HEAT CAPACITY
比热容
比热容(specific heat capacity)又称比热容量,简称比热(specific heat),是单位质量物质的热容量,即使单位质量物体改变单位温度时的吸收或释放的内能。
比热容是表示物质热性质的物理量。
通常用符号c表示。
物质的比热容与所进行的过程有关。
在工程应用上常用的有定压比热容Cp、定容比热容Cv和饱和状态比热容三种,定压比热容Cp是单位质量的物质在比压不变的条件下,温度升高或下降1℃或1K所吸收或放出的能量;定容比热容Cv是单位质量的物质在比容不变的条件下,温度升高或下降1℃或1K吸收或放出的内能,饱和状态比热容是单位质量的物质在某饱和状态时,温度升高或下降1℃或1K所吸收或放出的热量。
在中学范围内,简单(不严格)的定义为:单位质量的某种物质温度升高1℃吸收的热量(或降低1℃释放的热量)叫做这种物质的比热容。
单位比热的单位是复合单位。
在国际单位制中,能量、功、热量的主单位统一为焦耳,温度的主单位是开尔文,因此比热容的主单位为J/(kg·K),读作“焦[耳]每千克开”。
([]内的字可以省略。
)常用单位:kJ/(kg·℃)、cal/(kg·℃)、kcal/(kg·℃)等。
注意摄氏度和开尔文仅在温标表示上有所区别,在表示温差的量值意义上等价,因此这些单位中的℃和K可以任意互相替换。
例如“焦每千克摄氏度”和“焦每千克开”是等价的。
计算基本计算设有一质量为m的物体,在某一过程中吸收(或放出)热量ΔQ时,温度升高(或降低)ΔT,则ΔQ/ΔT称为物体在此过程中的热容量(简称热容),用C表示,即C =ΔQ/ΔT。
用热容除以质量,即得比热容c=C/m=ΔQ/mΔT。
对于微小过程的热容和比热容,分别有C=dQ/dT,c=1/m*dQ/dT。
因此,在物体温度由T1变化到T2的有限过程中,吸收(或放出)的热量Q=∫(T2,T1)CdT=m∫(T2,T1)CdT。
磁性测量仪器篇之PPMS
PPMS-14H基本系统的技术指 标
❖ 样品台方向 磁场方向:纵向(垂直于地面)
升温至300 K稳定后,至少等待30 min。 ➢ 样品室充气。取放样品。 ➢ 取出与放入样品的时间超过30 s,先封闭样
品室,并抽气。
PPMS-14H的附属设备
条件 温 度 Sample stage
Helium-3
设Chart 备
及 M其ulti Fun作ction Pr用obe
Model P450 A/B
85 % 45 %
94.6 % 60 % 50 %
31 %
10 % 0.0 %
Full Field (14 T) 65%
? 未知
Limit for Helium Fill
液氦液面与可用磁场的关系 (暂定)
1. 65%以上,可以使用最高磁场 14 T
2. 60% ~ 65%之间,可以使用最高磁场 10 T
❖ PPMS的磁场控制 ❖ 样品室-样品架-选件
通用检测端口
❖ PPMS-14H的附属设备
功能扩展
需要关注的内容
1. 主机的功能:磁场、温度、位置 2. 如何控制:温度、磁场、位置、样品室气氛 3. 如何实现多功能:选件种类、功能、连线 4. 如何安装取放样品:通用工具、专用工具
PPMS-14H基本系统的技术指 标
硬件设置、监控 数据格式转换
❖ PPMS Helium 3 Gas Monitor
一摩尔热容量Molarheatcapacity
2020/1/13
7
Q
Cp (T2
T1)
i
2 2
R(T2
T1 )
E
E2
E 1
i 2 R(T2
T1 )
可见: Q=W+E 符合热力学第一定律
3 等温过程(constant temperature process)
P P1
P2 O V1
特征: dT=0 规律: pV=C
一 摩尔热容量( Molar heat capacity)
定义 : 1mol某种物质温度升高 1K所吸收的热量
C
dQ ( dT )mol
1 等容摩尔热容量
指1mol 理想气体在等容过程下温度升高1K时所吸收的热量
即写成:
CV
(
dQV dT
)mol
2020/1/13
1
dV 0, dW 0 dQV dE
Q CV (T2 T1 ) (等容过程)
Q CP (T2 T1) (等压过程)
二 热力学第一定律在等值过程中的应用
1 等容过程(constant volume process)
P
P2
2
特征: dV=0
P1
o
1
V0 V
规律: p1 T 1 p2 T 2
2020/1/13
赵国俭
5
能量计算:
dV 0 dW pdV 0
由热力学第一定律,得
Q
E2
E1
CV
(T2
T1)
i 2
RT
2.等压过程( constant pressure process)
发动机温度模型参数
发动机温度模型中各参数含义Equivalent mass 是指与用于仿真的发动机具有同样热容量的水的等效质量。
也就是说将发动机升高1K需要的能量也可以将这些质量的水温度升高1K。
我们知道水的比热容是4187J/kg*K。
如果知道发动机的质量和制造发动机各部件材料的平均比热容,我们就可以计算水的等效质量。
C engine*M engine=C water*M waterC engine—发动机各部件的平均比热容;M engine—发动机的质量;C water —水的比热容;M water —水的等效质量;The “Equivalent mass” means the theoretical mass of water, which would have the same heat capacity as the engine that is used for simulation. This means that the same amount of energy (heat) is required to warm up the engine by 1 Kelvin as would be to warm up an equivalent mass of water by 1 K. Now, the specific heat of water is known to be4187 J/kg*K. If you know the mass of the engine and an average specific heat of materials the engine is made of, you can calculate the equivalent mass of water.Nominal temperature是测量发动机万有特性图和排放图时发动机的稳态运行温度。
Nominal temperature is a steady state engine operating temperature at which the fuel consumption and emissionmaps have been measured.Exhaust proportion of waste energy是发动机损失的热量中通过废气带走的那部分损失。
固体物理-固体比热容
