chapter 2 intermolecular forces
alevel化学常用单词汇总
ch ap ter 1 atomic st ructureelement n.元素all know materi al s ca n be bro ken down in to fundamental sub stances we c all elem ent.我们所知道的所有物质都可以分解成原子。
ato m n.原子ato m is t he smallest p ar tic le o f matter ha vin g all tha t ele ment ’s c harac ter is tic s.原子时具有元素性质的最小粒子。
nucleu s /’nj u:kl iəs,’n uːkli əs/ 原子核e lec tron n.电子prot on 质子 n eut ron 中子compoun d n. 化合物:Wh en two or more elemen ts combine and f orm a compo und, a chem ical change t akes p lace.当两种或两种以上的元素结合形成化合物时, 发生化学变化。
atom nucleus election proton neutron {{(+)(-)化学中的物质分为单质和化合物,大部分元素是以化合物的形式存在的。
ion n.离子:when an atom getorlostelections,itbecomes ion.原子得失电子后形成离子。
cathode n. 阴极(negative electrode)Cathode rays are attracted by apositivecharge.阴极射线被阳电荷所吸引。
anode n. 阳极(positive election)A red wire is oftenattached to the anode.红色电线通常与阳极相联。
particlen. 粒子:Particles include moleculars,atoms, protons, neutrons ,electrons andions.微小粒子包括分子,原子,质子,中子,电子,离子等等。
《Organic Chemistry 5th Edition (L.G. Wade JR.)》wade02
Chapter 2 Structure and Properties of Organic Molecules
Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2003, Prentice Hall
ethyl amine, b.p. 17癈
=>
28
Solubility
• Like dissolves like • Polar solutes dissolve in polar solvents. • Nonpolar solutes dissolve in nonpolar solvents. • Molecules with similar intermolecular forces will mix freely. =>
• Conservation of orbitals • Waves that are in phase add together. Amplitude increases. • Waves that are out of phase cancel out. =>
Chapter 2 3
Sigma Bonding
O CH3 C _ CH2
=>
Chapter 2 14
Rotation around Bonds
• Single bonds freely rotate. • Double bonds cannot rotate unless the bond is broken.
化学基础英文2_intermolecular_forces分子间作用力
The following table illustrates some of the factors that influence the strength of intermolecular attractions. The formula of each entry is followed by its formula weight in parentheses and the boiling point in degrees Celsius.
Molecular shape is also important, as the second group of compounds illustrate. The upper row consists of roughly spherical molecules, whereas the isomers in the lower row have cylindrical or linear shaped molecules. The attractive forces between the latter group are generally greater.
Chapter 2 Intermolecular Forces
2-1 van der Waals attraction 2-2 Boiling & Melting Points 2-3 Hydrogen Bonding 2-4 Properties of Crystalline Solids 2-5 Water Solubility
The molecule is the smallest observable group of uniquely bonded atoms that represent the composition, configuration and characteristics of a pure compound. Since all observable samples of compounds and mixtures contain a very large number of molecules, we must also concern ourselves with interactions between molecules, as well as with their individual structures.
化学常用英文单词汇总
chapter 1 atomic structureelement n.元素all know materials can be broken down into fundamental substances we call element. 我们所知道的所有物质都可以分解成原子。
atom n.原子atom is the smallest particle of matter having all that element’s characteristics.原子时具有元素性质的最小粒子。
nucleus /’nju:kli?s,’nu?kli?s/ 原子核electron n.电子proton 质子neutron 中子compound n. 化合物:When two or more elements combine and form a compound, a chemical change takes place.当两种或两种以上的元素结合形成化合物时, 发生化学变化。
化学中的物质分为单质和化合物,大部分元素是以化合物的形式存在的。
ion n. 离子:when an atom get or lost elections,it becomes ion.原子得失电子后形成离子。
cathode n. 阴极(negative electrode)Cathode rays are attracted by a positive charge.阴极射线被阳电荷所吸引。
anode n. 阳极(positive election)A red wire is often attached to the anode.红色电线通常与阳极相联。
particle n. 粒子:微小粒子包Particles include moleculars,atoms , protons, neutrons ,electrons and ions.括分子,原子,质子,中子,电子,离子等等。
高分子材料专业英语第二版(曹同玉,冯连芳,张菊华)课后例句翻译
Unit11.The essentially the ‘giantness’of the size of the polymer molecule that makes its behavior different from that of a commonly known chemical compound such as benzene.实质上,正是由于聚乙烯的巨大的分子尺寸才使其性能不同于像苯这样的一般化合物(的性能)。
2.The globules of polyvinyl alcohol firstly absorb water,swell and get distorbed in shape and aftera long time go into solution.聚乙烯醇颗粒首先吸水溶胀,发生变形,经过很长的时间以后,(聚乙烯醇分子)进入到溶液中。
3.Another peculiarity is that ,in water,polyvinyl alcohol never retains its original powdery nature as the excess sodium chloride does in a saturated salt solution.另一个特点是,在水中聚乙烯醇不会像过量的氯化钠在饱和盐溶液中那样能保持其初始的粉末状态。
UNIT21.The initiation of the chain reaction can be observed most clearly with radical or ionic initiators.用自由基型引发剂或离子型引发剂引发连锁反应可以很清楚的进行观察。
2.Such reactions occur through the initial addition of a monomer molecule to an initiator radical or an initiator ion,by which the active state is transferred from the added monomer.这样的反应是通过单体分子首先加成到引发剂自由基或引发剂离子上而进行的,靠这些活性中心由引发剂转移到被加成的单体上。
石河子大学无机化学 第二章
分子结构
Chapter 2 Molecular Structure
本章教学要求
1.认识化学键的本质;
2.掌握价键理论的内容;会用价键理论解释共
价键的特征,会用价层电子互斥理论和杂化轨道
理论解释简单的分子结构; 3.初步认识分子轨道,掌握第二周期元素 的分子轨道特点; 4.认识分子间作用力和氢键的本质,会用其解 释对物质性质的影响.
