导数的单调性练习题35046

合集下载

导数与函数的单调性练习题

导数与函数的单调性练习题

导数与函数的单调性练习题2.2.1 导数与函数的单调性基础巩固题:1.已知函数 $f(x)=\frac{ax+1}{x+2}$ 在区间 $(-2,+\infty)$ 上为增函数,求实数 $a$ 的取值范围。

解析:由题意可得 $f(x)$ 在 $(-2,+\infty)$ 上单调递增,因此$a>-\frac{1}{2}$。

又因为$f(x)$ 的定义域为$(-2,+\infty)$,所以 $a$ 的取值范围为 $a\geq -\frac{1}{2}$ 或 $a\leq -2$,即$a\geq -\frac{1}{2}$ 或 $a\leq -2$。

2.已知函数 $f(x)=x^2+2x+a\ln x$ 在区间 $(0,1)$ 上单调,求实数 $a$ 的取值范围。

解析:由题意可得 $f(x)$ 在 $(0,1)$ 上单调,因此$f'(x)=2x+2+\frac{a}{x}$ 在 $(0,1)$ 上恒大于等于零或恒小于等于零。

化简可得 $a\geq -(2x^2+2x)$ 或 $a\leq -(2x^2+2x)$ 在$(0,1)$ 上恒成立。

记 $g(x)=-(2x^2+2x)$,则 $g(x)$ 在$(0,1)$ 上单调递增,且 $-4<g(x)<0$。

因此,$a\geq -4$ 或$a\leq -4$,即 $a\geq -4$ 或 $a\leq -4$。

3.已知函数$f(x)=\frac{x}{2x-9}$,求$f(x)$ 的单调区间。

解析:求导得 $f'(x)=\frac{9}{(2x-9)^2}$,$f'(x)>0$ 当且仅当 $x\frac{9}{2}$。

因此,$f(x)$ 在 $(-\infty,\frac{9}{2})$ 上单调递减,在 $(\frac{9}{2},+\infty)$ 上单调递增。

所以$f(x)$ 的单调区间为 $(-\infty,\frac{9}{2})$ 和$(\frac{9}{2},+\infty)$。

导数单调性和极练习题

导数单调性和极练习题

导数单调性和极值练习题一.填空题1.函数()263f x x x =-+的单调增区间为 ,单调减区间为2.函数()ln f x x =在()2,e e 上的最大值为 ,最小值为3.函数322y x x =-的单调增区间为 ,单调减区间为4.设函数()3237f x x x =-+,当x = 时,函数()f x 的极大值为5.函数()x f x xe =,当x = 时,函数()f x 的最小值为6.函数()ln f x x x = ()0x >的单调增区间为7.函数2sin y x x =-在()0,2π内的单调减区间为8.函数3233852y x x =-+取得极大值时的x 值为9.函数()()2f x x x c =-在2x =处有极小值,则c =10.已知函数()3128f x x x =-+在区间[]3,3-上的最大值为11.若函数()33f x x ax a =-+在()1,2内有极小值,则实数a 的取值范围是12.已知函数32y x bx cx =++d +的单调减区间是[]1,2-,则b c +=13.已知函数32y x bx cx =++d +在区间[]1,2-上是减函数,那么b c +的最大值为14.已知函数()3231f x x ax ax =-++在区间(),-∞+∞内既有极大值,又有极小值,则实数a 的取值范围是15.已知函数32321y x x =+-在区间(),0m 内为减区间,则m 的取值范围是16.函数3y x ax b =++在区间()1,1-为减函数,在()1,+∞为增函数,则a =17.设函数()331f x ax x =-+,若对于任意[]1,1x ∈-,都有()0f x ≥成立,则实数a 的取值范围是18.抛物线2y x =-上的点到直线4380x y +-=的距离的最小值是19.