(2.93)
由(2.90)式给出。
后来发现,杜隆-珀替定律只适用于足够高 的温度。对于一个典型固体 Cv 的值被发现 随温度的影响具有如图2.9所示的行为。
固体比热的经典理论
由图可知,在低温时,热容量不再保持 为常数,而是随温度的下降很快趋向于零。
Modern Theory of the Specific Heat of Solids 固体比热的现代理论
Heat Capacity of Solids 固体热容
固体比热的经典理论
在十九世纪,由实验得到在室温下固体的 比热是由杜隆-珀替定律给出的:
Cv 3R 3N A K B
(2.90)
热容是一个与温度和材料都无关的常数。 其中R=NAKB,NA是阿伏伽德罗常数(6.03×1023 atoms /mole)KB是玻尔兹曼常数(1.38×10-16尔 格/开,尔格是功和能量的单位1焦耳=107尔格)。 回想一下,1卡路里= 4.18焦耳= 4.18×107尔格。 因此,(2.90)所给出的结果
T 9 Nk B D
பைடு நூலகம்
0
x 4e x 1 2e x 3e 2 x dx
x 4 ne nx dx
n 1
3
0
T 9 Nk B D
利用积分公式:
3
4 nx n x e dx
n 1
j
1 n exp n j j 2 j n j
exp n j n
j
其中
1 E n j j 2 j 1 nj j exp k T 1 B
利用aspen plus进行物性参数的估算
1 纯组分物性常数的估算1.1、乙基2-乙氧基乙醇物性的输入由于Aspen Plus 软件自带的物性数据库中很难查乙基2-乙氧基乙醇的物性参数, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对乙基2-乙氧基乙醇计算。
已知:最简式:(C6H14O3)分子式:(CH3-CH2-O-CH2-CH2-O-CH2-CH2-OH)沸点:195℃1.2、具体模拟计算过程乙基2-乙氧基乙醇为非库组分,其临界温度、临界压力、临界体积和临界压缩因子及理想状态的标准吉布斯自由能、标准吉生成热、蒸汽压、偏心因子等一些参数都很难查询到,根据的已知标准沸点TB,可以使用aspen plus软件的Estimation Input Pure Component(估计输入纯组分) 对纯组分物性的这些参数进行估计。
为估计纯组分物性参数,则需1. 在 Data (数据)菜单中选择Properties(性质)2. 在 Data Browser Menu(数据浏览菜单)左屏选择Estimation(估计)然后选Input(输入)3. 在 Setup(设置)表中选择Estimation(估计)选项,Identifying Parameters to be Estimated(识别估计参数)4. 单击 Pure Component(纯组分)页5. 在 Pure Component 页中选择要用Parameter(参数)列表框估计的参数6. 在 Component(组分)列表框中选择要估计所选物性的组分如果要为多组分估计选择物性可单独选择附加组分或选择All(所有)估计所有组分的物性7. 在每个组分的 Method(方法)列表框中选择要使用的估计方法可以规定一个以上的方法。
具体操作过程如下:1、打开一个新的运行,点击Date/Setup2、在Setup/Specifications-Global页上改变Run Type位property Estimation3、在Components-specifications Selection页上输入乙基2-乙氧基乙醇组分,将其Component ID为DIMER4、在Properties/Molecular Structure -Object Manager上,选择DIMER,然后点Edit5、在Gageneral页上输入乙基2-乙氧基乙醇的分子结构6、转到Properties/Parameters/Pure Component Object Manager上,点击“NEW”然后创建一个标量(Scalar)参数TB7、输入DIMER的标准沸点(TB)195℃8、然后转到Properties/Estimation/Set up页上,选择Estimation all missing Parameters9、运行该估算,并检查其结果。
【技能】必收藏!60种非金属材料性能测试方法大汇总
【技能】必收藏!60种非金属材料性能测试方法大汇总本文涉及的非金属材料测试指标如下:1 密度与相对密度(Density andrelative density)密度是指物质单位体积内所含的质量,单位是百万克/米3 (Mg /m3)或千克/米3(kg/m3)或克/厘米3(g/cm3)。
相对密度是指物质的密度与参考物质的密度在各自规定的条件下之比。
符号为d,无量纲量。
一般参考物质为空气或水:当以空气作为参考物质时,在标准状态(0℃和101.325kPa)下干燥空气的密度为1.293kg/m3(或1.293g/L)。
测试方法:浮力法、水中置换法、比重瓶法、gamma球浸渍法、饱和水法、表面涂抹法等测试仪器:2 凝固点(Freezingpoint)凝固点是晶体物质凝固时的温度,是液体的蒸气压与其固体的蒸气压相等时的温度,不同晶体具有不同的凝固点。
在一定压强下,任何晶体的凝固点,与其熔点相同。
非晶体物质则无凝固点。
测试方法:过冷法测试仪器:3 熔点与熔点范围(Melting point and Melting range)熔点是在一定压力下,纯物质的固态和液态呈平衡时的温度。
熔点范围是指用毛细管法所测定的从该物质开始熔化至全部熔化的温度范围。
测试方法:毛细管法测试仪器:4 结晶点(Crystalpoint)系指液体在冷却过程中,由液态转变为固态的相变温度。
测试方法:双套管法测试仪器:5 倾点(Pourpoint)表示液体石油产品性质的指标之一。
系指样品在标准条件下冷却至开始停止流动的温度,也就是样品冷却时还能倾注时的最低温度。
测试方法:倾斜试管法、旋转测试法、自动气压脉冲测试法测试仪器:6 沸点(Boilingpoint)液体受热发生沸腾而变成气体时的温度。
或者说是液体和它的蒸气处于平衡状态时的温度。
一般来说,沸点越低,挥发性越大。
测试方法:常量法、微量法测试仪器:7 沸程(Boilingrange)在标准状态下(1013.25hPa,0℃),在产品标准规定的温度范围内的馏出体积。
热力学第一定律(英文)
§2
The zeroth law of thermodynamics Macroscopic explanation of temperature Two systems are in thermal equilibrium if and only if they have the same temperature. Temperature is a physical quantity which determines if two systems would be in thermal equilibrium.
