江苏省昆山市锦溪中学九年级数学下册 第七章 锐角三角函数检测卷 苏科版
初中数学 江苏省昆山市锦溪中学九年级数学下册 第七章 锐角三角函数复习检测卷及答案 苏科版
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图,在Rt△ABC中,∠C=90°,AB=2BC,则 sin B的值为( )A. B. C. D.1试题2:在Rt△ABC中,∠C=900,若sin A=,则BC:AC:AB等于 ( ) A.1:2:5 B.1:: C.1::2 D.1:2:试题3:如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为( )A.B. C. D.评卷人得分试题4:若∠A=50°,则cosA的大致范围是 ( )A.0<cosA<1 B.<cosA<C.<cos A< D.<cos A<1试题5:如图,梯形ABCD中,AD∥BC,∠B=45°,∠D=120°,AB=6cm,则DC的长为 ( ) A.2 cm B.2 cm C.4 cm D.4 cm试题6:如图折叠直角三角形纸片的直角,使点C落在斜边AB上的点E处,已知AB=8,∠B=30°,则DE的长是 ( )A.6 B.4 C.4 D.2试题7:从小明家到学校有两条路,一条沿北偏东45度方向可直达学校前门,另一条从小明家一直往东,到商店处向正北走200米,到学校后门,若两条路的路程相等,学校南北走向,学校的后门在小明家北偏东67.5度处,学校从前门到后门的距离是 ( )B.200米 C.200米 D.200米A .200米如图,一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s (米)与时间t(秒)间的关系为s=10t+2t2,若滑到坡底的时间为6秒,则此人下降的高度为 ( )A.132 m B.44 m C.66 m D.32 m试题9:在△ABC中,若∠C=90°,cos A=,则tan A=_______.试题10:若cos 32°27'=0.8439,sin a =0.843 9,则锐角a=_______。
初中数学江苏省昆山市锦溪中学九年级数学下册 第七章 锐角三角函数单元提高卷 及答案 苏科版
xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:如图1,在Rt△ABC中,∠ACB=Rt∠,BC=1,AB=2,则下列结论正确的是( )A. B. tanA=C. D. ta nB试题2:已知∠A是锐角,且,那么∠A等于 ( )A. 30°B. 45°C. 60°D. 75°试题3:已知a为锐角,则的值 ( )A . m>l B. m=1 C. m<1 D. 1试题4:化简:( )A . B. C. D.试题5:如图2,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为( )A. B. C.D.试题6:已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AC等于( )A. 6B.C. 10D. 12试题7:如图3,已知⊙O的半径为5cm,弦AB的长为8cm,P是AB延长线上一点.BP=2cm,则tan∠OPA等于 ( )A. B.C. 2D.试题8:直角三角形纸片的两直角边长分别为6,8,现将△ABC如图4那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是( )A.B.C.D.试题9:在Rt△ABC中,∠ACB=90°,,则.试题10:在△ABC中,若,则∠C=度.试题11:Rt△ABC中,∠C=90°,若tanB=,,则.试题12:在△ABC中,若∠A=30°,∠B=45°,AC,则BC=.试题13:某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为5米,则这个坡面的坡度为.试题14:如图5,在坡形屋顶的设计图中,AB=AC,屋顶的宽度BC为10米,坡角为30°,则坡形屋顶的高度h为米.(≈1.732,结果保留三位有效数字)试题15:如图6所示,小华同学在距离某建筑物6米的点A处测得广告牌B点、C点的仰角分别为52°和35°,则广告牌的高度BC为米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)试题16:如图7,Rt△ABC中,∠ACB=90°,AC=4cm,AB=5cm,点D是AB的中点,则cos∠ACD=.试题17:计算:试题18:由下列条件解直角三角形:在Rt△ABC中,∠C=90°:(1)已知c=20,∠A=45°;(2)已知=12,∠B=60°.试题19:如图8,△ABC内接于圆O,若圆的半径是2,AB=3,求sinC.试题20:如图9,河流两岸a,b互相平行,C,D是河岸a上间隔50 m的两根电线杆.某人在河岸b上的A处测得∠DAB=30°,然后沿河岸走了100 m到达B处,测得∠CBF =60°,求河流的宽度CF的值.(结果精确到个位)试题21:如图10,在某广场上空飘着一只气球P,A,B是地面上相距90米的两点,它们分别在气球的正西和正东,测得仰角∠PAB=45°,仰角∠PBA=30°,求气球P的高度.(精确到0.1米,≈ 1.732)试题22:如图11,斜坡AC的坡度(坡比)为1:,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.试题23:在学习实践科学发展观的活动中,某单位在如图12所示的办公楼靠街的墙面上垂挂一长为30米的宣传条幅AE,张明同学站在离办公楼的地面C处测得条幅顶端A的仰角为50°,测得条幅底端E的仰角为30°.问张明同学是在离该单位办公楼水平距离多远的地方进行测量的?(精确到整数米)(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20,sin30°=0.50,cos30°≈0.87,tan30°≈0.58),试题1答案: D试题2答案: C试题3答案: A试题4答案: B试题5答案: B试题6答案: A试题7答案: D试题8答案: C试题9答案:试题10答案:90°试题11答案:试题12答案:2试题13答案:1:试题14答案:2.89试题15答案:3.5试题16答案:试题17答案:;试题18答案:(1) ∠B=45°,a=10,b=10(2) ∠A=30°, a=4,b=,c=8;试题19答案:试题20答案:43 m试题21答案:32.9米;试题22答案:6米;试题23答案:48米。
江苏省昆山市锦溪中学九年级数学下册 第七章 锐角函数整章水平测试 苏科版
AD CB DA D 'CB 锐角函数一、精心选一选1、若Rt△ABC 的各边都扩大3倍,得到Rt△A /B /C /,那么锐角A 、A /的正弦值的关系为( )A 、sinA /=4sinA ;B 、4sinA /=sinA ;C 、sinA /=sinA ;D 、不能确定; 2、已知Rt△ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( )A 、32sin =B ;B 、32cos =B ;C 、32tan =B ;D 、以上都不对; 3、已知△ABC 中,∠C=900,∠A、∠B、∠C 的对边分别为c b a ,,,且a b 2=,则cosA 的值为( )A 、5;B 、552;C 、55;D 、25; 4、如图,在R t△ABC 中,∠ACB=900,CD⊥AB 于点D , BC=3,AC=4,tan∠BCD 的值为( )A 、43;B 、34;C 、54;D 、45;5、若a =tan280,b =sin280,c =cos280,则a 、b 、c 的大小关系是( )A 、a >b >c ;B 、b >c >a ;C 、c >a >b ;D 、c >b >a ; 6、下列各式中,正确的是( )A 、sin200+sin300=sin500;B 、sin600=2sin300; C 、tan200﹒tan700=1;D 、cos300<cos600;7. 等腰三角形一腰上的高与腰长之比为1:2,则等腰三角形的顶角的度数是( )A 、300;B 、1500;C 、600或1200;D 、300或1500; 8. 已知sinA+cosA=m ,sinAcosA=n ,则m ,n 的关系是( )A 、m=n ;B 、m=2n+1;C 、m 2=1-2n ;D 、m 2=2n+1;二、细心填一填9、如果∠A 是锐角,且53sin =A ,则=-)90sin(0A _______. 10、sin 2300+cos 2300=__________. 11、反比例函数xk y =的图象经过点(cos600,tan450),则k =____. 12、如图,已知正方形ABCD 的边长为5,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D /点处,那么tan∠BAD /= _________。
苏科版九年级下《第七章锐角三角函数》单元检测试题(含答案)
2017-2018学年度第二学期苏科版九年级数学下册第七章锐角三角函数单元检测试题考试总分: 120 分考试时间: 120 分钟一、选择题(共 10 小题,每小题 3 分,共 30 分)1.已知锐角满足,则锐角的值为()A. B. C. D.2.直升飞机在离地面米的上空测得上海东方明珠底部的俯角为,此时直升飞机与上海东方明珠底部之间的距离是()A.米B.米C.米D.米3.已知,下列各式:、、由小到大排列为()A. B.C. D.4.在中,∠,,,且,则∠的度数为()A. B. C.′ D.′5.如图,小明为了测量其所在位置点到河对岸点之间的距离,沿着与垂直的方向走了米,到达点,测得∠,那么等于()A.米B.米C.米D.米6.数学活动课上,小敏、小颖分别画了和,数据如图,如果把小敏画的三角形面积记作,小颖画的三角形面积记作,那么你认为()A. B.C. D.不能确定7.如图,在中,∠,∠,,则的值为()A. B. C. D.8.一根竹竿长米,先像靠墙放置,与水平夹角为,为了减少占地空间,现将竹竿像′′放置,与水平夹角为,则竹竿让出多少水平空间()A. B.C. D.9.在中,∠,把∠的邻边与对边的比叫做∠的余切,记作.则下列关系式中不成立的是()A. B.C. D.10.如图,已知一商场自动扶梯的长为米,高度ℎ为米,自动扶梯与地面所成的夹角为,则的值等于()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如图,从点测得树的顶端的仰角为,米,则树高________米(结果精确到米).计算:________(结果保留根号).12.如图,在四边形中,∠,∠,∠,∠,.则的长________.13.如图,在中,是斜边上的中线,已知,,则的值是________.14.如图,小明要测量河内小岛到河边公路的距离,在点测得∠,在点测得∠,又测得米,则小岛到公路的距离为________米.15.新平县城在“旧城改造”中,计划在城内一块如图所示空地上,种植草皮美化环境,已知这种草皮每平米要元,买这种草皮至少需________元.16.如图,小刚同学在广场上观测新华书店楼房墙上的电子屏幕,点是小刚的眼睛,测得屏幕下端处的仰角为,然后他正对屏幕方向前进了到达处,又测得该屏幕上端处的仰角为,延长与楼房垂直相交于点,测得,则该屏幕上端与下端之间的距离为________.17.一棵树因雪灾于处折断,测得树梢触地点到树根处的距离为米,∠约,树干垂直于地面,那么此树在未折断之前的高度约为________米.(答案保留根号)18.如图,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离为米,此时梯子的倾斜角为.若梯子底端距离地面的垂直距离为米,梯子的倾斜角为.则这间房子的宽是________米.19.如图是拦水坝的横断面,斜坡的水平宽度为米,斜面坡度为,则斜坡的长为________.20.如图所示,为了测量山的高度,在水平面处测得山顶的仰角为,自沿着方向向前走,到达处,又测得山顶的仰角为,则山高为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.计算:如图,在中,∠,,,于点,求的长.22.如图,要测量点到河岸的距离,在点测得点在点的北偏东方向上,在点测得点在点的北偏西方向上,又测得.求点到河岸的距离.(结果保留整数)(参考数据:,)23.近年来,亚丁湾索马里海域海盗猖獗,严重威胁过往船只的安全,经联合国授权,中国派舰队前往护航.某日,在处的“武汉”号驱逐舰发现正北方向海里的处有一艘海盗船沿直线靠近一艘货船,测得在的南偏西的方向上,为在最短时间内堵截住海盗船,驱逐舰应沿什么方向航行?最少须行驶多少海里(精确到海里)?24.如图,拦水坝的横断面为梯形,坝高米.坝面宽米.根据条件求:斜坡的坡角;坝底宽和斜坡的长(精确列米).25.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时,箱底端点与墙角的距离为,∠.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时,箱底端点与墙角的距离为,∠.箱盖绕点转过的角度为________,点到墙面的距离为________;求箱子的宽(结果保留整数,可用科学计算器).(参考数据:,)26.如图,在直角梯形中,,,,,∠,等边(为固定点)的边长为,边在直线上,.将直角梯形绕点按逆时针方向旋转到①的位置,再绕点按逆时针方向旋转到②的位置,如此旋转下去.将直角梯形按此方法旋转四次,如果等边的边长为,求梯形与等边三角形的重叠部分的面积;将直角梯形按此方法旋转三次,如果梯形与等边三角形的重叠部分的面积是,求等边的边长的范围.将直角梯形按此方法旋转三次,如果梯形与等边三角形的重叠部分的面积是梯形面积的一半,求等边的边长.答案1.D2.C3.C4.B5.B6.C7.D8.A9.D10.A11.,.12.13.14.15.16.17.18.19.20.21.解:;∵在中,∠,,,∴,∴,∵,∴,∴.22.解:过点作于点,设.在中,∵∠,∠,∴.在中,∵∠,∠,∴.∵,∴,∴.即点到河岸的距离约为.23.解:过作,∵∠,∴∠,∴驱逐舰应沿北偏西方向航行.∵海里,∴(海里).∴最少须行驶海里.24.解:作于点,于点,∵∠,∴∠;∵坝高为米,∴,∵,′,∴,,∴米,,∴米,米.25.26.解:过点作,垂足为,∵,∠,∴∠,∴,,∴,又∵梯形为直角梯形,∴∠∠而∠,∴四边形为矩形,∴,∴,又∵,∴点与重合,∵,又∵,∴直角梯形与等边三角形的重叠部分即为整个直角梯形,.∴重叠部分过点作交于点,交于占,则为等边三角形,过点作,垂足为,在中∠,∠,∴∠∠,∴,∴,,∴,而,梯形重叠部分面积,∴梯形在中,∠,,∴,,,∴,∴等边的边长的范围为:,如图:,中,,∠,∴的面积为:,∴的面积的面积(梯形面积的一半),等边三角形的一边应落在与之间,如图所示,等边的边长为,面积为,∵,∴,∴,设,则,而四边形的面积为梯形的面积的一半,即,在中,,∠,∴,∴,∴,∴,∴(负值舍去),,即此时等边三角形的边长为:.。
苏科版九年级数学下册《第七章锐角三角函数》单元评估检测试卷(有答案)
