初三数学圆的切线的性质和判定课时练习附答案
初三数学《圆的切线的性质和判定》课时练习(附答案)
![初三数学《圆的切线的性质和判定》课时练习(附答案)](https://img.taocdn.com/s3/m/aadc82ef87c24028905fc32a.png)
《圆的切线的性质和判定》课时练习(附答案)【回顾与思考】现实情境⎧⎪⎧⎪⎨⎨⎩⎪⎪⎩圆的切线的性质--三角形内切圆应用:d=r圆的切线的判定判定定理圆的切线性质与判定综合应用【经典例题】关于三角形内切圆的问题例1。
如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=( )A.130°B.100°C.50°D.65°【解析】此题解题的关键是弄清三角形内切圆的圆心是三角形内角平分线的交点.圆的切线性质的应用例2.已知:如图,AB是⊙O的直径,PA是⊙O的切线,过点B•作BC•∥OP交⊙O于点C,连结AC.(1)求证:△ABC∽△POA;(2)若AB=2,PA=2,求BC的长.(结果保留根号)圆的切线的判定例3。
已知:如图,AB是⊙O的直径,P是⊙O外一点,PA⊥AB,•弦BC∥OP,请判断PC是否为⊙O的切线,说明理由.【点评】本题是一道典型的圆的切线判定的题目.解决问题的关键是一条常用辅助线,即连结OC.【考点精练】一、基础训练1.已知⊙O的半径为8cm,如一条直线和圆心O的距离为8cm,那么这条直线和这个圆的位置关系是()A.相离 B.相切 C.相交D.相交或相离2.如图1,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O的半径为()A.45cmB.25cm C.213cm D.13m(1) (2)(3) 3.如图2,已知∠AOB=30°,M为OB边上任意一点,以M为圆心,•2cm•为半径作⊙M,•当OM=______cm时,⊙M与OA相切.4.已知:如图3,AB为⊙O直径,BC交⊙O于点D,DE⊥AC于E,要使DE是⊙O的切线,•那么图中的角应满足的条件为_______(只需填一个条件).5.如图4,AB为半圆O的直径,CB是半圆O的切线,B是切点,AC•交半圆O于点D,已知CD=1,AD=3,那么cos∠CAB=________.(4)(5) 6.如图5,BC为半⊙O的直径,点D是半圆上一点,过点D作⊙O•的切线AD,BA⊥DA于A,BA交半圆于E,已知BC=10,AD=4,那么直线CE与以点O为圆心,52为半径的圆的位置关系是________.7.如图,⊙O的半径为1,圆心O在正三角形的边AB•上沿图示方向移动.当⊙O移动到与AC边相切时,OA的长为多少?8.如图,⊙O是△ABC的内切圆,D、E、F分别是切点,判定△DEF的形状(按角分类),并说明理由.二、能力提升:9.如图,直线AB切⊙O于点A,点C、D在⊙O上.试探求:(1)当AD为⊙O的直径时,如图①,∠D与∠CAB的大小关系如何?•并说明理由.(2)当AD不为⊙O的直径时,如图②,∠D与∠CAB的大小关系同②一样吗?•为什么?①②10.如图,⊙O的直径AB=6cm,D为⊙O上一点,∠BAD=30°,过点D的切线交AB•的延长线于点C.求:(1)∠ADC的度数;(2)AC的长.11.在图1和图2中,已知OA=OB,AB=24,⊙O的直径为10.(1)如图1,AB与⊙O相切于点C,试求OA的值;(2)如图2,若AB与⊙O相交于D、E两点,且D、E均为AB的三等分点,试求tanA 的值.12.如图,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB•于点M,交BC于点N.(1)求证:BA·BM=BC·BN;(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.13.已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=12,∠CAD=30°.(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长.三、应用与探究:14.已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,A D为弦作⊙O.(1)在图中作出⊙O;(不写作法,保留作图痕迹)(2)求证:BC为⊙O的切线;(3)若AC=3,tanB=34,求⊙O的半径长.15.(2014•德州,第22题10分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.16.(2014•菏泽,第18题10分)如图,AB是⊙O的直径,点C在⊙O上,连接BC,AC,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若=,求cos∠ABC的值.参考答案:例题经典例1:A例2:(1)略(2)BC=233例3:略考点精练1.B 2.B 3.4 4.∠B=∠C 36.相离238.△DEF•是锐角三角形.连结OD、OE、OF.综合应用圆的切线性质,四边形内角和定理和圆周角定理.可以证得∠DEF=90°-12∠A,∠DFE=90°-12∠B,∠EDF=90°-12∠C.△DEF的三个内角都是锐角9.(1)∠D=∠CAB,理由(略) (2)∠D=∠CAB 作直径AE、连结CE 由(1)可知:•∠E=∠CAB,而∠E=∠D,∴∠D=∠CAB10.(1)∠ADC的度数为120°(2)9cm11.(1)解:连结OC ,∵AB与⊙O 相切于C 点,∴∠O CA =90°,∵O A=OB,∴AC =B C=12 在Rt•△ACO 中,OA =2222125AC OC +=+=13(2)作OF ⊥A B于点F点,连结OD ,∴DF=EF ;AF=AD+DF=8+4=12,在Rt•△OD F中,O F=222254OD DF -=-=3,在Rt △AOF 中,tanA=31124OF AF == 12.(1)证明:连接MN 则∠BMN=90°=∠ACB ,•∴△ACB ∽△NMB ,∴BC AB BM BN=,∴A B·BM =B C·BN(2)解:连接OM,则∠O MC=90°,∵N为OC•中点,•∴M N=ON =OM ,∴∠MON=60°,∵OM =OB ,∴∠B=12∠M ON =30°.∵∠A CB=90°,∴AB=2AC=2×3=6 13.(1)证明:如图,连结OA,因为sinB=12,所以∠B=30°,故∠O =60°,又OA=OC ,•所以△ACO 是等边三角形,故∠OAC=60°,因为∠CA D=30°,所以∠OAD=90°,所以AD•是⊙O 的切线(2)解:因为O D⊥AB,所以OC 垂直平分AB ,则AC=BC=5,所以OA=5,•在△OAD 中,∠OA D=90°,由正切定义,有tan ∠A OD=AD OA ,所以A D=53 14.15.解:(1)①如图,连接BD,∵AB是直径,∴∠ACB=∠ADB=90°,在RT△ABC中, AC===8,②∵CD平分∠ACB,∴AD=BD,∴Rt△ABD是直角等腰三角形,∴AD=AB=×10=5cm;(2)直线PC与⊙O相切,理由:连接OC,∵OC=OA,∴∠CAO=∠OCA,∵PC=PE,∴∠P CE=∠PEC,∵∠PEC=∠CAE+∠ACE,∵CD平分∠ACB,∴∠ACE=∠ECB,∴∠PCB =∠ACO,∵∠ACB=90°,∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,OC⊥PC,∴直线PC与⊙O相切.16.(1)证明:如图,连接O C.∵AD是过点A的切线,AB是⊙O的直径,∴AD⊥AB,∴∠DAB=90°.∵OD∥BC,∴∠1=∠2,∠3=∠4.∵OC=OB,∴∠2=∠4.∴∠1=∠3.在△COD和△AOD中,,∴△COD≌△AOD(SAS)∴∠OCD=∠DAB=90°,即OC⊥DE于点C.∵OC是⊙O的半径,∴DE是⊙O的切线;(2)解:由=,可设CE=2k(k>0),则DE=3k,∴AD=DC=k.∴在Rt△DAE中,AE==2k.∴tanE==.∵在Rt△OCE中,tanE==.∴=,∴OC=OA=.∴在Rt△AOD中,OD==k,∴cos∠ABC=cos∠AOD= =.。
苏科版九年级数学上圆的切线的性质及其判定习题含答案
![苏科版九年级数学上圆的切线的性质及其判定习题含答案](https://img.taocdn.com/s3/m/712550157c1cfad6185fa7b4.png)
圆的切线的性质及其判定一、选择题1.下列四个选项中的表述,正确的是()A.经过半径上一点且垂直于这条半径的直线是圆的切线B.经过半径的端点且垂直于这条半径的直线是圆的切线C.经过半径的外端且垂直于这条半径的直线是圆的切线D.经过一条弦的外端且垂直于这条弦的直线是圆的切线2.如图1,P为☉O外一点,PA为☉O的切线,A为切点,PO交☉O于点B,若∠P=30°,OB=3,则线段BP的长为()图1A.3B.3√3C.6D.93.[2020·徐州]如图2,AB是☉O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于()图2A.75°B.70°C.65°D.60°4.[2019·宁波鄞州区一模]如图3,AB是半圆O的直径,点C在半圆上(不与点A,B重合),DE⊥AB于点D,交BC于点F,下列条件中能判定CE是切线的是()图3A.∠E=∠CFEB.∠E=∠ECFC.∠ECF=∠EFCD.∠ECF=60°5.如图4,☉O的半径为2,点O到直线l的距离为3,P是直线l上的一个动点,PQ切☉O于点Q,则PQ的最小值为()图4A.√13B.√5C.3D.5二、填空题6.如图5,以点O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆的半径为10 cm,小圆的半径为6 cm,则弦AB的长为.图57.[2020·苏州]如图6,已知AB是☉O的直径,AC是☉O的切线,连接OC交☉O于点D,连接BD.若∠C=40°,则∠B的度数是.图6⏜)上, 8.[2019·温州]如图7,☉O分别切∠BAC的两边AB,AC于点E,F,点P在优弧(EDF若∠BAC=66°,则∠EPF等于°.图79.[2019·鄂州]如图8,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A,B在x轴上,且OA=OB,P为☉C上的动点,∠APB=90°,则AB长度的最大值为.图810.阅读下面材料:在数学课上,老师提出如下问题:尺规作图,过圆外一点作圆的切线.已知:如图9,☉O和☉O外一点P.求作:过点P的☉O的切线.小涵的主要作法如下:如图10,(1)连接OP,作线段OP的中点A;(2)以点A为圆心,OA为半径作圆,交☉O于点B,C;(3)作直线PB和PC.则PB和PC就是所求作的切线.老师说:“小涵的作法是正确的.”请回答:小涵的作图依据是.图9图10三、解答题11.[2019·南通模拟]如图11,Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB=2,以O为圆心,OB为半径的☉O与AC相切于点D,交BC于点E,求弦BE的长.图1112.如图12,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作☉O,与AC,BC 分别交于点M,N,与AB的另一个交点为E,过点N作NF⊥AB,垂足为F.(1)求证:NF是☉O的切线;(2)若NF=2,DF=1,求弦ED的长.图1213.已知:在△ABC中,AC=6,BC=8,AB=10,D是边AB上的一点,过C,D两点的☉O分别与边AC,BC交于点E,F.(1)如图13(a)(b),若D是AB的中点:①在(a)中用尺规作出一个符合条件的图形(保留作图痕迹,不写作法);②如图(b),连接EF,若EF∥AB,求线段EF的长;③请写出求线段EF长度最小值的思路.(2)如图(c),当点D在边AB上运动时,线段EF长度的最小值是.图13答案1.[解析] C由切线的判定定理可知:经过半径的外端且与这条半径垂直的直线是圆的切线,故A,B,D选项不正确,C选项正确.故选C.2.[解析] A如图,连接OA.∵PA为☉O的切线,A为切点,∴∠OAP=90°.∵OB=3,∴OA=3.∵∠P=30°,∴OP=6,∴BP=6-3=3.故选A.3.[解析] B∵OC⊥OA,∴∠AOC=90°.∵∠APO=∠BPC=70°,∴∠A=90°-70°=20°.∵OA=OB,∴∠OBA=∠A=20°.∵BC为☉O的切线,∴OB⊥BC,∴∠OBC=90°,∴∠ABC=90°-20°=70°.故选B.4.[解析] C如图,连接OC.∵OC=OB,∴∠OCB=∠B.∵DE⊥AB,∴∠BDF=90°,∴∠B+∠DFB=90°.∵∠EFC=∠BFD,∴∠B+∠EFC=90°.若∠ECF=∠EFC,则∠OCB+∠ECF=90°,∴CE是☉O的切线.故选C.5.B6.[答案] 16 cm[解析] 连接OA,OC.∵AB是小圆的切线,∴OC⊥AB.∵OA=10 cm,OC=6 cm,∴AC=√OA2-OC2=8 cm.∵AB是大圆的弦,OC过圆心,OC⊥AB,∴AB=2AC=2×8=16(cm).7.[答案] 25°[解析] ∵AC是☉O的切线,∴OA⊥AC,∴∠OAC=90°,∴∠AOC=90°-∠C=90°-40°=50°.∴∠B=1∠AOD=25°,2即∠B的度数为25°.8.[答案] 57[解析] 连接OE,OF.∵☉O分别切∠BAC的两边AB,AC于点E,F,∴OE⊥AB,OF⊥AC.∵∠BAC=66°,∴∠EOF=114°.∵∠EOF=2∠EPF,∴∠EPF=57°.故答案为57.9.[答案] 16[解析] 连接OC并延长,交☉C上一点P,以O为圆心,以OP的长为半径作☉O,交x轴于点A,B,此时∠APB=90°,且AB的长度最大.∵C(3,4),∴OC=√32+42=5.∵以点C为圆心的圆与y轴相切,∴☉C的半径为3,∴OP=OA=OB=8,∴AB=OA+OB=16.故答案为16.10.[答案] 直径所对的圆周角是直角[解析] 连接OB,OC.∵OP是☉A的直径,∴∠PBO=∠PCO=90°,∴OB⊥PB,OC⊥PC.∵OB,OC是☉O的半径,∴PB,PC是☉O的切线.则小涵的作图依据是直径所对的圆周角是直角.11.解:如图,连接OD,过点O作OF⊥BE于点F,BE.∴BF=12∵AC是☉O的切线,∴OD⊥AC,∴∠ODC=∠C=∠OFC=90°,∴四边形ODCF是矩形,∴OB=OD=FC=2.∵BC=3,∴BF=BC-FC=3-2=1,∴BE=2BF=2.12.解:(1)证明:连接ON,如图所示.∵在Rt△ABC中,CD是斜边AB上的中线, ∴CD=BD,∴∠DCB=∠B.∵OC=ON,∴∠ONC=∠DCB,∴∠ONC=∠B,∴ON∥AB.∵NF⊥AB,∴∠NFB=90°,∴∠ONF=∠NFB=90°,∴ON⊥NF.又∵NF过半径ON的外端,∴NF是☉O的切线.(2)过点O作OH⊥ED,垂足为H,如图所示. 设☉O的半径为r.∵OH⊥ED,NF⊥AB,ON⊥NF,∴∠OHD=∠NFH=∠ONF=90°,∴四边形ONFH为矩形,∴HF=ON=r,OH=NF=2,∴HD=HF-DF=r-1.在Rt△OHD中,∠OHD=90°,∴OH2+HD2=OD2,即22+(r-1)2=r2,解得r=5,2.∴HD=32∵OH⊥ED,且OH过圆心O,∴HE=HD,∴ED=2HD=3.13.解:(1)①答案不唯一,如图(a)所示.②如图(b),连接CD,FD.∵AC=6,BC=8,AB=10,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,∴EF是☉O的直径.∵D是AB的中点,∴AD=BD=CD=5,∴∠B=∠DCB.∵EF∥AB,∴∠A=∠CEF.又∵∠CDF=∠CEF,∴∠A=∠CDF.∵∠A+∠B=90°,∴∠CDF+∠DCB=90°,∴∠CFD=90°,∴CD是☉O的直径,∴EF=CD=5.③由AC2+BC2=AB2可得∠ACB=90°,∴EF是☉O的直径.∵CD 是☉O 的弦, ∴EF ≥CD ,∴当CD 是☉O 的直径时,EF 的长度最小.(2)如图(c),由(1)③知,当CD 是☉O 的直径时,EF 的长度最小,最小值为CD 的长.当点D 在边AB 上运动时,只有当CD ⊥AB 时,CD 的长最小. 由(1)②知,△ABC 是直角三角形, ∴S △ABC =12AC ·BC=12AB ·CD , ∴AC ·BC=AB ·CD , ∴CD=AC ·BC AB=6×810=245, ∴线段EF 长度的最小值为245.故答案为245.。
精品 九年级数学上册 圆 切线的性质与判定同步讲义+同步练习题
![精品 九年级数学上册 圆 切线的性质与判定同步讲义+同步练习题](https://img.taocdn.com/s3/m/9ea666d7ad51f01dc281f1ca.png)
切线的性质与判定知识点:三角形内切圆画法:三角形的外接圆与三角形的内切圆三角形的外接圆:经过三角形三个顶点的圆叫三角形的外接圆三角形外接圆的圆心叫三角形的外心三角形的外心到三角形三个顶点的距离相等三角形的外心是三角形三边中垂线的交点三角形的内切圆:与三角形三边都相切的圆叫三角形的内切圆三角形内切圆的圆心叫三角形的内心三角形的内心到三角形三边的距离相等三角形的内心是三角形三角平分线的交点切线长定理:从圆外一点可以引圆的____条切线,它们的________相等.这一点和______平分_______.直角三角形内切圆半径与三边关系公式:任意三角形面积、周长与内切圆半径关系公式:例1.如图,已知C为⊙O上一点,DA交⊙O于B,∠DCB=∠CAB.求证:DC为⊙O的切线.CA B DO例2.如图,已知在Rt△ABC中,∠C=900,点C在AC上,CD为⊙O直径,⊙O切AB于E,若BC=5,AC=12,求⊙O的半径.BEA COD例3.如图,已知⊙O内切于△ABC,∠BOC=1050,∠ACB=900,AB=20cm.求BC、AC的长.例4.如图,∠PAQ 是直角,半径为5的⊙O 与AP 相切于点T,与AQ 相交于两点B 、C. (1)BT 是否平分∠OBA?证明你的结论; (2)若已知AT=4,试求AB 的长.例5.如图,P 为⊙O 外一点,PO 交⊙O 于C,过⊙O 上一点A 作弦AB ⊥PO 于E,若∠EAC=∠CAP , 求证:PA 是⊙O 的切线.课堂同步:1.在Rt △ABC 中,∠A=900,点O 在BC 上,以O 为圆心的⊙O 分别与AB 、AC 相切于E 、F ,若AB=a ,AC=b ,则⊙O 的半径为( )A.abB.ab b a + C.b a ab + D.2ba + 2.正方形ABCD 中,AE 切以BC 为直径的半圆于E ,交CD 于F ,则CF:FD=( ) A.1:2 B.1:3 C.1:4 D.2:53.如图,过⊙O 外一点P 作⊙O 的两条切线PA 、PB,切点分别为A 、B,连结AB,在AB 、PB 、PA 上分别取一点D 、E 、F,使AD=BE,BD=AF,连结DE 、DF 、EF,则∠EDF=( ) A.900-∠P B.900-21∠P C.1800-∠P D.450-21∠P 4.如图,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有______个.第4题图 第5题图 第6题图 第7题图 5.如图,已知PA 、PB 是⊙O 的切线,A 、B 是切点,∠APB=780,点C 是⊙O 上异于A 、B 的任一点, 则∠ACB=6.如图,以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C,若大圆半径为10cm,小圆半径为6cm,则弦AB 的长为_______cm .7.如图,⊙O 内切于Rt △ABC,∠C=900,D 、E 、F 是切点,若∠BOC=1050,AB=4cm,则∠OBC=________, ∠BAC=_____,BC=______,AC=______,内切圆半径r=_____。
圆的切线综合练习题与答案完整版
![圆的切线综合练习题与答案完整版](https://img.taocdn.com/s3/m/7eaef316b0717fd5370cdc0d.png)
圆的切线综合练习题与答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】切线的判定与性质练习题一、选择题(答案唯一,每小题3分)1.下列说法中,正确的是( )A.与圆有公共点的直线是圆的切线 B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线 D.圆心到直线的距离等于半径的直线是圆的切线2. 如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )A.70° B.35° C.20° D.40°第2题第3题第4题第5题3. 如图,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于( )A.20° B.25° C.30° D.40°4.如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为( )A.8 B.6 C.5 D.45.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC二.填空题(每小题3分)6.如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.第6题第7题第8题7.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________________.8.如图,AB是⊙O的直径,O是圆心,BC与⊙O切于点B,CO交⊙O于点D,且BC=8,CD=4,那么⊙O的半径是______.9. 如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.第9题第10题第11题10. 如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC,BE.若AE=6,OA=5,则线段DC的长为______.11.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=________度.三、解答题(写出详细解答或论证过程)12.(7分)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.求证:AC是⊙O的切线.第12题第13题第14题13.(7分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.求证:∠BDC=∠A.14.(7分)如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切.15.(10分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.第15题第16题16.(12分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):__________________________或者_______________________;(2)如图②,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.17.(12分)如图,已知直线PA交⊙O于A,B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长.答案:DDADC 6. 相切 7. ∠ABC=90°不排除等效答案 8. 6 9. 45 10. 4 11. 6012. 解:连接OD,∵BD为∠ABC平分线,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为⊙O的切线13. 解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ODB+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A14. 解:过D作DH⊥AC于H,由角平分线的性质可证DB=DH,∴AC与⊙D相切15. 解:(1)∵∠COD=2∠CAD,∠D=2∠CAD,∴∠D=∠COD.∵PD与⊙O相切于点C,∴OC⊥PD,即∠OCD=90°,∴∠D=45°(2)由(1)可知△OCD是等腰直角三角形,∴OC=CD=2,由勾股定理,得OD=22+22=22,∴BD=OD-OB=22-216. (1) ∠BAE=90°∠EAC=∠ABC(2) (2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线17. 解:(1)连接OC,证∠DAC=∠CAO=∠ACO,∴PA∥CO,又∵CD⊥PA,∴CO⊥CD,∴CD为⊙O 的切线(2)过O作OF⊥AB,垂足为F,∴四边形OCDF为矩形.∵DC+DA=6,设AD=x,则OF=CD=6-x,AF=5-x,在Rt△AOF中,有AF2+OF2=OA2,即(5-x)2+(6-x)2=25,解得x1=2,x2=9,由AD<DF知0<x<5,故x=2,从而AD=2,AF=5-2=3,由垂径定理得AB=2AF=6。