3.4 Work in quasistatic process without friction
We only discuss the work done in quasistatic process without friction. The work done by environment on the system
dW = W=
pdV Z
V2 V1
— pdV
infinitesimal process — finite process
The work done by the system on its environment
dW 0 = dW = pdV Z V2 0 W = W= pdV
V1
§3
The First Law of Thermodynamics
§1
Heat and Internal Energy
• Internal energy is the total energy associated with random motion. The change in internal energy in any process depends only on the initial and final states, not on the path how it changes. —– path-independent quantity • Heat is the energy that transferred from one object to another because of temperature. The heat will have di↵erent values for di↵erent processes. —– path-dependent quantity
2.4 热容,恒容及恒压过程
dU ( U V U U V )T ( )T dp [( )V ( )T ( ) p ]dT V p T V T U U U V =( )T dp [( )V ( )T ( ) p ]dT p T V T U U )T dp ( ) p dT p T
C p CV ( H U ) p ( )V T T (U PV ) U ( ) p ( )V (代入H 定义式) T T U V U ( ) p p( ) p ( )V T T T 根据复合函数的偏微商公式(见下页)
(
U U U V ) p ( )V ( )T ( ) p T T V T
所以
V ( ) p nR / p T
Cp CV nR
下一内容 回主目录 返回
201与Cv之差
证明:( U ) p ( U ) ( U ) ( V ) p T T V V T T 设: U U (T ,V ), V V (T , p) U U dU ( )V dT ( )T dV T V
上一内容
下一内容 回主目录 返回
2014-7-4
1.5 热容 (heat capacity) 等压热容Cp: C p Qp ( H ) p
dT T
QP (T2 T1 ) H n CP,m dT T
1
T2
等容热容Cv:
QV U CV ( )V T dT
1.9
热容 (heat capacity)
对于组成不变的均相封闭体系,不考虑非膨 胀功,设体系吸热Q,温度从T1 升高到T2,则:
平均热容定义: C 真热容C :
Q C dT
Q T2 T1
熵与焓
熵shang释义1:物理学上指热能除以温度所得的商,标志热量转化为功的程度。
2: 科学技术上用来描述、表征体系混乱度的函数。
亦被社会科学用以借喻人类社会某些状态的程度。
3:熵是生物亲序,是行为携灵现象。
科学家已经发明了测量无序的量,它称作熵,熵也是混沌度,是内部无序结构的总量。
英译entropy熵指的是体系的混乱的程度,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。
熵由鲁道夫·克劳修斯(Rudolf Clausius)提出,并应用在热力学中。
后来克劳德·艾尔伍德·香农(Claude Elwood Shannon)第一次将熵的概念引入到信息论中来。
历史1850年,德国物理学家鲁道夫·克劳修斯首次提出熵的概念,用来表示任何一种能量在空间中分布的均匀程度,能量分布得越均匀,熵就越大。
一个体系的能量完全均匀分布时,这个系统的熵就达到最大值。
在克劳修斯看来,在一个系统中,如果听任它自然发展,那么,能量差总是倾向于消除的。
让一个热物体同一个冷物体相接触,热就会以下面所说的方式流动:热物体将冷却,冷物体将变热,直到两个物体达到相同的温度为止。
克劳修斯在研究卡诺热机时,根据卡诺定理得出了对任意循环过程都都适用的一个公式:dS=(dQ/T)。
对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。
这就是熵增加原理。
由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。
它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。
熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。
1948年,香农在Bell System Technical Journal上发表了《通信的数学原理》(A Mathematical Theory of Communication)一文,将熵的概念引入信息论中。
Heat capacity of LaCl3, CeCl3, PrCl3, NdCl3, GdCl3, DyCl3
• final dehydration and distillation to form pure LnCI 3. Owing to the resistance of CeO 2 to acids a different first synthesis step for this compound was adopted. It involved gradual heating of the mixture of C e O 2 and concentrated sulphuric acid to the solid residue. The residue was the cerium sulphate Ce2(SO4) 3. This was dissolved in cold water, then Ce(OH)3 was precipi-
2. Experimental
Z I. Sample preparation
The lanthanide chlorides studied have been prepared from oxides of 99.9% purity supplied by 'Hydro-Met' Kowary, Poland (La203, CeO 2, Pr4Oll ), by the Chemistry Department of the Lublin University, Poland (Nd203) and by Merck (Gd203, Dy:O3). The synthesis included the following steps: • dissolution of the oxide in hot concentrated hydrochloric acid; • crystallisation of the hydrate LnCI3.6H20; • partial dehydration of the LnCI3.6H20 to LnCI 3 •
Estimation of heat capacities of solid mixed oxides
 5, 166 28 Praha 6, Czech Republic Department of Solid State Engineering, Institute of Chemical Technology, Technicka b  5, 166 28 Praha 6, Czech Republic Department of Physical Chemistry, Institute of Chemical Technology, Technicka c  5, 166 28 Praha 6, Czech Republic Department of Inorganic Chemistry, Institute of Chemical Technology, Technicka Received 30 October 2001; received in revised form 11 February 2002; accepted 11 March 2002
* Corresponding author. Fax: 420-2-2431-0337. E-mail address: jindrich.leitner@vscht.cz (J. Leitner).
0040-6031/02/$ ± see front matter # 2002 Elsevier Science B.V. All rights reserved. PII: S 0 0 4 0 - 6 0 3 1 ( 0 2 ) 0 0 1 7 7 - 6
Thermochimica Acta 395 (2003) 27±46
Estimation of heat capacities of solid mixed oxides
理想气体的等体过程和等压过程 摩尔热容
2014年5月24日星期六
大学物理
§13-3
理想气体的等体过程和等压过程 摩尔热容
(5) CP,m表达式 (dQ)P=vCP,mdT=(dE)P+(dA)P
E V CP,m d T d T P d T T P T P
理学院 物理系
大学物理
§13-3
理想气体的等体过程和等压过程 摩尔热容
二、热力学第一定律对理想气体的应用 —等体过程
1. 热量Q和内能表达式
dQ=dE
dQ=vCV,mdT dE=vCV,mdT
或
或 或
Q=E2 - E1
Q=vCV,m(T2 - T1) E2 - E1= vCV,m(T2 - T1)
2014年5月24日星期六
理学院 物理系
大学物理
§13-3
理想气体的等体过程和等压过程 摩尔热容
2.内能和CV,m的普遍关系
关系式dE=vCV,mdT或 E2 - E1=vCV,m(T2 - T1)虽然是
由等容过程得到的,但是对理想气体,无论其经过
什么过程,只要起初温为T1,终温为T2,内能和CV,m
d E V
E dT T V
CV,m d T d E V
CV,m
E dT T V
1 E 1 e e T V T V T V
(6)理想气体CV,m表达式
的关系都成立。
dE dE dE i ( )V ( )p CV,m R dT dT dT 2
d E CV,m d T
2014年5月24日星期六
第5章 热力学第一定律 第五节 热容(heat capacity)
