2016年高考数学答题技巧与方法—导数
如何快速解决高考数学中的导数问题
如何快速解决高考数学中的导数问题作为高中数学的一个难点,导数问题是很多考生头疼不已的题目。
但是,掌握了一些解题技巧与方法,我们可以轻松应对导数问题,提高解题的效率。
在这篇文章中,我们将分享一些如何快速解决高考数学中的导数问题的技巧与方法。
一、掌握基本概念在解决导数问题之前,我们首先要掌握基本概念。
在高中数学中,导数是一个数学分支,是描述函数怎样随自变量的变化而变化的一种工具。
在学习导数时,我们需要掌握导数的定义、性质、公式与几何意义等基本概念。
在解决导数问题时,我们需要掌握导数的求解步骤,例如利用导数的基本公式求导、利用链式法则、反函数求导、隐函数求导等方法求导等等。
二、做好基础练习在掌握了基本概念之后,我们要进行基础练习。
在做基础练习的时候,可以从简单到复杂、从易到难的顺序逐步练习。
在做基础练习时,我们需要注意题目的解题方法与技巧,例如如何根据导数的基本公式求导、如何利用链式法则求导等等。
此外,在做练习的过程中,我们还要注意细节,尤其是符号的使用、计算的准确性等。
三、掌握常见题型在做基础练习的过程中,我们可以逐步掌握常见题型。
在高考数学中,导数问题的题型非常多,例如求函数在某点的导数值、求函数在某点的切线方程、求函数的最值等等。
在掌握常见题型的过程中,我们需要注意题目的特点与难点,例如如何根据题目条件求解问题等等。
四、多练习真题多练习真题是巩固知识的重要方法。
在做高考数学真题时,我们可以有针对性地练习导数问题。
在做真题的过程中,我们需要注意不同年份、不同省份的高考数学试卷的出题特点,例如不同年份、不同省份对导数问题的出题难度、范围等等。
在做真题时,我们还可以掌握解题的技巧与方法,例如如何运用公式、如何化简计算等等。
五、学会总结经验学会总结经验也是提高解题效率的重要方法。
在做练习与真题的过程中,我们可以总结解题方法、经验与技巧,并归纳整理成笔记。
在总结经验时,我们要注重理解与应用,将概念、公式、方法等整理出来,形成系统化的知识框架,以便复习时更加方便、快捷。
高考数学导数解题技巧及方法
高考数学导数解题技巧及方法数学是许多人难以攻克的短板,你的数学学得如何?千万不要焦虑,下面就是小编给大家带来的,希望大家喜欢!1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。
2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。
3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。
4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。
5.涌现了一些函数新题型。
6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。
7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。
8.求极值,函数单调性,应用题,与三角函数或向量结合。
1.单调性问题研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。
由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。
2.极值问题求函数 y=f(x)的极值时,要特别注意 f'(x0)=0 只是函数在 x=x0 有极值的必要条件,只有当 f'(x0)=0 且在_0 时,f'(x0)异号,才是函数 y=f(x)有极值的充要条件,此外,当函数在 x=x0 处没有导数时,在 x=x0 处也可能有极值,例如函数 f(x)= |x|在 x=0 时没有导数,但是,在 x=0 处,函数 f(x)= |x| 有极小值。
还要注意的是,函数在 x=x0 有极值,必须是 x=x0 是方程 f'(x)=0 的根,但不是二重根(或 2k 重根),此外,在确定极值点时,要注意,由 f'(x)=0 所求的驻点是否在函数的定义域内。
