大学物理第十单元
大学物理第十章重点小结
) (1
2πr1
)
则
2π
r1 r2
2π
r1 r2 称为波程差(波走过的路程之差)
加强 2kπ 2π 2π r1 r2 (2k 1) π 减弱
第十章 波动
17
物理学
第五版
将合振幅加强、减弱的条件转化为干涉 的波程差条件,则有 干涉的波程差条件 当 r1 r2 k 时(半波长偶数倍) 合振幅最大
2 1
2
1
AC
]
u y A (3 10 m) cos(410s )t πm 8m 5m 9m
C B
2
1
oA
D
x
11
第十章 波动
物理学
第五版
点 D 的相位落后于点 A
AD y D (3 10 m)cos[4 s ]t 2 λ 9 2 1 (3 10 m) cos[( 4 π s )t π] 5
2 1
C D 2π
xC xD
22 2π 4.4π 10
9m
u
λ 10 m
C 8m B 5m
10m
D
oA
x
13
第十章 波动
物理学
第五版
二
平面简谐波的能量
在波动传播的介质中,任一体 积元的动能、势能、总机械能均随 x, t 作周期性变化,且变化是同相位的. 体积元在平衡位置时,动能、势能 和总机械能均最大. 体积元的位移最大时,三者均为零.
3
2π
y (2 A cos
2π
x) cos t (2 A cos
大学物理第十章课后习题答案
10.1 解:O O B B B B 出圆弧进++=0其中两直线电流在O 点产生的磁感应强度为0,1/4圆电流在O 点产生的磁感应强度方向垂直纸面向里,大小为R IRIB B O 841200μμ=⨯==圆弧。
10.2解:d b c a B B B B B +++=中心如图a I a I B B a πμπμ0022/22224)45cos 22===︒(中心过中心平行于ad (如图竖直向上)。
10.3 解:1PI B方向垂直纸面向里,大小为d I πμ2102PI B方向纸面向右,大小为d I πμ220 21PI PI P B B B +=T I I d d I d I B B B PI PI P 52221022021022102.72)2()2(21-⨯=+=+=+=πμπμπμ方向在过P 垂直于1I 的平面内与2PI B 夹α角︒===--7.33)32()(1121tna B B tna PI PI α10.4解:两线圈在P 点产生的磁感应强度方向都在两圆心的连线上指向小圆(向左)}])([])([{22322122223221211021x b R R I x b R R I B B B PR PR P -++++=+=μ10.5 解:a bc d2I P 2PIra Idy r dya I rdI B d πμπμπμ422200===20044cos r a Iydyr y r a Idy dB dB x πμπμα=== 20044sin r a Ixdyr x r a Idy dB dB y πμπμα===由对称性可知⎰==0x Px dB Bx a a I x a x a a I x y x a Ix y x dy a Ix y x a Ixdy r a Ixdy dB B aaa aa a aa y Py 101101022022020tan 2)tan (tan 4]tan 144)(44--------=--==+=+===⎰⎰⎰⎰πμπμπμπμπμπμ10.6解:对于无限大平面载流导体板,即上题结果中a x <<,2π=x a arctgi u a I u B 00214==∴(i 为电流密度)(1) 在两面之间1i 产生的磁感强度大小为10121i u B =,方向垂直纸面向里。
大学物理-第10章
(3) I位 的磁效应与 I传 的等效,即:随时间变化的电场在周围
激发磁场 。
D(t )
H (t )
二、电磁场
电荷 激 发
电场
运动
变化 变化
电流 激 发
磁场
★ 随时间变化的电场激发时变磁场; ★ 随时间变化的磁场激发时变电场;
在空间形成电磁场,以电磁波的形式传播。
D t
B
H t
E涡
例1 有一圆形平行平板电容器, R 3.0cm.现对
r2
dB dt
Ek
2
r
A
1 dB
Ek
r 2
dt
B
Ek
1、自感
三、自感和互感
(1) 自感现象
Ψm LI L — 自感系数 单位:亨利 H
自感系数由线圈形状、大小、匝数、 周围介质分布等因素决定。
如果自感系数为常量,由法拉第电磁感应定律,
L
L
dI dt
负号表示自感电动 势总是要阻碍线圈回路 本身电流的变化。
其充电,使电路上的传导电流 Ic dQ dt 2.5A,
若略去边缘效应, 求(1)两极板间的位移电流;(2)两
极板间离开轴线的距离为 r 2.0cm 的点 P 处的磁
感应强度 .
解 如图作一半径
Q Q
为 r平行于极板的圆形
回路,通过此圆面积的 电位移通量为
Ic
R P*r
Ic
Ψ D(π r 2 )
1861年,麦克斯韦提出了感生电场的假设
变化的磁场在周围空间要激发电场, 称为感生电场。感生电流的产生就是这一电 场作用于导体中的自由电荷的结果。
B 增加 I
周围空间都有激发电场, 导线圈只起探测器作用。
大学物理第十章课后习题答案
题库
第十章 静电场中的导体和电介质
一、 填空 1. 根据物质的导电性,可将物质分为 、 和 。 2. 从 物质 的 电结 构 来看 , 金属 导 体具 有 带负 电 的 和 带正 电 的 。 3. 导 体处 于静 电平 衡时 ,导 体内 部各 点 的场 强为 , 这称 为导 体的 条件。静电平衡下的导体是 ,导体的表面是 。 4. 导体处于静电平衡状态时,导体内处处 (填“有”或“无” )净余电荷, 电荷只能分布在导体的 上。 5. 对于孤立导体而言,表面上 的分布与表面曲率有关,表面曲率越大, 电荷面密度越 ,反之越 。 6. 空腔导体内部电场不受腔外电场的影响,接地导体空腔外部的电场不受腔内 电荷的影响,这种隔离作用称为 。 7. 孤立导体的 是指使导体升高单位电势所需的电荷,反映了导体 的性质。 8. 根据分子中正、 负电荷中心的分布, 可将电介质分为 分子和 分 子。将两类电介质放入电场中将分别发生 极化和 极化。 二、 简答 1. 2. 3. 4. 5. 6. 简述导体静电平衡的条件及特点。 简述静电屏蔽。 简述处于静电平衡的空腔导体,空腔内场强处处为零。 简述孤立导体的电容的计算公式及物理意义。 分别推导两个电容器串联和并联后的总电容的计算公式。 电介质的极化现象和导体的静电感应现象两者有什么区别?