苏科版九年级数学下册第七章锐角三角函数单元评估检测试卷一、单选题(共10题;共30分)1.在Rt△ABC中,∠C=90°,AC=4,AB=5,则sinB的值是()A. B. C. D.2.在中,∠°, ∠°,AB=5,则BC的长为( )A. 5tan40°B. 5cos40°C. 5sin40°D.°3.在△ABC中,若|sinA-|+(cosB-)2=0,则∠C的度数是()A. 30°B. 45°C. 60°D. 90°4.已知Rt△ABC中,∠C=90°,AC=3,BC=4,则cosA的值为()A. B. C. D.5.若,则锐角等于()A. 15°B. 30°C. 45°D. 60°6.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=()A. B. 1 C. D.7.已知,在Rt△ABC中,∠C=90°,BC=12,AC=5,则cosA的值是()A. B. C. D.8.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=2,BC=1,则sin∠ACD=()A. B. C. D.9.已知等腰△ABC的周长为36cm,底边BC上的高12cm,则cosB的值为( )A. B. C. D.10.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1B,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A5的坐标为( )A. (16,0)B. (12,0)C. (8,0)D. (32,0)二、填空题(共10题;共30分)11.在Rt△ABC中,∠C=90°,sinA= ,那么cosA=________.12.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为________米.(°,°)13.如图,若点A的坐标为,,则sin∠1=________.14.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为________ m(结果保留根号).15.如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC= ,AC=6,则BD的长是________.16.如图,在一次测绘活动中,某同学站在点A观测放置于B,C两处的标志物,数据显示点B在点A南偏东75°方向20米处,点C在点A南偏西15°方向20米处,则点B与点C的距离为________ 米.17.在Rt△ABC中,∠C=90°,BC=2,AC=1,现给出下列结论:①sinA=;②cosB=;③tanA=2;④sinB=,其中正确的是________18.在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,BC=2 ,则AB=________.19.如图,在5×5的正方形网格中,△ABC的三个顶点A,B,C均在格点上,则tanA的值为________20.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b 和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(),那么点A n的纵坐标是________.三、解答题(共8题;共60分)21.计算:°°.22.如图,为了求某条河的宽度,在它的对岸岸边任意取一点A,再在河的这边沿河边取两点B、C,使得∠ABC=45°,∠ACB=30°,量得BC的长为40m,求河的宽度(结果保留根号).23.图1是一辆吊车的实物图,图2是其工作示意图,是可以伸缩的起重臂,其转动点离地面的高度为.当起重臂长度为,张角∠为时,求操作平台离地面的高度(结果保留小数点后一位;参考数据:,,).24.如图,长方形广告牌架在楼房顶部,已知CD=2m,经测量得到∠CAH=37°,∠DBH=60°,AB=10m,求GH的长.(参考数据:tan37°≈0.75,≈1.732,结果精确到0.1m)25.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1cm)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.414)26.如图,某河大堤上有一颗大树ED,小明在A处测得树顶E的仰角为45°,然后沿坡度为1:2的斜坡AC 攀行20米,在坡顶C处又测得树顶E的仰角为76°,已知ED⊥CD,并且CD与水平地面AB平行,求大树ED的高度.(精确到1米)(参考数据:sin76°≈0.97,cos76°=0.24,tan76°≈4.01,=2.236)27.如图,在航线l的两侧分别有观测点A和B,点B到航线l的距离BD为4km,点A位于点B北偏西60°方向且与B相距20km处.现有一艘轮船从位于点A南偏东74°方向的C处,沿该航线自东向西航行至观测点A的正南方向E处.求这艘轮船的航行路程CE的长度.(结果精确到0.1km)(参考数据:≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)28.(2017•黔东南州)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】A5.【答案】B6.【答案】A7.【答案】C8.【答案】B9.【答案】D10.【答案】A二、填空题11.【答案】12.【答案】6013.【答案】14.【答案】10 +115.【答案】216.【答案】2017.【答案】②③18.【答案】419.【答案】20.【答案】()n﹣1三、解答题21.【答案】解:°°,= ,= .22.【答案】解:作AD⊥BC,垂足为D.设AD= xm,∵∠ABC=45°,∴BD=AD= xm,∵∠ACB=30°,∴DC==xm,°∵AD+DC=BC ,且BC=40m,∴,解得,,答:则河的宽度为m23.【答案】如图,过点C作CE⊥DH交于点E,过点A作AF⊥CE交于点F,又∵AH⊥BD,∴四边形AFEH是矩形,∴∠HAF=90°,EF=AH=3.4m,∴∠CAF=∠CAH-∠HAF=118°-90°=28°,在Rt△ACF中,∵AC=9m,∠CAF=28°,∴CF=AC·sin∠CAF=9×sin28°≈9×0.47=4.23(m),∴CE=CF+EF=4.23+3.4≈7.6(m).答:操作平台离地面的高度为7.6m.24.【答案】解:延长CD交AH于点E,如图所示:根据题意得:CE⊥AH,设DE=xm,则CE=(x+2)m,在Rt△AEC和Rt△BED中,tan37°= ,tan60°= ,∴AE= ,BE= ,∵AE﹣BE=AB,∴﹣=10,即﹣=10,解得:x≈5.8,∴DE=5.8m,∴GH=CE=CD+DE=2m+5.8m=7.8m.答:GH的长为7.8m.25.【答案】解:过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO•sin15°=30×0.259=7.77(cm)AD=AO•cos15°=30×0.966=28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+BD=36.75≈37(cm).答:AB的长度为37cm26.【答案】解:过点D作DF⊥AB于点F,过点C作CG⊥AB于点G,∵ED⊥CD,CD∥AB,∴D、E、F三点共线,∴四边形CDFG是矩形,∴CD=GF,DF=CG.在Rt△ACG中,∵坡度为1:2,∴CG:AG=1:2,∴AG:AC=2:.∵AC=20米,∴AG=8 米,CG=4 米.在Rt△CDE中,∠ECD=76°,设CD=x米,则ED=CD•tan76°≈4.01x(米).在Rt△EAF中,∵∠EAF=45°,∴EF=AF,即ED+DF=AG+GF,∴4.01x+4 =8 +x,∴x=2.99,∴ED=4.01×2.99=12(米).答:大树ED的高约为12米.27.【答案】解:如图,在Rt△BDF中,∵∠DBF=60°,BD=4km,∴BF==8km,°∵AB=20km,∴AF=12km,∵∠AEB=∠BDF,∠AFE=∠BFD,∴△AEF∽△BDF,∴= ,∴AE=6km,在Rt△AEF中,CE=AE•tan74°≈20.9km.故这艘轮船的航行路程CE的长度是20.9km.28.【答案】解:假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,∵CD=12米,∠DCE=60°,∴DE=CD•sin60°=12×=6 米,CE=CD•cos60°=12× =6米.∵DE⊥AC,D′E′⊥AC,DD′∥CE′,∴四边形DEE′D′是矩形,∴DE=D′E′=6 米.∵∠D′CE′=39°,∴CE′= ′′≈ ≈12.8,°∴EE′=CE′﹣CE=12.8﹣6=6.8≈7(米).答:学校至少要把坡顶D向后水平移动7米才能保证教学楼的安全.。
九年级下册数学苏科新版《第7章 锐角三角函数》单元测试题(有答案)
2020-2021学年九年级下册数学苏科新版《第7章锐角三角函数》单元测试题一.选择题1.在一个直角三角形中,如果三角形各边的长度都扩大3倍,那么这个三角形的两个锐角的余弦值()A.都没有变化B.都扩大3倍C.都缩小为原来的D.不能确定是否发生变化2.若∠A为锐角,且2cos A<,则∠A()A.小于30°B.大于30°C.大于45°且小于60°D.大于60°3.在Rt△ABC中,∠C=90°,已知tan A=,那么cos A的值是()A.B.C.D.4.在Rt△ABC中,∠C=90°,若m=sin A+sin B,则()A.0<m<1B.0<m≤1C.m≥1D.1<m<25.cotβ=,则锐角β等于()A.0°B.30°C.45°D.60°6.如图,从小明家到学校有两条路.一条沿北偏东45°方向可直达学校前门,另一条从小明家一直往东到商店处,再向正北走100米到学校后门.若两条路的路程相等,学校南北走向,则学校从前门到后门的距离是()A.100米B.100米C.100米D.100米7.如图所示,两建筑物的水平距离为s米,从A点测得D点的俯角为α,测得C点的俯角为β,则较低的建筑物的高为()A.s•tanβ米B.s•tan(α﹣β)米C.s(tanβ﹣tanα)米D.米8.已知sinα=,求α,若用计算器计算且结果为“30”,最后按键()A.AC10N B.SHIET C.MODE D.SHIFT9.一个三角形的一边是2m,这边上的中线为m,另两边之和为m+m,则这个三角形的面积是()A.m2B.m2C.m2D.3m210.水库大坝横断面是梯形ABCD,坝顶宽AD=6m,坝高DE=24m,斜坡AB的坡角是45°,斜坡CD的坡比i=1:2,则坝底BC的长是()m.A.30+8B.30+24C.42D.78二.填空题11.如图,B、C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60 m,则点A到对岸BC的距离是m.12.某人在20米高的塔顶测得地面上的一点的俯角是60°,这点到塔底部的距离约为(精确到0.1米).13.山坡与地平面成30°的倾斜角,某人上坡走60米,则他上升的最大高度为米,山坡的坡度是.14.将sin20°、cos20°、cos40°、cos80°的值由小到大的顺序排列.15.若△ABC中,∠C=90°,则是∠A的函数.16.如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD=1米,∠A=27°,则跨度AB的长为(精确到0.01米).17.用计算器求:cos63°54′=,已知tan A=1.5941,则∠A=度.18.如图,在网格中,△ABC的顶点都在网格上,则sin∠A=.19.△ABC中,∠C=90°,cos A=,sin B=|n|﹣,则n=.20.如图所示,△ABC中,∠A=75°,∠B=45°,AB=,则AC=,BC=.三.解答题21.已知直角三角形中两条直角边的差是7cm,斜边的长是13cm,求较小锐角α的各三角函数值.22.如图,河流的两岸MN、PQ互相平行,河岸PQ上有一排间隔为50m的电线杆C、D、E….某人在河岸MN的A处测得∠DAN=38°,然后沿河岸走了120m到达B处,测得∠CBN=70°.求河流的宽度CF.(结果精确到0.1m,参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)23.如图,在直角坐标系中,P是第一象限的点,其坐标是(3,y),且OP与x轴的正半轴的夹角α的正切值是.求:(1)y的值;(2)角α的正弦值.24.计算:(1)﹣tan45°(2)sin30°﹣cos245°+cot260°+sin260°25.如图,在Rt△ABC中,∠B=90°,AB=10,sin A=,求BC的长.26.如图,小华家的住宅楼AB与北京奥运会主体育场鸟巢隔水相望且能看到鸟巢的最高处CD,两建筑物的底部在同一水平面上,视野开阔,但不能直接到达,小华为了测量鸟巢的最大高度CD,只能利用所在住宅楼的地理位置.现在小华仅有的测量工具是皮尺和测角仪(皮尺可测量长度,测角仪可测量仰角、俯角),请你帮助小华设计一个测量鸟巢的最大高度的方案.(1)要求写出测量步骤和必需的测量数据(用字母表示)并画出测量图形(测角仪高度忽略不计);(2)利用小华测量的数据(用字母表示),写出计算鸟巢最大高度CD的表达式.参考答案与试题解析一.选择题1.解:设一等腰直角三角形,直角边长为1,斜边为,两锐角为45°,余弦值为,将各边边长扩大三倍,则直角边长为3,斜边边长为3,余弦值仍为,没有发生变化,故选:A.2.解:∵cos30°=,余弦函数随角增大而减小,又2cos A<,即cos A<,∴∠A>30°.故选:B.3.解:由tan A==,设a=x,则b=2x.根据勾股定理,c==3x,∴cos A==.故选:D.4.解:在Rt△ABC中,∠C=90°,则sin A=,sin B=.则m=sin A+sin B=>1;且sin A、sin B均小于1;故有1<m<2.故选:D.5.解:∵cotβ=,β为锐角,∴β=60°.故选:D.6.解:如图,由题意得∠DAB=45°,BC=100,AB+100=AD,∵cos∠DAB==,∴AB=AD=(AB+100),解得:AB=100+100,∴BD=AB=100+100,∴CD=100(米).故选:A.7.解:作AE∥BC,与CD延长线相交于E点.由于两建筑物的水平距离为s米,从A点测得D点的俯角为α,测得C点的俯角为β,在Rt△ACE中,CE=tanβ•s;在Rt△ADE中,DE=tanα•s,则CD=s(tanβ﹣tanα).故选:C.8.解:“SHIET”表示使用该键上方的对应的功能.故选:D.9.解:如图在△ACB中CD为AB上的中线,∵CD=m,AB=2m,点D为中点,∴∠ACB=90°.∴(AC+BC)2=(m+m)2,∴AC2+BC2+2AC•BC=(m+m)2,∴AB2+2AC•BC+BC2=(m+m)2=4m2+2m2,∴4m2+2AC•BC=(m+m)2=4m2+2m2,∴AC•BC=m2,∴S=AC•BC=m2.△ABC故选:B.10.