4
正四面体
5
三角双锥
6
八面体
Question
判断 OF2 分子的基本形状.
写出路易斯结构式, 并读出中心原子周围价电子对的总数: F— O—F 中心原子价层有 4 对电子. 4 对价电子
的理想排布方式为正四面体, 但考虑到
其中包括两个孤对, 所以分子的实际几 何形状为V 型分子。
Question 判断 XeF4 分子的基本形状.
B AB5 5 Triangular bipyramidal* (BaABa, 180°) (BeABe, 120°) (BeABa, 90° B A B
B
B B B B A B B B
AB6
6
Octahedral
(90°, 180°)
● 确定孤对电子数和分子空间构型
LP=0
BeH2
BF3
分子的空间构型=电子对的空间构型
负
原则:
A的价电子数 = 主族序数
配体X: H和卤素每个原子各提供一个价电子, 氧与硫不提供价电子 正离子 “-‖ 电荷数, 负离子 “+‖ 电荷数
2
例: VP( SO 4 )= 1∕2 (6+4×0+2)=4
● 确定电子对的空间排布方式
Geometry of covalent molecules with no unshared electron pairs on the central atom Formula type Shared electron pair 2 Arrangement of B atoms relative to A atoms(ideal BAB bond angle) Linear (180°) B AB3 3 Triangular planar (120°) B Structures
分子间力
Compound
AgF
r+/r-
Crystalline type Coordination number
0.85 NaCl
6:6
AgCl
0.63 NaCl 6:6
AgBr
0.57 NaCl 6:6
AgI
0.51 ZnS 4:4
Compound
CuF
CuCl
CuBr
CuI
r+/r-
0.72
0.53
0.49
氢键(hydrogen band)
● 氢键存在的证明 氢键和分子间作用力一样,
也是很弱的力. 与同系物性质的不同就是
由氢键引起的.
The structure of ice
● 氢键的结构特点
rH
d
θ
X
Y
R
Represent of hydrogen bond
这种方向与富电子 氢化物中孤对电子占 据的轨道在空间的伸 展方向有关.
,Be2+离子半径最小,又是2电子构型,因此Be2+有很大的极化能 力,使Cl-发生比较显著的变形,Be2+和 Cl-之间的键有较显著的 共价性。因此BeCl2具有较低的熔、沸点。BeCl2、MgCl2、CaCl2的 熔点依次为410℃、714℃、782℃。
● 溶解度降低 离子极化使离子键逐步向共价键过渡,根据相似
● 偶极矩 (dipole moment, µ) 表示分子中电荷分布状况的物理量,定义为正、负电重心间的
距离与电荷量的乘积. 分子电偶极矩是个矢量. 对双原子分子而言
,分子偶极矩等于键的偶极矩;对多原子分子而言,分子偶极矩则
等于各个键的偶极矩的矢量和.
● 双原子分子的极性取决于键的极性。
Bondingforcesandintermolecularforces:粘结力和分子间力
–
–
––
–
–
!- – –
+++++++++
– –
+++++++++
–
!+
–
–
–
––
–
–
But at any given moment, the electron distribution may be nonsymmetrical, resulting in temporary polarity
London Dispersion Forces
London dispersion forces are similar to dipole – dipole forces, except:
• they are the result of temporary dipoles • they are weaker than dipole-dipole forces • they occur in both polar and nonpolar molecules
Dipole – Dipole Forces
Dipole – dipole forces occur in polar substances
•they are the result of attractions between the positive
and negative ends of different molecules
-- Interaction between a positively polarized hydrogen atom and an unshared electron pair on a N, O or F atom
第2章 化学键与分子结构(4)
HCl
键的极性 多原子分子 分子的极性 分子的几何构型 例 H2O H H
+ _
O
+ _ _ + _+
极性分子
CO2
O
_+
C
O
_ 非极性分子 +
极性分子 (Polar molecules)
A diatomic molecule is polar if its bond is polar. A polyatomic molecule is polar if it has polar bonds arranged in space in such a way what their dipoles do not cancel.