圆的切线的性质与判定-练习题 含答案
![圆的切线的性质与判定-练习题 含答案](https://img.taocdn.com/s3/m/171e51e689eb172ded63b753.png)
圆的切线的性质与判定副标题一、选择题(本大题共2小题,共6.0分)1.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为A. 相离B. 相切C. 相交D. 无法确定【答案】C【解析】解:半径,圆心到直线的距离,,即,直线和圆相交,故选C.由直线和圆的位置关系:,可知:直线和圆相交.本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系:设的半径为r,圆心O到直线l的距离为d,直线l和相交;直线l和相切;直线l和相离.2.在中,,,,以点C为圆心,以为半径画圆,则与直线AB的位置关系是A. 相交B. 相切C. 相离D. 不能确定【答案】A【解析】解:过C作于D,如图所示:在中,,,,,的面积,,,即,以为半径的与直线AB的关系是相交;故选A.过C作于D,根据勾股定理求出AB,根据三角形的面积公式求出CD,得出,根据直线和圆的位置关系即可得出结论.本题考查了直线和圆的位置关系,用到的知识点是勾股定理,三角形的面积公式;解此题的关键是能正确作出辅助线,并进一步求出CD的长,注意:直线和圆的位置关系有:相离,相切,相交.二、填空题(本大题共3小题,共9.0分)3.如图,已知是的内切圆,切点为D、E、F,如果,,,则内切圆的半径______ .【答案】1【解析】解:是的内切圆,切点为D、E、F,,,,,,,,,,,,,是直角三角形,内切圆的半径,故答案为1.根据切线长定理得出,,,进而得出是直角三角形,再利用直角三角形内切圆半径求法得出内切圆半径即可.此题主要考查了切线长定理以及直角三角形内切圆半径求法,根据切线长定理得出是直角三角形是解题关键.4.如图,AD、AE、CB均为的切线,D,E,F分别是切点,,则的周长为______ .【答案】16【解析】解:、AE、CB均为的切线,D,E,F分别是切点,,,,的周长,的周长,,的周长为16.根据切线长定理得:,,,再由的周长代入可求得结论.本题主要考查了切线长定理,熟练掌握从圆外一点引圆的两条切线,它们的切线长相等;此题运用线段间的等量代换将周长转化为一条线段长的2倍,得出结论.5.如图,PA、PB是的切线,A、B是切点,已知,,那么AB的长为______.【答案】【解析】解:过点O作于点C,,、PB是的切线,,,,是等边三角形,,,在中,,,.故答案为:.首先过点O作于点C,由垂径定理可得:,又由PA、PB是的切线,由切线长定理可得,由,即可得是等边三角形,继而可求得,则可求得AC的长,继而求得答案.此题考查了切线长定理、垂径定理、等边三角形的判定与性质以及三角函数的定义此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.三、解答题(本大题共3小题,共24.0分)6.如图,AB为直径,C为上一点,点D是的中点,于E,于F.判断DE与的位置关系,并证明你的结论;若,求AC的长度.【答案】解:与相切.证明:连接OD、AD,点D是的中点,,,,,,,,,与相切.连接BC交OD于H,延长DF交于G,由垂径定理可得:,,,,弦心距,是直径,,,是的中位线,.【解析】先连接OD、AD,根据点D是的中点,得出,进而根据内错角相等,判定,最后根据,得出DE与相切;先连接BC交OD于H,延长DF交于G,根据垂径定理推导可得,再根据AB是直径,推出OH是的中位线,进而得到AC的长是OH长的2倍.本题主要考查了直线与圆的位置关系,在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,通常连接过该公共点的半径,证明该半径垂直于这条直线本题也可以根据与相似,求得AC的长.7.如图,AB为的直径,C为上一点,AD与过点C的切线互相垂直,垂足为点D,AD交于点E,连接CE,CB.求证:;若,,求AE的长.【答案】证明:连接OC,是的切线,.,,.又,,,;解:是直径,,,,.,,∽,,即,,.在直角中,,.【解析】连接OC,利用切线的性质和已知条件推知,根据平行线的性质和等角对等边证得结论;,通过相似三角形∽的对应边成比例求得,在直角中,由勾股定理得到,故AE.本题考查了切线的性质,勾股定理,相似三角形的判定与性质,解题时,注意辅助线的作法.8.如图,AB为的直径,C是上一点,过点C的直线交AB的延长线于点D,,垂足为E,F是AE与的交点,AC平分.求证:DE是的切线;若,,求图中阴影部分的面积.【答案】证明:连接OC,,,平分,,,,,,,,,点C在圆O上,OC为圆O的半径,是圆O的切线;解:在中,,,,在中,,,,,,,,,,,,阴影部分的面积为.【解析】连接OC,先证明,进而得到,于是得到,进而证明DE是的切线;分别求出的面积和扇形OBC的面积,利用即可得到答案.本题主要考查了切线的判定以及扇形的面积计算,解的关键是证明,解的关键是求出扇形OBC的面积,此题难度一般.。
圆切线练习题(含答案)
![圆切线练习题(含答案)](https://img.taocdn.com/s3/m/c31da375bf1e650e52ea551810a6f524ccbfcb04.png)
圆切线练习题(含答案)XXX∠OAD,又∠OAD=90°,∴∠XXX°。
又因为CD与半径OD重合,∴CD垂直于过切点D的半径,即CD是⊙O的切线。
例5.证明:由点悟可知,须证OD=OA。
XXX是⊙O的直径,∴∠OAB=90°,又∠XXX°,因此O、B、D三点共线。
OBD是直角三角形,∴OD=OB×sin∠OBD=r×sin∠OAB=OA。
又因为OD是⊙O的半径,∴OD=r。
OA=r,即AC与⊙O相切。
例6.证明:如图所示。
OA⊥OB,∴∠XXX°,又∠OAD=∠DPB,∴∠DPB=90°。
CD是⊙O的切线,∴PC=CD。
例7.解:如图所示。
O是内心,∴∠BOC=2∠A=140°。
答案:∠BOC=140°。
题目:证明在一个圆中,若一条直径的一端点与圆上一点相连,且与该点相连的两条切线分别与直径所在直线交于不同点,则这两个交点和圆上的该点构成一个等腰三角形。
证明:连接直径的另一端点和圆上的该点,得到三角形ACD。
由于OA=OD,所以∠ODA=∠OAD,从而∠COB=∠COD。
又因为OD=OB,所以三角形COB≌三角形COD,从而∠B=∠XXX。
由于BC是切线,而AB是直径,所以∠B=90°,∠ODC=90°,因此CD是圆的切线。
在证明中,我们先利用“切线的性质定理”和“全等三角形”的基本图形,构造辅助线OD。
然后利用切线的判定定理,得到CD是圆的切线。
这样就证明了∠COB=∠COD和CD是圆的切线。
接下来,我们连接直径的另一端点和圆上的该点,得到三角形ACD。
由于OA=OD,所以∠ODA=∠OAD,从而∠COB=∠COD。
又因为OD=OB,所以三角形COB≌三角形COD,从而∠B=∠XXX。
由于BC是切线,而AB是直径,所以∠B=90°,∠ODC=90°,因此CD是圆的切线。
九年级数学: 24.2切线的性质与判定练习(含答案)
![九年级数学: 24.2切线的性质与判定练习(含答案)](https://img.taocdn.com/s3/m/85220e30960590c69ec37698.png)
2020 九级数学上册切线的性质与判定同步练习卷一、选择题:1、如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.2.3B.2.4C.2.5D.2.62、如图,四边形PAOB是扇形OMN的内接矩形,顶点P在上,且不与M,N重合,当P点在上移动时,矩形PAOB的形状、大小随之变化,则AB的长度( )A.变大B.变小C.不变D.不能确定3、如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为( )A.40°B.35°C.30°D.45°4、如图,OA,OB分别为⊙O的半径,若CD⊥OA,CE⊥OB,垂足分别为D,E,∠P=70°,则∠DCE 的度数为()A.70°B.60°C.50°D.40°5、如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100°D.130°6、如图,⊙O的半径为1,AB是⊙O的一条弦,且,则弦AB所对圆周角的度数为( )A.30°B.60°C.30°或150°D.60°或120°7、如图,AB是⊙O的直径,C、D、E是⊙O上的点,则∠1+∠2等于( )A.90°B.45°C.180°D.60°8、如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,P是优弧上一点,则∠APB度数为()A.30°B.45°C.60°D.75°9、如图,PA,PB是⊙O的切线,A,B是切点,点C是劣弧AB上的一个点,若∠P=40°,则∠ACB度数是( )A.80°B.110°C.120°D.140°10、如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、M两点,若点M的坐标是(-4,-2),则点N的坐标为()A.(-1,-2)B.(1,2)C.(-1.5,-2)D.(1.5,-2)11、如图,AB为⊙O的直径,作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在下半圆上移动时,(不与点A、B重合),下列关于点P描述正确的是( )A.到CD的距离保持不变B.到D点距离保持不变C.等分D.位置不变12、如图所示,在直角坐标系中,A点坐标为(-3,-2),⊙A的半径为1,P为x•轴上一动点,PQ 切⊙A于点Q,则当PQ最小时,P点的坐标为()A.(-4,0)B.(-2,0)C.(-3,0)D.(-4,0)或(-2,0)二、填空题:13、如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为________.14、如图,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,BG=8 cm,AG=1 cm,DE=2 cm,则EF=________.15、如图,直线AB与⊙O相切于点A,AC,CD是⊙O两条弦,且CD∥AB,半径为2.5,CD=4,则弦AC长为 .16、如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE 的周长为;若∠P=40°,则∠DOE= .17、如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC的内切圆半径r= .18、如图,在矩形ABCD中,AB=8,AD=12,过点A、D两点的⊙O与BC边相切于点E,则⊙O的半径为.三、解答题:19、如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.20、如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠EAC=60°,求AD的长.21、如图,已知AB是⊙O的直径,BC是⊙O的切线,OC与⊙O相交于点D,连接AD并延长,与BC 相交于点E.(1)若BC=,CD=1,求⊙O的半径.(2)取BE的中点F,连接DF.求证:DF是⊙O的切线.22、如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.23、如图,在平面直角坐标系中,已知A(8,0),B(0,6),圆M经过原点O及点A、B.⑴求圆M的半径及圆心M的坐标;⑵过点B作圆M的切线,求直线的解析式;⑶∠BOA的平分线交AB于点N,交圆M于点E,求点N的坐标和线段OE的长.参考答案1、B2、C3、C4、D5、D6、D7、A8、C9、B10、A11、D12、D13、答案为:(6, 0)14、答案为:6cm15、答案为:2.16、答案为:16cm,70°.17、答案为:1.18、答案为:.19、(1)证明:如图,连接OD,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为⊙O的切线;(2)解:如图,过O作OG⊥BC,垂足为G,连接OE,由(1)可知四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,由勾股定理得:BG=6,∵OG⊥BE,OB=OE,∴BE=2BG=12.解得BE=1220、(1)证明:连接CE,如图所示:∵AC为⊙O的直径,∴∠AEC=90°.∴∠BEC=90°.∵点F为BC的中点,∴EF=BF=CF.∴∠FEC=∠FCE.∵OE=OC,∴∠OEC=∠OCE.∵∠FCE+∠OCE=∠ACB=90°,∴∠FEC+∠OEC=∠OEF=90°.∴EF是⊙O的切线.(2)解:∵OA=OE,∠EAC=60°,∴△AOE是等边三角形.∴∠AOE=60°.∴∠COD=∠AOE=60°. ∵⊙O的半径为2,∴OA=OC=2在Rt△OCD中,∵∠OCD=90°,∠COD=60°,∴∠ODC=30°.∴OD=2OC=4,∴CD=. 在Rt△ACD中,∵∠ACD=90°,AC=4,CD=.∴AD==.21、(1)解:设⊙O的半径为r ∵AB是⊙O的直径,BC是⊙O的切线∴AB⊥BC 在Rt△OBC中,根据勾股定理得∴解得∴⊙O的半径为1(2)证明:连接OF∵OA=OB,BF=EF∴OF是△BAE的中位∴OF∥AE∴∠A=∠2,∠1=∠ADO∵OA=OD ∴∠A=∠ADO ∴∠1=∠2在△OBF和△ODF中∴△OBF≌△ODF(SAS)∴∠ODF=∠OBF=90°∴OD⊥DF又∵OD是⊙O的半径∴FD是⊙O的切线.22、证明:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,∴AC为⊙D的切线.(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.23、⑴., ⑵.可证;(3).。
部编数学九年级下册专项21切线的判定与性质的综合应用(解析版)含答案
![部编数学九年级下册专项21切线的判定与性质的综合应用(解析版)含答案](https://img.taocdn.com/s3/m/913ab53e001ca300a6c30c22590102020740f20e.png)
专项21 切线的判定与性质的综合应用ìïìïííîïïî圆的切线的性质--三角形内切圆应用:d=r 圆的切线的判定判定定理圆的切线性质与判定综合应用【类型一: 有公共点:连半径,证垂直】【典例1】(2021秋•吉林期末)已知:如图,△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点P ,PD ⊥AC 于点D .(1)求证:PD 是⊙O 的切线;(2)若∠CAB =120°,AB =6,求BC 的值.【解答】(1)证明:∵AB =AC ,∴∠B =∠C ,∵OP =OB ,∴∠B =∠OPB ,∴∠OPB =∠C ,∴OP ∥AC ,∵PD ⊥AC ,∴OP ⊥PD ,∴PD 是⊙O的切线;(2)解:连接AP,如图,∵AB为直径,∴∠APB=90°,∴BP=CP,∵∠CAB=120°,∴∠BAP=60°,在Rt△BAP中,AB=6,∠B=30°,∴AP=AB=3,∴BP=AP=3,∴BC=2BP=6.【变式1-1】(2021秋•西城区校级期中)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求CE的长.【解答】(1)证明:连接OD,如图,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴AC是⊙O的切线;(2)解:过O作OG⊥BC,连接OE,则四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∵OG⊥BE,OB=OE,∴BE=2BG=12.解得:BE=12,∵AC是⊙O的切线,∴CD2=CE•CB,即82=CE(CE+12),解得:CE=4或CE=﹣16(舍去),即CE的长为4.【变式1-2】(2021秋•温岭市期末)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)若AC=8,CD=12,求半径的长度.【解答】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,∴∠CDO=90°,∵OD是⊙O的半径,∴CD是⊙O的切线;(2)解:在Rt△CDO中,CD2+OD2=OC2,∴122+r2=(8+r)2,∴r=5,∴半径的长度为5.【典例2】(2020•中宁县一模)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=1,求⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)设该圆的半径为x.在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴1+x=2x,解得:x=1∴OA=PD=1,所以⊙O的直径为2【变式2-1】(2021秋•甘井子区期末)如图,△ABC中,AB=AC,以AB为直径的⊙O与AC,BC分别交于点D和点E,过点E作EF⊥AC,垂足为F.(1)求证:EF是⊙O的切线;(2)若CD=4,EF=3,求⊙O半径.【解答】(1)证明:连接OE,∵EF⊥AC,∴∠EFD=∠EFC=90°,∵AB=AC,∴∠B=∠C,∴∠B=∠OEB,∴∠OEB=∠C,∴OE∥AC,∴∠OEF=∠EFC=90°,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:过点O作OG⊥AD,垂足为G,∴∠OGF=90°,∵∠OEF=∠EFG=90°,∴四边形OEFG是矩形,∴OG=EF=3,设⊙O的半径为x,∴AB=AC=2x,∵CD=4,∴AD=AC﹣CD=2x﹣4,∵OG⊥AD,∴AG=AD=x﹣2,在Rt△OAG中,AG2+OG2=OA2,∴(x﹣2)2+9=x2,∴x=,∴⊙O的半径为.【变式2-2】(2021秋•天津期末)如图,已知AB是⊙O的直径,AC是弦,∠BAC的角平分线交⊙O于点D,DE⊥AC于E.(1)求证:DE是⊙O的切线;(2)若AB=10,AC=6,求ED的长.【解答】(1)证明:连接OD,∵DE⊥AE,∴∠AED=90°,∵AD平分∠BAE,∴∠CAD=∠DAB,∵OA=OD,∴∠ADO=∠DAB,∴∠CAD=∠ADO,∴AC∥DO,∴∠EDO=180°﹣∠E=90°,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ECB=180°﹣∠ACB=90°,∵∠E=∠EDO=90°,∴四边形ECFD是矩形,∴DE=CF,∠CFD=90°,∵AB=10,AC=6,∴BC===8,∵OD⊥BC,∴CF=BC=4,∴DE=CF=4,∴ED的长为4【典例3】(2022•东明县一模)已知,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O 与BC相交于点E,在AC上取一点D,使得DE=AD,(1)求证:DE是⊙O的切线.(2)当BC=10,AD=4时,求⊙O的半径.【解答】(1)证明:连接OE、OD,在△AOD和△EOD中,,∴△AOD≌△EOD(SSS),∴∠OED=∠BAC=90°,∴DE是⊙O的切线;(2)解:∵△AOD≌△EOD,∵OB=OE,∴∠B=∠OEB,∵∠AOE=∠B+∠OEB,∴∠BEO=∠EOD,∴OD∥BC,又AO=BO,∴OD=BC=5,由勾股定理得,AO==3,则⊙O的半径为3.【变式3-1】(2021秋•金湖县期末)如图,四边形OAEC是平行四边形,以O为圆心,OC 为半径的圆交CE于D,延长CO交⊙O于B,连接AD、AB,AB是⊙O的切线.(1)求证:AD是⊙O的切线.(2)若⊙O的半径为4,AB=8,求平行四边形OAEC的面积.【解答】(1)证明:连接OD,∵AB与⊙O相切于点B,∴∠OBA=90°,∵四边形OAEC是平行四边形,∴AO∥EC,∴∠AOD=∠ODC,∠AOB=∠OCD,∵OD=OC,∴∠ODC=∠OCD,又∵OA=OA,OD=OB,∴△AOB≌△AOD(SAS),∴∠OBA=∠ODA,∴∠ODA=90°,∵OD是⊙O的半径,∴AD为⊙O的切线;(2)解:∵OB=4,AB=8,∴S=AB•OB=×4×8=16,△ABO∵△AOB≌△AOD,∴S=16,△AOD=32.∴平行四边形OAEC的面积=2S△AOD【类型一:没有公共点:作垂直,证半径】【典例4】(2020•八步区一模)如图,在Rt△ABC中,∠BAC的角平分线交BC于点D,E 为AB上一点,DE=DC,以D为圆心,DB的长为半径作⊙D,AB=5,BE=3.(1)求证:AC是⊙D的切线;(2)求线段AC的长.【解答】(1)证明:过点D作DF⊥AC于F;∵AB为⊙D的切线,∴∠B=90°,∴AB⊥BC,∵AD平分∠BAC,DF⊥AC,∴BD=DF,∴AC与⊙D相切;(2)解:在△BDE和△DCF中;,∴Rt△BDE≌Rt△DCF(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC,∴AC=5+3=8.【变式4-1】(2021秋•莆田期末)如图,半圆O的直径是AB,AD、BC是两条切线,切点分别为A、B,CO平分∠BCD.(1)求证:CD是半圆O的切线.(2)若AD=20,CD=50,求BC和AB的长.【解答】(1)证明:过点O作OE⊥CD,垂足为点E,∵BC是半圆O的切线,B为切点,∴OB⊥BC,∵CO平分∠BCD,∴OE=OB,∵OB是半圆O的半径,∴CD是半圆O的切线;(2)解:过点D作DF⊥BC,垂足为点F,∴∠DFB=90°,∵AD是半圆O的切线,切点为A,∴∠DAO=90°,∵OB⊥BC,∴∠OBC=90°,∴四边形ADFB是矩形,∴AD=BF=20,DF=AB,∵AD,CD,BC是半圆O的切线,切点分别为A、E、B,∴DE=AD=20,EC=BC,∵CD=50,∴EC=CD﹣DE=50﹣20=30,∴BC=30,∴CF=BC﹣BF=10,在Rt△CDF中,由勾股定理得:DF===20,∴AB=DF=20,∴BC的长为30,AB的长为20.1.(2021秋•龙沙区期末)如图,以点O为圆心,AB长为直径作圆,在⊙O上取一点C,延长AB至点D,连接DC,∠DCB=∠DAC,过点A作AE⊥AD交DC的延长线于点E.(1)求证:CD是⊙O的切线;(2)若CD=4,DB=2,求AE的长.【解答】(1)证明:连接OC,OE,如图,∵AB为直径,∴∠ACB=90°,即∠BCO+∠1=90°,又∵∠DCB=∠CAD,∵∠CAD=∠OCA,∴∠OCA=∠DCB,∴∠DCB+∠BCO=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵∠DCO=90°,OC=OB,∴OC2+CD2=OD2,∴OB2+42=(OB+2)2,∴OB=3,∴AB=6,∵AE⊥AD,AB是⊙O的直径,∴AE是⊙O的切线,∵CD是⊙O的切线;∴AE=CE,∵AD2+AE2=DE2,∴(6+2)2+AE2=(4+AE)2,解得AE=6.2.