解:过A作AF⊥BC于点F.∵斜坡AB的坡角是45°.∴AF=BF=DE=24米.∵AF⊥BC,AD∥BC.∴四边形EFAD为矩形.∴AD=EF=6米.∵斜坡CD的坡比i=1:2,∴DE:EC=1:2,即CE=2DE=48.∴BC=BF+EF+EC=24+6+48=78(米).故选:D.二.填空题11.解:由题意可得:∠A=180°﹣45°﹣45°=90°,AB=AC=BC×sin45°=30.∵面积S=AB×AC=BC×h,∴h=30.故点A到对岸BC的距离是30米.12.解:∵tan60°=垂直高度:水平距离,∴这点到塔底部的水平距离为=≈11.5(米).13.解:如图,∠B=30°,AB=60,则AC=AB•sin B=30,BC=30.坡度即tan B====1:.14.解:∵sin20°=cos70°,余弦值随着角的增大而减小,∴cos80°<sin20°<cos40°<cos20°.15.解:△ABC中,∠C=90°,是∠A的对边与邻边的比值,∴是∠A的正切函数.16.解:在Rt△ACD中,tan A=,∴AD==,∴AB=2AD=2≈3.93.17.解:根据已知一个角的正切值求这个角的算法:先按MODE,选择模式;再键入数字,最后按2ndF和tan;得到这三个角的度数.答案为0.4399;57.8994.18.解:作CD⊥AB于D点.Rt△ACD中,AD=2,CD=3,∴AC==,sin∠A==.19.解:在△ABC中,∠C=90°,∴∠A+∠B=90°,∴sin B=cos A,∴|n|﹣=,∴|n|=1,∴n=±1.故答案为±1.20.解:作AE⊥BC于E点.在Rt△ABE中,∠B=45°,则△ABC为等腰直角三角形,∴AE=BE=;在Rt△ACE中,可得∠CAE=30°,则CE=tan30°×AB=,AC==,故BC=BE+CE=.三.解答题21.解:设直角△ABC中,∠C=90°,AB=c=13cm,BC=a,AC=b,设a<b,较小锐角α就是∠A,根据条件可得:,解得:,∴锐角α的各三角函数值分别是:sinα=,cosα=,tanα=,cotα=.22.解:过点C作CG∥DA交AB于点G.∵MN∥PQ,CG∥DA,∴四边形AGCD是平行四边形.∴AG=CD=50m,∠CGB=38°.∴GB=AB﹣AG=120﹣50=70(m).∴tan38°==0.78,在Rt△BFC中,tan70°==2.75,∴BF=,∴==0.78,解得:CF≈76.2(m).答:河流的宽是76.2米.23.解:作PC⊥x轴于C.∵tanα=,OC=3,∴PC=4,即y=4.则OP=5.则sinα=.24.解:(1)原式=﹣1=﹣1,(2)原式=++=.25.解:如图,∵在Rt△ABC中,∠B=90°,AB=10,sin A=,∴=,则AC=BC.又由勾股定理得到:AB2+BC2=AC2,即102+BC2=BC2,∴BC=7.5.26.解:(1)如图,连接AD、AC,过点A作AE⊥CD,垂足为E.测量步骤为:①测量楼顶到地面的高度AB=a(米);②在楼顶处测点D的俯角∠EAD=α;③在楼顶处测点C的仰角∠EAC=β.(2)在Rt△AED中,D E=AB=a,∵∠ADE=90°﹣α∴AE=DEtan(90°﹣α)=atan(90°﹣α),在Rt△AEC中,CE=AEtanβ=atan(90°﹣α)tanβ,∴CD=DE+CE=a+atanβtan(90°﹣α)=a[1+tanβtan(90°﹣α)].。
最新苏科版九年级数学下册第七章《锐角三角函数》全章综合测试题(有答案)
《三角函数》全章综合测试(B卷)一、选择题(每题3分,共30分)1. tan30°的值是( ) A. 21 B. 23 C. 33 D. 32. 在Rt △ABC 中,∠C = 90°,若sin A=32,BC =4,则AB 的长是( ) A. 6 B. 554 C. 38 D. 132 3. 如图,在Rt △ABC 中,斜边AB 的长为m ,∠A=35°,则直角边BC 的长是( )A. ︒35sin mB. ︒35cos mC. ︒35sin mD. ︒35cos m 4. (2017,宜昌)△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD ⊥BC 于D ,下列四个选项中,错误的是( )A. ααcos sin = B .tan C = 2 C .ββcos sin = D .tan α=1(第3题图) (第4题图) (第5题图)5. 如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos α的值,错误的是( )A. BC BDB. AB BCC. AC ADD. ACCD 6. 如图,在Rt △ABC 中,∠C=90°,∠A=30°,E 为AB 上一点且AE :EB=4:1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( )A. 33B. 332C. 335 D. 357. 身高相等的三名同学甲,乙,丙参加风筝比赛,三人放出风筝的线长,线与地面夹角如下表同 学甲 乙 丙 放出风筝线长100 m 100 m 90 m 线与地面交角 40° 45° 60°A .甲的最高B .丙的最高C .乙的最低D .丙的最低 8. 如图是一台54英寸的大背投彩电放置在墙角的俯视图.设∠DAO=α,彩电后背AD 平行于前沿BC ,且与BC 的距离为60cm ,若AO=100cm ,则墙角O 到前沿BC 的距离OE 是( )A .(60+100sin α)cmB .(60+100cos α)cmC .(60+100tan α)cmD .以上答案都不对9. 如图,在△ABC 中,AB=AC ,BC=12,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D .设BD = x ,tan ∠ACB = y ,则( )A. 32=-y xB. 922=-y xC. 1532=-y xD. 2142=-y x10. 如图,△ABC 中,AB=AC=10,tan A=2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD +55BD 的最小值是( ) A. 52 B. 54 C. 35 D. 10(第8题图) (第9题图) (第10题图)二、填空题(每题2分,共16分)11. 把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦函数值_______(改变 / 不变)12. 如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,AC=8,BC=6.则sin ∠ABD=_____13. 如图,在8×4的矩形网格中,每个小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为________(第12题图) (第13题图)14. 在平面直角坐标系中,O 是原点,已知点A (2,1)和点B (3,0),则sin ∠AOB 的值等于________15. 如图,在△ABC 中,AB = AC = 5,BC = 8.若∠BPC =BAC ∠21,则tan ∠BPC =________16. 如图,在Rt △ABC 中,∠ACB=90°,BC=3,AC=15,AB 的垂直平分线ED 交BC 的延长线于D 点,垂足为E ,则sin ∠CAD =________17. 设∠A 为锐角,且sin A = 93-k ,则k 的取值范围是________18. 如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB ,CD 相交于点P ,则=PBAP ________,tan ∠APD 的值等于_________ 三、计算题(14分)19. (1)计算:2 tan60°• tan30°-4cos 245°+ sin60°(2)tan60°-0)4(π-+ 2cos30°+141-⎪⎭⎫ ⎝⎛20. 如图,在△ABC 中,tan C =43,点D 在边BC 上,AB = AD ,CD = 2BD = 4,求sin B 的值.四、解答题21. (本题满分6分)如图,小李从西边山脚的点A 走了300m 后到达山顶C ,已知∠A=30°,东边山坡的坡度tan B =43. (1)求山顶C 离地面的高度.(2)求B 、C 的距离.22.(本题满分8分)某公司举办热气球表演来庆祝开业,如图,小敏、小亮从A,B两地观测空中C处一个气球,分别测得仰角为37°和45°,A、B两地相距100m.当气球沿与BA平行地飘移100秒后到达D处时,在A处测得气球的仰角为60°.(1)求气球的高度;(2)求气球飘移的平均速度.(参考数据:sin37°= 0.6,cos37°= 0.8,tan37°= 0.75,3≈1.7)23.(本题满分8分)时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC = 1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为 2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)24.(本题满分10分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)25.(本题满分10分)如图,已知△OAB ,点A 的坐标为(2,2),点B 的坐标为(3,0)(1)求sin ∠AOB 的值;(2)若点P 在y 轴上,且△POA 与△AOB 相似,求点P 的坐标.参考答案1. C2. A3.A4. C5.C6. C7.B8. A9. B 10. B11. 不变 12. 53 13. 31 14.55 15. 34 16. 41 17. 3103<<k 18. 3 2 19. 23 36+ 20.10103 21. 150m 250m22. 300m 2.3m/s23. (1)5.6m (2)能 提示:过点C 作CE ⊥AD 于E ,算得CE=2.66 >2.524. 20 km 提示:过点D 作DH ⊥AB ,用DH 表示BH 、CH ,根据CH-BH=BC 求出DH , 然后在△ADH 中,运用三角函数,算出AD 的长度。
初中数学 江苏省昆山市锦溪中学九年级数学下册 第七章 锐角三角函数检测题考试卷及答案 苏科版
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:在直角三角形中,各边都扩大2倍,则锐角A的正弦值与余弦值都()A.缩小2倍B.扩大2倍C.不变D.不能确定试题2:在Rt△ABC中,∠C=90°,BC=4,sin A=,则AC=()A.3B.4C.5D.6试题3:若∠A是锐角,且sin A=,则()A.<∠A<B.<∠A<C.<∠A<D.<∠A<试题4:若cos A=,则=()A. B. C. D.0试题5:在△ABC中,∠A︰∠B︰∠C=1︰1︰2,则=()A.1︰1︰2B. 1︰1︰C. 1︰1︰D. 1︰1︰试题6:在Rt△ABC中,∠C=,则下列式子成立的是()A.sin A=sin BB.sin A=cos BC.tan A=tan BD.cos A=tan B试题7:如图,一个小球由地面沿着坡度的坡面向上前进了10 m,此时小球距离地面的高度为( )A. B.2 m C.4 m D.m试题8:点(-sin 60°,cos 60°)关于y轴对称的点的坐标是()A.(,) B.(,) C.(,) D.(,)试题9:每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高为1.6米,则旗杆的高度约为()A.6.9米 B.8.5米 C.10.3米 D.12.0米试题10:王英同学从A地沿北偏西60°方向走100 m到B地,再从B地向正南方向走200 m到C地,此时王英同学离A地()A.50 mB.100 mC.150 mD.100 m试题11:在Rt△ABC中,∠C=90°,AB=5,AC=3,则sin B=_____.试题12:在△ABC中,若BC=,AB=,AC=3,则cos A=________.试题13:如图所示,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么点P与点P'间的长度为___________. (不取近似值. 以下数据供解题使用:sin 15°=,cos 15°=)试题14:如图所示,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西_________度.试题15:如图所示,机器人从A点沿着西南方向行了4个单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A点的坐标为___________(结果保留根号).试题16:如图所示,△ABC的顶点都在方格纸的格点上,则_ .试题17:在直角三角形ABC中,∠A=90°,BC=13,AB=12,那么___________.试题18:根据图中所给的数据,求得避雷针CD的长约为__m(结果精确到0.01 m).(可用计算器求,也可用下列参考数据求:sin ≈0.682 0,sin 40°≈0.642 8,cos 43°≈0.731 4,cos 40°≈0.766 0,tan 43°≈0.932 5,tan 40°≈0.839 1)试题19:计算:.试题20:如图所示,在△ABC中,AD是BC边上的高,. (1)求证:AC=BD;(2)若,求AD的长.试题21:每年的5月15日是“世界助残日”.某商场门前的台阶共高出地面1.2米,为帮助残疾人便于轮椅行走,准备拆除台阶换成斜坡,又考虑安全,轮椅行走斜坡的坡角不得超过9°,已知此商场门前的人行道距商场门的水平距离为8米(斜坡不能修在人行道上),问此商场能否把台阶换成斜坡?(参考数据)试题22:如图所示,一铁路路基横断面为等腰梯形ABCD,斜坡BC的坡度为i=2︰3,路基高AE为3 m,底CD宽12 m,求路基顶AB的宽.试题23:九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3 m,标杆与旗杆间的水平距离BD=15 m,人的眼睛与地面的高度EF=1.6 m,人与标杆CD间的水平距离DF=2 m,示意图如图所示,求旗杆AB的高度.试题24:如图所示,一条渔船某时刻在位置A观测灯塔B、C(灯塔B距离A处较近),两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行1小时45分钟之后到达D点,观测到灯塔B恰好在正北方向上,在图中作CE⊥AD.已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C周围18.6海里内有暗礁,问这条渔船按原来的方向续航行,有没有触礁的危险?试题25:如图所示,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住.为了寻找这只老鼠猫头鹰向上飞至树顶C处.DF=4米,短墙底部D与树的底部A间的距离为2.7米,猫头鹰从C点观察F点的俯角为53°,老鼠躲藏处M (点M在DE上)距D点3米.