并联: q = q1 + q2 , U = U1 = U 2 , C =
q q1 q2 = + = C1 + C2 。 U U U
6. 答:导体静电感应时会在导体表面出现感应电荷,电解质极化时在介质表面 出现极化电荷,是两种不同的电荷,静电平衡时导体内部场强为零,电解质极化 时内部场强不为零。 三、 计算 1. 证明:如图所示,设四个面上的电荷面密度分别为 σ 1 、 σ 2 、 σ 3 、 � σ 4 ,在 A 板内取一点 P1 ,设 en 是向右的单位法向矢量, 四个无限大
大学物理第10单元课后习题答案.docx
习题1010.1选择题(1)对于安培环路定理的理解,正确的是:(A)若环流等于零,则在回路L上必定是H处处为零;(B)若环流等于零,则在回路L上必定不包围电流;(O若环流等于零,则在回路L所包围传导电流的代数和为零;(D)回路L上各点的H仅与回路L包围的电流有关。
[答案:C](2)对半径为R载流为I的无限长直圆柱体,距轴线r处的磁感应强度B ()(A)内外部磁感应强度B都与r成正比;(B)内部磁感应强度B与r成正比,外部磁感应强度B与r成反比;(C)内外部磁感应强度B都与r成反比;(D)内部磁感应强度B与r成反比,外部磁感应强度B与r成正比。
[答案:B](3)质量为m电量为q的粒子,以速率v与均匀磁场B成0角射入磁场,轨迹为一螺旋线,若要增大螺距则要()(A)增加磁场B; (B)减少磁场B; (C)增加0角;(D)减少速率V。
[答案:B](4)一个100匝的圆形线圈,半径为5厘米,通过电流为0.1安,当线圈在1.5T的磁场中从0=0的位置转到180度(0为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A) 0.24J;(B) 2.4J; (C) 0.14J; (D) 14J。
[答案:A]10.2填空题(1)边长为a的正方形导线回路载有电流为I,则其中心处的磁感应强度______ =[答案:2臥I ,方向垂直正方形平面]na(2)计算有限长的直线电流产生的磁场—用毕奥——萨伐尔定律,而—用安培环路定理求得(填能或不能)。
[答案:能,不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为 ____ o电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为 ____ o[答案:零,零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以_电流时,管内的磁力线分布相同,管内的磁感线分布将 ____ =[答案:相同,不相同]10.3在同一磁感应线上,各点万的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度鸟的方向?解:在同一磁感应线上,各点鸟的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度万的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为直的方向.dl题10.3图10.4(1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度鸟的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)?(2)若存在电流,上述结论是否还对?解:(1)不可能变化,即磁场一定是均匀的.如图作闭合回路abed可证明B{=B2£ B-dl =B l da-B2bc = /J0^I = 0B x =(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线, 但鸟方向相反,即B^B2.10.5用安培环路定理能否求有限长一段载流直导线周围的磁场?答:不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.10.6在载流长螺线管的情况下,我们导出其内部B = ^o nl,外面B=0,所以在载流螺线管外面环绕一周(见题10.6图)的环路积分牡民卜応=0但从安培环路定理来看,环路L中有电流I穿过,环路积分应为牡万外-df = //0/这是为什么?解:我们导出B 内=jU o nl,B^ =0有一个假设的前提,即每匝电流均垂直于螺线管轴线.这 时图中环路厶上就一定没有电流通过,即也是与(鸟外-dr=<(o-dr=o 是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实 际上以上假设并不真实存在,所以使得穿过厶的电流为/,因此实际螺线管若是无限长时, 只是鸟外的轴向分量为零,而垂直于轴的圆周方向分量B[= 必,r 为管外一点到螺线管轴 17VT题10.6图10.7如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它 发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存 在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定 那个区域存在着磁场,因为仅有电场也可以使电子偏转.10.8已知磁感应强度B = 2.0Wb/m 2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试 求:(1)通过图中abed 面的磁通量;(2)通过图中b 妣面的磁通量;(3)通过图中*/^面的磁 通量.解:如题10.8图所示.