(2021秋•聊城期末)如图,点C在以AB为直径的⊙O上,AC平分∠BAD,且AD⊥CD 于点D.(1)求证:DC是⊙O的切线;(2)若AD=4,CD=2,求⊙O的半径.【解答】(1)证明:如图中,连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠CAB=∠ACO,∴AD∥OC,∵AD⊥CD,∴OC⊥DC,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:如图,过点O作OE⊥AD于点E,得矩形OEDC,∴OE=CD=2,DE=OC,∴AE=AD﹣DE=4﹣OC=4﹣OA,在Rt△AEO中,根据勾股定理,得OA2=AE2+OE2,∴OA2=(4﹣OA)2+22,解得OA=.∴⊙O的半径为.3.(2022春•长兴县月考)如图,已知等边△ABC的边长为6,点O是AB边上的一点,以OA为半径的⊙O与边AC,AB分别交于点D,E,过点D作DF⊥BC于点F.(1)求证:DF是⊙O的切线;(2)连结EF,当EF是⊙O的切线时,求⊙O的半径.【解答】(1)证明:连结OD,如图所示:∵△ABC是等边三角形,∴∠BAC=∠C=∠B=60°,∵∠DAO=60°,OD=OA,∴△DOA是等边三角形,∴∠ODA=∠C=60°,∴OD∥BC,又∵∠DFC=90°,∴∠ODF=90°,∴OD⊥DF,∵OD是⊙O的半径,∴DF是⊙O的切线;(2)解:设半径为r,等边△ABC的边长为6,由(1)可知:AD=r,则CD=6﹣r,BE=6﹣2r在Rt△CFD中,∠C=60°,CD=6﹣r,∴CF=(6﹣r),∴BF=a﹣(6﹣r),又∵EF是⊙O的切线,∴△FEB是直角三角形,且∠B=60°,∠EFB=30°,∴BF=2BE,∴6﹣(6﹣r)=2(6﹣2r),解得:r=2,∴⊙O的半径为2.4.(2022•西湖区校级开学)如图,已知AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC.(1)求证:DE是⊙O的切线.(2)若∠C=30°,CD=10cm,求⊙O的半径.【解答】(1)证明:连接OD.∵D是BC的中点,O是AB的中点,∴OD∥AC,∴∠CED=∠ODE,∵DE⊥AC,∴∠CED=∠ODE=90°,∴OD⊥DE,∵OD是圆的半径,∴DE是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ADB=90°,∵D是BC的中点,∴AB=AC,∵∠C=30°,∴∠B=30°,∴AB=2AD,∵CD=10cm,∴BD=10cm,设AD=xcm,则AB=2xcm,∴x2+102=4x2,∴x=或x=﹣(舍去),∴AD=(cm),AB=(cm),∴⊙O的半径为cm.5.(2021秋•曲靖期末)如图,在Rt△ABC中,∠C=90°,点D是AC上一点,DQ⊥AB,DQ=DC,点O在AB上,以点O为圆心,OB长为半径的圆经过点D,交BC于点E、交AB于点F.(1)求证:AC是⊙O的切线;(2)若⊙O的半径为5,CD=4,求CE的长.【解答】(1)证明:如图,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵∠C=90°,DQ⊥AB,DQ=DC,∴BD是△ABC的角平分线,∴∠OBD=∠DBC,∴∠ODB=∠DBC,∴OD∥BC,∴∠ODA=∠C=90°,∵AC经过⊙为的半径OD的端点D,且AC⊥OD,∴AC是⊙O的切线;(2)解:如图,作OG⊥BE于点G,则BG=EG,∠OGB=90°,∵∠ODC=∠C=∠OGC=90°,∴四边形ODCG是矩形,∵CD=4,OB=OD=5,∴OG=CD=4,GC=OD=5,在Rt△BOG中,OB2=OG2+BG2,∴BG===3,∴EG=3,∴CE=GC﹣EG=5﹣3=2.6.(2021秋•海淀区期末)如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线;(2)若∠DFA=30°,DF=4,求FG的长.【解答】(1)证明:∵C,A,D,F在⊙O上,∠CAF=90°,∴∠D=∠CAF=90°.∵AB⊥CE,BG⊥DF,∴∠BED=∠G=90°.∴四边形BEDG中,∠ABG=90°.∴半径OB⊥BG.∴BG是⊙O的切线.(2)解:连接CF,∵∠CAF=90°,∴CF是⊙O的直径.∴OC=OF.∵直径AB⊥CD于E,∴CE=DE.∴OE是△CDF的中位线.∴OE==2.∵=,∠AFD=30°,∴∠ACD=∠AFD=30°.∴∠CAE=90°﹣∠ACE=60°.∵OA=OC,∴△AOC是等边三角形.∵CE⊥AB,∴E为AO的中点,∴OA=2OE=4,OB=4.∴BE=OB+OE=6.∵∠BED=∠D=∠G=90°,∴四边形BEDG是矩形.∴DG=BE=6.∴FG=DG﹣DF=2.7.(2021秋•淮安区期末)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作DE⊥AC,交AC于点E.(1)求证:DE是⊙O的切线;(2)若⊙O的直径为5,BC=8,求DE的长.【解答】(1)证明:如图1,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴DE⊥半径OD,∴DE是⊙O的切线;(2)解:如图2,连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴BD=CD==4,∴AD==3,∵DE⊥AC,∴S=,△ACD∴5•DE=3×4,∴DE=,∴DE的长是.8.(2021秋•平罗县期末)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若DE=2,CE=1,求BD的长度.【解答】(1)证明:如图,连接OD,CD,则∠OAD=∠ODA.∵AD平分∠CAB,∴∠OAD=∠EAD.∴∠ODA=∠EAD.∴OD∥AE,∵AB为直径,∴∠ACB=90°.∵DE∥BC,∴∠E=90°,∴∠ODE=90°,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:∵AD平分∠CAB,∴=,∴CD=BD,在Rt△CDE中,DE=2,CE=1,根据勾股定理,得CD===,∴BD=.9.(2021秋•博白县期末)如图,在△ABC中,AB=AC,以AC边为直径作⊙O交BC边于点D,过点D作DE⊥AB于点E,ED、AC的延长线交于点F.(1)求证:EF是⊙O的切线;(2)若AC=10,CD=6,求DE的长.【解答】(1)证明:连接OD,如图所示:∵AB=AC,∴∠B=∠ACD,∵OC=OD,∴∠ODC=∠OCD,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴EF⊥OD,又∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:连接AD,∵AC为⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=CD=6.在Rt△ACD中,AC=10,CD=6,∴AD===8,又∵DE⊥AB,AB=AC=10,=AB•DE=AD•BD,∴S△ABD即×10×DE=×8×6,∴DE=4.8.10.(2022•任城区三模)如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF;(1)判断AF与⊙O的位置关系并说明理由.(2)若⊙O的半径为4,AF=3,求AC的长.【解答】(1)解:AF是⊙O的切线,理由如下:连接OC,如图所示:∵AB是⊙O直径,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OB,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切线;(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴OF===5∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面积=AF•OA=OF•AE,∴3×4=5×AE,解得:AE=,∴AC=2AE=.。
2020年人教版九年级数学上册24.2.2《切线的判定和性质》课后练习(含答案)
![2020年人教版九年级数学上册24.2.2《切线的判定和性质》课后练习(含答案)](https://img.taocdn.com/s3/m/c24588bb4a7302768f99396d.png)
2020年人教版九年级数学上册24.2.2《切线的判定和性质》课后练习知识点 1 切线的判定1.下列说法中正确的是( )A.与圆有公共点的直线是圆的切线B.到圆心的距离等于圆的半径的直线是圆的切线C.垂直于圆的半径的直线是圆的切线D.过圆的半径的外端的直线是圆的切线2.如图所示,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为____________.3.如图,A,B是⊙O上的两点,AC是过点A的一条直线,如果∠AOB=120°,那么当∠CAB=________°时,AC才能成为⊙O的切线.4.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为E.求证:直线CE是⊙O的切线.知识点 2 切线的性质5.如图,AB,AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为( )A.25°B.30°C.35°D.40°6.如图所示,AB是⊙O的直径,C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是( )A.15°B.30°C.60°D.75°7.如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径为________.8.如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接CB.若⊙O的半径为2,∠ABC=60°,则BC=________.9.如图,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,若∠OPA=40°,求∠ABC的度数.10.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面三个结论:①AD=CD;②BD=BC;③AB=2BC.其中正确结论的个数是( )A.3B.2C.1D.011.如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是________.(结果保留π)12.在周长为26π的⊙O中,CD是⊙O的一条弦,AB是⊙O的切线,且AB∥CD,若AB和CD 之间的距离为18,则弦CD的长为________.13.如图,AB是⊙O的直径,C是⊙O上一点,点D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.14.如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O的直径的长.15.已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF是⊙O的切线,还需要添加的一个条件是(要求写出两种情况):________或者________;(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.参考答案1.B2.答案不唯一,如∠ABC=90°3.60 [解析] ∵在△AOB 中,OA=OB ,∠AOB=120°,∴∠OAB=30°,∴当∠CAB=60°时,OA ⊥AC ,此时AC 为⊙O 的切线.4.证明:连接OD ,∵OA=OD ,∴∠2=∠3.∵AD 平分∠CAE ,∴∠1=∠2,∴∠1=∠3,∴AE ∥OD ,∴∠E=∠ODC.∵AE ⊥CD ,∴∠E=90°,∴∠ODC=90°,∴OD ⊥CE.又∵OD 是⊙O 的半径,∴CE 是⊙O 的切线.5.D6.D [解析] 连接OD.∵CA ,CD 是⊙O 的切线,∴OA ⊥AC ,OD ⊥CD ,∴∠OAC=∠ODC=90°.∵∠ACD=30°,∴∠AOD=360°-∠C -∠OAC -∠ODC=150°.∵OB=OD ,∴∠DBA=∠ODB=12∠AOD=75°.7.5 [解析] 连接OB ,根据切线的性质可知OB ⊥AB.设圆的半径为r ,根据勾股定理可得r2+AB 2=(r +AC)2,即r 2+122=(r +8)2,解得r=5.8.8 [解析] ∵CA 与⊙O 相切,∴AB ⊥AC.∵在Rt △ABC 中,∠ABC=60°,∴∠C=30°,∴BC=2AB=8.故答案为8.9.解:∵AB 是⊙O 的直径,PA 与⊙O 相切于点A ,∴∠BAP=90°.∵∠OPA=40°,∴∠AOP=180°-90°-40°=50°.∵OB=OC ,∴∠ABC=∠BCO.又∵∠AOP=∠ABC +∠BCO ,∴∠ABC=12∠AOP=12×50°=25°. 10.A [解析] 连接OD ,根据切线的性质定理可得OD ⊥CD.由于AB 是⊙O 的直径,根据“直径所对的圆周角等于90°”,可得∠ADB=90°,结合已知条件“∠A=30°”可以说明①②的正确性;在Rt △ADB 中,利用“30°角所对的直角边等于斜边的一半”,可得AB=2BD ,从而AB=2BC.11.16π [解析] 如图, 设AB 与小圆切于点C ,连接OC ,OB.∵AB 与小圆切于点C ,∴OC ⊥AB ,∴BC=AC=12AB=12×8=4. ∵在Rt △OBC 中,OB 2=OC 2+BC 2,∴圆环(阴影)的面积=π·OB 2-π·OC 2=π(OB 2-OC 2)=π·BC 2=16π.故答案是16π.12.24 [解析] 如图,设AB 与⊙O 相切于点F ,连接OF ,OD ,延长FO 交CD 于点E.∵2πR=26π,∴R=13,∴OF=OD=13.∵AB 是⊙O 的切线,∴OF ⊥AB.∵AB ∥CD ,∴EF ⊥CD ,即OE ⊥CD ,∴CE=ED.∵EF=18,OF=13,∴OE=5.在Rt △OED 中,∵∠OED=90°,OD=13,OE=5,∴ED=OD 2-OE 2=132-52=12,∴CD=2ED=24.13.解:(1)证明:如图,连接OC.∵AB 是⊙O 的直径,C 是⊙O 上一点,∴∠ACB=90°,即∠ACO +∠OCB=90°.∵OA=OC ,∠BCD=∠A ,∴∠ACO=∠A=∠BCD ,∴∠BCD +∠OCB=90°,即∠OCD=90°,∴OC ⊥CD.又∵OC 是⊙O 的半径,∴CD 是⊙O 的切线.(2)由(1)及已知得∠OCD=90°,OB=OC=3,CD=4,在Rt △OCD 中,根据勾股定理得OD=5,∴BD=OD -OB=5-3=2.14.解:(1)证明:如图,连接OD ,CD.∵AC 是⊙O 的直径,∴∠ADC=90°,∴∠BDC=90°.又∵E 为BC 的中点,∴DE=12BC=CE , ∴∠EDC=∠ECD.∵OD=OC ,∴∠ODC=∠OCD ,∴∠EDC +∠ODC=∠ECD +∠OCD=∠ACB=90°,∴∠ODE=90°,即OD ⊥DE.又∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.(2)设⊙O 的半径为x.在Rt △ODF 中,根据勾股定理,得OD 2+DF 2=OF 2,即x 2+42=(x +2)2,解得x=3.∴⊙O 的直径的长为6.15.解:(1)答案不唯一,如①∠BAE=90°,②∠EAC=∠ABC.理由:①∵∠BAE=90°,∴AE ⊥AB.又∵AB 是⊙O 的直径,∴EF 是⊙O 的切线.②∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠ABC +∠BAC=90°.∵∠EAC=∠ABC ,∴∠BAE=∠BAC +∠EAC=∠BAC +∠ABC=90°,即AE ⊥AB.又∵AB 是⊙O 的直径,∴EF 是⊙O 的切线.(2)EF 是⊙O 的切线.证明:如图,作直径AM ,连接CM ,则∠ACM=90°,∠M=∠B ,∴∠M +∠CAM=∠B +∠CAM=90°.∵∠CAE=∠B ,∴∠CAE +∠CAM=90°,即AE ⊥AM.∵AM 是⊙O 的直径,∴EF 是⊙O 的切线.。
人教版(2023)初中数学九年级上册:24.2.2.2 切线的判定和性质(含答案)【可编辑可打印】
![人教版(2023)初中数学九年级上册:24.2.2.2 切线的判定和性质(含答案)【可编辑可打印】](https://img.taocdn.com/s3/m/c4efb93c17fc700abb68a98271fe910ef02dae45.png)
第2课时切线的判定和性质知能演练提升一、能力提升1.如图,AB为☉O的切线,点A为切点,OB交☉O于点C,点D在☉O上,连接AD,CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°2.如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,她了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25 m,BD=1.5 m,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2 mB.2.5 mC.2.4 mD.2.1 m3.(2021·广西贺州中考)如图,在直角△ABC中,∠C=90°,AB=5,点O在AB上,OB=2,以OB为半径的☉O与AC相切于点D,交BC于点E,则CE的长为()A.12B.23C.√22D.14.如图,四边形ABCD内接于☉O,AB是直径,过点C的切线与AB的延长线交于点P,若∠P=40°,则∠D的度数为.5.如图①,将一个量角器与一张等腰直角三角形(△ABC)纸片放置成轴对称图形,∠ACB=90°,CD⊥AB,垂足为D,半圆(量角器)的圆心与点D重合,测得CE=5 cm,将量角器沿DC方向平移2 cm,半圆(量角器)恰与△ABC的边AC,BC相切,如图②,则AB=cm.6.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4 cm,O为直线b上一动点,若以1 cm 为半径的☉O与直线a相切,则OP的长为.7.如图所示,AB是☉O的直径,点C为☉O上一点,过点B作BD⊥CD,垂足为点D,连接BC,BC平分∠ABD.求证:CD为☉O的切线.8.如图,Rt△ABC内接于☉O,点D是Rt△ABC斜边AB上的一点,过点D作AB的垂线交AC于点E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连接PO交☉O于点F.(1)求证:PC是☉O的切线;(2)若PC=3,PF=1,求AB的长.★9.如图,△ABC是边长为4的等边三角形,点O在边AB上,☉O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是☉O的切线;(2)当直线DF与☉O相切时,求☉O的半径.二、创新应用★10.如图,AB是☉O的直径,AM,BN分别与☉O相切于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是☉O的切线;(2)若AD=4,BC=9,求☉O的半径R.知能演练·提升一、能力提升1.B2.B设圆弧形门所在圆的圆心为O,取BD的中点F,连接AC.连接OF,交AC于点E.∵BD是☉O的切线,∴OF⊥BD.∵四边形ABDC是矩形,∴AC∥BD,∴OE⊥AC,EF=AB.设圆O的半径为R m,在Rt△AOE中,AE=AC2=BD2=0.75,OE=R-AB=R-0.25.∵AE2+OE2=OA2,∴0.752+(R-0.25)2=R2,解得R=1.25.1.25×2=2.5(m).故选B.3.B4.115°连接OC,则OC⊥PC.∵∠P=40°,∴∠COP=50°,∴∠OBC=65°,∴∠D=180°-∠OBC=180°-65°=115°.5.(6√2+16)设量角器的半径为x cm,则由题图②知,△GCH为等腰直角三角形,且GH=GC=x cm,CH=(3+x)cm,根据勾股定理,得x=3(√2+1),从而CD=(3(√2+1)+5)cm,AB=2CD=(6√2+16)cm.6.3 cm或5 cm7.证明∵BC平分∠ABD,∴∠OBC=∠DBC.∵OB=OC,∴∠OBC=∠OCB.∴∠OCB=∠DBC.∴OC∥BD.∵BD⊥CD,∴OC⊥CD.∵OC是☉O的半径,∴CD为☉O的切线.8.(1)证明如图,连接OC.∵Rt△ABC内接于☉O,∴圆心O是斜边AB的中点.∵OA=OC,∴∠A=∠OCA.∵PD⊥AB,∴∠A+∠AED=90°.又∠ECP=∠AED,∴∠A+∠ECP=90°,∴∠OCA+∠ECP=90°,即∠OCP=90°.∴OC⊥PC,∴PC是☉O的切线.(2)解设☉O的半径为r,由(1)得OC⊥PC,在Rt△OCP中,根据勾股定理,得OC2+PC2=OP2,即r2+32=(r+1)2,解得r=4.故直径AB的长为8.9.(1)证明连接OE,则OB=OE.∵△ABC是等边三角形,∴∠ABC=∠C=60°.∴△OBE是等边三角形.∴∠OEB=∠C=60°.∴OE∥AC.∵EF⊥AC,∴∠EFC=90°.∴∠OEF=∠EFC=90°.∴EF是☉O的切线.(2)解∵DF是☉O的切线,∴∠ADF=90°.设☉O的半径为r,则BE=r,EC=4-r,AD=4-2r.在Rt△ADF中,∵∠A=60°,∴AF=2AD=8-4r.∴FC=4-(8-4r)=4r-4.在Rt△CEF中,∵∠C=60°,∴EC=2FC,∴4-r=2(4r-4)..解得r=43∴☉O的半径是4.3二、创新应用10.(1)证明过点O作OE⊥CD,垂足为E.∵AM与☉O相切于点A, ∴OA⊥AD.又DO平分∠ADC,∴OE=OA.又OA是☉O的半径,∴OE为☉O的半径.∴CD是☉O的切线.(2)解过点D作DF⊥BC,垂足为F.∵AM,BN分别与☉O相切于点A,B,∴AB⊥AD,AB⊥BC.∴四边形ABFD是矩形.∴AD=BF,AB=DF.又AD=4,BC=9,∴FC=9-4=5.又AM,BN,DC分别与☉O相切于点A,B,E, ∴DA=DE,CB=CE.∴DC=AD+BC=4+9=13.在Rt△DFC中,DC2=DF2+FC2,∴DF=√DC2-FC2=√132-52=12.∴AB=12.∴☉O的半径R是6.。
初中数学圆中切线的判定与性质综合应用专项练习题3(附答案详解)
![初中数学圆中切线的判定与性质综合应用专项练习题3(附答案详解)](https://img.taocdn.com/s3/m/77d4cb7da58da0116d1749a7.png)