3.切线问题曲线 y=f(x)在 x=x0 处的切线方程为 y-f(x0)=f'(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展理性思维。
高考数学导数解题技巧
高考数学导数解题技巧
在高考数学中,导数是一个常见的解题工具。
以下是一些解题技巧:
1. 使用定义法求导数:如果需要求一个函数在某个点的导数,可以使用定义法,即计算函数在该点附近的斜率。
具体步骤是计算函数在点x处的斜率极限,即Lim(h→0)[f(x+h)-f(x)]/h。
2. 使用基本导数公式:熟记一些基本导数公式可以帮助简化计算过程。
例如,常数函数的导数为0,幂函数的导数等于幂次乘以原函数的导数,指数函数的导数等于常数乘以指数。
3. 使用导数的性质:导数具有一些重要的性质,如线性性质和乘积规则。
线性性质表示导数是线性运算,即对于两个函数
f(x)和g(x),以及常数a和b,有导数[a*f(x) + b*g(x)]' = a*f'(x) + b*g'(x)。
乘积规则表示两个函数的乘积的导数等于其中一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以第一个函数。
4. 使用链式法则:当一个函数由两个复合函数相乘或相除构成时,可以使用链式法则简化导数的计算。
链式法则可以表示为如果y = f(g(x)),则y' = f'(g(x)) * g'(x)。
5. 注意求导的顺序:当需要求一个复合函数的导数时,要注意求导的顺序。
通常,外函数的导数应该先求出来,再将其嵌入到内函数中求导。
以上是一些常见的高考数学导数解题技巧。
通过熟练掌握这些技巧,可以在考试中更快、更准确地解题。
高考数学导数大题技巧(精选5篇)
高考数学导数大题技巧(精选5篇)高考数学导数大题技巧【篇1】1、选择题部分,高考的选择题部分题型考试的方向基本都是固定的,当你在一轮二轮复习过程中总结出题目的出题策略时,答题就变得很简单了。
比如立体几何三视图,概率计算,圆锥曲线离心率等等试题中都有一些特征,只要掌握思考的切入方法和要点,再适当训练基本就可以全面突破,但是如果不掌握核心方法,单纯做题训练就算做很多题目,突破也非常困难,学习就会进入一个死循环,对照答案可以理解,但自己遇到新的题目任然无从下手。
2、关于大题方面,基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。
对于较难的原则曲线和导数两道题目基本要拿一半的分数,考生复习时可把数学大题的每一道题作为一个独立的版块章节,先总结每道大题常考的几种题型,再专项突破里面的运算方法,图形处理方法以及解题的思考突破口,只要把这些都归纳到位,那么总结的框架套路,都是可以直接秒刷的题目的高考数学导数大题技巧【篇2】1个、多项选择部分,高考选择题的方向基本是固定的,当你在二轮复习过程中总结出题策略时,答案变得很简单。
比如三维几何三视图,概率计算,试题中存在圆锥截面偏心等特点,只要掌握了入门方法和思维要点,经过适当的训练,基本可以全面突破,但是如果不掌握核心方法,单纯做练习题也算做了很多题,也很难突破,学习会进入死循环,比对答案,但是遇到新问题还是无从下手。
2个、关于大话题,基本上是三角函数或求解三角形、顺序、三维几何和概率统计应该是考生努力拿满分的科目。
比较难的原理曲线和导数,基本要一半分,考生在复习时可以将数学大题的每一题作为一个独立的section,先总结一下每个大题经常考的几类题型,然后在计算方法上特别突破,解题的图形处理方法与思维突破,把它全部放在适当的位置,然后总结框架套路,都是可以直接秒刷的话题高考数学导数大题技巧【篇3】1、函数与导数主要考查数学集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
高等数学高考应试技巧导数应用的巧妙技巧
高等数学高考应试技巧导数应用的巧妙技巧在高考数学中,导数作为一个重要的工具,常常在解题中发挥着关键作用。
掌握导数应用的巧妙技巧,不仅能够提高解题的效率,还能增强我们在考试中的自信心。
接下来,让我们一起深入探讨导数在高考中的那些实用技巧。
一、利用导数求函数的单调性函数的单调性是导数应用中最为基础也是最为重要的一个方面。
