《一元二次方程的根与系数的关系》拔高习题课件

合集下载

《一元二次方程根与系数的关系》PPT课件

《一元二次方程根与系数的关系》PPT课件
4.6 一元二次方程根与系数的关系
-.
1
1.熟练掌握一元二次方程根与系数的关系. 2.灵活运用一元二次方程根与系数关系解决实际问题. 3.提高学生综合运用基础知识分析解决较为复杂问题的能
力.
2
解下面的一元二次方程:
①x2 3x 2 0,
②x2 5x 6 0,
③3x2 x 2 0, ④2x2 4x 1 0.
11
2.已知方程3x2-19x+m=0的一个根是1,它的另一

16
3
16
根3.是设x1,x2是方程,2mx2的+4值x-是3=0的两个根.,利用根与
系数的关系,求下列各式的值.
(1)(x1+1)(x2+1) 5 2
(2)—x1 x2
+ x—x21
14 3
12
4. 已知x1=-1是方程x2+mx-5=0的一个根,求m的值及方程 的另一根x2. 【解析】由题意得:(1)2 (1) m解 5得 0m=-4,当m=-4时, -1+x2=-(-4), x2=5 ,所以方程的另一根x2=5. 答: m=-4, x2=5.
(1)x2-3x+1=0 (3)2x2+3x=0
(2)3x2-2x=2 (4)3x2=2
(1)(3,1) (2)( 2, )2
33
(3)( 3,0)
2
(4)(0,
)2
3
9
2.利用根与系数的关系,判断下列各方程后面的两个 数是不是它的两个根?(口答)
(1)x2-6x-7=0(-1,7)
(2)3x2+5x-2=0( 5 , 2 )
的两个实数根x1.x2,那么x1+x2, x1.x2与系数a,b, c 的关系.

一元二次方程的根与系数的关系习题课

一元二次方程的根与系数的关系习题课

一元二次方程的根与系数的关系习题课一.知识要点100212.()如果关于的一元二次方程:≠的两个根是,,x ax bx c a x x ++= 那么,·。

x x b a x x c a1212+=-= 如果关于的一元二次方程:的两个根是,,那么x x px q x x x x 212120++=+= -=p x x q ,·。

反之也成立。

122. 利用一元二次方程的根与系数的关系的前提是:(1)二次项系数a ≠0,即保证是一元二次方程;(2)由于我们目前只研究实数根的问题,故还要考虑实数根存在的前提,即:∆=-≥b ac 240二、例题讲解.例1. 如果是方程的一个根,求的值,并求出方程另一x x kx k k =---=2502 个根。

解法一:由于是方程的一个根,所以把代入方程,x x kx k x =---==25022得 22502---=k k ∴;k =-13也就是31402x x +-=;设另一个根为β,由根与系数的关系,有 2143213ββ=-+=-()或 ∴。

β=-73 解法二:设另一个根为β,据方程的根的意义与根与系数的关系,可列出方程组22502522---==--+=⎧⎨⎩k k k k ββ,或()即有-=+=-⎧⎨⎩3125k k ,;β解这个方程组,得k =-=-⎧⎨⎪⎪⎩⎪⎪1373β例2. 设方程的两根为,,不解方程,求下列各式的值:4730212x x x x --= ()()()()1332121323x x x x --+ ()()3114211212x x x x x x +++-()()()5132312121222x x x x x x x x +=+-+=++-()[()]x x x x x x 12122123=+-+()()x x x x x x 12312123解:由根与系数的关系可得: x x x x 12127434+==-, ()()()()133********x x x x x x --=-++ =--+343749× =3 ()()()2313231231212x x x x x x x x +=+-+ =--()()74334743×× =59564()()()()()31111112112221112x x x x x x x x x x +++=+++++ =+-+++++()()()x x x x x x x x x x 1221212121221=--+-++()()7423474347412× =10132()()412122x x x x -=-± =+-±()x x x x 122124 =--±()()744342 =±1497 例3. 已知关于x 的一元二次方程:x m x m 22224084+-++=()的两个实数根的平方和比这两根的积大, 求:实数m 的值。