点P 是曲线2ln y x x =-上任意一点,则点P 到直线20x y --=的距离的最小值是20.已知实数a 、b 、c 、d 成等比数列,且曲线33y x x =-的极大值点坐标为(),b c ,则ad =21.在函数38y x x =-的图像上,其切线的倾斜角小于4π的点中,坐标为整数点的个数有 个22.已知函数()32f x x px qx =--的图像与x 轴相切于()1,0点,则()f x 的极大值为 极小值为23.已知函数()322f x x ax bx a =--+,在1x =时,有极值为10,则a = ,b =24.若0a >,0b >,且函数()32422f x x ax bx =--+在1x =处有极值,则ab 的最大值为25.已知函数()()()322141152723f x x m x m m x =--+--+在(),-∞+∞上是增函数,则m 的取值范围是26.已知函数()321343f x x x x =--+,直线l :920x y c ++=,若当[]2,2x ∈-时,函数()y f x =的图像恒在直线l 的下方,则c 的取值范围是二.解答题已知函数()33f x x x =-(1)求函数()f x 在33,2⎡⎤-⎢⎥⎣⎦上的最大值和最小值 (2)过点()2,6P -作曲线()y f x =的切线,求此切线方程设函数()322338f x x ax bx c =+++,在1x =及2x =时取得极值(1)求a 、b 的值;(2)若对于任意的[]0,3x ∈,都有()2f x c <成立,求c 的取值范围已知函数()()3231132a f x x x a x =-+++,其中a 为实数, (1)若函数()f x 在1x =处取得极值,求a 的值(2)若不等式()2'1f x x x a >--+对任意()0,a ∈+∞都成立,求x 的取值范围已知函数()322f x x mx nx =++-的图像过点()1,6--,且函数()()'6g x f x x =+的图像关于y 轴对称(1)求m 、n 的值及函数()y f x =的单调增区间;(2)若0a >,求函数()y f x =在区间()1,1a a -+内的极值已知1x =是函数()()32311f x mx m x nx =-+++的一个极值点,其中m 、n R ∈,0m <.(1)求m 与n 的关系表达式; (2)求()f x 的单调区间;(3)当[]1,1x ∈-时,函数()y f x =的图像上任意一点的切线斜率恒大于3m ,求m 的取值范围。

导数的单调性练习题汇编

导数的单调性练习题汇编
2x
1 或x
2
1
(不在定义域内舍) ,
2
由于函数在区间 ( k-1 ,k+1)内不是单调函数, 所以 1 ( k 1, k 1) 即 k 1 1 k 1 ,
2
2
解得
1
k
3 ,综上得 1 k
3
,答案选 B.
2
2
2
考点:函数的单调性与导数
6. D.
【解析】
更多精品文档
学习 -----好资料
试题分析:根据图象可知,函数 f (x) 先单调递减,后单调递增,后为常数,因此
13. 已知函数 f (x) x a ln x(a R) 求当 a 2 时,求曲线 y f (x) 在点 A(1, f (1)) 处的 切线方程;
更多精品文档
学习 -----好资料
1. A
【解析】
试题分析:当 a 0 时 , f ( x)
x 在 R 上为减函数 , 成立 ;
当 a 0 时 , f ( x) 的导函数为 f ( x) 3ax2 1 , 根据题意可知 , f ( x) 3ax 2 1 0 在
k
1
,由已知得
f '(x)
0在 x
1,
x
所以 0 1 1,故 k 的取值导数判断函数的单调性.
5. B
【解析】
恒成立,故 k
1
,因为
x
1,
x
试 题 分 析 : 函 数 的 定 义 域 为 (0, ) , 所 以 k 1 0 即 k 1 ,
f (x)
1 2x
2x
4x2 1 ,令 f ( x ) 0 ,得 x
x1 x2
2
,所以
3

