Step Size Adaptation in Evolution Strategies using Reinforcement Learning
多目标进化算法性能评价指标综述
多目标进化算法性能评价指标综述多目标进化算法(MOEA)是一种用于解决多目标优化问题的进化算法。
MOEA通过维护一个个体群体的集合,通过交叉、变异等操作,逐步搜索问题的解空间,以得到一组尽可能好的近似最优解,这些解在不同的目标函数下优化结果良好且彼此之间具有一定的均衡性。
对于多目标进化算法的性能评价,主要包括以下几个方面的指标。
1. 近似最优解集合的质量这是最重要的评价指标之一,主要用于衡量算法是否能够找到一组高质量的非劣解。
在多目标优化问题中,解空间通常非常大,因此算法找到的解集可能只是非劣解的一个近似。
质量好的近似最优解集合应该尽可能接近真正的非劣解集合,并且集合中的解之间应该有较好的均衡性。
2. 支配关系的准确性多目标优化问题中的解往往是通过支配关系进行判断的。
一个解A支配另一个解B,意味着解A在所有目标函数上至少和解B一样好,且在某一个目标函数上更好。
算法找到的解集应该能够正确地判断出解之间的支配关系,并保持非劣解之间的支配关系不变。
3. 外部收敛集的覆盖度外部收敛集是算法找到的近似最优解集合,其覆盖度是衡量算法性能的重要指标之一。
覆盖度越高,说明算法找到的近似最优解集合能够尽可能覆盖真实的非劣解集合。
覆盖度的计算通常通过指标如hypervolume、inverted generational distance等进行。
4. 多样性多样性指的是找到的近似最优解集合中解之间的差异程度。
一方面,算法应该找到尽可能多样的解,以保证搜索过程能够覆盖解空间的各个方向。
解之间应该具有一定的距离,以避免近似最优解集合中过于集中在某个区域。
5. 计算效率和收敛速度算法的计算效率和收敛速度也是评价指标之一。
虽然算法能够找到高质量的近似最优解集合,但如果计算时间过长,就会限制算法的实际应用。
算法应该在保证质量的前提下,尽可能提高计算速度和效率。
多目标进化算法的性能评价指标主要包括近似最优解集合的质量、支配关系的准确性、外部收敛集的覆盖度、多样性以及计算效率和收敛速度。
基于自适应维度选择的记忆进化算法
Vll3 0 -7
・
计
算
机
工
程
2 1 7月 0 1年
J y 01 ul 2 1
NO 1 .3
Co utrEn i e rn mp e g n e i g
人工智能及识别技术 ・ 来自文 缩 1 o 3 8 o ) _ l —o 章 号: 0 _ 4 ( 1 1 _ 8 _ 文 标 码 A 0 2 2 13 o 1 2 献 识 :
[ sr c]T i p prpo oe moy E ouinr g rh Bae n Adp v eet gDi ninME Abtat hs a e rp ssaMe r v lt a Aloi m sd o a t e S lcn me s ( ABAS . tst a tre o y t i i o D) I es he -
M e o y Ev l to a yAl o ih m r o u i n r g rt m
Ba e nAd p i eDi e so e e to , s d 0 a tv m n i n S l c i n
S oNG Da n ( p r n f n o mainM a a e n , n nUnv ri f ia c d o o c , h n s a 1 2 5 C ia De at t f r t n g me tHu a ies yo n n ea n mis C a gh 0 0 , h n ) me o I o t F n Ec 4
DoI 1 .9 9 . s.0 03 2 .0 11 .5 : 03 6/i n1 0 —4 82 1 .30 8 js
1 概述
人类是现实世界 中智 能最 高的生物 种类 ,而人类社会是
进化计算综述
进化计算综述1.什么是进化计算在计算机科学领域,进化计算(Evolutionary Computation)是人工智能(Artificial Intelligence),进一步说是智能计算(Computational Intelligence)中涉及到组合优化问题的一个子域。
其算法是受生物进化过程中“优胜劣汰”的自然选择机制和遗传信息的传递规律的影响,通过程序迭代模拟这一过程,把要解决的问题看作环境,在一些可能的解组成的种群中,通过自然演化寻求最优解。
2.进化计算的起源运用达尔文理论解决问题的思想起源于20世纪50年代。
20世纪60年代,这一想法在三个地方分别被发展起来。
美国的Lawrence J. Fogel提出了进化编程(Evolutionary programming),而来自美国Michigan 大学的John Henry Holland则借鉴了达尔文的生物进化论和孟德尔的遗传定律的基本思想,并将其进行提取、简化与抽象提出了遗传算法(Genetic algorithms)。
在德国,Ingo Rechenberg 和Hans-Paul Schwefel提出了进化策略(Evolution strategies)。
这些理论大约独自发展了15年。
在80年代之前,并没有引起人们太大的关注,因为它本身还不够成熟,而且受到了当时计算机容量小、运算速度慢的限制,并没有发展出实际的应用成果。
到了20世纪90年代初,遗传编程(Genetic programming)这一分支也被提出,进化计算作为一个学科开始正式出现。
四个分支交流频繁,取长补短,并融合出了新的进化算法,促进了进化计算的巨大发展。
Nils Aall Barricelli在20世纪六十年代开始进行用进化算法和人工生命模拟进化的工作。
Alex Fraser发表的一系列关于模拟人工选择的论文大大发展了这一工作。
[1]Ingo Rechenberg在上世纪60 年代和70 年代初用进化策略来解决复杂的工程问题的工作使人工进化成为广泛认可的优化方法。
多基因串联构建进化树的经典文献
多基因串联构建进化树的经典文献1. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783-791.这篇经典文献提出了一种使用bootstrap方法构建进化树并计算置信区间的方法。
作者通过模拟数据集并进行重复抽样,得到了进化树的置信度评估。
2. Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford university press.这本经典教材详细介绍了使用多基因串联数据构建进化树的方法。
作者解释了不同的进化模型和计算方法,并提供了计算进化树的实例和案例研究。
3. Yang, Z. (2006). Computational molecular evolution. Oxford university press.这本经典教材介绍了使用多基因串联数据进行计算机模拟和进化树构建的方法。
作者详细解释了常用的进化模型、计算方法和统计推断,以及如何评估进化树的可靠性。
4. Rannala, B., & Yang, Z. (1996). Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of molecular evolution, 43(3), 304-311.这篇经典文献提出了一种基于贝叶斯统计的方法,用于构建进化树并估计参数。
作者通过模拟数据集,比较了该方法与传统方法的性能,并证明了其在多基因串联数据中的有效性。
5. Wiens, J. J., & Moen, D. S. (2008). Missing data and the accuracy of Bayesian phylogenetics. Journal of Systematics and Evolution, 46(3), 307-314.这篇经典文献探讨了在多基因串联数据中缺失数据的影响,并提出了一种贝叶斯方法来处理缺失数据问题。
介绍遗传算法的发展历程
介绍遗传算法的发展历程遗传算法(Genetic Algorithms,GA)是一种基于自然选择和遗传学原理的优化算法,由美国计算机科学家约翰·霍兰德(John Holland)在20世纪60年代提出。
遗传算法通过模拟自然界的进化过程,利用基因编码表示问题的解,通过交叉、变异等操作来探索解空间并逐步优化求解的过程。
以下是遗传算法发展的主要里程碑:1.早期研究(1960s-1970s):约翰·霍兰德在1960年代提出遗传算法的基本原理,并将其应用于函数优化问题。
他的研究引发了对遗传算法的广泛兴趣,但由于计算能力有限,遗传算法的应用范围较为受限。
2.第一代进化策略(1980s):20世纪80年代,德国科学家汉斯-皮特·舍维尔(Hans-Paul Schwefel)提出了一种基于自然选择的优化算法,称为“进化策略”。
舍维尔的工作开拓了遗传算法的领域,并引入了适应度函数、交叉和变异等基本概念。
3.遗传算法的理论完善(1990s):20世纪90年代,遗传算法的理论基础得到了进一步的完善。
约翰·霍兰德等人提出了“遗传算子定理”,指出在理论条件下,遗传算法可以逐步收敛到最优解。
同时,研究者们提出了多种改进策略,如精英保留策略、自适应参数调节等。
4.遗传算法的应用扩展(2000s):21世纪初,随着计算机计算能力的提高,遗传算法开始在更广泛的领域中得到应用。
遗传算法被成功应用于旅行商问题、网络优化、机器学习等诸多领域。
同时,研究者们在遗传算法的理论基础上,提出了多种变种算法,如基因表达式编码、改进的选择策略等。
5.多目标遗传算法(2024s):近年来,遗传算法的研究重点逐渐转向了解决多目标优化问题。
传统的遗传算法通常只能找到单一最优解,而多目标遗传算法(Multi-Objective Genetic Algorithms,MOGAs)可以同时多个目标的最优解,并通过建立一个解集合来描述问题的全局最优解。
人工智能进化计算
根本遗传算法
initialize the population loop until the termination criteria is satisfied for all individuals of population
sum of fitness += fitness of this individual end for for all individuals of population
9.2 遗传算法
遗传算法〔Genetic Algorithms,简称GA〕是由密 歇根大学的约翰·亨利·霍兰德〔John Henry Holland〕 和他的同事于二十世纪六十年代在对细胞自动机 〔cellular automata〕进展研究时率先提出[2]。在二 十世纪八十年代中期之前,对于遗传算法的研究还仅 仅限于理论方面,直到在匹兹堡召开了第一届世界遗 传算法大会。随着计算机计算能力的开展和实际应用 需求的增多,遗传算法逐渐进入实际应用阶段。1989 年,纽约时报作者约翰·马科夫〔John Markoff〕写了 一篇文章描述第一个商业用途的遗传算法—进化者 〔Evolver〕。之后,越来越多种类的遗传算法出现并 被用于许多领域中,财富杂志500强企业中大多数都用 它进展时间表安排、数据分析、未来趋势预测、预算、 以及解决很多其他组合优化问题。
f(x) C 0max g(x)
当 g( xC )max
其他情况
其中,f(x)为转换后的适应度,g(x)为原适应度,Cmax 为足够所以
首先要有一个解码〔decode〕的过程,
即将二进制串解码为十进制的实数,这
也被称为从基因型〔genotype〕f (x)到 x表2 现
基于帕累托前沿面曲率预估的超多目标进化算法
根据您提供的主题,我们将针对基于帕累托前沿面曲率预估的超多目标进化算法展开深度和广度兼具的文章撰写。
在文章中,我们将从简到繁地探讨帕累托前沿面、曲率预估和超多目标进化算法,帮助您全面理解这一主题。
让我们来了解一下帕累托前沿面的概念。
帕累托最优解是在多目标优化问题中非常重要的概念,它代表了在多个目标中达到最优的一系列解。
在帕累托最优解中,不存在能够同时改善所有目标的解,通常需要进行权衡取舍。
我们将探讨曲率预估在多目标优化中的作用。
曲率预估是一种用来估计帕累托前沿面曲率的方法,它能够帮助算法更好地理解前沿面的性质,从而更有效地搜索最优解。
随后,我们将详细解析超多目标进化算法的原理和应用。
超多目标进化算法是针对多目标优化问题设计的一种进化算法,它通过对帕累托前沿面的曲率进行预估,能够更加准确地搜索出多目标优化问题的解集。
我们将深入讨论超多目标进化算法的优点和局限性,帮助您全面了解这一算法的特点。
在文章的结尾部分,我们将对帕累托前沿面曲率预估的超多目标进化算法进行总结和回顾,让您能够全面、深刻和灵活地理解这一主题。
我们还会共享个人观点和理解,从不同角度对这一主题进行深入思考和探讨。
通过以上方式,我们将按照知识的文章格式撰写一篇深度和广度兼具的中文文章,帮助您更好地理解基于帕累托前沿面曲率预估的超多目标进化算法。
如有需要,我们可以进一步讨论文章的具体内容和结构,以确保最终的文章能够满足您的要求。
期待和您共同探讨这一主题,并撰写一篇有价值的文章。
帕累托前沿面曲率预估的超多目标进化算法在实际应用中具有广泛的应用前景。
通过对帕累托前沿面的曲率进行预估,可以有效地优化多目标优化问题,找到更全面的解决方案。
在本文中,我们将深入探讨帕累托前沿面的概念、曲率预估方法以及超多目标进化算法的原理与应用,以帮助读者更好地理解这一重要的主题。
让我们来进一步了解帕累托前沿面的概念。
帕累托最优解是多目标优化问题的核心概念,它代表了在多个目标中找到最优解的一系列解集。
进化计算综述
进化计算综述1.什么是进化计算在计算机科学领域,进化计算(Evolutionary Computation)是人工智能(Artificial Intelligence),进一步说是智能计算(Computational Intelligence)中涉及到组合优化问题的一个子域。
其算法是受生物进化过程中“优胜劣汰”的自然选择机制和遗传信息的传递规律的影响,通过程序迭代模拟这一过程,把要解决的问题看作环境,在一些可能的解组成的种群中,通过自然演化寻求最优解。
2.进化计算的起源运用达尔文理论解决问题的思想起源于20世纪50年代。
20世纪60年代,这一想法在三个地方分别被发展起来。
美国的Lawrence J. Fogel提出了进化编程(Evolutionary programming),而来自美国Michigan 大学的John Henry Holland则借鉴了达尔文的生物进化论和孟德尔的遗传定律的基本思想,并将其进行提取、简化与抽象提出了遗传算法(Genetic algorithms)。
在德国,Ingo Rechenberg 和Hans-Paul Schwefel提出了进化策略(Evolution strategies)。
这些理论大约独自发展了15年。
在80年代之前,并没有引起人们太大的关注,因为它本身还不够成熟,而且受到了当时计算机容量小、运算速度慢的限制,并没有发展出实际的应用成果。
到了20世纪90年代初,遗传编程(Genetic programming)这一分支也被提出,进化计算作为一个学科开始正式出现。
四个分支交流频繁,取长补短,并融合出了新的进化算法,促进了进化计算的巨大发展。
Nils Aall Barricelli在20世纪六十年代开始进行用进化算法和人工生命模拟进化的工作。
Alex Fraser发表的一系列关于模拟人工选择的论文大大发展了这一工作。
[1] Ingo Rechenberg在上世纪60 年代和70 年代初用进化策略来解决复杂的工程问题的工作使人工进化成为广泛认可的优化方法。
进化算法的缩放因子-概述说明以及解释
进化算法的缩放因子-概述说明以及解释1.引言1.1 概述概述部分的内容可以简要介绍进化算法以及其在优化问题中的应用。
以下是一个例子:进化算法是一种基于生物进化原理的优化方法,它最初由达尔文的进化理论所启发。
进化算法模拟了自然界中物种演化的过程,通过适应度评估、选择、交叉和变异等操作来不断优化解空间中的候选解,以求得问题的最优解或近似最优解。
进化算法在求解复杂优化问题中表现出色,其灵活性和鲁棒性使其成为许多实际问题的有效解决方案。
与传统的优化算法相比,进化算法经常能够找到更好的解决方案,尤其是在高维和非线性问题中。