对于给定的函数$f(x)$,我们先对其求导,得到$f'(x)$。
若$f'(x) > 0$,则函数在相应区间上单调递增;若$f'(x) < 0$,则函数在相应区间上单调递减。
例如,对于函数$f(x) = x^3 3x^2 + 2$,对其求导得到$f'(x) =3x^2 6x$。
令$f'(x) = 0$,解得$x = 0$或$x = 2$。
当$x < 0$时,$f'(x) > 0$,函数单调递增;当$0 < x < 2$时,$f'(x) < 0$,函数单调递减;当$x > 2$时,$f'(x) > 0$,函数单调递增。
通过这种方法,我们可以清晰地确定函数的单调性区间,为后续的解题提供重要依据。
二、利用导数求函数的极值在求函数的极值时,导数同样发挥着重要作用。
首先求出导数$f'(x)$,然后令$f'(x) = 0$,求出可能的极值点。
接着,通过判断导数在极值点两侧的符号来确定是极大值还是极小值。
如果在极值点左侧导数为正,右侧为负,那么该点为极大值点;反之,如果左侧导数为负,右侧为正,那么该点为极小值点。
以函数$f(x) = x^3 3x^2 + 2$为例,已经求出其极值点为$x =0$和$x = 2$。
在$x = 0$左侧,$f'(x) > 0$,右侧$f'(x) < 0$,所以$x = 0$为极大值点,极大值为$f(0) = 2$。
在$x = 2$左侧,$f'(x) < 0$,右侧$f'(x) > 0$,所以$x = 2$为极小值点,极小值为$f(2) =-2$。
数学导数解题技巧
数学导数解题技巧
数学导数是微积分中的重要概念,它描述了函数值随自变量变化的速率。
在解题过程中,掌握一些导数的解题技巧可以帮助我们更快速、准确地解答题目。
1. 理解导数的定义和性质:首先,要熟悉导数的定义和基本性质,包括导数的计算公式和法则。
这是解题的基础。
2. 求导法则:掌握求导的四则运算法则和复合函数求导法则。
这些法则可以帮助我们快速找到函数的导数。
3. 利用导数研究函数的单调性:通过求函数的导数,可以判断函数的单调性。
如果函数在某区间内单调递增或递减,那么它的导数在此区间内非负或非正。
4. 利用导数求极值:当函数的一阶导数等于0的点称为临界点。
在这些点附近,函数的值可能会发生极大或极小的变化。
因此,通过找出临界点,可以找到函数的极值点。
5. 利用导数研究曲线的凹凸性:通过求函数的二阶导数,可以判断曲线的凹凸性。
如果函数的二阶导数大于0,则曲线是凹的;如果二阶导数小于0,
则曲线是凸的。
6. 利用导数求切线方程:给定函数在某点的导数值即为该点处的切线的斜率。
利用这个性质,可以求出切线的方程。
7. 注意实际应用问题:导数在实际问题中有很多应用,如速度、加速度、边际成本、边际利润等。
在解题时要注意将实际问题转化为数学模型。
8. 多做练习题:要想熟练掌握导数的解题技巧,需要多做练习题。
通过不断的练习,可以加深对导数的理解,提高解题能力。
总之,掌握导数的定义和性质是解题的基础,而灵活运用求导法则、研究函数的单调性、极值、凹凸性和切线方程等技巧是提高解题能力的关键。
导数题的十大解题技巧
导数题的十大解题技巧一、导数概念1、先了解基本的导数概念,掌握常用的求导法则,如链式规则、技术分解法之类的解题方法。
二、根据定义式求导数2、若检验某函数的连续性,则可以用极限的方法求出导数,考虑函数的不同取值求导数的变化。
三、图像的理解运用3、利用函数图像求取导数,判断函数的性质,进而探究关于函数的性质,例如凸凹形态等。
四、反比例函数求导4、利用反比例函数求导,了解反比例函数的导数特征,能快速求得反比例函数的导数的函数,有效提高解题效率。
五、指数函数求导5、利用指数函数求导,弄清楚指数函数的导数特点,掌握求取指数函数导数的方法,做到心中有数,有助于提高解题效率。
六、复合函数求导6、利用复合函数求导,它的求导需要利用到链式规则和技术分解法等方法,能够准确求取复合函数的导数,配合其他解题方式,可以准确解出复杂的复合函数的导数。
七、导数的几何意义7、根据函数的解析式对曲线进行分析,用导数的几何意义可以很好的分析函数的凹凸性,分别解决凸函数和凹函数的情况,利用几何图形可以直观的确定曲线的凹凸性。