导数与函数的单调性练习含答案

导数与函数的单调性练习含答案

第2讲导数在研究函数中的应用第1课时导数与函数的单调性一、选择题1.函数f(x)=x-ln x的单调递减区间为() A.(0,1) B.(0,+∞)C.(1,+∞) D.(-∞,0)∪(1,+∞)解析函数的定义域是(0,+∞),且f′(x)=1-1x=x-1x,令f′(x)<0,解得0<x<1,所以单调递减区间是(0,1).答案 A2.(2015·陕西卷)设f(x)=x-sin x,则f(x)() A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数解析因为f′(x)=1-cos x≥0,所以函数为增函数,排除选项A和C.又因为f(0)=0-sin 0=0,所以函数存在零点,排除选项D,故选B.答案 B3.已知定义在R上的函数f(x),其导函数f′(x)的大致图像如图所示,则下列叙述正确的是()A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析 依题意得,当x ∈(-∞,c )时,f ′(x )>0,因此,函数f (x )在(-∞,c )上是增函数,由a <b <c ,所以f (c )>f (b )>f (a ). 答案 C4.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为( )A .(-∞,2)B .(-∞,2] C.⎝ ⎛⎭⎪⎫-∞,52 D.⎝ ⎛⎦⎥⎤-∞,52 解析 ∵f ′(x )=6x 2-6mx +6, 当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x 恒成立. 令g (x )=x +1x ,g ′(x )=1-1x 2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52. 答案 D5.(2017·上饶模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞) 解析 由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上单调递增.又F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1.答案 B二、填空题6.已知函数f(x)=(-x2+2x)e x(x∈R,e为自然对数的底数),则函数f(x)的单调递增区间为________.解析因为f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,因为e x>0,所以-x2+2>0,解得-2<x<2,所以函数f(x)的单调递增区间为(-2,2).答案(-2,2)7.已知函数f(x)=-12x2+4x-3ln x在区间[t,t+1]上不单调,则t的取值范围是________.解析由题意知f′(x)=-x+4-3x=-(x-1)(x-3)x,由f′(x)=0得函数f(x)的两个极值点为1和3,则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间[t,t+1]上就不单调,由t<1<t+1或t<3<t+1,得0<t<1或2<t<3.答案(0,1)∪(2,3)8.(2017·武汉模拟)已知f(x)=2ln x+x2-5x+c在区间(m,m+1)上为递减函数,则m的取值范围为________.解析 由f (x )=2ln x +x 2-5x +c ,得f ′(x )=2x +2x -5,又函数f (x )在区间(m ,m +1)上为递减函数, ∴f ′(x )≤0在(m ,m +1)上恒成立, ∴⎩⎪⎨⎪⎧2m +2m -5≤0,2m +1+2(m +1)-5≤0,解得12≤m ≤1.答案 ⎣⎢⎡⎦⎥⎤12,1三、解答题 9.已知函数f (x )=ln x +ke x (k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间.解 (1)由题意得f ′(x )=1x -ln x -ke x ,又f ′(1)=1-ke =0,故k =1. (2)由(1)知,f ′(x )=1x -ln x -1e x.设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x <0, 即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞). 10.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎫23.(1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.解 (1)由f (x )=x 3+ax 2-x +c , 得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2a ×23-1, 解得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c ,则f ′(x )=3x 2-2x -1=3⎝ ⎛⎭⎪⎫x +13(x -1),列表如下:所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-13和(1,+∞);f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,1.(3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x , 有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x =(-x 2-3x +c -1)e x ,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成立,只要h (2)≥0,解得c ≥11,所以c 的取值范围是[11,+∞).11.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析 依题意得,当x <1时,f ′(x )>0, 则f (x )在(-∞,1)上为增函数; 又f (3)=f (-1),且-1<0<12<1, 因此有f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12,即有f (3)<f (0)<f ⎝ ⎛⎭⎪⎫12,c <a <b .答案 C12.(2016·全国Ⅰ卷)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-1,-13 解析 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1],则-43t 2+at +53≥0.在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立.令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13. 答案 C13.(2017·合肥质检)设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________. 解析 令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2>0,x ∈(0,+∞),所以函数g (x )在(0,+∞)上单调递增. 又g (-x )=f (-x )-x=-f (x )-x=f (x )x =g (x ), 则g (x )是偶函数,g (-2)=0=g (2). 则f (x )=xg (x )>0⇔⎩⎪⎨⎪⎧x >0,g (x )>0或⎩⎪⎨⎪⎧x <0,g (x )<0,解得x >2或-2<x <0,故不等式f (x )>0的解集为(-2,0)∪(2,+∞). 答案 (-2,0)∪(2,+∞)14.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式;(2)若φ(x )=m (x -1)x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解 (1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2. 又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1. (2)∵φ(x )=m (x -1)x +1-f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数, ∴φ′(x )=-x 2+(2m -2)x -1x (x +1)2≤0在[1,+∞)上恒成立,∴x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x ,x ∈[1,+∞), ∵x +1x ∈[2,+∞),∴2m -2≤2,m ≤2. 故实数m 的取值范围是(-∞,2].。

