值是该方程的解.将方程的解代入方程可得关于m的一元一次方程,从而可求出m 的值。

4.(2011贵州遵义4分)方程的解为▲ .[来源:学.科.网] 【答案】 = 。

【考点】解一元一次方程。

【分析】移项,合并同类项,系数化1,求出的值:3 -1= ,2 =1, = 。

三、解答题 1.(2011山东滨州7分)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为()去分母,得3(3 +5)=2(2 �1).()去括号,得9 +15=4 �2.()(),得9 �4 =�15�2.()合并,得5 =�17.(合并同类项法则)(),得 = .()【答案】解:原方程可变形为(分式的基本性质)去分母,得3(3 +5)=2(2 �1).(等式性质2)去括号,得9 +15=4 �2.(去括号法则或乘法分配律)(移项),得9 �4 =�15�2.(等式性质1)合并,得5 =�17.(合并同类项法则)(系数化为1),得 = .(等式性质2)【考点】解一元一次方程。

2012年长沙市中考数学总复习 专题二 方程与不等式 一元一次方程和二元一次方程组课件

2012年长沙市中考数学总复习 专题二 方程与不等式 一元一次方程和二元一次方程组课件

顺水航行速度=静水速度 水流速度 顺水航行速度 静水速度+水流速度 静水速度 逆水航行速度=静水速度-水流速度 逆水航行速度=静水速度-水流速度 静水速度
销售问题中各量之间的关系: 销售问题中各量之间的关系:
售价 - 进价 = 利润 利润率× 利润 = 利润率×进价 进价=利润率× 售价- 进价=利润率×进价 售价=标价× 售价=标价×打折的折扣
a1x + b1 y = c1, a2 x + b2 y = c2.
3. 二元一次方程组的解解: 二元一次方程组的解解: (1)加减消元解; 加减消元解; 加减消元解 (2)代式消元解 代式消元解. 代式消元解
例一、解方程 3 + ( x + 2) 2[(x − 1) − (2x + 1)] = 6
解:去去号由: 3x + 2 − 2x − 4 = 6
3 移项由: x − 2x = 6 − 2 + 4
合合由: x = 8
x + y = 7 ① 例二、解方程组 3x + y = 17 ②
由y = 7 − x ③ 3 把 ③ 式代式② 由:x + 7 − x = 17, 由x = 5 把x = 5代式① 由 : y = 2 解解一:由
(五)二元一次方程组 五 二元一次方程组 1.两个含有两个未已数,且未已数的次数 两个含有两个未已数, 两个含有两个未已数 是一次的整式方程组成的一组方程,叫做 是一次的整式方程组成的一组方程 叫做 二元一次方程组. 二元一次方程组 2.二元一次方程组的一般形式 二元一次方程组的一般形式: 二元一次方程组的一般形式
例例、若关于 x, y的二元一次方程组
x + y = 5k的解的是二元一次方程 x − y = 9k 3 2x + 3y = 6的解,则 k = _______ 4

(中考真题)二元一次方程组计算题专项练习50题(有答案)

(中考真题)二元一次方程组计算题专项练习50题(有答案)

中考真题之《二元一次方程组》1.(2012•德州)已知,则a+b 等于( )A. 3 B C. 2 D. 1 2.(2012菏泽)已知⎩⎨⎧==12y x 是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则n m -2的算术平方根为( )A .±2B . 2C .2D . 43.(2012临沂)关于x 、y 的方程组3,x y m x my n -=⎧⎨+=⎩的解是1,1,x y =⎧⎨=⎩ 则m n -的值是( )A .5B .3C .2D .1 4.(2012•杭州)已知关于x ,y 的方程组,其中﹣3≤a ≤1,给出下列结论:①是方程组的解;②当a=﹣2时,x ,y 的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a 的解;④若x ≤1,则1≤y ≤4.其中正确的是( ) A .①② B .②③ C .②③④ D .①③④ 5. (2012广东湛江) 请写出一个二元一次方程组 ,使它的解是.6.(2012广东)若x ,y 为实数,且满足|x ﹣3|+=0,则()2012的值是 .7.(2012安顺)以方程组的解为坐标的点(x ,y )在第 象限.13. (2011湖南益阳,2,4分)二元一次方程21-=x y 有无数多个解,下列四组值中不是..该方程的解的是 17. (2011山东枣庄,6,3分)已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( )A .-1B .1C .2D .320. (2011福建泉州,12,4分)已知x 、y 满足方程组⎩⎨⎧=+=+,42,52y x y x 则x -y 的值为.23. (2011安徽芜湖,13,5分)方程组237,38.x y x y +=⎧⎨-=⎩的解是 .24. (2011湖北鄂州,7,3分)若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.27.(2011湖北黄石,20,8分)解方程:)10553(4222=--+--y x y x 。

