CFE邯郸朝阳教区七年级数学作业(不等式)
冀教版七年级下册数学第10章10.1不等式习题课件
基础巩固练
7.【2021·北京期末】“x的2倍与y的和是非负数”用不 等式表示为 2x+y≥0 .
基础巩固练
8.用不等式表示: (1)x的绝对值与1的和不小于1; 解:|x|+1≥1 (2)a的一半与b的和是负数;解:12a+b<0 (3)x的 17与9的倒数的和大于y的15%;解:17x+19>15%y (4)a的30%与a的和大于a的2倍与10的差.
基础巩固练
4.【2019·河北】语句“x的 18与x的和不超过5”可以表示为 ( A)
A.x8+x≤5
B.x8+x≥5
C.x+8 5≤5
D.x8+x=5
基础巩固练 5.“a,b两数同号”可用一个不等式表示为 ab>0 .
基础巩固练
6.【2020·河北唐山第十一中学月考】“x的3倍与2的差不大 于-1”所对应的不等式是 3x-2≤-1 .
提示:点击 进入习题
1B 2A 3C 4A 5 ab>0
习题链接
6 3x-2≤-1 7 2x+y≥0 8 见习题 9D 10 A
答案显示
提示:点击 进入习题
11 D 12 A 13 5≤x≤10 14 > 15 ≥1.8
习题链接
16 x≤1 17 C 18 D 22 见习题 23 见习题 24 (1)A (2)D
A.3个 B.4个 C.5个 D.6个
能力提升练
18.【2020·河北唐山一模】一辆匀速行驶的汽车在8: 20的时候距离甲地60 km,若汽车需要在9:00以前 经过甲地,设汽车在这段路上的速度为x km/h,列 式表示正确的是( D )
A.x>60 C.20x<60
B.40x>60 2
D.3x>60
七年级数学不等式练习题及参考答案【人教版】
七年级数学《不等式与不等式(组)》练习题班级_______姓名________成绩_________A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a π,则下列不等式中正确的是( )A、b a +-+-33φ B、0φb a - C、b a 3131φ D、b a 22--φ 4、用不等式表示与的差不大于2-,正确的是( )A、2--φe d B、2--πe d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22πφx x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-234210-1A 、x 3φB 、32ππx -C 、 2-φxD 、32φφx -二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a1 b 1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42φ-x ②105πx -③ ⎩⎨⎧-21πφx x 13、不等式03φ+-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。
(完整版)初一不等式习题及答案
初一数学不等式习题一、填空:(每小题2分,共32分)1.若a<0,下列式子不成立的是 ( )A.-a+2<3-aB.a+2<a+3C.-2a <-3aD.2a>3a 2. 若a 、b 、c 是三角形三边的长,则代数式a 2 + b 2 —c 2 —2ab 的值 ( ).A.大于0B.小于0C.大于或等于0D.小于或等于0 3.若方程7x+2m=5+x 的解在-1和1之间,则m 的取值范围是 ()A.3>m>12 B.3>m>-12 C.112>m>-12 D.12>m>-112 4.若方程35x a -=26b x-的解是非负数,则a 与b 的关系是 ( )A.a ≤56bB.a ≥56bC.a ≥-56bD.a ≥528b5.下列不等式中,与不等式2x+3 ≤7有相同解集的是 ( )A. 1+22x -≥3xB. 722x - -23x -≥2(x+1)C. 3x -2(2)3x -≤6D.1-13x -≤12x-6.如果不等式(m+1)x>m+1的解集是x<1,那么m 必须满足 ()A.m ≤-1B.m<-1C.m ≥1D.m>1.7.若方程组3133x y k x y +=+⎧⎨+=⎩的解、满足01x y <+<,则k 的取值范围是 ( )A .40k-<< B. 10k -<< C.08k << D. 4k >-8.设a 、b 、c 的平均数为M ,a 、b 的平均数为N ,N 、c 的平均数为P ,若a >b >c ,则M 与P 的大小关系是( ).A. M = PB. M > PC. M < PD. 不确定 二、填空:(每小题2.5分,共40分)9.若不等式2123x a x b -<⎧⎨->⎩ 的解集为 11x -<<,那么(3)(3)a b -+的值等于 .10. 不等式5121216415x x x-+->- 的负整数解的积是 . 11. 代数式|x-1|-|x+4|- 5 的最大值为 . 12. 不等式3(x +1)≥5 x -2,则|2x -5| =________.13. 若关于x 的方程5x -2m =-4-x 解在1和10之间,则m 的取值为___________. 14. 不等式|x |>3的解集为_______________. 三、解答题:(各题的分值见题后,共78分)15.解列不等式,并把解集在数轴上表示出来。
七年级数学不等式计算题
七年级数学不等式计算题构成我们做七年级数学不等式练习题最大障碍的是已知的东西,而不是未知的东西。
下面小编给大家分享一些七年级数学不等式计算题,大家快来跟小编一起看看吧。
七年级数学不等式计算题第一部分1、一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00之前驶过A地,车速应满足什么条件?设车速是x千米/时从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即设车速是x千米/时从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即2、不等式定义:用“<”或“>”、“≤”“≥” 表示大小关系的式子,叫做不等式,像a+2≠a-2这样用“ ≠”号表示不等关系的式子也是不等式。
注:“<” 、“>” 、“≠”、“ ≤”、“ ≥”都是不等号。
练习题:下列式子哪些是不等式?哪些不是不等式?为什么?-2<5 x+3>6 4x-2y≤0 a-2b a+b≠c5m+3=8 8+4<73. 不等式的解我们曾经学过“使方程两边相等的未知数的值就是方程的解”,与方程类似 , 能使不等式成立的未知数的值叫不等式的解.代入法是检验某个值是否是不等式的解的简单、实用的方法;练习题:x=78是不等式的解吗?x=75呢?x=72呢?判断下列数中哪些是不等式的解:76 , 73 , 79 , 80, 74.9 , 75, 75.1, 90 , 60你还能找出这个不等式的其他解吗?这个不等式有多少个解?你能说出他的解集吗?4、不等式的解集一般的,一个含有未知数的不等式的所有的解组成这个不等式的解集。
求不等式的解集的过程叫解不等式。
想一想:不等式的解和不等式的解集是一样的吗?不等式的解与解不等式一样吗?练习题:1、下列说法正确的是( )A. x=3是2x+1>5的解B. x=3是2x+1>5的唯一解C. x=3不是2x+1>5的解D. x=3是2x+1>5的解集5. 解集的表示方法:用式子(如x>2),即用最简形式的不等式(如x>a或x<a)来表示.如不等式的解集可以用不等式x >75来表示。
七年级数学不等式习题
七年级数学不等式习题好的学习习惯会提高学习七年级数学不等式效率,店铺为大家整理了七年级数学不等式习题,欢迎大家阅读!七年级数学不等式练习题1-61、一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00之前驶过A地,车速应满足什么条件?设车速是x千米/时从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即设车速是x千米/时从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即2、不等式定义:用“<”或“>”、“≤”“≥” 表示大小关系的式子,叫做不等式,像a+2≠a-2这样用“ ≠”号表示不等关系的式子也是不等式。
注:“<” 、“>” 、“≠”、“ ≤”、“ ≥”都是不等号。
练习题:下列式子哪些是不等式?哪些不是不等式?为什么?-2<5 x+3>6 4x-2y≤0 a-2b a+b≠c5m+3=8 8+4<73. 不等式的解我们曾经学过“使方程两边相等的未知数的值就是方程的解”,与方程类似 , 能使不等式成立的未知数的值叫不等式的解.代入法是检验某个值是否是不等式的解的简单、实用的方法;练习题:x=78是不等式的解吗?x=75呢?x=72呢?判断下列数中哪些是不等式的解:76 , 73 , 79 , 80, 74.9 , 75, 75.1, 90 , 60你还能找出这个不等式的其他解吗?这个不等式有多少个解?你能说出他的解集吗?4、不等式的解集一般的,一个含有未知数的不等式的所有的解组成这个不等式的解集。
求不等式的解集的过程叫解不等式。
想一想:不等式的解和不等式的解集是一样的吗?不等式的解与解不等式一样吗?练习题:1、下列说法正确的是( )A. x=3是2x+1>5的解B. x=3是2x+1>5的唯一解C. x=3不是2x+1>5的解D. x=3是2x+1>5的解集5. 解集的表示方法:用式子(如x>2),即用最简形式的不等式(如x>a或x<a)来表示.如不等式的解集可以用不等式x >75来表示。
初一不等式习题及答案