整理导数的单调性练习题35046

整理导数的单调性练习题35046

导数的JUNE 2021单调性练习题35046整理人尼克知识改变命运函数单调性练习题1. (1)已知函数f(x)=x 2+2(a -1)x+2在区间(-∞,4]上是减函数,则实数a 的取值范围是 .(2)已知函数f(x)=x 2+2(a -1)x+2的递减区间是(-∞,4],则实数a 的取值范围是 .(3)已知x ∈[0,1],则函数 的最大值为_______最小值为_________2.讨论函数f(x)= (a ≠0)在区间(-1,1)内的单调性.解:设-1<x 1<x 2<1,则f(x 1)-f(x 2)=-=∵x 1,x 2∈(-1,1),且x 1<x 2,∴x 1-x 2<0,1+x 1x 2>0,(1-x 21)(1-x 22)>0 于是,当a >0时,f(x 1)<f(x 2);当a <0时,f(x 1)>f(x 2).故当a >0时,函数在(-1,1)上是增函数;当a <0时,函数在(-1,1)上为减函数.3.判断函数f (x )=-x 3+1在(-∞,0)上是增函数还是减函数,并证明你的结论;如果x ∈(0,+∞),函数f (x )是增函数还是减函数?4. 已知:f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (x 2-1)求x 的取值范围.5.设y=f (x )的单增区间是(2,6),求函数y=f (2-x )的单调区间.,由复合函数单调性可知 是单减的,上 在 又 ) , (- ) ,( 而 )上是增函数,, ( 在 则由已知得 解:令 ) 0 , 4 ( 2 ) ( 0 4 6 2 2 ) ( 6 2 ) ( , 2 ) ( - ∈ - = ∈ ∴ ∈ - = ∈ - = x x x t x x x t t t f x x t6.函数在区间(-2,+∞)上是增函数,那么a 的取值范围是( ) A.B.C.a<-1或a>1D.a>-2解:f (x )=ax +1x +2=a (x +2)+1-2a x +2=1-2ax +2+a . 任取x 1,x 2∈(-2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=1-2a x 1+2-1-2ax 2+2=(1-2a )(x 2-x 1)(x 1+2)(x 2+2).∵函数f (x )=ax +1x +2在区间(-2,+∞)上为增函数,∴f (x 1)-f (x 2)<0.∵x 2-x 1>0,x 1+2>0,x 2+2>0,∴1-2a <0,a >12. 即实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2) C .(-2,1) D .(-∞,-2)∪(1,+∞)解析:f (x )=⎩⎨⎧x 2+4x =(x +2)2-4,x ≥0,4x -x 2=-(x -2)2+4,x <0,由f (x )的图象可知f (x )在(-∞,+∞)上是单调递增函数,由f (2-a 2)>f (a )得2-a 2>a ,即a 2+a -2<0,解得-2<a <1.故选C.8.已知f (x )在其定义域R +上为增函数,f (2)=1,f (xy )=f (x )+f (y ),解不等式f (x )+f (x -2) ≤39.已知定义在区间(0,+∞)上的函数f(x)满足f(=f(x1)-f(x2),且当x>1时,f(x)<0.(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2.(1)f(1) = f(1/1) = f(1) - f(1) = 0。