初中数学圆中切线的判定与性质综合应用专项练习题3(附答案详解)1.如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.⑴求证:BE是⊙O的切线;⑵若BC=3,AC=5,求圆的直径AD的长.2.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线;(2)若⊙O的半径长为5,BF=2,求EF的长.⊥,垂足为点,E DA 3.如图,四边形ABCD内接于O,BD是O的直径,AE CD∠.平分BDE(1)AE是O的切线吗?请说明理由;AE=求BC的长.(2)若4,4.如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG 、AD 、CD 三者之间满足的等量关系,并证明你的结论.5.如图,A 是半径为12cm 的O 上的定点,动点P 从A 出发,以2πcm/s 的速度沿圆周逆时针运动,当点P 回到A 地立即停止运动.(1)如果90POA ∠=,求点P 运动的时间;(2)如果点P 是OA 延长线上的一点,AB OA =,那么当点P 运动的时间为2s 时,判断直线OA 与O 的位置关系,并说明理由.6.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD•CA ,弦ED=弦BD ,BE 交AC 于F.(1)求证:BC 为⊙O 切线;(2)判断△BCF 的形状并说明理由;(3)已知BC=15,CD=9,求tan ∠ADE 的值.7.如图,AB 是⊙O 的直径, BC 交⊙O 于点D ,E 是BD 的中点,连接AE 交BC 于点F ,∠ACB =2∠EAB .(1)判断直线AC 与⊙O 的位置关系,并说明理由;(2)若3cos4C=,8AC=,求BF的长.8.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:D E是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.9.如图,在Rt△ABC中,∠ACB=90°.∠ABC的平分线交AC于点O,以点O为圆心,OC为半径.在△ABC同侧作半圆O.(1)求证:AB与⊙O相切;(2)若AB=5,AC=4,求⊙O的半径.10.如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP,AE.(1)求证:直线PQ为⊙O的切线;(2)若直径AB的长为4.①当PE=时,四边形BOPQ为正方形;②当PE=时,四边形AEOP为菱形.11.如图,在三角形ABC中,AB=10,AC=BC=13,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF⊥AC,于点F,交CB的延长线于点E.(1)求证:DF是⊙O的切线;(2)求cos∠ADF的值.12.如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径长.13.如图,在△ABC中,AB=AC=10,tan∠A=43,点O是线段AC上一动点(不与点A,点C重合),以OC为半径的⊙O与线段BC的另一个交点为D,作DE⊥AB于E.(1)求证:DE是⊙O的切线;(2)当⊙O与AB相切于点F时,求⊙O的半径;(3)在(2)的条件下,连接OB交DE于点M,点G在线段EF上,连接GO.若∠GOM =45°,求DM和FG的长.14.如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=2,求弦AC的长.15.已知:△ABC内接于⊙O,过点A作直线EF.(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况,不需要证明):①或②;(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.16.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)求证:2=⋅;AD AB AF(3)若BE=8,sinB=513,求AD的长,17.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.18.已知:如图,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.(1)求证:BD是⊙O的切线;(2)当AB=10,BC=8时,求BD的长.19.如图,在O中,AB为直径,点C、D都在O上,且BD平分ABC∠,过点D作DE BC⊥,交BC的延长线于点E.(1)求证:DE是O的切线;(2)若3BC =,1CE =,求O 的直径.20.如图,在三角形ABC 中,10AB =,13AC BC ==,以BC 为直径作O 交AB 于点D ,交AC 于点G ,直线DF AC ⊥于点F ,交CB 的延长线于点E .(1)求证:DF 是O 的切线;(2)求cos ADF ∠的值.21.如图,已知△ABC 内接于⊙O ,过点B 作直线EF ∥AC ,又知∠ACB =∠BDC =60°,AC =3cm .(1)请探究EF 与⊙O 的位置关系,并说明理由;(2)求⊙O 的周长.22.如图,AB 为⊙O 的直径,点C 在⊙O 外,∠ABC 的平分线与⊙O 交于点D ,∠C =90°.(1)求证:CD 是⊙O 的切线;(2)若∠CDB =60°,AB =18,求AD 的长.23.如图,在Rt ABC 中,90ABC ∠=︒,作BAC ∠的角平分线交BC 于点O ,以O 为圆心,OB 为半径作圆.(1)依据题意补充完整图形;(尺规作图,保留作图痕迹,不写作法)(2)求证:O与直线AC相切;(3)在(2)的条件下,若O与直线AC相切的切点为D,O与BC相交于点F,连接BD,DF;其中CD23=,2CF=,求AB的长.24.如图,在△ABC中,AB = BC,以BC为直径作⊙ O交AC于点E,过点E作AB 的垂线交AB于点F,交CB的延长线于点G.(1)求证: EG是⊙O的切线;(2)若BG=OB,AC=6,求BF的长.25.如图,AB是⊙O的直径,点C是⊙O上一点,AC平分∠DAB,直线DC与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分∠ACB,交AB于点F,交€€⊙O于点E.(1)求证:PC与⊙O相切;(2)求证:PC=PF;(3)若AC=8,tan∠ABC=43,求线段BE的长.26.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF 的长.27.如图①,已知点C 是以AB 为直径的圆O 上一点,直线AC 与过B 点的切线相交于点D ,E 是BD 的中点,连接CE .(1)求证:CE 是圆O 的切线;(2)如图②,CF AB ⊥,垂足为F ,若O 的半径为3,4BE =,求CF 的长; (3)如图③,连接AE 交CF 于点H ,求证:点H 是CF 的中点.28.定义:当点P 在射线OA 上时,把OP OA 的的值叫做点P 在射线OA 上的射影值;当点P 不在射线OA 上时,把射线OA 上与点P 最近点的射影值,叫做点P 在射线OA 上的射影值.例如:如图1,△OAB 三个顶点均在格点上,BP 是OA 边上的高,则点P 和点B 在射线OA 上的射影值均为OP OA =13.(1)在△OAB 中,①点B 在射线OA 上的射影值小于1时,则△OAB 是锐角三角形;②点B 在射线OA 上的射影值等于1时,则△OAB 是直角三角形;③点B 在射线OA 上的射影值大于1时,则△OAB 是钝角三角形. 其中真命题有 .A .①②B .①③C .②③D .①②③(2)已知:点C 是射线OA 上一点,CA =OA =1,以〇为圆心,OA 为半径画圆,点B 是⊙O 上任意点.①如图2,若点B 在射线OA 上的射影值为12.求证:直线BC 是⊙O 的切线; ②如图3,已知D 为线段BC 的中点,设点D 在射线OA 上的射影值为x ,点D 在射线OB 上的射影值为y ,直接写出y 与x 之间的函数关系式为 .29.如图,ABC ∆内接于O ,BC 是O 的直径,弦AF 交BC 于点E ,延长BC 到点D ,连接OA , AD ,使得FAC AOD ∠=∠,D BAF ∠=∠(1)求证:AD 是O 的切线; (2)若O 的半径为5,2CE =,求EF 的长.参考答案1.(1)详见解析;(2)6【解析】【分析】(1)先根据等弦所对的劣弧相等,再结合∠EBD=∠CAB从而得到∠BAD=∠EBD,最后用直径所对的圆周角为直角即可;(2)利用三角形的中位线先求出OM,再用勾股定理求出半径r,最后得到直径的长.【详解】解:⑴证明:连接OB,CD,OB、CD交于点M∵BC=BD,∴∠CAB=∠BAD.∵OA=OB,∴∠BAD=∠OBA.∴∠CAB=∠OBA.∴OB∥AC.又AD是直径,∴∠ABD=∠ACD =90°,又∠EBD=∠CAB, ∠CAB=∠OBA.∴∠OBE=90°,即OB⊥BE.又OB是半径,∴BE是⊙O的切线.⑵∵ OB∥AC, OA=OD,AC=5,.∴ OM=2.5 ,BM=OB-2.5,OB⊥CD设⊙O的半径为r,则在Rt△OMD中:MD2=r2-2.52;在Rt△BMD中:MD2=BD2-(r-2.5)2 ,BD=BC=3.∴r1=3 ,r2=-0.5(舍).∴圆的直径AD的长是6.【点睛】此题是切线的判定,主要考查了圆周角的性质,切线的判定,勾股定理等,解本题的关键是作出辅助线.2.(1)证明见解析;(2)EF10【解析】【分析】(1)连接OE,易得∠ADB=90°,证明∠BOE=∠A,联立∠C=∠ABD可求证.(2)连接BE,根据同弧所对的圆周角先证明△BEF∽△BOE,根据相似三角形的性质求出EF的长度.【详解】解:(1)连接OE,∵AB是o的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,由图可知∠BOE=2∠BDE又∵∠A=2∠BDE∴∠A=∠BOE∵∠C=∠ABD∴∠BOE+∠C=90°∴OE⊥EC∴CE是⊙O的切线.(2)连接BE,有图可知∠BED=∠A=∠BOE,∴△BEF∽△BOE∴BE BF EF BO BE OE==∵OB=OE=5,BF=2∴BE=EF∴EF2=OE·BF=1010故答案为:(1)证明见解析;(2)EF10=【点睛】本题考查了圆的相关知识、相似三角形的判定及性质,解题的关键在于合理作出辅助线转化求解.3.(1)AE是O的切线,理由见解析;(2)8.【解析】【分析】(1)连接AO,由AO=DO,得∠OAD=∠ODA,由DA平分∠BDE,得∠ADE=∠ODA,则∠ADE=∠OAD,证明AO∥ED,得OA⊥AE;(2)延长AO交BC于点F,由∠C=∠FAE=∠AEC=90°,可证四边形AECF为矩形,则CF=AE=4,由垂径定理得BF=FC=4.【详解】()1AE是O的切线.连接AO,OA OD=,,OAD ODA∴∠=∠ADE ADB∠=∠,OAD ADE∴∠=∠//AO CE∴AE CD⊥AE AO∴⊥AE∴是O的切线.()2延长AO交BC于点F.∵BD是⊙O的直径,∴∠C=90°.∴∠C=∠FAE=∠AEC=90°.∴四边形AECF为矩形,CF=AE=4.∵AF⊥BC,且AF过圆心,∴BC=2CF=8.【点睛】本题考查了切线的判定与性质,圆周角定理,垂径定理的运用.关键是连接AO并延长,证明直角和矩形.4.(1)证明见解析;(2)52;(3)AG=AD+2CD.【解析】【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可;(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.【详解】(1)证明:连接EF,∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线;(2)解:连接FD,设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=52,即⊙F的半径为52;(3)解:AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=12AD+CD,∴AG=2FE=AD+2CD.考点:圆的综合题;探究型.5.(1)3s或9s(2)直线BP与O相切,理由见解析【解析】【分析】(1)当∠POA=90°时,点P运动的路程为⊙O周长的14或34,所以分两种情况进行分析;(2)直线BP与⊙O的位置关系是相切,根据已知可证得OP⊥BP,即直线BP与⊙O相切.【详解】解:(1)当∠POA=90°时,根据弧长公式可知点P运动的路程为⊙O周长的14或34,设点P运动的时间为ts;当点P运动的路程为⊙O周长的14时,2π•t=14•2π•12,解得t=3;当点P运动的路程为⊙O周长的34时,2π•t=34•2π•12,解得t=9;∴当∠POA=90°时,点P运动的时间为3s或9s.(2)如图,当点P运动的时间为2s时,直线BP与⊙O相切理由如下:当点P运动的时间为2s时,点P运动的路程为4πcm,连接OP,PA;∵半径AO=12cm,∴⊙O的周长为24πcm,∴AP的长为⊙O周长的16,∴∠POA=60°;∵OP=OA,∴△OAP是等边三角形,∴OP=OA=AP,∠OAP=60°;∵AB=OA,∴AP=AB,∵∠OAP=∠APB+∠B,∴∠APB=∠B=30°,∴∠OPB=∠OPA+∠APB=90°,∴OP⊥BP,∴直线BP与⊙O相切.【点睛】本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.6.(1)证明见解析;(2)△BCF为等腰三角形.证明见解析;(3)7 24【解析】【分析】(1)由BC2=CD•CA,根据三角形相似的判定得到△CBD∽△CAB,根据三角形相似的性质得到∠CBD=∠BAC,而AB为⊙O的直径,根据圆周角定理的推论得∠ADB=90°,易证得∠ABD+∠CBD=90°,根据切线的判定即可得到答案;(2)由DE BD,根据圆周角定理得∠DAE=∠BAC,由(1)得∠BAC=∠CBD,则∠CBD=∠DAE,根据同弧所对的圆周角相等得∠DAE=∠DBF,所以∠DBF=∠CBD,而∠BDF=90°,根据等腰三角形三线的判定即可得到△BCF为等腰三角形;(3)由BC2=CD•CA,BC=15,CD=9,可计算出CA=25,根据等腰三角形的性质有BF=BC=15,DF=DC=9,利用勾股定理计算出BD=12,得到AF=7,再根据等积可求出AE=71228 155⨯=,然后利用Rt△AEF∽Rt△BDF,通过相似比可计算出EF,则可得到BE,而∠ADE=∠ABE,最后利用三角函数的性质可计算出tan∠ADE的值.【详解】(1)证明:∵BC2=CD•CA,∴BC:CA=CD:BC,∵∠C=∠C,∴△CBD∽△CAB,∴∠CBD=∠BAC,又∵AB为⊙O的直径,∴∠ADB=90°,即∠BAC+∠ABD=90°,∴∠ABD+∠CBD=90°,即AB⊥BC,∴BC为⊙O切线;(2)△BCF为等腰三角形.证明如下:∵DE BD=,∴∠DAE=∠BAC,又∵△CBD∽△CAB,∴∠BAC=∠CBD,∴∠CBD=∠DAE,∵∠DAE=∠DBF,∴∠DBF=∠CBD,∵∠BDF=90°,∴∠DBC=∠BDF=90°∵BD=BD∴△BDF≌△BDC∴BF=BC∴△BCF 为等腰三角形;(3)解:∵BC 2=CD•CA ,BC=15,CD=9,∴CA=25,BF=BC=15,DF=DC=9,∴=12,∴AF=25-18=7,∴S △ABF =12•AE•BF=12•AF•BD , ∴AE=71228155⨯=, 易证Rt △AEF ∽Rt △BDF ,∴EF :DF=AF :BF ,即EF :9=7:15,∴EF=215, ∴BE=15+215=965, ∵∠ADE=∠ABE ,∴tan ∠ADE=tan ∠ABE 287596245=. 【点睛】本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线是圆的切线;圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及三角形相似的判定与性质. 7.(1)AC 是⊙O 的切线,见解析;(2)83BF =【解析】【分析】(1)首先证明∠ACB =∠BAD ,然后根据圆周角定理的推论得出∠ACB +∠CAD=90°,则有∠BAD+∠CAD=90°,所以BA ⊥AC ,则可证明AC 是⊙O 的切线;(2)过点F 做FH ⊥AB 于点H .首先通过角平分线的性质得出FH=FD ,且FH ∥AC ,然后利用锐角三角函数求出CD,BD 的长度,然后设 DF=x ,则FH=x ,143BF x =-,最后利用3cos 4FH BFH BF ∠==建立关于x 的方程,解方程即可得出答案. 【详解】解:(1)AC是⊙O的切线理由:如图,连接AD.∵ E是BD中点,∴BE DE=.∴∠DAE=∠EAB.∵∠ACB =2∠EAB,∴∠ACB =∠BAD.∵ AB是⊙O的直径,∴∠ADB=∠ADC=90°,∴∠ACB +∠CAD=90°,∴∠BAD+∠CAD=90°.即BA⊥AC.∴ AC是⊙O的切线.(2)解:如图,过点F做FH⊥AB于点H.∵ AD⊥BD,FH⊥AB,∠DAE=∠EAB,∴ FH=FD,且FH∥AC.在Rt△ADC中,∵3cos4C=,8AC=,∴ CD=6.同理,在Rt△BAC中,可求得32 3BC=.∴143BD=.设DF=x,则FH=x,143BF x=-.∵ FH∥AC,∴∠BFH=∠ACB.∴3cos4FHBFHBF∠==.即31443xx=-.解得x=2,经检验,x=2是原分式方程的解,∴83BF=.【点睛】本题主要考查切线的判定及性质,圆周角定理的推论,解直角三角形,掌握切线的判定及性质,圆周角定理的推论,锐角三角函数,分式方程的解法是解题的关键.8.(1)证明见解析;(2)6.【解析】试题分析:(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC 的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.试题解析:(1)如图,连接OD、CD.∵AC为⊙O的直径,∴△BCD是直角三角形,∵E 为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O 的切线;(2)设⊙O 的半径为r ,∵∠ODF=90°,∴OD 2+DF 2=OF 2,即r 2+42=(r+2)2,解得:r=3,∴⊙O 的直径为6.考点:切线的判定与性质.9.(1)见解析;(2)⊙O 的半径长是32. 【解析】【分析】(1)过O 作OH ⊥AB 于H ,得到∠BHO=∠BCO=90°,根据角平分线的定义得到∠CBO=∠HBO ,根据全等三角形的性质得到OH=OC ,于是得到AB 与⊙O 相切; (2)求得BC 的长,然后证明BC 是切线,利用切线长定理求得BH 的长,证明△OAH ∽△BAC ,利用相似三角形的性质求解.【详解】(1)证明:如图,过O 作OH ⊥AB 于H ,∠ACB =90°∴∠BHO =∠BCO =90°,∵BO 平分∠ABC ,∴∠CBO =∠HBO ,∵BO =BO ,∴△CBO ≌△HBO (AAS ),∴OH =OC ,∴AB 与⊙O 相切;(2)解:∵在直角△ABC 中,AB =5,AC =4,∴BC 2222543,AB AC -=-=∵∠ACB =90°,即BC ⊥AC ,∴BC 是半圆的切线,又∵AB 与半圆相切,∴BH =BC =3,AH =AB ﹣BH =5﹣3=2.∵AB 是切线,∴OH ⊥AB ,∴∠OHA =∠BCA ,又∵∠A =∠A ,∴△OAH ∽△BAC , ∴,OH AH BC AC =即2,34OH = 解得OH =32.即⊙O 的半径长是32. 【点睛】本题考查了切线的判定,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质,掌握以上知识是解题的关键.10.(1)见解析;(2)①2;②【解析】【分析】(1)根据切线的性质得∠OBQ =90°,根据平行线的性质得∠APO =∠POQ ,∠OAP =∠BOQ ,加上∠OPA =∠OAP ,则∠POQ =∠BOQ ,于是根据“SAS”可判断△BOQ ≌△POQ ,得到∠OPQ =∠OBQ =90°,根据切线的判定即可得证;(2)①由(1)得到∠OPQ =∠OBQ =90°,由于OB =OP ,所以当∠BOP =90°,四边形OPQB 为正方形,此时点C 、点E 与点O 重合,于是PE =PO =2;②根据菱形的判定,当OC =AC ,PC =EC ,四边形AEOP 为菱形,则OC =12OA =1,然后利用勾股定理计算出PC ,从而得到PE 的长.【详解】(1)证明:∵OQ ∥AP ,∴∠BOQ =∠OAP ,∠POQ =∠APO ,又∵OP =OA ,∴∠APO =∠OAP ,∴∠POQ =∠BOQ ,在△BOQ 与△POQ 中,=OB OP BOQ POQ OQ OQ =⎧⎪∠∠⎨⎪=⎩,∴△BOQ ≌△POQ (SAS ),∴∠OPQ =∠OBQ =90°,∵点P 在⊙O 上,∴PQ 是⊙O 的切线;(2)解:①∵∠OBQ =∠OPQ =90°,∴当∠BOP =90°,四边形OPQB 为矩形,而OB =OP ,则四边形OPQB 为正方形,此时点C 、点E 与点O 重合,PE =PO =12AB =2; ②∵PE ⊥AB ,∴当OC =AC ,PC =EC ,四边形AEOP 为菱形,∵OC =12OA =1,∴PC =,∴PE =2PC =.故答案为:2;.【点睛】本题考查了切线的判定与性质、全等三角形的判定与性质和菱形、正方形的判定方法;综合应用所学知识是解答本题的关键.11.(1)证明见解析;(2)1213【解析】【分析】(1)连接OD 和CD ,根据圆周角定理求出∠BDC=90°,根据等腰三角形的性质求出AD =BD ,根据三角形的中位线求出OD∥AC,求出OD⊥EF,根据切线的判定得出即可;(2)根据余角的性质得到∠ADF=∠ODC,等量代换得到∠ADF=∠ODC,根据勾股定理得到CD =12,根据三角函数的定义即可得到结论.【详解】(1)证明:连接OD ,CD ,∵BC 为⊙O 的直径,∴∠BDC=90°,即CD⊥AB,∵AC=BC ,AB =10,∴AD=BD =5,∵O 为BC 中点,∴OD∥AC,∵DF⊥AC,∴OD⊥EF,∵OD 过O ,∴直线DF 是⊙O 的切线;(2)∵∠ADC=∠BDC=90°,∠ODF=90°,∴∠ADF=∠ODC,∴OD=OC ,∴∠ODC=∠OCD,∴∠ADF=∠ODC,∵BD=5,BC =13,∴CD=12,∴cos ADF ∠=cos BCD ∠=1213CD BC =.【点睛】本题考查了切线的判定,求一个角的三角函数值,(1)要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;(2)求一个角的三角函数值,要把这个角放入直角三角形中或作垂直,也可以根据等角的三角函数值相等进行转化. 12.(1)见解析;(2)1【解析】【分析】(1)根据等腰三角形的性质得到∠A=∠ADO=30°,求出∠DOB=60°,求出∠ODB=90°,根据切线的判定推出即可;(2)根据直角三角形的性质得到OD=12OB,于是得到结论.【详解】(1)证明:连接OD,∵OA=OD,∠A=∠ABD=30°,∴∠A=∠ADO=30°,∴∠DOB=2∠A=60°,∴∠ODB=180°﹣∠DOB﹣∠B=90°,∵OD是⊙O的半径,∴BD是⊙O的切线;(2)解:∵∠ODB=90°,∠DBC=30°,∴OD=12 OB,∵OC=OD,∴BC=OC=1,∴⊙O的半径OD的长为1.【点睛】本题主要考查的是圆的综合应用,掌握等腰三角形的性质以及圆切线的判定是解题的关键.13.(1)见解析;(2)r=409;(3)DM=8027,FG=89【解析】【分析】(1)连接OD,根据等腰三角形判断出∠ABC=∠ACB,进而得到OD∥AB即可得到求证;(2)连接OF,根据切线得到△AOF是直角三角形,根据tan∠A=43,设半径OF=OC=r,则可表示出AF=34r,AO=10-r,勾股定理求出半径即可得到结果;(3)现根据题意证出ODEF是正方形,求出BE,再根据△BEM∽△ODM,即可得到MD;在EF延长线上截取FT=DM,证明出OT=OM,再证明△OGT≌△OGM,则GM=GT=GF+FT=GF+DM,设出GF=a,根据勾股定理求解即可.【详解】解:(1)证明:连接OD∵OC,OD均为⊙O的半径,∴OC=OD,∴∠DCO=∠CDO又∵在△ABC中,AB=AC,∴∠ABC=∠ACB∴∠ABC=∠CDO,∴OD∥AB∵DE⊥AB,∴DE⊥OD∴DE是⊙O的切线.(2)解:连接OF,设⊙O的半径为r,则OF=r,OC=r∵⊙O与AB相切于点F,∴AB⊥OF,∴∠OF A=90°,在Rt△AOF中,∠OF A=90°,OF=r,tan∠A=4 3∴AF=34r,∴AO=5 4 r又∵AO=AC-OC=10-r,∴54r=10-r∴ r=409.