八、极值点8、从求导的角度出发,考虑一元函数的极值点,掌握求极值点的基本方法,主要是求解一阶导数的极限即可,结合函数的定义域可以判断函数的极值点分布情况。
九、积分函数求导9、由于积分函数可以形成函数,而函数求导可以利用积分函数求导,根据求积分的原则可以对积分函数进行求导,如分部积分法、积分反演法等,考虑函数在定义域的变化,可以熟练掌握积分函数的求导方法。
十、椭圆函数求导10、考虑函数的特点,可以把椭圆函数拆分为有限多个单独的函数,再利用求导法则求取导数,合并求得得出椭圆函数的导数,熟练掌握椭圆函数的求导方法,可以有效提高解题的效率。
求高手指点 高中数学 导数大题 答题思路 和一些方法, 感激不尽
求高手指点高中数学导数大题答题思路和一些方法,感激不尽高中数学中的导数大题是许多学生都非常头疼的一块。
虽然数学在学习上属于理性思维,但是对于掌握导数大题,在数学解决过程中,也会有一定的技巧与策略,因此,想要突破导数大题,可以采取一定的技巧与策略,如下:一、正确的分析问题:解答数学大题前,首先要做的就是正确的分析题目,即弄清楚题目的问题点,明确作者想要考察的问题,如:本题考查的是什么?有哪些关键点?要求能求出什么?等等。
只有把握住了题目中的知识点,才能够更快地把问题解决,才能最快地完成题目,并得到老师的肯定。
二、掌握数学公式:能够快速地解答数学大题,最根本的是要熟悉数学公式,并且掌握一定的方法与技巧。
比如在运用积分法求解导数大题时,需要对导数、积分、微分方程等知识有所掌握,并且掌握基本方法,例如积分求导数,函数求导数,求特解等,才能够解答大题。
三、熟悉解题方法:掌握解题方法,也是应该考虑的重点。
在解答数学大题时,应该会先考虑所学知识涉及到的方法。
比如导数大题,可以采用积分法、函数求导数等方法,采用这样的方法,便可以解决大部分的导数大题;当遇到比较复杂的导数求解时,还可以通过对函数的研究,来分析函数的准确性、导数性,并进一步求取所需要解决的导数。
四、详细推导解决步骤:最后,在解答大题时,要注意每一步的计算过程和推导方法,应该细致的推导问题的解数,并及时定义函数,进行计算,不要简单的只写出数学公式,这样老师不能够看出你的推导过程,也不能让老师看出你的数学思维的深度。
总的来说,高中数学中的导数大题,要想解决得当,在解答大题之前,首先要正确的分析题目,以及掌握数学公式和熟悉解题方法,最后还要注意详细推导步骤,只有这样,才能够更好地把握导数大题,得到老师的肯定与表扬。
高中数学经典解题技巧(导数小技巧)
高中数学经典的解题技巧和方法(导数小技巧)首先,解答导数及其应用这两个方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.导数概念及其几何意义 (1)了解导数概念的实际背景。
(2)理解导数的几何意义。
2.导数的运算(1)能根据导数定义求函数231(),,,,,y C C y x y x y x y y x======为常数 (2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
(3)能求简单的复合函数(仅限于形如()f ax b +的复合函数)的导数。
3.导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。
(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间了函数的最大值、最小值(其中多项式函数一般不超过三次)。
4.生活中的优化问题 会利用导数解决某些实际问题 5.定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。
(2)了解微积分基本定理的含义。
好了,搞清楚了导数及其应用的基本内容之后,下面我们就看下针对这两个内容的具体的解题技巧。
一、利用导数研究曲线的切线考情聚焦:1.利用导数研究曲线()y f x =的切线是导数的重要应用,为近几年各省市高考命题的热点。
2.常与函数的图象、性质及解析几何知识交汇命题,多以选择、填空题或以解答题中关键一步的形式出现,属容易题。