(完整版)导数与函数的单调性练习题

(完整版)导数与函数的单调性练习题

2.2.1导数与函数的单调性基础巩固题:1.函数f(x)=21++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.0<a<21 B.a<-1或a>21 C.a>21D.a>-2答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>21.2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A .a ≥0B .a <-4C .a ≥0或a ≤-4D .a >0或a <-4答案:C 解析:∵f ′(x )=2x +2+ax ,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),0<x <1,可知-4<g (x )<0, ∴a ≥0或a ≤-4,故选C.3.函数f (x )=x +9x 的单调区间为________.答案:(-3,0),(0,3) 解析:f ′(x )=1-9x 2=x 2-9x2,令f ′(x )<0,解得-3<x <0或0<x <3,故单调减区间为(-3,0)和(0,3).4 函数32x x y -=的单调增区间为 ,单调减区间为___________________答案:2(0,)3 ; 2(,0),(,)3-∞+∞ 解析: '22320,0,3y x x x x =-+===或 5.确定下列函数的单调区间:(1)y =x 3-9x 2+24x (2)y =3x -x 3 (1)解:y ′=(x 3-9x 2+24x )′=3x 2-18x +24=3(x -2)(x -4) 令3(x -2)(x -4)>0,解得x >4或x <2.∴y =x 3-9x 2+24x 的单调增区间是(4,+∞)和(-∞,2) 令3(x -2)(x -4)<0,解得2<x <4.∴y =x 3-9x 2+24x 的单调减区间是(2,4)(2)解:y ′=(3x -x 3)′=3-3x 2=-3(x 2-1)=-3(x +1)(x -1) 令-3(x +1)(x -1)>0,解得-1<x <1. ∴y =3x -x 3的单调增区间是(-1,1).令-3(x +1)(x -1)<0,解得x >1或x <-1.∴y =3x -x 3的单调减区间是(-∞,-1)和(1,+∞) 6.函数y =ln(x 2-x -2)的单调递减区间为__________.[答案] (-∞,-1) [解析] 函数y =ln(x 2-x -2)的定义域为(2,+∞)∪(-∞,-1),令f (x )=x 2-x -2,f ′(x )=2x -1<0,得x <12,∴函数y =ln(x 2-x -2)的单调减区间为(-∞,-1)7.已知y =13x 3+bx 2+(b +2)x +3在R 上不是单调增函数,则b 的范围为________.[答案] b <-1或b >2 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +2)≤0,∴-1≤b ≤2,由题意b <-1或b >2.8.已知x ∈R,求证:e x ≥x +1.证明:设f (x )=e x -x -1,则f ′(x )=e x -1.∴当x =0时,f ′(x )=0,f (x )=0.当x >0时,f ′(x )>0,∴f (x )在(0,+∞)上是增函数.∴f (x )>f (0)=0. 当x <0时,f ′(x )<0,f (x )在(-∞,0)上是减函数,∴f (x )>f (0)=0.9.已知函数y =x +x1,试讨论出此函数的单调区间. 解:y ′=(x +x 1)′=1-1·x -2=222)1)(1(1x x x x x -+=- 令2)1)(1(xx x -+>0. 解得x >1或x <-1.∴y =x +x 1的单调增区间;是(-∞,-1)和(1,+∞).令2)1)(1(xx x -+<0,解得-1<x <0或0<x <1. ∴y =x +x1的单调减区间是(-1,0)和(0,1)10.已知函数32()f x x bx cx d =+++的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为076=+-y x .(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求函数y=f(x)的单调区间. 解:(Ⅰ)由f(x)的图象经过P (0,2),知d=2, 所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++=' 由在M(-1,f(-1))处的切线方程是76=+-y x , 知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即{{326,23,12 1.0,3.b c b c b c b c b c -+=-=-∴-+-+=-===-即解得 故所求的解析式是 .233)(23+--=x x x x f (Ⅱ)22()36 3.3630,f x x x x x '=----=令2210.x x --=即 解得 .21,2121+=-=x x当;0)(,21,21>'+>-<x f x x 时或 当.0)(,2121<'+<<-x f x 时故)21,()(--∞在x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数. 点拨:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题的能力.11.已知函数f(x)=x 3-21x 2+bx+c.(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围;解 (1))(x f '=3x 2-x+b,因f(x)在(-∞,+∞)上是增函数,则)(x f '≥0.即3x 2-x+b≥0,∴b≥x -3x 2在(-∞,+∞)恒成立.设g(x)=x-3x 2.当x=61时,g(x)max =121,∴b≥121. 12.已知函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数a 的取值范围.解 f(x)=x(x-1)(x-a)=x 3-(a+1)x 2+ax ∴)(x f '=3x 2-2(a+1)x+a 要使函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,只需)(x f '=3x 2-2(a+1)x+a 在(2,+∞)上满足)(x f '≥0即可.∵)(x f '=3x 2-2(a+1)x+a 的对称轴是x=31+a ,∴a 的取值应满足:⎪⎩⎪⎨⎧≥'≤+0(2)231f a 或⎪⎪⎩⎪⎪⎨⎧≥+'>+0)31(231a f a 解得:a≤38.∴a 的取值范围是a≤38.13.已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.解:'2()422f x ax x =+-,因为()f x 在区间[]1,1-上是增函数,所以'()0f x ≥对[]1,1x ∈-恒成立,即220x ax --≤对[]1,1x ∈-恒成立,解之得:11a -≤≤所以实数a 的取值范围为[]1,1-.点拨:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0f x ≥;若函数单调递减,则'()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解.14.已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M (-1,)1(-f )处的切线方程076=+-y x ,(1)求函数)(x f y =的解析式;(2)求函数)(x f y =的单调区间。