(参考数据:sin 37°≈0.60, cos 37°≈0.80,tan 37°≈0.75)(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米(精确到0.1米)?试题1答案:C 解析:由于在直角三角形中锐角A的正弦值是对边和斜边的比,余弦值是邻边和斜边的比,所以边长同时扩大2倍对于锐角A的正弦值和余弦值没有影响,由此即可确定选项C正确.试题2答案:A 解析:在Rt△ABC中,∠C=90°,∵BC=4,sin A=,∴AB=BC÷sin A=5,AC==3.试题3答案:A 解析:∵ sin 30°=,,∴ 0°<∠A<30°.故选A.试题4答案:D 解析:因为可设∠A的邻边长为k(k>0),则斜边长为3k,所以∠A的对边长为.所以,.所以原式==0.试题5答案:B 解析:设∠A、∠B、∠C的度数分别为、、2,则 =180°,解得=45°.∴ 2=90°.∴∠A、∠B、∠C的度数分别为45°、45°、90°.∴△ABC是等腰直角三角形,∴ =1︰1︰.试题6答案:B 解析:设∠A、∠B、∠C的对边分别为a、b、c,A.sin A=,s in B=,sin A≠sin B,故错误;B.cos B=,sin A=cos B,故正确;C.tan A=,tan B=,tan A≠tan B,故错误;D.,则≠tan B,故错误.试题7答案:B 解析:设小球距离地面的高度为则小球水平移动的距离为所以解得试题8答案:A 解析:∵ sin 60°=,cos 60°=,∴(-sin 60°,cos 60°)=(,),∴关于y轴对称的点的坐标为(,).故选A.试题9答案:B 解析:由于某同学站在离国旗旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,则目高以上旗杆的高度h1=12×tan 30°=4(米),旗杆的高度h=h1+1.6=1.6+4≈8.5(米).故选B.试题10答案:.D 解析:设经过A地正西方向上的D点,则AD=AB•sin 60°=50 (m),BD=AB•cos 60°=50(m),∴CD=150(m).∴ AC==100 (m).故选D.试题11答案:解析:sin B==.试题12答案:解析:在△ABC中,∵ AC=3,BC=,AB=,∴=32,即,∴△ABC是直角三角形,且∠B=90°.∴ cos A==.试题13答案:解析:连接PP',过点B作BD⊥PP',交PP'于点D,因为∠PBP'=30°,所以∠PBD=15°,利用sin 15°=,先求出PD,乘2即得PP'.试题14答案:48 解析:根据两直线平行,内错角相等进行判断.试题15答案:(0,) 解析:过点B作BC⊥AO,交AO于点C,利用勾股定理或锐角三角函数可分别求得AC与OC的长,即可确定点A的坐标.试题16答案:解析:利用网格,从C点向AB所在直线作垂线,利用勾股定理得,所以.试题17答案:解析:先根据勾股定理求得AC=5,再根据求出结果.试题18答案:4.86 解析:利用正切函数的定义分别求出B D,BC的长.试题19答案:解:原式==-1.试题20答案:(1)证明:在Rt△ABD中,有.在 Rt△ADC中,有.(2)解:由,可设,由勾股定理求得.即,试题21答案:解:因为所以斜坡的坡角小于9°,故此商场能把台阶换成斜坡.试题22答案:解:过B作BF CD,垂足为F,∴在等腰梯形ABCD中,AD=BC,.∵BF︰CF=2︰3,BF =AE=3 m,∴CF =4.5 m.AD=BC,,∠CFB=∠DEA=90°,∴△BCF≌△ADE.∴DE=CF= 4.5 m. ∴EF=CD-CF-DE=3 m.BF//AE. ∴四边形ABFE为平行四边形.,∴AB=EF=3 m.试题23答案:解:,,..,即.,..试题24答案:解:在Rt △ABD中,(海里),∠BAD=90°-65°45′=24°15′.∵ cos 24°15′=,∴(海里). AC=AB+BC≈30.71+12=42.71(海里).在Rt △ACE中,sin 24°15′=,∴ CE=AC·sin 24°15′≈42.71×0.410 7≈17.54(海里).∵ 17.54<18.6,∴有触礁危险.答:继续航行有触礁危险.试题25答案:解:(1)由已知可得∠DFG=∠C=37°.在Rt△DFG中,DG=DF·tan 37°≈4×0.75=3(米).因此,猫头鹰能看到这只老鼠. (2)AG=AD+DG≈2.7+3=5.7(米),在Rt△ACG中,CG=≈9.5(米). 答:猫头鹰至少要飞9.5米.。
苏科版九年级下第7章锐角三角函数及其应用单元测试含答案
< cos������ <
√3 2
< cos������ <
√2 2
如图,某渔船在海面上朝正东方向匀速航行,在 A 处观测到灯塔 M 在北偏东60∘ 方向上,航行半小时 后到达 B 处,此时观测到灯塔 M 在北偏东30∘ 方向 上,那么该船继续航行到达离灯塔距离最近的位置所需时间是( )
A. 10 分钟
第 2 页,共 9 页
若������������ = 16,������������ = 12, 12. 面积为 48 的四边形 ABCD 的对角线������������,������������交于点 O, 则∠������������������ = ______ 度. 13. 在������������ △ ������������������ 中,∠������ = 90∘,若������������ = 2������������ ,则tan������ = ______ . 14. 利用计算器求值(结果精确到0.001): sin55∘ ≈ ______ ; tan45∘ 23′ ≈ ______ . 三、解答题 15. 如图 1,是午休时老师们所用的一种折叠椅.把折叠椅完全平躺时如图 2,长度 B 是 CM 上一点, 现将躺椅如图 3 倾斜放置时, ������������ = 180厘米, ������������ = 50厘米, AM 与地面 ME 成45∘ 角,������������//������������,椅背 BC 与水平线成30∘ 角,其中 BP 是躺 椅的伸缩支架,其与地面的夹角不得小于30∘ . (1)若点 B 恰好是 MC 的黄金分割点(������������ > ������������),人躺在上面才会比较舒适,求 此时点 C 与地面的距离. (结果精确到 1 厘米) (2)午休结束后,老师会把 AM 和伸缩支架 BP 收起紧贴 AB,在(1)的条件下, 求伸缩支架 BP 可达到的最大值. (结果精确到 1 厘米)(参考数据:√2 ≈ 1.4, √3 ≈ 1.7,√5 ≈ 2.2)
苏科版九年级数学下册 第七章 锐角三角函数 单元检测试题(有答案)
第七章锐角三角函数单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 在Rt△ABC中,∠C=90∘,AC=1,BC=3,则∠B的正切值为()A.3B.13C.√1010D.3√10102. 在Rt△ABC中,∠C=90∘,若sin A=35,则cos B的值是()A.4 5B.35C.34D.433. 若α=40∘,则α的正切值ℎ的范围是()A.1 2<ℎ<√22B.√33<ℎ<√32C.1<ℎ<√3D.√33<ℎ<√34. Rt△ABC中,∠C=90∘,若AB=4,∠A=θ,则AC的长为()A.4sinθB.4cosθC.4sinθD.4cosθ5. 已知α为锐角,sin(α−20∘)=√32,则α=()A.20∘B.40∘C.60∘D.80∘6. 在Rt△ABC中,∠C=90∘,下列式子中不一定成立的是()A.tan A=sin Acos AB.sin2A+sin2B=1C.sin2A+cos2A=1D.sin A=sin B7. 已知:在Rt△ABC中,∠C=90∘,sin A=34,则cos B的值为()A.√74B.34C.35D.458. 某市“旧城改造”中,计划在市内一块如图所示的三角形空地上种植某种草皮,以美化环境.已知这种草皮每平方米售价a元,则购买这种草皮至少需要()A.450√3a元B.225√3a元C.150√3a元D.300√3a9. 如图,已知△ABC中,∠B=90∘,AB=3,BC=√3,OA=OC=√6,则∠OAB的度数为()A.10∘B.15∘C.20∘D.25∘10. 如图,两建筑物的水平距离为a米,从A点测得D点的俯角为α,测得C点的俯角为β,则较低建筑物的高为()A.a米B.a cotα米C.a cotβ米D.a(tanβ−tanα)米二、填空题(本题共计10 小题,每题3 分,共计30分,),那么AB=________.11. 在Rt△ABC中,∠C=90∘,BC=3,sin A=1612. 如图,在Rt△ABC中,∠C=90∘,AC=4,AB=5,则sin B=________.13. 如图,△ABC中,∠ACB=90∘,sin B=4,则tan A=________.514. 如图,有A、B两艘船在大海中航行,B船在A船的正东方向,且两船保持20海里的距离,某一时刻这两艘船同时测得在A的东北方向,B的北偏东15∘方向有另一艘船C,那么此时船C与船B的距离是________海里(结果保留根号).15. 如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60∘,然后在坡顶D测得树顶B的仰角为30∘,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是________m.16. 如图,小宁想知道校园内一棵大树的高度,已知树垂直于地面,他测得CB的长度为10m,∠ACB=50∘,请你帮他算出树高AB约为________m(参考数据:sin50∘≈0.77,cos50∘≈0.64,tan50∘≈1.2).17. 一名长跑运动员沿着斜角为30∘的斜坡,从B点跑至A点,已知AB=1000米,则运动员的高度下降了________米.18. 一艘船向东航行,上午8时到达B处,看到有一灯塔在它的北偏东60∘,距离为60海里的A处;上午9时到达C处,看到灯塔在它的正北方向.则这艘船航行的速度为________海里/时.19. 新平县城在“旧城改造”中,计划在城内一块如图所示空地上,种植草皮美化环境,已知这种草皮每平米要80元,买这种草皮至少需________元.20. 青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃,如图所示,一天,灰太狼在自家城堡顶部A 处测得懒羊羊所在地B 处的俯角为60∘,然后下到城堡的C 处,测得B 处的俯角为30∘.已知AC =40米,若灰太狼以5m/s 的速度从城堡底部D 处出发,则至少需________秒钟后能抓到懒羊羊.(结果精确到个位√3≈1.7321)三、 解答题 (本题共计 6 小题 ,共计60分 , ) 21. 计算: (1)cos 60∘−tan 45∘tan 60∘−2tan 45∘;(2)2cos 30∘−2sin 30∘+5tan 60∘;(3)12sin 60∘+√22cos 45∘+sin 30∘cos 30∘;(4)tan230∘+2sin60∘cos45∘+tan45∘−tan30∘−cos230∘.22. 已知:如图,CA⊥AO,E、F是AC上的两点,∠AOF>∠AOE.(1)求证:tan∠AOF>tan∠AOE;(2)锐角的正切函数值随角度的增大而________.23. 某学校九年级的小红同学,在自己家附近进行测量一座楼房高度的实践活动,如图,她在山坡脚A处测得这座楼房顶B点的仰角为60∘,沿山坡向上走到C处再测得B点的仰角为45∘,已知OA=200m,山坡的坡度i=,且O、A、D在同一条直线上.求:√3(1)楼房OB的高度;(2)小红在山坡上走过的距离AC(结果保留根号)24. 在矩形ABCD中,点E,F在边DC上,EF=10米,点G在AB上,AG=52米,若∠EAB= 36∘,∠FGB=72∘,求BC的长(精确到个位).(参考数据:sin36∘≈0.59,cos36∘≈0.81,tan36∘≈0.73,sin72∘≈0.95,cos72∘≈0.31,tan72∘≈3.08)25. 如图,某数学活动小组为测量学校旗杆AB的高度,从旗杆正前方4m的C处出发,沿斜面坡度i=1:1的斜坡CD前进3√2m到达D处,在D处垂直地面放置测量仪DE,测得旗杆顶部A的仰角为30∘.测量仪DE的高为1.5m,求旗杆AB的高度.26. 某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边A点处,测得河的南岸边的点B在其南偏东45∘方向,然后向北走20米到达C点,测得点B在点C的南偏东33∘方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33∘≈0.54,cos33∘≈0.84,tan33∘≈0.65,√2≈1.41)参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:∵ 在Rt△ABC中,∠C=90∘,AC=1,BC=3,∵ ∠B的正切值为:ACBC =13.2.【答案】B【解答】解:在Rt△ABC中,∵ ∠C=90∘,∵ ∠A+∠B=90∘,∵ cos B=sin A.,∵ sin A=35.∵ cos B=35故选B.3.【答案】D【解答】解:∵ tan30∘=√3,tan60∘=√3,一个角的正切值随角的增大而增大,3∵ tan30∘<tan40∘<tan60∘,<ℎ<√3,即√33故选D.4.【答案】B解:Rt△ABC中,∠C=90∘,若AB=4,∠A=θ,cos A=AC,AB∵ AC=4cosθ.故选B.5.【答案】D【解答】∵ α为锐角,sin(α−20∘)=√3,2∵ α−20∘=60∘,∵ α=80∘,6.【答案】D【解答】,sin2A+cos2A=1,sin B=sin(90∘−∠A)=解:根据同角的三角函数的关系:tan A=sin Acos Acos A,可知只有D不正确.故选D.7.【答案】B【解答】解:在Rt△ABC中,∠C=90∘得∠B+∠A=90∘.由一个角的正弦等于它余角的余弦,得cos B=sin A=34,故选:B.8.【答案】C【解答】解:如图,作BD⊥AC于点D,在直角△ADB中,BD=AB⋅sin60∘=10√3,则△ABC的面积是12⋅AC⋅BD=12×30×10√3=150√3.因而购买这种草皮至少需要150√3a元.故选C.9.【答案】B【解答】解:∵ AC2=AB2+BC2=32+(√3)2=12,AO2+CO2=(√6)2+(√6)2=12,∵ AC2=AO2+OC2,∵ ∠O=90∘,∵ OA=OC,∵ ∠OAC=45∘,在Rt△ACB中,∵ tan∠BAC=√33,∵ ∠BAC=30∘,∵ ∠OAB=45∘−30∘=15∘,故选B.10.【答案】D【解答】作DE⊥AB于点E.在直角△AED中,ED=BC=a,∠ADE=α∵ tan∠ADE=AEDE,∵ AE=DE⋅tan∠ADE=a⋅tanα.同理AB=a⋅tanβ.∵ DC=BE=AB−AE=a⋅tanβ−a⋅tanα=a(tanβ−tanα).