解题技巧:1.导数的几何意义函数()y f x =在0x 处的导数()f x '的几何意义是:曲线()y f x =在点00(,())P x f x 处的切线的斜率(瞬时速度就是位移函数()s t 对时间t 的导数)。
2.求曲线切线方程的步骤:(1)求出函数()y f x =在点0x x =的导数,即曲线()y f x =在点00(,())P x f x 处切线的斜率; (2)在已知切点坐标00(,())P x f x 和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。
2016高考数学复习之导数的解题大思路
2016高考数学复习之导数的解题大思路就开始学习数学,到了大学一些专业还是会有高数,但是也经常有同学问我,现实生活真的用得到导数吗?真的用得到三角函数吗?其实我们学习的过程远比结果重要。
首先你要找到一个适合你的学习,然后你要能够养成一个良好的学习习惯,最后就是坚持!到最后你会发现数学成绩好只是一个顺带的结果。
如果你觉得老师说的太假大空,那么我就提一个小小的建议,如果你在每天都认真学习数学的基础上,能保证当天的问题当天解决,也就是不带着问题入睡,那么你的数学一定很不错了!问题27老师我脑子笨姚瑶老师是容易忘记公式,还是一些知识点理解不了呢?确实有的同学就是智商高,天赋好,但是有句话叫勤能补拙啊!我不知道你今年高几,但是我希望你千万别放弃,不和别人比,也别看自己还差多少,看看自己每天能做多少!每天多记一个公式,每天多会一道题,积少成多,量变产生质变!加油!问题28老师,数学应该怎么做,感觉每一道题都会,等到做的时候又做不出来了姚瑶老师说明有漏洞,自己仔细想想,做的时候是卡在哪里做不出来了,现在查缺补漏是关键,建议找出做过的试卷,把试卷上的每一道题目涉及到的知识点都进行总结,确保自己真的会了!而不是看着答案会了。
加油!我相信你有潜力的!问题29老师,考试时怎么分配好时间啊?特别是做到后面就急了,会做的做错了。
姚瑶老师一般来讲选填大概五十分钟以内完成,大题导数和圆锥曲线每道留十五分钟左右,其他题目每道十分钟左右,如果平时做题慢看看是不是知识点有漏洞?有时候知识点掌握的熟练程度也影响了我们的做题速度,这个时候查漏补缺是关键。
高中导数七大题型解题技巧
高中导数七大题型解题技巧高中导数七大题型解题技巧1. 导数的定义与计算•理解导数的定义:导数表示函数在某一点的变化率,可以通过极限的方法求得。
•使用导数的基本计算公式:对于常见的函数,可以根据函数的性质和导数的定义来计算导数。
2. 函数的求导法则•使用求导法则简化求导过程:如常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。
•注意链式法则的应用:当函数由多个复合函数组成时,可以使用链式法则简化求导过程。
3. 高阶导数的计算•理解高阶导数的概念:高阶导数表示导数的导数,可以通过多次求导得到。
•使用链式法则和求导法则计算高阶导数:根据函数的性质和导数的法则,可以计算出高阶导数。
4. 函数的极值与单调性•寻找函数的极值点:通过判断导数的正负来确定函数的增减性和极值点。
•判断函数的单调性:根据导数的正负判断函数的单调递增和单调递减区间。
5. 函数的凹凸性与拐点•判断函数的凹凸性:通过求导数的二阶导数和符号判断函数的凹凸性。
•寻找函数的拐点:通过判断导数的二阶导数的变化来确定函数的拐点。
6. 函数的渐近线与极限•理解函数的渐近线:渐近线是函数在无穷远点或某一点趋近于无穷时的极限情况。
•计算函数的极限:根据导数和高阶导数的性质计算函数在某一点的极限。
7. 应用题的解题方法•理解应用题的背景和要求:应用题通常涉及到实际问题,需要将问题转化为数学模型进行求解。
•使用导数解决应用题:根据问题的要求,建立函数模型并使用导数来解决问题。
以上是高中导数七大题型解题的一些基本技巧和方法,希望可以帮助到你在学习导数时的理解和应用。
高中数学导数解题技巧
高中数学导数解题技巧导数作为高中数学中的重要概念,是解决各种函数相关问题的基础。
在考试中,导数题目常常出现,因此学生们需要掌握一些解题技巧。
本文将介绍几种常见的导数解题技巧,并通过具体题目进行说明,帮助高中学生和他们的父母更好地理解和应用导数。