1初一数学不等式习题一、填空:(每小题2分,共32分)1.若a<0,下列式子不成立的是 ( )A.-a+2<3-aB.a+2<a+3C.-2a <-3aD.2a>3a 2. 若a 、b 、c 是三角形三边的长,则代数式a2+ b 2—c 2—2ab 的值 ( ).A.大于0B.小于0C.大于或等于0D.小于或等于0 3.若方程7x+2m=5+x 的解在-1和1之间,则m 的取值范围是 ()A.3>m>12 B.3>m>-12 C.112>m>-12 D.12>m>-112 4.若方程35x a -=26b x-的解是非负数,则a 与b 的关系是 ( )A.a ≤56bB.a ≥56bC.a ≥-56bD.a ≥528b5.下列不等式中,与不等式2x+3 ≤7有相同解集的是 ( )A. 1+22x -≥3x B. 722x - -23x -≥2(x+1) C. 3x -2(2)3x -≤6 D.1-13x -≤12x-6.如果不等式(m+1)x>m+1的解集是x<1,那么m 必须满足 ()A.m ≤-1B.m<-1C.m ≥1D.m>1.7.若方程组3133x y k x y +=+⎧⎨+=⎩的解、满足01x y <+<,则k 的取值范围是 ( )A .40k-<< B. 10k -<< C.08k << D. 4k >-8.设a 、b 、c 的平均数为M ,a 、b 的平均数为N ,N 、c 的平均数为P ,若a >b >c ,则M 与P 的大小关系是( ).A. M = PB. M > PC. M < PD. 不确定二、填空:(每小题2.5分,共40分)9.若不等式2123x a x b -<⎧⎨->⎩ 的解集为 11x -<<,那么(3)(3)a b -+的值等于 .10. 不等式5121216415x x x-+->- 的负整数解的积是 . 11. 代数式|x-1|-|x+4|- 5 的最大值为 . 12. 不等式3(x +1)≥5 x -2,则|2x -5| =________.13. 若关于x 的方程5x -2m =-4-x 解在1和10之间,则m 的取值为___________. 14. 不等式|x |>3的解集为_______________. 三、解答题:(各题的分值见题后,共78分)15.解列不等式,并把解集在数轴上表示出来。
七年级数学不等式练习题及参考答案【人教版】
七年级数学《不等式与不等式(组)》练习题班级_______姓名________成绩_________A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( )A、b a +-+-33 B、0 b a - C、b a 3131D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-234210-1A 、x 3B 、32 x -C 、 2- xD 、32 x -二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a1 b 1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42 -x ②105 x -③ ⎩⎨⎧-21 x x 13、不等式03 +-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。
七年级数学不等式练习题及参考标准答案【人教版】
七年级数学《不等式与不等式(组)》练习题A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( )A 、5个 B、6个 C、7个 D、8个 76, 73, 79, 80, 74.9, 75.1, 90, 60 2、下列各式中,是一元一次不等式的是( )A 、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( )A、b a +-+-33 B、0 b a - C 、b a 3131D 、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )A 、2-- e dB 、2-- e dC 、e d -≥2-D 、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为( )A 、x >2- B、2-<x <2 C 、x <2 D 、 空集 6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D、x <21 7、不等式2+x <6的正整数解有( )A 、1个 B 、2个 C、3 个 D、4个8、下图所表示的不等式组的解集为( )A 、x 3 B 、32 x - C 、 2- x D 、32 x --234210-1二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a 1 b1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42 -x ②105 x - ③ ⎩⎨⎧-21 x x13、不等式03 +-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。
河北邯郸市七年级数学下册第九章【不等式与不等式组】经典练习(含答案)
一、选择题1.若点A (a ,b )在第二象限,则点B (﹣a ,b+1)在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( ) A .6B .7C .8D .93.下列变形中,不正确的是( ) A .若a>b ,则a+3>b+3 B .若a>b ,则13a>13b C .若a<b ,则-a<-b D .若a<b ,则-2a>-2b.4.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( ) A . B .C .D .5.若a b >,则下列不等式中,不成立的是( ) A .33a b ->- B .33a b ->- C .33a b> D .22a b -+<-+6.若a >b ,则下列式子正确的是( ) A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b7.如果点P(m ,1m -)在第四象限,则m 的取值范围是( ) A .0m >B .01m <<C .1m <D .1m8.若m n <,则下列各式中正确的是( ) A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > 9.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .10.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1x >-B .12x -<≤C .12x -≤<D .1x >-或2x ≤11.不等式1322x x -+>的解在数轴上表示正确的是( ) A .B .C .D .二、填空题12.若0a b c ++=,且a b c >>,以下结论: ①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >. 其中正确的结论是______(填写正确结论的序号). 13.不等式21302x --的非负整数解共有__个. 14.“x 的4倍与1的差不大于3”用不等式表示为 ________________ .15.已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________. 16.若不等式组52355x x x a+≤-⎧⎨-+<⎩无解,则a 的取值范围是______.17.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______. 18.若不等式(2﹣a )x >2的解集是x <22a-,则a 的取值范围是_____. 19.令a 、b 两个数中较大数记作{}max ,a b 如{}max 2,33=,已知k 为正整数且使不等式{}max 21,33k k +-+≤成立,则关于x 方程21136x k x---=的解是_____________.20.不等式组213122xx->⎧⎪⎨-≤⎪⎩的解集是__________.21.若不等式25123xx+-≤-的解集中x的每一个值,都能使关于x的不等式3(1)552()x x m x-+>++成立,则m的取值范围是__________.三、解答题22.某商家欲购进甲、乙两种抗疫用品共180件,其进价和售价如表:(1)若商家计划销售完这批抗疫用品后能获利1240元,问甲、乙两种用品应分别购进多少件?(请用二元一次方程组求解)(2)若商家计划投入资金少于5040元,且销售完这批抗疫用品后获利不少于1314元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.23.疫情期间,某学校为了能每天及时对教室、校园进行消毒,准备购买甲、乙两种型号的喷雾消毒器,通过市场调研得知:购买2个甲型消毒器和3个乙型消毒器共需1020元,购买1个甲型消毒器比购买2个乙型消毒器少用120元.(1)甲、乙两种型号的消毒器的单价各是多少元?(2)若学校准备购买两种型号的消毒器共10个,所用资金不超过2000元?请你设计几种购买方案供学校选择(两种型号的消毒器都必须购买).24.工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需要甲种原料9千克,乙种原料3千克;生产一件B 种产品需要甲种原料4千克,乙种原料10千克.则安排A、B两种产品的生产件数有几种方案?25.学校计划利用一片空地建造一个矩形的学生自行车棚(不考虑门),其中一面靠墙,这堵墙的长度为7.9米,计划建造车棚的面积为12平方米.现有可造车棚的建造材料总长为11米.(1)给出一种设计方案;(2)若矩形车棚的长、宽都要求为整数(单位:米),一共有几种方案?(3)若要使所有建造材料恰好用完,应怎么设计?一、选择题1.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( )A .3a ≤-B .3a <-C .3a >D .3a ≥2.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ). A . B . C .D .3.不等式组20240x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .4.不等式组3114x x +>⎧⎨-≤⎩的最小整数解是( )A .5B .0C .-1D .-25.不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( )A .B .C .D .6.