分子发光分析法总结

合集下载

分子发光分析法

分子发光分析法

3.检测器 3.检测器
荧光计采用光电管作检测器 荧光分光光度计采用光电倍增管作检测器 电感耦合器件(charge couple device, CCD)
四、荧光分析方法与应用
1. 特点: 特点: (1)灵敏度高 比紫外-可见分光光度法高2~4个数量级

光度法 A = lg I0/I = KC 荧光法 I= KC
(c) 刚性平面结构:可减少分子振动,减少与溶剂的相互作用 刚性平面结构:
(d) 取代基效应 取代基效应:给电子取代基使荧光增强;吸电子取代基使荧光减弱 如苯胺和苯酚荧光较强,而硝基苯为非荧光物质 (e)重原子效应 )重原子效应:卤素取代基随原子序数的增加,荧光减弱,而磷光增强
(3)荧光螯合物 荧光螯合物
I p = 2 . 3ϕ p I o c
式中:Ip 为磷光效率,Io 为激发光的强度人为磷光物质的摩尔吸收系数,b为 试样池的光程。在一定的条件下,ϕ 、I p、 、b均为常数,因此上式可写成: κ
I p = Kc
根据上式可以用磷光强度对磷光物质浓度制作定量分析的标准曲线
2. 温度对磷光强度的影响:随着温度的降低,磷光逐渐增强 温度对磷光强度的影响: 3.重原子效应: 3.重原子效应:重原子的高核电荷使磷光分子的电子能级交错,容易引 重原子效应 起或增强磷光分子的自旋轨道偶合作用,从而使S 起或增强磷光分子的自旋轨道偶合作用,从而使S1→ T1的体系间窜跃 概率增大,有利于增大磷光效率。 4.室温磷光 4.室温磷光 (1)固体基质:在室温下以固体基质吸附磷光体,增加分子刚性、减少三重 态猝灭等非辐射跃迁,从而提高磷光量子效率。 (2)胶束增稳:利用表面活性剂在临界浓度形成具多相性的胶束,改变磷光 体的微环境、增加定向约束力,从而减小内转换和碰撞等去活化的几率,提 高三重态的稳定性。 (3)敏化磷光: 激发三重态将能量转移于另一易发磷光的受体,让其法磷光

第12章 分子发光分析

第12章  分子发光分析

配合物(荧光) 配合物(荧光)
28
(4)取代基: (4)取代基: 取代基 OH、 NHR、 a 给电子基团 如-NH2、-OH、-OCH3、-NHR、 CN、 产生的p 共轭作用增加了的 -CN、-NR2等,产生的p-π共轭作用增加了的 电子共扼程度,使荧光效率提高, π电子共扼程度,使荧光效率提高,荧光波 长长移。 长长移。 COOH、 C=O、 b 吸收电子基团如 -COOH、 -NO2 、-C=O、 NO、 SH、 减弱分子的π -NO、-SH、-NHCOCH3、-X等;减弱分子的π 电子共轭程度,使荧光减弱甚至熄灭, 电子共轭程度,使荧光减弱甚至熄灭, 电子共轭体系作用较小, c 对π电子共轭体系作用较小,如:-R、对荧光的影响也不明显。 SO3H、-NH3+等,对荧光的影响也不明显。
5
• 电子能级的多重性可用M=2S+1表示,S为 电子能级的多重性可用M 2S+1表示, 表示 电子自旋量子数的代数和,其数值为0 电子自旋量子数的代数和,其数值为0或1。 • 当S=0时,分子的多重性M=1,此时分子 分子的多重性M 所处的电子能态称为单重态,用符号S 所处的电子能态称为单重态,用符号Si表 示。 • 当S=1时,分子的多重性M=3,此时分子 分子的多重性M 所处的电子能态称为三重态。用符号T 所处的电子能态称为三重态。用符号Ti表 示。
6
7
激发单重态与激发三重态的区别: 激发单重态与激发三重态的区别: 激发单重态分子是抗磁性分子,激发三重 激发单重态分子是抗磁性分子, 态分子是顺磁性分子; 态分子是顺磁性分子; 激发单重态的平均寿命大约10 激发单重态的平均寿命大约10-8s,激发三 重态的平均寿命大约10 1s; 重态的平均寿命大约10-4~1s; 电子由S 电子由S0→S1,S2等的跃迁较容易,属于允 等的跃迁较容易, 许跃迁。电子由S 许跃迁。电子由S0→T1,T2等的跃迁较难发 属于禁阻跃迁。 生,属于禁阻跃迁。 激发三重态比激发单重态能级稍低一些。 激发三重态比激发单重态能级稍低一些。

分子发光分析法

分子发光分析法

只有在极稀的溶液中,当 b c <0.02时才成立,对于浓度较 高的溶液,由于自猝灭和自吸收等原因,使荧光强度和荧光 物质浓度不呈线性关系。
3 .荧光的产生与分子结构的关系
• 分子产生荧光必须具备两个条件: • 物质分子必须具有能吸收一定频率紫外可见辐射
的特征结构,分子必须具有吸光的结构 • 吸光后被激发的分子还必须具有高的荧光量子产
荧光发射光谱 荧光激发光谱
磷光光谱
200 260 320
380 440醇溶液荧(磷)光光谱
7-1 概述
• 分子发光分析法包括荧光分析法、磷光分析法和化学发光 分析法。这三种都是通过测量被激发的分子回到基态时所 发射的光辐射来进行分析的,不同之处在于光谱产生的机 制。
荧光强度 If正比于吸收的光量Ia和荧光量子效率 :