一、求导法则求导法则是解决导数题目的基础,掌握好求导法则可以事半功倍。
下面以几个常见的求导法则为例进行说明。
1. 常数法则:对于常数函数,其导数为0。
例如,函数f(x) = 3的导数为f'(x) = 0。
2. 幂函数法则:对于幂函数f(x) = x^n,其中n为常数,其导数为f'(x) = nx^(n-1)。
例如,函数f(x) = x^2的导数为f'(x) = 2x。
3. 和差法则:对于函数f(x) = u(x) ± v(x),其中u(x)和v(x)分别为可导函数,其导数为f'(x) = u'(x) ± v'(x)。
例如,函数f(x) = 2x + 3x^2的导数为f'(x) = 2 + 6x。
4. 乘积法则:对于函数f(x) = u(x) * v(x),其中u(x)和v(x)分别为可导函数,其导数为f'(x) = u'(x)v(x) + u(x)v'(x)。
例如,函数f(x) = x^2 * cos(x)的导数为f'(x) = 2x * cos(x) - x^2 * sin(x)。
5. 商法则:对于函数f(x) = u(x) / v(x),其中u(x)和v(x)分别为可导函数且v(x)不为0,其导数为f'(x) = (u'(x)v(x) - u(x)v'(x)) / v^2(x)。
例如,函数f(x) = (2x + 1) /x的导数为f'(x) = (2 - (2x + 1) / x^2) / x^2。
二、应用题解析在高中数学考试中,导数经常与函数的性质和图像相关联,通过求导可以求得函数的最值、拐点、增减性等信息。
导数题的十大解题技巧
导数题的十大解题技巧
导数题的十大解题技巧
一、熟练掌握基本形式的导数
解决导数问题,最基本的是要掌握几种常见函数的导数形式,如常用的多项式函数、三角函数、泰勒级数等。
二、熟练运用基本运算法则
基本运算法则是指对函数的加减乘除、乘方、链式法则等多项操作的计算公式。
三、利用倒数公式
在两函数相除时,可以利用倒数公式把除法变成乘法。
也就是相除的两个函数导数的乘积等于其一除以另一函数的倒数的导数。
四、运用链式法则
链式法则是求解复杂函数导数的有力工具。
它的做法是用函数的导数来求复合函数的导数,即将复杂函数分解为几个简单函数的组合。
五、会用技巧简化运算
解决导数问题,要熟悉几种常用的技巧,比如去项技巧、因式分解技巧、合并同类项技巧等,尽量减少计算量。
六、善于利用对称性
在有关导数的计算中,当函数具有对称性时,有时可以利用对称性把计算时间缩短。
七、多分类讨论
对于某种特殊情况的求导,要多分类考虑,把它们分开,分别求
解。
八、把不熟悉的形式改写成熟悉的形式
有时,在求解导数时,可以把不熟悉的函数形式改写成熟悉的形式,从而简化计算。
九、运用泰勒展开法
当函数形式太复杂时,可以用泰勒级数展开法来求解它的导数,其中,泰勒展开第N项的系数是函数的N次导数值。
十、加强练习熟练掌握
多进行练习,加强熟练掌握,能有效帮助学生解决导数问题。
导数题的十大解题技巧
导数题的十大解题技巧导数题的十大解题技巧一、熟练掌握导数的定义1、函数的导数:函数y=f(x)的导数,记作f′(x),表示函数y=f(x)在点x处的切线斜率。
2、数列的导数:数列y的极限导数,记作y′,表示数列y中趋势的变化率。
二、准确掌握导数的计算1、用法则:将函数代入法则(如指数函数法则,三角函数法则等)所给表达式中,可得出函数的导数;2、变量分离:将函数用变量分离法(如商式分解法,多项式分解法等)分解,再用法则进行求导;3、链式法则:将函数中的连续函数拆分,用累加法或链式法则进行求导;4、转换关系:将函数中的变量用等价关系(如t=sax,x=a/t)进行转换,使变量适合法则,再求导;5、隐函数法:将函数中的变量用隐函数(如x=f(t))进行表达,再求导;6、偏导法:将函数中的变量用偏导数(如y/t)表达,再求导。
三、理解利用导数性质1、函数的导数是函数表示的变化率;2、导数的正负性有助于判断函数的单调性;3、函数的极值点可判断导数的符号;4、函数尖峰和凹处的判断;5、导数判断函数的模式;6、可以用导数的特性求函数的拐点;7、用导数可以求函数的泰勒级数;8、可以用导数的递推来求函数的定义域;9、可以用导数求一些曲线的面积。