4. 掌握热容的概念,明确不同条件下Cp与CV的关系;能计算理 想气体在定温、定压、定容和绝热过程中的Q、W、U和H。
5. 理解fHmθ、cHmθ和rHmθ的概念;能应用热力学基础数据计
算202相3/2变/19 和化学变化过程的H。
1
第五节 热容(heat capacity)
●基本概念
——显热(apparent heat) 仅因系统温度改变与环境交换的热(单纯 p-V-T变化)。例,固定压力下,将水从25℃升温至90℃所需的热
——相变热(潜热(latent heat) 一定温度、压力下系统发生相变化 时与环境交换的热。例:水在100℃、101.325kPa压力下变成100℃、 101.325kPa的水蒸气时所吸的热
——化学反应热 在定压或定容下系统内发生化学反应时与环境交 换的热
2023/2/19
2
一、热容的定义
●热容
——凝聚态系统 (l or s)(V/T)p 0 , Cp CV
2023/2/19
6
作业 P122 4(思考题),6,8,9
2004年5月13日37-39到此止
2023/2/19
7
C Q Q 不严谨;严谨:C lim Q Q
T2 T1 T
T 0 T dT
单位:J·K-1
●摩尔热容 Cm J ·mol-1 ·K-1
●影响热容的因素 物种,变温条件(定压,定容),聚集状
态,温度
●定压摩尔热容
Cp
Hale Waihona Puke Q pdTp
H T
p
●定容摩尔热容
CV
QV
dT
U V T V
在定压下以dT除二边
(U/T)p= (U/T)V +(U/V)T (V/T)p
差示扫描量热分析简介(图谱分析)课件分解
热流型DSC
与DTA仪器十分相似,是一种定量的DTA仪器。 不同之处在于试样与参比物托架下,置一电热片, 加热器在程序控制下对加热块加热,其热量通过 电热片同时对试样和参比物加热,使之受热均匀。
特点:
基线稳定 高灵敏度
Heat Flux DSC: Theoretical T Measurement
-0.2
-0.3
Endothermic
-0.4
0
Exo Up
25
50
75
100
125
150
TemperatureFlow
Exothermic
0.1
Heat Flow (W/g)
0.0
Heat flows out of the sample as a result of either Heat capacity (cooling) Crystallization Curing Oxidation Other exothermic processes
放热(exothermic)效应用反向的峰值表征(热焓减少)。
Endothermic Heat Flow
0.1
0.0
-0.1
Heat Flow (W/g)
Heat flows into the sample as a result of either Heat capacity (heating) Glass Transition (Tg) Melting Evaporation Other endothermic processes
DSC的类型及其基本原理
DSC的类型:
根据所用测量方法的不同,分为:
热流型(Heat Flux) 功率补偿型(Power Compensation) 调制热流型(Modulated Heat Flux)
热统专有名词中英对照
等温
焓 维里
等容
绝热
自由能
体积
外界 热 比热
internal energy, enthalpy, free energy, surroundings Gibbs function, Virial, Heat capacity, heat reservoir
热容量 化学势 不可逆 摩尔
Phase, equilibrium, chemical potential, specific capacity,
Kinetic energy, input, output, paramagnetic, 动能 输入 输出 顺磁性的 Magnetic field, momentum, relativistic, 磁场 动量 相对论性的 Fermi energy, classical description 费米能级 经典描述
engine, reversible, irreversible, mole, expansivity,
膨胀系数
Compressibility, adiathermal wall 压缩系数 绝热壁
Phase transition, inverse, mass, vaporize, liquid, 相变 逆 质量 蒸发 液体 gas, solid, first order, second order, 气体 固体 一阶 二阶 Critical point, Carnot cycle, boson, fermion, 临界点 卡诺循环 玻色子 费米子 symmetric, antisymmetric, distinguishable, 对称的 反对称的 可分辨的 Undistinguishable, identical particles 不可分辨的 全同 粒子
太阳能热发电英语词汇
太阳能热发电英语词汇熔融盐:molten['məultən] salt混合熔盐:molten salt mixture ['mikstʃə]多元熔盐multi['mʌlti] -molten salts氯化盐:chloride['klɔ:raid]salt碳酸盐:carbonate ['kɑ:bəneit] salt硝酸盐:nitrate ['naitreit] salt氟化盐:fluoride ['flu(:)əraid] salt密度:density ['densəti]粘度:viscosity [vi'skɔsəti]理论分析:theoretical [,θiə'retikəl] analysis [ə'næləsis]熔盐制备:preparation[,prepə'reiʃən] of molten salt熔点:melting['meltiŋ] point[pɔint]制备、配制:prepare [pri'pεə]共晶点:eutectic [ju:'tektik] point非共晶点:non-eutectic pointsolidification [,səlidifi'keiʃən] n. 凝固;团结;浓缩冷却DSC曲线:cooling DSC curve [kə:v]热稳定性:thermal stability [stə'biliti]热物理特性:thermoph ysical [,θə:məu'fizikəl] property ['prɔpəti] 太阳辐射:solar radiation[,reidi'eiʃən]时空:spatial-time['speiʃəl]机制;原理;进程;机械装置:mechanism['mekənizəm]传热:heat transfer [træns'fə:]蓄热:thermal['θə:məl] storage ['stɔridʒ]基础研究:basic['beisik] research研究进展:research progress['prəuɡres]前途;预期:prospect ['prɔspekt] (Vt勘探,勘察)市场预测:market prediction [pri'dikʃən]再生性能源renewable [ri'nju: əbl] energy优势;利益;有利条件:advantage [əd'vɑ:ntidʒ]储热介质:storage medium['mi:diəm]热传导:heat conduction[kən'dʌkʃən]低成本:low cost[kɔst]低压力:low pressure ['preʃə]长寿命:long life温度:temperature ['tempəritʃə]效率:efficiency [i'fiʃənsi]配置、外形、结构:configuration [kən,fiɡju'reiʃən]实验平台:experimental[ek,speri'mentəl platform['plætfɔ:m] 实验系统:experimental system测量、尺寸:measurement ['meʒəmənt]对流传热:convective [kən'vektiv] heat transfer对流:convective flow强化传热:enhanced [in'hɑ:nst] heat transfer湍流:turbulent ['tə:bjulənt]过热蒸汽overheating[,əuvər'hi:tiŋ]steam饱和蒸汽saturation[,sætʃə'reiʃən] steam吸收receiver [ri'si:və]温度temperature ['tempəritʃə]管道pipeline ['paip,lain]有利条件,利益advantage[əd'vɑ:ntidʒ]power generation[,dʒenə'reiʒən] 发电量发电设备发电efficiency[i'fiʃənsi] 效率效能功效conclusion[kən'klu:ʒən] n. 结论;推论;结局stainless['steinlis] steel[sti:l] 不锈钢corrosion[kə'rəuʒən] 腐蚀;腐蚀产生的物质;衰败corrosion test 腐蚀试验anticorrosion [,æntikə'rəuʒən] 防腐蚀防腐蚀的immersed [i'mə:st] adj. 浸入的v. 浸stability[stə'biliti] n. 稳定性;background ['bækɡraund] 背景characteristics[,kærəktə'ristiks] of solar energy 太阳能的特点intermittent [,intə'mitənt] adj. 间歇的,断断续续的unstable [,ʌn'steibl] adj. 不稳定的高效传热蓄热技术High-efficiency heat transfer and thermal storage technology 熔融盐传热蓄热材料Heat transfer and thermal storage materials硝酸熔盐研究现状State of the arts of nitrates降低熔点Lower Tempphase[feiz]相位相阶段diagram['daiəɡræm] 图表;图解ternary ['tə:nəri] (三元的,三重的)nitrate salts 三元硝酸盐quaternary [kwə'tə:nəri](四进制的;四个一组的)nitrate salts 四元硝酸盐composition [,kɔmpə'ziʃən]构成;合成物drying['draiiŋ](干燥)oven['ʌvən] (炉,灶)干燥箱muffle['mʌfl]. 