二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】18【解答】解:在Rt△ABC中,∵ ∠C=90∘,sin A=16=BCAB,∵ AB=3×6=18.故答案为:18.12.【答案】4【解答】解:∵ ∠C=90∘,AC=4,AB=5,∵ sin B=ACAB =45.故答案为:45.13.【答案】34【解答】解:∵ 在Rt△ABC中,∠C=90∘,∵ sin B=bc ,tan A=ab,a2+b2=c2.∵ sin B=45,设b=4x,则c=5x,a=3x.∵ tan A=ab =3x4x=34.14.【答案】20√2【解答】解:过点B作BD⊥AC于点D,由题意可知:∠BAC=45∘,∠ABC=90∘+15∘=105∘,则∠ACB =180∘−∠BAC −∠ABC =30∘,在Rt △ABD 中,BD =AB ⋅sin ∠BAD =20×√22=10√2, 在Rt △BCD 中,BC =BDsin ∠BCD =20√2.答:此时船C 与船B 的距离是20√2海里.故答案为20√2.15.【答案】 30【解答】解:作DF ⊥AB 于F ,交BC 于G .则四边形DEAF 是矩形,∵ DE =AF =10m ,∵ DF // AE ,∵ ∠BGF =∠BCA =60∘,∵ ∠BGF =∠GDB +∠GBD =60∘,∠GDB =30∘,∵ ∠GDB =∠GBD =30∘,∵ GD =GB ,在Rt △DCE 中,∵ CD =2DE ,∵ ∠DCE =30∘,∵ ∠DCB =90∘,在△DCG 和BFG 中,∵ {∠DGC =∠BGF ,∠DCG =∠BFG ,DG =BG ,∵ △DGC≅△BGF(AAS),∵ BF=DC=20m,∵ AB=20+10=30m,故答案为:30.16.【答案】12【解答】,解:由题意得出:tan C=ABBC,∵ tan50∘=AB10∵ AB=10×tan50∘=10×1.2=12(m),故答案为:12.17.【答案】500【解答】解:在Rt△ABC中,∵ AB=1000米,∠BAC=90∘,∵ BC=AB sin∠BAC=1000sin30∘=500(米).故答案为:500.18.【答案】30√3【解答】解:易得∠ABC=30∘,AB=60.∵ BC=AB×cos∠ABC=30√3(海里).∵ 这艘船航行的速度为30√3÷(9−8)=30√3(海里/时).19.【答案】30000【解答】解:作CD⊥AB交BA的延长线于D,∵ ∠BAC=150∘,∵ ∠CAD=30∘,∵ AC=50m,∵ CD=AB×sin30∘=25m,×30×25=375m2,∵ S△ABC=12∵ 所需费用为375×80=30000元,故答案为30000.20.【答案】7【解答】解:根据题意得:∠BCD=90∘−30∘=60∘,∠ABD=60∘,在Rt△BCD中,∵ ∠BCD=60∘,∵ 则BD=CD⋅tan60∘=√3CD,在Rt△ABD中,∵ ∠ABD=60∘,∵ ADBD=tan60∘,即√3CD=√3,解得:CD=20,∵ t=√3CD5≈355=7,∵ 约7秒钟后灰太狼能抓到懒羊羊.故答案为:7.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)原式=12−1√3−2=2+√32;(2)原式=2×√32−2×12+5√3=6√3−1;(3)原式=√34+12+√34=√3+12;(4)原式=13+√3×√22+1−√33−34=6√6−4√3+712.【解答】解:(1)原式=12−1 3−2=2+√32;(2)原式=2×√32−2×12+5√3=6√3−1;(3)原式=√34+12+√34=√3+12;(4)原式=13+√3×√22+1−√33−34=6√6−4√3+712.22.【答案】增大.【解答】解:(1)∵ CA⊥AO,∵ △FOA和△EOA均为直角三角形.∵ tan∠AOF=AFOA ,tan∠AOE=EAOA.∵ tan∠AOF>tan∠AOE.(2)由(1)可知锐角的正切函数值随角度的增大而增大.23.【答案】高楼OB的高度为200√3m,小玲在山坡上走过的距离AC为200(2√5−√15)m.【解答】解:(1)在Rt△ABO中,∠BAO=60∘,OA=200m.∵ tan60∘=OBOA,即OBOA=√3,∵ OB=√3OA=200√3(m).(2)如图,过点C作CE⊥BO于E,CH⊥OD于H.则OE=CH,EC=OH.根据题意,知i=CHAH =√3,可设CH=x,AH=√3x.在Rt△BEC中,∠BCE=45∘,∵ BE=CE,即OB−OE=OA+AH.∵ 200√3−x=200+√3x.解得x=200(2−√3).在Rt△ACH中,∵ AC2=AH2+CH2,∵ AC2=(2x)2+x2=5x2.∵ AC=√5x=√5×200(2−√3)=200(2√5−√15)(m).答:高楼OB的高度为200√3m,小玲在山坡上走过的距离AC为200(2√5−√15)m.24.【答案】BC的长约为40米.【解答】解:过点F作FM // AE,交AB于点M,过点F作FN⊥AB,垂足为点N,∵ 矩形ABCD,∵ AB // CD,∵ EF=10米,∵ AM=EF=10米,∵ AG=52米,∵ MG=42米,∵ ∠FMN=∠EAG=36∘,∠FGN=72∘,∵ ∠MFG=36∘,∵ FG=MG=42米,在△FGN中,BC=FN=42×sin72∘≈42×0.95≈40(米),25.【答案】解:延长ED交BC于F,过E作EG⊥AB于G,=1,∵ i=DFCF∵ DF=CF,设DF=CF=x,则2x2=(3√2)2,∵ x=3,∵ DF=CF=3(m),∵ BG=EF=3+1.5=4.5(m),GE=BF=4+3=7(m),在Rt△AGE中,AG=GE⋅tan30∘=7×√33=73√3(m),∵ AB=AG+BG=(4.5+7√33)m.【解答】解:延长ED交BC于F,过E作EG⊥AB于G,∵ i=DFCF=1,∵ DF=CF,设DF=CF=x,则2x2=(3√2)2,∵ x=3,∵ DF=CF=3(m),∵ BG=EF=3+1.5=4.5(m),GE=BF=4+3=7(m),在Rt△AGE中,AG=GE⋅tan30∘=7×√33=73√3(m),∵ AB=AG+BG=(4.5+7√33)m.26.【答案】解:如图,记河南岸为BE,延长CA交BE于点D,则CD⊥BE.由题意知,∠DAB=45∘,∠DCB=33∘,设AD=x米,则BD=x米,CD=(20+x)米,=tan∠DCB,在Rt△CDB中,DBCD≈0.65,∵ x20+x解得x≈37.答:这段河宽约为37m.【解答】解:如图,记河南岸为BE,延长CA交BE于点D,则CD⊥BE.由题意知,∠DAB=45∘,∠DCB=33∘,设AD=x米,则BD=x米,CD=(20+x)米,=tan∠DCB,在Rt△CDB中,DBCD≈0.65,∵ x20+x解得x≈37.答:这段河宽约为37m.。
2022-2023学年苏科版九年级数学下册《第7章锐角三角函数》单元达标测试题(附答案)
2022-2023学年苏科版九年级数学下册《第7章锐角三角函数》单元达标测试题(附答案)一.选择题(共8小题,满分32分)1.在Rt△ABC中,如果各边的长度同时扩大2倍,那么锐角A的正弦值和余弦值()A.都扩大2倍B.都缩小2倍C.都不变D.不能确定2.若∠A为锐角,且sin A=,则cos A等于()A.1B.C.D.3.如图,在△ABC中,∠C=90°,AC=3,BC=4,则tan A的值是()A.B.C.D.4.如图,在△ABC中,∠B=45°,AD⊥BC交BC于点D,若AB=4,tan∠CAD=,则BC=()A.6B.6C.7D.75.在△ABC中,BC=+1,∠B=45°,∠C=30°,则△ABC的面积为()A.B.+1C.D.+16.如图,AB表示一条跳台滑雪赛道,在点A处测得起点B的仰角为40°,底端点C与顶端点B的距离为50米,BC⊥AC于点C,则赛道AB的长度为()A.米B.米C.50sin40°米D.50cos40°米7.如图,河堤横断面迎水坡AB坡比是1:2,堤高BC=4m,则坡面AB的长度是()mA.8B.16C.4D.48.如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则sin∠BAC的值是()A.B.C.D.二.填空题(共8小题,满分32分)9.比较大小:tan50°tan60°.10.若(3tan A﹣)2+|2sin B﹣|=0,则以∠A、∠B为内角的△ABC的形状是.11.如图所示的网格是正方形网格,点A,B,P是网格线交点,则tan∠P AB+tan∠PBA =.12.如图所示,某河提的横断面是梯形ABCD,BC∥AD,迎水坡AB长13米,且AB边的坡度为,则河堤的高BE为米.13.如图,在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(0,3),以点A 为圆心,AB的长为半径画弧,交x轴的负半轴于点C,连接BC,则∠C的正弦值为.14.如图,∠EFG=90°,EF=10,OG=17,cos∠FGO=,则点F的坐标是.15.如图,在△ABC中,AH⊥BC于点H,在AH上取一点K,连接CK,使得∠HKC+∠HAC=90°,在CK上取一点N,使得CN=AC,连接BN,交AH于点M,若tan∠ABC =2,BN=15,则CH的长为.16.如图,A,B,C,D均为网格图中的格点,线段AB与CD相交于点P,则∠APD的正切值为.三.解答题(共7小题,满分56分)17.计算:﹣2(1+sin60°)18.(1)在△ABC中,∠C=90°.已知c=8,∠A=60°,求∠B,a,b;(2)如图,在△ABC中,∠C=90°,sin A=,D为AC上一点,∠BDC=45°,CD =6.求AD的长.19.已知:如图,在△ABC中,AB=AC=15,tan A=.求:(1)S△ABC;(2)∠B的余弦值.20.如图,楼房AB后有一假山CD,CD的坡度为i=1:2,测得B与C的距离为24米,山坡坡面上E点处有一休息亭,与山脚C的距离CE=8米,小丽从楼房房顶A处测得E的俯角为45°.(1)求点E到水平地面的距离;(2)求楼房AB的高.21.某海港南北方向上有两个海岸观测站A,B,距离为10海里.从港口出发的一艘轮船正沿北偏东30°方向匀速航行,某一时刻在观测站A,B两处分别测得此轮船正好航行到南偏东30°和北偏东75°方向上的C处.经过0.5时轮船航行到D处,此时在观测站A 处测得轮船在北偏东75°方向上,求轮船航行的速度(结果精确到0.1海里/时,参考数据:≈1.414,=1.732)22.如图,为测量某建筑物BC的高度,采用了如下方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD(坡度i=1:2.4)行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,底端B 的俯角为45°,点A、B、C、D、E在同一平面内.根据测量数据,计算出建筑物BC 的高度.(参考数据:)23.阅读以下材料,并解决相应问题:在学习了直角三角形的边角关系后,我们可以继续探究任意锐角三角形的边角关系,在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c.如图1,过点A作AD⊥BC于点D,则根据定义得sin B=,sin C=,于是AD=c sin B,AD=b sin C,也就是c sin B =b sin C,即.同理有,,即最终得到.即在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论就可以求出其余三个未知元素.(1)在锐角△ABC中,若∠B=30°,∠C=45°,AC=2,求AB.(2)仿照证明过程,借助图2或图3,证明和中的其中一个.参考答案一.选择题(共8小题,满分32分)1.解:∵锐角A的正弦值是对边和斜边的比,余弦值是邻边和斜边的比,∴边长同时扩大2倍对于锐角A的正弦值和余弦值没有影响,∴锐角A的正弦值和余弦值没有改变.故选:C.2.解:∵∠A为锐角,且sin A=,∴∠A=60°,∴cos A=cos60°=,故选:D.3.解:∵AC=3,BC=4,∠C=90°,∴tan A==,故选:D.4.解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AB=4,∠B=45°,∴AD=AB sin45°=4×=4,BD=AB cos45°=4×=4,在Rt△ADC中,tan∠CAD=,∴CD=AD tan∠CAD=4×=3,∴BC=BD+DC=4+3=7,故选:C.5.解:过A点作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°=∠B,∴AD=BD,设BD=x,则AD=x,∵∠C=30°,∴tan C=,∴,∵BC=+1,∴x+x=+1,∴x=1,即AD=1,∴.故选:A.6.解:在Rt△ABC中,∵∠A=40°,BC=50米,∴sin40°=,∴AB==米,故选:A.7.解:Rt△ABC中,BC=4m,tan A=1:2;∴AC==8m,∴AB===4(m).故选:C.8.解:延长AC到D,连接BD,如图:∵AD2=20,BD2=5,AB2=25,∴AD2+BD2=AB2,∴∠ADB=90°,∴sin∠BAC=.故选:A.二.填空题(共8小题,满分32分)9.解:∵50°<60°,∴tan50°<tan60°,故答案为:<.10.解:∵(3tan A﹣)2+|2sin B﹣|=0,∴3tan A﹣=0,2sin B﹣=0,则tan A=,sin B=,∴∠A=30°,∠B=60°,∴以∠A、∠B为内角的△ABC的形状是直角三角形.故答案为:直角三角形.11.解:设小正方形的边长是a,∵tan∠P AB===,tan∠PBA===,∴tan∠P AB+tan∠PBA=+=.12.解:由已知斜坡AB的坡度,得:BE:AE=12:5,设AE=5x米,则BE=12x米,在直角三角形AEB中,根据勾股定理得:132=5x2+(12x)2,即169x2=169,解得:x=1或x=﹣1(舍去),5x=5,12x=12即河堤高BE等于12米.故答案为:12.13.解:∵点A的坐标为(4,0),点B的坐标为(0,3),∴BO=3,AO=4,∴AB==5,∵以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,∴CO=5﹣4=1,BC==,∴sin∠C===,故答案为:.14.解:过点F作直线F A∥OG,交y轴于点A,过点G作GH⊥F A于点H,则∠F AE=90°,∵F A∥OG,∴∠FGO=∠HFG.∵∠EFG=90°,∴∠FEA+∠AFE=90°,∠HFG+∠AFE=90°,∴∠FEA=∠HFG=∠FGO,∵cos∠FGO=,∴cos∠FEA=,在Rt△AEF中,EF=10,∴AE=EF cos∠FEA=10×=6,∴根据勾股定理得,AF=8,∵∠F AE=90°,∠AOG=90°,∠GHA=90°,∴四边形OGHA为矩形,∴AH=OG,∵OG=17,∴AH=17,∴FH=17﹣8=9,∵在Rt△FGH中,=cos∠HFG=cos∠FGO=,∴FG=9÷=15,∴由勾股定理得:HG==12,∴F(8,12).故答案为:(8,12).15.