(3)由(2)知r=409,∴AF=34r=103∵∠ODE=∠DEF=∠OFE=90°,∴四边形ODEF是矩形∵OF=OD,∴矩形ODEF是正方形,∴DE=EF=OF=40 9∴BE=AB-AF-EF=10-103-409=209∵∠BME=∠OMD,∠BEM=∠ODM=90°∴△BEM∽△ODM,∴EM BE DM OD即409DMDM=209409,解得DM=8027在EF延长线上截取FT=DM∵四边形ODEF是正方形,∴∠OFT=∠ODM=90°,OF=OD ∴△OFT≌△ODM,∴∠2=∠1,OT=OM∵∠DOF=90°,∠GOM=45°,∴∠GOF+∠1=45°,∴∠GOF+∠2=45°即∠GOT=45°,∴∠GOT=∠GOM又OG=OG,∴△OGT≌△OGM,∴GM=GT=GF+FT=GF+DM设GF=a,则EG=409-a,GM=8027+a,且EM=DE-DM=409-8027=4027在Rt△EMG中,EM2+EG2=GM2,即(4027)2+(409-a)2=(8027+a)2,解得a=89∴FG的长为89.【点睛】此题考查圆与特殊四边形的知识:切线的判定及性质,特殊四边形的证明,勾股定理等,难度较大,需要做辅助线.14.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)连接OC,可证得∠CAD=∠BCD,由∠CAD+∠ABC=90°,可得出∠OCD=90°,即结论得证;(2)证明△ABC≌△AFC可得CB=CF,又CB=CE,则CE=CF;(3)证明△DCB∽△DAC,可求出DA的长,求出AB长,设BC=a,AC=2a,则由勾股定理可得AC的长.【详解】解:(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,∵CE=CB,∴∠CAE=∠CAB,∵∠BCD=∠CAE,∴∠CAB=∠BCD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB+∠BCD=90°,∴∠OCD=90°,∴CD是⊙O的切线;(2)∵∠BAC=∠CAE,∠ACB=∠ACF=90°,AC=AC,∴△ABC≌△AFC(ASA),∴CB=CF,又∵CB=CE,∴CE=CF;(3)∵∠BCD=∠CAD,∠ADC=∠CDB,∴△DCB ∽△DAC , ∴CD AD AC BD CD BC==,∴1=, ∴DA =2,∴AB =AD ﹣BD =2﹣1=1,设BC =a ,AC a ,由勾股定理可得:222)1a +=,解得:a =3,∴3AC =. 【点睛】本题主要考查了切线的判刑、等腰三角形的性质、全等三角形的判定与性质,学会添加辅助线和灵活运用所学知识是解题的关键.15.(1)①OA ⊥EF ;②∠FAC=∠B ;(2)见解析;(3)见解析.【解析】【分析】(1) 添加条件是:①OA ⊥EF 或∠FAC=∠B 根据切线的判定和圆周角定理推出即可.(2) 作直径AM,连接CM ,推出∠M=∠B=∠EAC ,求出∠FAC+∠CAM=90°,根据切线的判定推出即可.(3)由同圆的半径相等得到OA=OB ,所以点O 在AB 的垂直平分线上,根据∠FAC=∠B ,∠ BAC=∠FAC ,等量代换得到∠BAC=∠B ,所以点C 在AB 的垂直平分线上,得到OC 垂直平分AB .【详解】(1)①OA ⊥EF ②∠FAC=∠B ,理由是:①∵OA ⊥EF ,OA 是半径,∴EF 是⊙O 切线,②∵AB 是⊙0直径,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半径,∴EF是⊙O切线,故答案为:OA⊥EF或∠FAC=∠B,(2)作直径AM,连接CM,即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直径,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.(3)∵OA=OB,∴点O在AB的垂直平分线上,∵∠FAC=∠B,∠BAC=∠FAC,∴∠BAC=∠B,∴点C在AB的垂直平分线上,∴OC垂直平分AB,∴OC⊥AB.【点睛】本题考查了切线的判定,圆周角定理,三角形的内角和定理等知识点,注意:经过半径的外端且垂直于半径的直线是圆的切线,直径所对的圆周角是直角.16.(1)详见解析;(2)详见解析;(3)AD13【解析】【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,证明△ABD∽△ADF,,由相似三角形的性质即可证得结论;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出AF的长,再根据(2)的结论即可求得AD的长.【详解】(1)如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴AB AD AD AF=,即AD2=AB•AF;(3)连接EF,在Rt△BOD中,sinB=513 ODOB=,设圆的半径为r,可得5813 rr=+,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=513 AFAE=,∴AF=AE•sin∠AEF=10×513=50 13,∵AD2=AB•AF∴5013181313AB AF⋅=⨯=.【点睛】本题是圆的综合题,考查的知识点有切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.17.(1)详见解析;(2)4【解析】【分析】(1)首先利用等腰三角形的性质和角平分线的定义得出∠EBC=∠OEB,然后得出OE∥BC,则有∠OEA=∠ACB=90°,则结论可证.(2)连接OE、OF,过点O作OH⊥BF交BF于H,首先证明四边形OHCE是矩形,则有 ,然后利用等腰三角形的性质求出BH的长度,再利用勾股定理即可求出OH的OH CE长度,则答案可求.【详解】(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB.∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠ACB.∵∠ACB=90°,∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,∵OH ⊥BF ,90OHC ∴=︒ .90OHC ACB OEC =∠=∠=︒∴四边形OECH 为矩形,∴OH =CE .∵,OB OF OH BF =⊥,BF =6,∴BH =3.在Rt △BHO 中,OB =5,∴OH 2253-4,∴CE =4.【点睛】本题主要考查切线的判定,等腰三角形的性质,矩形的性质,勾股定理,掌握切线的判定,等腰三角形的性质,矩形的性质,勾股定理是解题的关键.18.(1)见解析;(2)203【解析】【分析】(1)从切线的判定为目标,来求BD ⊥AB ,连接AC 通过相似来证得;(2)通过已知条件和第一步求得的三角形相似求得BD 的长度.【详解】(1)证明:连接AC ,∵AB 是⊙O 的直径∴∠ACB =90°又∵OD ⊥BC∴AC∥OE∴∠CAB=∠EOB由AC对的圆周角相等∴∠AEC=∠ABC又∵∠AEC=∠ODB∴∠ODB=∠OBC∴△DBF∽△OBD∴∠OBD=90°即BD⊥AB又∵AB是直径∴BD是⊙O的切线.(2)∵OD⊥弦BC于点F,且点O圆心,∴BF=FC∴BF=4由题意OB是半径即为5∴在直角三角形OBF中OF为3由以上(1)得到△DBF∽△OBD∴BD OB BF OF=即得BD=203.【点睛】本题考查了切线的判定及其应用,通过三角形相似求得,本题思路很好,是一道不错的题.19.(1)见解析;(232【解析】【分析】(1)连接OD ,证//OD BC ,则OD DE ⊥,即可证明DE 是O 的切线;(2)连AD 、CD ,作DF AB ⊥,证明Rt Rt BDF BDE ∆∆≌,Rt Rt ADF CDE ∆∆≌,从而求出AB 长,即为O 直径. 【详解】解:(1)连OD ,∵OB OD =,∴ODB OBD ∠=∠,∵BD 平分ABC ∠,∴OBD CBD ∠=∠,∴ODB CBD ∠=∠,∴//OD BC ,∵DE BC ⊥,∴90E ∠=︒,∴90ODE ∠=︒,即OD DE ⊥,∴DE 是O 的切线;(2)连AD 、CD ,作DF AB ⊥,∵在O 中,ABD CBD ∠=∠,∴AD CD =,又∵OD DE ⊥,DF AB ⊥,∴DE DF =,在Rt △BDE 和Rt △BDF 中BD=BD DE=DF ⎧⎨⎩∴Rt Rt BDF BDE ∆∆≌(HL ),在Rt △ADF 和Rt △CDE 中AD=DC DF=DE ⎧⎨⎩∴Rt Rt ADF CDE ∆∆≌(HL ),∴1BF BE ==,1AF CE ==,∴32AB =+,即O 的直径为32+.【点睛】本题是对圆知识的综合考查,熟练掌握圆的性质定理是解决本题的关键.20.(1)证明见解析;(2)12cos 13ADF ∠=. 【解析】【分析】(1)连接OD 和CD ,根据圆周角定理求出∠BDC=90°,根据等腰三角形的性质求出AD=BD ,根据三角形的中位线求出OD ∥AC ,求出OD ⊥EF ,根据切线的判定得出即可;(2)根据余角的性质得到∠ADF=∠ODC ,等量代换得到∠ADF=∠OCD ,根据勾股定理得到CD=12,根据三角函数的定义即可得到结论.【详解】(1)证明:如图,连接OD ,CD ,∵BC 为⊙O 的直径,∴∠BDC=90°(直径所对的圆周角是90°),即CD ⊥AB ,∵AC=BC ,AB=10,∴AD=BD=5,∵O 为BC 中点,∴OD ∥AC ,∵DF ⊥AC ,∴∠DFC=90°,∴∠FDO=180°-90°=90°(两直线平行,同旁内角互补),∴OD ⊥EF ,又∵OD 过圆心O 点,∴直线DF 是⊙O 的切线;(2)∵∠ADC=∠BDC=90°,∠ODF=90°,∴∠ADF=∠ODC ,又∵OD=OC ,∴∠ODC=∠OCD ,∴∠ADF=∠OCD (等量替换),∵BD=5,BC=13,∴(勾股定理),12cos cos 13ADF BCD ∠=∠=; 【点睛】 本题主要考查了切线的判断、等腰三角形的性质、解直角三角形、圆周角定理、勾股定理的知识点,能综合运用知识点进行求解是解题的关键.21.(1)EF 与⊙O 相切.理由见解析;(2)⊙O 的周长为2πcm .【解析】【分析】(1)延长BO 交AC 于H ,如图,先证明△ABC 为等边三角形,利用点O 为△ABC 的外心得到BH ⊥AC ,由于AC ∥EF ,所以BH ⊥EF ,于是根据切线的判定定理即可得到EF 为⊙O 的切线;(2)连结OA ,如图,根据等边三角形的性质得∠OAH =30°,AH =CH =12AC =2,再在Rt △AOH 中,利用三角函数和计算出OA =1,然后根据圆的周长公式计算.【详解】(1)EF 与⊙O 相切.理由如下:延长BO 交AC 于H ,如图,∵∠BAC =∠BDC =60°,而∠ACB =60°,∴△ABC 为等边三角形,∵点O 为△ABC 的外心,∴BH ⊥AC ,∵AC ∥EF ,∴BH ⊥EF ,∴EF 为⊙O 的切线;(2)连结OA ,如图,∵△ABC 为等边三角形,∴OA 平分∠ABC ,∴∠OAH =30°,∵OH ⊥AC ,∴AH =CH =12AC 在Rt △AOH 中,∵cos ∠OAH =AH OA,∴OA 1, ∴⊙O 的周长=2π×1=2π(cm ).【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的判定与性质.22.(1)见解析;(2)3π.【解析】【分析】(1)连接OD,求出OD//BC,求出OD⊥DC,根据切线的判定得出即可;(2)求出∠CBD=30°,求出∠AOD=∠ABC=60°,求出半径OA,根据弧长公式求出即可.【详解】(1)连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD平分∠ABC,∴∠CBD=∠OBD,∴∠CBD=∠ODB,∴OD//BC,∴∠C+∠ODC=180°,∵∠C=90°.∴∠ODC=90°,即OD⊥DC,∵OD过O,∴CD是⊙O的切线;(2)∵∠CDB=60°,∠C=90°,∴∠CBD=30°,∵BD平分∠ABC,∴∠ABC=60°,∵OD//BC,∴∠AOD=∠ABC=60°,∵直径AB=18,∴半径OA=9,∴弧AD的长是609180π⨯=3π.【点睛】本题考查了切线的判定,平行线的性质,等腰三角形的性质,弧长公式等知识点,能灵活运用知识点进行推理是解此题的关键.23.(1)见解析;(2)见解析;(3)AB=【解析】【分析】(1)根据尺规作图的规则作图即可.(2)根据角平分线证明边和角,再根据切线长定理求证即可.(3)先在(2)的前提下,根据三角形相似,求出圆的半径,再根据△ODC∽△ABC求出AB即可.【详解】(1)作图如下:(2)证明:过点O 作OD ⊥AC ,垂足为D .∵∠ABC=90°,∴OB ⊥AB ,∵AO 平分∠BAC 且OB ⊥AB ,OD ⊥AC ,∴OB=OD ,∴⊙O 与直线AC 相切.(2)由(1)可知,∠ODC=90°,∵BF 为直径∴∠BDF=90°,∴∠ODC=∠BDF ,∴∠BDO=∠CDF ,∵OB=OD ,∴∠BDO=∠DBO ,∴CDF=∠DBO ,且∠DCF=∠BCD ,∴△DCF ∽△BCD ,∴2CD CF BC =⋅,∵CD23=,CF=2,∴BC=6,∴OB=OF=2,∴OC=4,OD=2,∵△ODC∽△ABC,∴OD CDAB BC=,OD=2,CD23=∴23AB=.【点睛】此题考查尺规作图的方法,切线长定理及三角形相似,知识面较广,难度较难.24.(1)见解析;(2)3【解析】【分析】(1)由AB=BC,可得△ABC是等腰三角形,且BE⊥AC可得AE=CE,根据中位线定理可得OE∥AB,且AB⊥EG可得OE⊥EG,即可证EG是⊙O的切线(2)易证得△OBE是等边三角形,根据三角函数求BE,CE的长,再根据三角形的中位线的性质即可求得BF的长.【详解】(1)如图:连接OE,BE,∵AB=BC,∴∠C=∠A,∵BC是直径,∴∠CEB=90°,且AB=BC,∴CE=AE ,且CO=OB ,∴OE ∥AB ,∵GE ⊥AB ,∴EG ⊥OE ,且OE 是半径,∴EG 是⊙O 的切线;(2) ∵BG = OB ,OE ⊥EG ,∴BE= 12OG=OB=OE , ∴△OBE 为等边三角形,∴∠CBE = 60°, ∵AC = 6,∴CЕ = 3,BЕ =3tan 60 ,∴∵ОB = BG ,OE//AB ,∴BF= 12 【点睛】本题考查了切线的性质和判定,等腰三角形的判定和性质,三角形中位线的性质,解直角三角形等,关键是灵活运用切线的判定解决问题.25.(1)见解析;(2)见解析;(3)【解析】【分析】(1)连接OC ,根据角平分线的定义、等腰三角形的性质得到∠DAC=∠OCA ,得到OC ∥AD ,根据平行线的性质得到OC ⊥PD ,根据切线的判定定理证明结论;(2)根据圆周角定理、三角形的外角的性质证明∠PFC=∠PCF ,根据等腰三角形的判定定理证明;(3)连接AE ,根据正切的定义求出BC ,根据勾股定理求出AB ,根据等腰直角三角形的性质计算即可.【详解】。
中考数学总复习《圆的切线证明》专题训练(附带答案)
![中考数学总复习《圆的切线证明》专题训练(附带答案)](https://img.taocdn.com/s3/m/b03ff70c32687e21af45b307e87101f69e31fbea.png)
中考数学总复习《圆的切线证明》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________⊥于点D,E是AC上一点,以BE为直径的O交1.如图,在ABC中,AB=AC,AD BC∠=︒.BC于点F,连接DE,DO,且90DOB(1)求证:AC是O的切线;(2)若1DF=,DC=3,求BE的长.、2.如图,在O中,BC为非直径弦,点D是BC的中点,CD是ABC的角平分线.∠=∠;(1)求证:ACD ABC(2)求证:AC是O的切线;(3)若1BD=,3BC=时,求弦BD与BD围城的弓形面积.是O的切线;=,且AC BD已知等腰ABC,AB=AC为直径作O交BC于点延长线于点F.是O的切线;CD=2,求O的半径.与O相离,,交O于点A是O上一点,连于点C,且PB(1)求证:PB是O的切线;(2)若25AC=,OP=5,求O的半径.6.如图,点O是ABC的边AC上一点,以点O为圆心,OA为半径作O,与BC相切于点E,连接OB,OE,O交OB于点D,连接AD并延长交CB的延长线于点F,且AOD EOD.∠=∠(1)求证:AB是O的切线;BC=,AC=8,求O的半径.(2)若107.如图,AB 是O 的直径,AC 是O 的弦.(1)尺规作图:过点C 作O 的切线,交AB 的延长线于点D (保留作图痕迹,不写作法);(2)若2BD OB ==,求AC 的长.8.如图,ABCD 的顶点,,A B C 在O 上,AC 为对角线,DC 的延长线交O 于点E ,连接,,OC OE AE .(1)求证:AE BC =;(2)若AD 是O 的切线6,40OC D =∠=︒,求CE 的长.9.如图,Rt ABC △中90C ∠=︒,点E 为AB 上一点,以AE 为直径的O 上一点D 在BC 上,且AD 平分BAC ∠.(1)证明:BC 是O 的切线;(2)若42BD BE ==,,求AB 的长.10.如图,已知O 的弦AB 等于半径,连接OA 、OB ,并延长OB 到点C ,使得BC OB =,连接AC ,过点A 作AE OB ⊥于点E ,延长AE 交O 于点D .(1)求证:AC 是O 的切线;(2)若6BC =,求AD 的长.11.如图,线段AB 经过O 的圆心.O 交O 于A ,C 两点,AD 为O 的弦,连接BD ,30A ABD ∠=∠=︒连接DO 并延长交O 于点E ,连接BE 交O 于点F .(1)求证:BD 是O 的切线;(2)若1BC =,求BF 的长.12.如图,AB 为O 的直径,C 为O 上一点,CD BD ABC CBD ⊥∠=∠.(1)求证:CD 为O 的切线.(2)当1,4BD AB ==时,求CD 的长.13.如图 已知AB 是O 的直径 BC AB ⊥于B E 是OA 上的一点ED BC ∥交O 于D OC AD ∥ 连接AC 交ED 于F .(1)求证:CD 是O 的切线;(2)若8AB = 1AE = 求ED EF 的长.14.如图 AB 是O 的直径 AC BC ,是弦 点D 在AB 的延长线上 且DCB DAC ∠=∠ O 的切线AE 与DC 的延长线交于点E .(1)求证:CD 是O 的切线;(2)若O 的半径为2 30D ∠=︒ 求AE 的长.15.如图 已知AB 是O 的直径 点P 在BA 的延长线上 弦BC 平分PBD ∠且BD PD ⊥于点D .(1)求证:PD 是O 的切线.(2)若8cm 6cm AB BD , 求弧AC 的长.为O的直径在O上连接的延长线交于E.是O的切线;∠tan BDF为O的直径的平分线交O于点E BC的延长线于点(1)求证:DE 为O 切线;(2)若10AB = 6BC = 求DE 的长.18.如图 O 是ABC 的外接圆 点D 在BC 延长线上 且满足CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若AC 是BAD ∠的平分线 3sin 5B =4BC = 求O 的半径.参考答案:1.【分析】此题重点考查圆周角定理 切线的判定定理 勾股定理 三角形的中位线定理 等腰三角形的“三线合一” 线段的垂直平分线的性质等知识 正确地作出辅助线是解题的关键.是O的切线;+=314是O的直径90︒则22BE=+4(22)⊥AD BC是O的半径是O的切线.)连接EFDC=DF33+=+BD DF∠OE DOBDE=.3是O的直径90︒.中EF=中BE=(3)23312π- 【分析】此题考查了解直角三角形 切线的判定以及扇形的面积.注意掌握辅助线的作法 .(1)点D 是BC 的中点 可以得到BD CD = 即可得到DBC DCB ∠∠= 再根据角平分线的定义得到ACD BCD ∠∠= 进而得到结论;(2)连接OC OD OB 则可得到OD BC ⊥ 然后根据等边对等角可以得到90OCD ACD ∠∠+=︒ 即可得到结论(3)先求出60ODB ∠=︒ 继而利用OBD OBD S S S=-阴影部分扇形求得答案.【详解】(1)解:如图 ∵点D 是BC 的中点∵BD CD =∵DBC DCB ∠∠=又∵CD 是ABC 的角平分线∵ACD BCD ∠∠=∵ACD ABC ∠∠=;(2)证明:如图 连接OC OD OB∵点D 是BC 的中点∵OD BC ⊥∵90ODC BCD ∠∠+=︒∵OD OC =∵ODC OCD ∠∠=又∵ACD BCD ∠∠=∵90OCD ACD ∠∠+=︒即OC AC ⊥∵OC 是O 的半径∵AC 是O 的切线;Rt BDE 中 ODB ∠=60ODB =︒OB OD =∵OBD 是等边三角形BOD ∠=OBD S S==阴影部分.(1)见解析(2)23进而得出BFG 是等边三角形 是O 的切线;)解:如图所示∵OD AC ⊥∵AD CD =∵BD AC =∵BD AC =∵AD BC =∵AD CD BC ==;∵AB 为半圆O 的直径∵90CAB CBA ∠+∠=︒∵30DAC CAB ABD ∠=∠=∠=︒∵60GBF G ∠=∠=︒ 12GB AG =∵BFG 是等边三角形 223AB AG BG BG =-=∵3233BF BG AB ===. 【点睛】本题考查了切线的判定 弧与弦的关系 直径所对的圆周角是直角 勾股定理 等边三角形的性质与判定 垂径定理 熟练掌握以上知识是解题的关键.4.(1)证明(2)233【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用 掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD 证明ODB C ∠=∠ 推出AC OD ∥ 即可证明结论成立;(2)连接AD 在Rt CED 中 求得利用三角形函数的定义求得30C ∠=︒ 60AOD ∠=︒ 在Rt ADB 中 利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD又OB OD=B ODB∴∠=∠ODB∴∠=∠AC OD∥DF AC⊥OD DF∴⊥DF∴是O的切线;(2)连接AD设O半径为Rt CED中3,CE CD=22ED CD∴=-又cosCE CCD ∠=30C∴∠=︒30B∴∠=︒60AOD=∠AB是O的直径.90ADB∴∠=︒12AD AB r ∴== ∵AB AC =∵2CD BD ==又222AD BD AB +=2222(2)r r ∴+=233r ∴=(负值已舍). 5.(1)证明见解析(2)3【分析】本题考查的是勾股定理的应用 等腰三角形的性质 切线的判定 熟练的证明圆的切线是解本题的关键;(1)连接OB 证明PCB PBC ∠=∠ OAB OBA ∠=∠ 再证明90PBC OBA ∠+∠=︒即可;(2)设O 的半径为r 表示()()22222255PC AC AP r =-=-- 222225PB OP OB r =-=- 再利用PB PC =建立方程求解即可.【详解】(1)解:连接OB∵PB PC = OA OB =∵PCB PBC ∠=∠ OAB OBA ∠=∠∵OP l ⊥ OAB PAC ∠=∠∵90BCP CAP BCP OAB ∠+∠=︒=∠+∠∵90PBC OBA ∠+∠=︒∵90OBP ∠=︒∵OB PB ⊥是O 的切线;)设O 的半径为l 2AC =2AC AP =-PB BP 2OP OB =-∵O 的半径为【点睛】.(1)见解析(2)3【分析】本题主要考查切线的判定和性质证AOB EOB ≌ 得出的半径为r 则OE OA =根据AOB EOB ≌得求得4CE = 在Rt OCE 中运用勾股定理列式求出r 的值即可. )证明:在AOB 和EOB 中∵()SAS AOB EOB ≌OAF OEF ∠=∠BC 与O 相切OE BC ⊥90OAB OEB ∠=∠=︒AF是O 的半径是O 的切线;(2)解:在Rt CAB △中 90108CAB BC AC ∠=︒==,,∵22221086AB BC AC =-=-=设圆O 的半径为r 则,OE OA r ==∵8OC r =-∵,AOB EOB ≌∵6BE AB ==∵10,BC =∵1064,CE BC BE =-=-=在Rt OCE 中 222OE CE OC +=∵()22248r r +=-解得3r =.∵O 的半径为3.7.