If = Ia

由朗-比耳定律: Ia = I0(1-10- b c )

If = I0(1-10- b c ) = I0(1-e-2.3 b c )
• 浓度很低时,将括号项近似处理后:

If = 2.3 I0 b c = Kc
② 荧光 (或磷光)发射光谱
• 固定激发光波长(选最大激发波长), 化合物发射的荧光(或 磷光强度)与发射光波长关系曲线。
荧光发射光谱 荧光激发光谱
磷光光谱
200
260 320
380 440 500 560 620
室温下菲的乙醇溶液荧(磷)光光谱
③ 激发光谱与发射光谱的关系
(1) Stokes(斯托克斯)位移 激发光谱与发射光谱之间的波长差值。发射光谱的波长比
激发光谱的长,振动弛豫消耗了能量。 (2) 荧光光谱的形状与激发波长无关 电子跃迁到不同激发态能级,吸收不同波长的能量(如l2

第七章 分子发光分析

第七章 分子发光分析
22:50
如8-巯基喹啉在下列四种不同极性溶剂中的情况
溶剂 介电常数 四氯化碳 2.24 氯仿 5.2 丙酮 21.5 乙腈 38.8
荧光峰λ/nm 荧光效率
390
0.002
398
0.041
405
0.055
410
0.064
22:50
③ 溶液pH值对荧光强度的影响 不同的pH值,化合物所处状态不同,不同的 化合物或化合物的分子与其离子在电子构型上有 所不同。 对于金属离子与有机试剂形成的发光鏊合物, 一方面pH会影响鏊合物的形成,另一方面还会 影响鏊合物的组成,因而影响它们的荧光性质。 如:苯酚在酸性溶液中呈现荧光,但在碱性 溶液中,无荧光。
浓度范围为:10-5μg/ml~100μg/ml 。对于较 浓溶液,由于猝灭现象和自吸收等原因,使荧光 强度和浓度不呈线性关系,将向浓度轴偏离。
22:50
(2)影响荧光强度的因素 ① 溶剂对荧光强度的影响 一般来说,随着溶剂介电常数的增大,荧光 峰的波长越大,荧光效率也越大。 ② 温度对荧光强度的影响 温度上升使荧光强度下降。
22:50
① 碰撞猝灭 处于激发单重态的荧光分子与猝灭剂分子相碰 撞,使激发单重态的荧光分子以无辐射跃迁的方 式回到基态,产生猝灭作用。 。
② 静态猝灭(组成化合物的猝灭) 由于部分荧光物质分子与猝灭剂分子生成非荧 光的配合物而产生的。此过程往往还会引起溶液 吸收光谱的改变。
22:50
③ 氧的猝灭作用 分子由于系间的跨越跃迁,由单重态跃迁到三 重态。转入三重态的分子在常温下不发光,它们 在与其它分子的碰撞中消耗能量而使荧光猝灭。 溶液中的溶解氧对有机化合物的荧光产生猝灭 效应是由于三重态基态的氧分子和单重激发态的 荧光物质分子碰撞,形成了单重激发态的氧分子 和三重态的荧光物质分子,使荧光猝灭。

分子发光分析法与分子吸收分光光度

分子发光分析法与分子吸收分光光度

分子发光分析法与分子吸收分光光度
分子发光分析法和分子吸收分光光度法(MMS)是物理化学中测定物质含量和生物物质含
量的两种常用方法。

它们之间有共同点和不同之处,本文主要就这二者的原理和方法进行
介绍。

分子发光分析法(MALS)是用物质中的激发态分子把紫外线能量转换为可见光,用以表征
物质的测定方法。

该方法工作原理为紫外线照射激发态分子,激发态分子把紫外线能量转
变为可见光,然后通过光电器件检测发出的可见光,最终得出物质的测定结果。

MALS技术的优点在于检测结果准确,具有快速性,还可以检测生物样本中物质含量。

而分子吸收分光光度(MMS)是通过测量物质吸收入射光的程度,来表征物质的检测方法。

这种技术工作原理是将光源照射在样本上,样本中的物质会吸收一部分入射的紫外线,而
剩下的光经过反射和透射而到达检测器,最终通过计算获得物质的测定数值。

比较MMS和MALS,MMS技术具有更高的灵敏度,可以进行更细小物质的检测,而且不受多种物质的干扰,也可以检测生物样本中的物质含量。

总之,MALS和MMS都是通过激发态分子转换紫外线能量为可见光,然后通过光电器件检测可见光,来判断物质的含量的两种常用技术,它们的优点和特点主要是MALS检测结果准确,具有快速性,而MMS则具有更高的灵敏度,可以进行更细小物质的检测,也可以检测
生物样本中的物质含量。