若a >b ,则下列式子正确的是( ) A .a +1<b +1 B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b7.不等式325132x x ++≤-的解集表示在数轴上是( ) A .B .C .D .8.若m n <,则下列各式中正确的是( ) A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > 9.若关于x 的不等式组132(2)x a x x ≥-⎧⎨≤+⎩仅有四个整数解,则a 的取值范围是( )A .12a ≤≤B .12a ≤<C .12a <≤D .12a <<10.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( ) A .x >3B .x <3C .x >﹣3D .x <﹣311.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( ) A .x y >B .44x y ->-C .33x y ->-D .22x y > 二、填空题12.关于x 的不等式组x 5x a≤⎧⎨>⎩无解,则a 的取值范围是________.13.不等式21302x --的非负整数解共有__个. 14.若不等式组52355x x x a +≤-⎧⎨-+<⎩无解,则a 的取值范围是______.15.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分. 16.若关于x 的不等式x a ≥的负整数解是1,2,3---,则实数a 满足的条件是________. 17.绝对值小于π的非负整数有____________. 18.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.19.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.20.若关于x 的不等式2x ﹣m≥1的解集如图所示,则m =_____.21.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____.三、解答题22.某电器超市销售A 、B 两种型号的电风扇,表中是近两周的销售情况:(1)求A 、B 两种型号的电风扇的销售单价.(2)若A 、B 两种型号的电风扇每台进价分别为200元,170元,该超市准备采购这两种型号的电风扇共30台,且费用不多于5400元. ①最多能采购A 种型号的电风扇多少台?②设超市销售完这30台电风扇所获得的利润为W 元,试问利润能否达到1400元?若能,请给出相应的采购方案;若不能,请说明理由.23.一直关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-. (1)求a 的取值范围; (2)试化简1a a 2-++.24.已知,关于x 的不等式(2a-b )x+a-5b >0的解集为x <107. (1)求ba的值. (2)求关于x 的不等式ax >b 的解集.25.(1)解方程组26m n m n =⎧⎨+=⎩ (2)解不等式组26015a a +<⎧⎨-≤⎩(3)计算:()33532a a a a ⋅⋅+ (4)计算:()()34++x x一、选择题 1.不等式组1322<4x x ->⎧⎨-⎩的解集是( )A .4x >B .1x >-C .14x -<<D .1x <-2.已知关于x 的不等式组1021x x x a -⎧<⎪⎨⎪+>⎩有且只有一个整数解,则a 的取值范围是( )A .11a -<≤B .11a -≤<C .31a -<≤-D .31a -≤<-3.已知点()121M m m --,在第四象限,则m 的取值范围在数轴上表示正确的是( ) A . B .C .D .4.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( ) A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <25.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a --6.不等式325132x x ++≤-的解集表示在数轴上是( ) A .B .C .D .7.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n=;③每天最多背诵8首,最少背诵2首,7天后,小圆背诵的诗词最多为()A.10首B.11首C.12首D.13首8.若关于x的不等式组132(2)x ax x≥-⎧⎨≤+⎩仅有四个整数解,则a的取值范围是()A.12a≤≤B.12a≤<C.12a<≤D.12a<<9.下列命题是假命题的是().A.两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B.在实数7.5-,π-,2中,有3个有理数,2个无理数C.在平面直角坐标系中,点(21,7)P a a-+在x轴上,则点P的坐标为(7,0)-D.不等式组513(1)131722x xx x->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为710.若01x<<,则下列选项正确的是()A.21x xx<<B.21x xx<<C.21x xx<<D.21x xx<<11.如果a>b,那么下列不等式不成立...的是()A.0a b->B.33a b->-C.1133a b>D.33a b->-二、填空题12.对于实数x,我们规定[]x表示不大于x的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个). 13.已知点()2,3P a a -在第四象限,那么a 的取值范围是________.14.已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________. 15.己知不等式组1x x a≤⎧⎨≤⎩的解集是1x ≤,则a 的取值范围是______. 16.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________. 17.不等式组210360x x ->⎧⎨-<⎩的解集为_______.18.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.19.已知a 2a <+<a 的值为____________.20.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________.21.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____.三、解答题22.我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”; 1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)若一个“七巧数”的千位数字为a ,则其个位数字可表示为______(用含a 的代数式表示);(2)最大的“七巧数”是______,最小的“七巧数”是______;(3)若m 是一个“七巧数”,且m 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数”m.23.解关于x的不等式组:2311 23x xx x<+⎧⎪⎨<+⎪⎩24.为更好地推进长沙市生活垃圾分类工作,改善城市生态环境,2019年12月17日,长沙市政府召开了长沙市生活垃圾分类推进会,意味着长沙垃圾分类战役的全面打响.某小区准备购买A、B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)每个A型垃圾箱和B型垃圾箱分别是多少元?(2)若该小区物业计划用低于2150元的资金购买A、B两种型号的垃圾箱共20个,且至少购买6个B型垃圾箱,请问有几种购买方案?25.回答下列小题:(1)解不等式:2111 26x x-+-≤.(2)解不等式组:1132(1)4 xxx+⎧-≤⎪⎨⎪->-⎩.。
河北省磁县朝阳学校七年级数学下册 第九章 不等式与不
第九章 不等式与不等式组题号 一 二 三 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)评卷人得分一、选择题(1--6题2分,7--16题3分,共计42分)1.不等式组⎩⎨⎧>--<32x x 的解集是( )A.x<-3B.x<-2C.-3<x<-2D.无解 2.不等式3(2)4x x -≤+的非负整数解有( )个A .4B .5C .6D .无数3.已知关于x 的不等式2x-a>- 3 的解集如图所示,则a 的值是( )A .0B .1C .-1D .24.已知:关于x 的不等式组7x x m ≤⎧⎨≥⎩无解,则m 的取值范围是( )A.m <7B.m ≥7C.m >7D.不能确定5.不等式组3x 1>284x 0-⎧⎨-≤⎩的解集在数轴上表示为( )A .B .C .D .6.小亮在解不等式组62053x x -<⎧⎨+>-⎩①②时,解法步骤如下:解不等式①,得x >3,…第一步; 解不等式②,得x >﹣8,…第二步;所有原不等式组组的解集为﹣8<x <3…第三步. 对于以上解答,你认为下列判断正确的是( )A .解答有误,错在第一步B .解答有误,错在第二步C .解答有误,错在第三步D .原解答正确无误7.某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间住宿情况是不满也不空.若旅行团的人数为偶数,求旅行团共有多少人( )A .27B .28C .29D .30 8.一个三角形的3边长分别是xcm 、(x +2)cm 、(x +4)cm ,它的周长不超过20cm ,则x 的取值范围是 A .2<x<143 B .2<x≤143C .2<x<4D .2<x≤4 9.已知方程组32342321x y a x y a ----⎧⎨⎩==的解满足x >y ,则a 的取值范围是( )A .a >1B .a <1C .a >5D .a <510.