(1)作图见解析(2)4π3【分析】本题考查了作图 复杂作图 切线的性质 等边三角形的判定与性质 弧长的计算 熟练掌握切线的性质 弧长公式是解答本题的关键.(1)根据题意 连接OC 作OC CD ⊥ 交AB 的延长线于点D 由此得到答案. (2)根据题意 得到OBC △是等边三角形 求出120AOC ∠=︒ 再利用弧长公式 得到答案.【详解】(1)解:如图所示 CD 即为所求.(2)如图所示 连接BCBD)证明:在ABCD中AE AD ∴=∵AE BC =.(2)解:连接OA 过点O 作OF CE ⊥于点F 如图所示:AD 是O 的切线OA AD ∴⊥OA BC ∴⊥AB AC ∴=40AEC B D ︒∠=∠=∠=40ACB B ∴∠=∠=︒在ABCD 中 AD BC ∥40DAC ACB ∴∠=∠=︒又180100DAE D AEC ∠=︒-∠-∠=︒60CAE DAE CAD ∴∠=∠-∠=︒2120COE CAE ∴∠=∠=︒OC OE =30OCE ∴∠=︒OF CE ⊥22cos3063CE CF OC ∴==⋅︒=.【点睛】本题主要考查了切线的性质 解直角三角形 圆周角定理 平行四边形的性质垂径定理 等腰三角形的判定 解题的关键是作出辅助线 熟练掌握相关的判定和性质.9.(1)证明详见解析;(2)8.【分析】本题考查了切线的判定 勾股定理等知识 熟练掌握切线的判定定理 勾股定理是解题的关键.(1)连接OD 根据平行线判定推出OD AC ∥ 推出OD BC ⊥ 根据切线的判定推出即可;(2)根据勾股定理求出3OD OA OE === 再根据线段的和差求解即可.【详解】(1)证明:连接OD∵OA OD =∵OAD ODA ∠=∠∵AD 平分BAC ∠∵BAD CAD ∠=∠∵ODA CAD ∠=∠∵OD AC ∥∵180C ODC ∠+∠=︒∵90C ∠=︒∵90ODC ∠=︒∵OD BC ⊥∵OD 为半径∵BC 是O 的切线;(2)解:设OD OE r ==在Rt ODB △中 42BD BE ==,∵2OB r =+由勾股定理 得:()22242r r +=+ 解得:3r =∵3OD OA OE ===∵628AB =+=.10.(1)证明见解析;(2)63.【分析】(1)先证明OAB 是等边三角形 再由性质得出60AOB OAB OBA ∠=∠=∠=︒ 再由BC AB =和角度和差即可求解;(2)先根据等边三角形性质求出132OE OA == 再根据勾股定理求得33AE = 最后由垂径定理即可求解;此题考查了等边三角形的判定与性质 勾股定理和垂径定理 解题的关键是熟练掌握以上知识点的应用.【详解】(1)证明:∵AB OA OB ==∵OAB 是等边三角形∵60AOB OAB OBA ∠=∠=∠=︒∵BC OB =∵BC AB =∵1302BAC BCA OBA ∠=∠=∠=︒ ∵90OAC OAB BAC ∠=∠+∠=︒又∵OA 为O 的半径∵AC 是O 的切线;(2)解:∵6BC =∵6AB OA OB ===∵AD OB ⊥于点E∵30OAE ∠=︒∵132OE OA == ∵2233AE OA OE =-=∵AE OB ⊥∵263AD AE ==.11.(1)见解析∠=)证明:BAD60︒6090︒-︒=OD是O的半径∴直线BD是O的切线;==(2)解:设OD OC△中sin30在Rt BDO解得:1r==+OB OCDE是O的直径∴∠=︒DFE90∠=∠即DFB BDE∠=∠DBF DBE∴△∵BDEBFD△BF BD∴=BD BE337BF ∴= 解得:377BF =. 【点睛】本题考查了切线的判定和性质 相似三角形的性质和判定 圆周角定理 勾股定理等知识点 作出辅助线构造出相似三角形是解题关键.12.(1)见详解(2)3【分析】(1)连接OC 由∠=∠OCB ABC ABC CBD ∠=∠ 得OCB CBD ∠=∠ 则OC BD ∥ 所以18090OCD D ∠=︒-∠=︒ 即可证明CD 为O 的切线;(2)由AB 为的直径 得90ACB ∠=︒ 则ACB D ∠=∠ 而ABC CBD ∠=∠ 所以C ABC BD ∽△△ 则AB CB CB BD = 可求得CB BD AB =⋅ 由勾股定理得22CD CB BD =-.【详解】(1)证明:连接OC 则OC OB =OCB ABC ∴∠=∠ABC CBD ∠=∠OCB CBD ∴∠=∠OC BD ∴∥CD BD ⊥90D ∴∠=︒18090OCD D ∴∠=︒-∠=︒OC 是O 的半径 且CD OC ⊥CD ∴为O 的切线.(2)解:AB 为的直径ABC∠=ABC CBD ∴∽∴AB CBCB BD=1,4BD AB==1 CB BD AB∴=⋅=22CD CB BD∴=-=CD∴的长是【点睛】此题重点考查等腰三角形的性质AD OC∥ADO∴∠OA OD=ADO DAO ∴∠=∠DOC BOC ∴∠=∠OD OB OC OC ==,ODC OBC ∴≌△△∴OBC ODC ∠=∠BC AB ⊥∴90OBC ODC ∠=∠=︒OD 为经过圆心的半径∴CD 是O 的切线;(2)如图所示:作DM BC ⊥交BC 于点M8AB = 1AE =1432OA OB OD AB OE OA AE ∴=====-=, 227DE BM OD OE ==-=令=7CM x CB CD x ==+, 7BE DM ==∴在222Rt DMC CM DM CD +=△,222(7)7x x ∴+=+解得:37x =47BC ∴=DE BC ∥ADE ABC ∴△△∽是O的切线.2)在Rt△是O的切线得出Rt EAD中【详解】(1)证明:连接.是O的直径+∠OCA OCBDCB OCB+∠OCD=︒.90是半径经过O的半径外端∵CD 是O 的切线.(2)解:在Rt OCD △中∵90OCD ∠=︒ 30D ∠=︒ 2OC =∵4OD =.∵6AD AO OD =+=.∵AE 是O 的切线 切点为A∵OA AE ⊥.在Rt EAD 中∵90EAD ∠=︒ 30D ∠=︒ 6AD =∵3tan 306233AE AD =⋅︒=⨯=. 15.(1)见解析(2)4π3【分析】本题考查圆与三角形的综合问题 掌握与圆有关的性质 正确作出辅助线是关键.(1)连接OC 根据条件证明OC BD ∥ 即可证明;(2)根据PCO PDB ∽可得PA 利用余弦值可求出COP ∠ 通过弧长公式求解即可.【详解】(1)证明:连接OC 如图∵OC OB =∵OCB OBC ∠=∠∵弦BC 平分PBD ∠∵DBC OBC ∠=∠∵OCB DBC ∠=∠.∵OC BD ∥∵BD PD ⊥∵OC PD ⊥.为O 的半径是O 的切线;)解:连接OC∵PCO PDB ∽OC PO BD PB= 8cm AB = BD =14cm 2OC AB ==4468PA PA +=+ Rt OCP 中cos COP ∠=60COP =︒AC 的长=(1)证明见解析; 是O 的切线;证明FBD FDA ∽ 得到1tan tan 4BD A BDF AD ∠=∠== 进而得到164DF = 即可求解; 本题考查了切线的判定 相似三角形的判定与性质 等腰三角形的性质 余角性质 根据题意 正确作出辅助线是解题的关键.【详解】(1)证明:连结OD∵CO AB ⊥∵90E C ∠+∠=︒∵FE FD = OD OC =∵E FDE ∠=∠ ∠=∠C ODC∵90FDE ODC ∠+∠=︒∵90ODF ∠=︒∵OD DF ⊥∵FD 是O 的切线;(2)解:连结AD ,OD BD 如图∵AB 为O 的直径∵90ADB ∠=︒∵90∠+∠=︒A ABD∵OB OD =∵OBD ODB ∠=∠∵90A ODB ∠+∠=︒∵FBD FDA ∽DF BD AF AD= 在Rt △ABD 中 tan ∠164DF = 3DF =的平分线交O 于点E∵ED OE ⊥∵DE 为O 切线.(2)过点O 作OM BC ⊥于点M 10AB = 6BC =则132MC MB BC ===,152OB OE AB === 四边形OEDM 时矩形∵DE OM =根据勾股定理 得224DE OM OB BM ==-=.18.(1)见解析(2)103【分析】(1)连接OA OC 与AB 相交于点E 如图 由OA OC = 可得OAC OCA ∠=∠ 根据圆周角定理可得12B AOC ∠=∠ 由已知CAD B ∠=∠ 可得2AOC CAD ∠=∠ 根据三角形内角和定理可得180OCA CAO AOC ∠+∠+∠=︒ 等量代换可得90CAO CAD ∠+∠=︒ 即可得出答案;(2)根据角平分线的定义可得BAC DAC ∠=∠ 由已知可得BAC B =∠∠ 根据垂径定理可得 OC AB ⊥ BE AE = 在Rt BEC △中 根据正弦定理可得3sin 45CE CE B BC === 即可算出CE 的长度 根据勾股定理可算出22BE BC CE =-的长度 设O 的半径为r 则125OE OC CE r =-=- 在Rt AOE △中 222OA OE AE =+ 代入计算即可得出答案. 【详解】(1)证明:连接OA OC 与AB 相交于点E 如图OA OC =OAC ∴∠AC AC =∴12B ∠=CAD ∠=AOC ∴∠=OCA ∠+2CAO ∴∠+CAO ∴∠+OAD ∴∠OA 是O 的半径AD ∴是O 的切线;(2)解:AC 是∠BAC DAC ∴∠=∠CAD B ∠=∠BAC B ∴∠=∠OC AB ∴⊥ BE =在Rt BEC △中4BC =sin CE B BC ∴=125CE ∴=BE BC ∴=设O 的半径为r ,则125OE OC CE r =-=-在Rt AOE △中222OA OE AE =+ 222121655r r ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 解得:103r =. 【点睛】本题主要考查了切线的性质与判定,垂径定理,勾股定理及解直角三角形, 熟练掌握切线的性质与判定,垂径定理及解直角三角形的方法进行求解是解决本题的关键.。
圆的切线综合练习题与答案
![圆的切线综合练习题与答案](https://img.taocdn.com/s3/m/96022d6e964bcf84b9d57bc3.png)
切线的判定与性质练习题一、选择题(答案唯一,每小题3分)1.下列说法中,正确的是( )A.与圆有公共点的直线是圆的切线 B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线 D.圆心到直线的距离等于半径的直线是圆的切线2. 如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )A.70° B.35° C.20° D.40°第2题第3题第4题第5题3. 如图,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于( )A.20° B.25° C.30° D.40°4.如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为( )A.8 B.6 C.5 D.45.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC二.填空题(每小题3分)6.如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.第6题第7题第8题7.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________________.8.如图,AB是⊙O的直径,O是圆心,BC与⊙O切于点B,CO交⊙O于点D,且BC=8,CD=4,那么⊙O的半径是______.9. 如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.第9题第10题第11题10. 如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC,BE.若AE=6,OA=5,则线段DC的长为______.11.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=________度.三、解答题(写出详细解答或论证过程)12.(7分)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.求证:AC是⊙O的切线.第12题第13题第14题13.(7分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.求证:∠BDC=∠A.14.(7分)如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切.15.(10分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.第15题第16题16.(12分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):__________________________或者_______________________;(2)如图②,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗试证明你的判断.17.(12分)如图,已知直线PA交⊙O于A,B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长.答案:DDADC 6. 相切 7. ∠ABC=90°不排除等效答案 8. 6 9. 45 10. 4 11. 60 12. 解:连接OD,∵BD为∠ABC平分线,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为⊙O的切线13. 解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ODB+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A14. 解:过D作DH⊥AC于H,由角平分线的性质可证DB=DH,∴AC与⊙D相切15. 解:(1)∵∠COD=2∠CAD,∠D=2∠CAD,∴∠D=∠COD.∵PD与⊙O相切于点C,∴OC⊥PD,即∠OCD=90°,∴∠D=45°(2)由(1)可知△OCD是等腰直角三角形,∴OC=CD=2,由勾股定理,得OD=22+22=22,∴BD =OD-OB=22-216. (1) ∠BAE=90°∠EAC=∠ABC(2) (2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线17. 解:(1)连接OC,证∠DAC=∠CAO=∠ACO,∴PA∥CO,又∵CD⊥PA,∴CO⊥CD,∴CD为⊙O的切线(2)过O作OF⊥AB,垂足为F,∴四边形OCDF为矩形.∵DC+DA=6,设AD=x,则OF=CD=6-x,AF=5-x,在Rt△AOF中,有AF2+OF2=OA2,即(5-x)2+(6-x)2=25,解得x1=2,x2=9,由AD<DF知0<x<5,故x=2,从而AD=2,AF=5-2=3,由垂径定理得AB=2AF=6。
2023九年级数学下册中考专题训练——圆的切线的证明【含答案】
![2023九年级数学下册中考专题训练——圆的切线的证明【含答案】](https://img.taocdn.com/s3/m/9a908591370cba1aa8114431b90d6c85ed3a8877.png)
2023九年级数学下册中考专题训练——圆的切线的证明A AM⊙O B⊙O BD⊥AM D BD1. 如图,点是直线与的交点,点在上,垂足为,与⊙O C OC∠AOB∠B=60∘交于点,平分,.AM⊙O(1) 求证:是的切线;DC=2π(2) 若,求图中阴影部分的面积(结果保留和根号).AB⊙O AC BD⊙O OE∥AC BC E B 2. 如图,已知是的直径,,是的弦,交于,过点⊙O OE D DC BA F作的切线交的延长线于点,连接并延长交的延长线于点.DC⊙O(1) 求证:是的切线;∠ABC=30∘AB=8CF(2) 若,,求线段的长.△ABC∠B=∠C=30∘O BC O OB3. 如图,中,,点是边上一点,以点为圆心、为半径的圆A BC D经过点,与交于点.AC⊙O(1) 试说明与相切;AC=23(2) 若,求图中阴影部分的面积.ABC⊙O B C D⊙O E BC OE 4. 如图,割线与相交于,两点,为上一点,为弧的中点,BC F DE AC G∠ADG=∠AGD交于,交于,.AD⊙D(1) 求证明:是的切线;∠A=60∘⊙O4ED(2) 若,的半径为,求的长.5. 如图,, 分别是半 的直径和弦, 于点 ,过点 作半 的切线 AB AC ⊙O OD ⊥AC D A ⊙O , 与 的延长线交于点 .连接 并延长与 的延长线交于点 .AP AP OD P PC AB F(1) 求证: 是半 的切线;PC ⊙O (2) 若 ,,求线段 的长.∠CAB =30∘AB =10BF 6. 如图, 是 的直径, 是 上一点, 是 的中点, 为 延长线上一点,AB ⊙O C ⊙O D AC E OD 且 , 与 交于点 ,与 交于点 .∠CAE =2∠C AC BD H OE F(1) 求证: 是 的切线.AE ⊙O (2) 若 ,,求直径 的长.DH =9tanC =34AB 7. 如图, 是 的直径, 是 的弦,, 与 的延长线交于点 ,点 AB ⊙O AC ⊙O OD ⊥AB OD AC D 在 上,且 .E OD CE =DE(1) 求证:直线 是 的切线.CE ⊙O (2) 若 ,,.OA =23AC =3CD =8. 如图, 是的直径,弦 于点 ,点 在直径 的延长线上,AB ⊙O CD ⊥AB E G DF .∠D =∠G =30∘(1) 求证: 是 的切线.CG ⊙OCD=6GF(2) 若,求的长.AB⊙O AC D BC D EF AC9. 如图,是的直径,是弦,是的中点,过点作垂直于直线,垂E AB F足为,交的延长线于点.EF⊙O(1) 求证:是的切线.B OF⊙O3(2) 若点是的中点,的半径为,求阴影部分面积.PB⊙O B PO⊙O E F B PO BA 10. 如图,切于点,直线交于点,,过点作的垂线,垂D⊙O A AO⊙O C BC AF足为点,交于点,延长交于点,连接,.PA⊙O(1) 求证:直线为的切线;BC=6AD:FD=1:2⊙O(2) 若,,求的半径的长.AC⊙O B⊙O∠ACB=30∘CB D11. 如图,为的直径,为上一点,,延长至点,使得CB=BD D DE⊥AC E CA BE,过点作,垂足在的延长线上,连接.BE⊙O(1) 求证:是的切线;BE=3(2) 当时,求图中阴影部分的面积.AB⊙O AP⊙O A BP⊙O C12. 已知是的直径,是的切线,是切点,与交于点.∠P=35∘∠ABP(1) 如图①,若,求的度数;D AP CD⊙O(2) 如图②,若为的中点,求证:直线是的切线.Rt△ABC∠C=90∘D AB AD⊙O BC13. 如图,在中,,点在上,以为直径的与相交于点E AE∠BAC,且平分.BC⊙O(1) 求证:是的切线;∠EAB=30∘OD=3(2) 若,,求图中阴影部分的面积.⊙O PA PC PH∠APB⊙O H H 14. 如图,在中,是直径,是弦,平分且与交于点,过作HB⊥PC PC B交的延长线于点.HB⊙O(1) 求证:是的切线;HB=6BC=4⊙O(2) 若,,求的直径.AB⊙O BD⊙O BD C AB=AC AC15. 已知:是的直径,是的弦,延长到点,使,连接,过D DE⊥AC E点作,垂足为.DC=BD(1) 求证:;DE⊙O(2) 求证:为的切线.AB⊙O C⊙O D AB∠BCD=∠A16. 如图,是的直径,是上一点,在的延长线上,且.CD⊙O(1) 求证:是的切线;⊙O3CD=4BD(2) 若的半径为,,求的长.△ABC AC⊙O△ABC∠ABC⊙O17. 如图,以的边为直径的恰为的外接圆,的平分线交D D DE∥AC BC E于点,过点作交的延长线于点.DE⊙O(1) 求证:是的切线.AB=45BC=25DE(2) 若,,求的长.AB O AD∠DBC=∠A18. 如图,是半圆的直径,为弦,.BC O(1) 求证:是半圆的切线;OC∥AD OC BD E BD=6CE=4AD(2) 若,交于,,,求的长.△ABC AO⊥BC O⊙O AC D BE⊥AB 19. 如图,是等边三角形,,垂足为点,与相切于点,交AC E⊙O G F的延长线于点,与相交于,两点.AB⊙O(1) 求证:与相切;ABC8BF(2) 若等边三角形的边长是,求线段的长.AC⊙O BC⊙O P⊙O PB AB 20. 如图,是的直径,是的弦,点是外一点,连接,,∠PBA=∠C.PB⊙O(1) 求证:是的切线;OP OP∥BC OP=8⊙O22BC(2) 连接,若,且,的半径为,求的长.答案1. 【答案】(1) ,,∵∠B=60∘OB=OC是等边三角形,∴△BOC,∴∠1=∠2=60∘平分,∵OC∠AOB,∴∠1=∠3,∴∠2=∠3,∴OA∥BD,∴∠BDM=90∘,∴∠OAM=90∘是的切线.∴AM⊙O(2) ,,∵∠3=60∘OA=OC是等边三角形,∴△AOC,∴∠OAC=60∘,∵∠OAM=90∘,∴∠CAD=30∘,∵CD=2,∴AC=2CD=4,∴AD=23∴S阴影=S梯形OADC−S扇形OAC =12(4+2)×23−60⋅π×16360=63−8π3.2. 【答案】(1) 连接,OC,∵OE∥AC,∴∠1=∠ACB是的直径,∵AB⊙O,∴∠1=∠ACB=90∘,由垂径定理得垂直平分,∴OD⊥BC OD BC,∴DB=DC,∴∠DBE=∠DCE又,∵OC=OB,∴∠OBE=∠OCE即,∠DBO=∠OCD为的切线,是半径,∵DB⊙O OB,∴∠DBO=90∘,∴∠OCD =∠DBO =90∘即 ,OC ⊥DC 是 的半径,∵OC ⊙O 是 的切线.∴DC ⊙O (2) 在 中,,Rt △ABC ∠ABC =30∘ ,又 ,∴∠3=60∘OA =OC 是等边三角形,∴△AOC∴∠COF =60∘在 中,,Rt △COF tan∠COF =CF OC .∴CF =433. 【答案】(1) 连接 .OA ,∵OA =OB .∴∠OAB =∠B ,∵∠B =30∘ .∴∠OAB =30∘ 中:,△ABC ∠B =∠C =30∘ .∴∠BAC =180∘−∠B−∠C =120∘ .∴∠OAC =∠BAC−∠OAB =120∘−30∘=90∘ ,∴OA ⊥AC 是 的切线,即 与 相切.∴AC ⊙O AC ⊙O (2) 连接 .AD ,∵∠C =30∘∠OAC =90∘ .∴OC =2OA 设 的长度为 ,则 .OA x OC =2x 在 中,,.△OAC ∠OAC =90∘AC =23根据勾股定理可得:,x 2+(23)2=(2x )2解得:,(不合题意,舍去).x 1=2x 2=−2 ,∴S △OAC =12×2×23=23,S 扇形OAD =60360×π×22=23π .∴S 阴影=23−23π答:图中阴影部分的面积为 .23−23π4. 【答案】(1) 连接 .OD 为 的中点,∵E BC ,∴OE ⊥BC ,∵OD =OE ,∴∠ODE =∠OED ,∴∠AGD +∠OED =∠EGF +∠OED =90∘ ,∵∠AGD =∠ADG ,即 ,∴∠ADG +∠ODE =90∘OD ⊥AD 是 的切线.∴AD ⊙O (2) 作 于 .OH ⊥ED H ,∴DE =2DH ,∵∠ADG =∠AGD ,∴AG =AD ,∵∠A =60∘ ,∴∠ADG =60∘,∴∠ODE =30∘ ,∵OD =4 ,∴DH =32OD =23 .∴DE =2DH =435. 【答案】(1) 连接 ,OC , 经过圆心 ,∵OD ⊥AC OD O ,∴AD =CD ,∴PA =PC 在 和 中,△OAP △OCP {OA =OC,PA =PC,OP =OP,,∴△OAP ≌△OCP (SSS ) ,∴∠OCP =∠OAP 是 的切线,∵PA ⊙O .∴∠OAP =90∘,即 ,∴∠OCP =90∘OC ⊥PC 是 的切线.∴PC ⊙O (2) 是直径,∵AB ,∴∠ACB =90∘,∵∠CAB =30∘,∴∠COF =60∘ 是 的切线,,∵PC ⊙O AB =10 ,,∴OC ⊥PF OC =OB =12AB =5 ,∴OF =OC cos∠COF =10 .