2012届中考数学专项复习训练题 一元一次方程和二元一次方程组

2012届中考数学专项复习训练题 一元一次方程和二元一次方程组

2012届中考数学专项复习训练题一元一次方程和二元一次方程组一.填空题:1.已知2=x 是方程042=-+m x 的一个根,则=m ;2.当=m 时,方程m x m x +=-523的解是3;3.已知单项式1328-m y x 的次数是4,那么=m4.已知12212321+--kk y x y x 和是同类项,那么_____=k ; 5.当=m ,03546=--m x 是关于x 的一元一次方程;6.使方程11-=+m x m )(有解的m 的值是 ; 7.当n 为_____时,123-n x 与2+-n x 是同类项;8.某数的21加上4,比这个数的3倍少27,则这个数是_____________;9.当____=x 时,代数式52-x 与31互为倒数;10.在公式h b a S )(21+=中,则;4,5,15===b h S ,则.____=a ;11.如果5=x 是方程a ax 4105-=+的解,那么_____=a ;12.在632=-y x 中,有含x 的代数式表示y 为 ,当0=y 时,____=x13.若⎩⎨⎧==20y x ,⎩⎨⎧==12y x 是方程组7=+by ax 的两组解,则_________,==b a ; 14.已知方程组⎩⎨⎧=+=+8272y x y x ,则__________,=+=-y x y x ; 15.写出一个以⎩⎨⎧==70y x 为解的二元一次方程组是 ;16.已知⎩⎨⎧==23y x 是二元一次方程63=-ay x 的一个解,则_____=a ;17.已知3+-y x 与2)(2y x +互为相反数,则222y xy x ++的值是 ;18.若二元一次方程组⎩⎨⎧=-=+12532y x y x 的解是方程k y x =-28的解,则_____=k ; 19.如果关于x 、y 的二元一次方程组⎩⎨⎧=+=-152163by x ay x 的解是⎩⎨⎧==17y x ,那么关于___=+b a 20.若032=-+-y x ,则______=xy ;21.老师在课堂上给出一个二元方程xy y x =+,让同学们找出它的解是 ⎩⎨⎧==0,0y x ;乙写出的解是⎩⎨⎧==2,2y x 你找出的与甲、乙不相同的一组解.......是______________________________.二.选择题:22.下列四个式子中,方程的是 ( )A .104321=+++B . 32-xC . 1=xD . 21|211|=- 23.在解方程133221=+--x x 时,去分母正确的是 ( ) A .1)32(2)1(3=+--x x B .6)32(2)1(3=+--x xC .13413=+--x xD .63413=+--x x24.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后得新数比原数大9,则原来的两数是 ( )A . 54B . 27C . 72D . 4525.一项工程甲单独做要x 天完成,乙单独做需要y 天完成,两人合作这项工程需要的天数为 ( )A . y x +1B . y x 11+C . xy 1D . yx 111+26.下列方程的解是2=x 的是 ( )A 1213-=+x xB 0223=+-x xC 1313+=-x x D223+=x x27.下列各对方程中,解相同的方程是 ( )A 3=x 与093=+xB 63=+x 与xx x 6)3(=+ C 3547=+x 与6517=-x D 93=x 与093=+x28.若代数式)42(6545yy -+-的值是2,则=y( )A 0B 2C 3 D429.已知长方形周长为40cm ,长为x cm ,则宽为( )A cm x )40(-B cm x )20(-C cm x )240(-D cm x 240- 30.一件衣服按原价的九折出售,现价a 元,那么原价是 ( ) Aa 109元 B a 910元 C a 1011元 D a 1110元 31.方程组⎩⎨⎧=+=-53234y x k y x 的解x 与y 的值相等,则=k ( ) A 1或-1 B 1 C 5 D -532.若3272b a -与y x x b a ++1101是同类项,则x 、y 的值为 ( )A ⎩⎨⎧==31y xB ⎩⎨⎧=-=2,2y xC ⎩⎨⎧==21y xD ⎩⎨⎧==32y x 33.在等式b kx y +=中,当1-=x 时,0=y ;当0=x 时,1-=y ,则这个等式是( )A 1-=x yB 1+=x yC 1--=x yD 1+-=x y34.若方程073,0452=-+=++z y x z y x ,则=-+z y x( )A 不能求出B 0C 1 D235.一个两位数,它的十位上的数与个位上的数的和为5,符合条件的两位数有 ( )A 4个B 5个C 6个D 无数多个36.某种商品进价为a 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动.这时一件商品的售价为 ( )A a 元B a 8.0元C a 04.1元D a92.0元37.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打 ( )A 6折B 7折C 8折D 9折38.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水 ( )A. 3瓶B. 4瓶C. 5瓶D.6瓶三.解答题:39.()2233554--+=--+x x x x 40.146151413121=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x41.⎪⎩⎪⎨⎧=+-=653425y x y x 42.⎪⎩⎪⎨⎧=+=-123222n m n m43.⎪⎩⎪⎨⎧=+++-=+-=++0132122z y x z y x z y x 44⎪⎩⎪⎨⎧=++==5.202:5:3:4:z y x z y y x45.为了拓展销路,商店对某种照相机的售价了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价为多少元?资料来源:/xueyuan/。