⑴通过a0cd 面积,的磁通是($面法线沿 x 轴正向)0)! =5-5] =2.0x0.3x0.4 = 0.24 Wb⑵通过befc 面积S 2的磁通量 0)2 = B • 52 = 0⑶通过a 创面积S3的磁通量(S3面法线沿x 、z 轴的正向)啓=用恳3 = 2x0.3x0.5xcos& = 2x0.3x0.5x? = 0.24 Wb10.9如题10-9图所示,AB. CD 为长直导线,RC 为圆心在O点的一段圆弧形I题10. 8图导线,其半径为若通以电流Z,求0点的磁感应强度.解:如题10-9图所示,O 点磁场由AB 、BC 、CD 三部分电流产生.其中AB 产生:& = 0CD 产生:场=上上,方向垂直向里 2 12RBC 段产生磁场 由B = ^-(sin^2- sin^J 得: 4mB 3 = ^^(sin 90° - sin 60° ) = ^-(1-—),方向丄向里 .R 2nR 2 •••恥+ B 严盟(1—子+汀方向丄向里.10.10在真空中,有两根互相平行的无限长直导线厶和厶2,相距0.ini,通有方向相反的电 流,/1=20A,/2=10A,如题10.10图所示.A, 3两点与导线在同一平面内.这两点与导线L 2的距离均为5.0cm •试求A, B 两点处的磁感应强度,以及磁感应强度为零的点的位置. Zi=20A0.1mL'i 丄—Z 2=10A 题10.10图解:如题10.10图所示,&方向垂直纸面向里2 茨崔丽+化g ^-2.(0Z0.05)+^0j^h33X1°-5T10.11如题10-11图所示,两根导线沿半径方向引向铁环上的A, B 两点,并在很⑵设片=0在厶2外侧距离厶2为厂处,则:解得r - 0.1 m1 n 题10-9图 2^(r + 0.1)2 岔远处与电源相连.已知圆环的粗细均匀,求环中心0的磁感应强度.解:如题10-11图所示,圆心O 点磁场由直电流Aoo 和Boo 及两段圆弧上电流人 与厶所产生,但A8和Boo 在O 点产生的磁场为零。
大一物理第十章知识点
大一物理第十章知识点回顾在大学物理课程中,第十章通常是关于电磁波和光学的内容。
这一章节涵盖了许多重要的知识点,既涉及到基本的电磁学原理,又涉及到光的传播和干涉现象。
本文将回顾,并结合实例进行解释和说明。
1. 电磁波的本质电磁波是一种由电场和磁场相互作用而形成的波动现象。
在电磁波中,电场和磁场垂直并且相互垂直地传播。
电磁波可以分为不同的频率和波长,包括射频、微波、红外线、可见光、紫外线、X射线和γ射线等。
2. 光的传播速度光的传播速度在真空中是常数,约为3×10^8 m/s,也即是光速。
光速是自然界中最快的速度之一,它的存在也决定了许多电磁学和相对论的基本原理。
3. 光的反射和折射光在介质之间传播时,会遇到不同介质的边界。
这时,光会发生反射和折射。
反射是指光线在遇到介质边界时,改变方向并保持传播的现象;而折射是指光线从一种介质传播到另一种介质时,改变传播方向的现象。
4. 玻璃棱镜的工作原理玻璃棱镜是光学实验中常用的光学元件。
它利用光的折射现象将入射光线分解成不同颜色的光谱。
这是因为不同波长的光在通过玻璃棱镜时会发生不同程度的折射,从而形成光谱。
5. 干涉现象干涉现象是指两个或多个波相互叠加形成的新的波动现象。
光的干涉常见于双缝干涉和薄膜干涉实验中。
在双缝干涉实验中,光通过两个紧密排列的缝隙后,会形成交替出现的明暗条纹。
而在薄膜干涉实验中,光通过薄膜后,会发生干涉现象,产生彩色的干涉条纹。
6. 波的衍射现象波的衍射是指波通过障碍物或通过狭缝时,波的传播方向发生改变并产生弯曲的现象。
光的衍射可以用来解释太阳光在云层后面形成彩虹的现象,以及人眼所能看到的景象。
7. 光的偏振现象偏振是指光的方向性特征。
光可以是无偏振的,也可以是偏振的。
在光通过某些介质后,光的振动方向将受到限制,使光的偏振发生改变。
这在实际生活中有很多应用,如太阳镜和液晶显示器等。
以上只是大一物理第十章的一些基本知识点的回顾。
电磁波和光学是一个庞大而且复杂的领域,涉及到更深的原理和应用。
大学物理学完整10PPT课件
上式还可写为: 2π
上式表明,ω是频率的2π倍,表示物体在2π秒内完成的全 振动次数,故ω称为角频率或圆频率。
周期、频率和角频率都是描述物体振动快慢的物理量。在
国际单位制中,周期的单位为秒(s);频率的单位为赫兹(Hz );角频率的单位为弧度每秒(rad/s)。
对弹簧振子,由于
k m
故有:
T 2π m k
第4篇 振动与波动
第10章 机械振动
.
1
本章学习要点
简谐振动 简谐振动的合成 阻尼振动、受迫振动与共振 本章小结
.2ຫໍສະໝຸດ 10.1 简谐振动物体运动时,如果离开平衡位置的位移(或角位移)按余 弦函数或正弦函数的规律随时间变化,则这种运动称为简谐振 动。在忽略阻力的情况下,弹簧振子的振动及单摆的小角度摆 动等都可视为简谐振动。
当t=0时,相位ωt+φ=φ,φ称为初相位,简称初相,它是 决定初始时刻振动物体运动状态的物理量。在国际单位制中, 相位的单位为弧度(rad)。
.
12
用相位描述物体的运动状态,还能充分体现出振动的周期 性。例如:
ωt+φ=0时,物体位于正位移最大处,且v=0; ωt+φ=π/2时,物体位于平衡位置,且向x轴负方向运动 ,v=ωA; ωt+φ=π时,物体位于负位移最大处,且v=0; ωt+φ=3π/2时,物体位于平衡位置,且向x轴正方向运动 ,v=ωA; ωt+φ=2π时,物体位于正位移最大处,且v=0。
【解】以OO′为平衡位置,设逆时针转向为θ 角正向,棒在任意时刻的角位移都可用棒与OO′ 的夹角θ表示。根据题意,棒所受的重力矩为:
M1mgslin
2
.