四、利用科学计算器快速完成计算1、熟悉科学计算器的使用功能,即可完成导数的运算;2、可按法则准确求函数的导数;3、可以快速判断函数的极值、拐点等;4、对于复杂函数,可以简化计算,提高效率。
五、熟悉求导方程的解法1、建立方程,移项,量化,变形,以达到最简形状;2、变换为通解方程,求其特解;3、使用科学计算器计算求得函数的解。
2016高考数学答题技巧全攻略_答题技巧
2016高考数学答题技巧全攻略_答题技巧高考数学当你遇到不会的题目怎么办呢?查字典数学网为大家提供了2016高考数学答题技巧全攻略,希望对你有帮助!2016年高考数学答题技巧全攻略【导语】:数学要想在高考考场上考出优异的成绩,不但需要扎实的基础知识、较高的数学解题能力做基础,临场考试的技巧更是无数学子圆梦所必备的。
针对数学学科特点,小编谈一下高考答题技巧,仅供参考。
大凡热爱数学科目的人并没有把数学当成一种学习,更多的是把数学当成一种游戏。
因为如果认为是学习的话就会有反感。
在解答数学试卷的时候,与其说是解答题目,不如说是追求一种成就感,那种把题抽丝剥茧一步步追寻到正确结果的完美境界。
【高考数学答题技巧】数学要想在高考考场上考出优异的成绩,不但需要扎实的基础知识、较高的数学解题能力做基础,临场考试的技巧更是无数学子圆梦所必备的。
针对数学学科特点,小编谈一下高考答题技巧,仅供参考:1、调整好状态,控制好自我。
(1)保持清醒。
数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
(2)按时到位。
今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。
建议同学们提前15-20分钟到达考场。
2、通览试卷,树立自信。
刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。
答题时,见到简单题,要细心,莫忘乎所以。
面对偏难的题,要耐心,不能急。
3、提高解选择题的速度、填空题的准确度。
数学选择题是知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。
填空题也是只要结果、不要过程,因此要力求“完整、严密”。
导数解题技巧归纳
导数解题技巧归纳
在解题时,我们可以使用以下技巧来求解导数:
1. 基本导数公式:掌握常用函数的导数公式,例如常数函数、幂函数、多项式函数、指数函数、对数函数、三角函数等。
2. 基本运算法则:了解基本导数运算法则,例如和法则、差法则、积法则、商法则等。
3. 链式法则:对于复合函数,可以使用链式法则来求导数。
链式法则的公式为:如果 y=f(g(x)),则 y' = f'(g(x)) * g'(x)。
4. 隐函数求导法则:对于含有隐函数的方程,可以使用隐函数求导法则来求导数。
隐函数求导法则的公式为:如果F(x,y)=0,则 dy/dx = - F_x / F_y,其中 F_x 表示 F 对 x 求偏导数,F_y 表示 F 对 y 求偏导数。
5. 参数方程求导法则:对于参数方程,可以使用参数方程求导法则来求导数。
参数方程求导法则的公式为:如果 x=f(t),
y=g(t),则 dy/dx = (dy/dt) / (dx/dt)。
6. 高阶导数:在一些情况下,需要求高阶导数,即导数的导数。
在求高阶导数时,可以多次应用导数法则和技巧。
7. 极限法求导:有时,可以使用极限法来求导数,即根据导数的定义进行计算。
8. 几何意义:了解导数的几何意义,即导数表示函数曲线在某一点的切线斜率。
根据几何意义,可以判断函数在某一点的导数的正负性以及函数的变化趋势。
综上所述,以上是一些常见的导数解题技巧,通过掌握这些技巧,可以更有效地求解导数。
不同的题目可能需要结合不同的技巧和方法来求解,因此在解题时,需要根据具体情况选择合适的技巧和方法。
高考数学导数题的几种解题方法
例题 (2014 年全国Ⅰ卷,理 21) 设函数
,
曲线
在点 (1,f (1)) 处的切线为 y= e(x-1)+2
(I) 求 a, b;( Ⅱ ) 证明:
.