在进化算法中,缩放因子是一种重要的参数。
缩放因子的选择决定了个体之间变异程度的大小,从而影响进化过程中的搜索空间。
合适的缩放因子能够在保证种群多样性的前提下,有效地探索和利用解空间的局部和全局信息,提高算法的收敛速度和搜索效果。
因此,本文将重点关注进化算法中缩放因子的作用,并探讨缩放因子对算法性能的影响。
通过对现有相关研究进行综述和分析,旨在提供对进化算法中缩放因子的深入理解,并为未来的研究和应用提供有益的参考和指导。
1.2 文章结构本文将分为以下几个部分来讨论进化算法的缩放因子。
首先,在引言部分,我们将概述进化算法的基本原理和缩放因子在进化算法中的作用。
然后,在正文部分,我们将详细介绍进化算法的基本原理,以及缩放因子在进化算法中的具体作用和应用。
在结论部分,我们将分析缩放因子对进化算法性能的影响,并探讨未来研究的方向。
具体而言,正文部分将分为两个小节。
首先,我们将介绍进化算法的基本原理,包括遗传算法、粒子群优化算法等常见的进化算法,并解释它们的工作原理和适应度评估方法。
接下来,我们将重点讨论缩放因子在进化算法中的作用。
我们将介绍缩放因子的定义和计算方法,并探讨其在优化问题中的具体应用。
我们将详细讨论缩放因子如何影响进化算法的搜索能力和收敛速度,并讨论不同类型的缩放因子对进化算法的影响差异。
具有自适应能力的多目标进化优化算法研究
具有自适应能力的多目标进化优化算法研究近年来,随着计算机技术的不断进步,多目标优化算法在解决实际问题中发挥着重要作用。
然而,传统的多目标优化算法往往存在着维数高、解集合非凸以及问题的多样性等特点,导致其在实际应用中的性能较差。
为了克服这些问题,并提高算法的自适应能力,研究者们提出了具有自适应能力的多目标进化优化算法。
具有自适应能力的多目标进化优化算法是一种能够在搜索空间中灵活适应问题特性的进化优化算法。
它通过不断地调整算法的参数和运算子的选择概率,使算法能够更好地适应不同问题的特点。
具体而言,这种算法通常包括了自适应交叉、自适应变异以及自适应选择等操作。
在自适应交叉方面,传统的多目标进化优化算法往往是采用固定的交叉概率。
然而,在不同的问题领域中,交叉概率的选择往往需要根据问题特点进行调整。
因此,具有自适应能力的算法会根据问题的性质动态地调整交叉概率。
一种常见的方法是根据个体适应度的变化情况,通过一定的策略自适应地更新交叉概率。
类似地,自适应变异也是提高算法自适应能力的一个重要方面。
在传统的多目标进化优化算法中,变异概率通常是固定的。
然而,在不同问题的情况下,变异概率的选择也需要进行调整。
具有自适应能力的算法会根据问题的特点,通过一定的策略自适应地更新变异概率。
这样做的目的是保持算法在不同问题领域中的搜索能力,从而更好地找到问题的解集。
此外,自适应选择也是具有自适应能力的多目标进化优化算法的关键之一。
在传统的多目标进化算法中,通常采用非支配排序和拥挤度距离等策略来选择优秀的个体。
然而,这些策略在不同问题的情况下可能不适用。
因此,具有自适应能力的算法会根据问题的特点,通过一定的策略自适应地更新选择策略。
这样做的目的是保持算法在不同问题领域中的选择能力,从而更好地达到多目标优化的目标。
总体而言,具有自适应能力的多目标进化优化算法通过优化交叉、变异和选择操作,能够更好地适应不同问题的特点。
其核心思想是通过动态地调整算法的参数和运算子的选择概率,使算法能够有效地解决多目标优化问题。
托福听力tpo61 lecture1、2、3 原文+题目+答案+译文
托福听力tpo61lecture1、2、3原文+题目+答案+译文Lecture1 (1)原文 (1)题目 (3)答案 (5)译文 (5)Lecture2 (7)原文 (7)题目 (9)答案 (11)译文 (11)Lecture3 (13)原文 (13)题目 (15)答案 (17)译文 (17)Lecture1原文Listen to part of a lecture in a sociology class.Sociology is really a cross disciplinary field.We find that elements of biology, psychology,and other sciences often overlap as we study particular phenomena.So let me introduce a concept from cognitive psychology.Okay,let's say someone asks you to look at a list and memorize as many items on it as you can.Most of us are able to remember,on average,seven items.There are several variations of this memory test.And the results consistently show that the human limit for short term memoryis seven bits of Information.This limit is called channel capacity.Channel capacity is the amount of information that can be transmitted or received over a specific connection,like our brain and the channel capacity for our short-term memory.It has some interesting real-life implications,like phone numbers.Local numbers here in the United States all have seven digits,because the phone companies realized early on that longer numbers would lead to a lot more wrong numbers being dialed.But the idea of channel capacity doesn't apply just to our cognitive abilities.It also affects our relationships with people around us.Psychologists talk about sympathy groups.These are the people,close friends,family to whom we devote the most time.We call or see them frequently,we think about them,worry about them.And studies show for each of us,the size of that group is about10to15people.But why so small?sure.Relationships take time and emotional energy.And most of us don't have unlimited amounts of either.But what if there's another reason?what if it's our brain that setting the limit?And in fact,there's evidence that indicates that our social channel capacity may actually be a function of our brain size,or more accurately,the size of our neocortex.The neocortex is the frontal region in the brain of mammals that's associated with complex thought.Primates have the largest neocortex is among mammals,but among different primate species,humans,apes,baboons, neocortex size varies.A lot of theories have been proposed for these variations.Like maybe it's related to the use of tools,but no theories ever seemed like a perfect explanation.Until the late1990s,what an anthropologist named Robin Dunbar published an article about his studies of primates.Dunbar theory is that if you look at any particular species of primate,you'll find that if it has a larger neocortex that it lives in a larger social group.Take human beings,we have the largest neocortices and we have the largest number of social relationships.So we've said that our sympathy group is10to15people.What about our other relationships other than family and close friends,such as those that occur in the workplace will call these social groups as opposed to sympathy groups?How many relationships can we handle there?Those relationships aren't as involved,so we can handle more of them.But is there an upper limit?well,Dunbar says that there is,and he developed an equation to calculate it.His equation depends on knowing the ratio between the size of the neocortex and the size of the whole brain.That is of the whole brain,what percentage of it is taken up by the neocortex?Once you know the average percentage for any particular species,the equation predicts the expected maximum social group size for that species.For humans,that number seems to be about150. So according to Dunbar’s equation,our social groups probably won't number more than150people.Now,Dunbar’s hypothesis isn't the kind of thing that's easy to confirm in a controlled experiment,but there is anecdotal evidence to support it.As part of his research,Dunbar reviewed historical records for21different traditional hunter gatherer societies.And those records showed that the average number of people in each village was just under150,148.4to be exact.Dunbar also worked with biologists to see if his hypothesis applies to other mammals besides primates. When they looked at meat eating mammals,carnivores,they found that the ones with a larger neocortex also have a bigger social group.And the number of individuals in that group is predicted by Dunbar’s equation supporting his hypothesis. But when they looked at insectivores,mammals that eat insects,the results were inconsistent.The data didn't disprove Dunbar’s hypothesis,but wasn't a nice,neat match like the carnivore studies,which isn't totally surprising.Insectivores are hard to observe,since many of them only come out at night or they spend a lot of time underground.So,we know a lot less about their social relationships.