一元二次方程的根与系数的关系课件

一元二次方程的根与系数的关系课件

x1 x2 2 2x1x2
3 2
2
2
1 2
13 4
;
2
1 x1
1 x2
x1 x2 x1 x2
3 2
1 2
3.
巩固练习
变式题3 设x1, x2为方程x2-4x+1=0的两个根,则:
(1)x1+x2= 4 , (2) x1·x2= 1 ,
(3) (x1 x2 )2 12 ,
即:x2=5 .
由于x1·x2=1×5=
m, 3
得:m=15.
答:方程的另一个根是5,m=15.
巩固练习
变式题2 已知方程x2-(k+1)x+3k=0的一个根是 2 ,求它的另一个根及k的值.
解:设方程的另一个根为x1. 把x=2代入方程,得 4-2(k+1)+3k=0 解这方程,得 k= - 2 由根与系数关系,得x1●2=3k 即 2 x1 =-6 ∴ x1 =-3
九年级数学上册
21.2 解一元二次方程
21.2.4 一元二次方程的根与系数 的关系
回顾旧知
1. 一元二次方程的求根公式是什么?
x b b2 4ac (b2 4ac 0) 2a
2. 如何用判别式 b2 - 4ac 来判断一元二次方程根的情况? 对一元二次方程: ax2 + bx +c = 0(a≠0) b2 - 4ac > 0 时,方程有两个不相等的实数根. b2 - 4ac = 0 时,方程有两个相等的实数根. b2 - 4ac < 0 时,方程无实数根.
x1,, x2 − 12,2
13,1
x1,+ x2
3 2
4 3
x1. x2

《一元二次方程的根与系数的关系》一元二次方程教材课件PPT

《一元二次方程的根与系数的关系》一元二次方程教材课件PPT
第二十一章 一元二次方程
一元二次方程的根与系数的关系
知识回顾
1.写出一元二次方程的一般式: ax2+bx+c=0(a≠0)
2.一元二次方程的求根公式:
x1,2 b
b2 4ac 2a
3.如何用判别式 b2 - 4ac 来判断一元二次方程根的情况?
对一元二次方程: ax2 + bx +c = 0(a≠0). b2 - 4ac > 0 时,方程有两个不相等的实数根. b2 - 4ac = 0 时,方程有两个相等的实数根. b2 - 4ac < 0 时,方程无实数根.
1. 1 1 x1 x2 ; x1 x2 x1x2
2. x12 x22 (x1 x2 )2 2x1x2;
3. x1 x2 x12 x22 (x1 x2 )2 2x1x2 ;
x2 x1
x1x2
x1x2
4.( x1 1)( x2 1) x1x2 (x1 x2 ) 1;
使用条件
1.方程是一元二次方程,即二次项系数不为 0; 2.方程有实数根,即 Δ≥0.
重要结论
1.若一元二次方程 x2+px+q=0 的两根为 x1,x2,则 x1+x2=-p,x1x2=q. 2.以实数 x1,x2 为两根的二次项系数为1的一元二次方程是
x2-(x1+x2)x+x1x2=0.
对接中考
新知探究
方程的两个根x1,x2和系数a,b,c有如下关系:
x1
x2
b a
,
x1x2
c a
.
这表明任何一个一元二次方程的根与系数的关系为:
两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积
等于常数项与二次项系数的比.

《一元二次方程的根与系数的关系》一元二次方程PPT教学课件

《一元二次方程的根与系数的关系》一元二次方程PPT教学课件
x1+x2=-7, x1x2 = 6.
解:(2)这里 a = 2,b = -3,c = -2.
Δ =b2-4ac = (-3)2-4×2×(-2)
= 9+16 = 25 > 0,
∴方程有两个实数根.
设方程的两个实数根是x1,x2,那么.
x1+x2=
3 2
, x1x2 = -1.
随堂练习
1.利用根与系数的关系,求下列方程的两根之和、两根之积:
2. 解下列方程: (1)12x2+7x+1=0;
(2)0.8x2+x=0.3;
解:(1)a=12,b=7,c=1.
∵b²-4ac=7²-4×12×1=1.
∴x=
7 1
.
24
∴x1=
1 4
,x2=

1 3
.
(2)原方程变形为8x²+10x-3=0.
这里a=8,b=10,c=-3.
∵b²-4ac=10²-4×8×(-3)=196,
(1) x2-3x-1=0;
(2) 3x2+2x-5=0.
解:(1)这里 a = 1,b = -3,c = -1. 解:(2)这里 a = 3,b = 2,c = -5.
Δ =b2-4ac = (-3)2-4×1×(-1)
Δ =b2-4ac = 22-4×3×(-5) = 4+60 = 64>0,
= 9+4 = 13>0,
新课引入 新课讲授 随堂练习 课堂小结
学习目标
01 探索一元二次方程的根与系数的关系. 02 不解方程利用一元二次方程的根与系数的关系解决问题.
经历观察、猜想、验证一元二次方程根与系数的关系的 03 过程,体会从特殊到一般的思想.