7
当摆角θ很小时,sinθ≈θ,故
M 1mgl
湖大版大学物理参考答案第10章
第十章 气体分子运动论10.1、解:由P =nkT ,得到:32523510415.2)27273(1038.110--⨯=+⨯⨯==mkTP n10.2、解:烘烤前:kT n P 11=,得到317233111032.3)17273(1038.11033.1---⨯=+⨯⨯⨯==mkTP n烘烤后:32023221068.1)300273(1038.133.1--⨯=+⨯⨯==m kTP n得到器壁吸附的分子数目为:18317121088.1102.1110)32.31680()(⨯=⨯⨯⨯-=-=-V n n N 10.3、解:(1)、方均根速率为:ρρρPnkTnkTmkT v 33/33__2====因此 s m v/87.491101024.1100.13353__2=⨯⨯⨯⨯=-(2)由s m RTv/87.4913__2==μ得到:g 2887.49127531.832=⨯⨯=μ,氮气10.8、解:麦克斯韦速率分布函数为:)2exp(24)(222/3kTmvv kT m v f -⎪⎭⎫⎝⎛=ππ(1)、由题意知:⎰⎰⎰===11)()()()(da av f v av d av f dv v f NdN p p p p v p即:⎰⎪⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛=1022222/32exp 24da v a kT v ma kT mv N dNpp p ππ将mkT v p 2=代入得到:⎰-=122)exp(16da a a NdN π因此:%76.42))(exp(21257.221))(exp(257.212122=--=--=⎰⎰a ad aa d a N dN(2)、%24.574276.01=-=NdN10.10、解:(1)、如右图所示。
(2)、依归一化条件得到:C v 0=1 得到:01v C =vC(3)、00210v dv v v vCdv v v v ===⎰⎰10.11、解:(1)在速率v -v +dv 区间内的分子数占总分子数的比率。
大学物理答案第10章北京邮电大学出版社主编:罗益民余燕
⼤学物理答案第10章北京邮电⼤学出版社主编:罗益民余燕第10章波动光学10-1 (1)由λdDkx =得 A kD xd 6000m 1060.12102.0106733=?===---λ(2) m m )(3103102.0106337=?=??==?---λd D x 10-2 若在下缝处置⼀折射率为n 厚度为t 的透明薄膜,则光从下缝到屏上的光程将增加(n -1)t ,屏上的条纹均要向下移动。
依题意中央明条纹多到屏中⼼下⽅原来第3级明条纹位置,则从双缝到该位置的光程差[]t n r r r t n r )1()()1(1212-+-=--+=δ0)1(3=-+-=t n λ故 m 3.2m 1016.316.110328.631367µλ≈?=-??=-=-n t 10-3 屏上1λ的经三级明绿纹中⼼的位置m 103.310550106.02.133933---?===λd D kx 依题意屏上1λ的第六级明条纹和波长为λ的第五级明条纹重合于x 处则有λλdDk d D k x 516== 即λλ516k k = m 106.6105505679156--?=??==λλk k 10-4 由λdDk10)0.46.7(1025.010501)(---?-=-=-紫红紫红λλd D k x x m 102.74-?=10-5 光源S 0和其在镜中的虚光源等价⼀对相⼲光源,它们在屏上的⼲涉条纹的计算与杨⽒双缝条纹基本相同,只是明暗条纹分布完全相反,故屏上第⼀条明纹位置就是双缝⼲涉的零级暗条纹位置. 即2102.7104)3.02.0(22)12(73--+==+=λλd D d D k x(m)105.45-?=上⾯表达式也可直接由光程差推导⽽得.10-6 (1)由题10-6图可以看出αβθ22221-====r C S C S SC∴αθβ+=⼜εαβ+=∴εθ=等效双缝间距εsin 2r d =(2)λεελsin 2cos r r L d D x +==(3)λεεελεεε)cos (sin 22sin 2cos 22r L r Ltg r r L Ltg x x +?=+=? 3105)15.05.1(105.02105.12733=+??=--- 屏上共可看到3条明条纹,除中央明条纹外,在其上、下侧还可看到⼀级明条纹. 10-7 ∵ 321n n n <<,故有,3,2,1,02)12(21112=+==k k e n λδ① 3,2,12222222===k k e n λδ②由上两式21312k k =+?但由于λ是连续可调的,在1λ和2λ间⽆其他波长消失与增强,所以取,1,121==k k 把11=k 或12=k 代⼊①式或②式)m (10333.121079027922--?≈??==n e λ10-8 在反射光中产⽣⼲涉加强的波长应满⾜习题10-6图习题10-7图λλk e n =+222 故 122021612380033.141242-=-??=-=k k k e n λ当k =2时,A 67392=λ(红光);k =3时,A 40433=λ(紫光)故肥皂膜正⾯呈紫红⾊在透射光中产⽣⼲涉加强的波长应满⾜λk e n =22kk k e n 10108380033.1222=??==λ当k =2时,A 50542=λ(绿光),故肥皂膜背⾯呈绿⾊. 10-9 ∵ 321n n n <<透射光中产⽣⼲涉加强的条件应满⾜λλk e n =+222故冰层厚度 A k k n k e 2053)2/1(33.125460)2/1(2)2/1(2?-=??-=-=令k =1,可得冰层的最⼩厚度为A e 1027min =10-10 根据题中折射间的关系,对A 5500=λ黄绿光的增透膜应满⾜关系λλk e n =+2/22)2/1(2)2/1(2?-=??-=-=λ令A e k 996,1==即为增透膜的最薄厚度.