题目1.What is the lecture mainly about?A.The role that the neocortex plays in human memoryB.The connection between neocortex size and social relationships in mammalsC.Various studies that compare social group sizes in humans and other mammalsD.Ways that humans can expand the size of their social groups2.Why does the professor discuss the length of some telephone numbers?A.To show that real-world applications are informed by cognitive psychologyB.To point out an exception to a well-known principle about memoryC.To explain why telephone numbers are used in tests of memoryD.To explain why people often dial the wrong telephone number3.What does the professor imply about the size of a person's sympathy group?A.It closely matches the size of the person's family.B.It becomes larger when a person learns how to feel compassion for others.C.It may not be something a person makes a conscious decision to control.D.It may not be as predictable as the size of the person's social group.4.What did Dunbar's study of the records of some traditional hunter-gatherer societies indicate?A.Hunter-gatherer societies were the first to form social groups.B.Tool usage by humans is related to social group size.C.There is a maximum social group size for humans.D.Hunter-gatherers tend to have smaller-sized social groups.5.What does the professor say that biologists discovered in their research of animals other than primates?A.Dunbar's hypothesis accurately predicts social group sizes for all animals.B.Social group sizes of carnivores are more difficult to predict than those of insectivores.C.Data on insectivore behavior neither support nor contradict Dunbar's hypothesis.D.The size of an animal's neocortex is affected by its diet.6.Why does the professor say this:But why so small?sure.Relationships take time and emotional energy.And most of us don't have unlimited amounts of either.A.To encourage students to spend more time developing relationshipsB.To emphasize that her point is based on personal experienceC.To indicate that she realizes that the students already know the answer to her questionD.To suggest that there is more than one possible response to her question答案B AC C C D译文请听社会学课上的部分内容。
进化树构建参数
进化树构建参数一、概述进化树构建是生物信息学中的一个重要研究领域,它涉及到许多参数的选择和优化。
进化树构建是基于已知序列的演化关系,通过计算分子进化模型的距离或相似度,从而推断不同物种之间的进化关系。
本文将详细介绍构建进化树时需要考虑的参数。
二、参数种类1. 样本选择:样本选择是构建进化树时必须考虑的第一个因素。
样本数量和种类的选择对于构建出准确可靠的进化树至关重要。
2. 进化模型:不同基因序列在演变过程中所遵循的进化模型是不同的,常见有Jukes-Cantor模型、Kimura 2-parameter模型、HKY85模型等。
3. 距离度量方法:距离度量方法包括无权法(UPGMA)、加权法(WPGMA)、最小演化法(ME)、最大简约法(MP)等。
4. 系统发育假设:系统发育假设包括分子钟假说和非分子钟假说两种,分别应用于有无时间信息两种情况下。
5. 支持率阈值:支持率阈值指代各节点的支持率,通常以Bootstrap值或Bayesian后验概率等指标表示。
支持率阈值越高,节点的可靠性越高,但会导致树的拓扑结构出现偏差。
三、参数选择1. 样本选择:样本应该代表各个物种的演化历史,并且应该包含足够数量的序列以减少噪音和随机误差对结果的影响。
2. 进化模型:进化模型应该选择最适合数据集特征的模型。
可以使用模型比较方法(如AIC、BIC等)来确定最优模型。
3. 距离度量方法:距离度量方法应该根据不同数据集和研究问题进行选择。
UPGMA适用于相对简单的数据集,而ME和MP适用于复杂的数据集。
4. 系统发育假设:系统发育假说应该根据具体情况进行选择。
分子钟假说适用于有时间信息的数据集,而非分子钟假说则适用于无时间信息或时间信息不可靠的数据集。
5. 支持率阈值:支持率阈值应该根据具体情况进行选择。
通常建议设置在70%以上。
四、参数优化1. 交叉验证法:交叉验证法可以用来选择最优的进化模型和距离度量方法。
2. Bootstrap分析:Bootstrap分析可以用来评估节点的支持率阈值,并且可以用来检测树的拓扑结构是否稳定。
Non-dominated Sorting Genetic Algorithms (NSGA-II)
Comparative Studies on Micro Heat Exchanger OptimisationTatsuya Okabe,Kwasi Foli,Markus Olhofer,Yaochu Jin,and Bernhard SendhoffHonda Research Institute Europe GmbH,Carl-Legien Strasse30,63073Offenbach/M,Germanytatsuya.okabe,markus.olhofer,yaochu.jin,bernhard.sendhoff@honda-ri.de Honda Research Institute USA Co.,1381Kinnear Road,suite116,Columbus,OH43212,USAkfoli@Abstract-Although many methods for dealing withmulti-objective optimisation(MOO)problems are avail-able[Deb01]and successful applications have been re-ported[Coe01],the comparison between MOO meth-ods applied to real-world problem was rarely car-ried out.This paper reports the comparison betweenMOO methods applied to a real-world problem,namely,the optimisation of a micro heat exchanger(HEX).Two MOO methods,Dynamically Weighted Aggrega-tion(DW A)proposed by Jin et al.[Jin01,Jin01b]andNon-dominated Sorting Genetic Algorithms(NSGA-II)proposed by Deb et al.[Deb00,Deb02],were used forthe study.The commercial computationalfluid dynam-ics(CFD)solver called CFD-ACE+1is used to evalu-atefitness.We introduce how to interface the commer-cial solver with evolutionary computation(EC)and alsoreport the necessary functionalities of the commercialsolver to be used for the optimisation.1IntroductionIn the real world,there are many problems to be optimised.The problems have several objectives which generally con-flict with each other.In general,such problems do not offerone optimal solution.One of the methods for dealing withsuch optimisation problems is Multi-Objective Optimisation(MOO).Many methods for MOO have been proposed in theliteratures[Deb00,Deb01,Deb02,Jin01,Jin01b].Comparative studies of several MOO methods,oftencalled Performance Indices(PIs),have become popular inthe recent years.Many PIs have been proposed for severalpurposes,i.e.accuracy,distribution,spread,efficiency etc.The details can be seen in the recent survey papers,for ex-ample[Zit02,Oka03].With some of PIs,the comparisonof MOO methods were carried out on several test functions,(refer[Oka03]).Thefinal target of the MOO technology is the optimisa-tion of real-world problems to achieve optimal designs,op-timal running conditions etc.However,optimisation shouldnot only contribute to new and innovative designs,but mustand objectives.This section will go into the details of how the two software packages are interfaced to form an optimi-sation software block.Thus,we explain the necessary func-tionalities in this section.Some preliminary results obtained with DW A and NSGA-II and the discussion of these results are presented in Section5and6.Finally,we conclude this paper in Section7.2Related Works2.1Micro Heat Exchanger OptimisationSeveral studies about the application of MOO have been re-ported[Coe01]but little have been published on optimisa-tion of micro heat exchangers.Rhu et al.reported numerical optimisation of a rectan-gular micro-channel heat sink[Rhu02].In this paper,the random search technique[Van84]was used for searching for the optimal solution.Its objective function was the min-imal thermal resistance in the micro-channel heat sink.The channel depth,the channel width,and thefin thickness of micro channel were used as design parameters.They con-cluded that the channel width appears to be the most crucial parameter.Jia,and Sund´e n reported the optimal design of com-pact heat exchanger by an artificial neural network(ANN) [Jia03].With ANN,they built up the model of a compact heat exchanger.In order to minimise the pressure drop in the heat exchanger,they optimised the density and height of fins.The optimisation was also used to maximise the tem-perature of heatedfluid at its outlet in the compact heat ex-changer.In this study the operating conditions were used as the design parameters.No details of the optimisation method are provided in the paper.2.2Multi-Objective OptimisationMany methods for solving multi-objective optimisation have been proposed(see[Deb01]for an overview).Jin et al.[Jin01,Jin01b]proposed DW A(Dynamically Weighted Aggregation)for solving multi-objective optimi-sation problems.In DW A,the aggregation is used as:(1) where and are objective functions.The parameters and are time-dependent weights with.Here,is generation.By changing the weights dynamically according to the generations,DW A can get not only the convex Pareto Front but in many cases also the concave one.This method is very easy to handle and shows good results on several test functions.DW A can work with small population size,that is preferable to be used on a real-world problem.Additionally, by controlling the weight,we can get the preferable part of the Pareto Front instead of the whole Pareto Front.In this paper,we use DW A as one of the multi-objective optimisers. Some theoretical analysis of DW A can be found in[Oka02].As the second multi-objective optimiser,we use NSGA-II(Non-dominated Sorting Genetic Algorithm)proposed by Deb et al.