导数单调性练习题

导数单调性练习题

导数单调性练习题导数单调性练习题数学作为一门抽象而又精确的学科,常常被人们认为是一种枯燥乏味的学科。

然而,当我们深入探索数学的奥妙时,会发现其中蕴含着无限的魅力和趣味。

导数单调性就是数学中一个非常重要且有趣的概念。

本文将通过一些练习题来帮助读者更好地理解和应用导数单调性。

练习题1:已知函数f(x)=x^3-3x^2+2x-1,求f(x)的单调区间。

解答:首先,我们需要求出f'(x)。

对于f(x)=x^3-3x^2+2x-1,我们可以使用求导法则来求导。

根据求导法则,我们有:f'(x)=3x^2-6x+2接下来,我们需要找到f'(x)的零点,即求方程3x^2-6x+2=0的解。

通过求解这个方程,我们可以得到两个解:x=1和x=2/3。

然后,我们可以选取这些零点将实数轴分成三个区间:(-∞,2/3),(2/3,1),(1,∞)。

接下来,我们需要确定每个区间上f(x)的单调性。

对于区间(-∞,2/3),我们可以选择一个任意的数值c<2/3,计算f'(c)的值。

由于f'(x)是一个二次函数,它的图像是一个开口向上的抛物线。

因此,f'(x)在(-∞,2/3)上是单调递减的。

这意味着在这个区间上,f(x)是单调递增的。

对于区间(2/3,1),我们可以选择一个任意的数值c∈(2/3,1),计算f'(c)的值。

由于f'(x)是一个二次函数,它的图像是一个开口向上的抛物线。

因此,f'(x)在(2/3,1)上是单调递增的。

这意味着在这个区间上,f(x)是单调递减的。

对于区间(1,∞),我们可以选择一个任意的数值c>1,计算f'(c)的值。

由于f'(x)是一个二次函数,它的图像是一个开口向上的抛物线。

因此,f'(x)在(1,∞)上是单调递增的。

这意味着在这个区间上,f(x)是单调递增的。

综上所述,函数f(x)=x^3-3x^2+2x-1的单调递增区间是(-∞,2/3)和(1,∞),单调递减区间是(2/3,1)。

高中数学利用导数研究函数的单调性精选练习题

高中数学利用导数研究函数的单调性精选练习题

利用导数研究函数的单调性精选题24道一.选择题(共7小题) 1.设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x>时,()()0x f x f x '-<,则使得()0f x >成立的x 的取值范围是()A .(-∞,1)(0-⋃,1) B .(1-,0)(1⋃,)+∞C .(-∞,1)(1--⋃,0)D .(0,1)(1⋃,)+∞2.若函数1()s in 2s in 3f x x x a x=-+在(,)-∞+∞单调递增,则a 的取值范围是() A .[1-,1] B .[1-,1]3C .1[3-,1]3D .[1-,1]3-3.函数32()f x a x b x c x d=+++的图象如图所示,则下列结论成立的是( )A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a<,0b<,0c<,0d>D .0a>,0b>,0c>,0d<4.已知奇函数()f x 在R 上是增函数,()()g x x f x =.若2(log 5.1)ag =-,0.8(2)bg =,cg=(3),则a ,b ,c 的大小关系为( )A .ab c<<B .cb a<< C .ba c<< D .bc a<<5.若函数21()f x xa x x=++在1(,)2+∞是增函数,则a 的取值范围是()A .[1-,0]B .[1-,)+∞C .[0,3]D .[3,)+∞6.若定义在R 上的函数()f x 满足(0)1f =-,其导函数()f x '满足()1f x k '>>,则下列结论中一定错误的是( )A .11()f k k <B .11()1f k k >-C .11()11f k k <-- D .1()11k f k k >--7.