另解:要使透射光增强,必须的射光⼲涉减弱. ∵321n n n << ∴2 )12(22λδ+==k e n996)12(4122+=+=k n k e λA k )9961992(+=, k =0,1,2, …A e 996min =10-11 由22sin n l λθ=得8rad 1088.31088.310552.1210893.52sin 55372''=?=?===----θλθl n 10-12 ∵212n e e k k λ=-=+,∴ 20条明条纹对应平晶厚度差为5.1210328.619219)(19721==-=?-+n e e d k k λ (m)100.46-?=10-13 (1)12.010048.013-?==≈L d tg θθ21068027921--+?=??==-n e e k k λ(3)0.85(mm)m 105.8104121068024492=?===---θλn l (4)141105.812.04=?=-N10-14 (1)∵ 321n n n <<∴反射光中明条纹的条件为:λk e n =22 油膜边缘 e =0 ∴ k =0 油膜中⼼ m 102.16-?==h e∴ 8.4106102.12.122762===--λen k 故共可看到五条明条纹(k =0,1,2,3,4) (2)对应各明条纹中⼼油膜的厚度22n k e λ=当k =0,1,2,3,4时,对应油膜的厚度分别为:0,2500A ,5000A ,7500A ,10000A .(3)油膜逐渐展开时,圆条纹向外扩展,条纹间间距增⼤,条纹级数减⼩,油膜中⼼由半明半暗向暗、明、暗、明……依次变化,直⾄整个油膜呈现⼀⽚明亮区域. 10-15 依题意 1144d R R r r =-= -λλ2144d R R r r ='-'='-'λλ由上两式可解得未知单⾊光波长A d d 545958931041085.333212==???='--λλ 10-16 依题意有/)2/110(210110D n R r D R r =-='=-=λλ由上两式可解得液体折射率22.11027.1104.1222221==? ??=--D D n 10-17 由2λN d =得A N d 6290m 1029.6102410322.02273=?=??==--λ10-18 设放⼊厚度为d 玻璃⽚后,则来⾃⼲涉仪两臂相应的光程差变化为λN d n =-)1(2m 1093.5)1632.1(2105150)1(257--?=-=-=n N d λ10-19 ∵衍射⾓0?很⼩,∴中央明条纹的半⾓宽度rad 105101.01053370---?=??==a λ中央明条纹的宽度afftg x λ220≈=?mm 5m 1053=?=- 若单缝装置浸⼊⽔中,中央明条纹的半⾓宽度rad 1076.3101.033.11053370---?===na λ10-20 (1)设⼊射光波长为λ,离屏中⼼x =1.4mm 处为明条纹,则由单缝衍射明条纹条件,x 应满⾜12(sin λ+=k atg f x = ∵sin ?很⼩∴λ??ak ff ftg x 2)12(sin +=≈= )12(4.0104.1106.02)12(233+=+=--k k f ax λ m 12102.46+?=-k 当m 106,373-?==λk 恰在橙黄⾊波长范围内,所以⼊射光波长为A 6000. (2)p 点的条纹级数为3(3)从p 点看,对该光波⽽⾔,狭缝处波阵⾯可分成(2k +1)=7个半波带. 10-21 由单缝衍射明条纹条件,2 )12(sin λ+=k a ,可分别求得21λλ、两单⾊光第⼀级明条纹离屏中⼼的距离分别为4711110210435.02)12(--=+==a k f ftg x λ?mm)(3m 1033=?=-47222102106.735.02)12(--=+==a k f ftg x λ? mm)(7.5m 107.53=?=-这两条明条纹之间的距离mm)(7.2m 107.210)37.5(3312=?=?-=-=?--x x x若⽤光栅代替单缝,光栅常数(m)10cm 1000+b a 则由光栅⽅程λ?k b a =+sin )(,可分别求得21,λλ两单⾊光的第⼀级明条纹离屏中⼼的距离分别为cm)(2m 102101045.0257111=?=??+==---b a k f ftg x λ? m 108.310106.75.0257222---?=??+==b a k f ftg x λ?cm)(8.3=cm)(8.128.312=-=-=?x x x 10-22 光栅常数m 102mm 50016-?==+b a ,由光栅⽅程λ?k b a =+sin )( 4.3109.51102sin )(76==+=--λb a k 即最多可看到第3级明条纹. 10-23 光栅常数m 105mm 20016-?==+b a (1)由光栅⽅程λ?k b a =+sin )(可得第⼀级明条纹与中央明条纹的距离,即第⼀级明条纹离屏中⼼的距离cm)(6m 10610510516.0267=?==+==---b a k f ftg x λ? (2)当光线与光栅法线成30°斜⼊射时,光栅⽅程为λθ?k b a =±+)sin )(sin (0上式取负号,且当k =0,可得中央明条纹的衍射⽅向;即0θ?=,所以中央明条纹离屏中⼼距离为m 35.0306.0=?==tg ftg x ?10-24 (1)由光栅⽅程λ?k b a =+sin )(,对应于20.0sin 1=?与30.0sin 2=?处满⾜771063)(30.01062)(20.0--??=+??=+b a b a∴ m 1066-?=+b a (2)因为明条纹第四级缺级,应满⾜缺级条件= 因第⼆级明条纹不缺级,取1='k ,可得光栅上狭缝的宽度为m 105.1410666--?=?=+'=k b a k aor m 105.436-?=?='a k(3)由λ?k b a =+sin )(,且当2π=,则10106106sin )(76=??=+=--λb a k ∴在?<±6, ±7, ±9级明条纹(k =±10的明条纹在?=90?处)10-25 光栅常数m 105.2cm 400016-?==+b a 设A A 7600,40001='=λλ,由光栅⽅程可得λ?λ?''='+=+k b a k b a k k s i n )(s i n)(2.3106.7105.2sin )(2.6104105.2sin )(7676=??