分子发光分析法

分子发光分析法

第五章 分子发光分析法: 基态分子吸收了一定能量后,跃迁至激发态,当激发态分子以辐射跃迁形式将其能量释放返回基态时,便产生分子发光。

第一节 荧光分析法一、概 述 :分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。

与分光光度法相比,荧光分析法的最大优点是灵敏度高和选择性高。

二、荧光产生的基本原理(一)分子荧光的产生(二)荧光效率及其影响因素1.荧光效率2.荧光与分子结构的关系(1)产生荧光的条件①必须含有共轭双键这样的强吸收基团,并且体系越大, 电子的离域性越强,越容易被激发产生荧光;大部分荧光物质都含有一个以上的芳香环,且随共轭芳环的增大,荧光效率越高,荧光波长越长。

②分子的刚性平面结构有利于荧光的产生③.取代基对荧光物质的荧光特征和强度的影响 给电子基团:-OH 、-NH2、-NR2和-OR 等可使共轭体系增大,导致荧光增强。

吸电子基团:-COOH 、-NO 和-NO2等使荧光减弱。

随着卤素取代基中卤原子序数的增加,使系间窜跃加强,物质的荧光减弱,而磷光增强。

3.环境因素对荧光强度的影响(1)溶剂极性对荧光强度的影响: 一般来说,电子激发态比基态具有更大的极性。

溶剂的极性增强,对激发态会产生更大的稳定作用,结果使物质的荧光波长红移,荧光强度增大. 奎宁在苯、乙醇和水中荧光效率的相对大小为1、30和1000。

(2)温度荧光强度的影响: 一般情况下,辐射跃迁的速率基本不随温度而改变,而非辐射跃迁的速率随温度升高而显著增大。

对大多数的荧光物质而言,升高温度会使非辐射跃迁概率增大,荧光效率降低。

由于三重态的寿命比单重激发态寿命更长,温度对于磷光的影响比荧光更大。

(3)pH 对荧光强度的影响:共轭酸碱两种体型具有不同的电子氛围,往往表现为具有不同荧光性质的两种体型,各具有自己特殊的荧光效率和荧光波长。

另外,溶液中表面活性剂的存在,可以使荧光物质处于更有序的胶束微环境中,对处于激发单重态的荧光物质分子起保护作用,减小非辐射跃迁的概率,提高荧光效率。

第二章分子发光分析

第二章分子发光分析
18
(3) 刚性平面结构 实验发现,多数具有刚性平面结构的 有机分子具有强烈的荧光。
因为这种结构可以减少分子的振动, 使分子与溶剂或其它溶质分子的相互作用 减少,也就减少了碰 撞去活的可能性。
19
(4)取代基效应
给电子基团,荧光增强(-OH、-OR、-CN、-NH2)
芳环上 取代基ຫໍສະໝຸດ 产生了p-共轭作用,增强了电子共轭程度,使最低 激发单重态与基态之间的跃迁几率增大。
4
2.分子内的光物理过程
其中S0、S1和S2分别表示分子的基态、第一和第二电子激发的单重态
T1和T2则分别表示分子的第一和第二电子激发的三重态。
V=0、1、2、3、…表示基态和激发态的振动能级。
5
非辐射能量传递过程;
S1
S2
T1
S0 吸光1
吸光2
振动弛豫:
在同一电子能级 中,电子由高振 动能级转至低振 动能级,而将多 余的能量以热 的
A + B C* + D C* C + h
36
间接发光是被测物A或B,通过化学反应生成初始激发态产
物C* , C* 不直接发光,而是将其能量转移给F,使F跃迁 回基态,产生发光。
A + B C* + D C*+F F* + E F* F + h
2. 气相化学发光和液相化学发光
(1)气相化学发光
(一)荧光和磷光的产生
从分子结构理论来讨论
振动能级
电子所处的能级
分子中电子
转动能级
的能量状态
S=0, J=1 单重态S表示
(所有电子都是自旋配对的) 电子的多重态 大多数基态分子都处于单重态
J=2S+1

分子发光分析法

分子发光分析法

第7章分子发光分析法【7-1】解释下列名词。

(1)单重态;(2)三重态;(3)荧光;(4)磷光;(5)化学发光;(6)量子产率;(7)荧光猝灭;(8)振动弛豫;(9)系间跨越;(10)内转换;(11)重原子效应。

答:(1)单重态:在给定轨道中的两个电子,必定以相反方向自旋,自旋量子数分别为1/2和-1/2,其总自旋量子数s=0。

电子能级的多重性用M=2s+1=1,即自旋方向相反的电子能级多重性为1。

此时分子所处的电子能态称为单重态或单线态,用S表示。

(2)三重态:当两个电子自旋方向相同时,自旋量子数都为1/2,其总自旋量子数s=1。

电子能级的多重性用M=2s+1=3,即自旋方向相同的电子能级多重性为3,此时分子所处的电子能态称为三重态或三线态,用T表示。

(3)荧光:分子受到激发后,无论处于哪一个激发单重态,都可通过振动弛豫及内转换,回到第一激发单重态的最低振动能级,然后以辐射形式回到基态的各个振动能级发射的光。

(4)磷光:分子受到激发后,无论处于哪一个激发单重态,都可通过内转换、振动弛豫和体系间跨越,回到第一激发三重态的最低振动能级,然后以辐射形式回到基态的各个振动能级发射的光(5)化学发光:化学反应物或反应产物受反应释放的化学能激发而产生的光辐射。