对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x 的取值可以是( )A .51B .45C .40D .56 11.若a <b <0,则下列式子:①a+1<b+2;②ab>1;③a+b <ab ;④<中,正确的有( ) A .1个 B .2个 C .3个 D .4个12.若点A (m ﹣3,1﹣3m )在第三象限,则m 的取值范围时( ) A.1m 33<< B.m <3 C.m >3 D.1m 3>13.使代数式912x -+的值不小于代数式113x +-的值,则x 应为( ) A 、x >17 B 、x ≥17 C 、x <17 D 、x ≥2714.如果不等式(m -2)x>2-m 的解集是x<-1, 则有( ) A.m>2 B.m<2 C.m=2 D.m ≠2 15.下列不等式变形中,一定正确的是( )A.若ac bc >,则a b >B.若a b >,则22ac bc > C.若22ac bc >,则a b > D.若0,0a b >>,且11a b>,则a b > 16.若不等式a x x ≤-+-3312有解,则实数a 最小值是( ) A 、1 B 、2 C 、4 D 、6第II卷(共计78分)评卷人得分二、填空题(每题3分,共计12分)17.关于x,y的二元一次方程组5x3y23x y p+=+=⎧⎨⎩的解是正整数,则整数p的值为.18.按如下程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止,则可输入的整数x的个数是.19.若不等式x< m的正整数解有1,2,3,则m的取值范围是。
【学生卷】邯郸市七年级数学下册第九单元《不等式与不等式组》经典练习卷(专题培优)
一、选择题1.定义一种新运算“a ☆b ”的含义为:当a ≥b 时,a ☆b =a +b ;当a <b 时,a ☆b =a ﹣b .例如:3☆(﹣4)=3+(﹣4)=﹣1,(-6)☆111(6)6222=--=-,则方程(3x ﹣7)☆(3﹣2x )=2的解为x=( ) A .1B .125C .6或125D .62.已知关于x 的不等式组15x ax b-≥⎧⎨+≤⎩的解集是3≤x ≤5,则+a b 的值为( )A .6B .8C .10D .12 3.若点A (a ,b )在第二象限,则点B (﹣a ,b+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知实数a 、b ,下列命题结论正确的是( ) A .若a b >,则 22a b > B .若a b >,则22a b > C .若a b >,则22a b >D .若33a b >,则22a b >5.不等式32x x -≤的解集在数轴上表示正确的是( ) A .B .C .D .6.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a >B .3a ≤C .3a <D .3a ≥7.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( )A .3a ≤-B .3a <-C .3a >D .3a ≥8.不等式()31x -≤5x -的正整数解有( ) A .1个B .2个C .3个D .4个9.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( ) A .1种 B .2种 C .3种 D .4种 10.若a +b >0,且b <0,则a 、b 、-a 、-b 的大小关系为( )A .-a <-b <b <aB .-a <b <a <-bC .-a <b <-b <aD .b <-a <-b <a11.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折B .7折C .8折D .9折12.整数a 使得关于x ,y 的二元一次方程组931ax y x y -=⎧⎨-=⎩的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩无解,则a 的值可以为( )A .4B .4或5或7C .7D .1113.关于x 的不等式620x x a -≤⎧⎨≤⎩有解,则a 的取值范围是( )A .a <3B .a≤3C .a≥3D .a >314.若不等式组11x x m->⎧⎨<⎩无解,那么m 的取值范围是( )A .2m >B .2m <C .2m ≥D .2m ≤15.如果a >b ,那么下列不等式不成立...的是( ) A .0a b -> B .33a b ->- C .1133a b >D .33a b ->-二、填空题16.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元. 17.若()a 1x a 1-<-的解集为x 1>,则a 的取值范围是________.18.若不等式(6)6m x m ->-,两边同除以(6)m -,得1x <,则m 的取值范围为__.19.已知不等式组43103x x a -≤≤-⎧⎪⎨->⎪⎩有解,那么a 的取值范围是___________.20.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__.21.已知关于x 的不等式24132m x mx +-≤的解集是34x ≥,那么m 的值是________. 22.不等式12x -<的正整数解是_______________. 23.若关于x 的不等式组2()12153xm x 的解集为76x -<<-,则m 的值是______.24.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.25.定义一种法则“⊗”如下:()()a ab a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______.26.已知x ﹣y=3,且x >2,y <1,则x+y 的取值范围是_____.三、解答题27.已知点()39,210A m m --,分别根据下列条件解决问题: (1)点A 在x 轴上,求m 的值;(2)点A 在第四象限,且m 为整数,求点A 的坐标.28.工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A 、B 两种产品共50件.已知生产一件A 种产品需要甲种原料9千克,乙种原料3千克;生产一件B 种产品需要甲种原料4千克,乙种原料10千克.则安排A 、B 两种产品的生产件数有几种方案?29.解不等式(组),并将解集表示在数轴上: (1)6194x x ->-(2)13215232(3)4x x x x -+⎧-≥⎪⎨⎪-->⎩30.某公交公司有A ,B 型两种客车,它们的载客量和租金如下表:A B 载客量(人/辆) 45 30 租金(元/辆)400280,B 型客车共5辆,同时送2016~2017学年度八年级师生到基地校参加社会实践活动,设租用A 型客车x 辆,根据要求回答下列问题: (1)用含x 的式子填写下表:车辆数(辆) 载客量 租金(元)Ax45x 400x(3)在(2)的条件下,若2016~2017学年度八年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.。
河北邯郸市七年级数学下册第九单元《不等式与不等式组》经典题(专题培优)
一、选择题1.不等式32x x -≤的解集在数轴上表示正确的是( )A .B .C .D . 2.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( ) A .4个 B .5个 C .6个 D .无数个3.不等式组10,{360x x -≤-<的解集在数轴上表示正确的是( ) A . B .C .D .4.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( ) A . B . C . D . 5.已知点()121M m m --,在第四象限,则m 的取值范围在数轴上表示正确的是( ) A .B .C .D .6.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D .7.如果不等式组5x x m <⎧⎨>⎩有解,那么m 的取值范围是( ) A .m >5B .m≥5C .m <5D .m≤8 8.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为( ) A . B .C .D .9.不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( ) A .B .C .D . 10.下列不等式中,是一元一次不等式的是( )A .2x 10->B .12-<C .3x 2y 1-≤-D .2y 35+> 11.如果点P(m ,1m -)在第四象限,则m 的取值范围是( )A .0m >B .01m <<C .1m <D .1m 12.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a <-2B .a ≤-2C .a >-2D .a ≥-2 13.不等式组32153x x ->⎧⎨-<-⎩的解集在数轴上的表示是( ) A . B .C .D . 14.若关于x 的不等式组327x x a -<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ). A .3aB .3a >C .3aD .3a < 15.下列是一元一次不等式的是( )A .21x >B .22x y -<-C .23<D .29x < 二、填空题16.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元.17.随着中秋节的逐渐临近,红梅超市计划购进甜味型、咸味型、麻辣味型三种共50盒月饼,其中咸味型月饼数量不超过甜味型月饼数量,且咸味型月饼数量不少于麻辣味型月饼数量的一半.已知甜味型月饼每盒60元,咸味型月饼每盒80元,麻辣味型月饼每盒100元.在价格不变的条件下,小王实际购进甜味型月饼是计划的56倍,麻辣味型月饼购进了12盒,结果小王实际购进三种月饼共35盒,且比原计划少支付1240元,则小王原计划购进甜味型月饼_____盒.18.