蒙住;裹住furnace['fə:nis]火炉,熔炉马弗炉thermal properties['prɔpətis] 热特性property ['prɔpəti] 性质,性能;财产;所有权absorption[əb'sɔ:pʃən] (吸收)peaks[pi:ks] (山峰;最高点;顶点)吸收峰sample['sɑ:mpl]样品comparison[kəm'pærisən] 对比对照appear [ə'piə] 出现显得the same[seim] temperature 温度相同the general trend[trend] 趋势is quite the same 总体趋势相似choice [tʃɔis]n. 选择;选择权;精选品adding into 添加appearance[ə'piərəns] 外貌,外观losses[lɔs] 损失损耗thickness['θiknis] losses 厚度损耗temperature drops[drɔps] 温差thermal shock[ʃɔk] tests 热冲击实验latent['leitənt] heat changed 相变潜热general behavior 常规性能thermal behavior 热性能inlet ['inlet] temperature 进口温度exit temperature 出口温度resource [ri'sɔ:s]资源、财力;pollutant [pə'lu:tnt] 污染物;Carbon['kɑ:bən] 碳Capture['kæptʃə]捕获& Storage['stɔridʒ]存储碳的捕获与储存电流:current容量:capacity电压:voltage有功损耗:active loss无功损耗:reactive loss功率因数:power-factorCPM:Central Processing Module总控CCU:Central Control Unit总控IED:Intelligent Electronic Devices智能设备CRMS:Control Room Management System 控制室管理系统CIS:Consumer Information System 用户信息系统千瓦Active Power (KW)冷却水温度表Coolant Temperature Gauge温度开关temperature switch绝对温度absolute temperature平均温度average temperature临界温度critical temperature入口温度inlet temperature出口温度outlet temperature表面温度surface temperature室内温度indoor temperature室外温度outdoor temperature工作温度working temperature环境温度ambient temperature壁温wall temperature温差temperature difference2074.压力开关pressure switch2075.绝对压力absolute pressure2076.实际压力actual pressure2077.工作压力working pressure2078.环境压力ambient pressure2079.标准大气压力standard atmosphere 2081.临界压力cirtical pressure 2082.超临界压力supercritical pressure 2083.亚临界压力subcritical pressure 2084.入口压力inlet pressure2085.出口压力outlet pressure 2086.差压differential pressure 2087.背压back pressure2088.风压air pressure2089.汽压steam pressure2098.流量开关flow switch2099.给水流量feed water flow 2100.蒸汽流量steam flow2101.总流量total flow2102.部分流量partial flow2103.表面粗糙度degree of finish 2104.平滑性flatness2105.临界截面throat2106.同心度concentricity2171.自动调整automatic adjustment2172.自动控制automatic control2173.自动跟踪automatic track2174.人工干预manual intervention2175.允许限值allowable limit2176.目标负荷target load2189.测量值measured value2291.可靠性reliability2292.可利用率availability2293.灵敏度sensitivity2294.精确度accuracy2295.温度补偿temperature compensation2304.抗冲击能力surge withstand capability2305.工作时间up time2306.故障时间down time2322.仪表measuring instrument2323.指示仪表indicator2324.记录仪表recorder2325.开关switch2326.按钮button, pushbuttonsuperheater 过热器water preheater 水预热器air preheater 空气预热器deaerator 除氧器feed water tank 供水箱boiler feed pump 给水泵switchgear 开关设备surface condenser 表面凝汽turbine room 汽轮机室steam turbine with alternator 蒸汽汽轮发电机组circulating water pipe(pump) 循环水管control room 控制室thermal cycle 热力循环(net)heat rate (净)热耗率module 模块standby 备用bracket 支架tank 桶,箱,罐diagram 图表deaerator 除氧器corrosion 侵蚀,腐蚀状态safety relief valve 安全卸压阀enthalpy 焓estimate 评价,评估,估价parameters 参数,参量nominal 额定的MS—Main Steam 主蒸汽Cycle 循环Fetting 附件Gage 表,压力计Taps 接头test wells 测点插孔stress-relieved 应力消除thermometer 恒温计steam purge system 蒸汽吹扫系统centrifugal type pumps 离心式泵friction losses 磨擦损失solenoid 螺线管modulat 调整,调节criteria 标准wrenches 扳手pipe taps 管接头Air Intake Valve 进气阀ALM Alarm 报警CCW Cycle Cooling Water 循环水CCCW Closed Circulating Cooling Water 闭式循环冷却水CHK VLV Check Valve 逆止阀CIRC Circulation 循环CLR Cooler 冷却器CLOW Cooling Water 冷却水CP Condensate Polisher 除盐装置CS Control Switch 控制开关GV Governor Valve 高压调门H Heat Conservation 保温HS Hand Switch 手动开关HTRHeater 加热器HV Hand Control Valve 手动控制器HL Heat Loss 热损失HMDY Humidity 湿度ON开(状态)OFF关(状态)OPEN 开(状态,常指阀门)CLOSE关(状态,常指阀门)START 启动STOP 停止STARTUP起动;启动SHUTDOWN停机STAND BY 备用ALARM报警OPERATE 运行;操作TRIP 跳闸TEST 试验INDICATION;DISPLAY指示;显示INLET入口OUTLET 出口INPUT输入OUTPUT 输出SIDE(某)侧,边A/M:AUTOMATION/MANUAL 自动/手动AUX:AUXILIARY辅助A/H:AUTOMATION/HAND自动/手动LOC:LOCAL就地REM:REMOTE摇控P:PRESSURE 压力T:TEMPERATURE 温度F:FLOW 流量S:SPEED 速度R:RATE比率,速率L:LOAD 负荷,负载R:RESISTANCE 电阻POWER 功率,电源RPM 转/分MW:MEGAWATT 兆瓦PARAMETER参数KW:KILOWATT 千瓦HIGH 高INTERMEDIATE 中LOW 低SILENCER 消音器ZOOM 摄像机镜头SYSTEM 系统BYPASS旁路PIPE;TUBE 管道,管子VALVE 阀门MCS:MANAGMENT COMMAND SYSTEM 管理命令系统UNIT单元、机组PRINT 打印SYMBOL 符号CURVE,LINE 曲线,线PANEL盘DESK 台,桌ROOM室STATION 站PLANT 厂,站I&C:INSTRUMENT AND CONTROL 仪表与控制MODE方式,模式SET POINT设定点TRANSMITTIER;TRANSDUCER 变送器;传感器COMPUTER计算机KEYBOARD 键盘CODE 代码;编码DATA 数据;文件;资料DISK 磁盘DIGIT 数字FIGURE 图示STATIC静态DYNAMIC;DYNAMICAL 动态TRIP ACKNOW 跳闸确认COLD START—UP 冷态启动WARM START—UP 温态启动HOT START—UP 热态启动RESET复位SELECT选择UNAVAIL 不允许(不能投用的)FAST 快SLOW慢NORMAL 正常INCREAS 增加DECREAS 减少STEAM TURBINE 汽轮机TURBINE GENERATOR 汽轮发电机组CYLINDER 、CASING 汽缸STATOR 定子ROTOR 转子BEARING 轴承SHAFT 轴BLADE 叶片GEARING 盘车NOZZLE 喷嘴FLANGE 法兰SEAL 密封BEARING BRASS 轴瓦PILOT VALVE 错油门MOP:MAIN OIL PUMP 主油泵MSV:MAIN STOP VALVE 主汽阀CV:CONTROL VALVE 高压调门IV:INTERMEDIATE VALVE 中压联合汽门EMERGENCY GOVERNOR 危急保安器SPEED INDICATOR OR SPEED METER 转速表JACKING OIL PUMP 顶轴油泵COOLER 冷却器FILTER 滤网SILENCER 消音器SUCTION PUMP 抽吸泵SYNCHRONIZER 同步器THROTTLE ORIFICE 节流孔板GOVERNOR 调速器BOOSTER FEED