表示。

(6)量子产率:激发态分子发射荧光的光子数与基态分子吸收激发光的光子数之比,常用f(7)荧光猝灭:指荧光物质分子与溶剂分子之间发生猝灭,荧光猝灭分为静态猝灭和动态猝灭。

(8)振动弛豫:处于激发态最高振动能级的外层电子回到同一电子激发态的最低振动能级以非辐射的形式将能量释放的过程。

(9)系间跨越:处于激发态分子的电子发生自旋反转而使分子的多重性发生变化的过程。

即分子由激发单重态以无辐射形式跨越到激发三重态的过程。

(10)内转换:相同多重态的两个电子态之间的非辐射跃迁。

(11)重原子效应:使用含有重原子的溶剂(如碘乙烷、溴乙烷)或在磷光物质中引入重原子取代基,都可以提高磷光物质的磷光强度,这种效应称为重原子效应。

分析化学-分子发光分析法

分析化学-分子发光分析法

3. 流式细胞术(FCM) 对悬液中的单细胞或其他生物粒子,通过检测
标记的荧光信号,实现高速、逐一的细胞定量 分析和分选的技术。
§4 化学发光分析法
Chemiluminescence Analysis
基本原理 化学发光反应类型 化学发光测量仪器 化学发光分析法的应用
一、基本原理
化学发光是由于化学反应而导致的光发射。 发生于生命体系的化学发光称为生物发光。 生物发光均有酶(荧光素酶)参加。
最大化学发光强度与发光物质浓度成正 比: Icl max = Kc
化学发光的积分值与发光物质浓度成正 比: Icl = Kc
二、化学发光反应的类型
直接化学发光
A 十 B C* , C* C 十 hν
间接(敏化)化学发光 A 十 B C* + D , C*+ F C 十 F*
F* F 十 hν
三、New technique of fluorescence analysis
1. 激光荧光分析 F 与 I0 成正比,激光的强度大,可提高
荧光法的灵敏度。
2.时间分辨荧光分析
由于不同分子的荧光寿命不同,在激发 和检测之间延缓一段时间,使不同荧光寿命 的物质达到分别检测的目的。
时间分辨荧光免疫法 将稀土元素的螯合物标记抗体,与体液中 的抗原结合。当加入一种增效剂时,稀土 元素被释放出来,形成新的螯合物,能产生 长寿命的 荧光(10 ~1000 μs)。待样品中 蛋白质等物质所发荧光完全衰减后进行测定, 可有效消除背景干扰。 已用于测定甲胎蛋白、促性腺绒毛激素、 皮质醇等体内微量物质的测定。
2.化学发光免疫分析仪
化学发光免疫分析是将化学发光分析和 免疫分析相结合而建立的一种超微量分析 技术。兼具发光分析的高灵敏性和抗原抗 体反应的高特异性的特点。

分子发光分析法

分子发光分析法

分子发光分析法基态分子吸收了一定能量后,跃迁至激发态,当激发态分子以辐射跃迁形式将其能量释放返回基态时,便产生分子发光(Molecular Luminescence)。

依据激发的模式不同,分子发光分为光致发光、热致发光、场致发光和化学发光等。

光致发光按激发态的类型又可分为荧光和磷光两种。

本章讨论分子荧光(Molecular Fluorescence)、分子磷光(Molecular Phosphorescence)和化学发光(Chemiluminescence)分析法。