24.3 一元二次方程根与系数的关系课件(共16张PPT)

24.3 一元二次方程根与系数的关系课件(共16张PPT)
解: 设这个方程的另一个根为t,则 t+2=,2t=. ∴ t=, k=-7. 当k=-7时,Δ=(-7)2-4×5×(-6)=169>0, ∴另一个根为,k的值为-7.
还有其他的做法吗?
随堂演练
1. 若x1,x2 是方程x2-2mx+m2-m-1=0 的两个根,且x1+x2=1-x1x2,则m的值为( )A. -1 或2 B. 1 或-2 C. -2 D. 1
5
6
由求根公式可知
归纳
方程的两个根 x1,x2 和系数 a,b,c 有如下关系:
注意一元二次方程的根与系数的关系存在的前提是a ≠ 0,b2-4ac ≥ 0
例1
根据一元二次方程根与系数的关系,求下列方程两个根的和与积. (1) x2-3x-8=0 ; (2) 3x2+4x-7=0 .
解:(1)这里a=1,b=-3,c=-8,且b2-4ac=(-3)2-×1×(-8)=41>0,所以xΒιβλιοθήκη +x2=3, x1x2=-8.
(2)这里a=3,b=4,c=-7,且b2-4ac=42-4×3×(-7)=100>0,所以x1+x2= , x1x2= .
巩固练习
归纳
常见的关系:
3.
4.
课堂小结
根与系数的关系
内容
应用
求字母或代数式的值
同学们再见!
授课老师:
时间:2024年9月15日
2.一元二次方程的求根公式是什么?
ax2+bx+c=0(a≠0)
导入新知
知识点1
一元二次方程的根与系数的关系

探究
1.由因式分解法可知,方程(x-2)(x-3)=0的两根为x1=2,x2=3,而方程(x-2)(x-3)=0 可化为x2-5x+6=0的形式,则x1+x2= ,x1x2= . 2.设方程2x2+3x-9=0的两根分别为x1,x2,则x1+x2= ,x1x2= . 3.对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,设方程的两根分别为x1,x2,请你猜想x1+x2,x1x2与方程系数之间的关系,并利用求根公式验证你的结论.

《一元二次方程根与系数的关系》PPT课件 (共16张PPT)

《一元二次方程根与系数的关系》PPT课件 (共16张PPT)

一、知识要点:
1、一元二次方程的一般形

ax2+bx+c=0 (a≠0)

2、若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1 、x2 c b 则x1+x2= ,x1x2= a 。 a
3、用根与系数关系解题的条件 是 (1)a≠0 (2)△≥0 。
二、典型例题
例题1:已知方程 x1,x2, (1)(x1-x2)2
( 3)
1 2
x2=2x+1的两根为
不解方程,求下列各式的值。 (2)x13x2+x1x23
x2 x1 x1 x2
提 高 练 习
3、已知:如图,直角梯形ABCD中,AB∥CD, AD⊥DC,AD=10cm, A B 以AD 为直径的⊙O切另 E 一腰于E,以AB、CD为 O 根的方程是X2-12X+m=0, 求m的值。
x,则
2
答:方程的另一个根是 k根的和与两根
的积各是多少?(不解方程)
(1)x2-3x+1=0
(2)3x2-2x=2 (3)2x2+3x=0 (4)3x2=1
2、设x1.x2是方程2x2+4x-3=0的两个根,利用
根与系数的关系,求下列各式的值。 x2 x1 (1)( x1+1)(x2+1)(2)— + — x1 x2
一元二次方程根与系数的关系?
如果ax bx C 0(a 0)的两根分别是 b c x1 , x2 则有 x1 x2 a ; x1. x2 a
2
例题2:
(1)若关于x的方程2x2+5x+n=0的一个根是 -2,求它的另一个根及n的值。
(2)若关于x的方程x2+kx-6=0的一个根是- 2,求它的另一个根及k的值。

《一元二次方程的根与系数的关系》课件

《一元二次方程的根与系数的关系》课件

•引言•一元二次方程的基本概念•一元二次方程的根与系数的关系•案例分析目•练习与巩固•总结与回顾录0102一元二次方程是数学学习中的重要内容,是初中数学的核心知识点之一。

掌握一元二次方程的解法有助于学生更好地理解其他高级的数学概念,提高数学成绩。

学习一元二次方程还有助于培养学生的逻辑思维和解决问题的能力,对于学生的长远发展具有重要意义。

学习一元二次方程的重要性示例公式法因式分解法图像法030201根的判别式根与系数的关系一元二次方程的根的性质根的判别式是二次方程解的公式,它基于方程的系数,可以判断方程是否有实数解、两个不同的实数解或相同的实数解。