解:如图,过点N作NJ⊥BC于J.设HJ=x.∵AH⊥BC,∴∠AHB=∠AHC=90°,∵tan∠ABH==2,∴可以假设BH=k,2k,∵∠HKC+∠HAC=90°,∠HKC+∠KCH=90°,∴∠HAC=∠KCH,∵NJ⊥BC,∴∠AHC=∠CJN=90°,∴△AHC∽△CJN,∴===2,∴CJ=k,∴CH=x+k,JN=(x+k),∴tan∠NBJ==,设NJ=y,BJ=2y,∵BN=15,∴5y2=152,∴y=3,∴NJ=3,∴CH=2NJ=6.16.解:连接CM,DN,由题意得:CM∥AB,∴∠APD=∠NCD,由题意得:CN2=12+12=2,DN2=32+32=18,CD2=22+42=20,∴CN2+DN2=CD2,∴△CND是直角三角形,∴tan∠NCD===3,∴∠APD的正切值为:3,故答案为:3.三.解答题(共7小题,满分56分)17.解:原式=﹣2(1+)=+﹣2﹣=﹣2.18.解:(1)∵∠C=90°,∠A=60°,∴∠B=90°﹣∠A=30°,∴b=c=4,∵tan A=,∴a=b tan A,∴a=4×=12;(2)∵∠C=90,∠BDC=45°,∴△BDC是等腰直角三角形,∴BC=CD=6,∵sin A=,∴AB==10,∵AC2=AB2﹣BC2,∴AC2=102﹣62,∴AC=8,∴AD=AC﹣DC=2.19.解:(1)过点C作CD⊥AB,垂足为D,在Rt△ABC中,tan A==,∴设CD=4k,则AD=3k,∴AC===5k,∵AC=15,∴5k=15,∴k=3,∴AD=9,CD=12,∴S△ABC=AB•CD=×15×12=90,∴S△ABC=90;(2)在Rt△BCD中,BD=AB﹣AD=15﹣9=6,CD=12,∴BC===6,∴cos B===,∴∠B的余弦值为.20.解:(1)过点E作EF⊥BC,交BC的延长线于F,∵CD的坡度i=EF:CF=1:2,∴设EF=a米,则CF=2a米,在Rt△CEF中,根据勾股定理得:CE===a(米),∵CE=8米,∴a=8,∴a=8,∴EF=8米,CF=2a=16(米),∴点E到水平地面的距离为8米;(2)如图:延长FE交AG于点H,由题意得:∠HAE=45°,AH=BF=BC+CF=24+16=40(米),AB=FH,在Rt△AHE中,HE=AH•tan45°=40×1=40(米),∴AB=HF=HE+EF=40+8=48(米),∴楼房AB的高为48米.21.解:作AE⊥CD于E,∵∠ACB=180°﹣75°﹣30°=75°,∴∠ABC=∠ACB,∴AC=AB=10海里,∵向北的方向线是平行的,∴∠ACF=∠CAB=30°,∴∠ACD=60°,∴∠CAE=30°,∴CE=AC=5海里,AE=AC=5海里,∵∠DAC=180°﹣75°﹣30°=75°,∴∠DAE=75°﹣30°=45°,∴DE=AE=5海里,∴CD=5+5≈13.66(海里),轮船航行的速度为:13.66÷=27.3(海里/时),答:轮船航行的速度是27.3海里/时,22.解:如图,过D作DH⊥AB于H,延长DE交BC于F.则四边形DHBF是矩形,∴BF=DH,在RtADH中,AD=130米,DH:AH=1:2.4,∴DH=50(米),∴BF=DH=50米),在Rt△EFB中,∠BEF=45°,∴△EFB是等腰直角三角形,∴EF=BF=50(米),在Rt△EFC中,∠CEF=60°,tan∠CEF=tan60°==,∴CF=EF=50=86.6(米),∴BC=BF+CF=136.6(米).答:建筑物BC的高度约为136.6米.23.解:(1)根据阅读材料可知,,∵∠B=30°,∠C=45°,AC=2,∴=,∴AB==2;(2)证明.理由如下:如图,连接CO并延长交⊙O于D,连接AD、BD,则∠DAC=∠DBC=90°,∠BAC=∠BDC,∠ABC=∠ADC.在Rt△ADC中,sin∠ADC=,∴CD=.在Rt△BDC中,sin∠BDC=,∴CD=,∴=,∴=,即在△ABC中,.。
苏科版九年级下数学《第7章锐角函数》单元检测卷含答案
第7章锐角函数单元检测卷姓名:__________ 班级:__________一、选择题(共11小题;每小题3分,共33分)1.的值为()A. B. C. D.12.如图,在△ABC中,BC=10,∠B=60°,∠C=45°,则点A到BC的距离是()A. 10﹣5B. 5+5C. 15﹣5D. 15﹣103.如图,延长Rt△ABC斜边AB到D点,使BD=AB,连接CD,若cot∠BCD=3,则tanA=()A. B. 1 C. D.4. 在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A. B. C. D.5. 如图,已知在中,,,,则的值是()A. B. C. D.6. 某楼梯的侧面如图所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为()A. 3.5sin29°米B. 3.5cos29°米C. 3.5tan29°米D. 米7. 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A. x﹣y2=3B. 2x﹣y2=9C. 3x﹣y2=15D. 4x﹣y2=218. 如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A. (0,﹣2)B. (1,﹣)C. (2,0)D. (,﹣1)9. 如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A. B. C. D.10. 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连结DF,下列四个结论:①△AEF∽△CAB;②tan∠CAD= ;③DF=DC;④CF=2AF,正确的是()A. ①②③B. ②③④C. ①③④D. ①②④11. 如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A. 5B.C. 5D. 5二、填空题(共10题;共30分)12.一等腰三角形的两边长分别为4cm和6cm,则其底角的余弦值为________.13.计算:2cos60°﹣tan45°=________.14.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=________.15. 如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是________.16. △ABC中,AB=12,AC= ,∠B=30°,则△ABC的面积是________.17. 在Rt△ABC中,∠C=90°,AB=2,BC= ,则sin =________.18. 在半径为1的⊙O中,弦AB、AC的长分别为1和,则∠BAC的度数为________.19. 如图,Rt△ABC中,∠C=90°,BC=15,tanA= ,则AB=________.20. 如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC= ,反比例函数y= 的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于________.21. (﹣)﹣3﹣2cos45°+(3.14﹣π)0+ =________.三、解答题(共5题;共37分)22.如图,锐角△ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tanB的值.23.已知α为锐角且cosα是方程2x2﹣7x+3=0的一个根,求的值.24.如图,在△ABC中,∠B为锐角,AB ,AC 5,,求BC的长.25.如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC⊥OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD⊥OF于点D.(1)当AC的长度为多少时,△AMC和△BOD相似;(2)当点M恰好是线段AB中点时,试判断△AOB的形状,并说明理由;(3)连结BC.当S△AMC=S△BOC时,求AC的长.26.如图,在平面直角坐标系中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求a,b的值;(2)连结OM,求∠AOM的大小.参考答案一、选择题C C A A A A BD A C D二、填空题12.或13.014.15.16.21 或1517.18.15°或105°19.1720.﹣2421.﹣7+三、解答题22.解:过点A作AH⊥BC于H,∵S△ABC=27,∴,∴AH=6,∵AB=10,∴BH= = =8,∴tanB= = = .23.解:∵cosα是方程2x2﹣7x+3=0的一个根,∴由求根公式有,cosα= ,∴cosα= (cosα=3不符合题意,舍去),∵sin2α+cos2α=1,∴sin2α=1﹣()2= ,∴sinα= ,∴= = =sinα﹣cosα= 24.解:如图,作AD⊥BC于点D,∴∠ADB=∠ADC=90°.∵ AC=5,,∴.∴在Rt△ACD中,.∵ AB ,∴在Rt△ABD中,.∴.25.(1)解:∵∠MCA=∠BDO=Rt∠,∴△AMC和△BOD中,C与D是对应点,∴△AMC和△BOD相似时分两种情况:①当△AMC∽△BOD时,=tan∠EOF=2,∵MC=4,∴=2,解得AC=8;②当△AMC∽△OBD时,=tan∠EOF=2,∵MC=4,∴=2,解得AC=2.故当AC的长度为2或8时,△AMC和△BOD相似(2)解:△ABO为直角三角形.理由如下:∵MC∥BD,∴△AMC∽△ABD,∴,∠AMC=∠ABD,∵M为AB中点,∴C为AD中点,BD=2MC=8.∵tan∠EOF=2,∴OD=4,∴CD=OC﹣OD=8,∴AC=CD=8.在△AMC与△BOD中,,∴△AMC≌△BOD(SAS),∴∠CAM=∠DBO,∴∠ABO=∠ABD+∠DBO=∠AMC+∠CAM=90°,∴△ABO为直角三角形(3)解:连结BC,设OD=a,则BD=2a.∵S△AMC=S△BOC,S△AMC= AC MC=2AC,S△BOC= OC BD=12a,∴2AC=12a,∴AC=6a.∵△AMC∽△ABD,∴,即,解得a1=3,a2=﹣(舍去),∴AC=6×3=18.26.(1)解:如图,过点A作AE⊥y轴于点E,∵AO=OB=2,∠AOB=120°,∴∠AOE=30°,∴AE=1,EO= ,∴A点坐标为:(﹣1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:.∴a= ,b=﹣(2)解:由(1)可知:抛物线的表达式为:y= x2﹣x;过点M作MF⊥OB于点F,∵y= x2﹣x= (x2﹣2x)= (x﹣1)2﹣,∴M点坐标为:(1,﹣),∴tan∠FOM= = ,∴∠FOM=30°,∴∠AOM=30°+120°=150°。
苏科版九年级数学下册第七章【锐角三角函数】单元测试卷及解析
苏科版九年级数学下册第七章【锐角三角函数】单元测试卷一、单选题(共10题;共29分)1.在△ABC中,∠A,∠B都是锐角,tanA=1,sinB= ,你认为△ABC最确切的判断是()A. 等腰三角形B. 等腰直角三角形C. 直角三角形D. 锐角三角形2.如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB= =()A. B. C. D.3.游客上歌乐山山有两种方式:一种是如图,先从A沿登山步道走到B,再沿索道乘座缆车到C,另一种是沿着盘山公路开车上山到C,已知在A处观铡到C,得仰角∠CAD=3l°,且A、B的水平距离AE=430米,A、B的竖直距离BE=210米,索道BC的坡度i=1:1.5,CD⊥AD于D,BF⊥CD于F,则山篙CD为()米;(参考数据:tan31°≈0.6.cos3l°≈0.9)A. 680B. 690C. 686D. 6934.若α是锐角,tanα•tan50°=1,则α的值为()A. 20°B. 30°C. 40°D. 50°5.某地区准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的余弦值为,则坡面AC的长度为()A. 8B. 9C. 10D. 126.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M,N分别在AB,AD边上,若AM:MB=AN:ND=1:2,则sin∠MCN=()A. B. C. D. ﹣27.在Rt△ABC中,∠C=90°,若cosB=,则sinB的值得是()A. B. C. D.8.如图,在反比例函数y= 的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y= 的图象上运动,若tan∠CAB=2,则k的值为()A. ﹣3B. ﹣6C. ﹣9D. ﹣129.如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m ,测得仰角为60°,已知小敏同学身高(AB)为1.6m ,则这棵树的高度为()(结果精确到0.1m ,≈1.73).A. 3.5mB. 3.6mC. 4.3mD. 5.1m.10.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A. (﹣4,﹣2﹣)B. (﹣4,﹣2+ )C. (﹣2,﹣2+ )D. (﹣2,﹣2﹣)二、填空题(共10题;共30分)11.已知α、β均为锐角,且满足|sinα﹣|+ =0,则α+β=________.12.在Rt△ABC中,∠C=90°,a,b分别是∠A、∠B的对边,如果sinA:sinB=2:3,那么a:b等于________.13.如图,⊙O的直径AB与弦CD相交于点E,AB=5,AC=3,则tan∠ADC =________.14.在△ABC中,已知∠C=90°,sinA= ,则cosA= ________,tanB= ________.15.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.16.已知一条长度为10米的斜坡两端的垂直高度差为6米,那么该斜坡的坡角度数约为________(备用数据:tan31°=cot59°≈0.6,sin37°=cos53°≈0.6)17.已知菱形的边长为3,一个内角为60°,则该菱形的面积是________.18.小明乘滑草车沿坡比为1:2.4的斜坡下滑130米,则他下降的高度为________ 米.19.如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的布罗卡尔点,若PA= ,则PB+PC=________.20.(2017•贵港)如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为________.三、解答题(共8题;共58分)21.计算.22.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)23.如图,小明家在学校O的北偏东60°方向,距离学校80米的A处,小华家在学校O的南偏东45°方向的B处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45)24.如图,某湖心岛上有一亭子,在亭子的正东方向上的湖边有一棵树,在这个湖心岛的湖边处测得亭子在北偏西°方向上,测得树在北偏东°方向上,又测得、之间的距离等于米,求、之间的距离(结果精确到米).(参考数据:,°,°,°,°)25.某海船以海里/小时的速度向北偏东70°方向行驶,在A处看见灯塔B在海船的北偏东40°方向,5小时后船行驶到C处,发现此时灯塔B在海船的北偏西65°方向,求此时灯塔B到C处的距离。