第一节荧光分析法一、概述分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。

早在16世纪,人们观察到当紫外和可见光照射到某些物质时。

这些物质就会发出各种颜色和不同强度的光,而当照射停止时,物质的发光也随之很快消失。

到1852年才由斯托克斯(Stokes)给予了解释,即它是物质在吸收了光能后发射出的分子荧光。

斯托克斯在对荧光强度与浓度之间的关系进行研究的基础上,于1864年提出可将荧光作为一种分析手段。

1867年Goppelsroder应用铝—桑色素络合物的荧光对铝进行了测定。

进入20世纪,随着荧光分析仪器的问世,荧光分析的方法和技术得到了极大发展,如今已成为一种重要且有效的光谱分析手段。

荧光分析法的最大优点是灵敏度高,它的检出限通常比分光光度法低2~4个数量级,选择性也较分光光度法好。

虽然能产生强荧光的化合物相对较少,荧光分析法的应用不如分光光度法广泛,但由于它的高灵敏度以及许多重要的生物物质都具有荧光性质。

使得该方法在药物、临床、环境、食品的微量、痕量分析以及生命科学研究各个领域具有重要意义。

二、基本原理(一)分子荧光的产生大多数分子含有偶数电子。

根据保里不相容原理,基态分子的每一个轨道中两个电子的自旋方向总是相反的,因而大多数基态分子处于单重态(2S+1=1),基态单重态以S0表示。

当物质受光照射时,基态分子吸收光能就会产生电子能级跃迁而处于第一、第二电子激发单重态,以S1、S2表示。

分子发光分析

分子发光分析

荧光强度和荧光光谱不同
26
27
3、荧光猝灭
定义:荧光物质分子与溶剂分子或其它溶质分子
的相互作用引起荧光强度降低的现象 碰撞猝灭荧激光发分单子重以态无的辐荧射光跃分迁子的与方猝式灭回剂到分基子态相碰撞
静态猝灭 荧光物质分子与猝灭剂分子生成非荧光
的络合物
类型 转入三重态的猝灭 溶解氧与荧光物质 发生电子转移反应的猝灭 猝灭剂与荧光物质
2. 荧光与有机化合物结构的关系 (1)跃迁类型
实验证明,对于大多数荧光物质,首先经历 激发,然后经过振动弛豫或其他无辐射 跃迁,再发生 跃迁而得到荧光。 (2)共轭效应 实验证明,容易实现激发 的芳香族化合物 容易发生荧光,增加体系的共轭度荧光效率一般 也将增大,主要是由于增大荧光物质的摩尔吸光 系数,有利于产生更多的激发态分子
4
2.分子内的光物理过程
其中S0、S1和S2分别表示分子的基态、第一和第二电子激发的单重态
T1和T2则分别表示分子的第一和第二电子激发的三重态。
V=0、1、2、3、…表示基态和激发态的振动能级。
5
非辐射能量传递过程;
S1
S2
T1
S0 吸光1
吸光2
振动弛豫:
在同一电子能级 中,电子由高振 动能级转至低振 动能级,而将多 余的能量以热 的
1.如何获得较强的磷光
磷光发射:电子由第一激发三重态的最低振动能级
→基态, T1 → S0跃迁;
电子由S0进入T1的可能过程:( S0 → T1禁阻跃迁)
增加试样的刚性:
低温冷冻
固体磷光法:
吸附于固相载体(滤纸)
分子缔合物的形成:
加入表面活性剂等
重原子效应:
加入含重原子的物质,如银盐等

分析化学(仪器分析)第五章 分子发光分析法

分析化学(仪器分析)第五章 分子发光分析法
给电子基团(-OH, -NH2, -NR2, -OR)使共轭体系增 大,导致荧光增强。反之, 吸电子基团(-COOH, NO, -NO2)使荧光减弱。
“重原子效应”--- 随着卤素取代基原子序数的增 加,物质的荧光减弱,磷光增强的现象。 分子中由于重原子的存在导致容易发生系间 窜跃的效应,产生的原因是原子序数高的重原子 的电子自旋和轨道间的相互作用变大,容易发生 自旋偶合作用,使S1-T1的体系间窜跃显著增加 所致。
23
② 静态猝灭(组成化合物的猝灭) 由于部分荧光物质分子与猝灭剂分子生成非荧光 的配合物而产生的。此过程往往还会引起溶液吸收 光谱的改变。 ③ 转入三重态的猝灭(S1—T1–– S0) 分子由于系间的跨越跃迁,由单重态跃迁到三重 态。转入三重态的分子在常温下不发光,它们在与 其它分子的碰撞中消耗能量而使荧光猝灭。 溶液中的溶解氧对有机化合物的荧光产生猝灭效 应是由于三重态基态的氧分子和单重激发态的荧光 物质分子碰撞,形成了单重激发态的氧分子和三重 态的荧光物质分子,使荧光猝灭。
18
(3)环境因素对荧光的影响
a. 溶剂的影响 电子激发态比基态具有更大的极性, 溶剂的极性增强,对激发态会产生更大的 稳定作用,使荧光波长红移,强度增大。 b. 温度的影响 辐射跃迁的速率不随温度而变,而非 辐射跃迁的速率随温度升高而显著增大。 温度升高,使得非辐射跃迁概率增大。 T增大, φf减小
26
如果 固定激发光波长为其 最大激发波长,然后测定 不同的波长时所发射的荧 光或磷光强度,即可得到 荧光或磷光发射光谱曲线。 荧光强度最大时的波长即 为发射波长λem 激发光谱和荧光光谱是荧 光测定时选择激发波长和 荧光测量波长的依据,也 可以用于鉴别荧光物质
27
激发光谱与发射光谱的关系

分子发光分析法

分子发光分析法

磷光光谱
200 260 320 380 440 500 560 620 室温下菲的乙醇溶液荧(磷)光光谱
3.激发光谱与发射光谱的关系
a.Stokes位移
激发光谱与发射光谱之间的波长差值。发射光谱的波长比
激发光谱的长,振动弛豫消耗了能量。
b.发射光谱的形状与激发波长无关
电子跃迁到不同激发态能级,吸收不同波长的能量(如能级
非光谱分析法
光谱分析法
折 射 法
圆 二 色 性 法
X 射 线 衍 射 法
干 涉 法
旋 光 法
原子光谱分析法
原 子 吸 收 光 谱
原 子 发 射 光 谱
原 子 荧 光 光 谱
X 射 线 荧 光 光 谱
分子光谱分析法
分分核 紫红子子磁 外外荧磷共 光光光光振 谱谱光光波 法法谱谱谱
法法法
各种光分析法
1. 原子发射光谱分析法 以火焰、电弧、等离子炬等作为光源,使气态原子
反跃迁的几率也越大,即产生的光谱呈镜像对称。
荧光激发光谱
荧光发射光谱
200 250 300 350 400 450 500 nm
蒽的激发光谱和荧光光谱
三、荧光的产生与分子结构的关系
relation between fluorescence and molecular structure
1.分子产生荧光必须具备的条件
(1)具有合适的结构:分子必须具有与所照射的辐射频率相
适应的结构, 才能吸收激发光; (2)具有一定的荧光量子产率。荧光量子产率也叫荧光效率 或量子效率,它表示物质发射荧光的能力,通常用下式表示
荧光量子产率(): 发射的光量子数
吸收的光量子数
在产生荧光的过程中,涉及到许多辐射和无辐射跃迁过程, 如荧光发射、内转移、系间跨跃和外转移等。因此,荧光的 量子产率,将与上述每一个过程的速率常数有关。 如外转换过程速度快,不出现荧光发射。