中考数学总复习《二元一次方程组》练习题附带答案

中考数学总复习《二元一次方程组》练习题附带答案

中考数学总复习《二元一次方程组》练习题附带答案一、单选题(共12题;共24分)1.(2分)关于x 、y 的方程组{x +2y =3mx −y =9m 的解也是方程3x+2y=34的一组解,那么m的值是( ) A .2B .-1C .1D .-22.(2分)如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两顶点上的数加起来,将和写在这条边上,已知AB 边上的数是3,BC 边上的数是7,CD 边上的数是12,则AD 边上的数是( )A .2B .7C .8D .153.(2分)下列方程是二元一次方程的是( )A .2x+3y=zB .4x +y=5C .y= 12(x+8)D .x 2﹣2x ﹣3=04.(2分)若二元一次方程组 {2x +y =3,4x −7y =9 的解为 {x =m,y =n, 则 m −n 的值是( ) A .3B .1C .−13D .25.(2分)如果关于 x,y 的方程组 {x +y =3x −2y =a −2 的解是正数,那a 的取值范围是( ) A .−4<a <5B .a >5C .a <−4D .无解6.(2分)已知{x +2y =−32x +y =7,则代数式x −y 的值为( )A .4B .-4C .-10D .107.(2分)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”,设绳子长x 尺,木条长y 尺,根据题意所列方程组正确的是( )A .{x −y =4.512x −y =1B .{x −y =4.5y −12x =1 C .{x +y =4.5y −12x =1 D .{x −y =4.5x −12y =18.(2分)某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x 辆车,共有y 名学生.则根据题意列方程组为( )A .{45x −35=y 60(x −2)=y −35B .{45x =y −3560(x −2)+35=yC .{45x +35=y60(x −1)+35=yD .{45x =y +35y −60(x −2)=359.(2分)若方程mx+ny=6的两个解是 {x =1y =1 , {x =2y =−1 则m ,n 的值为( ) A .{m =4n =2B .{m =2n =4C .{m =−2n =−4D .{m =−4n =−210.(2分)为保护生态环境,南充市响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。

数学中考专题复习卷:二元一次方程组(含解析)

数学中考专题复习卷:二元一次方程组(含解析)

二元一次方程组一、选择题1.下列各式中是二元一次方程的是()A. x+y=3zB. ﹣3y=2 C. 5x﹣2y=﹣1 D. xy=32.下列方程组中,是二元一次方程组的是()A. B.C.D.3.已知关于x,y的方程组,当x+y=3时,求a的值()A. -4B. 4C. 2D.4.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车辆,37座客车辆,根据题意可列出方程组()A. B. C.D.5.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,则道路的宽为()A. 5米B. 3米 C. 2米 D. 2米或5米6.若|a﹣4|+(b+1)2=0,那么a+b=()A. 5 B. 3 C.﹣3 D. -57.若∠A的两边与∠B的两边分别平行,且∠A的度数比∠B的度数的3倍少40°,则∠B的度数为( )A. 20°B. 55°C. 20°或55° D. 75°8.已知且-1<x-y<0,则k的取值范围是( )A.-1<k<-B.0<k<C.0<k<1D.<k<19.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是()A. 14B.13 C.12 D. 1510.若a,b为实数,且|a+1|+ =0,则(ab)2 017的值是()A. 0 B. 1 C.-1 D.±111.在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有()A. 6种B. 7种 C. 8种 D. 9种12.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )A. B.C. D.二、填空题13.方程组的解为________.14.如果方程组的解与方程组的解相同,则a+b=________.15.某铁路桥长y米,一列x米长的火车,从上桥到过桥共用30秒,整列火车在桥上的时间为20秒,若火车的速度为20米∕秒,则桥长是________米.16.设实数x、y满足方程组,则x+y=________.17.已知:关于x,y的方程组的解为负数,则m的取值范围________.18.若关于x,y的二元一次方程3x﹣ay=1有一个解是,则a=________.19.已知,则=________ .20.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km后报废;若把它安装在后轮,则自行车行驶3000km后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶________ km.三、解答题21.解方程(组)(1)(2)22.已知,xyz ≠0,求的值.23.在端午节来临之际,某商店订购了A型和B型两种粽子.A型粽子28元/千克,B型粽子24元/千克.若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.24.先化简再求值:,其中x,y的值是方程组的解.25.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨。