分子间力的影响因素:
分子间距离:分子间距离越大,分子间力越弱。
取向力:温度越高,取向力越弱;分子的偶极矩越大, 取向力越强。
诱导力:极性分子的偶极矩越大、非极性分子的极化率越大,诱导 力越强。
色散力:分子的极化率越大, 色散力越强。
一般来说,结构相似的同系列物质,相对分子质量越大,分子变 形性越大,分子间力越强,熔、沸点越高。溶质或溶剂分子的 变形性越大,分子间力越大,溶解度越大。
不同元素的原子形成化学键时,由于正负电荷重心不重合, 形成极性共价键。两元素之间的电负性差越大,键的极性就 越大;两元素之间的电负性差越小,键的极性也越小。 HF、HCl、HBr、HI 自左至右分子的极性逐渐减小
§4
分子间作用力(Intermolecular Forces)
分子内原子间的结合靠化学键,物质中分子间存在着分子间 作用力。 一、分子的偶极矩(Dipole Moment, ) 1. 永久偶极 分子的正电重心和负电重心不重合,则为 极性分子,其极性的大小可以用偶极矩 μ来度量。
化学专业英语翻译2
02. THE NONMETAL ELEMENTSWe noted earlier. that -nonmetals exhibit properties that are greatly different from those of the metals. As a rule, the nonmetals are poor conductors of electricity (graphitic carbon is an exception) and heat; they are brittle, are often intensely colored, and show an unusually wide range of melting and boiling points. Their molecular structures, usually involving ordinary covalent bonds, vary from the simple diatomic molecules of H2, Cl2, I2, and N2 to the giant molecules of diamond, silicon and boron.我们前面提到的。
-非金属表现出的性质有很大的不同,这些金属。
作为一项规则,非金属都是热的不良导体电(石墨碳是个例外)和热;他们是脆的,往往是强烈的色彩,并显示一个非常广泛的熔点和沸点。
其分子结构,通常涉及一般共价键,从简单的双原子分子氢,氯,碘,和氮气的大分子的金刚石,硅和硼。
The nonmetals that are gases at room temperature are the low-molecular weight diatomic molecules and the noble gases that exert very small intermolecular forces. As the molecular weight increases, we encounter a liquid (Br2) and a solid (I2) whose vapor pressures also indicate small intermolecular forces. Certain properties of a few nonmetals are listed in Table 2非金属,在室温下是气体的分子量和双原子分子的惰性气体,施加很小的分子间力。
Chap 2 Alkane(2009)
22
C6H14:
For the above isomers of hexane the IUPAC names are: B 2-methylpentane C 3-methylpentane D 2,2-dimethylbutane E 2,3-dimethylbutane
Although these distinct compounds all have the same molecular formula, only one (A) can be called hexane. How then are we to name the others?
26
2) The alkane which has CH3 – CH – CH3 in one end of the chain, has no another branch, is called isoalkane (and sometimes i-alkane). CH3 – CH – CH2CH3 CH3 iso-pentane
4
Ⅰ. Chemical bone of alkane
The simplest of the alkane is methane, CH4.
5
CH4
planar square
tetrahedron
6
CH4 is a symmetrical molecule . Four C H bonds are equal.
27
3) When (CH3)3C – is in one end of the chain, the alkane which has no another branch, is named neo-alkane. CH3 CH3 – C – CH3 CH3 neo-pentane
u04notespart4intermolecularforces公开课
When approaching IB Chemistry…
Do or do not.
There is no try.
Why is methane a gas at room
temperatures, yet methanol is a liquid?
H-bonding the answer is.
Kinds of Solids
Ionic – high melting points
sodium chloride
Kinds of Solids
Covalent-network
Kinds of Solids
Metallic – delocalized electrons
silver
Kinds of Solids
H HCH
H
O H .. H HC O HH
..
Methane
Methanol
Methanol has H-bonding; methane only has weak dispersion forces
H-bonding in Methanol
Consider the boiling points of several hydrides…..
100
Normal Boiling Point
(oC)
0
SnH4
-100 0
50
100
150
Molecular Mass
100 Normal Boiling Point
(oC) 0
-100
0
GeH4
SnH4
50
100
150
Molecular Mass
人教新课标九年级下册初中化学《附录2 部分名词中英文对照表》_16
化学部分名词中英文对照教学目标1.通过对元素周期表的编制过程的了解,使学生准确理解科学发展的历程,并以此来引导自己的实践,同时促使他们逐渐形成为科学献身的高贵品质。
2.充分发挥学生学习的主动性。
培养学生观察、分析、推理、归纳等探究式学习水平。
教学过程:一、创设情境、导入新课。
3.RealGases:DeviationfromIdealBehavior真实气体:对理想气体行为的偏离4.ThevanderWaalsEquation范德华方程5.SystemandSurroundings系统与环境6.StateandStateFunctions状态与状态函数7.Process过程8.Phase相9.TheFirstLawofThermodynamics热力学第一定律10.HeatandWork热与功11.EndothermicandExothermicProcesses吸热与发热过程12.EnthalpiesofReactions反应热13.Hess’sLaw盖斯定律14.EnthalpiesofFormation生成焓15.ReactionRates反应速率16.ReactionOrder反应级数17.RateConstants速率常数18.ActivationEnergy活化能19.TheArrheniusEquation阿累尼乌斯方程20.ReactionMechanisms反应机理21.HomogeneousCatalysis均相催化剂22.HeterogeneousCatalysis非均相催化剂23.Enzymes酶24.TheEquilibriumConstant平衡常数25.theDirectionofReaction反应方向26.LeChate lier’sPrinciple列·沙特列原理27.EffectsofVolume,Pressure,TemperatureChangesandCatalysts 体积,压力,温度变化以及催化剂的影响28.SpontaneousProcesses自发过程29.EntropyStandardEntropy熵标准熵30.TheSecondLawofThermodynamics热力学第二定律31.EntropyChanges熵变32.StandardFree-EnergyChanges标准自由能变33.Acid酸34.Bases碱35.TheProtoninWater水合质子36.ThepHScalespH值37.TheDissociationofWater水离解38.Proton-TransferReactions质子转移反应39.ConjugateAcid-BasePairs共轭酸碱对40.RelativeStrengthofAcidsandBases酸碱的相对强度41.LewisAcidsandBases路易斯酸碱42.HydrolysisofMetalIons金属离子的水解43.BufferSolutions缓冲溶液44.TheCommon-IonEffects同离子效应45.BufferCapacity缓冲容量46.FormationofComplexIons配离子的形成47.Solubility溶解度48.TheSolubility-ProductConstant溶度积常数49.PrecipitationandseparationofIons离子的沉淀与分离50.SelectivePrecipitationofIons离子的选择沉淀51.Oxidation-ReductionReactions氧化还原反应52.OxidationNumber氧化数53.BalancingOxidation-ReductionEquations氧化还原反应方程的配平54.Half-Reaction半反应55.GalvaniCell原电池56.V