苏科版九年级数学下册第7章锐角三角函数测试卷(2)
锐角三角函数测试卷(2)一、选择题1.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是()A.500?sinα米B.米C.500?cosα米D.米2.如图,△ABC的项点都在正方形网格的格点上,则cosC的值为()A.B.C.D.3.如图,Rt△ABC中,∠BAC=90°,AD⊥BC于D,设∠ABC=α,则下列结论错误的是()A.BC=B.CD=AD?tanαC.BD=ABcosαD.AC=ADcosα4.如图,若△ABC和△DEF的面积分别为S1、S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S25.如图,为了测量河岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,∠ABC=α,那么AB等于()A.a?sinαB.a?cosαC.a?tanαD.6.如图,小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为9.0m,眼睛与地面的距离为 1.6m,那么这棵树的高度大约是()A.5.2m B.6.8m C.9.4m D.17.2m7.某实践小组去公园测量人工湖AD的长度.小明进行如下测量:点D在点A的正北方向,点B在点A的北偏东50°方向,AB=40米.点E在点B的正北方向,点C在点B的北偏东30°方向,CE=30米.点C和点E都在点D的正东方向,求AD 的长(结果精确到1米).(参考数据:≈1.732,sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)8.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为()A.20米B.米 C.米D.米9.如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m,≈1.73).A.3.5m B.3.6m C.4.3m D.5.1m二、填空题10.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m(结果不作近似计算)。
九年级数学下册 第7章锐角三角函数测试卷 苏科版
“锐角三角函数”复习测试卷一、 选择题(每小题3分,共18分)1. 如图1在 90,=∠∆C ABC Rt 中,若将各边长度都扩大为原来的2倍,则∠A 的余弦值 ( ) (A )扩大2倍(B )缩小2倍 (C )扩大4倍 (D )不变.2. 在△ABC 中,∠C =90°,sin A =45,则tan B =( )(A )43 (B )34 (C )35 (D )453. 已知在ABC △中,90C ∠=,设sinB n =,当B ∠是最小的内角时,n 的取值范围是( ) (A )02n <<(B )102n << (C )03n << (D )02n <<4.已知在ABC △中,若sin A =2,tan B =3,则这个三角形一定是( ) (A )锐角三角形 (B )直角三角形 (C )钝角三角形 (D )等腰三角形5.Rt ABC V ,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 等于( ) (A )cos sin a A b B + (B )sin sin a A b B +(C )sin sin a b A B + (D )cos sin a bA B +6.如图2,在等腰Rt ABC V 中,∠C =90o,AC =6,D 是AC 上一点,若tan ∠DBA =51,则AD 的长为( )(A ) 2 (B )3 (C )2 (D )1二、填空题(每题3分,共24分)7. 如图3,BAC ∠位于66⨯的方格纸中,则tan BAC ∠= . 8.计算:sin 30tan 60cos30︒-︒︒= (结果保留根号)9. 在90,=∠∆C ABC Rt 中,a =b =c = ,A ∠= .10. 如图4,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树的坡面距离为 米.图1图2图3 ABCABCD αA 1l3l 2l4l11.如图5,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为6cm ,sin B =13,则线段AC= .12.等腰三角形的边长分别为6和8,则底角余弦值为13.如图6,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .14.如图7,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .三、解答题 (共58分)15.(8分)计算:45sin 60)4︒-︒+.16.(10分) 如图8,在△ABC 中,∠C =90°,∠B =30°,AD 是∠BAC 的角平分线,与BC 相交于点D ,且AB =AD 的长.17. (10分) 如图,在梯形ABCD 中,︒=∠=∠90B A ,=AB 25,点E 在AB 上,︒=∠45AED ,6=DE ,7=CE . 求:AE 的长及BCE ∠sin 的值.CBD 图8图9A图718. (10分)某厂房屋顶呈人字架形(等腰三角形),如图10所示, 已知m BC AC 8==,︒=∠30A ,AB CD ⊥于点D . (1) 求ACB ∠的大小; (2)求AB 的长度.19. 在学习实践科学发展观的活动中,某单位在如图8所示的办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE ,张明同学站在离办公楼的地面C 处测得条幅顶端A 的仰角为50°,测得条幅底端E 的仰角为30°. 问张明同学是在离该单位办公楼水平距离多远的地方进行测量?(精确到整数米)(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20,sin30°=0.50,cos30°≈0.87,tan30°≈0.58)20. (10分)如图12所示,A 、B 两城市相距100km .现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么? 1.732 1.414)21. (10分)一种千斤顶利用了四边形的不稳定性. 如图13,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变ADC ∠的大小(菱形的边长不变),从而改变千斤顶的高度(即A 、C 之间的距离).若AB=40cm ,当ADC ∠从60︒变为120︒时,千斤顶升高了多少?图10 图12 BFEP45° 30°图1122. (10分)2011年春季我国南方多个省份发生特大旱灾,部分小河、小溪断流,湖泊干涸,更为严重的情况是有的水库已经见底,蓄水急剧减少,为确保城乡居民生活用水,有关部门需要对某水库的现存水量进行统计,以下是技术员在测量时的一些数据:水库大坝的横截面是梯形ABCD (如图9所示),AD ∥BC ,EF 为水面,点E 在DC 上,测得背水坡AB 的长为18米,倾角∠B =30°,迎水坡CD 上线段DE 的长为8米,∠ADC =120°.(1)请你帮技术员算出水的深度(精确到0.01米,参考数据732..13 ); (2)就水的深度而言,平均每天水位下降必须控制在多少米以内,才能保证现有水量至少能使用20天?(精确到0.01米)23. (10分) 如图,是一个匀速旋转(指每分钟旋转的弧长或圆心角相同)的摩天轮的示意图,O 为圆心,AB 为为水平地面,假设摩天轮的直径为80米,最低点C 离地面为6米,旋转一周所用的时间为6分钟,小明从点C 乘坐摩天轮(身高忽略不计),请问: (1)经过2分钟后,小明离开地面的高度大约是多少米?(2)若小明到了最高点,在视线没有阻挡的情况下能看到周围3公里远的地面景物,则他看到的地面景物有多大面积?(精确到1平方公里)24. (10分)观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作 AD ⊥BC 于D (如图2),则D A B C 30° 120°图9E F C B D O · 图1 Asin B =c AD ,sin C =bAD,即AD =c sin B ,AD =b sin C ,于是c sin B = b sin C ,即C c B b sin sin =. 同理有:A a C c sin sin =,B b A a sin sin =, 所以C cB b A a sin sin sin == 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图3,△ABC 中,∠B =450,∠C =750,BC =60,则∠A = ;AC = ; (2)如图4,一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西75°的方向上(如图4),求此时货轮距灯塔A 的距离AB . 答案1. D2. B3. A4. C5. B6. A7.328. 3-9. 30° 10. 5 11. 4 12.8332或tan tan m n αα-⋅15. 解:=原式2=2= 16. 解:在Rt △ABC 中 ∵ ∠B =30° ∴ AC =12AB =12×∵ AD 平分∠BAC ∴ 在Rt △ACD 中,∠CAD =30°∴ AD =cos30AC=4 17. 解:(1)如图,在Rt DAE V 中,90A ∠=︒,6=DE 45AED ∠=︒图 4图3 图2∵DEAEAED =∠cos ∴AED DE AE ∠⨯=cos =︒⨯45cos 6=23(2)∵AE AB BE -= ∴222325=-=BE在BCE Rt ∆中,7=EC ,CE BE BCE =∠sin =722 18. 解:(1)∵︒=∠=30,A BC AC ∴︒=∠=∠30B A ∵︒=∠+∠+∠180ACB B A∴B A ACB ∠-∠-︒=∠180︒-︒-︒=3030180︒=120(2)∵AB CD BC AC ⊥=, ∴AD AB 2= 在ADC Rt ∆中,︒=∠30A ,8=AC ∴A AC AD cos ⋅=3423830cos 8=⨯=︒⋅=∴382==AD AB (m ) 19. 解:方法一:过D 点作DF ⊥AB 于F 点在Rt DEF V 中,设EF =x ,则DF在Rt ADF V 中,t a n 50AF DF ︒==≈1.204 ∴30+x=×1.20 x ≈27.8 ∴DF≈48方法二:过点D 作DF ⊥AB 于F 点, 在Rt DEF V 中,EF =FD·tan 30° ,在Rt ADF V 中,AF =FD·tan 30° ∵AE +EF =AF ∴30+FDtan 30°=FD·tan 50° ∴FD ≈48 答:张明同学站在离办公楼约48米处进行测量的20. 过点P 作PC AB C ⊥,是垂足, 则3045APC BPC ∠=∠=°,°, AC PC =·tan 30BC PE =°,·tan 45° ∵AC BC AB +=,PC ∴·tan 30PC +°·tan 45°=100,1100PC ⎫∴+=⎪⎪⎝⎭.(()503503 1.73263.450PC ∴=-⨯->≈≈.答:森林保护区的中心与直线AB 的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.21. 解: 连结AC ,与BD 相交于点O ∵四边形ABCD 是菱形\AC ^BD ,ÐADB =ÐCDB ,AC =2AO ,当ÐADC =60°时,△ADC 是等边三角形 \AC =AD =AB =40 当ÐADC =120°时,ÐADO =60°\AO =AD ×sin ÐADO =40\AC因此增加的高度为-40=40´0.732»29(cm )22. 解:分别过A 、B 作AM ⊥BC 于M 、DN ⊥BC 于N , 在Rt ABM V 中,∵∠B =30°,∴AM =21AB =9.∵AD ∥BC ,AM ⊥BC ,DN ⊥BC ,∴AM =DN =9. ∵DN ⊥AD ,∴∠ADN =90°.∠CDN =∠ADC -∠AND =120°-90°=30°. 延长FE 交DN 于H 在Rt DHE V 中,cos EDH ∠=DEHD , 830cos 0DH =,∴DH =34238=⨯, ∴HN =DN -DH =9-34=9-4×1.732≈2.07.(米) (2)10.01035.02007.2≈=(米) 答:平均每天水位下降必须控制在0. 10米以内,才能保证现水量至少使用20天.23(1)从点C 乘坐摩天轮,经过2分钟后到达点E ,则∠COE =120°, 延长CO 与圆交于点F ,作EG ⊥OF 于点G 。
苏科版九年级数学下册第7章《锐角三角函数》提优测试卷