二元一次方程组-中考数学复习知识讲解+例题解析+强化训练

二元一次方程组-中考数学复习知识讲解+例题解析+强化训练

2012年中考数学复习教材回归知识讲解+例题解析+强化训练二元一次方程组◆知识讲解1.二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.3.二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.◆例题解析例1 已知21x y =⎧⎨=⎩是方程组2(1)21x m y nx y +-=⎧⎨+=⎩的解,求(m+n )的值.【分析】由方程组的解的定义可知21x y =⎧⎨=⎩,同时满足方程组中的两个方程,将21x y =⎧⎨=⎩代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值.【解答】把x=2,y=1代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得 22(1)12211m n ⨯+-⨯=⎧⎨+=⎩ 由①得m=-1,由②得n=0.所以当m=-1,n=0时,(m+n )=(-1+0)=-1.【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程.例2 (2008,长沙市)“5.12”汶川大地震后,灾区急需大量帐篷.•某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000•顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;•若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【解答】(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y顶,则210523178x y x y +=⎧⎨+=⎩解得:x=41;y=32答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务.可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.例3 (2006,海南)某商场正在热销2008年北京奥运会吉祥物“福娃”和徽章两种奥运商品,根据下图提供的信息,•求一盒“福娃”玩具和一枚徽章的价格各是多少元?【分析】本题以图文形式提供了部分信息,主要考查学生运用二元一次方程组解决实际问题的能力.【解答】设一盒“福娃”玩具和一枚徽章的价格分别为x元和y元.依题意,得214523280x yx y+=⎧⎨+=⎩解这个方程组,得12510xy=⎧⎨=⎩故一盒“福娃”玩具的价格为125元,一枚徽章的价格为10元.例4 (2004,昆明市)为满足用水量不断增长的需求,昆明市最近新建甲,乙,•丙三个水厂,这三个水厂的日供水量共计11.8万m3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t土石,运输公司派出A 型,B•型两种载重汽车,A型汽车6辆,B型汽车4辆,分别运5次,可把土石运完;或者A型汽车3辆,B型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)【分析】(1)可设甲水厂的日供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3,由三个水厂的日供水量总和为11.8万m 3,可列方程x+3x+12x+1=11.8; (2)设每辆A 型汽车每次运土石xt ,B 型车每辆每次运土石yt ,•依题意可列方程组30206001530600x y x y +=⎧⎨+=⎩解方程后可求解.【解答】(1)设甲水厂的供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3. 由题意得:x+3x+12x+1=11.8,解得x=2.4. 则3x=7.2,x+1=2.2.答:甲水厂日供水量是2.4万m 3,乙水厂日供水量是7.2万m 3,•丙水厂日供水量是2.2万m 3.(2)设每辆A 型汽车每次运土石xt ,每辆B 型汽车每次运土石yt ,由题意得:30206001530600x y x y +=⎧⎨+=⎩ ∴1015x y =⎧⎨=⎩ 答:每辆A 型汽车每次运土石10t ,每辆B 型汽车每次运土石15t .【点评】本例系统地考查了一元一次方程和二元一次方程组这两个重要内容,在同一背景下提供不同的动作方案是近年中考应用题的发展方法.◆强化训练一、填空题1.若2x m+n -1-3y m -n -3+5=0是关于x ,y 的二元一次方程,则m=_____,n=_____.2.在式子3m+5n -k 中,当m=-2,n=1时,它的值为1;当m=2,n=-3时,它的值是_____.3.若方程组26ax yx by+=⎧⎨+=⎩的解是12xy=⎧⎨=-⎩,则a+b=_______.4.已知方程组325(1)7x ykx k y-=⎧⎨+-=⎩的解x,y,其和x+y=1,则k_____.5.已知x,y,t满足方程组23532x ty t x=-⎧⎨-=⎩,则x和y之间应满足的关系式是_______.6.(2008,宜宾)若方程组2x y bx by a+=⎧⎨-=⎩的解是1xy=⎧⎨=⎩,那么│a-b│=_____.7.某营业员昨天卖出7件衬衫和4条裤子共460元,今天又卖出9件衬衫和6条裤子共660元,则每件衬衫售价为_______,每条裤子售价为_______.8.(2004,泰州市)为了有效地使用电力资源,我市供电部门最近进行居民峰谷用电试点,每天8:00至21:00用电每千瓦时0.55元(“峰电”价),21:00至次日8:00•用电每千瓦时0.30元(“谷电”价),王老师家使用“峰谷”电后,•五月份用电量为300kW·h,付电费115元,则王老师家该月使用“峰电”______kW·h.二、选择题9.二元一次方程3x+2y=15在自然数范围内的解的个数是()A.1个 B.2个 C.3个 D.4个10.已知x ay b=⎧⎨=⎩是方程组||223xx y=⎧⎨+=⎩的解,则a+b的值等于()A.1 B.5 C.1或5 D.0 11.已知│2x-y-3│+(2x+y+11)2=0,则()A.21xy=⎧⎨=⎩B.3xy=⎧⎨=-⎩C.15xy=-⎧⎨=-⎩D.27xy=-⎧⎨=-⎩12.在解方程组278ax bycx y-=⎧⎨+=⎩时,一同学把c看错而得到22xy=-⎧⎨=⎩,正确的解应是32xy=⎧⎨=⎩,那么a,b,c的值是()A.不能确定 B.a=4,b=5,c=-2C.a,b不能确定,c=-2 D.a=4,b=7,c=213.