[Deb00,Deb02].This method often shows bet-ter performance than others on several test functions.In NSGA-II,the Crowded Tournament Selection Operator is used.In this selection,individuals are sorted by a non-domination rank atfirst.In the same rank,the crowding distance is used for sorting them.After sorting by the rank and the crowding distance,the best solutions are selected deterministically.Deb proposed two versions of NSGA-II. One is NSGA-II based onfloating alleles with simulated bi-nary crossover(SBX),and the other is with string alleles. Since DW A is based on evolution strategy(ES)withfloat-ing alleles,we use NSGA-II with string alleles.2.3Comparative StudiesRecently,the comparative studies of MOO methods,often called Performance Indices(PIs),become popular[Oka03]. Several performance indices have been proposed in the lit-eratures[Zit02,Oka03].The target of MOO is to get an accurate,well-distributed,and widely spread solution set ef-ficiently.In order to evaluate the solution set from different point of views,several PIs should be used.In this paper,we use the hypervolume index()for the accuracy[Zit98],the index for distribution[Deb00],and the spread index()for spread[Zit00].The index is the area of the dominated region by the solution set,.The schematic image is shown in Figure1. The larger is better.MinFigure1:The definition of index for the minimisation problem.is the area generated by the solution set and the defined origin,which needs to be specified.The index is calculated as follows:Atfirst,the Eu-clidean distance between consecutive solutions in are calculated.After that,the average of dis-tance is calculated.Finally,is calculated according to the following equation:The smaller is better.The index is the Euclidean distance between the endpoints in given by:(8)To predict the thermal performance of the micro heatexchanger,the Navier-Stokes and energy equations weresolved in three dimensions.The above equations weresolved with a commercial CFD software,CFD-ACE+[CFD02].A description of the numerical techniques usedin solving the above equations can be found in[CFD02].In solving the transport equations,the massflow rate andinlet temperature of thefluids entering the channels werespecified,while the gradients of the temperature and veloc-ity components at the exit of the channels were set to zero.Adiabatic boundary conditions were imposed on the wallsand the continuity of the temperature and heatflux was usedas the conjugate boundary conditions to couple the energyequations for the solid andfluid phases.Finally,the no-slipboundary condition was imposed on the velocity compo-nents at the wall.In cases where geometric symmetry existsthe computational domain is simplified as shown marked inFigure2.The nomenclature and suffix are shown in Table1.4Preparation for Optimisation4.1Optimisation Loop with a Commercial Multi-Physics SolverIn order to evaluate the quality of a HEX design several as-pects are taken into account.In thefirst step a model of themicro heat exchanger is generated allowing the parameteri-sation of possible designs.Based on the model and the pa-rameterisation given in a chromosome,the genotype of theTable1:Nomenclature and suffix Symbol(suffix)(suffix)(suffix)(9)Here,and are the pressure drops in the hotgas channel and in the cold gas channel,respectively.Thethird term and the forth are the penalty terms.In the HEX,the pressure drop in both channels has to be less thanPa.If the pressure drop violates this boundary,the penaltywill be added to the objectives.The pressure drops,and,are calculated asfollows:(10)(11)(14)Here,is the number of design parameters.The otherparameters in DW A are shown in Table2.The history of theweights in DW A is described in Figure5.Table2:Parameters in DW A.Number of parentsNumber of offspringsStrategyHeat Transfer Rate * (−1) (W)S u m o f P r e s s u r e D r o p (P a )Figure 6:Final result by DW A (after 2520evaluations).as sine curve .If all individuals in the population are occu-pied by this design,diversity will be lost.In particular,for small population size,this can occur,however increasing the size in our experiments is not possible due to the high computational cost.Design BasisFigure 7:Schematic explanation of the designs based on the same shape.5.2Pareto Front by NSGA-IIWe use NSGA-II with string alleles [Deb00,Deb02].The parameters in NSGA-II are shown in Table 3.Table 3:Parameters in NSGA-II.Number of individualsNumber of bits per one floating valueCrossover Crossover Rate Mutation Mutation Rate50010001500200025000.000.010.020.030.040.050.060.07Number of EvaluationsV a l u e o f M e t r i c Figure 10:The history of index.The solid line is the result of DW A and the dotted line is one of NSGA-II.The result of index [Zit00]is shown in Figure 11.During the whole optimisation,NSGA-II shows higher val-ues than the DW A method.It indicates that the part of the Pareto front which is identified from the DW A method is limited compared to the NSGA-II method.Whereas NSGA-II searches a large region from the be-ginning,DW A seems to focus on some parts.This con-sideration corresponds to Figure 9and 10because if DW A concentrates on some parts,new solutions tend to cover a similar area that is dominated by old solutions.This means that the change of index becomes smaller.Since most of solutions locate in a small region,the deviation of the distance to the neighbours ()becomessmall.Figure 11:The history of index.The solid line is the result of DW A and the dotted line is one of NSGA-II.NSGA-II seems to focus on the whole Pareto front from the beginning in opposite to DW A which may search locally in the beginning.However,the most interesting thing is that the final results are very similar.In the first half of the evaluations the improvement by NSGA-II is fast,but in the last half it becomes slower.On the other hand,DW A can find out new solutions continu-ously.From these results,we may conclude the following:1.NSGA-II based on GA searches a wider region fromthe beginning.2.DW A based on ES searches a smaller region in the beginning.3.NSGA-II finds most solutions in the first half of the optimisation run;the improvement in the second half is slower.4.DW A can find out new solutions continuously.6DiscussionsIn this paper,we used 10control points to express the shape of the boundary with NURBS [Pie97].Although there are some differences,most of solutions on Pareto front are based on the same half of a sine curve.This means that it is very difficult to change the frequency by control points.Generally,the 10control points should be nearly able to rep-resent a sine curve with period 5.However,this is not seen during the optimisation.The reasons may be the difficulty of changing the frequency by the control