不等式组63024x x x -⎧⎨<+⎩的解集是__. 19.已知关于x 的不等式24132m x mx +-≤的解集是34x ≥,那么m 的值是________. 20.不等式组2x a x >⎧⎨>⎩的解为2x >,则a 的取值范围是______. 21.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求a 的取值范围是_______. 22.当前我国的新冠疫情虽然有所控制,但防控仍不可掉以轻心,为做好秋季防疫工作,王老师带现金6820元为年级采购了额温枪和消毒酒精两种防疫物品,额温枪每个125元,消毒酒精每瓶55元,购买后剩余100元、10元、1元的钞票若干张(10元钞票和1元钞票剩余数量均不超过9张,且采购额温枪的数量大于消毒酒精的数量).若把购买两种防疫物品的数量交换,剩余的100元和10元的钞票张数恰好相反,但1元钞票的张数不变,则购买消毒酒精的数量为__________________瓶.23.在平面直角坐标系 xOy 中,点(,)P a b 的“变换点”Q 的坐标定义如下:当a b 时,Q点坐标为(,)b a -;当a b <时,Q 点坐标为(,)a b -.(1)(2,3)-的变换点坐标是_____________.(2)若(,0.52)a a -+的变换点坐标是(,)m n ,则m 的最大值是_____________.24.把方程组2123x y m x y +=+⎧⎨+=⎩中,若未知数x y 、满足0x y +>,则m 的取值范围是_________.25.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____. 26.方程组24x y k x y +=⎧⎨-=⎩的解满足1x >,1y <,k 的取值范围是:__________.三、解答题27.解关于x的不等式组:2311 23x xx x<+⎧⎪⎨<+⎪⎩28.某物流公司在疫情期间,要将300吨防疫物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆比B型车可多装5吨.6辆A型车与2辆B型车刚好能装完150吨物资.要求在每辆车不超载的条件下,把300吨防疫物资装运完.(1)求A型车、B型车各能装多少吨物资?(2)若确定调用5辆A型车,则至少还需调用B型车多少辆?29.解下列不等式组,并把它的解集表示在数轴上.(1)35 318 xx+≥⎧⎨-<⎩;(2)()121 2235xxx x⎧+<-⎪⎪⎨+⎪>⎪⎩.30.学校需要购买一些篮球和足球,已知篮球的单价比足球的单价贵30元,买2个篮球和3个足球一共需要510元.(1)求篮球和足球的单价;(2)根据学生体育活动的需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的23,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?。
河北邯郸市七年级数学下册第九单元《不等式与不等式组》经典题(专题培优)
一、选择题1.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .10D解析:D【分析】 根据程序操作进行了1次后就停止,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再取其中最小的整数值即可得出结论.【详解】依题意,得:3126x ->,解得:9x >.∵x 为整数,∴x 的最小值为10.故选:D .【点睛】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.2.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .2D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】 解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-,解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.3.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤ D 解析:D【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【详解】由数轴知,此不等式组的解集为-1<x≤3,故选D .【点睛】考查解一元一次不等式组,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.不等式-3<a≤1的解集在数轴上表示正确的是( )A .B .C .D . A解析:A【分析】根据在数轴上表示不等式解集的方法求解即可.【详解】解:∵-3<a≤1,∴1处是实心原点,且折线向左.故选:A .【点睛】本题考查了在数轴上表示不等式的解集,掌握“小于向左,大于向右”是解题的关键. 5.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种C解析:C【分析】设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案.【详解】解:设用A 型货厢x 节,B 型货厢()50x -节, 根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤, 因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案.故选:C .【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.6.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( ) A .4个B .5个C .6个D .无数个B解析:B【分析】本题首先求解该不等式组公共解集,继而在解集内确定整数解.【详解】由已知得:23x -≤<,该范围内包含5个整数解:2-,1-,0,1,2.故选:B .【点睛】本题考查求不等式的整数解,解题关键在于确定公共解集,其次确定答案时要确保不重不漏.7.不等式组10840x x ->⎧⎨-≤⎩的解集在数轴上表示为( ) A . B . C . D . A 解析:A【分析】先对不等式组进行化简,找出它们的公共部分,然后在数轴上分别表示出x 的取值范围.【详解】解:不等式组10840x x ->⎧⎨-≤⎩①② 由①得,x >1,由②得,x ⩾2, 故不等式组的解集为:x ⩾2, 在数轴上可表示为:故选:A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,注意在数轴上表示解集时,空心圈和实心圈的区别.8.如果a 、b 表示两个负数,且a b >,则( )A .1a b >B .1b a >C .11a b >D .1ab < B 解析:B【分析】根据不等式的性质,两边都除以b 判断出A 、B ,两边都除以ab ,判断出C 即可得解.【详解】∵a 、b 表示两个负数,∴a b >两边都除以b 得,1a b<,故选项A 错误,不符合题意; a b >两边都除以a 得,1b a >,故选项B 正确,符合题意; ∵a 、b 表示两个负数,∴0ab >,∴a b >都除以ab 得,11b a>,故选项C 错误,不符合题意;只能判断出0ab >,但无法说明1ab <,故选项D 错误,不符合题意.故选:B .【点睛】本题考查了不等式的基本性质,(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-,15,327-,π-,()22中,有3个有理数,2个无理数 C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7C 解析:C【分析】根据平行线的判定、无理数、平面直角坐标系和不等式组的解判断即可.【详解】解:A 、两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行,是真命题;B 、在实数7.5-,15,327-,π-,()22中,有3个有理数,2个无理数,是真命题;C 、在平面直角坐标系中,点P (2a-1,a+7)在x 轴上,a+7=0,a=-7,则点P 的坐标为(-15,0),原命题是假命题;D 、不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7,是真命题; 故选:C .【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.不等式1322x x -+>的解在数轴上表示正确的是( ) A . B .C .D . B解析:B【分析】 根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:∵1322x x -+>, ∴3122x x >+, ∴3322x <, ∴1x <, 将不等式解集表示在数轴上如下:故选:B .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.二、填空题11.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个).50(答案不唯一)【分析】由于规定表示不大于x 的最大整数则表示不大于的最大整数接下来根据可列出不等式组求解即可【详解】解:表示不大于x 的最大整数表示不大于的最大整数又可列不等式组x 的取值可以是范围内 解析:50(答案不唯一)【分析】由于规定[]x 表示不大于x 的最大整数,则410x +⎡⎤⎢⎥⎣⎦表示不大于410x +的最大整数,接下来根据4510x +⎡⎤=⎢⎥⎣⎦,可列出不等式组,求解即可. 【详解】 解:[]x 表示不大于x 的最大整数, ∴410x +⎡⎤⎢⎥⎣⎦表示不大于410x +的最大整数,又4510x +⎡⎤=⎢⎥⎣⎦, ∴可列不等式组45104610x x +⎧≥⎪⎪⎨+⎪<⎪⎩ ,450460x x +≥⎧⎨+<⎩,∴4656x x ≥⎧⎨<⎩,∴4656≤<x , ∴x 的取值可以是范围内的任何实数.故答案为:50(答案不唯一).