(2008,河北)如图4-2所示的两架天平保持平衡,且每块巧克力的质量相等,•每个果冻的质量也相等,则一块巧克力的质量是()A.20g B.25g C.15g D.30g14.4辆板车和5辆卡车一次能运27t货,10辆板车和3辆卡车一次能运20t 货,设每辆板车每次可运xt货,每辆卡车每次能运yt货,则可列方程组()A.452710327x yx y+=⎧⎨-=⎩B.452710320x yx y-=⎧⎨+=⎩C.452710320x yx y+=⎧⎨+=⎩D.427510203x yx y-=⎧⎨-=⎩15.七年级某班有男女同学若干人,女同学因故走了14名,•这时男女同学之比为5:3,后来男同学又走了22名,这时男女同学人数相同,那么最初的女同学有()A.39名 B.43名 C.47名 D.55名16.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,•捐款情况如下表:捐款/元 1 2 3 4人数 6 7表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组.()A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩17.甲,乙两人分别从两地同时出发,若相向而行,则ah 相遇;若同向而行,则bh 甲追 上乙,那么甲的速度是乙的速度为( )A .a b b +倍B .b a b +倍C .b a b a +-倍D .b a b a-+倍 18.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺张数,•信封个数分别为( )A .150,100B .125,75C .120,70D .100,150三、解答题19.解下列方程组:(1)(2008,天津市)35821x y x y +=⎧⎨-=⎩(2)(2005,南充市)271132x y y x -=⎧⎪⎨--=⎪⎩20.(2008,山东省)为迎接2008年奥运会,•某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,•已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,•生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,•如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?21.(2008,重庆市)为支持四川抗震救灾,重庆市A,B,C三地现在分别有赈灾物资00t,100t,80t,需要全部运往四川重灾地区的D,E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20t.(1)求这批赈灾物资运往D,E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60t,A地运往D县的赈灾物资为xt(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍,其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25t.则A,B•两地的赈灾物资运往D,E两县的方案有几种?请你写出具体的运送方案:(3)已知A,B,C三地的赈灾物资运往D,E两县的费用如表所示:为及时将这批赈灾物资运往D,E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?22.(2003,常州市)甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?答案1.3;-1 2.-7 3.8 4.k=3355.15y-x=6 6.1 7.20元 80元 8.1009.•C 10.C 11.D 12.B 13.A 14.C 15.C 16.A 17.C 18.A19.(1)由②得y=2x -1 ③把③代入①得:3x+5(2x -1)=8即x=1把x=1代入③得y=1∴原方程组的解为11x y =⎧⎨=⎩(2)化简方程组,得2763x y x y =+⎧⎨+=⎩ ④代入⑤,得y=-3.将y=-3代入,得x=1故原方程组的解是:13x y =⎧⎨=-⎩ 20.设生产奥运会标志x 套,生产奥运会吉祥物y 套,根据题意,得4520000,31030000.x y x y +=⎧⎨+=⎩①×2-②得:5x=10000.∴x=2000.把x=2000代入①得:5y=12000.∴y=2400.答:该厂能生产奥运会标志2000套,生产奥运会吉祥物2400套.21.(1)设这批赈灾物资运往D 县的数量为a (t ),运往E 县的数量为b (t ).由题意,得280,220.a b a b +=⎧⎨=-⎩解得180,100.a b =⎧⎨=⎩ 答:这批赈灾物资运往D 县的数量为180t ,运往E 县的数量为100t .(2)由题意,得1202225x x x-<⎧⎨--≤⎩解得40,45.xx>⎧⎨≤⎩即40<x≤45,∵x为整数,∴x的取值为41,42,43,44,45.则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41t,运往E县59t;B地的赈灾物资运往D县79t,运往E县21t.方案二:A地的赈灾物资运往D县42t,运往E县58t;B地的赈灾物资运往D县78t,运往E县22t.方案三:A地的赈灾物资运往D县43t,运往E县57t;B地的赈灾物资运往D县77t,运往E县23t.方案四:A地的赈灾物资运往D县44t,运往E县56t;B地的赈灾物资运往D县76t,运往E县24t.方案五:A地的赈灾物资运往D县45t,运往E县55t;B地的赈灾物资运往D县75t,运往E县25t.(3)设运送这批赈灾物资的总费用为w元,由题意,得w=220x+250(100-x)+200(120-x)+220(x-20)+200×60+210×20=-10x+60800.因为w随x的增大而减小,且40<x≤45,x为整数.所以,当x=41时,w有最大值,则该公司承担运送这批赈灾物资的总费用最多为:w=60390(元).22.(1)乙班共付出70×2=140(元),乙班比甲班少付出189-140=49(元).(2)设甲班第一次买苹果xkg,第二次买苹果ykg(x<y).①当x≤30时,则y>30(否则,x+y≤60<70).依题意有703 2.5189x yx y+=⎧⎨+=⎩或者7032189x yx y+=⎧⎨+=⎩解之,得2842xy=⎧⎨=⎩或者4921xy=⎧⎨=⎩(不合题意,舍去)②若30<x≤50,则30<y≤50,或y>50,当y>50,x+y>80>70,不合题意.当30<y≤50时,70×2.5=175<189,也不合题意.③若x>50,y>x,则x+y>70,不合题意.故甲班第一次买苹果28kg,第二次买苹果42kg.。