points.Let’s think about two sets of control points that represent half of the sine curve and a full sine curve.We can easily understand that there is big difference among them because the shape is completely different.Thus,in order to change the shape from half to a full sine curve,most of the control points should change considerably and adjust correctly.However,this task is very difficult and may be impossible for the opti-miser.Thus,if the population achieves the same sine curve,most of them will keep the same sine curves.To overcome this difficulty,the easiest solution is to represent the fre-quency into alleles directly.We also try to optimise the model whose boundaries can be expressed as:Heat Transfer Rate * (−1) (W)S u m o f P r e s s u r e D r o p (P a )Figure 12:Result by NSGA-II.7ConclusionComparative studies of DW A (Dynamically Weighted Ag-gregation)and NSGA-II (Non-dominated Sorting Genetic Algorithm)on the micro heat exchanger optimisation were carried out.At the beginning DW A searches more locally,whereas NSGA-II explores a wider region right from the start.In the end both algorithms perform very similarly both with respect to visual inspection of the Pareto surfaces as well as to the different performance indices we used.Be-sides the comparison,we have seen that the choice of the representation might actually be more important than the choice of the optimisation algorithm.Although the initial NURBS representation can in principle describe sine curves with higher frequency,these are difficult to identify for the algorithm.A representation directly based on the mathe-matical description of sine curves showed partially better results,however,at the expense that only sine curves can be represented.This indicates that a trial-and-error approach might have to be realized to find the best representation which of course is not very desirable.Additionally,in this paper,we also built up the optimisation flow with the com-mercial multi-physics solver and pointed out the necessary functionalities of the commercial solver to be used in the field of EC.AcknowledgementThe authors would like to thank E.K¨o rner,A.Richter,L.Freund and T.Arima for their kind and continuous support.Finally,we want to thank K.Shibata (Wave Front Co.,Ltd.)for his kind support to build up the connection between the CFD part and the optimisation.Bibliography[Apa90]J.B.Aparecido,R.M.Cotta (1990)“Thermally developing laminar flow inside rectangular ducts”,International Journal of Heat Mass Transfer,vol.33,no.2,p.p.341-347.[CFD02]CFD Research Corporation (2002)“CFD-ACE+Theory Manual,Ver-sion 2002”,CFD Research Corporation,215Whynn Drive,Hustsville,AL35805,p.p.12.1-12.22.[Chu01]W.J.Chun (2001)“core PYTHON Programming”,Prentice Hall PTR,Upper Saddle River,NJ 07458.[Coe01]C. A.Coello Coello,D. A.Van Veldhuizen,and G. mont (2001)“Evolutionary Algorithms for Solving Multi-Objective Prob-lems”,Kluwer Academic Publishers.[Deb00]K.Deb,S.Agrawal,A.Pratap and T.Meyarivan (2000)“A Fast Eli-tist Non-dominated Sorting Genetic Algorithm for Multi-objective Opti-mization:NSGA-II”,Proceedings of the Parallel Problem Solving from Nature VI -PPSN VI,p.p.849-858.[Deb01]K.Deb (2001)“Multi-Objective Optimization using Evolutionary Al-gorithms”,John Wiley &Sons,LTD.[Deb02]K.Deb,A.Pratap,S.Agarwal and T.Meyarivan (2002)“A Fast and Eli-tist Multiobjective Genetic Algorithm:NSGA-II”,IEEE Transactions on Evolutionary Computation,vol.6,no.2,p.p.182-197.[Dro97]M.K.Drost,C.J.Call,J.M.Cuta,and R.S.Wegeng (1997)“Mi-crochannel Integrated Evaporator/Combustor Thermal Processes”,Jour-nal of Microscale Thermophysics Engineering,vol.1,no.4,p.p.321-333.[Hol02]J.D.Holladay,E.O.Jones,M.Phelps and J.Hu (2002)“Microfuel pro-cessor for use in a miniature power supply”,Journal of Power Sources 108,p.p.21-27.[Jia03]R.Jia and B.Sund´e n (2003)“Optimal Design of Compact Heat Ex-changers by an Artificial Neural Network Method”,Proceedings of 2003Summer ASME Heat Transfer Conference (to appear).[Jin01]Y .Jin,T.Okabe and B.Sendhoff (2001)“Adapting Weighted Aggre-gation for Multiobjective Evolution Strategies”,Lecture Notes in Com-puter Science 1993,Evolutionary Multi-Criterion Optimization,p.p.96-110.[Jin01b]Y .Jin,M.Olhofer and B.Sendhoff (2001)“Dynamic weighted aggre-gation for evolutionary multi-objective optimization:Why does it work and how?”,Proceedings of the Genetic and Evolutionary Computation Conference GECCO,p.p.1042-1049.[Oka02]T.Okabe,Y .Jin and B.Sendhoff (2002)“On the dynamics of evolu-tionary multi-objective optimisation”,Proceedings of the Genetic and Evolutionary Computation Conference,p.p.247-256.[Oka03]T.Okabe,Y .Jin and B.Sendhoff (2003)“A Critical Survey of Perfor-mance Indices for Multi-Objective Optimisation”,Proceedings of IEEE Congress on Evolutionary Computation -CEC 2003(Accepted).[Pal02]D.R.Palo,J.D.Holladay,R.T.Rozmiarek,C.E.Guzman-Leong,Y .Wang,J.Hu,Y .Chin,R.A.Dagle,and E.G.Baker (2002)“Develop-ment of a soldier-portable fuel cell power system Part I:A bread-board methanol fuel processor”,Journal of Power Sources 108,p.p.28-34.[Pie97]L.Piegl and W.Tiller (1997)“The NURBS Book 2nd Edition”,Springer.[Rhu02]J.H.Rhu,D.H.Choi and S.J.Kim (2002)“Numerical optimisation of the thermal performance of a microchannel heat sink”,International Journal of Heat and Mass Transfer 45,p.p.2823-2827.[Tso98]C.P.Tso and S.P.Mahuikar (1998)“The use of the Brinkman num-ber for single phase forced convictive heat transfer in microchannels”,International Journal of Heat and Mass Transfer 41(12),p.p.1759-1769.[Van84]G.N.Vanderplaats (1984)“Numerical optimization techniques for en-gineering design”,McGraw-Hill.[Wei02]X.Wei,Y .Joshi (2002)“Optimization of stacked micro-channel heat sinks for micro-electronic cooling”,Inter Society Conference On Ther-mal Phenomena,p.p.441-448.[Zit98]E.Zitzler and L.Thiele (1998)“Multiobjective Optimization Using Evolutionary Algorithms -A Comparative Case Study”,Parallel Prob-lem Solving from Nature -PPSN V ,p.p.292-301.[Zit00]E.Zitzler,K.Deb and L.Thiele (2000)“Comparison of Multiobjective Evolutionary Algorithms:Empirical Results”,Evolutionary Computa-tion,vol.8,no.2,p.p.173-195.[Zit02]E.Zitzler,L.Thiele,umanns,C.M.Fonseca and V .Grunert da Fonseca (2002)“Performance Assessment of Multiobjective Optimiz-ers:An Analysis and Review”,Technical Report 139,Computer Engi-neering and Communication Networks Lab (TIK),Swiss Federal Insti-tute of Technology (ETH)Zurich.。
在自适应编码和解码中选择性地使用多个熵模型[发明专利]
专利名称:在自适应编码和解码中选择性地使用多个熵模型专利类型:发明专利
发明人:S·梅若特拉,W-G·陈
申请号:CN200680025810.6
申请日:20060714
公开号:CN101223573A
公开日:
20080716
专利内容由知识产权出版社提供
摘要:此处描述了在自适应编码和解码中选择性地使用多个熵模型的技术和工具。
例如,对于多个码元,音频编码器从包括多个熵模型的第一模型集中选择一熵模型。
多个熵模型中的每一个包括用于切换到包括一个或多个熵模型的第二模型集的模型切换点。
编码器使用所选的熵模型处理多个码元并输出结果。
还描述了用于生成熵模型的技术和工具。
申请人:微软公司
地址:美国华盛顿州
国籍:US
代理机构:上海专利商标事务所有限公司
代理人:陈斌
更多信息请下载全文后查看。
跨视角步态识别中去协变量与特征增强的研究
精品文档供您编辑修改使用专业品质权威编制人:______________审核人:______________审批人:______________编制单位:____________编制时间:____________序言下载提示:该文档是本团队精心编制而成,希望大家下载或复制使用后,能够解决实际问题。