【点睛】本题主要考查了一元一次不等式组的应用,解题的关键是根据[x]表示不大于x 的最大整数列出不等式组.12.关于x 的不等式组x 5x a≤⎧⎨>⎩无解,则a 的取值范围是________.【分析】根据不等式组确定解集的方法:大大小小无解了解答即可【详解】∵关于的不等式组无解∴故答案为:【点睛】此题考查一元一次不等式组的解集的确定方法:同大取大同小取小大小小大中间找大大小小无解了解析:a 5≥【分析】根据不等式组确定解集的方法:大大小小无解了解答即可.【详解】∵关于x 的不等式组x 5x a ≤⎧⎨>⎩无解, ∴a 5≥,故答案为:a 5≥.【点睛】此题考查一元一次不等式组的解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.13.若()a 1x a 1-<-的解集为x 1>,则a 的取值范围是________.【分析】根据不等式的性质2可得答案【详解】解:∵不等式的解集是∴解得故答案为:【点睛】本题考查了不等式的性质:不等式的两边都乘以或除以同一个正数不等号的方向不变解析:a 1<.【分析】根据不等式的性质2,可得答案.【详解】解:∵不等式()a 1x a 1-<-的解集是x 1>,∴a 10-<,解得a 1<.故答案为:a 1<.【点睛】本题考查了不等式的性质:不等式的两边都乘以或除以同一个正数,不等号的方向不变.14.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__.【分析】分别求出不等式组中两不等式的解集找出两解集的公共部分即可【详解】解:解不等式①得:解不等式②得:所以不等式组的解集是故答案为:【点睛】本题考查了解一元一次不等式组正确求出每一个不等式解集是基 解析:8752x -< 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩①②, 解不等式①得:85x >-, 解不等式②得:72x , 所以不等式组的解集是8752x -<, 故答案为:8752x -<. 【点睛】 本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.15.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分.15【分析】设至少答对x 道题总分才不会低于6根据对1题给5分错1题扣3分不答题不给分也不扣分小华有3题未做总分不低于65分可列不等式求解【详解】解:设至少答对x 道题总分才不会低于6根据题意得5x-3【分析】设至少答对x 道题,总分才不会低于6,根据对1题给5分,错1题扣3分,不答题不给分也不扣分.小华有3题未做,总分不低于65分,可列不等式求解.【详解】解:设至少答对x 道题,总分才不会低于6,根据题意,得5x-3(20-x-3)≥65,解之得x≥14.5.答:至少答对15道题,总分才不会低于6.故答案是:15.【点睛】本题考查了一元一次不等式的应用,理解题意找到题目中的不等关系列不等式是解决本题的关键.16.点()1,2P x x -+不可能在第__________象限.四【分析】去掉坐标轴上点的情况可分x <﹣2﹣2<x <1与x >1三种情况逐一判断x -1与x+2的正负进而可得答案【详解】解:当x <﹣2时x -1<0x+2<0此时点P 在第三象限;当﹣2<x <1时x -1<解析:四【分析】去掉坐标轴上点的情况,可分x <﹣2、﹣2<x <1与x >1三种情况,逐一判断x -1与x+2的正负,进而可得答案.【详解】解:当x <﹣2时,x -1<0,x+2<0,此时点P 在第三象限;当﹣2<x <1时,x -1<0,x+2>0,此时点P 在第二象限;当x >1时,x -1>0,x+2>0,此时点P 在第一象限;综上,点P 不可能在第四象限.故答案为:四.【点睛】本题考查了平面直角坐标系的基本知识和一元一次不等式的内容,属于基本题型,正确分类、掌握解答的方法是解题关键.17.若不等式a x c x c b +>⎧⎨≥-⎩的解为x≥-b+c ,则a ,b 的大小关系一定满足:a___b .【分析】根据不等式组的同大取大得到-b+c≥c -a 即可得到a 与b 的大小关系【详解】解不等式组解不等式①得x>c-a 解不等式②得x≥-b+c ∵不等式组的解集为x≥-b+c ∴-b+c≥c -a ∴ab 故答案解析:≥根据不等式组的同大取大得到-b+c≥c -a ,即可得到a 与b 的大小关系.【详解】解不等式组a x c x c b +>⎧⎨≥-⎩①②, 解不等式①得x>c-a ,解不等式②得x≥-b+c ,∵不等式组的解集为x≥-b+c ,∴-b+c≥c -a ,∴a ≥b ,故答案为:≥.【点睛】此题考查解不等式组,不等式组的解集的情况:同大取大、同小取小、大小小大中间找、大大小小无解了,掌握不等式组解集的确定方法是解题的关键.18.不等式组210360x x ->⎧⎨-<⎩的解集为_______.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.19.若a b >0,c b<0,则ac________0.<【分析】根据有理数的除法判断出ab 同号再根据有理数的除法判断出bc 异号然后根据有理数的乘法运算法则判断即可【详解】解:∵>0∴ab 同号∵<0∴bc 异号∴ac 异号∴ac <0故答案为<【点睛】本题考查解析:<【分析】根据有理数的除法判断出a 、b 同号,再根据有理数的除法判断出b 、c 异号,然后根据有理数的乘法运算法则判断即可.【详解】解:∵a b>0, ∴a 、b 同号, ∵c b<0, ∴b 、c 异号,∴a 、c 异号,∴ac <0.故答案为<.【点睛】本题考查有理数的乘法,有理数的除法,熟记运算法则是解题关键.20.关于x 、y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.三、解答题21.某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案.(2)如果甲、乙两种汽车每辆车的租车费用分别为2500元和2000元,请你选择最省钱的一种方案.解析:(1)共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆;(2)最省钱的租车方案为:租用甲种汽车5辆,乙种汽车3辆.【分析】(1)可根据租用甲、乙两种型号的汽车座位总数不小于290,可载行李总数不小于100件列出不等式组,求出x 的取值,看在取值范围中x 可取的整数的个数即为方案数.(2)根据(1)中方案分别计算甲、乙所需要的费用,然后比较,花费较少的即为最省钱的租车方案.【详解】解:(1)由租用甲种汽车x 辆,则租用乙种汽车()8x -辆.由题意得:()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩解得:56x ≤≤.即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)租汽车的总费用为:()25002000850016000x x x +-=+(元)当x 取最小值时,总费用最省,因此当5x =时,总费用最省当5x =时,总费用为:50051600018500⨯+=元最省钱的租车方案为方案一:租用甲种汽车5辆,乙种汽车3辆.【点睛】本题主要考查的是一元一次不等式组的应用,找出题目的不等关系是解题的关键. 22.筹建中的迪荡中学需720套单人课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组.每组每天可生产12张:生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.解析:(1)120套;(2)60人生产桌子,24人生产椅子【分析】(1)用720套单人课桌椅÷6=每天要生产单人课桌椅的套数可得答案;(2)找到关键描述语:①生产桌子的5人一组.每组每天可生产12张,②生产椅子的4人一组,每组每天可生产24把,③至少提前1天完成这项生产任务,进而找到所求的量的关系,列出不等式组求解.【详解】解:(1)∵720÷6=120(套),∴光明厂平均每天要生产120套单人课桌椅.(2)设x 人生产桌子,则(84﹣x )人生产椅子, 由题意可得:1257205842457204x x ⎧⨯⨯≥⎪⎪⎨-⎪⨯⨯≥⎪⎩, 解得:60≤x ≤60,故x =60,∴84-x =24,∴60人生产桌子,24人生产椅子.【点睛】此题主要考查了一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.23.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来.解析:解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】 解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.24.某物流公司在疫情期间,要将300吨防疫物资运往某地,现有A 、B 两种型号的汽车可供调用.已知A 型汽车每辆比B 型车可多装5吨.6辆A 型车与2辆B 型车刚好能装完150吨物资.要求在每辆车不超载的条件下,把300吨防疫物资装运完.(1)求A 型车、B 型车各能装多少吨物资?(2)若确定调用5辆A 型车,则至少还需调用B 型车多少辆?解析:(1)B 型车能装15吨,A 型车能装20吨;(2)14辆【分析】(1)设B 型车能装x 吨,根据题意列出方程,解之即可;(2)设还需调用y 辆B 型车,根据题意列出不等式,解之即可.【详解】解:(1)设B 型车能装x 吨,A 型车能装(5)x +吨,则有6(5)2150x x ++=,解得15x =,所以B 型车能装15吨,A 型车能装20吨;(2)设还需调用y 辆B 型车,则有20515300y ⨯+≥,解得1133y ≥,需要取整数,所以还需要调用14辆B 型车.【点睛】本题考查了一元一次方程和一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.25.某木板加工厂将购进的A 型、B 型两种木板加工成C 型,D 型两种木板出售,已知一块A 型木板的进价比一块B 型木板的进价多10元,且购买2块A 型木板和3块B 型木板共花费220元.(1)A 型木板与B 型木板的进价各是多少元?