oltaicCell伏特电池57.CellEMF电池电动势58.StandardElectrodePotentials标准电极电势59.OxidizingandReducingAgents氧化剂和还原剂60.TheNernstEquation能斯特方程61.Electrolysis电解62.TheWaveBehaviorofElectrons电子的波动性63.Bohr’sModelofTheHydrogenAtom氢原子的波尔模型64.LineSpectra线光谱65.QuantumNumbers量子数66.ElectronSpin电子自旋67.AtomicOrbital原子轨道68.Thesp,d,fOrbitalsp,d,f轨道69.Many-ElectronAtoms多电子原子70.EnergiesofOrbital轨道能量71.ThePauliExclusionPrinciple泡林不相容原理72.ElectronConfigurations电子构型73.ThePeriodicTable周期表74.Row行75.Group族76.Isotopes,AtomicNumbers,andMassNumbers同位素,原子数,质量数77.PeriodicPropertiesoftheElements元素的周期律78.RadiusofAtoms原子半径79.IonizationEnergy电离能80.Electronegativity电负性81.EffectiveNuclearCharge有效核电荷82.ElectronAffinities亲电性83.Metals金属84.Nonmetals非金属85.ValenceBondTheory价键理论86.CovalenceBond共价键87.OrbitalOverlap轨道重叠88.MultipleBonds重键89.HybridOrbital杂化轨道90.TheVSEPRModel价层电子对互斥理论91.MolecularGeometries分子空间构型92.MolecularOrbital分子轨道93.DiatomicMolecules双原子分子94.BondLength键长95.BondOrder键级96.BondAngles键角97.BondEnthalpies键能98.BondPolarity键矩99.DipoleMoments偶极矩100.PolarityMolecules极性分子101.PolyatomicMolecules多原子分子102.CrystalStructure晶体结构103.Non-Crystal非晶体104.ClosePackingofSpheres球密堆积105.MetallicSolids金属晶体106.MetallicBond金属键107.Alloys合金108.IonicSolids离子晶体109.Ion-DipoleForces离子偶极力110.MolecularForces分子间力111.IntermolecularForces分子间作用力112.HydrogenBonding氢键113.Covalent-NetworkSolids原子晶体pounds化合物115.TheNomenclature,CompositionandStructureofComplexes 配合物的命名,组成和结构116.Charges,CoordinationNumbers,andGeometries电荷数、配位数、及几何构型117.Chelates螯合物118.Isomerism异构现象119.StructuralIsomerism结构异构120.Stereoisomerism立体异构121.Magnetism磁性122.ElectronConfigurationsinOctahedralComplexes八面体构型配合物的电子分布123.TetrahedralandSquare-planarComplexes四面体和平面四边形配合物124.GeneralCharacteristics共性125.s-BlockElementss区元素126.AlkaliMetals碱金属127.AlkalineEarthMetals碱土金属128.Hydrides氢化物129.Oxides氧化物130.PeroxidesandSuperoxides过氧化物和超氧化物131.Hydroxides氢氧化物132.Salts盐133.p-BlockElementsp区元素134.BoronGroupBoron,Aluminium,Gallium,Indium,Thallium 硼族硼,铝,镓,铟,铊135.Borane硼烷136.CarbonGroupCarbon,Silicon,Germanium,Tin,Lead碳族碳,硅,锗,锡,铅137.Graphite,CarbonMonoxide,CarbonDioxide石墨,一氧化碳,二氧化碳138.CarbonicAcid,CarbonatesandCarbides碳酸,碳酸盐,碳化物139.OccurrenceandPreparationofSilicon硅的存有和制备140.SilicicAcid,Silicates硅酸,硅酸盐141.NitrogenGroupPhosphorus,Arsenic,Antimony,andBismuth氮族磷,砷,锑,铋142.Ammonia,NitricAcid,PhosphoricAcid氨,硝酸,磷酸143.Phosphorates,phosphorusHalides磷酸盐,卤化磷144.OxygenGroupOxygen,Sulfur,Selenium,andTellurium氧族元素氧,硫,硒,碲145.Ozone,HydrogenPeroxide臭氧,过氧化氢146.Sulfides硫化物147.HalogensFluorine,Chlorine,Bromine,Iodine卤素氟,氯,溴,碘148.Halides,Chloride卤化物,氯化物149.TheNobleGases稀有气体150.Noble-GasCompounds稀有气体化合物151.d-Blockelementsd区元素152.TransitionMetals过渡金属153.PotassiumDichromate重铬酸钾154.PotassiumPermanganate高锰酸钾155.IronCopperZincMercury铁,铜,锌,汞156.f-BlockElementsf区元素nthanides镧系元素158.Radioactivity放射性159.NuclearChemistry核化学160.NuclearFission核裂变161.NuclearFusion核聚变162.analyticalchemistry分析化学163.qualitativeanalysis定性分析164.quantitativeanalysis定量分析165.chemicalanalysis化学分析166.instrumentalanalysis仪器分析167.titrimetry滴定分析168.gravimetricanalysis重量分析法169.regent试剂170.chromatographicanalysis色谱分析171.product产物172.electrochemicalanalysis电化学分析173.on-lineanalysis在线分析174.macroanalysis常量分析175.characteristic表征176.microanalysis微量分析177.deformationanalysis形态分析178.semimicroanalysis半微量分析179.systematicalerror系统误差180.routineanalysis常规分析181.randomerror偶然误差182.arbitrationanalysis仲裁分析183.grosserror过失误差184.normaldistribution正态分布185.accuracy准确度186.deviation偏差187.precision精密度188.relativestandarddeviation相对标准偏差RSD 189.coefficientvariation变异系数CV190.confidencelevel置信水平191.confidenceinterval置信区间192.significanttest显著性检验193.significantfigure有效数字194.standardsolution标准溶液195.titration滴定196.stoichiometricpoint化学计量点197.endpoint滴定终点198.titrationerror滴定误差199.primarystandard基准物质200.amountofsubstance物质的量201.standardization标定202.chemicalreaction化学反应203.concentration浓度204.chemicalequilibrium化学平衡205.titer滴定度206.generalequationforachemicalreaction化学反应的通式207.protontheoryofacid-base酸碱质子理论208.acid-basetitration酸碱滴定法209.dissociationconstant解离常数210.conjugateacid-basepair共轭酸碱对211.aceticacid乙酸212.hydroniumion水合氢离子213.electrolyte电解质214.ion-productconstantofwater水的离子积215.ionization电离216.protoncondition质子平衡217.zerolevel零水准218.buffersolution缓冲溶液219.methylorange甲基橙220.acid-baseindicator酸碱指示剂221.phenolphthalein酚酞222.coordinationcompound配位化合物223.centerion中心离子224.cumulativestabilityconstant累积稳定常数225.alphacoefficient酸效应系数226.overallstabilityconstant总稳定常数227.ligand配位体228.ethylenediaminetetraaceticacid乙二胺四乙酸229.sidereactioncoefficient副反应系数230.coordinationatom配位原子231.coordinationnumber配位数232.lonepairelectron孤对电子233.chelatecompound螯合物234.metalindicator金属指示剂235.chelatingagent螯合剂236.masking掩蔽237.demasking解蔽238.electron电子239.catalysis催化240.oxidation氧化241.catalyst催化剂242.reduction还原243.catalyticreaction催化反应244.reactionrate反应速率245.electrodepotential电极电势246.activationenergy反应的活化能247.redoxcouple氧化还原电对248.potassiumpermanganate高锰酸钾249.iodimetry碘量法250.potassiumdichromate重铬酸钾251.cerimetry铈量法252.redoxindicator氧化还原指示253.oxygenconsuming耗氧量OC254.chemicaloxygendemanded化学需氧量COD 