文档全文可编辑,以便您下载后可定制修改,请根据实际需要进行调整和使用,谢谢!同时,本团队为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、学习资料、课堂资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想学习、参考、使用不同格式和写法的资料,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestylematerials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!跨视角步态识别中去协变量与特征增强的探究关键词:跨视角步态识别;协变量;特征增强;PCA;卷积神经网络;局部纹理信息1. 引言步态识别是指利用传感器或者图像处理等技术对人体步态进行自动识别和分类的过程,该技术具有广泛的应用前景,例如人体识别、犯罪侦查、医疗康复等领域。
动物的进化及其规律
Biosphere Ecological system Community Population Individual System Organ Tissue Cell Organelle Molecular Atom Elementary particle
Each level builds on the levels below it
all organisms have a greater reproductive potential than is ever attained
inherited variations arise by mutation
in a constant struggle for existence, those organisms that are least suited to their environment die
Carpodacus rubicilloides
exclusively exploit an alpine plant species that produce highly productive, large seeds
Carpodacus eos
mainly collect small seeds of diverse plants at ground substrates
• It is the source of the diversity of animals
structure and function
• It explains family relationships within animal
groups
Charles Darwin (1809-1882)
Graduated from Cambridge university at age of 22 A five-year voyage on HMS Beagle Galápagos Islands: a group of volcanic inlands 900 km off the coast of Ecuador 1859: Origich
进化算法简析范文
进化算法简析范文进化算法(Evolutionary Algorithm,EA)是一种基于生物进化理论的优化算法,被广泛应用于解决复杂的优化问题。
它通过模拟自然界的演化过程,利用选择、交叉和变异等操作不断优化问题的空间,从而最终找到最优解。
以下是对进化算法的简析。
进化算法的基本思想是模拟自然界的演化过程,其中的个体被编码成染色体,适应度函数用于评估个体的适应性。
算法开始时,通过随机生成一组初始个体构成初始种群,然后根据适应度函数对个体进行评估,并使用选择操作,按照其中一种规则选择出优秀的个体作为父代。
接下来,通过交叉操作将父代个体的染色体片段进行互换,生成一定数量的子代。
最后,对子代进行变异操作,通过改变染色体中的部分基因,引入新的个体。
这样,种群中的每一代都会经历选择、交叉和变异这三个操作,不断地优化空间,最终找到最优解。
进化算法具有一些独特的特点和优势。
首先,进化算法能够全局解空间,在解空间中进行多点,有利于找到全局最优解。
其次,进化算法能够处理复杂的、非线性的优化问题,不需要求解函数的导数信息,适用范围广。
此外,进化算法具有自适应性,能够根据问题的复杂性和种群的适应度动态地调整算法的参数,提高算法的性能。
进化算法的核心操作是选择、交叉和变异。
选择操作主要是根据适应度函数,按照其中一种策略从当前种群中选择个体作为父代,优胜劣汰的原则使得适应度较高的个体具有更大的机会作为父代。
例如,常用的选择操作方法有轮盘赌选择、锦标赛选择和排序选择等。
交叉操作是将选出的父代个体的染色体互换部分基因片段,生成新的子代个体。
通过交叉操作,可以将不同个体的有益信息结合在一起,从而引入新的多样性,增加空间。
最后,变异操作是对子代个体的染色体进行随机的基因改变,引入新的多样性。
变异操作有助于种群跳出局部极小解,并保持种群的多样性。
进化算法还有一些衍生变体,如遗传算法(Genetic Algorithm,GA)、进化策略(Evolution Strategies,ES)和差分进化算法(Differential Evolution,DE)等。
一种基于Transformer模型的特征增强算法及其应用研究
一种基于Transformer模型的特征增强算法及其应用研究
李俊华;段志奎;于昕梅
【期刊名称】《佛山科学技术学院学报(自然科学版)》
【年(卷),期】2024(42)3
【摘要】Transformer模型在自动语音识别(ASR)任务中展现出优秀的性能,但在
特征提取方面存在两个问题:一是模型集中于全局特征交互信息提取,忽略了其他有
用的特征信息,如局部特征交互信息;二是模型对低层特征交互信息的利用不够充分。
为了解决这两个问题,提出了卷积线性映射(CMLP)模块以强化局部特征交互,并设计低层特征融合(LF)模块来融合高低层特征。
通过整合这些模块,构建了CLformer模型。
在两个中文普通话数据集(Aishell-1和HKUST)上进行实验,结果表
明,CLformer显著提升了模型性能,在Aishell-1上较基线提高0.3%,在HKUST上
提高0.5%。
【总页数】8页(P27-34)
【作者】李俊华;段志奎;于昕梅
【作者单位】佛山科学技术学院电子信息工程学院
【正文语种】中文
【中图分类】TP18
【相关文献】
1.基于Transformer和语义增强的人群计数算法
2.基于双阶段Conv-Transformer的时频域语音增强算法
3.基于特征融合与Transformer模型的声音
事件定位与检测算法研究4.DRT Net:面向特征增强的双残差Res-Transformer肺炎识别模型5.特征增强的Sparse Transformer目标跟踪算法
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Step Size Adaptation in Evolution Strategies using Reinforcement Learning Sibylle D.M¨uller,Nicol N.Schraudolph,Petros D.KoumoutsakosInstitute of Computational SciencesSwiss Federal Institute of TechnologyCH-8092Z¨u rich,Switzerlandmuellers,nic,petros@inf.ethz.chAbstract-We discuss the implementation of a learning al-gorithm for determining adaptation parameters in evo-lution strategies.As an initial test case,we consider theapplication of reinforcement learning for determining therelationship between success rates and the adaptation ofstep sizes in the(1+1)-evolution strategy.The resultsfrom the new adaptive scheme when applied to severaltest functions are compared with those obtained from the(1+1)-evolution strategy with a priori selected parame-ters.Our results indicate that assigning good reward mea-sures seems to be crucial to the performance of the com-bined strategy.1IntroductionThe development of step size adaptation schemes for evo-lution strategies(ES)has received much attention in the ES community.Starting from an early attempt,the so-called“1/5 success rule”[1],applied on two-membered ES’s,mutative step size control[2]and self-adaptation schemes[3]were de-veloped,followed by derandomized mutational step size con-trol schemes[4],[5].The latter two methods have become state-of-the-art techniques that are usually implemented in ES’s.These control schemes employing empirical rules and parameters have been proven successful for solving a wide range of real-world optimization problems.We consider replacing a priori defined adaptation rules by a more general mechanism that can adapt the step sizes dur-ing the evolutionary optimization process automatically.The key concept involves the use of a learning algorithm for the online step size adaptation.This implies that the optimiza-tion algorithm is not supplied with a pre-determined step size adaptation rule but instead the rules are evolved by means of learning.As an initial test for our approach,we consider the appli-cation of reinforcement learning(RL)to the1/5success rule in a two-membered ES.In Section2,we present the concept of RL and an overview of algorithms considered for our problem.The combination of RL with the ES is shown in Section3and results are presented in Section4.2Reinforcement LearningReinforcement learning(RL)is a learning technique in which an agent learns tofind optimal actions for the current state by interacting with its environment.The agent should learn aAgentEnvironmentrewardstateactionFigure1:The interaction between environmentand agent in RL.control strategy,also referred to as policy,that chooses the optimal actions for the current state to maximize its cumu-lative reward.For this purpose,the agent is given a reward by an external trainer for each action taken.The reward can be immediate or delayed.Sample RL applications are learn-ing to play board games(e.g.Tesauro’s backgammon[7])or learning to control mobile robots,see e.g.[6].In the robot ex-ample,the robot is the agent that can sense its environments such that it knows its location,i.e.,its state.The robot can decide which action to choose,e.g.,to move ahead or to turn from one state to the next.The goal may be to reach a partic-ular location and for this purpose the agent has to learn a pol-icy.The diagram in Figure1shows the interaction between agent and environment in RL.2.1The Learning TaskThe learning task can be divided into discrete time steps,. The agent determines at each step the environmental state, and decides upon an action.By performing this action,the agent is transferred to a new state and given a reward.This reward is used to update a value func-tion that can be either a state-value function depend-ing on states or an action-value function depend-ing on states and actions.To each state or state-action pair, the largest expected future reward is assigned by the optimal value functions or,respectively.The optimal state-value function can be learned only if both the reward function and the function that describes how the agent is transferred