PUMP 前置给水泵HPH:HIGH PRESSURE HEATER 高加LPH:LOW PRESSURE HEATER 低加CIRCULATING PUMP 循环泵CONDENSATE PUMP 凝泵CONDENSER HOT WELL 热井LUBE OIL PUMP 润滑油泵MAKE-UP WATER 补给水MOTOR DRIVEN FEED WATER PUMP 电动给水泵OIL PURIFIER 净油器TURBINE DRIVEN FEED WATER PUMP 汽动给水泵OIL STORAGE TANK 储油箱DEMI WATER 除盐水CLOSED COOLING WATER 闭式冷却水EXTRACTION STEAM抽汽DEAERATOR 除氧器CONDENSER 凝汽器EXHAUST 排汽AUX STEAM HEADER 辅汽联箱VACUUM BROKEN VALVE 真空破坏门EJECTOR 喷射器,抽气器VACCUM 真空EXPANSION 膨胀VIBRATION 振动CIRCULATING 循环AMS :ADMISSION MODE SELECTION 进汽方式选择SURGE APPROACH 喘振TURBINE MASTER 汽机主控器1ST STAGE PRESS 第一级压力RH STEAM TEMP OUTLET 再热器出口温度RH STEAM ATTEM FLOW 再热喷水流量DISPATCH PARTICIPATION 调度(参与)指令CMPTR 计数器MEASURE SELECTION 测量选择站PLATEN SH INLET TEMP SIDE A A侧屏过入口温度OPERATE MODE SELECT 运行方式选择OPERATE MANUAL MODE 手动方式TURBING FOLLOW MODE 汽机跟随方式BOILER FOLLOW MODE 锅炉跟随方式BALANCE 平衡COORDINATE MODE 协调方式SLIDING PRESS MODE 滑压方式DECR PRESS AT FIX LOAD 在负荷不变下减压ACTUAL MEGA WATT 实际负荷数INCR PRESS AT FIX LOAD 在负荷不变下增压INT POS 中间状态RH SPRAY WTR STOP VLVS 再热器喷水截止阀PRIMARY SH STOP VALVE 一级过热器截止阀RH SPRAY BLOCK VLVSTRIP INIT 再热器喷水闭锁阀跳闸启动MANUAL LOAD SET手动负荷设定MANUAL LOAD RATE 手动负荷率MANUAL THROTTLE PRESS SET POINT 手动节流压力设定值DURM PRESSURE 汽包压力PUMP A DISCH PRESS A泵出口压力ST-UP BOIL FDW PUMP 启动给水泵EMERG OIL PUMP 事故油泵TURBINE FW PUMP AUX&VLV 小机给水泵辅汽及阀门TFW PUMP MAIN OIL PMP 汽动给水泵的主油泵TFW PMP DISCHARGE VLV 汽动泵出口阀FW VLV 给水阀门FW CONTROL VALVE’S BYPASS VLV 给水控制阀的旁路阀FW FLOW 30% CONTROL VLV30% 给水控制阀FW FLOW MASTER CONTROL 给水流量主控FW PUMP RECIRCUL CONTROL VLV 给水泵循环控制阀TURBINE INLET PRESS 汽机入口压力LP&HP BYPASS PRESS SIDE A低压或高压旁路A侧压力LP&HP BYPASS TEMP SIDE A低压或高压旁路A侧温度HP BYPASS&HP ATTEMP VLVS 高压旁路及减温水阀HP&LP BYPASS COMMAND 高压及低压旁路指令HP ATTEMP BLOCK VLV 高旁减温水闭锁阀HP ATTEM PRESS CONTROL VLV 高旁减温水压力控制阀HP BYPASS PRESS SET POINT 高旁压力设定值HP BYPASS PRESS CONTROL VLV 高旁压力控制阀HP BYPASS TEMP CONTROL VALVE 高旁温度控制阀FW HP HTR DISCH TEMP 给水高加出口温度EXTR ST TO HP HTR抽汽至高加CONDS EXTR PUMP DISCH凝结水抽吸泵出口CONDS STOR TANK LEVEL 凝结水储水箱水位LP HTR STOP VLV 低加截止阀CLOSED COOLING WTR PUMP 闭式冷却水泵AUX STM HEADER PRESS CONTROL VLV 辅汽联箱压力控制阀AUX STEAM TEMP CONTROL 辅汽温度控制DEAERATOR LEVEL CONTROL VLV 除氧器水位控制阀CONDENSER LEVEL CONTROL VLV 凝汽器水位控制阀CICR WTR PUMP 循环泵HYDRAULIC OIL STATION PUMP 液压油站泵COOLNG WTR PUMP 水冷泵FUNCTION GROUP 功能组VACUUM SEQ真空程控CONDENSER AIR SUCTION VLV 凝汽器抽空气阀CICR PMP DISCHARGE VLV 循环泵出口阀CURRENT 电流VOLTAGE 电压RESISTANCE 电阻REACTANCE 电抗INDUCTANCE 电感CAPACITANCE 电容AMPERE 安培VOLT(V) 伏特OHM 欧姆WATT 瓦特KILOWATT 千瓦MEGAWATT 兆瓦POWER 功率FREQUENCY 频率SPEED 速度,转速ACTIVE POWER 有功功率REACTIVE POWER 无功功率LOAD 负荷POWER FACTOR 功率因数LOSS损耗DIRECT CURRENT(DC) 直流ALTERNATING CURRENT(AC) 交流OVER CURRENT 过流OVER VOLTAGE过压OVERLOAD 过载EXCITE 励磁LOAD FLOW负荷潮流分布TRANSMISSION 传输BASE LOAD 基荷PEAK LOAD 峰荷CARRIER 载波COMMUNICATION 通讯TELEPHONE 电话LIGHT 照明SIGNAL 信号MAGNETIC FIELD 磁场LINE线路GENERATOR发电机AERIAL LINE 架空线BUS 母线EXCITOR 励磁机BUSBAR FRAME 母线架MOTOR 电动机BUSCOUPLER 母联ASYNCHRONOUS MOTOR 异步电动机INSULATOR 绝缘子BUSHING套管ARMATURE 电枢TRANSFORMER 变压器COIL 线圈MAIN TRANSFORMER STEP-UP TRANSFORMER 主变WINDING 绕组UNIT TRANSFORMER 单元变CORE 铁芯START UP TRANSFORMER 启动变POLE 电极BACK UP TRANSFORMER 备用变PHASE 相POTENTIAL TRANSFORMER 电压互感器PHASE ANGLE相角CURRENT TRANSFORMER 电流互感器CONDUCTOR导体CABLE电缆ANGLE OF LEAD 超前角ANGLE OF LAG 滞后角SWITCH 开关NEUTRAL POINT 中性点AUTOFORMER 自藕变GROUNDING(EARTHING)接地DISCONNECTOR隔离开关DIESEL GENERATOR柴油发电机AUXI TRANSFORMER厂用变SWITCHGEAR配电盘、开关装置BULB灯泡CLOSE合闸BATTERY 电池TRIP跳闸CATHODE阴极RECLOSING重合闸ANODE 阳极AUTORECLOSING自动重合闸CHARGING EQUIPMENT充电设备COMBINED RECLOSING综合重合闸BUS SECTION母线分段GAS瓦斯PLUG插头ARC 电弧PLUG SOCKET 插座HARDWARE 硬件CLOSED-LOOP闭环OPEN-LOOP开环CPU(CENTARL PROCESSING UNIT 中心处理单元ABNORMAL CONDITION 异常状态CONFIGURATION 结构,布置,外形SUPERVISORS DESK 值长台UNIT CONTROL DESK 机组控制台EHV MIMIC PANEL电气高压模拟屏COMMON SERVICES LOGIC SUITE 公用系统逻辑柜CRT 显示屏ADS(ALARM DISPLAY SELECT PANELS) 报警显示选择屏CIU计算机接口单元BATTERY BACKED CLOCK 电池备用时钟INTERFACE 接口E.W.S. 工程师工作站DAS 数据采集系统CCR 中控室MCC 马达控制中心PC 动力中心I.C.S 数字控制站终端模件TSI 汽机监视仪表MFP多功能控制器EXCEPTION REPORT 例外报告THREE ELEMENTS LEVEL CONTROLLER 三冲量水位控制器TIME DELAY 时间延迟SCR CONTROLLER 可控硅整流控制器DISTRIBUTED CONTROL SYSTEM 分散控制系统UNINTERRUPTED POWER SUPPLY 不间断电源THERMO-COUPLE 热电偶IND 指示器FIS流量显示开关PDIS压差显示开关PP:PREESSURE POINT 压力检测点PS 压力开关TI温度显示器TIC温度指示控制TP 温度检测点TS 温度开关TT 温度变送器VI阀位置指示VT 阀位置变送器LC 液位控制器LK 液位控制站LI 液位显示PG 压力计PIC 压力显示控制器PK 压力控制站PT 压力变送器chemical composition 化学成分;化学组成mineral composition 矿物组成,矿物成分gas composition 气体组分,气体成分body composition 身体组成product composition 产品构成elemental composition 构成的化学元素composition of a picture 画面结构color composition 色彩构成;铯彩构图;彩色合成atmospheric composition 大气成分,大气组成mechanical composition 机械组成。
散热用英语怎么说
散热用英语怎么说皮肤是人体散热的主要部位,血液流经皮肤血管时,全部热量的90%由皮肤散出,那么你知道散热用英语怎么说吗?下面跟店铺一起学习散热的英语知识吧。