255.dissolvedoxygen溶解氧DO256.precipitation沉淀反应257.argentimetry银量法258.heterogeneousequilibriumofions多相离子平衡259.aging陈化260.postprecipitation继沉淀261.coprecipitation共沉淀262.ignition灼烧263.fitration过滤264.decantation倾泻法265.chemicalfactor化学因数266.spectrophotometry分光光度法267.colorimetry比色分析268.transmittance透光率269.absorptivity吸光率270.calibrationcurve校正曲线271.standardcurve标准曲线272.monochromator单色器273.source光源274.wavelengthdispersion色散275.absorptioncell吸收池276.detector检测系统277.bathochromicshift红移278.Molarabsorptivity摩尔吸光系数279.hypochromicshift紫移280.acetylene乙炔281.ethylene乙烯282.acetylatingagent乙酰化剂283.aceticacid乙酸284.adiethylether乙醚285.ethylalcohol乙醇286.acetaldehtde乙醛287.β-dicarbont lcompoundβ–二羰基化合物288.bimolecularelimination双分子消除反应289.bimolecularnucleophilicsubstitution双分子亲核取代反应290.openchaincompound开链族化合物291.molecularorbitaltheory分子轨道理论292.chiralmolecule手性分子293.tautomerism互变异构现象294.reactionmechanism反应历程295.chemicalshift化学位移296.Waldeninversio瓦尔登反转n 297.Enantiomorph对映体298.additionreaction加成反应299.dextro-右旋300.levo-左旋301.stereochemistry立体化学302.stereoisomer立体异构体303.Lucasreagent卢卡斯试剂304.covalentbond共价键305.conjugateddiene共轭二烯烃306.conjugateddoublebond共轭双键307.conjugatedsystem共轭体系308.conjugatedeffect共轭效应309.isomer同分异构体310.isomerism同分异构现象anicchemistry有机化学312.hybridization杂化313.hybridorbital杂化轨道314.heterocycliccompound杂环化合物315.peroxideeffect过氧化物效应t316.valencebondtheory价键理论317.sequencerule次序规则318.electron-attractinggroup吸电子基319.Huckelrule休克尔规则320.Hinsbergtest兴斯堡试验321.infraredspectrum红外光谱322.Michaelreacton麦克尔反应323.halogenatedhydrocarbon卤代烃324.haloformreaction卤仿反应325.systematicnomenclatur系统命名法e326.Newmanprojection纽曼投影式327.aromaticcompound芳香族化合物328.aromaticcharacter芳香性r329.Claisencondensationreaction克莱森酯缩合反应330.Claisenrearrangement克莱森重排331.Diels-Alderreation狄尔斯-阿尔得反应332.Clemmensenreduction克莱门森还原333.Cannizzaroreaction坎尼扎罗反应334.positionalisomers位置异构体335.unimoleculareliminationreaction单分子消除反应336.unimolecularnucleophilicsubstitution单分子亲核取代反应337.benzene苯338.functionalgrou官能团p339.configuration构型340.conformation构象341.confomationalisome构象异构体342.electrophilicaddition亲电加成343.electrophilicreagent亲电试剂344.nucleophilicaddition亲核加成345.nucleophilicreagent亲核试剂346.nucleophilicsubstitutionreaction亲核取代反应347.activeintermediate活性中间体348.Saytzeffrule查依采夫规则349.cis-transisomerism顺反异构350.inductiveeffect诱导效应t351.Fehling’sreagent费林试剂352.phasetransfercatalysis相转移催化作用353.aliphaticcompound脂肪族化合物354.eliminationreaction消除反应355.Grignardreagent格利雅试剂356.nuclearmagneticresonance核磁共振357.alkene烯烃358.allylcation烯丙基正离子359.leavinggroup离去基团360.opticalactivity旋光性361.boatconfomation船型构象362.silvermirrorreaction银镜反应363.Fischerprojection菲舍尔投影式364.Kekulestructure凯库勒结构式365.Friedel-Craftsreaction傅列德尔-克拉夫茨反应366.Ketone酮367.carboxylicacid羧酸368.carboxylicacidderivative羧酸衍生物369.hydroboration硼氢化反应370.bondoength键长371.bondenergy键能372.bondangle键角373.carbohydrate碳水化合物374.carbocation碳正离子375.carbanion碳负离子376.alcohol醇377.Gofmannrule霍夫曼规则378.Aldehyde醛379.Ether醚380.Polymer聚合物。
第二章 烷烃和环烷烃 自由基取代反应(修正)
正戊烷
异戊烷
新戊烷
如何用普通命名法命名?
15
• 系统命名法(Systematic Names / IUPAC names)
IUPAC: International Union of Pure and Applied Chemistry
1. 直链烷烃:
根据烷烃分子中的碳原子数称为某烷,前面不需加“正”。
若环上只有一个取代基,则与
取代基相连的环碳原子为1号碳, 取代基的位次不需标出。
1-甲基-2-乙基环戊烷
若环上有两个基团存在:
IUPAC:基团名称首字母优先的,其相连环碳原子编为1号;
中国化学会:“次序规则”中不优先的基团,其相连环碳原子
编为1号。
27
2-甲基-4-乙基-1-丙基环己烷
28
环上有复杂取代基时,可将环作为取代基命名。 1-环丁基戊烷
7-环丙基螺[4.5]癸烷
30
3. 桥环烷烃(bridge cycloalkanes) 根据桥环上的环数和所含碳原子总数称为几环某烷。 环数的确定: 将环上任意一根键剪断,每次剪断一根 键,即破坏一个环。根据所需剪断键的 最小次数确定该桥环化合物所含的环数。
31
在几环和某烷间插入方括号,用阿拉伯数字标出每一 条桥上的碳原子数(不包括桥头碳原子),数字由大 到小排列。 编号:从一个桥头碳原子开始,沿最长的桥到第二个 桥头碳原子,再从次长的桥回到第一个桥头,最后给 出最短的桥编号。并使取代基位次最小。
1,3-二环己基丙烷
29
2. 螺烷烃(spiroalkanes)
根据螺环上碳原子总数称为螺某烷。在“螺”与某烷 间插入方括号,用阿拉伯数字标出螺原子所夹碳链上 碳原子的数目(不包括螺原子),数字由小到大排列。 编号:从螺原子邻位碳开始,沿较小的环开始编号, 并使环上取代基位次最小。
第2章-表界面原理1-基本原理
Makin' contact. (2011, 03 04). Retrieved from /post/3638362998/makin-contact
BEA Confidential. | 18
2.1.3 Contact angle, wetting, and spreading
2.1 Surface tension and work
At any surface, if the force, F, acting tangentially (切线上)to the surface and at right angles (直 角) to an element(单元), δx, of an imaginary line in the surface has a magnitude (大小,量级) that is independent of the direction of the element, then the surface tension, γ, is: γ=F/δx (2-1)
2.1 Surface tension and work 2.1.2 Work of extension (扩张功)
δA= xδy; γ=F/δx F=γx; (2-1)
Ws=Fδy=γ xδy=γ δA (2-2)
δA
1/2x δy
F
BEA Confidential. | 15 /fun3_en/exper2/exper2.htm
2.1 Surface tension and work
Brush(刷子)
Sandcastle(沙雕) The interface acts as though it were under tension. 界面上存在“张力”
费恩曼物理学讲义第二卷 英文版