from state to state are explicitely ually,however,and are unknown,In this case, the optimal action-value function can be learned.2.2Temporal Difference LearningIn this paper,we consider only RL methods for which the agent can learn the function,thereby being able to select optimal actions without knowing explicitely the reward func-tion and the function for the state resulting from applying action on state.From this class of TemporalDifference learning(TD),we present two algorithms,namely -learning and SARSA.Both need to wait only until the next time step to determine the increment to.Such techniques,denoted as TD(0)schemes,combine the advan-tages of both Dynamic Programming and Monte Carlo meth-ods[8].The difference between-learning and SARSA lies in the treatment of estimation(updating the value func-tion)and choice of a policy(selecting an action).In off-policy algorithms such as-learning,the choice and the es-timation of a policy are separated.In on-policy algorithms such as SARSA,the choice and the estimation of a policy are combined.Experiments in the“Cliff Walking”exam-ple in[8]compare-learning and SARSA.The results of these experiments indicate that the-learning method ap-proaches the goal faster but it fails more often than SARSA. Focussing more on safety than on speed,we decided to im-plement SARSA for our online learning problem presented in the next section.It should be noted that the convergence of SARSA(0)was proven only recently[10].The SARSA pseudocode reads as shown in Figure2[8].Initialize arbitrarily.Repeat(for each episode):Initialize.Choose from using policy derived fromusing e.g.an-greedy selection scheme.Repeat(for each step of episode):Take action,observe,.Choose from using policy fromusing e.g.an-greedy selection scheme.until is terminal.Figure2:The SARSA algorithm2.3Learning ParametersSARSA employs three learning parameters:is a learning rate,a discount factor,and a greediness parameter.Con-stant learning rates cannot be used because we have to deal with a non-deterministic environment.For the considered problem,a learning rate ofIn the RL-ES,the lower bound for the step size is set to while the upper bound is set to based on our expe-rience about useful step size limits.If the limits are exceeded, the reward is set to-1.From our experiments,defining proper limits turned out to be a crucial factor.In the following subsections,we discuss the results for dif-ferent ways to define a reward measure.ProblemSph1DSph20DRos2DTable1:Number of iterations until convergence is reached for the(1+1)-ES.Results are averaged over30runs,and the convergence rate is1.0for all problems.Problem RL-ES(Method2)(conv.rate;) Sph1D(1.00;)Sph5D(0.98;)Sph20D(0.92;)Sph80D(1.00;)Ros2D(0.99;)Ros5D(1.00;) Table2:Number of iterations until convergence is reached for two methods of(1+1)-RL-ES.Method1(described in Section 4.1)denotes the original reward definition in terms of a suc-cess rate increase or decrease while method2(described in Section4.2)uses as a reward measure the difference in func-tion values between the current and the last reward computa-tion.Results are averaged over1000runs for the sphere and over30runs for Rosenbrock’s function.4.1Method1In afirst approach called method1,the reward from the en-vironment is defined to be either+1if the success rate has increased,0if the success rate did not change,or-1if the success rate decreased.For the sphere,this RL-ES method converges about3to 7times slower than using the(1+1)-ES.For Rosenbrock’sfunction,the RL-ES achieves an iteration number about one order of magnitude worse than the(1+1)-ES.Note that for both functions,the RL-ES is extremely un-robust.Convergence rates as low as50%are unacceptable. From our investigation on the sphere function,the basic prob-lem is that with the selected scheme no information is avail-able if the success rate is zero.When the strategy is in a state of zero success,it often either oscillates between choosing theactions“increase”and“decrease”or it gets stuck by always choosing the action“keep”.A no-success run usually hap-pens if the values are initialized such that in thefirst phase of the optimization the step size is increased.This causes a zero success rate and often yields one of the two behaviorsdescribed above.Another interesting feature is the table at the end of the optimization and the table.From the1/5suc-cess rule,we would expect a value table as shown for the 1D case in Table3.Note that“+”denotes the highest value per row.Success rate Action:Action:increase keep 0,12+3,4,5,6,7,8,9,10+Table3:Schema of the value table as it should look if the 1/5success rule is learnt.The“+”denotes the highest value per row.As it turns out,such a structure in the actual table at the end of the optimization using RL-ES may be found but it may as well be structured differently without much change in terms of convergence speed.One example for an actually obtained table(Table4)and table(Table5)is shown below for the optimization of a1D sphere function that took 108generations.The*symbol indicates that the state-action pair was not visited during the optimization and the highest values are in bold face.Note that for success rates between 0.4and1.0no learning has taken place.Then,the values are the initialized values.The highest values are found for the action“decrease”when the success rates are0,0.1,and 0.2.The action“increase”is assigned the highest value for a success rate of0.3.Except for a success rate of0.2, the obtained values match our expectations from the1/5 success rule.The number of visits for each state-action pair also reflect that the correct actions(according to the1/5rule) have been selected in this particular case.Changing the initialization of the table from uniformly random numbers in the range[-1,1]to zero values did not have any effect on the results.When we compare the reward assignment in method1 with the1/5success rule,we observe that our definition isSuccess rate Action:Action:increase keep 0*-0.7150200.39038610.3298870.0174612-0.340735*0.45193130.008306*-0.563195 4,5,6,7,8,9,10** Table4:values for a converged optimization using RL-ES after108generations.The*symbol indicates that the state-action pair was not visited during the optimization.The highest values are in bold face.Success rate Action:Action:increase keep0*021322*0*0313*0 4,5,6,7,8,9,10*0*0 Table5:Number of visits for a converged optimization using RL-ES after108generations.The*symbol indicates that the state-action pair was not visited during the optimiza-tion.The highest values are in bold face.ill-posed.Recall that the1/5rule aims at an optimum success rate of0.2.In contrast,the definition in method1assigns a positive reward whenever the success rate is increased even if the success rate is.Despite this ill-posed reward as-signment,the results for the sphere are not affected so much because success rates larger than0.2are achieved less often than success rates.However,for Rosenbrock’s func-tion,the difference matters.4.2Method2In