(2)根据市场需求,该木板加工厂决定用不超过8780元购进A 型木板、B 型木板共200块,若一块A 型木板可制成2块C 型木板、1块D 型木板;一块B 型木板可制成1块C 型木板、2块D 型木板,且生产出来的C 型木板数量不少于D 型木板的数量的1113. ①该木板加工厂有几种进货方案?②若C 型木板每块售价30元,D 型木板每块售价25元,且生产出来的C 型木板、D 型木板全部售出,哪一种方案获得的利润最大,求出最大利润是多少?解析:(1)A 型木板的进价为50元/块,B 型木板的进价为40元/块;(2)①该木板加工厂有4种进货方案;方案1:购进A型木板75块,B型木板125块;方案2:购进A型木板76块,B型木板124块;方案3:购进A型木板77块,B型木板123块;方案4:购进A型木板78块,B型木板122块.②方案1购进A型木板75块,B型木板125块利润最大,最大利润为7625元.【分析】(1)设A型木板的进价为x元/块,B型木板的进价为y元/块,根据“一块A型木板的进价比一块B型木板的进价多10元,购买2块A型木板和3块B型木板共花费220元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)①设购入A型木板m块,则购入B型木板(200-m)块,由购进木板的总资金不超过8780元且生产出来的C型木板数量不少于D型木板的数量的1113,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出各进货方案;②根据利润=销售收入-进货成本,分别求出4个进货方案的销售利润,比较后即可得出结论.【详解】解:(1)设A型木板的进价为x元/块,B型木板的进价为y元/块,依题意,得:10 23220 x yx y-=⎧⎨+=⎩,解得:5040 xy=⎧⎨=⎩.答:A型木板的进价为50元/块,B型木板的进价为40元/块.(2)①设购入A型木板m块,则购入B型木板(200-m)块,依题意,得:()()() 50402008780112200220013m mm m m m+-≤⎧⎪⎨+-≥+-⎡⎤⎪⎣⎦⎩,解得:75≤m≤78.∵m为整数,∴m=75,76,77,78.∴该木板加工厂有4种进货方案,方案1:购进A型木板75块,B型木板125块;方案2:购进A型木板76块,B型木板124块;方案3:购进A型木板77块,B型木板123块;方案4:购进A型木板78块,B型木板122块.②方案1获得的利润为(75×2+125)×30+(75+125×2)×25-75×50-125×40=7625(元),方案2获得的利润为(76×2+124)×30+(76+124×2)×25-76×50-124×40=7620(元),方案3获得的利润为(77×2+123)×30+(77+123×2)×25-77×50-123×40=7615(元),方案4获得的利润为(78×2+122)×30+(78+122×2)×25-78×50-122×40=7610(元).∵7625>7620>7615>7610,∴方案1购进A型木板75块,B型木板125块利润最大,最大利润为7625元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)①根据各数量之间的关系,正确列出一元一次不等式组;②利用利润=销售收入-进货成本,分别求出4个进货方案的销售利润. 26.解方程组和不等式(组):(1)解方程组453212x y x y -=⎧⎨+=⎩(2)解不等式组:()()()26352141x x x x ⎧->+⎪⎨--≤+⎪⎩解析:(1)23x y =⎧⎨=⎩;(2)4x <- 【分析】(1)利用加减消元法解方程组即可;(2)首先分别解出两个不等式组,然后取共同部分即可得出答案.【详解】(1)453212x y x y ①②-=⎧⎨+=⎩ ①×2+②得1122x =,解得2x =,将2x =代回①中得45y ⨯-=,解得3y =,∴方程组的解为23x y =⎧⎨=⎩; (2)()()()26352141x x x x ⎧->+⎪⎨--≤+⎪⎩①② 解①得,4x <-,解②得,15x ≤,∴不等式组的解集为4x <-.【点睛】本题主要考查解方程组及不等式组,掌握解方程组及不等式组的方法是解题的关键. 27.某电影院某日某场电影的票价是:成人票30元,学生票15元,满50人可以购团体票(不足50人可按50人计算,票价打9折).某班在4位老师的带领下去电影院看电影,学生人数为x 人.(1)若按个人票购买,该班师生买票共付费_________元(用含x 的代数式表示);若按团体票购买,该班师生买票共付费___________(用含x 的代数式表示,且46x ≥) (2)①如果该班学生人数为36人,该班师生买票最少可付费多少元?②如果该班学生人数为42人,该班师生买票最少可付费多少元?(3)用含x 的代数式表示该班买票最少应付多少元?解析:(1)()15120x +;()13.5108x +;(2)①660元;②729元;(3)若040x <≤时,该班买票至少应付()12015x +元;若4146x ≤≤时,该班买票至少应付729元;若46x >时,该班买票至少应付()10813.5x +元.【分析】(1)若按个人票购买,则费用为(4×30+15x )元;若按团体票购买,该班师生买票共付费(4×30×0.9+15x ×0.9)元;(2)①把x =36代入计算即可求解,注意团体票x 不足46取46;②把x =42代入计算即可求解,注意团体票x 不足46取46;(3)先计算学生人数为x 时,购团体票比实际票便宜时的人数为x ≥40 35;因此根据此结果分三种情况计算:①若41≤x ≤46时,购团体最少;②若x >46时,按实际打折计算;③若0<x ≤40时,按实际不打折计算.【详解】解:(1)()4301515120x x ⨯+=+元,所以若按个人票购买,该班师生买票共付费()15120x +元;()4300.9150.913.5108x x ⨯⨯+⋅=+元.所以若按团体票购买,该班师生买票共付费()13.5108x +元;故答案为:()15120x +;()13.5108x +;(2)①当按个人票购买时,1536120660⨯+=(元),当按团体票购买时,13.546108729⨯+=(元).所以该班师生买票最少可付费660元;②当按个人票购买时,1542120750⨯+=(元),当按团体票购买时,13.546108729⨯+= (元).所以该班师生买票最少可付费729元;(3)依题意有()4301543046150.9x ⨯+≥⨯+⨯⨯,15609x ≥, 解得3405x ≥, ①若4146x ≤≤时,最好团体购票,则需费用:()43046150.98100.9729⨯+⨯⨯=⨯=(元),②若46x >时,则需费用为:()430150.910813.5x x ⨯+⨯=+(元),③若040x <≤时,则需费用:4301512015x x ⨯+=+(元),答:若040x <≤时,该班买票至少应付()12015x +元;若4146x ≤≤时,该班买票至少应付729元;若46x >时,该班买票至少应付()10813.5x +元.【点睛】本题考查了列代数式,代数式求值以及用一元一次不等式解决问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.28.解方程或不等式(组)(1)2(21)1690x --=.(2)211143x x +-+. (3)421223x x x x +⎧-<⎪⎨⎪-⎩ 解析:(1)7x =或6x =-;(2)52x;(3)12x -<. 【分析】(1)用直接开平方解方程即可;(2)去括号,去分母,移项合并同类项,系数化为1,即可解;(3)分别解出两个不等式,再找公共部分即可.【详解】解:(1)2(21)1690x --= ∴2(21)169x -=∴2x-1是169的平方根,∴2113x -=±∴2113x -=或2113x -=-,∴214x =或212x =-∴7x =或6x =-.故7x =或6x =-.(2)211143x x +-+ ∴3(21)4(1)12x x +-+ ∴634412x x +-+∴25x∴52x (3)421223x x x x +⎧-<⎪⎨⎪-⎩①②,①式化简424x x -<+,∴36x <,∴2x <.②式化简22x -,∴1x -∴12x -<.【点睛】本题考查了利用平方根方程及一元一次不等式(组)的解法,熟悉平方根定义及一元一次不等式的解法步骤是解题关键.。
【3套打包】邯郸市人教版七年级数学下册第九章《不等式与不等式组》测试题(含答案)
七年级数学第9 章《不等式和不等式组》同步测试一、选择题(每题 3 分,共30 分):1、若a> b,则以下各式中必定建立的是()A. ma> mb B. c2a>c2 b C.( 1+c2) a>( 1+c2) b D.1﹣ a> 1﹣b 2、在数轴上表示不等式x>- 2 的解集,正确的选项是()3、不等式 a> b,两边同时乘 m得 am< bm,则必定有 ( )A. m= 0B. m<0C. m>0D. m为任何实数4、以下说法中,错误的选项是 ( )A. x= 1 是不等式 x< 2 的解B.- 2 是不等式2x-1< 0 的一个解C.不等式- 3x> 9 的解集是 x=- 3D.不等式 x< 10 的整数解有无数个5、已知实数 a, b 知足 a+ 1> b+ 1,则以下选项错误的为 ()A. a> b B. a+2> b+ 2C.- a<- b D. 2a>3b6、已知不等式组有解,则的取值范围为()A. a>-2B.a≥ -2C. a<2D.a≥27、假如不等式组2x - 1>3( x- 1),的解集是 x< 2,那么 m的取值范围是 ( ) x<mA. m= 2B. m>2C. m< 2D.m≥28、小明准备用自己今年的零花费买一台价值300 元的英语学习机. 此刻他已存有45 元, 假如从此刻起每个月节俭30 元 , 设 x 个月后他存够了所需钱数 , 则 x 应知足的关系式是()A. 30x-45 ≥ 300B. 30x+45≥ 300C. 30x-45≤ 300D. 30x+45 ≤ 3009、对于实数 x,我们规定 [x]表示不大于 x 的最大整数,比如[1.2] = 1, [3] = 3, [ -2.5]=- 3. 