费恩曼物理学讲义第二卷英文版全文共3篇示例,供读者参考篇1Richard Feynman was a renowned physicist who made numerous contributions to the field of theoretical physics. His lectures at the California Institute of Technology were famously engaging and accessible to students. The second volume of his lectures, titled "The Feynman Lectures on Physics Volume 2: Mainly Electromagnetism and Matter," was published in 1964 and remains a popular resource for students and researchers today.In this volume, Feynman delves into the fascinating world of electromagnetism and the behavior of matter. He starts by discussing the concept of electromagnetism and the laws that govern the interaction between electric and magnetic fields. The book covers a wide range of topics, including the Maxwell equations, electromagnetic waves, and the behavior of charged particles in electric and magnetic fields.One of the highlights of the book is Feynman's unique teaching style, which combines clear explanations with insightfulanalogies and examples. He breaks down complex concepts into simple, easy-to-understand explanations, making even the most challenging topics accessible to readers. Feynman's passion for physics shines through in his writing, making the book a joy to read for both beginners and experts in the field."The Feynman Lectures on Physics Volume 2" is a valuable resource for anyone looking to deepen their understanding of electromagnetism and the behavior of matter. Whether you are a student, a researcher, or simply a physics enthusiast, this book offers a wealth of knowledge and insights that will inspire and educate you. Richard Feynman's legacy lives on through his lectures and writings, and this volume is a testament to his brilliance and dedication to the pursuit of knowledge.篇2Feynman Lectures on Physics Volume 2 - English VersionThe Feynman Lectures on Physics, written by NobelPrize-winning physicist Richard P. Feynman, is a renowned set of introductory physics textbooks. Volume 2 of this series delves into electromagnetism, optics, and quantum mechanics. This volume provides a comprehensive understanding of thesefundamental topics in physics, explained in Feynman's unique and engaging style.One of the key concepts covered in Volume 2 is electromagnetism. Feynman explains the fundamental principles of electricity and magnetism, including Coulomb's law, Gauss's law, and Faraday's law of electromagnetic induction. He explores the relationship between electric and magnetic fields, and how they interact to produce electromagnetic waves. Feynman's clear explanations and insightful analogies make these complex concepts accessible to readers of all levels.In the section on optics, Feynman discusses the behavior of light, including reflection, refraction, and diffraction. He explains the wave nature of light and the principles of interference and diffraction patterns. Feynman also covers the properties of lenses, mirrors, and prisms, and how they affect the behavior of light rays. His detailed explanations and illustrations provide a thorough understanding of the principles of optics.Quantum mechanics is another important topic covered in Volume 2. Feynman introduces the basic principles of quantum mechanics, including the wave-particle duality of matter, the uncertainty principle, and the quantization of energy levels. He explores the behavior of particles at the quantum level, includingthe concept of superposition and the measurement problem. Feynman's clear and concise explanations help readers grasp the counterintuitive principles of quantum mechanics.Overall, Volume 2 of the Feynman Lectures on Physics is an essential resource for students, educators, and anyone interested in gaining a deep understanding of electromagnetism, optics, and quantum mechanics. Feynman's engaging writing style, clear explanations, and insightful analogies make this volume an invaluable addition to any physics library. Whether you are a seasoned physicist or a beginner looking to explore the wonders of the universe, Feynman's Lectures on Physics Volume 2 is sure to enlighten and inspire.