a second approach,we define as reward the difference be-tween the current function value and the function value eval-uated at the last reward computation,(2) where is the difference in generations for which the re-ward is computed.This reward assignment,referred to as method2in the following,is better than the initial reward computation in both the convergence speed and rate.Values are given in Table2.Although better than the original reward computation in terms of speed,this RL-ES remains slower by a factor of about3than the(1+1)-ES.A factor of3seems rea-sonable given the fact that the RL-ES has to learn which of the three actions to choose.Especially the convergence rate is noteworthy:It lies in the range[0.92,1.0],which is a great improvement compared with method1.Why is method2better than method1in terms of the con-vergence rate?One reason might be that the reward assign-ment in method1is ill-posed as stated earlier.Another reason is that the second reward assignment is related to the defini-tion of the progress rate,at least for the sphere function: The progress rate is defined[9]as(3) For the sphere function,,with the optimum at,we have thatFor the sphere,the progress rate is the difference between the square roots of function values,a result similar to the reward assignment in Eqn.2.The results in Table6document the behavior of the strat-egy with the reward identified as the theoretical progress rate .The theoretical results agree well with method2which strengthens our assumption that method2works well because it indirectly incorporates information about the optimal pa-rameter vector.In summary,assigning a good reward measure seems to be crucial to the performance of the RL-ES.Problem(conv.rate;) Sph1D(1.00;)Sph5D(0.98;)Sph20D(0.90;)Sph80D(0.98;)Ros2D(1.00;)Ros5D(1.00;) Table6:Number of iterations until convergence is reached for the(1+1)-RL-ES method which employs the theoretical progress rate as reward,as described in Section4.2.Results are averaged over1000runs for the sphere and over30runs for Rosenbrock’s function.4.3Methods with Optimum-Independent Reward Assign-mentsAs seen above,defining the reward as the theoretical progress rate is a good measure.However,the theoretical progress rate assumes knowledge about the optimum that is usually unknown.How can we formulate a suitable reward that ap-proximates the theoretical progress rate using only values that can be measured while optimizing?We can consider two pos-sible forms,namelyForm1:The sign of the difference between function values,:It describes if the realized step,,points in the half space in which the optimum lies.Form2:The realized step length,.It is anapproximation of the theoretical progress rate. Method3employs only thefirst form,(4) while method4combines both forms,(5) Results of the two methods are summarized in Table7.Problem RL-ES(Method4)(conv.rate;) Sph1D(1.00;)Sph5D(0.99;)Sph20D(0.94;)Sph80D(1.00;)Ros2D(1.00;)Ros5D(1.00;) Table7:Number of iterations until convergence is reached for methods3and4of(1+1)-RL-ES,as described in Section 4.3.Results are averaged over1000runs for the sphere and over30runs for Rosenbrock’s function.For the sphere problem,the convergence speeds of meth-ods3and4are similar and they are in the same range as with method2.For Rosenbrock’s function,method3is worse than methods2and4,while2and4yield similar convergence speeds.The convergence rates of methods2and4are almost the same while method3optimizes less reliably especially for Rosenbrock’s problem.In summary,method4seems to be better than3and compares well with method2in which information about the optimum is contained.From these pre-liminary results that are problem dependent,we propose the fourth method as a reward assignment for RL-ES.4.4Action-Selection SchemeHow is the choice of the action-selection parameter influ-encing the convergence speed?The average number of itera-tions to reach the goal in the1D sphere problem as a function of is shown in Table8.The number of iterations is averaged over1000runs,and.For all values,the success rate is in the range[0.68,0.72]for method1and[0.66,1.0] for method2.Optimum strategy parameter for the consid-ered cases lie close to for method1and for method2.However,these results are not conclusive.Method2:Average numberof iterations1.030660.53270.13490.054570.016770.001901 Table8:Influence of on the average number of iterations for the1D sphere function,measured in1000runs and.5Summary and ConclusionsWe propose an algorithm that combines elements from step size adaptation schemes in evolution strategies(ES) with reinforcement learning(RL).In particular,we tested a SARSA(0)learning algorithm on the1/5success rate in a (1+1)-ES.Heuristics in the(1+1)-ES were reduced and re-placed with a more general learning method.The results in terms of convergence speed and rate,measured on the sphere and Rosenbrock problem in several dimensions,suggest that the performance of the combined scheme(called RL-ES)de-pends strongly on the choice of the reward function.In par-ticular,the RL-ES with a reward assignment based on a com-bination of the realized step length and the sign of the func-tion values yields the same convergence rate(100%)as the (1+1)-ES and its convergence speed is smaller than that of the(1+1)strategy by a factor of about3for both sphere and Rosenbrock’s function,a result that meets our expectations.Future work may answer the question whether the pro-posed reward computation can be generalized for non-tested optimization problems.Bibliography[1]Rechenberg,I.,”Evolutionsstrategie:Optimierungtechnischer Systeme nach Prinzipien der biolo-gischen Evolution,”Fromann-Holzboog,Stuttgart,1973.[2]Rechenberg,I.,”Evolutionsstrategie’94,”Fromann-Holzboog,Stuttgart,1994.[3]B¨a ck,Th.:”Evolutionary Algorithms in Theory andPractice,”Oxford University Press,1996.[4]Hansen,N.,Ostermeier, A.,”Adapting ArbitraryNormal Mutation Distributions in Evolution Strate-gies:The Covariance Matrix Adaptation,”Proceed-ings of the IEEE International Conference on Evolu-tionary Computation(ICEC’96),pp.312-317,1996.[5]Hansen,N.,Ostermeier,A.,”Convergence Propertiesof Evolution Strategies with the Derandomized Co-variance Matrix Adaptation:The-CMA-ES,”Proceedings of the5th European Congresson Intelligent Techniques and Soft Computing(EU-FIT’97),pp.650-654,1997.[6]Mahadevan,S.,Connell,J.,”Automatic program-ming of behavior-based robots using reinforcementlearning,”Proceedings of the Ninth National Confer-ence on Artificial Intelligence,Anaheim,CA,1991.[7]Tesauro,G.,”Temporal difference learning and TD-Gammon,”Communications of the ACM,38(3),pp.58-68,1995.[8]Sutton,R.S.,Barto,A.G.,”Reinforcement Learning–An Introduction,”MIT Press,Cambridge,1998.[9]Schwefel,H.-P.,”Evolution and Optimum Seeking,”John Wiley and Sons,New York,1995.[10]Singh,S.,Jaakkola,T.,Littman,M.L.,Szpes-vari,C.,”Convergence Results for Single-Step On-Policy Reinforcement-Learning Algorithms,”Ma-chine Learning,1999.[11]Mitchell,T.M.,”Machine Learning,”McGraw-Hill,1997.。