分子发光分析法之荧光产生的机理

分子发光分析法之荧光产生的机理

行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/ PPT课件下载:/kejian/ 试卷下载:/shiti/
e
hv
荧光产生的机理
(1)非辐射跃迁
2. 内转换:相同多重态的不同电子能级中, 能级间的 非辐射能级交换。
S2 S1
hv
S0eຫໍສະໝຸດ 荧光产生的机理(2)辐射跃迁
1. 荧光发射:电子由第一激发单重态的最低振动能 级→基态各振动能级。
发射荧光的能量比分子吸收的能量小,波长长。
S2 S1
hv
hv′
S0
e
PPT模板下载:/moban/ 节日PPT模板:/jieri/ PPT背景图片:/beijing/ 优秀PPT下载:/xiazai/ Word教程: /word/ 资料下载:/ziliao/ 范文下载:/fanwen/ 教案下载:/jiaoan/
分子中的电子对的电子自旋平行的电子态称为 三重态,用“T”表示。
荧光产生的机理
三、荧光发光的机理
电子处于激发态是不稳定状态,返回基态时,
通过辐射跃迁(发光)和非辐射跃迁(热)等方式失去
能量。
传递途径
辐射跃迁
非辐射跃迁
荧光
磷光 系间跨越 内转换 外转换 振动弛豫
荧光产生的机理
(1)非辐射跃迁
1. 振动弛豫:同一电子能级内以热能交换形式由高 振动能级至低相邻振动能级间的跃迁。
荧光产生的机理
二、电子自旋多重态
电子从基态跃迁到激发态,分子中的电子可以处
在不同的自旋状态,常用电子自旋多重态来描述。
M=2S+1 S: 各电子自旋量子数的代数和。

分子发光分析法(精)

分子发光分析法(精)

(3) 间接测定某些生物试样
氨基酸 + O2
葡萄糖氧化酶 氨基酸氧化酶
酮酸 +NH3 + H2O2
葡萄糖 + O2 + H2O 葡萄糖酸 + H2O2 通过测定生成的H2O2 ,确定氨基酸、葡萄糖含量。
2018/9/16
草酸二酯(能量提供体)+高浓度双氧水+稠环芳烃(能量接
pH7 - 8
复合物与氧反应,产生化学发光: AMP·LH2 ·E + O2 [氧化荧光素]* + AMP+CO2 + H2O
[氧化荧光素]* 氧化荧光素 + h
最大发射波长562nm;
2018/9/16
生物发光分析应用 2
烟酰胺腺嘌呤二核苷酸(NADH)在细菌中的黄素酶作用 下,在氧化型黄素单核苷酸(FMA)存在下,发生发光反应 : NADH + FMA + H+ NAD+ + FMNH2 FMNH2 + RCHO + O2 FMN + RCOOH + H2O + h
受体)+金属离子+溶剂组成的反应体系,可发出很强的可见光 ,发光效率高,使用不同的稠环芳烃,发射出不同颜色的光( 冷光源)。
2018/9/16
பைடு நூலகம்
生物发光分析应用 1
在pH 7~8;荧光素酶(E)和Mg2+的存在下,荧光素 (LH2)与磷酸三腺甙(ATP)的反应,生成磷酸腺甙(AMP)荧光 素和荧光素酸的复合物和镁的焦磷酸盐(ppi): ATP + LH2 + E + Mg2+ AMP·LH2 ·E +Mg ppi + 2H+

分子荧光光谱法

分子荧光光谱法

分子荧光光谱法又称分子发光光谱法或荧光分光光度法,即通常所谓的荧光分析法。

法。

该法是一种利用某一波长的光线照射试样,该法是一种利用某一波长的光线照射试样,该法是一种利用某一波长的光线照射试样,使试样吸收这一辐射,使试样吸收这一辐射,使试样吸收这一辐射,然后在发然后在发射出波长相同或波长较长的光线的化学分析方法。

如果这种再发射约在 s 内发生,则称为荧光;若能在生,则称为荧光;若能在 s 或更长的时间后发生,则称磷光。

分子荧光光谱法就是利用这种再发射的荧光的特性和强度来对荧光物质进行定性和定量分析的。

荧光分析法的突出优点是灵敏度高,其测定下限比一般分光光度法低二至四数量级。

级。

选择性也比分光光度法好,选择性也比分光光度法好,选择性也比分光光度法好,但其应用不如分光光度广泛,但其应用不如分光光度广泛,但其应用不如分光光度广泛,因为只有有限数量因为只有有限数量的化合物才能产生荧光。