散热英语说法radiatingdissipate heat散热的相关短语散热器 Radiator ; heat sink ; Cooler ; Fan散热风扇 cooling fan ; DC FAN ; Radiator Fan ; CPU散热量 heat release ; Cool Capacity ; heat dissipating capacity ;散热条 heat sink strip ; radiating bars散热管 radiator ; radiating pipe ; radiant pipe ; fintube散热性能 heat dispersion ; heat dissipation ; heat dissipation performance ;散热口 thermovent ; Batman散热层 Heat Sink Plane ; thermal plane散热的英语例句1. You should ensure against loss of heat by having double glazing.你应装双层玻璃以免散热.2. The car has a fancooled radiator.这部汽车有一个由风扇散热的冷却器.3. Babies lose heat much faster than adults, and are especially vulnerable to the cold in their first month.婴儿散热比成年人快得多,在出生后的头一个月特别容易感冒。
4. He wound down the windows to dissipate the heat.他摇下窗子来散热。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SummaryThe experiment aimed at determining the value of specific heat capacity of tap water. The calorimeter was used to achieve the objective. It was mainly consist of a thermometer and a heating element. The vessel was used to hold water and avoid losing thermal energy. The formulaQ=mc ∆Twas used to obtain the value of specific heat capacity of water. Additionally, Q was found by the electric power that resistance wire transformed.W=P t=V2 RtTo make the value more accurate, experiment was conducted twice for the different volume of water. At last, the value was calculated by the equation∆Q=C∙(m b−m a)∙∆Tthat minus out the loss of heat of two experiment. The experimental value of specific heat capacity of tap was is 4933.3J kg∙k⁄Contents pageObjectiveDetermine the specific heat capacity of tap water by using a calorimeter.Introduction and TheoryThe whole experiment is based on the law of conservation of energy. Because it is impossible to observe the amount of heat transferred from resistance wire to the tap water, and the thermal energy the resistance transformed electrical energy into can be calculated. At last, the specific heat capacity of tap can be calculated by the equation which will be explained next. Additionally, Young and Geller (2007) suggest that the value of specific heat capacity of tap water should be close to 4.19×103J(kg∙k)⁄.Energy transfer that take place solely because of a temperature difference is called heat flow, or heat transfer, and energy transferred in this way is called heat (Young and Geller, 2007). The SI unit of quantity of heat is the joule(J). The symbol Q is used for quantity of heat. The quantity of heat Q increases the temperature T of a mass m of a certain material. The change in the temperature of a certain mass of substance from 10 ℃to 20 ℃(∆T=10 K) need twice as much as the amount needed to change it fro, 10 ℃to 15 ℃. When the temperature change and the material are the same, the heat that a substance of 20 g needed is twice as much as one of 10 g. So the definition of specific heat capacity can be obtained by putting all these things together. The amount of heat Q needed for a certain temperature change ∆T is proportional to the temperature change and to the mass m of substance being heated that is,Q=mc ∆T,where c is a quantity, different for different materials, called the specific heat capacity of the material (Young and Geller, 2007). When the increase in is 10 ℃, ∆T=10 K. The SI unit of specific heat capacity is the joule per kilogram per kelvin[J kg∙K⁄](Young and Geller, 2007).When current flows through a resistor, electrical energy is transformed into thermal energy. An electric toaster is an obvious example. The power dissipated through a pure resistance can be calculated. The electric power delivered by the circuit isW=P t=V2 Rtwhere the unit of V is voltage, R is ohm and W is JAs motioned before, the whole experiment is based on the law of conservation. The law of conservation of energy states that energy may neither be created nor destroyed. Therefore the sum of all the energies in the system is a constant. Therefore, the heat tap water obtained is equal to the thermal energy resistor transformed. So the thermal energy resistance transformed from electrical energy was calculated to obtain the heat that tap water received.So, when put the theories together, the value of specific heat capacity of can be calculated by the method shown below.C=Q m∙∆TQ=∆t∙V2 RThe actual heat flow to water can be written as Q=m∙C∙∆T+K∙∆T K∙∆T stands for the thermal energy loss by the vessel.Putting two data in the two experiments(consider K∙∆T are same)Q=C∙m∙∆TApparatusThermometerCalorimeterStirring RodLidVesselFigure 1●The thermometer was used to measure the increase in temperature oftap water●Stirring rod was used to make water heated evenly.●Lib fixed thermometer, stirring rod and resistance wire.