∴BF =OF−OB =56. 【答案】(1) 是 的中点,∵D AC ,∴OE ⊥AC ,∴∠AFE =90∘ ,∴∠E +∠EAF =90∘ ,,∵∠AOE =2∠C ∠CAE =2∠C ,∴CAE =∠AOE ,∴∠E +∠AOE =90∘ ,∴∠EAO =90∘ 是 的切线.∴AE ⊙O (2) ,∵∠C =∠B ,∵OD =OB ,∴∠B =∠ODB ,∴ODB =∠C ,∴tanC =tan∠ODB =HF DF =34 设 ,,∴HF =3x DF =4x ,∴DH =5x =9,∴x =95 ,,∴DE =365HF =275 ,,∵∠C =∠FDH ∠DFH =∠CFD ,∴△DFH ∼△CFD ,∴DF CF =FH DF,∴CF =365×365275=485 ,∴AF =CF =485设 ,OA =OD =x,∴OF =x−365 ,∵AF 2+OF 2=OA 2 ,∴(485)2+(x−365)2=x 2解得:,x =10 ,∴OA =10 直径 为 .∴AB 207. 【答案】(1) 连接 ,OC ,∵OD ⊥AB ,∴∠AOD =90∘ ,∴∠D +∠A =90∘ ,∵OA =OC ,∴∠A =∠ACO ,∵CE =DE ,∴∠ECD =∠D ,∵∠ACO +∠DCE =90∘ ,∴∠OCE =90∘ ,∴OC ⊥CE 直线 是 的切线.∴CE ⊙O (2)5【解析】(2) 连接 ,BC 是 的直径,∵AB ⊙O ,∴∠ACB =90∘ ,∴∠AOD =∠ACB ,∵∠A =∠A ,∴△ABC ∽△ADO,∴AO AC =AD AB ,∴233=AD43 ,∴AD =8 .∴CD =AD−AC =58. 【答案】(1) 连接 .OC ,,∵OC =OD ∠D =30∘ .∴∠OCD =∠D =30∘ ,∵∠G =30∘ .∴∠DCG =180∘−∠D−∠G =120∘ .∴∠GCO =∠DCG−∠OCD =90∘ .∴OC ⊥CG 又 是 的半径.∵OC ⊙O 是 的切线.∴CG ⊙O (2) 是 的直径,,∵AB ⊙O CD ⊥AB .∴CE =12CD =3 在 中,,,∵Rt △OCE ∠CEO =90∘∠OCE =30∘ ,.∴EO =12CO CO 2=EO 2+CE 2设 ,则 .EO =x CO =2x .∴(2x )2=x 2+32解得 (舍负值).x =±3 .∴CO =23 .∴FO =23在 中,△OCG ,,∵∠OCG =90∘∠G =30∘ .∴GO =2CO =43 .∴GF =GO−FO =239. 【答案】(1) 连接 ,连接 ,OD AD 点 是 的中点,∵D BC ,∴∠1=∠2 ,∵OA =OD ,∴∠2=∠3即 ,∠1=∠2=∠3 ,∴∠1=∠3 ,∴AE ∥OD ,∵AE ⊥EF ,∴OD ⊥EF 即 是 的切线.EF ⊙O(2) 点是 的中点, 半径为 ,∵B OF ⊙O 3 ,∴BF =OB =3由()可知 ,1OD ⊥EF 在 中,Rt △ODF ,∵sinF =OD OF =36=12 ,,∴∠F =30∘∠DOF =60∘故S 阴影=S △ODF −S 扇ODB=12OD ⋅DF−60∘360∘π×32=3×332−32π=32(33−π).故阴影面积为:.32(33−π)10. 【答案】(1) 如图,连接 .OB 是 的切线,∵PB ⊙O .∴∠PBO =90∘ , 于 ,∵OA =OB BA ⊥PO D ,.∴AD =BD ∠POA =∠POB 又 ,∵PO =PO .∴△PAO ≌△PBO .∴∠PAO =∠PBO =90∘ 直线 为 的切线.∴PA ⊙O (2) ,,,∵OA =OC AD =BD BC =6 .∴OD =12BC =3设 .AD =x ,∵AD:FD =1:2 ,.∴FD =2x OA =OF =2x−3在 中,由勾股定理,得 .Rt △AOD (2x−3)2=x 2+32解之得,,(不合题意,舍去).x 1=4x 2=0 ,.∴AD =4OA =2x−3=5即 的半径的长 .⊙O 511. 【答案】(1) 如图所示,连接 ,BO ,∵∠ACB =30∘ ,∴∠OBC =∠OCB =30∘,,∵DE ⊥AC CB =BD 中,,∴Rt △DCE BE =12CD =BC ,∴∠BEC =∠BCE =30∘ 中,,∴△BCE ∠EBC =180∘−∠BEC−∠BCE =120∘ ,∴∠EBO =∠EBC−∠OBC =120∘−30∘=90∘ 是 的切线.∴BE ⊙O (2) 当 时,,BE =3BC =3 为 的直径,∵AC ⊙O ,∴∠ABC =90∘又 ,∵∠ACB =30∘ ,∴AB =tan 30∘×BC =3 ,,∴AC =2AB =23AO =3 ∴S 阴影部分=S 半圆−S Rt △ABC =12π×AO 2−12AB ×BC=12π×3−12×3×3=32π−32 3.12. 【答案】(1) 是 的直径, 是 的切线,∵AB ⊙O AP ⊙O ,∴AB ⊥AP ;∴∠BAP =90∘又 ,∵∠P =35∘ ∴∠ABP =90∘−35∘=55∘(2) 如图,连接 ,,.OC OD AC 是 的直径,∵AB ⊙O (直径所对的圆周角是直角),∴∠ACB =90∘ ;∴∠ACP =90∘又 为 的中点,∵D AP (直角三角形斜边上的中线等于斜边的一半);∴AD =CD 在 和 中,△OAD △OCD {OA =OC,OD =OD,AD =CD, ,△OAD ≌△OCD (SSS ) (全等三角形的对应角相等);∴∠OAD =∠OCD 又 是 的切线, 是切点,∵AP ⊙O A ,∴AB ⊥AP ,∴∠OAD =90∘ ,即直线 是 的切线.∴∠OCD =90∘CD ⊙O13. 【答案】(1) 平分 ,∵AE ∠BAC ,∴∠CAE =∠EAD ,∵OA =OE ,∴∠EAD =∠OEA ,∴∠OEA =∠CAE ,∴OE ∥AC ,∴∠OEB =∠C =90∘ ,∴OE ⊥BC 是 的切线.∴BC ⊙O (2) ,∵∠EAB =30∘ ,∴∠EOD =60∘ ,∴∠OEB =90∘ ,∴∠B =30∘ ,∴OB =2OE =2OD =6 ,∴BE =OB 2−OE 2=33,,∴S △OEB =932S 扇形=3π2 .∴S 阴影=932−3π214. 【答案】(1) 如图,连接 .OH 平分 ,∵PH ∠APB .∴∠HPA =∠HPB ,∵OP =OH .∴∠OHP =∠HPA .∴∠HPB =∠OHP .∴OH ∥BP ,∵BP ⊥BH .∴OH ⊥BH 是 的切线.∴HB ⊙O (2) 如图,过点 作 ,垂足为 .O OE ⊥PC E ,,,∵OE ⊥PC OH ⊥BH BP ⊥BH 四边形 是矩形.∴EOHB ,.∴OE =BH =6OH =BE .∴CE =OH−4 ,∵OE ⊥PC.∴PE =EC =OH−4=OP−4在 中,,.Rt △POE OP 2=PE 2+OE 2 .∴OP 2=(OP−4)2+36 .∴OP =132 .∴AP =2OP =13 的直径是 .∴⊙O 1315. 【答案】(1) 连接 ,AD 是 的直径,∵AB ⊙O ,∴∠ADB =90∘又 ,∵AB =AC .∴DC =BD (2) 连接半径 ,OD ,,∵OA =OB CD =BD ,∴OD ∥AC ,∴∠ODE =∠CED 又 ,∵DE ⊥AC ,∴∠CED =90∘ ,即 ,∴∠ODE =90∘OD ⊥DE 是 的切线.∴DE ⊙O 16. 【答案】(1) 连接 .OC 是 的直径, 是 上一点,∵AB ⊙O C ⊙O ,即 .∴∠ACB =90∘∠ACO +∠OCB =90∘ ,,∵OA =OC ∠BCD =∠A ,∴∠ACO =∠A =∠BCD ,即 ,∴∠BCD +∠OCB =90∘∠OCD =90∘ 是 的切线.∴CD ⊙O (2) 在 中,,,,Rt △OCD ∠OCD =90∘OC =3CD =4 ,∴OD =OC 2+CD 2=5 .∴BD =OD−OB =5−3=217. 【答案】(1) 连接 ,OD 是 的直径,∵AC ⊙O,∴∠ABC =90∘ 平分 ,∵BD ∠ABC ,∴∠ABD =45∘ ,∴∠ODE =90∘ ,∵DE ∥AC ,∴∠ODE =∠AOD =90∘ 是 的切线.∴DE ⊙O (2) 在 中,,,Rt △ABC AB =45BC =25 ,∴AC =AB 2+BC 2=10 ,∴OD =5过点 作 ,垂足为 ,C CG ⊥DE G 则四边形 为正方形,ODGC ,∴DG =CG =OD =5 ,∵DE ∥AC ,∴∠CEG =∠ACB ,∴tan∠CEG =tan∠ACB ,即 ,∴CG GE =AB BC 5GE =4525解得:,GE =52 .∴DE =DG +GE =15218. 【答案】(1) 是半圆 的直径,∵AB O ,∴BD ⊥AD ,∴∠DBA +∠A =90∘ ,∵∠DBC =∠A ,即 ,∴∠DBA +∠DBC =90∘AB ⊥BC 是半圆 的切线.∴BC O (2) ,∵OC ∥AD ,∴∠BEC =∠D =90∘ ,,∵BD ⊥AD BD =6 ,∴BE =DE =3 ,∵∠DBC =∠A ,∴△BCE ∽△BAD ,即 ,∴CE BD =BE AD 46=3AD .∴AD =4.519. 【答案】(1) 过点 作 ,垂足是 .O OM ⊥AB M 与 相切于点 ,∵⊙O AC D ,∴OD ⊥AC ,∠ADO =∠AMO =90∘ 是等边三角形,,∵△ABC AO ⊥BC 是 的角平分线,∴OA ∠MAD ,,∵OD ⊥AC OM ⊥AB .∴OM =OD 与 相切.∴AB ⊙O (2) 过点 作 ,垂足是 ,连接 .O ON ⊥BE N OF ,,∵AB =AC AO ⊥BC ∴ 是 的中点,O BC ,∴OB =12BC =12×8=4 在直角 中,,,△ABC ∠ABE =90∘∠MBO =60∘ ,∴∠OBN =30∘ ,,,∵ON ⊥BE ∠OBN =30∘OB =4 ,,∴ON =12OB =2BN =42−22=23 ,∵AB ⊥BE ∴四边形 是矩形,OMBN .∴BN =OM =23 .∵OF =OM =23由勾股定理得 .NF =(23)2−22=22 .∴BF =BN +NF =23+2220. 【答案】(1) 连接 ,如图所示:OB 是 的直径,∵AC ⊙O ,∴∠ABC =90∘ ,∴∠C +∠BAC =90∘ ,∵OA =OB ,∴∠BAC =∠OBA ,∵∠PBA =∠C ,即 ,∴∠PBA +∠OBA =90∘PB ⊥OB 是 的切线.∴PB ⊙O (2) 的半径为 ,∵⊙O 22,,∴OB =22AC =42 ,∵OP ∥BC ,∴∠CBO =∠BOP ,∵OC =OB ,∴∠C =∠CBO ,∴∠C =∠BOP 又 ,∵∠ABC =∠PBO =90∘ ,∴△ABC ∽△PBO ,即 ,∴BC OB =AC OP BC 22=428 .∴BC =2。
圆切线的判定与性质综合(3大类题型)(解析版)--初中数学专项训练
![圆切线的判定与性质综合(3大类题型)(解析版)--初中数学专项训练](https://img.taocdn.com/s3/m/1862f575777f5acfa1c7aa00b52acfc789eb9fe1.png)
圆切线的判定与性质综合(3大类题型)重难点题型归纳【题型1证圆的切线-有公共点:连半径,证垂直】【题型2证圆的切线-没有公共点:作垂直,证半径】【题型3圆切线的判定与性质综合】满分必练【题型1证圆的切线-有公共点:连半径,证垂直】1(2023春•保德县校级期中)如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.求证:DE是⊙O切线.【答案】见解答.【解答】证明:连接OD,∵∠BAC=2∠BAD,∠BOD=2∠BAD,∴∠BAC=∠BOD,∴OD∥AC,又∵DE⊥AC,∴∠AED=90°,∴∠ODE=∠AED=90°,∴半径OD⊥DE,∴DE是⊙O的切线.2(2022秋•大连期末)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30°.求证:CD是⊙O的切线.【答案】见试题解答内容【解答】解:连OD,如图,∵∠ADE=60°,∠C=30°,∴∠A=∠ADE-∠C=60°-30°=30°,又∵OD=OA,∴∠ODA=∠A=30°,∴∠EDO=90°,所以CD是⊙O的切线.3(2022秋•龙川县校级期末)如图,OA是⊙O的半径,∠B=20°,∠AOB=70°.求证:AB是⊙O的切线.【答案】见解答.【解答】证明:∵∠AOB=70°,∠B=20°,∴∠OAB=180°-∠B-∠AOB=90°,∴OA⊥AB,∵OA是⊙O的半径,∴AB是⊙O的切线.4(2022秋•利通区期末)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E,求证:AC是⊙D的切线.【答案】见解析.【解答】证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,在⊙D中,AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°-∠ADC-∠C=180°-60°-30°=90°,∴AD⊥AC,又∵DA是半径,∴AC是⊙D的切线.5(2022秋•天河区校级期末)如图,AB是⊙O的直径,AC的中点D在⊙O上,DE⊥BC于E.求证:DE是⊙O的切线.【答案】见试题解答内容【解答】证明:连接OD,∵AO=OB,D为AC的中点,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD是⊙O的半径,∴DE是⊙O的切线.6(2022秋•阿瓦提县校级期末)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB= AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.【答案】证明过程见解答.【解答】证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.7(2022•昭平县一模)如图,AB是⊙O的弦,OP⊥AB交⊙O于C,OC=2,∠ABC=30°.(1)求AB的长;(2)若C是OP的中点,求证:PB是⊙O的切线.【答案】见试题解答内容【解答】(1)解:连接OA、OB,如图,∵∠ABC=30°,OP⊥AB,∴∠AOC =60°,∴∠OAD =30°,∴OD =12OA =12×2=1,∴AD =3OD =3,又∵OP ⊥AB ,∴AD =BD ,∴AB =23;(2)证明:由(1)∠BOC =60°,而OC =OB ,∴△OCB 为等边三角形,∴BC =OB =OC ,∠OBC =∠OCB =60°,∴C 是OP 的中点,∴CP =CO =CB ,∴∠CBP =∠P ,而∠OCB =∠CBP +∠P ,∴∠CBP =30°∴∠OBP =∠OBC +∠CBP =90°,∴OB ⊥BP ,∴PB 是⊙O 的切线.8(2022•漳州模拟)已知:△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE ⊥AC 于点E .求证:DE 是⊙O 的切线.【答案】见试题解答内容【解答】证明:连接OD ,∵AB 为⊙O 的直径,∴AD ⊥BC ,又AB =AC ,∴BD =DC ,∵BO =OA ,∴OD ∥AC ,∴∠ODE =180°-∠AED =90°,∴DE 是⊙O 的切线.9(2022秋•芜湖期末)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,AC =CD =DB,DE ⊥AC .求证:DE 是⊙O 的切线.【答案】见解析.【解答】证明:连接OD ,∵AC =CD =DB,∴∠BOD =13×180o =60o ,∵CD =DB ,∴∠EAD =∠DAB =12∠BOD =30°,∵OA =OD ,∴∠ADO =∠DAB =30°,∵DE ⊥AC ,∴∠E =90°,∴∠EAD +∠EDA =90°,∴∠EDA =60°,∴∠EDO =∠EDA +∠ADO =90°,∴OD ⊥DE ,∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.【题型2证圆的切线-没有公共点:作垂直,证半径】10(2022秋•长乐区期中)如图,在△OAB 中,OA =OB =5,AB =8,⊙O 的半径为3.求证:AB 是⊙O 的切线.【答案】证明见解析.【解答】证明:如图,过O 作OC ⊥AB 于C ,∵OA =OB ,AB =8,∴AC =12AB =4,在Rt △OAC 中,OC =OA 2-AC 2=52-42=3,∵⊙O 的半径为3,∴OC 为⊙O 的半径,∴AB 是⊙O 的切线.11(2022•八步区一模)如图,在Rt △ABC 中,∠BAC 的角平分线交BC 于点D ,E 为AB 上一点,DE =DC ,以D 为圆心,DB 的长为半径作⊙D ,AB =5,BE =3.(1)求证:AC 是⊙D 的切线;(2)求线段AC 的长.【解答】(1)证明:过点D 作DF ⊥AC 于F ;∵AB 为⊙D 的切线,∴∠B =90°,∴AB ⊥BC ,∵AD 平分∠BAC ,DF ⊥AC ,∴BD =DF ,∴AC 与⊙D 相切;(2)解:在△BDE 和△DCF 中;BD =DF DE =DC ,∴Rt △BDE ≌Rt △DCF (HL ),∴EB =FC .∵AB =AF ,∴AB +EB =AF +FC ,即AB +EB =AC ,∴AC =5+3=8.12(秋•莆田期末)如图,半圆O 的直径是AB ,AD 、BC 是两条切线,切点分别为A 、B ,CO 平分∠BCD .(1)求证:CD 是半圆O 的切线.(2)若AD =20,CD =50,求BC 和AB 的长.【解答】(1)证明:过点O 作OE ⊥CD ,垂足为点E ,∵BC是半圆O的切线,B为切点,∴OB⊥BC,∵CO平分∠BCD,∴OE=OB,∵OB是半圆O的半径,∴CD是半圆O的切线;(2)解:过点D作DF⊥BC,垂足为点F,∴∠DFB=90°,∵AD是半圆O的切线,切点为A,∴∠DAO=90°,∵OB⊥BC,∴∠OBC=90°,∴四边形ADFB是矩形,∴AD=BF=20,DF=AB,∵AD,CD,BC是半圆O的切线,切点分别为A、E、B,∴DE=AD=20,EC=BC,∵CD=50,∴EC=CD-DE=50-20=30,∴BC=30,∴CF=BC-BF=10,在Rt△CDF中,由勾股定理得:DF=DC2-CF2=502-102=206,∴AB=DF=206,∴BC的长为30,AB的长为206.【题型3 圆切线的判定与形式综合】13(2023•银川校级四模)如图△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,以点D为圆心,BD为半径作⊙D交AB于点E.(1)求证:⊙D与AC相切;(2)若AC=5,BC=3,试求AE的长.【答案】见试题解答内容【解答】(1)证明:过D 作DF ⊥AC 于F ,∵∠B =90°,∴AB ⊥BC ,∵CD 平分∠ACB 交AB 于点D ,∴BD =DF ,∴⊙D 与AC 相切;(2)解:设圆的半径为x ,∵∠B =90°,BC =3,AC =5,∴AB =AC 2-BC 2=4,∵AC ,BC ,是圆的切线,∴BC =CF =3,∴AF =AB -CF =2,∵AB =4,∴AD =AB -BD =4-x ,在Rt △AFD 中,(4-x )2=x 2+22,解得:x =32,∴AE =4-3=1.14(2022秋•五莲县期中)如图,O 为正方形ABCD 对角线上一点,以点O 为圆心,OA 长为半径的⊙O 与BC 相切于点E .(1)求证:CD 是⊙O 的切线;(2)若正方形ABCD 的边长为10,求⊙O 的半径.【答案】见试题解答内容【解答】(1)证明:连接OE ,并过点O 作OF ⊥CD .∵BC 切⊙O 于点E ,∴OE ⊥BC ,OE =OA ,又∵AC 为正方形ABCD 的对角线,∴∠ACB =∠ACD ,∴OF =OE =OA ,即:CD 是⊙O 的切线.(2)解:∵正方形ABCD 的边长为10,∴AB =BC =10,∠B =90°,∠ACB =45°,∴AC =AB 2+BC 2=102,∵OE ⊥BC ,∴OE =EC ,设OA=r,则OE=EC=r,∴OC=OE2+EC2=2r,∵OA+OC=AC,∴r+2r=102,解得:r=20-102.∴⊙O的半径为:20-102.15(2023•甘南县一模)如图,已知AB是⊙O的直径,点C在⊙O上,AD⊥DC于点D,AC平分∠DAB.(1)求证:直线CD是⊙O的切线;(2)若AB=4,∠DAB=60°,求AD的长.【答案】见试题解答内容【解答】(1)证明:连接OC,如图1所示:∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴OC∥AD,∵AD⊥DC,∴CD⊥OC,又∵OC是⊙O的半径,∴直线CD是⊙O的切线;(2)解:连接BC,如图2所示:∵AB是⊙O的直径,∴∠ACB=90°,∵AC平分∠DAB,∠DAB=60°,∴∠DAC=∠BAC=30°,AB=2,AC=3BC=23,∴BC=12∵AD⊥DC,∴∠ADC=90°,AC=3,AD=3CD=3.∴CD=1216(2023•夹江县模拟)如图,已知AB是⊙O的直径,BC⊥AB于点B,D是⊙O上异于A、B的一个动点,连接AD,过O作OC∥AD交BC于点C.(1)求证:CD是⊙O的切线;(2)若EA=1,ED=3,求⊙O的半径.【答案】(1)见解答;(2)4.【解答】解:(1)如图,连接OD,由OD=OA得:∠OAD=∠ODA,∵OC∥AD,∴∠DOC=∠ODA,∠BOC=∠OAD,∴∠DOC=∠BOC,又∵OD=OB,OC=OC,∴△ODC≌△OBC,∴∠ODC=∠OBC,∵BC⊥AB,∴∠ODC=∠OBC=90°,又∵D在⊙O上,∴CD是⊙O的切线;(2)设⊙O的半径为x,则:OD=x,OA=x+1,∵CD是⊙O的切线,∴∠ODE=90°,在Rt△ODE中,由勾股定理得:ED2+OD2=OE2,∴32+x2=(x+1)2,解得:x=4,∴⊙O的半径为4.17(2022秋•盘山县期末)如图,已知AB是⊙O的直径,AC是⊙O的弦,过点C的直线与AB的延长线相交于点P,且AC=PC,∠P=30°.(1)求证:PC是⊙O的切线;(2)若AB=6,求PC的长.【答案】(1)证明见解析;(2)33.【解答】(1)证明:如图所示,连接OC,∵AC=PC,∠P=30°,∴∠A=∠P=30°,∴∠BOC=2∠A=60°,∴∠PCO=180°-∠P-∠POC=90°,即OC⊥PC,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)解:∵AB=6且AB是⊙O的直径,∴OC=1OA=3,2在Rt△POC中,∠PCO=90°,∠P=30°,∴OP=2OC=6,∴PC=PO2-OC2=33.18(2023春•东营期末)如图,在⊙O中,PA是直径,PC是弦,PH平分∠APB且与⊙O交于点H,过H作HB⊥PC交PC的延长线于点B.(1)求证:HB是⊙O的切线;(2)若HB=4,BC=2,求⊙O的直径.【答案】见试题解答内容【解答】证明:(1)如图,连接OH,∵PH平分∠APB,∴∠HPA=∠HPB,∵OP=OH,∴∠OHP=∠HPA,∴∠HPB=∠OHP,∴OH∥BP,∵BP⊥BH,∴OH⊥BH,∴HB 是⊙O 的切线;(2)如图,过点O 作OE ⊥PC ,垂足为E ,∵OE ⊥PC ,OH ⊥BH ,BP ⊥BH ,∴四边形EOHB 是矩形,∴OE =BH =4,OH =BE ,∴CE =OH -2,∵OE ⊥PC∴PE =EC =OH -2=OP -2,在Rt △POE 中,OP 2=PE 2+OE 2,∴OP 2=(OP -2)2+16∴OP =5,∴AP =2OP =10,∴⊙O 的直径是10.19(2023•汉川市模拟)如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点E ,直线BF 与AD 延长线交于点F ,且∠AFB =∠ABC .(1)求证:直线BF 是⊙O 的切线;(2)若CD =12,BE =3,求⊙O 的半径.【答案】(1)证明见解析;(2)152.