2012年中考试题159套精选一元一次不等式(组)

2012年中考试题159套精选一元一次不等式(组)

2012年全国中考数学试题分类解析汇编(159套63专题)专题12:一元一次不等式(组)一、选择题1. (2012上海市4分)不等式组2x6x20<>-⎧⎨-⎩的解集是【】A. x>﹣3 B.x<﹣3 C.x>2 D.x<2【答案】C。

【考点】解一元一次不等式组。

【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。

因此,由第一个不等式得:x>﹣3,由第二个不等式得:x>2。

∴不等式组的解集是x>2.故选C。

2. (2012广东广州3分)已知a>b,若c是任意实数,则下列不等式中总是成立的是【】A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc【答案】B。

【考点】不等式的性质。

【分析】根据不等式的性质,应用排除法分别将个选项分析求解即可求得答案:A、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误;B、∵a>b,c是任意实数,∴a﹣c>b﹣c,故本选项正确;C、当a>b,c<0时,ac<bc,而此题c是任意实数,故本选项错误;D、当a>b,c>0时,ac>bc,而此题c是任意实数,故本选项错误.故选B。

3. (2012浙江义乌3分)在x=﹣4,﹣1,0,3中,满足不等式组x22(x1)2<⎧⎨+>-⎩的x值是【】A.﹣4和0 B.﹣4和﹣1 C.0和3 D.﹣1和0 【答案】D。

【考点】解一元一次不等式组,不等式的解集。

【分析】解出不等式组,再检验所给四个数是否在不等式的解集的解集即可:由2(x +1)>-2得x >﹣2。

∴此不等式组的解集为:﹣2<x <2。

x=﹣4,﹣1,0,3中只有﹣1,0在﹣2<x <2内。

故选D 。

4. (2012江苏常州2分)已知a 、b 、c 、d 都是正实数,且a cb d<,给出下列四个不等式: ①a c a+b c+d <;②c a c+d a+b <;③d b c+d a+b <;④b d a+b c+d <。