的化合物才能产生荧光。

一、基本原理一、基本原理(一)(一) 荧光光谱的产生荧光光谱的产生荧光物质分子吸收了特定频率辐射后,荧光物质分子吸收了特定频率辐射后,由基态跃迁至第一电子激发态由基态跃迁至第一电子激发态由基态跃迁至第一电子激发态(或更(或更高激发态)高激发态)的任一振动能级,的任一振动能级,的任一振动能级,在溶液中这种激发态分子与溶剂分子发生碰撞,在溶液中这种激发态分子与溶剂分子发生碰撞,在溶液中这种激发态分子与溶剂分子发生碰撞,以以热的形式损失部分能量后,而回到第一电子激发态的最低振动能级(无辐射跃迁)。

然后再以辐射形式去活化跃迁到电子基态的任一振动能级,然后再以辐射形式去活化跃迁到电子基态的任一振动能级,便产生荧光。

便产生荧光。

由于无辐射跃迁的几率大,因此分子荧光波长常常比激发光长。

因此分子荧光波长常常比激发光长。

激发光源的波长通常是激发光源的波长通常是在紫外区,在紫外区,荧光也可能在紫外区,荧光也可能在紫外区,荧光也可能在紫外区,但更多是在可见区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12章分子发光分析法
12.1.0发射光谱
物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子M*,当从激发态过渡到低能态或基态时产生发射光谱,多余能量以光的形式发射出来:M*→M+hν
通过测量物质的发射光谱的波长和强度来进行定性和定量分析的方法叫做发射光谱分析法。

分子荧光和磷光分析法属于发射光谱法。

12.1.1分子荧光和磷光分析法
1.荧光和磷光的产生
1)Jablonski能级图
2)多重度:M=2s+1(s为电子自旋量子数的代数和,其值为0或1)
单重态(S):分子中全部轨道里的电子自旋配对,即s=0,M=1
三重态(T):电子在跃迁过程中自旋方向改变,分子中出现两个自旋不配对的电子,即s=1,M=3
三重态能级比相应单重态能级略低。

3)去活化:处在激发态的不稳定分子返回基态的过程。

振动弛豫:分子吸收光辐射后从基态的最低振动能级跃迁到激发态的较高振动能级,然后失活到该电子能级的最低振动能级上。

内转换:相同多重度等能态间的无辐射跃迁。

外转换(猝灭):激发分子通过与溶剂或其他溶质间的相互作用导致能量转换而使荧光或磷光强度减弱或消失。

系间跨越:不同多重度等能态间的无辐射跃迁。

荧光发射:单重激发态最低振动能级至基态各振动能级的跃迁。

磷光发射:三重激发态最低振动能级至基态各振动能级的跃迁。

2.激发光谱和发射光谱及其特征
激发光谱:以激发波长为横坐标,荧光强度为纵坐标作图。

发射光谱:以发射波长为横坐标,荧光强度为纵坐标作图。

荧光发射光谱的特点:
1)Stokes位移:在溶液中,分子荧光的发射峰相比吸收峰位移到较长的波长。

2)荧光发射光谱与激发波长的选择无关。

3)镜像规则:荧光发射光谱和激发光谱镜像对称。

12.1.2荧光量子产率和分子结构的关系
荧光量子产率(荧光效率/量子效率):表示物质发射荧光的能力,
荧光量子产率与分子结构的关系:
1.跃迁类型
物质吸收紫外-可见光发生π→π*或n→π*跃迁,然后经振动弛豫或其他无辐射跃迁,再发生π*→π或π*→n跃迁而产生荧光。

π*→π跃迁的量子效率较高。

2.共轭效应
绝大多数能产生荧光的物质含有芳香环或杂环。

具有共轭体系的芳香环或杂环化合物,环越多,电子共轭程度越大,产生荧光波长越长,荧光强度越大。

3.刚性平面结构
多数具有刚性平面结构的有机分子具有较强的荧光发射。

刚性结构可以减少分子振动,降低外转换的效率。

4.取代基效应
芳香族化合物苯环上的不同取代基对该化合物的荧光强度和荧光光谱有很大影响。

1)增强荧光的取代基:给电子基团-OH、-OR、-NH2、-NHR、-NR2、-CN等。

基团的n电子电子云与苯环上的π电子云共轭,增大共轭体系,使荧光波长红移,强度增强。

2)减弱荧光的取代基:吸电子基团-COOH、-COOR、-NO2、-NO、-SH、-C=O、卤素离子等。

荧光波长蓝移,强度减弱。

3)影响不明显的取代基:-NH3+、-SO3H、-R等。

4)重原子效应:芳环上被卤素取代后,系间跨越增强,磷光增强,荧光减弱。

其荧光强度
随卤素原子序数增加而减小,磷光强度相应增大。

12.1.3荧光(磷光)光谱仪
1.荧光光谱仪的主要部件
1)光源:卤钨灯、高压汞灯、氙弧灯、激光。

2)单色器:第一单色器选最佳激发波长,第二单色器选最佳荧光波长。

3)样品池:合成的熔融二氧化硅(无荧光发射,四面透光)。

4)检测器:光电倍增管(PMT)、光电池(PDA)、电荷耦合装置(CCD)。

2.磷光检测
1)室温固态样品(室温磷光,RTP),低温液态样品(低温磷光,LTP)。

2)脉冲光源(时间分辨技术)
12.1.4定量分析
1.定量分析的理论依据
2.影响荧光强度的因素
1)环境因素对荧光强度的影响
a.溶剂:溶剂的极性对分子的紫外吸收光谱有很大的影响,进而对荧光光谱有一定的影响。