已知21()s in ()42f x xx π=++,()f x '为()f x 的导函数,则()f x '的图象是()A .B .C .D .二.填空题(共12小题)8.已知函数31()2xxf x x x ee=-+-,其中e 是自然对数的底数.若2(1)(2)0f a f a -+….则实数a 的取值范围是 . 9.函数()f x 的定义域为R ,(1)2f -=,对任意x R∈,()2f x '>,则()24f x x >+的解集为 . 10.设函数()f x '是奇函数()()f x x R ∈的导函数,(1)f -=,当0x>时,()()0x f x f x '-<,则使得()0f x >成立的x 的取值范围是 .11.已知函数3(21)34,(),a x a x tf x x x x t-+-⎧=⎨->⎩…,无论t 取何值,函数()f x 在区间(,)-∞+∞总是不单调.则a 的取值范围是 . 12.已知()f x 的定义域为(-∞,0)(0⋃,)+∞,()f x '是()f x 的导函数,且满足()2()0x f x f x '->,若()f x 是偶函数,f(1)1=,则不等式2()f x x>的解集为 .13.函数()(3)xf x x e=-的单调递增区间是 .14.设函数()f x 在R 上存在导数()f x ',对任意的x R∈有2()()f x f x x-+=,且在(0,)+∞上()f x x'>.若(2)f a f--(a )22a-…,则实数a 的取值范围是 .15.已知三次函数32()()32a b f x x xc xd a b =+++<在R 上单调递增,则a b c b a++-的最小值为 . 16.已知函数21()22f x m xln x x=+-在定义域内是增函数,则实数m 的取值范围为 .17.函数212yxln x=-的单调递减区间为 .18.已知函数321()242f x x xx =+-+,则函数的单调减区间为 .19.设定义域为R 的函数()f x 满足()()f x f x '>,则不等式1()(21)x e f x f x -<-的解为 .三.解答题(共5小题) 20.已知函数1()f x x a ln xx=-+.(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:1212()()2f x f x a x x -<--.21.设函数2()(1)xf x x e=-⋅.(1)讨论()f x 的单调性;(2)当0x …时,()1f x a x +…,求实数a 的取值范围.22.已知函数2()(2)(1)x f x x e a x =-+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.24.已知函数()1f x x a ln x=--.(1)若()0f x …,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm++⋯+<,求m 的最小值.利用导数研究函数的单调性精选题24道参考答案与试题解析一.选择题(共7小题) 1.设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x>时,()()0x f x f x '-<,则使得()0f x >成立的x 的取值范围是()A .(-∞,1)(0-⋃,1) B .(1-,0)(1⋃,)+∞C .(-∞,1)(1--⋃,0)D .(0,1)(1⋃,)+∞【分析】由已知当0x >时总有()()0x f x f x '-<成立,可判断函数()()f xg x x=为减函数,由已知()f x 是定义在R 上的奇函数,可证明()g x 为(-∞,0)(0⋃,)+∞上的偶函数,根据函数()g x 在(0,)+∞上的单调性和奇偶性,模拟()g x 的图象,而不等式()0f x >等价于()0x g x ⋅>,数形结合解不等式组即可.