=''+='=??='+=----λ?λ?k k b a k b a k亦即λ的(k +1)级条纹要在λ'的k 级条纹之后∴λλλλ)1()1(+<'++<+'k k ba kb a k)1(40007600+只有k =1才满⾜上式,所以屏上只可能出现⼀个完整⽽不重迭的第⼀级光谱,第⼆级和第三级光谱均有重迭现象.10-26 (1)由单缝衍射可确定中央明条纹的宽度为371002.0108.45.0222--===?a f ftg x λcm 4.2m 104.22=?=- (2)由缺级条件,且取1='k502.01.0==+'=a b a k k 可见第5级缺级;∴在单缝衍射的中央明条纹包迹内共有9条双缝衍射明条纹(4,3,2,1,0±±±±=k )10-27 设A A 7600,400021==λλ,由光栅⽅程可求得21,λλ第⼀级谱线的位置分别为:ba fftg x +==111λ? )sin (11tg ,≈很⼩ba fftg x +==222λ?依题意 m 100.6212-?=-=?x x x∴ m 10610771212----?=??-??=--=+x x f b a λλ 10-28 爱⾥班半径m 1053.1101.021055.022.122.13371---?==?=D f r λ若mm 0.122?=D ,则m 1053.11021055.022.122.14372---?===D f r λ10-29 ⼈眼最⼩分辨⾓为rad 1022.110510522.122.14370---?===D λθ⽽x l ?=?0θ,所以眼睛恰可分辨两灯的距离为km 84.91084.91022.12.134=?=?==-θxl 10-30 由最⼩分辨⾓公式Dλθ22.10=可得m 139.01084.4105.522.122.1670===--θλD10-31 由布拉格公式λ?k d =sin 2得kAk k d89.32/275.22sin 2=??==λ当A k A k 94.1,2;89.3,12====λλ; 当;97.0,4;3.1,343A k A k ====λλ所以只有λ为1.30A 和0.97A 的谱线在x 射线波长范围内,能产⽣强反射.10-32 设⾃然光强度为0I ,通过第⼀偏振⽚后光强度为2/0I ,依题意,由马吕斯公式可得透过第⼆偏振⽚后的光强为=60cos 2201I I ∴ 108I I =今在两偏振⽚之间再插⼊另⼀偏振⽚,则通过该偏振⽚后的光强为102038330cos 2I I I I ==?=' 再通过第三偏振⽚后的光强1214930cos 3I I I == ∴25.21=I I10-33 (1)强度为0I 的⾃然光通过两重迭偏振⽚后,透射光的最⼤光强为2I ,按题意当两偏振⽚的偏振化⽅向夹⾓为α时,透过检偏器的光强231cos 2020I I I ?==α∴ 4454'?=α(2)按题意,由马吕斯公式 3cos 2020II I ==α∴ 6135'?=α 10-34 设⾃然光强度为0I ,线偏振光强度为1I ,该混合光通过偏振⽚时,若其偏振化⽅向与线偏振光的振动⽅向⼀致,则透射光强度102I I +,若其偏振化⽅向与线偏振光的振动⽅向垂直,则透射光强度为2I ,依题意 252010I I I ?=+ ∴ 012I I =故⾃然光和线偏振光的光强各占总光强的31和32. 10-35 当光由⽔射向玻璃时,按布儒斯特定律可求得起偏振⾓724833.15.111'?===--tg n n tgb ⽔玻璃θ当光由玻璃射向⽔时43415.133.111'?===--tg n n tg b 玻璃⽔θ 10-36 (1)这时反射线与折射线相互垂直∴ ?=?-?=-?=58329090r b θθ(2)由布儒斯特公式60.158=?==tg tg n b θ10-37 设⼊射线偏振光的振幅为E ,则射⼊晶⽚后e 光和o 光的振幅分别为 ?=?=30sin 30cos 0E E E E e ∴ 73.1300=?=ctg E E e。
大学物理第10章
静电力的叠加原理
作用于某电荷上的总静电力等于其他点电荷单独
存在时作用于该电荷的静电力的矢量和。
F
数学表达式
F2
离散状态
N
F Fi
rr10 q
r F1
i 1
Fi
qqi
4 0ri 2
ri 0
q1
根据场论观点:
(1)特殊媒介物质——电场
电荷
电场 相互作用
电荷
(2)电场力
激发
电场力
电荷
电场
电荷
(3)电场是物质的一种特殊形态,不仅存在于带 电体内,而且存在于带电体外,弥漫在整个空间中。
• 静电场:相对观察者静止的电荷周围的电场称为静电场
(该电荷称为场源电荷)。
(1)静电场仅是电磁场的一种特殊形态。 (2)电磁场与实物物质一样具有质量、能量、 动量等。 (3)电磁场一经产生就能单独存在,即使产生 它的电荷已消失。 (4)电磁场可叠加。
定义:
电场强度
F E
q0
q0
F
q 试验
场源 电荷
vv
电荷
E E(x, y, z)
电场中某点的电场强度在量值上等于放在该点
的单位正试验电荷所受的电场力,其方向与正试验
电荷受力方向一致。
讨论
1.由 E
F q0
是否能说,E与
F 成正比,与
q0成反比?
2.一总电量为Q>0的金属球,在它附近P点产生的场强
• 点电荷(理想模型) 当带电体的形状
和大小与带电体之间的距离相比可以忽略时,这种 带电体就可看作点电荷。(忽略其形状和大小)
大学物理教程第10章习题答案报告
思 考 题10.1 人体也向外发出热辐射,为什么在黑暗中还是看不见人呢? 答:人体的辐射频率太低, 远离可见光波段,在远红外波段, 由于为非可见光, 所以是看不到人体辐射的,在黑暗中也是如此。
10.1刚粉刷完的房间从房外远处看,即使在白天,它的开着的窗口也是黑的。
为什么? 答:光线从窗户进去后经过多次反射,反射光的强度越来越弱,能再从窗户射出的光线非常少,窗户外的人看到的光线非常弱,因此觉得窗口很暗。
10.3 在光电效应实验中,如果(1)入射光强度增加一倍;(2)入射光频率增加一倍,各对实验结果有什么影响?答:(1)在光电效应中每秒从光阴极发射的光电子数与入射光强成正比。
入射光强度增加一倍时,饱和电流增加一倍。
(2)当入射光的频率增大时,光电子的最大初动能增大,遏止电压也增大,但入射光的频率和遏止电压两者不是简单的正比关系。