b.温度:温度上升,外转换去活几率增大,荧光产率下降。

c.溶液pH:有机化合物酸形和碱形的荧光光谱和量子产率不同。

2)内滤光作用:当发光物质浓度增大时,校准工作曲线发生弯折,可能是由于内滤光作用
的影响。

a.激发光通过样品时每层样品都有吸收,使激发光强度减弱,从而减弱荧光强度。

b.自猝灭(浓度猝灭):激发态分子将能量转移给其他分子。

c.自吸收:当Stokes位移很小以致吸收光谱的长波长端与发射光谱的短波长端重叠时,
一部分发射光会被溶液自身吸收。

3)散射光的影响
容器表面的散射、Tyndall散射、Rayleigh散射、Raman散射均使荧光空白值增加,灵敏度下降。

3.灵敏度和选择性
1)灵敏度的表示
a.(美国标准物质与测定⽅法)硫酸奎宁在0.05mol·L-1H2SO4溶液中的检出限。

b.纯⽔的Raman峰(模拟荧光)的信噪比。

c.检出限:刚好⾼于空白的样品测定⾄少10次以上读数,其标准偏差的3倍所对应的分
析物的浓度。

2)选择性
a.激发光波长
b.荧光测定波长
c.合适的体系
d.荧光寿命的差别
12.1.5荧光分析方法
1.直接荧光法:本身在紫外-可见光照射下可以发射荧光的化合物。

2.荧光衍生化方法
1)与金属离子络合:荧光试剂与金属离子螯合形成五元环或六元环螯合物。

2)有机分析中的无机探针:使新的发光物种在500nm以上有荧光发射,避免基体干扰。

3)非金属和阴离子的衍生化:测定B(与安息香缩合)、Se、氰化物、硫化物等。

4)有机物的衍生化:通过衍生化方法获得在长波长区发射荧光的产物。

3.荧光猝灭法
荧光物质发出的荧光被分析物猝灭,随被分析物浓度的增加,溶液的荧光强度降低。

根据Stern-Volmer方程,
12.1.6荧光分析技术的应用
1.无机化合物的分析
能直接产⽣荧光并应用于测定的为数不多,但通过有机配合物进⾏荧光分析的元
素达70多种,如:Be、Al、B、Ga、Se、Mg、Zn、Cd及某些稀⼟元素。

以荧光猝灭法测定的离⼦有:F-、S2-、Co2+、Ni2+、Cu2+等。

2.有机化合物的分析
脂肪族化合物本身能发荧光的很少,需与某些试剂反应后才能进⾏荧光分析。

芳香族化合物因具有共轭的不饱和体系,多数能发荧光,可直接用荧光法测定。

荧光分析法可测定结构复杂的⼤量有机物,如:各种维⽣素、叶绿素、氨基酸、
蛋白质、酶和辅酶以及各种药物、毒物和农药等。

12.1.7荧光分析新技术
时间分辨荧光:应用脉冲激光光源测定荧光物质的寿命。

相分辨荧光:通过调节激发波的相位移,可测定多组分体系中各荧光物种的寿命。

偏振荧光:研究分子间的相互作用。

激光诱导荧光(LIF):对分析物提供选择性激发,避免基体干扰,大幅提高灵敏度。

12.1.8磷光分析技术的应用
能产⽣磷光的物质数量很少,磷光分析不及荧光分析普遍,但磷光分析法已在药物分析、临床及环境分析领域得到⼀定的应⽤。

低温磷光分析已应⽤在萘、蒽、菲、芘、苯并芘等多环芳烃及含O、S、N的杂环化合物分析。

固体表⾯室温磷光分析法已成为多环芳烃和杂环化合物的快速、灵敏的分析⼿段。

12.1.9化学发光分析
1.优势:灵敏度⾼;线性范围宽(⼀般有5~6个数量级);仪器设备简单,成本低廉;分析速度快,易实现⾃动化。

局限性:可供发光⽤的试剂有限;发光机理有待进⼀步研究。

2.基本原理
3.应用于分析化学的化学发光体系
鲁米诺(3-氨基苯⼆甲酰环肼)是最常用的发光试剂,它可以测定Cl2、HClO、ClO-、H2O2、O2和NO2,产⽣化学发光反应时量⼦效率为0.01~0.05。

鲁米诺在碱性溶液中和H2O2等氧化剂反应⽣成最⼤波长为425nm的光辐射。

相关文档
最新文档