中考数学专项复习 二元一次方程组综合训练题

中考数学专项复习 二元一次方程组综合训练题

二元一次方程组1.如果⎩⎪⎨⎪⎧x =1,y =-2和⎩⎪⎨⎪⎧x =-1,y =-4都是某二元一次方程的解,则这个二元一次方程可能是( ) A .x +2y =-3 B .2x -y =2 C .x -y =3 D .y =3x -52. 用加减法解方程组⎩⎪⎨⎪⎧3x -2y =3,①4x +y =15 ②时,如果消去y ,最简捷的方法是( ) A .①×4-②×3 B .①×4+②×3C .②×2-①D .①+②×23. 若⎩⎪⎨⎪⎧x =3-m ,y =1+2m ,则y 用只含x 的代数式表示为( ) A .y =2x +7 B .y =7-2x C .y =-2x -5 D .y =2x -54. 一个两位数的两个数位上的数字之和为11,两个数字之差为5,则这个两位数有( )A .0个B .1个C .2个D .4个5. 若二元一次方程组⎩⎪⎨⎪⎧x +y =3,3x -5y =4的解为⎩⎪⎨⎪⎧x =a ,y =b , 则a -b =( ) A .1 B .3 C .-14 D.746. 以⎩⎪⎨⎪⎧x =3,y =2为解的二元一次方程组是( ) A.⎩⎪⎨⎪⎧2x +y =72x -y =1 B.⎩⎪⎨⎪⎧2x +y =52x -y =1 C.⎩⎪⎨⎪⎧2x +y =82x -y =4 D.⎩⎪⎨⎪⎧2x +y =02x -y =-27. 如果|x +y -1|和2(2x +y -3)2互为相反数,那么x ,y 的值为( )A.⎩⎪⎨⎪⎧x =1y =2B.⎩⎪⎨⎪⎧x =-1y =-2C.⎩⎪⎨⎪⎧x =2y =-1D.⎩⎪⎨⎪⎧x =-2y =-1 8. 已知长江比黄河长836 km ,黄河长的6倍比长江长的5倍多1 284 km .若设长江长x km ,黄河长y km ,则下列方程组能满足上述关系的是( )A.⎩⎪⎨⎪⎧x -y =8366y =5x +1 284B.⎩⎪⎨⎪⎧x +y =8365y =6x +1 284 C.⎩⎪⎨⎪⎧y -x =8366y -5x =1 284 D.⎩⎪⎨⎪⎧y -x =8365x =6y +1 284 9. 甲、乙二人相距6 km ,二人同向而行,甲3 h 可追上乙;相向而行,1 h 相遇.若设甲每小时走x km ,乙每小时走y km ,则二人的平均速度各是( )A .3 km/h ,4 km/hB .2 km/h ,4 km/hC .4 km/h ,2 km/hD .4 km/h ,3 km/h10. 十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元;李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮他算一下,需要准备多少门票钱?( )A .300元B .310元C .320元D .330元11. 方程组⎩⎪⎨⎪⎧x +y =1,3x -y =3的解是______. 12. 已知x ,y 满足方程组⎩⎪⎨⎪⎧x +3y =5,3x +y =-1, 则代数式x -y =____. 13. 已知方程3x m -2y n=7是关于x ,y 的二元一次方程,则m +n =____.14. 已知x =1,y =-8是方程3mx -y =-1的一个解,则m 的值是____.15. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧3x =2y ,4x -2y =2,则x 的值为____. 16. 已知x ,y 满足方程组⎩⎪⎨⎪⎧2x +y =5,x =2y , 则y -x 的值是____. 17. 某厂共有140名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么使每天生产出来的产品配成最多套,每天应安排____名工人生产螺栓,____名工人生产螺母.18. 把一根长8 m 的木棒分成两段,其中一段比另一段长1 m ,求这两段木棒的长度.设其中较长的一段为x m ,另一段为y m ,那么列出的二元一次方程组为_______________.19. 牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.那么可供25头牛吃____天.20. 食品安全关乎民生,食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存.某饮料厂为了解A 、B 两种饮料添加剂的添加情况,随机抽检了A 种饮料30瓶,B 种饮料70瓶检测,检测发现,A 种饮料每瓶比B 种饮料每瓶少1 g 添加剂,两种饮料中共加入了添加剂270 g ,求A ,B 两种饮料每瓶各加入添加剂多少克?参考答案:1---10 CDBCD CCACC11. ⎩⎪⎨⎪⎧x =1y =012. -313. 214. -315. 216. -117. 40 20018. ⎩⎪⎨⎪⎧x +y =8,x -y =1 19. 520. 解:设A 种饮料每瓶加入添加剂x g ,B 种饮料每瓶加入添加剂y g ,根据题意,得⎩⎪⎨⎪⎧30x +70y =270,y -x =1,解得⎩⎪⎨⎪⎧x =2,y =3. ∴A 种饮料每瓶加入添加剂2 g ,B 种饮料每瓶加入添加剂3 g .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 一元一次方程和二元一次方程组
一.填空题:
1.已知2=x 是方程042=-+m x 的一个根,则=m ;
2.当=m 时,方程m x m x +=-523的解是3;
3.已知单项式1328-m y x 的次数是4,那么=m
4.已知12212321+--k
k y x y x 和是同类项,那么_____=k ; 5.当=m ,03546=--m x 是关于x 的一元一次方程;
6.使方程