10.4 若一个电子和一个质子具有同样的动能,哪个粒子的德布罗意波长较大? 答:电子的德布罗意波长较大。
10.5 n=3的壳层内有几个次壳层,各次壳层都可容纳多少个电子?答:n=3的壳层内有3个次壳层,各次壳层可容纳的电子数分别为2、6、10。
10.6 完成下列核衰变方程。
(1)?234238+−→−Th U(2)?9090+−→−Y Sr (3)?2929+−→−Ni Cu (4)Zn Cu 2929?−→−+ 答:(1)e H Th U 422349023892+−→−(2)e Y Sr 0190399038-+−→−(3)e Ni Cu 0129282929++−→−(4)Zn e Cu 2930012929−→−++习 题10.1 夜间地面降温主要是由于地面的热辐射。
如果晴天夜里地面温度为-50C ,按黑体辐射计算,每平方米地面失去热量的速率多大?解:依题意,可知地面每平方米失去的热量即为地面的辐射出射度2484/2922681067.5m W T M =⨯⨯==-σ10.2 宇宙大爆炸遗留在空间均匀、各向同性的背景热辐射相当于3K 的黑体辐射。
《大学物理》第10章 电磁感应清华
(D)线圈平面平行于磁场并沿垂直磁场方向平移。
解: (A) B
(B) B
(C)
B
(D) B
11
13 (P149)尺寸相同的铁环与铜环所包围的面积中,
通以相同变化率的磁通量,环中:
[ D]
(A)感应电动势不同。
(B)感应电动势相同,感应电流相同 。
(C)感应电动势不同,感应电流相同 。
长度纵截面的磁通量为:
d
BdS
r2 0 I r1 2r
1 dr
0 I 2
ln r2 r1
1
单位长度的自感系数为
L
I
0 2
ln
r2 r1
1
dr r2r1 rr1
(2)单位长度内所储的磁能为
Wm
1 LI 2
2
0I 2 4
ln r2 r1
II
3.1104V
9
10.16 一长直螺线管的导线中通入10.0A的恒定电流时,
通过每匝线圈的磁能量是20μWb;当电流以4.0A/s的速
率变化时,产生的自感电动势为3.2mV。求此螺线管的
自感系数与总匝数。
解:
L
ℰL
di / dt
3.2103 0.8103 (H) 4.0
又 L N m
R=20.0cm
解:(1)线圈b通电流Ib时,由于线圈a的半径较线圈b 的半径甚小,所以可近似求得线圈a通过的磁链为 由此得两线圈的a互b 感N 系数b 为20RIbb N a Sa
M ab 0 N 0 N b Sa
Ib
2 Rb
4 107 50100 4.0104
大学物理CH10-1
1820年 : 奥斯特实验:电 — 磁 1821 — 1831年:法拉第实验:磁 — 电
对称性
内容:闭合回路中感应电动势的大小与通过回路的 磁通量的变化率成正比:
N dm d(Nm ) d m
dt
dt
dt
N dm d(Nm ) d m
dt
dt
dt
m Nm : 通过线圈的磁通链数(全磁通)
dx x
m
xb
dm
x
0Ia dx 2 x
0Ia ln x b
2
x
0a 2
I0
cost ln
x
b x
Ib
m
0a 2
I0
cost
ln
x
b x
a o
dS v
x
dm
dt
0I0a [ sint ln x b cost b dx ]
2
x
(x b)x dt
0I0a [ sint ln x b bv cost]
讨论:
(1) m : B 通量还是 H 通量?还是二者皆可?
(2) 式中负号含义, 楞次定律的本质是什么?
(3) 引起 m 变化的原因有哪些?与参考系选择有关吗?
(1) m : B 通量还是 H 通量?还是二者皆可?
中学: 原副线圈实验
H nI
B 0rnI
铁 棒
K
付线圈
G
原线圈
引起闭合回路中产生感应电动 势的是通过回路 的 B 通量的变化,而不是 H 通量的变化
同学们好!
第十章 变化中的磁场和电场
结构框图
法拉第电磁感 应定律
感应电动势 的计算
磁场 能量
麦克斯韦的 两条假设
《大学物理》第10单元课后答案 高等教育出版社
(B) B1 B2 0
B3 0
B3 0
O1
(D) B1 0, B2 0, B3 0
O2
I
I
课
(A)0
(B)
oI
4R
da
(C)
后 答
题 2.图 3. 如图两个半径为 R 的相同的金属环在 a、 b 两点接触 (a, b 连线为环直径), 并 相互垂直放置,电流 I 由 a 端流入, b 端出,则环中心 O 点的磁感应强度大小为: 【 A 】
B
秒钟 n2 转的转速顺时针转动,里面的圆环以每秒钟 n1 转的转速反时针转动,若电荷面密度都是
, 求n1 和n2 的比值多大时,圆心处的磁感应强度为零
da
R2 R3
课
后 答
22. 如图所示, 两个共面的平面带电圆环, 其内外半径分别为 R1 , R2 和R2 , R3 , 外面的圆环以每
案 网
将1
, 2 , x a cos
垂直于纸面向里。
O 点磁感应强度的大小: B B1 B2 B3 , B
0 I
6a
0 I 3 (1 ) , 方向垂直于纸面向里。 2 a
20. 如图所示, 宽度为 a 的无限长的金属薄片的截面通以总电流 I, 电流方向垂直纸面向里,试求离薄 片一端为 r 处的 P 点的磁感应强度 B.
Page60
w.
电流
《大学物理习题集》 (上册)
co
m
作业登记号
学号
姓名
单元十
( B ) 段: B2
大学物理(祝之光)_第十章_波动学基础
点P 的两个分振动
yP y1P y2 P
A
2 1 2 2
r2 y2 P A2 cos( t 2 2 π )
y1P A1 cos( t 1 2 π )
r1
s1
r1
r2
*
P
s2 A cos(t )
A A 2 A1 A2 cos
10-1 波动的基本概念
预习要点 1. 注意波动传播过程的物理实质. 2. 描写波动的物理量有哪些? 它们的关系如何?
一、机械波
1. 机械波:机械振动在弹性介质中的传播. 2. 产生条件:(1)波源;(2)弹性介质. 3. 横波与纵波
横波:质点振动方向与波的传播方向相垂直的波. 纵波:质点振动方向与波的传播方向相平行的波.
x x 2 π u λ y y ( x, t ) y ( x, t T )
波具有时间的周期性.
u
x
2. 当 t 一定时,
O
y ( x, t ) y ( x , t )
波具有空间的周期性.