●The vessel was used to hold water. There was supposed to be a outershell, so this caused the loss of heat.Graduated CylinderFigure 2●Graduated cylinder was used to amount the certain volume of waterStopwatchFigure 3●Stopwatch was used to time the heat heating process.MultimeterFigure 4●Multimeter was used to measure the resistance of resistance wireDC GeneratorFigure 5●DC generator provided the circuit with a constant voltage.Electronic ScaleFigure 6Electronic scale was used to find the exact mass of water.Procedure●Took a clean and dry vessel and weighted it.●Took 100mL of water by using a graduated cylinder and added the waterto the vessel.●Weighted the vessel and water again to find the exact mass(m) of thewater.●Placed the lid carefully on the vessel to make sure that the resistancewire is fully immersed in the water.●Placed the thermometer into the vessel and fixed it so that the tip of thebulb is about 1 cm from the bottom of the vessel.●When the temperature reading did not change, wrote the value down asthe temperature before heating.●Used the multimter to record the resistance across the heater terminals.●Adjusted the supply voltage and copied it down the value.●Connected the circuit elements.●Turned in the DC generator and started the stop watch at the same time.●Recorded the value of temperature every thirty seconds until reached1050 s●Voltage and resistance was recorded again by the end of experiment.●Measured 120 mL water and repeated the procedures above again.●Used the Excel to plot the graph whose y-axis stood for the Q and x-axisstood for T.Results and CalculationsTable 1 Element dataFigure 7 Temperature-heat(T-Q) graphFigure 8 Time-temperature graphTable 2 Experimental dataThe x-axis of figure 7 stands for the temperature of water, and y-axis stands for the thermal energy heat element produced.The y-axis of figure 8 shows the values of temperature of water, andx-axis is time.Data in table 1 shows the element parameters.Data in table 2 shows the exact changes in temperature.As motioned before in theory the specific heat capacity can be calculated by following steps.C=Q m∙∆TQ=∆t∙V2 RThe actual heat flow to water can be written as Q=m∙C∙∆T+K∙∆TK∙∆T stands for the t hermal energy loss by the vessel.Q a=m a∙C∙∆T+K∙∆TQ b=m b∙C∙∆T+K∙∆TPutting two data in experiment a and b (consider K∙∆T are same)∆Q=C∙(m b−m a)∙∆TIn the experiment a when temperature changed from 27℃to 29℃,∆T=3k. In the experiment b when temperature change from 25℃to 29℃, ∆T=2k. So, K∙∆T are same.Q a=m a∙C∙∆T+K∙∆T1065.6=0.099∙C∙2+2K 1.Q b=m b∙C∙∆T+K∙∆T1243.2=0.117∙C∙2+2K 2.Use equation 2. –equation 1., we can get177.6=0.036∙C C=4933.3J kg∙k⁄DiscussionThe experiment aimed at determining the value of specific heat capacity of tap water. It is can be seen from calculation section that the experimental value of specific heat capacity of water is 4933.3 J kg∙k⁄, which is 17.7% higher than the theoretical value. The result was obtained by a clever method which was to find the same temperature and minus out the loss of heat. But there are some uncertainly of component characters of the equipment used that caused the experimental errors.The first factor was the thermal energy loss from the vessel. The vessel was supposed to be placed in a shell, but there is no shell to use during the experiment. Additionally, the lid can not fix the thermometer very well. It was impossible to make the thermometer to be 1 cm from the bottom of the vessel. The stirring rod was not fixed very well, the rod may put thermometer very close the resistance wire making the temperature increase faster than it was expected. Besides, the plug of the lid was not totally closed when the thermometer was put in. The second factor was the evaporation from water surface. As temperature increased, more and more water was lost caused by evaporation, and it led the mass of water became smaller. The third factor was the increase in resistance made the value of Q was not accurate. The forth factor was the thermometer was not fixed very well and it touched the resistance wire sometime. The last factor was the vessel remained some thermal energy after the experiment a, this made the experiment b obtained extra heat.Seen from the result of the experiment, the experiment was well designed and operated. But there was a lot disadvantage of the element that was used during the experimentConclusionsThe experimental value of specific heat capacity of tap was is 4933.3J kg∙k⁄, which was 17.7% higher than the theoretical value 4190 J(kg∙k)⁄. Except for some obvious disadvantages of the element, in general, the experiment was well designed and operated. by a clever way which was to minus out the loss of thermal energy. Therefore, the experiment met the objectives and agreed with the expected theoretical valueReferenceYoung H.D. &Geller R.M. (2007) ‘ College Physics’, Young & Geller, 8th Eidtion , Person Education. Inc。