篇3Feynman Lectures on Physics Volume 2 – English VersionRichard Feynman, the renowned physicist and Nobel laureate, delivered a series of lectures on physics at the California Institute of Technology in the early 1960s. These lectures were later compiled into a three-volume set called the "Feynman Lectures on Physics." The second volume covers topics in electromagnetism and matter.In Volume 2 of the Feynman Lectures, Feynman covers the fundamental principles of electromagnetism, including Maxwell's equations and the behavior of electric and magnetic fields. He also discusses the properties of conductors, insulators, and semiconductors, as well as the phenomenon of induction and how it relates to electromagnetic waves.One of the highlights of Volume 2 is Feynman's discussion of quantum mechanics and how it applies to the behavior of electrons and other subatomic particles. He explains thewave-particle duality of matter and introduces the concept of quantum superposition, where particles can exist in multiple states simultaneously.Feynman's engaging and accessible writing style makes complex physics concepts easy to understand, even fornon-experts. He uses analogies, diagrams, and real-world examples to illustrate key principles and make the material more relatable to readers.Volume 2 of the Feynman Lectures on Physics is a valuable resource for students, educators, and anyone with an interest in physics. Whether you're a beginner or a seasoned physicist, Feynman's insights and explanations are sure to deepen yourunderstanding of the natural world and inspire a sense of wonder about the universe.In conclusion, the "Feynman Lectures on Physics Volume 2" is a must-read for anyone looking to expand their knowledge of electromagnetism, quantum mechanics, and the fundamental forces of nature. Feynman's unique blend of insight, humor, and enthusiasm make this book a timeless classic that will continue to educate and inspire readers for generations to come.。
【免费下载】生物分离名词解释
Chapter 1Downstream processing(DSP):The isolation and purification of a biotechnological product to a form suitable for its intended use. The separation and purification of products synthesized by bioprocesses:Biotechnology:the use of cultured microorganisms, animal cells, and plant cells to produce products useful to humans.Modern biotechnology:Built on genetic engineering to produce commercial products or processes.Chapter 2Coagulation:the chemical alteration of the colloidal particles to make them stick together凝聚值:表示电解质的凝聚能力,使胶粒发生凝聚作用的最小电解质浓度m mol/L. Flocculation: a process whereby particles are aggregated into clusters.Filtration separates solid from a liquid by forcing the liquid through a filter medium.滤浆(feed/ slurry):悬浮液过滤介质(filter medium) :多孔物质滤液(filtrate):通过过滤介质的液体滤饼(filter cake):被截留的固体物质Conventional or dead-end filtration: the fluid flows perpendicular to the medium which result in a cake of solids depositing on the filter medium.Crossflow filtration:The fluid flows parallel to the medium to minimize buildup to solids on the medium.Centrifugation is a process that involves the use of the centrifugal force for the separation of mixtures.分离因数(Z):离心力与重力的比值。
分子之间由于相互作用力而具有的能
分子之间由于相互作用力而具有的能英文回答:Intermolecular forces are the forces of attraction or repulsion between molecules. These forces play a crucial role in determining the physical and chemical properties of substances. There are several types of intermolecular forces, including London dispersion forces, dipole-dipole forces, and hydrogen bonding.London dispersion forces, also known as van der Waals forces, are the weakest intermolecular forces. They occur between all molecules, regardless of their polarity. These forces arise from temporary fluctuations in electron distribution, which create temporary dipoles. These temporary dipoles induce similar dipoles in neighboring molecules, resulting in an attractive force between the molecules. An example of London dispersion forces is the interaction between nonpolar molecules like methane (CH4).Dipole-dipole forces occur between polar molecules. These forces arise from the attraction between the positive end of one molecule and the negative end of another molecule. An example of dipole-dipole forces is the interaction between water molecules (H2O). The oxygen atomin water has a partial negative charge, while the hydrogen atoms have partial positive charges. The positive end ofone water molecule is attracted to the negative end of another water molecule, creating dipole-dipole forces.Hydrogen bonding is a special type of dipole-dipoleforce that occurs when hydrogen is bonded to a highly electronegative atom, such as oxygen, nitrogen, or fluorine. The hydrogen atom in the bond becomes highly positively charged, while the electronegative atom becomes highly negatively charged. This leads to a strong attraction between the hydrogen atom of one molecule and the electronegative atom of another molecule. An example of hydrogen bonding is the interaction between water molecules. The hydrogen atoms in water form hydrogen bonds with the oxygen atoms of neighboring water molecules, creating a network of hydrogen bonds.These intermolecular forces determine many important properties of substances. For example, the boiling point of a substance is influenced by the strength of the intermolecular forces. Substances with stronger intermolecular forces require more energy to break the forces and transition from a liquid to a gas. This is why substances like water, which have hydrogen bonding, have higher boiling points compared to substances like methane, which only have London dispersion forces.