3. 同一时刻相位差与波程差的关系 波函数表示该时刻波线上各点相对其平衡位置的 位移,即此刻的波形.
球面波
*四、电磁波
1.电磁波的产生和传播 LC电路的能量集中在线圈内和极板间,将电路改 造,最后形成电偶极子,即发射电磁波的天线.
L
C
辐射功率 ,
4
1 LC
2. 平面电磁波性质: 1)电磁波是横波,
2) E 和 H 同相位 ; 3) E 和 H 数值成比例, E H ;
k
(k 0,1,2,)
振动加强
A A1 A2 (2k 1) 2 A A1 A2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题十10-1 一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小.解: 回路磁通 2πr B BS m ==Φ 感应电动势大小40.0d d π2)π(d d d d 2====tr rB r B ttm Φε V10-2 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题10-2图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α 当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i, 题10-2图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j,则αΦcos 2π22B R m =∵ B 与i 夹角和B 与j夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tB R tmαεV方向与cbadc 相反,即顺时针方向.题10-3图*10-3 如题10-3图所示,一根导线弯成抛物线形状y =2ax ,放在均匀磁场中.B与xOy 平面垂直,细杆CD 平行于x 轴并以加速度a 从抛物线的底部向开口处作平动.求CD 距O 点为y 处时回路中产生的感应电动势.解: 计算抛物线与CD 组成的面积内的磁通量⎰⎰=-==aym y B x x y B S B 0232322d )(2d 2ααΦ∴ v y Bty yBtm21212d d d d ααε-=-=Φ-=∵ ay v 22=∴ 212y a v =则 ααεaByy a yBi 8222121-=-= i ε实际方向沿ODC .题10-4图 10-4 如题10-4图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压NMUU-.解: 作辅助线MN ,则在MeNM回路中,沿v方向运动时0d =m Φ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba b a Iv l vB 0ln2d cos 0πμπε所以MeN ε沿NeM 方向,大小为ba b a Iv -+ln20πμM 点电势高于N 点电势,即ba b a Iv UUNM -+=-ln20πμ题10-5图10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tI d d 的变化率增大,求:(1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则 (1) ]ln[lnπ2d π2d π2000da d ba b Il r l rI r l rI ab bad dm +-+=-=⎰⎰++μμμΦ(2) tIb a b da d l td d ]ln[lnπ2d d 0+-+=-=μΦε 10-6 如题10-6图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题10-6图解: )cos(2π02ϕωΦ+=⋅=t r B S B m∴Bfr f r B r B t r B tm mi 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε∴ RBfr RI m 22π==ε10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=ADI vb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a I vbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεεV方向沿顺时针.10-8 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题10-8图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε即沿abcd 方向顺时针方向.题10-8图10-9 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε;题10-9图(a)题10-9图(b)在磁场中时0d d =tΦ,0=ε;出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示.题10-10图10-10 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l 磁感应强度B 平行于转轴,如图10-10所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段则 ⎰==320292d lOb lB r rB ωωε同理 ⎰==32181d lOa lB r rB ωωε∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+=(2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题10-11图10-11 如题10-11图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向. 解:在金属杆上取r d 距左边直导线为r ,则 ba b a Ivr ra rIv l B v ba ba B AAB -+-=-+-=⋅⨯=⎰⎰+-lnd )211(2d )(00πμπμε∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba b a Iv UAB-+=ln0πμ题10-12图10-12 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题10-12图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tB d d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tB R B R ttab d d 43]43[d d d d 21=--=-=Φε=-=tab d d 2ΦεtB R B R td d 12π]12π[d d 22=--∴ tB R R ac d d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a → 10-13 半径为R 的直螺线管中,有dtdB >0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m-=⋅= Φ∴ tB R R i d d )436π(22--=ε∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题10-13图题10-14图10-14 如题10-14图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题10-14图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解: 由⎰⎰⋅-=⋅lS tBl Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E与ab 垂直∴ ⎰=⋅ll 0d旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l Ecddc旋ε∴ 0<-c d U U 即d c U U >题10-15图10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2aa Ia r rIa μμΦ∴ 2ln π2012a IM μΦ==10-16 一矩形线圈长为a =20cm ,宽为b =10cm ,由100匝表面绝缘的导线绕成,放在一无限长导线的旁边且与线圈共面.求:题10-16图中(a)和(b)两种情况下,线圈与长直导线间的互感.解:(a)见题10-16图(a),设长直电流为I ,它产生的磁场通过矩形线圈的磁通为2ln π2d 2πd 020)(12Ia rr IaS B bbS μμΦ⎰⎰==⋅=∴ 6012108.22ln π2-⨯===a NIN M μΦ H(b)∵长直电流磁场通过矩形线圈的磁通012=Φ,见题10-16图(b) ∴ 0=M题10-16图题10-17图10-17 两根平行长直导线,横截面的半径都是a ,中心相距为d ,两导线属于同一回路.设两导线内部的磁通可忽略不计,证明:这样一对导线长度为l 的一段自感为πμl L 0=Inaa d -.解: 如图10-17图所示,取r l S d d = 则 ⎰⎰-----=--=-+=ad aad aad d aa d Il r r rIl r l r I r πI )ln(ln2πd )d11(π2d ))d (π22(0000μμμμΦaa d Il -=lnπ0μ∴ aa d l I L -==lnπ0μΦ10-18 两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H10-19图10-19 一矩形截面的螺绕环如题10-19图所示,共有N 匝.试求: (1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题10-19图示 (1)通过横截面的磁通为 ⎰==baab NIh r h r NI lnπ2d π200μμΦ磁链 ab Ih N N ln π220μΦψ==∴ ab h N IL lnπ220μψ==(2)∵ 221LIW m =∴ ab hI N W m ln π4220μ=10-20 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2RI B r μ=∴ 4222002π82Rr I Bw m μμ==取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I Rr r I r r w W 0204320π16π4d d 2μμπ。