11-=+m x m )(有解的m 的值是 ; 7.当n 为_____时,123-n x 与2+-n x 是同类项;
8.某数的2
1加上4,比这个数的3倍少27,则这个数是_____________; 9.当____=x 时,代数式52-x 与3
1互为倒数; 10.在公式h b a S )(2
1+=中,则;4,5,15===b h S ,则.____=a ; 11.如果5=x 是方程a ax 4105-=+的解,那么_____=a ;
12.在632=-y x 中,有含x 的代数式表示y 为 ,当0=y 时,
____=x 13.若⎩⎨⎧==20y x ,⎩
⎨⎧==12y x 是方程组7=+by ax 的两组解,则_________,==b a ; 14.已知方程组⎩⎨⎧=+=+8
272y x y x ,则__________,=+=-y x y x ;
15.写出一个以⎩
⎨⎧==70y x 为解的二元一次方程组是 ; 16.已知⎩⎨⎧==2
3y x 是二元一次方程63=-ay x 的一个解,则_____=a ;
17.已知3+-y x 与2)(2y x +互为相反数,则222y xy x ++的值
是 ;
18.若二元一次方程组⎩⎨⎧=-=+1
2532y x y x 的解是方程k y x =-28的解,则_____=k ;
19.如果关于x 、y 的二元一次方程组⎩
⎨⎧=+=-152163by x ay x 的解是⎩⎨⎧==17y x ,那么关于
___=+b a
20.若032=-+-y x ,则______=xy ;
21.老师在课堂上给出一个二元方程xy y x =+,让同学们找出它的解是 ⎩
⎨⎧==0,0y x ;乙写出的解是⎩⎨⎧==2
,2y x 你找出的与甲、乙不相同的一组解.......是 二.选择题:
22.下列四个式子中,方程的是 ( )
A.104321=+++
B.32-x
C.1=x
D.2
1|211|=- 23.在解方程13
3221=+--x x 时,去分母正确的是 ( ) A.1)32(2)1(3=+--x x B.6)32(2)1(3=+--x x
C.13413=+--x x
D.63413=+--x x
24.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对
调后得新数比原数大9,则原来的两数是 ( )
A.54
B.27
C.72
D.45
25.一项工程甲单独做要x 天完成,乙单独做需要y 天完成,两人合作这项工程
需要的天数为 ( ) A.y x +1 B.y x 11+ C.xy 1 D.y x 111
+
26.下列方程的解是2=x 的是 ( )
A.1213-=+x x
B.0223=+-x x
C.1313+=-x x
D.223+=x x
27.下列各对方程中,解相同的方程是 ( )
A.3=x 与093=+x
B.63=+x 与x x x 6)3(=+
C.3547=+x 与
65
17=-x D.93=x 与093=+x 28.若代数式)4
2(6545y y -+-的值是2,则=y ( ) A.0 B.2 C.3 D.4
29.已知长方形周长为40cm ,长为x cm ,则宽为 ( )
A.cm x )40(-
B.cm x )20(-
C.cm x )240(-
D.cm x 2
40- 30.一件衣服按原价的九折出售,现价a 元,那么原价是 ( ) A.a 109元 B.a 910元 C.a 1011元 D.a 1110元
31.方程组⎩⎨⎧=+=-5
3234y x k y x 的解x 与y 的值相等,则=k ( )
A.1或-1
B.1
C.5
D.-5
32.若3272b a -与y x x b a ++1101
是同类项,则x 、y 的值为 ( ) A.⎩⎨⎧==31y x B.⎩⎨⎧=-=2
,2y x C.⎩⎨⎧==21y x D.⎩⎨⎧==32y x
33.在等式b kx y +=中,当1-=x 时,0=y ;当0=x 时,1-=y ,则这个等式
A.1-=x y
B.1+=x y
C.1--=x y
D.1+-=x y
34.若方程073,0452=-+=++z y x z y x ,则=-+z y x ( )
A.不能求出
B.0
C.1
D.2
35.一个两位数,它的十位上的数与个位上的数的和为5,符合条件的两位数有
A.4个
B.5个
C.6个
D.无数多个
36某种商品进价为a 元,商店将价格提高30%作零售价销售,在销售旺季过后,
商店又以8折(即售价的80%)的价格开展促销活动.这时一件商品的售价( )
A.a 元
B.a 8.0元
C.a 04.1元
D.a 92.0元
37.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商
店准备打折出售,但要保持利润率不低于5%,则至多可打 ( )
A.6折
B.7折
C.8折
D.9折
38.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,
最多可以喝矿泉水 ( )
A.3瓶
B.4瓶
C.5瓶
D.6瓶
三.解答题:
39.()2233554--+=--+x x x x 40146151413121=⎭
⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 41.⎪⎩⎪⎨⎧=+-=653425y x y x 42.⎪⎩⎪⎨⎧=+=-12
3222n m n m 43.⎪⎩⎪⎨⎧=+++-=+-=++0132122z y x z y x z y x 44⎪⎩
⎪⎨⎧=++==5.202:5:3:4:z y x z y y x
45为了拓展销路,商店对某种照相机的售价了调整,按原价的8折出售,此时
的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价为多少
元?。

相关文档
最新文档