中文回答:分子之间的相互作用力被称为分子间力,它们对物质的物理和化学性质起着至关重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The molecule is the smallest observable group of uniquely bonded atoms that represent the composition, configuration and characteristics of a pure compound. Since all observable samples of compounds and mixtures contain a very large number of molecules, we must also concern ourselves with interactions between molecules, as well as with their individual structures. Indeed, many of the physical characteristics of compounds that are used to identify them (e.g. boiling points, melting points and solubilities) are due to intermolecular interactions.
The following table illustrates some of the factors that influence the strength of intermolecular attractions. The formula of each entry is followed by its formula weight in parentheses and the boiling point in degrees Celsius. First there is molecular size. Large molecules have more electrons and nuclei that create van der Waals attractive forces, so their compounds usually have higher boiling points than similar compounds made up of smaller molecules.
2-3 Hydrogen Bonding The most powerful intermolecular force influencing neutral (uncharged) molecules is the hydrogen bond. If we compare the boiling points of methane (CH4) -161ºC, ammonia (NH3) -33ºC, water (H2O) 100ºC and hydrogen fluoride (HF) 19ºC, we see a greater variation for these similar sized molecules than expected from the data presented above for polar compounds. This is shown graphically in the following chart. Most of the simple hydrides of group IV, V, VI & VII elements display the expected rise in boiling point with molecular mass, but the hydrides of the most electronegative elements (nitrogen, oxygen and fluorine) have abnormally high boiling points for their mass.
Thus, in order to break the intermolecular attractions that hold the molecules of a compound in the condensed liquid state, it is necessary to increase their kinetic energy by raising the sample temperature to the characteristic boiling point of the compound.
The melting points of crystalline solids cannot be categorized in as simple a fashion as boiling points. The distance between molecules in a crystal lattice is small and regular, with intermolecular forces serving to constrain the motion of the molecules more severely than in the liquid state. Molecular size is important, but shape is also critical, since individual molecules need to fit together cooperatively for the attractive lattice forces to be large. Spherically shaped molecules generally have relatively high melting points, which in some cases approach the boiling point. This reflects the fact that spheres can pack together more closely than other shapes..
Molent, as the second group of compounds illustrate. The upper row consists of roughly spherical molecules, whereas the isomers in the lower row have cylindrical or linear shaped molecules. The attractive forces between the latter group are generally greater.
2-1 van der Waals attraction All atoms and molecules have a weak attraction for one another, known as van der Waals attraction. This attractive force has its origin in the electrostatic attraction of the electrons of one molecule or atom for the nuclei of another. If there were no van der Waals forces, all matter would exist in a gaseous state, and life as we know it would not be possible. It should be noted that there are also smaller repulsive forces between molecules that increase rapidly at very small intermolecular distances.
Chapter 2 Intermolecular Forces 2-1 van der Waals attraction 2-2 Boiling & Melting Points 2-3 Hydrogen Bonding 2-4 Properties of Crystalline Solids 2-5 Water Solubility
2-2 Boiling Points For general purposes it is useful to consider temperature to be a measure of the kinetic energy of all the atoms and molecules in a given system. As temperature is increased, there is a corresponding increase in the vigor of translational and rotation motions of all molecules, as well as the vibrations of atoms and groups of atoms within molecules. Experience shows that many compounds exist normally as liquids and solids; and that even low-density gases, such as hydrogen and helium, can be liquified at sufficiently low temperature and high pressure. A clear conclusion to be drawn from this fact is that intermolecular attractive forces vary considerably, and that the boiling point of a compound is a measure of the strength of these forces.