( 放缩成二次函数 ) ( 放缩成类反比例函数 )
二、指数放缩 ( 放缩成一次函数 ) ( 放缩成类反比例函数 ) ( 放缩成二次函数 ) 三、指对放缩
∴ ψ(x) 在 [0,+∞ ) 上单调递增, ∴ x > 0 时,ψ(x) > ψ(0) = 0. 令 x = b - a,即得 (*) 式,结论得证.
58
高考数学导数试题解题研究——以 2013-2016 年新课标全国卷为例,云南师范大学 2017 作者简介:宋傲寒 (2000.12) 女 , 民族:汉族 , 籍贯:山东省 莒南县 , 学校:山东省淄博第十一中学。
例题 ( 全国卷 ) 已知函数
,曲线 y=f(x) 在点
(1,f(1)) 处的切线方程为 x+2y-3=0, ( Ⅰ ) 求 a、b 的值;
( Ⅱ ) 如果当 x > 0,且 x ≠ 1 时, 取值范围。
解析 ( Ⅰ ) 略解得 a=1 b=1 ( Ⅱ )( 洛必达法则 )
,求 k 的那么比较 Nhomakorabea与
的大小
(3) 设 a < b,比较
与
的大小,并说明
57
神州教育
理由.
解析 2013 陕西理数第 21 题第三问 即可使用浮出主元法的
方法进行运算
(1)f(x) 的反函数为 g(x)=lnx.
设直线 y=kx+1 与 g(x)=lnx 的图像在 P(x0,y0) 处相切,则有
y0=kx0+1=lnx0,k=g'(x0)= ,解得 x0=e2,
【高中数学】高考数学答题技巧与方法导数
【高中数学】高考数学答题技巧与方法导数【高中数学】高考数学答题技巧与方法?导数
以下是高考数学衍生答题技巧和方法,由数学网为您整理,供您参考,不断进步,学
习到更高水平。
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于
导数的学习,主要是以下几个方面:
1.衍生工具的一般问题:
(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面
曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于
次多项式的导数问题属于较难类型。
2.关于函数特性的最大值问题很多,因此有必要进行专门讨论。
导数法比初等法更快、更简单。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综
合能力的一个方向,应引起注意。
知识整合
1.导数概念的理解。
2.利用导数判断可微函数的极值,求一些实际问题的最大值和最小值的方法。
复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函
数的求导法则,接下来对法则进行了证明。
3.为了正确获得导数,必须达到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数
的求导法则。
(2)对于复合函数,必须澄清中间的复合关系,找出每个分解函数中应该导出的变量。
高考
数学衍生答案的技巧和方法已经呈现在所有学生面前。
我希望所有的学生都能在数学
网络的高考频道上努力学习,更加精彩!。
高考数学答题技巧专项提升:导数答题技巧及策略
高考数学答题技巧专项提升:导数答题技巧及策略高考数学答题技能专项提拔:导数答题技能及计谋
一、专题综述
导数是微积分的初步知识,是研究函数,办理实际标题的有力工具。
在高中阶段敷衍导数的学习,主要是以下几个方面:1.导数的常规标题:
(1)描画函数(比初等要领准确细微);(2)同几多中切线关联(导数要领可用于研究平面曲线的切线);(3)应用标题(初等要领往往技能性要求较高,而导数要领显得轻便)等关于次多项式的导数标题属于较难类型。
2.关于函数特性,最值标题较多,所以有必要专项讨论,导数法求最值要比初等要领快捷轻便。
3.导数与剖析几多或函数图象的混合标题是一种重要类型,也是高考中查看综合能力的一个偏向,应引起注意。
二、知识整合
1.导数概念的理解。
2.利用导数鉴别可导函数的极值的要领及求一些实际标题
的最大值与最小值。
复合函数的求导准则是微积分中的重点与难点内容。
讲义中先议决实例,引出复合函数的求导准则,接下来瞄准则举行了证明。
3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导准则,复合函数的求导准则。
(2)敷衍一个复合函数,一定要理清中间的复合干系,弄清各分化函数中应对哪个变量求导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下面就是查字典数学网为大家整理的2016高考数学导数答题技巧方法供大家参考,不断进步,学习更上一层楼。
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。
知识整合1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
2016高考数学导数答题技巧方法已经呈现在各位同学面前,望各位同学能够努力奋斗,更多精彩尽在查字典数学网高考频道!。