根的判别式详细描述总结词根与系数的关系推导是一元二次方程求解的关键步骤。

详细描述通过配方、因式分解等数学方法,将一元二次方程转化为两个一次方程,再解这两个一次方程得到原方程的解。

同时,根据判别式的性质,可以判断出方程的解的情况。

详细描述案例一:实际问题中的一元二次方程求解总结词在实际问题中,一元二次方程通常出现在投资、增长率等经济问题的数学模型中。

详细描述例如,某公司预计未来三年的年利润为10%的增长率,假设第一年的利润为100万元,求第二、三年的利润。

此问题可以通过一元二次方程求解得到。

案例二:数学竞赛中的一元二次方程求解总结词详细描述在物理问题中,一元二次方程通常出现在与运动、力等相关的物理公式中。

详细描述例如,在自由落体运动中,物体下落的距离h与时间t的关系可以表示为h = -gt² + v0t + h0,其中g是重力加速度,v0是初速度,h0是初始高度。

我们可以使用一元二次方程来求解时间t。

总结词案例三:物理问题中的一元二次方程求解VS总结词:强化基础详细描述:设计一系列简单的一元二次方程题目,旨在帮助学生掌握解一元二次方程的基本方法,并熟悉根与系数的关系。

示例题目:$2x^{2} - 4x = 0$,$3x^{2} + 5x = 0$等。

一元二次方程根与系数的关系 PPT课件 3(10份) 人教版

一元二次方程根与系数的关系 PPT课件 3(10份) 人教版


32、肯承认错误则错已改了一半。

33、快乐不是因为拥有的多而是计较的少。

34、好方法事半功倍,好习惯受益终身。

35、生命可以不轰轰烈烈,但应掷地有声。

36、每临大事,心必静心,静则神明,豁然冰释。

37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。

38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。
X12+X22 = ( X1+X2)2 - 2_X_1_X2 = 1_4__
( X1-X2)2 = ( X_1+_X_ 2 )2 - 4X1X2 = _1_2_ 3、判断正误:
以2和-3为根的方程是X2-X-6=0 ( × )
4、已知两个数的和是1,积是-2,则这两个数是 2_和__-_1_ .
练习:P48 练习

70、当你的希望一个个落空,你也要坚定,要沉着!

71、生命太过短暂,今天放弃了明天不一定能得到。

72、只要路是对的,就不怕路远。

73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。

74、先知三日,富贵十年。付诸行动,你就会得到力量。

75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。

52、思想如钻子,必须集中在一点钻下去才有力量。

53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。

54、最伟大的思想和行动往往需要最微不足道的开始。

《一元二次方程的根与系数的关系》ppt全文课件

《一元二次方程的根与系数的关系》ppt全文课件

-5 2
(3) x1-x2. 41
2
《一元二次方程的根与系数的关系》 上课实 用课件 (PPT优 秀课件 )
《一元二次方程的根与系数的关系》 上课实 用课件 (PPT优 秀课件 )
巩固练习
练 习 8 关于x的一元二次方程x2+3x+m-
1=0的两个实数根分别为x1,x2.
(1)求m的取值范围;
Δ≥0,即32-4(m-1)≥0,解得m≤
x1x2
c a
自主探究
3.典型例题
例4 根据一元二次方程的根与系数的关系, 求下列方程两个根 x1,x2 的和与积:
(1) x 2 - 6x - 15 = 0 x1 + x2 = 6
7 (2)3x 2 + 7x - 9 = 0 x1 + x2 = 3
(3)5x - 1 = 4x 2
5 x1 + x2 = 4
m=8
《一元二次方程的根与系数的关系》 上课实 用课件 (PPT优 秀课件 )
《一元二次方程的根与系数的关系》 上课实 用课件 (PPT优 秀课件 )
师生小结
(1)通过本节课的学习,你有哪些收获? (2)你还有什么疑惑?说给大家听听.
《一元二次方程的根与系数的关系》 上课实 用课件 (PPT优 秀课件 )
x1 x2 = -15 x1 x2 = -3
1 x1 x2 = 4
《一元二次方程的根与系数的关系》 上课实 用课件 (PPT优 秀课件 )
巩固练习
4.巩固练习
练习1 不解方程,求下列方程两个根的和与积:
(1) x 2 - 3x = 15
x1 + x2 = 3
(2) 3x 2 + 2 = 1- 4x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档