第7章《锐角三角函数》提优测试卷(时间:100分钟 满分:130分)一、选择题(每小题3分,共30分)1.ABC ∆中, a 、b 、c 分别是A ∠、B ∠、C ∠的对边,如果222a b c +=,那么下列结论正确的是( )A. cos b B c =B. sin c A a =C. tan a A b =D. tan b B c= 2.正方形网格中,AOB ∠如图放置,则cos AOB ∠的值为( ) A.12B.22C.32D.333.如图,1∠的正切值为( )A.13 B. 12C. 3D. 2 4.α是锐角,且3cos 4α=,则( )A. 0α︒<<30︒B. 30α︒<<45︒C. 45α︒<<60︒D. 60α︒<<90︒5.若A 为锐角,且4sin 5A =,则tan A 的值为( ) A. 34 B. 43 C. 35 D. 536.已知等边ABC ∆内接于⊙O ,点D 是⊙O 上任意一点,则sin ADB ∠的值为( )A. 1B.12C. 32D. 227.在ABC ∆中,a 、b 、c 分别为角A 、B 、C 的对边,若60B ∠=︒, 则c aa b c b+++ 的值为( ) A.12B. 22C. 1D.28.河堤横断面如图所示,堤高BC =6米,迎水坡AB 的坡比为1:3,则AB 的长为( ) A. 12米 B. 43米 C. 53米 D. 63米 9.在寻找马航MH370航班过程中,某搜寻飞机在空中A 处发现海面上一块疑似漂浮目标B ,此时从飞机上看目标B 的俯角为α,已知飞行高度AC =1 500米,tan 35α=,则飞机距疑似目标B 的水平距离BC 为( )A. 24005米B. 24003米C. 25005米D. 25003米10.如图,一艘海轮位于灯塔P 的北偏东50°方向,距离灯塔P 为10海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向B 处,那么海轮航行的距离AB 的长是( ) A. 10海里 B. l0sin 50°海里 C. l0cos 50°海里 D. l0tan 50°海里 二、填空题(每小题3分,共24分)11.在Rt ABC ∆中,90,ACB CD ∠=︒是斜边AB 上的中线,CD =4,AC =6,则sin B 的值是 .12.已知α为锐角,tan(90)3α︒-=,则α的度数为 .13.(2015·杭州校级一模)如图,在四边形ABCD 中,30,90,A C ∠=︒∠=︒105,ADB ∠=︒3s i n,42B DC AD ∠==,则DC 的长= .14.如图,在ABC ∆中,已知,45,AB AC A BD AC =∠=︒⊥于点D .根据该图可以求出 tan 22.5°= . 15.在ABC ∆中,若2tan 1,sin 2A B ==,则ABC ∆的形状是 . 16.如图,在坡度为1:3的山坡上种树,要求株距(相邻两树间的水平距离)是6米,则斜坡上相邻两树间的坡面距离是 米(结果保留根号).17.在同一时刻太阳光线与水平线的夹角是一定的,如图,有一物体AB 在某一时刻太阳光线与水平线的夹角为30°时,物体AB 的影长BC 为8米,在另一个时刻太阳光线与水平线的夹角为45°时,则物体AB 的影长BD 为 米.(结果保留根号)18.如图,经过原点的⊙P 与两条坐标轴分别交于点(3,0)A 和点(0,1),B C 是优弧OAB 上的任意一点(不与点O 、B 重合),则BCO ∠的度数为 .三、解答题(共76分) 19.(8分)计算:(1)1018sin 45()(21)2-⨯︒+--;(2)2cos302sin 45tan 60︒+︒-︒.20. ( 6分)如图,在Rt ABC ∆中,190,10,tan 2C AB A ∠=︒=∠=,求BC 的长和sin B ∠的值.21. (8分)根据道路管理规定,在贺州某段笔直公路上行驶的车辆,限速40千米/时,已知交警测速点M 到该公路A 点的距离为102米,45,30MAB MBA ∠=︒∠=︒(如图所示),现有一辆汽车由A 往B 方向匀速行驶,测得此车从A 点行驶到B 点所用的时间为3秒. (1)求测速点M 到该公路的距离;(2)通过计算判断此车是否超速.(参考数据:2 1.41,3 1.73,5 2.24≈≈≈)22.(8分)如图,在一斜坡坡顶A 处的同一水平线上有一古塔,为测量塔高BC ,数学老师带领同学在坡脚P 处测得斜坡的坡角为α,且tan 724α=,塔顶C 处的仰角为30°,他们沿着斜坡攀行了50米BC ,到达坡顶A 处,在A 处测得塔顶C 的仰角为60°.(1)求斜坡的高度AD ; (2)求塔高BC .23. ( 8分)如图,某飞机在空中探测某座山的高度,在点A 处飞机的飞行高度是AF =3 700米,从飞机上观测山顶目标C 的俯角是45°,飞机继续以相同的高度飞行300米到B 处,此时观测目标C 的俯角是50°,求这座山的高度CD .(参考数据:sin 50°≈0.77, cos 50°≈0.64,tan 50°≈ 1.20 )24. ( 8分)在东西方向的海岸线l 上有一长为1 km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于A 的北偏西30°,且与A 相距40 km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距83km 的C 处.(1)求该轮船航行的速度(结果保留根号);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.25.(本题6分)数学拓展课程(玩转学具)课堂中,小陆同学发现,一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼在一起,点B ,C ,E 在同一直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.26.(8分)如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高2.0米,且AC =2.17米,设太阳光线与水平地面的夹角为α.当︒=60α时,测得楼房在地面上的影长AE =10米,现有一只小猫睡在台阶的MN 这层上晒太阳.(3取73.1)(1)求楼房的高度约为多少米?(2)过了一会儿,当︒=45α时,问小猫能否还晒到太阳?请说明理由.αN第25题图DMBAE C27.(6分)小宇想测量位于池塘两端的A 、B 两点的距离.他沿着与直线AB 平行的道路EF 行走,当行走到点C 处,测得∠ACF =45°,再向前行走100米到点D 处,测得∠BDF =60°.若直线AB 与EF 之间的距离为60米,求A 、B 两点的距离.28.(10分)在某次海上军事学习期间,我军为确保△OBC 海域内的安全,特派遣三艘军舰分别在O 、B 、C 处监控△OBC 海域,在雷达显示图上,军舰B 在军舰O 的正东方向80海里处,军舰C 在军舰B 的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r 的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC 海域进行无盲点监控,则雷达的有效探测半径r 至少为多少海里?(2)现有一艘敌舰A 从东部接近△OBC 海域,在某一时刻军舰B 测得A 位于北偏东60°方向上,同时军舰C 测得A 位于南偏东30°方向上,求此时敌舰A 离△OBC 海域的最短距离为多少海里?(3)若敌舰A 沿最短距离的路线以202海里/小时的速度靠近△OBC 海域,我军军舰B 沿北偏东15°的方向行进拦截,问B 军舰速度至少为多少才能在此方向上拦截到敌舰A ?参考答案1.B2.B3.A4.B5.B6.C7.C8.A9.D 10.C 11.3412.30° 13.2 14. 21- 15. 等腰直角三角形 16.210 17.83318. 30° 19.(1)原式=3 (2)原式=1 20. 25BC =,25sin 5B ∠=. 21.(1)作如图辅助线,2s i n2MN MAN AM ∠==,解得10MN = (2)由题解得,103BN =,1010327.3AB ∴=+≈ 平均速度27.3÷3=9.1(米/秒)=32.76(千米/小时) 故,没有超速.22.(1)7tan 24α=,设7,24AD k PD k ==,25PA k ∴= 2k ∴=,14AD =.(2)塔高为24321- 23.1900CD =米24.(1)ABC ∆为直角三角形,22167BC AB AC =+=1小时20分=43小时,16712743∴=(2)能,理由:作如图辅助线,360∠=︒,430∴∠=︒83cos3012AS=︒=.25.26. (1)17.3 (2)可以晒到太阳27. 解:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN﹣CM=100+20﹣60=(40+20)米,即A、B两点的距离是(40+20)米.28. (1)在RT△OBC中,∵BO=80,BC=60,∠OBC=90°,∴OC===100,∵OC=×100=50∴雷达的有效探测半径r至少为50海里.(2)作AM⊥BC于M,∵∠ACB=30°,∠CBA=60°,∴∠CAB=90°,∴AB=BC=30,在RT△ABM中,∵∠AMB=90°,AB=30,∠BAM=30°,∴BM=AB=15,AM=BM=15,∴此时敌舰A离△OBC海域的最短距离为15海里.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,∵∠HBN=∠HNB=15°,∴∠MHN=∠HBN+∠HNB=30°,∴HN=HB=2x,MH=x,∵BM=15,∴15=x+2x,x=30﹣15,∴AN=30﹣30,BN==15(﹣),设B军舰速度为a海里/小时,由题意≤,∴a≥20.∴B军舰速度至少为20海里/小时.初中数学试卷金戈铁骑制作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数
(满分:120分时间:90分钟)
一、选择题(每题3分,共30分)
1.如图,梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是 ( )
A.sinA的值越大,梯子越陡 B.cosA的值越大,梯子越陡
C.t a nA的值越小,梯子越陡 D.陡缓程度与∠A的函数值无关
2.如果a是等腰直角三角形的一个锐角,那么t a n a的值是 ( )
A.1
2
B.
2
2
C.1 D.2
3.若∠A是锐角,且cos (A+15°)=sin (A+15°),则∠A的度数是 ( )
A.30° B.45° C.60° D.不能确定
4.在△ABC中,AB=AC=3,BC=2,则6cos B的值为 ( )
A.3 B.2 C.33 D.23
5.一艘船向东航行,上午8时到达B处,看到一座灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C处,看到灯塔A在它的正南方向,则这艘船航行的速度为 ( )
A.18海里/时 B.183海里/时 C.36海里/时 D.363海里/时
6.(2011.潍坊)身高相等的四名同学甲、乙、丙、丁参加放风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是 ( )
A.甲 B.乙 C.丙 D.丁
7.从边长为1的等边三角形内一点分别向三边作垂线,则三条垂线段长的和为 ( )
A.
3
2
B.23 C.2D.22
8.如图,在梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,则CD的长为( )
A.8
6
3
B.4
8
6
3
C.
8
2
3
D.42
9.(2011.兰州)如图,A、B、C三点在正方形网格线的交点处,若将△ACB绕着点A逆时针旋转得到△AC'B',则t a n B'的值为 ( )
A.1
2
B.
1
3
C.
1
4
D.
2
4
10.(2011.武汉)如图,铁路MN和公路PQ在点0处交汇,∠QON=30°.公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为( )
A.12秒 B.16秒 C.20秒 D.24秒
二、填空题(每题3分,共24分)
11.计算:6cos 30°t a n 30°+2sin2 45°=_______.
12.在△ABC中,∠C=90°,若t a n A=,则sinA=
13.如图,O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(4,0),则点B的坐标为_______.
14.在△ABC中,AB=2,AC=2,∠C= 30°,则∠BAC=________.
15.在倾斜角为30°的山坡上种树,要求相邻两棵树间的水平距离为3米,那么相邻两棵树间的斜坡距离为_______米.
16.已知等腰三角形的周长为20,一内角的余弦值为2
3
,那么该等腰三角形的腰长等于_______.
17.如图,在△ABC中,AD⊥BC于D,CE⊥AB于E,且BE=2AE,已知AD=33,t a n∠BCE=
3
3
,那么
CE=_______.
18. (2011.乌兰察布)某厂家新开发的一种电动车如图所示,它的大灯A射出的光线AB、AC与地面MN 所夹的锐角分别为8°和10°,大灯A与地面的距离为1m,则该车大灯照亮地面的宽度BC是_______m
(不考虑其他因素,t a n 8°=1
7
,t a n 10°=
5
28
).
三、解答题(第19题8分;第20、21题每题10分;第22、23题每题12分;第24题14分,共66分)19.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,根据下面的条件解这个三角形:
(1)a=4,b=3 (2)a=6A=45°.
20.如图,我国海军在亚丁湾一海域执行护航任务的某军舰由东向西行驶,在航行到B处时,发现灯塔A 在军舰的正北方向500米处;当该军舰从B处向正西方向行驶至达C处时,发现灯塔A在军舰的北偏东60°的方向.求该军舰行驶的路程.(结果保留根号)
21.“五一”假期间,某数学活动小组组织一次登山活动,他们从山脚下A点出发沿斜坡AB到达B点,再从B点沿斜坡B C到达山顶C点,路线如图所示,斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°,已知A点海拔121米,C点海拔721米.求:
(1)B点的海拔;
(2)斜坡AB的坡度.
22.如图,E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.
(1)求证:△AB F∽△DFE;
(2)若sin ∠DFE=1
3
,求t a n ∠EBC的值.
23.(2011.南昌)如图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形.当点O到BC(或DE)的距离大于或等于⊙O的半径时(⊙O是桶口所在圆,半径为OA),提手才能从图甲的位置转到图乙的位置,这样的提手才合格,现在用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D 是弧CD,其余是线段),O是AF的中点,桶口直径AF=34 cm,AB=FE=5 cm,∠ABC=∠FED=149°,
请通过计算判断这个水桶提手是否合格(314≈17. 72,tan 73.6°≈3.40,sin 75.4°≈0.97).
24.如图,在海面上产生了一股强台风,台风中心(记作点M)位于滨海市(记作点A)的南偏西15°,距离
为612千米,且位于临海市(记作点B)正西方向603千米处,台风中心正以72千米/时的速度沿
北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.
(1)滨海市、临海市是否会受到此次台风的侵袭?请说明理由;
(2)若受到此次台风侵袭,则该城市受到台风侵袭的持续时间有多少小时?
参考答案
一、1.A 2.C 3.A 4.B 5.B 6.D 7.A 8.A 9.B 10.B
二、11.4 12.
5
5
13.(3,3) 14.15°或105° 15.23 16.6 17.43 18.1.4
三、19.(1) ∠A=30°、∠B= 60°、c=8 (2) ∠B=45°、b=36、c=63 20.该军舰行驶的路程为5003米 21.(1)521(米) (2) 斜坡AB的坡度为1:2.4
22.(1)略 (2)
2
2
23.水桶提手合格 24.(1)滨海市不会受到台风的侵袭.临海市会受到台风浸
袭 (2)临海市受到台风侵袭时间为5
6
小时。