若 [ x+4] = 5,则 x 的取值能够是 ( ) 10A. 40B. 45C. 51D. 56x- a≤ 0,5 个整数解,则正数 a 的最小值是 () 10、若对于 x 的不等式组的解集中起码有2x+ 3a> 0A. 3B. 2C. 12 D. 3二、填空题(每题 3 分,共 15 分):11、不等式 3( x﹣ 1)≤ 5﹣ x 的非负整数解有 _____个.12、已知 0≤a–b≤1且 1≤a+b≤4,则 a 的取值范围是13、已知对于 x 的不等式组5- 3x ≥- 1,无解,则 a 的取值范围是.a- x< 014、若实数 3 是不等式 2x- a- 2< 0 的一个解,则 a 可取的最小正整数为.15、某校规按期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85 分,她希望自己学期总成绩不低于90 分,则她在期末考试中数学至少应得多少分?设她在期末应试x 分,可列不等式为.三、解答题(共 55 分):16、( 6 分)在爆破时,假如导火索焚烧的速度是每秒钟0.8 cm,人跑开的速度是每秒钟 4 m,为了使点导火索的人在爆破时能够跑到100 m 之外的安全地域,设导火索的长为s cm.(1)用不等式表示题中的数目关系;(2)要令人能跑到安全地域,则导火索的长度起码多长?17、( 6 分)已知对于 x 的不等式ax<- b 的解集是x> 1,求对于 y 的不等式by> a 的解集.18、( 8 分)已知对于2m- mx 1x 的不等式> x- 1.22(1)当 m= 1 时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、( 8 分)某商铺 5 月 1 日举行促销优惠活动,当日到该商铺购置商品有两种方案.方案一:用 168 元购置会员卡成为会员后,凭会员卡购置商铺内任何商品,一律按商品价钱的8折优惠;方案二:若不购置会员卡,则购置商铺内任何商品,一律按商品价钱的9.5 折优惠.已知小敏 5 月 1 日前不是该商铺的会员.(1) 若小敏不购置会员卡,所购置商品的价钱为120 元时,实质应支付多少元?(2)请帮小敏算一算,所购置商品的价钱在什么范围内时,采纳方案一更合算?20、( 10 分)解不等式组并在数轴上表示解集.2x<5,①(1)3( x+ 2)≥ x+ 4,②3x-2( 2x-1)≤ 4,①(2)1+ 3x2>2x- 1,②21、( 8 分)春平中学要为学校科技活动小组供给实验器械,计划购置 A 型、 B 型两种型号的放大镜.若购置8 个 A 型放大镜和 5 个 B 型放大镜需用220 元;购置 4 个 A 型放大镜和6个 B 型放大镜需用152 元.(1)求每个 A 型放大镜和每个 B 型放大镜各多少元;(2) 春平中学决定购置 A 型放大镜和 B 型放大镜共75 个,总花费不超出 1 180 元,那么最多能够购置多少个 A 型放大镜?22、( 9 分)某科技有限企业准备购进 A 和 B 两种机器人来搬运化工资料,已知购进 A 种机器人 2 个和 B 种机器人 3 个共需 16 万元,购进 A 种机器人 3 个和 B 种机器人 2 个共需 14万元,请解答以下问题:(1)求 A、 B 两种机器人每个的进价;(2)已知该企业购置 B 种机器人的个数比购置 A 种机器人的个数的 2 倍多 4 个,假如需要购置 A、 B 两种机器人的总个数许多于28 个,且该企业购置的A、B 两种机器人的总花费不超出 106 万元,那么该企业有哪几种购置方案?参照答案:一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B二、填空题:11、 312、≤a≤13、a≥214、 515、40%×85+60%x≥90三、解答题:s16、( 1)4×0.8>100.(2) 25 cmb 17、∵不等式ax <- b 的解集是x> 1,∴ a< 0,-= 1.a ∴b=- a,b>0. ∴不等式by> a 的解集为 y>=- 1,b即不等式by> a 的解集为y>- 1.18、 (1)当 m= 1 时,该不等式为2- x21> 2x- 1,解得x< 2.2m- mx1(2) ∵>x-1,∴ 2m-mx>x-2.22∴- mx- x>- 2-2m.∴(m+ 1)x < 2(1 + m).∵该不等式有解,∴ m+1≠0,即m≠- 1.当 m>- 1 时,不等式的解集为 x< 2;当 x<- 1 时,不等式的解集为 x> 2.19、(1)120 ×0.95 = 114( 元 ) .(2)设购置商品的价钱为x 元.由题意,得0.8x+ 168<0.95x. 解得 x> 1 120.当购置商品的价钱超出 1 120 元时,采纳方案一更合算.520、( 1)解不等式①,得x<2人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.以下式子:① -2<0;② 2x+3y<0;③ x=3;④ x+y 中,是不等式的个数有A.1个B.2个C.3个D. 4 个2.若 m> n,则以下不等式中必定建立的是()A. m+2<n+3B. 2 m< 3nC. a- m<a- n22 D. ma>na3.数、在数轴上的地点如下图,则以下不等式建立的是()a bA. a>bB.ab>0C. a+b> 0D. a+b< 04.若对于x 的一元一次不等式组的解集是x<5,则的取值范围是()mA.≥5B.>5C. ≤5D. <5m m m m5.某商品的标价比成本价高m%,依据市场需要,该商品需降价n%销售,为了不赔本,n 应知足()≤B.≤C. n≤D. n≤A. n m n6. 某种记事本零售价每本 6 元,凡一次性购置两本以上赐予优惠,优惠方式有两种,第一种:“两本按原价,其他按七折优惠”;第二种:所有按原价的八折优惠,若想在购置同样数目的状况下,要使第一种方法比第二种方法获得的优惠多,最少要购置记事本()A.5 本B.6 本C.7 本D.8 本7. 不等式组的解集在数轴上表示正确的选项是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3 ≤x< 4D. 无解9.假如不等式组只有一个整数解,那么 a 的范围是()≤≤≤≤A. 3 <a 4B. 3 a< 4C. 4 a< 5D. 4 <a 510. 现有三种不一样的物体:“甲、乙、丙”,用天平称了两次,状况如下图,那么“甲、乙、丙”这三种物体按质量从大到小的次序摆列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1. 不等式组:的解集是2. 某采石场爆破时,点燃引火线的甲工人要在爆破前转移到400m 之外的安全地区甲工人在转移过程中,前40m只好步行,以后骑自行车。
初中七年级数学不等式必做好题卷附详细答案
两周的销售情况:
销售时段
销售数量
销售收入
A 种型号
B 种型号
第一周
3台
5台
18000 元
第二周
4台
10 台
31000 元
(1)求 A,B 两种型号的净水器的销售单价;
(2)若电器公司准备用不多于 54000 元的金额在采购这两种型号的净水器共 30
台,求 A 种型号的净水器最多能采购多少台?
(3)在(2)的条件下,公司销售完这 30 台净水器能否实现利润为 12800 元的
பைடு நூலகம்
11.不等式(m﹣2)x>2﹣m 的解集为 x<﹣1,则 m 的取值范围是 .
12.若不等式组
恰有两个整数解.则实数 a 的取值范围
是. 13.按下面程序计算,若开始输入 x 的值为正数,最后输出的结果为 656,则满 足条件所有 x 的值是 .
14.已知
,且﹣1<x﹣y<0,则 k 的取值范围为 .
A.x2
B. <x<x2 C.
<x D.x<x2<
4.下列说法中,错误的是( ) A.如果 a<b,那么 a﹣c<b﹣cB.如果 a>b,c>0,那么 ac>bc C.如果 a<b,c<0,那么 ac>bc D.如果 a>b,c<0,那么﹣ <﹣
5.若不等式组
有解,则实数 a 的取值范围是( )
A.a≥﹣2 B.a<﹣2 C.a≤﹣2 D.a>﹣2 6.已知点 M(1﹣2m,m﹣1)在第四象限,则 m 的取值范围在数轴上表示正确 的是( )
目标?若能,请给出相应的采购方案;若不能,请说明理由.
21.一水果经销商购进了 A,B 两种水果各 10 箱,分配给他的甲、乙两个零售 店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CFE 邯郸朝阳教区七年级数学作业(不等式)
1、下列数中是不等式x 32
>50的解的有__________个
2、下列各式中,是一元一次不等式的是( )
A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0
3、若b a ,则下列不等式中正确的是( )
A、b a +-+-33 B、0 b a - C、b a 31
31
D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )
A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2-
5、不等式组⎨⎧2
2 x x 的解集为( ) 6、不等式86+x >83+x 的解集为___________
7、不等式2+x <6的正整数解有________________
8、下图所表示的不等式组的解集为( )
-234
210-1
A 、x 3
B 、32 x -
C 、 2- x
D 、32 x -
9、“x 的一半与2的差不大于1-”所对应的不等式是
10、不等号填空:若a<b<0 ,则5a
- 5b
-;a 1 b 1
;12-a 12-b
11、当a 时,1+a 大于2
12、不等式03 +-x 的最大整数解是
13、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是
14、134155-+x x
15、31
2-x ≤6
43-x 16、⎩⎨⎧++-x x x x 423215 17、⎪⎩⎪⎨⎧-++≤--)12(23134122x x x x x 18、代数式21
31--x 的值不大于321x -的值,求x 的范围
19、方程组⎩
⎨⎧-=+=-323a y x y x 的解为负数,求a 的范围 20、某次数学测验,共16个选择题,评分标准为:;对一题给6分,错一题扣2分,不答不给分。
某个学生有1题未答,他想自己的分数不低于70分,他至少要对多少题?。