【解答】(1)证明:∵AC =AC ,∴∠ABC =∠ADC ,∵∠AFB =∠ABC ,∴∠ADC =∠AFB ,∴CD ∥BF ,∵CD ⊥AB ,∴AB ⊥BF ,∵OB 为⊙O 的半径.∴直线BF 是⊙O 的切线;(2)解:设⊙O 的半径为R ,连接OD ,如图,∵AB ⊥CD ,CD =12,∴CE =DE =12CD =6,∵BE =3,∴OE =R -3,在Rt △OED 中,∵OE2+DE2=OD2,∴R2=(R-3)2+62,解得:R=15 2.即⊙O的半径为15 2.20(2022秋•斗门区期末)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠ACP=∠OBC.(1)求证:PC与⊙O相切;(2)若PA=4,PC=BC,求⊙O的半径.【答案】(1)见解析;(2)4.【解答】(1)证明:连接OC,则OC=OB,∴∠OBC=∠OCB,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACP=∠OBC,∴∠ACP=∠OCB,∴∠OCP=∠OCA+∠ACP=∠OCA+∠OCB=∠ACB=90°,∵PC经过⊙O的半径OC的外端,且PC⊥OC,∴PC与⊙O相切.(2)解:∵PC=BC,∴∠P=∠B,∵∠ACP=∠B,∴∠ACP=∠P,∴CA=PA=4,∵∠OCP=90°,∴∠ACO+∠ACP=90°,∠AOC+∠P=90°,∴∠ACO=∠AOC,∴CA=OA=OC=4.21(2023•黑龙江模拟)如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.(1)求证:DE是⊙O的切线;(2)若AB=10,BD=3,求AE的长.【答案】(1)见解析;(2)658.【解答】(1)证明:(1)连接OC ;∵AE ⊥CD ,CF ⊥AB ,又CE =CF ,∴∠1=∠2.∵OA =OC ,∴∠2=∠3,∠1=∠3.∴OC ∥AE .∴OC ⊥CD .∴DE 是⊙O 的切线.(2)解:∵OC ⊥ED ,AB =10,BD =3,∴OB =OC =5.CD =OD 2-OC 2=39,∵S △OCD =12OC ⋅CD =12OD ⋅CF ,即12×5×39=125+3 ⋅CF ,∴CF =5398,∴OF =OC 2-FC 2=658,∴AF =OA +OF =5+258=658,在Rt △AEC 和Rt △AFC 中,CE =CF ,AC =AC ,∴Rt △AEC ≌Rt △AFC (HL ),∴AE =AF =658.22(2023•宿豫区三模)如图,Rt △ABC 中,∠ACB =90°,点D 在AC 边上,以AD 为直径作⊙O 交BD 的延长线于点E ,CE =BC .(1)求证:CE 是⊙O 的切线;(2)若CD =2,BD =2,求⊙O 的半径.【答案】见试题解答内容【解答】解:(1)如图,连接OE,∵∠ACB=90°,∴∠1+∠5=90°.∵CE=BC,∴∠1=∠2.∵OE=OD,∴∠3=∠4.又∵∠4=∠5,∴∠3=∠5,∴∠2+∠3=90°,即∠OEC=90°,∴OE⊥CE.∵OE是⊙O的半径,∴CE是⊙O的切线.(2)在Rt△BCD中,∠DCB=90°,CD=2,BD=25,BC=CE=4.设⊙O的半径为r,则OD=OE=r,OC=r+2,在Rt△OEC中,∠OEC=90°,∴OE2+CE2=OC2,∴r2+42=(r+2)2,解得r=3,∴⊙O的半径为3.23(2023•东港区校级三模)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点E,点D在AB上,且以AD为直径的⊙O经过点E.(1)求证:BC是⊙O的切线;(2)当AD=3BD,且BE=4时,求⊙O的半径.【答案】(1)证明见解析;(2)3.【解答】(1)证明:连接OE,∵OA=OE,∴∠OAE=∠OEA,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠OEA=∠CAE,∴OE∥AC,∵∠C=90°,∴∠OEC =90°,∴OE ⊥BC ,∵OE 为半径,∴BC 是⊙O 切线;(2)解:∵AD =3BD ,设BD =2x ,则AD =6x ,∴AO =OD =OE =3x ,∴OB =5x ,在Rt △OBE 中,根据勾股定理得:OE 2+BE 2=OB 2,∴(3x )2+42=(5x )2,∴x =1,∴OE =3x =3,∴⊙O 半径为3.24(2023•泗县校级模拟)如图,在Rt △ABC 中,∠ACB =90°,以AB 为直径作⊙O ,在⊙O 上取一点D ,使CD =BC,过点C 作EF ⊥AD ,交AD 的延长线于点E ,交AB 的延长线于点F .(1)求证:直线EF 是⊙O 的切线;(2)若AB =10,AD =6,求AC 的长.【答案】(1)见详解;(2)45.【解答】(1)证明:连接OC ,如图,∵CD =CB,∴∠EAC =∠CAB ,∵EF ⊥AD ,∴∠EAC +∠ACE =90°,∵OC =OA ,∴∠CAB =∠OCA ,∴∠EAC =∠OCA ,∴∠ACO +∠ACE =90°,即半径OC ⊥EF ,∴EF 是⊙O 的切线;(2)解:连接BD ,交OC 于点G ,如图,∵AE ⊥EF ,OC ⊥EF ,∴AE ∥OC ,∵O 为AB 为中点,∴OG 为△ABD 中位线,∴OG=1AD=3,DG=BG,2∴DG=BG=CE,DB⊥OC,GC=OC-OG=2,∵AB=10,∴OB=5,∴BG=OB2-OG2,∴DG=BG=4,∵AE⊥EF,OC⊥EF,DB⊥OC,∴四边形DECG是矩形,∴DE=CG=2,EC=DG=4,∴AE=8,∴在△AEC中,AC=AE2+EC2=45.25(2023•荔湾区校级一模)如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为2,求EF的长度.【答案】(1)证明见解析;(2)12.【解答】(1)证明:如图所示,连接OD,∵△ABC是等边三角形,∴∠B=∠C=60°.∵OB=OD,∴∠ODB=∠B=60°.∵DE⊥AC,∴∠DEC=90°.∴∠EDC=30°.∴∠ODE=90°.∴DE⊥OD于点D.∵点D在⊙O上,∴DE是⊙O的切线;(2)解:如图所示,连接AD,BF,∵AB为⊙O直径,∴∠AFB=∠ADB=90°.∴AF⊥BF,AD⊥BD.∵△ABC是等边三角形,∴DC=12BC=1,FC=12AC=1.∵∠EDC=30°,∴EC=12DC=12.∴EF=FC-EC=12.。
湘教版九年级数学下册《2.5.1圆的切线》课时达标试卷含答案2
![湘教版九年级数学下册《2.5.1圆的切线》课时达标试卷含答案2](https://img.taocdn.com/s3/m/2d019530aeaad1f347933fb4.png)
湘教版九年级数学下册《2.5.1圆的切线》课时达标试卷含答案2第2课时切线的性质01基础题知识点圆的切线的性质1.如图,PA是⊙O的切线,切点为A,OP=4,∠APO=30°,则⊙O的半径为(C) A.1 B. 3 C.2 D.4第1题图第2题图2.如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA,若∠ABC=70°,则∠A等于(C)A.10°B.15°C.20°D.30°3.(邵阳中考)如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是(A)A.30°B.45°C.60°D.40°第3题图第4题图4.如图,两个同心圆的半径分别为4 cm和5 cm,大圆的一条弦AB与小圆相切,则弦AB 的长为(C)A.3 cm B.4 cm C.6 cm D.8 cm5.(自贡中考)AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠B等于(B)A.20°B.25°C.30°D.40°第5题图第6题图6.如图所示,⊙O与AC相切于点A,且AB=AC,BC与⊙O相交于点D,下列说法不正确的是(D)A.∠C=45°B.CD=BDC.∠DAB=∠DAC D.CD=AB7.(湘潭中考)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA=4.第7题图第8题图8.(永州中考)如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A.若∠MAB=30°,则∠B=60°.9.如图,等腰△OAB中,OA=OB,以点O为圆心作圆与底边AB相切于点C.求证:AC =BC.证明:∵AB切⊙O于点C,∴OC⊥AB.∵OA=OB,∴AC=BC.10.(株洲中考)如图,已知AB是⊙O的直径,直线BC与⊙O相切于点B,∠ABC的平分线BD交⊙O于点D,AD的延长线交BC于点C.(1)求∠BAC的度数;(2)求证:AD=CD.解:(1)∵AB是⊙O的直径,∴∠ADB=90°.∵BD平分∠ABC,∴∠ABD=∠CBD.∵直线BC与⊙O相切于点B,∴∠ABC=90°.∴∠ABD=45°.∴∠BAC=180°-90°-45°=45°.(2)证明:∵∠BAC=45°,∠ABC=90°,∴∠C =45°.∴AB =CB.又∵BD ⊥AC ,∴AD =CD.02 中档题11.(嘉兴中考)如图,△ABC 中,AB =5,BC =3,AC =4,以点C 为圆心的圆与AB 相切,则⊙C 的半径为(B )A .2.3B .2.4C .2.5D .2.6第11题图 第12题图12.(枣庄中考)如图,已知线段OA 交⊙O 于点B ,且OB =AB ,点P 是⊙O 上的一个动点,那么∠OAP 的最大值是(A )A .30°B .45°C .60°D .90°13.(益阳中考)如图,四边形ABCD 内接于⊙O ,AB 是直径,过C 点的切线与AB 的延长线交于P 点.若∠P =40°,则∠D 的度数为115°.第13题图 第14题图14.(自贡中考)如图,一个边长为4 cm 的等边三角形ABC 的高与⊙O 的直径相等,⊙O 与BC 相切于点C ,与AC 相交于点E ,则CE 的长为3cm .15.(娄底中考)如图,在⊙O 中,AB ,CD 是直径,BE 是切线,B 为切点,连接AD ,BC ,BD.(1)求证:△ABD ≌△CDB ;(2)若∠DBE =37°,求∠ADC 的度数.解:(1)证明:∵AB ,CD 是直径,∴∠ADB =∠CBD =90°.在△ABD 和△CDB 中,⎩⎨⎧AB =CD ,BD =DB ,∴Rt △ABD ≌Rt △CDB(HL ).(2)∵BE 是切线,∴AB ⊥BE.∴∠ABE =90°.∴∠ABD +∠DBE =90°.∵AB 为⊙O 的直径,∴∠ABD +∠BAD =90°.∴∠BAD =∠DBE .∵OA =OD ,∴∠OAD =∠ODA∴∠ADC 的度数为37°.16.(益阳模拟)如图,AC 是⊙O 的直径,四边形ABCD 是平行四边形,AD ,BC 分别交⊙O 于点F ,E ,连接AE ,CF.(1)试判断四边形AECF 是哪种特殊的四边形,并说明理由;(2)若AB 与⊙O 相切于点A ,且⊙O 的半径为5 cm ,弦CE 的长为8 cm ,求AB 的长.解:(1)四边形AECF 是矩形.理由如下:∵AC 是⊙O 的直径,∴∠AEC =∠AFC =90°.∵四边形ABCD 是平行四边形,∴AF ∥EC.∴∠EAF =∠AEC =90°.∴四边形AECF 是矩形.(2)∵AB 与⊙O 相切于点A ,∴∠BAC =90°.∵∠ACE =∠BCA.∴Rt △CAE ∽Rt △CBA.∴CA ∶CB =CE ∶CA ,即10∶CB =8∶10.∴AB =BC 2-AC 2=152.03 综合题17.(丽水中考)如图,在Rt △ABC 中,∠C =90°,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E.(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.解:(1)连接OD,∵DE是⊙O的切线,∴∠ODE=90°.∴∠ADE+∠BDO=90°.∵∠ACB=90°,∴∠A+∠B=90°.∵OD=OB,∴∠B=∠BDO.∴∠ADE=∠A. (2)连接CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线.∴DE=EC.∴AE=EC.∵DE=10,∴AC=2DE=20.在Rt△ADC中,DC=202-162=12.设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,∴x2+122=(x+16)2-202.解得x=9.∴BC=122+92=15.。
九年级数学下--切线的判定与性质专题练习题
![九年级数学下--切线的判定与性质专题练习题](https://img.taocdn.com/s3/m/ded02e2a763231126edb1145.png)
九年级数学下--切线的判定与性质专题练习题1.切线的性质定理:圆的切线垂直于过切点的直径(遇切点,连半径,得垂直);2.切线的判定定理:经过直径的外端..于这条直径的直线是圆的切线...,并且垂直两种题型:(1)“作半径,证垂直”;(2)“作垂线,证半径”即:①通过d=r来证明;②通过垂直来证明A组:1.下列说法中,正确的是( ) A.与圆有公共点的直线是圆的切线B.经过半径外端的直线是圆的切线 C.经过切点的直线是圆的切线D.圆心到直线的距离等于半径的直线是圆的切线2.如下图1,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.3.如上图2,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________________.4、如上图3,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( ) A.70° B.35° C.20° D.40°5.如上图4,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于( ) A.20° B.25° C.30° D.40°6.如下图1,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为( )A.8 B.6 C.5 D.47.如上图2,AB是⊙O的直径,O是圆心,BC与⊙O切于点B,CO交⊙O于点D,且BC=8,CD=4,那么⊙O的半径是______.8.如上图3,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC9、如上图4,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=____度.10、如下图1,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC,BE.若AE=6,OA=5,则线段DC的长为______.11、如下图2,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=________度.12.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.求证:AC是⊙O的切线.13、如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.求证:∠BDC=∠A.14.如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切.15.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于点D ,且∠D =2∠CAD. (1)求∠D 的度数;(2)若CD =2,求BD 的长.16.已知△ABC 内接于⊙O ,过点A 作直线EF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆的切线的性质和判定》课时练习(附答案)【回顾与思考】
现实情境⎧
⎪
⎧
⎪
⎨⎨
⎩
⎪
⎪
⎩
圆的切线的性质--三角形内切圆
应用:d=r
圆的切线的判定
判定定理
圆的切线性质与判定综合应用
【经典例题】
关于三角形内切圆的问题
例1。
如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.130°B.100°C.50°D.65°
【解析】此题解题的关键是弄清三角形内切圆的圆心是三角形内角平分线的交点.
圆的切线性质的应用
例2.已知:如图,AB是⊙O的直径,PA是⊙O的切线,过点B•作BC•∥OP交⊙O于点C,连结AC.
(1)求证:△ABC∽△POA;(2)若AB=2,
PA=2,求BC的长.(结果保留根号)圆的切线的判定
例3。
已知:如图,AB是⊙O的直径,P是⊙O外一点,PA⊥AB,•弦BC∥
OP,请判断
PC是否为⊙O的切线,说明理由.
【点评】本题是一道典型的圆的切线判定的题目.解决问题的关键是一条常用辅助线,即连结OC.
【考点精练】
一、基础训练
1.已知⊙O的半径为8cm,如一条直线和圆心O的距离为8cm,那么这条直线和这个圆的位置关系是()
A.相离B.相切C.相交D.相交或相离
2.如图1,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O的半径为()A.45cm B.25cm C.213cm D.13m
(1)(2)(3)
3.如图2,已知∠AOB=30°,M为OB边上任意一点,以M为圆心,•2cm•为半径作⊙M,•当OM=______cm时,⊙M与OA相切.
4.已知:如图3,AB为⊙O直径,BC交⊙O于点D,DE⊥AC于E,要使DE是⊙O的切线,•那么图中的角应满足的条件为_______(只需填一个条件).
5.如图4,AB为半圆O的直径,CB是半圆O的切线,B是切点,AC•交半圆O于点D,已知CD=1,AD=3,那么cos∠CAB=________.
(4)(5)
6.如图5,BC为半⊙O的直径,点D是半圆上一点,过点D作⊙O•的切线AD,BA⊥DA
于A,BA交半圆于E,已知BC=10,AD=4,那么直线CE与以点O为圆心,5
2
为半径
的圆的位置关系是________.
7.如图,⊙O的半径为1,圆心O在正三角形的边AB•上沿图示方向移动.当⊙O移动到与AC边相切时,OA的长为多少?
8.如图,⊙O是△ABC的内切圆,D、E、F分别是切点,判定△DEF的形状(按角分类),并说明理由.
二、能力提升:
9.如图,直线AB切⊙O于点A,点C、D在⊙O上.
试探求:(1)当AD为⊙O的直径时,如图①,∠D与∠CAB的大小关系如何?•并说明理由.
(2)当AD不为⊙O的直径时,如图②,∠D与∠CAB的大小关系同②一样吗?•为什么?
①②10.如图,⊙O的直径AB=6cm,D为⊙O上一点,∠BAD=30°,过点D的切线交AB•的延长线于点C.
求:(1)∠ADC的度数;(2)AC的长.
11.在图1和图2中,已知OA=OB,AB=24,⊙O的直径为10.
(1)如图1,AB与⊙O相切于点C,试求OA的值;
(2)如图2,若AB与⊙O相交于D、E两点,且D、E均为AB的三等分点,试求tanA 的值.
12.如图,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB•于点M,交BC于点N.
(1)求证:BA·BM=BC·BN;
(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.
13.已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=1
2
,∠CAD=30°.
(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长.
三、应用与探究:
14.已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.(1)在图中作出⊙O;(不写作法,保留作图痕迹)(2)求证:BC为⊙O
的切线;(3)若AC=3,tanB=3
4
,求⊙O的半径长.
15.(2014•德州,第22题10分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.
(1)求AC、AD的长;
(2)试判断直线PC与⊙O的位置关系,并说明理由.
16.(2014•菏泽,第18题10分)如图,AB是⊙O的直径,点C在⊙O上,连接BC,AC,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)若=,求cos∠ABC的值.
参考答案:
例题经典 例1:A 例2:(1)略 (2)BC=
2
3
3 例3:略
考点精练 1.B 2.B 3.4 4.∠B=∠C 5.
32 6.相离 7.233
8.△DEF•是锐角三角形.连结OD 、OE 、OF .综合应用圆的切线性质,四边形内角和定理和圆周角定理.可以证得∠DEF=90°-12∠A ,∠DFE=90°-12∠B ,∠EDF=90°-1
2
∠C . △DEF 的三个内角都是锐角
9.(1)∠D=∠CAB ,理由(略) (2)∠D=∠CAB 作直径AE 、连结CE 由(1)可知:•∠E=∠CAB ,而∠E=∠D ,∴∠D=∠CAB 10.(1)∠ADC 的度数为120° (2)9cm
11.(1)解:连结OC ,∵AB 与⊙O 相切于C 点,∴∠OCA=90°,∵OA=OB ,∴AC=BC=12 在Rt•△ACO 中,OA=
2222125AC OC +=+=13
(2)作OF ⊥AB 于点F 点,连结OD ,∴DF=EF ;AF=AD+DF=8+4=12,在Rt•△ODF 中,OF=222254OD DF -=-=3,在Rt △AOF 中,tanA=31
124
OF AF == 12.(1)证明:连接MN 则∠BMN=90°=∠ACB ,•
∴△ACB ∽△NMB ,∴
BC AB
BM BN
=
,∴AB·BM=BC·BN
(2)解:连接OM ,则∠OMC=90°,∵N 为OC•中点,•∴MN=ON=OM ,∴∠MON=60°,∵OM=OB ,∴∠B=
1
2
∠MON=30°.∵∠ACB=90°,∴AB=2AC=2×3=6 13.(1)证明:如图,连结OA ,因为sinB=
1
2
,所以∠B=30°,故∠O=60°,又OA=OC ,
•所以△ACO是等边三角形,故∠OAC=60°,因为∠CAD=30°,所以∠OAD=90°,所以AD•是⊙O的切线
(2)解:因为OD⊥AB,所以OC垂直平分AB,则AC=BC=5,所以OA=5,•在△OAD
中,∠OAD=90°,由正切定义,有tan∠AOD=AD
OA
,所以AD=53
14.
15.解:(1)①如图,连接BD,∵AB是直径,∴∠ACB=∠ADB=90°,在RT△ABC中,AC===8,
②∵CD平分∠ACB,∴AD=BD,∴Rt△ABD是直角等腰三角形,
∴AD=AB=×10=5cm;
(2)直线PC与⊙O相切,理由:连接OC,∵OC=OA,∴∠CAO=∠OCA,∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠CAE+∠ACE,∵CD平分∠ACB,∴∠ACE=∠ECB,
∴∠PCB=∠ACO,∵∠ACB=90°,∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,OC⊥PC,∴直线PC与⊙O相切.
16.(1)证明:如图,连接O C.∵AD是过点A的切线,AB是⊙O的直径,∴AD⊥AB,∴∠DAB=90°.∵OD∥BC,∴∠1=∠2,∠3=∠4.∵OC=OB,∴∠2=∠4.∴∠1=∠3.在△COD和△AOD中,
,∴△COD≌△AOD(SAS)
∴∠OCD=∠DAB=90°,即OC⊥DE于点C.
∵OC是⊙O的半径,∴DE是⊙O的切线;
(2)解:由=,可设CE=2k(k>0),则DE=3k,∴AD=DC=k.∴在Rt△DAE中,
AE==2
k.∴tanE=
=
.∵在Rt△OCE中,tanE==
.∴
=
,
∴OC=OA=.∴在Rt△AOD中,
OD==
k,∴cos∠ABC=cos∠AOD==
.。