【解答】解:设()()f x g x x =,则()g x 的导数为:2()()()x f x f x g x x'-'=,当0x >时总有()()xf x f x '<成立,即当0x>时,()g x '恒小于0, ∴当0x>时,函数()()f xg x x =为减函数,又()()()()()f x f x f xg x g x xxx---====--,∴函数()g x 为定义域上的偶函数又(1)(1)01f g --==-,∴函数()g x 的图象性质类似如图:数形结合可得,不等式()0()0f x xg x >⇔⋅>⇔0()0x g x >⎧⎨>⎩或0()0x g x <⎧⎨<⎩,01x ⇔<<或1x <-.故选:A .【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题. 2.若函数1()s in 2s in 3f x x x a x=-+在(,)-∞+∞单调递增,则a 的取值范围是() A .[1-,1] B .[1-,1]3C .1[3-,1]3D .[1-,1]3-【分析】求出()f x 的导数,由题意可得()0f x '…恒成立,设c o s (11)t x t=-剟,即有25430ta t -+…,对t 讨论,分0t=,01t <…,10t -<…,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围. 【解答】解:函数1()s in 2s in 3f x x x a x=-+的导数为2()1c o s 2c o s 3f x x a x'=-+,由题意可得()0f x '…恒成立,即为21c o s 2c o s 03x a x -+…, 即有254c o s c o s 033x a x -+…,设co s (11)t x t =-剟,即有25430ta t -+…,当0t =时,不等式显然成立;当01t <…时,534a t t-…,由54tt-在(0,1]递增,可得1t =时,取得最大值1-,可得31a -…,即13a -…;当10t -<…时,534a t t-…,由54tt-在[1-,0)递增,可得1t=-时,取得最小值1,可得31a …,即13a ….综上可得a 的范围是1[3-,1]3.另解:设co s (11)tx t =-剟,即有25430ta t -+…,由题意可得5430a -+…,且5430a --…,解得a 的范围是1[3-,1]3.故选:C .【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题. 3.函数32()f x a x b x c x d=+++的图象如图所示,则下列结论成立的是()A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a<,0b<,0c<,0d>D .0a>,0b>,0c>,0d<【分析】根据函数的图象和性质,利用排除法进行判断即可. 【解答】解:(0)0f d =>,排除D ,当x→+∞时,y →+∞,0a ∴>,排除C , 函数的导数2()32f x a x b x c'=++,则()0f x '=有两个不同的正实根,则12203b x x a+=->且123c x x a=>,(0)a>,b ∴<,0c>,方法22:()32f x a x b x c'=++,由图象知当当1x x <时函数递增,当12x x x <<时函数递减,则()f x '对应的图象开口向上,则0a>,且12203b x x a+=->且123c x x a=>,(0)a >,b ∴<,0c>,方法3:(0)0f d =>,排除D ,函数的导数2()32f x a x b x c'=++,则(0)0f c '=>,排除B ,C ,故选:A .【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合函数的极值及(0)f 的符号是解决本题的关键.4.已知奇函数()f x 在R 上是增函数,()()g x x f x =.若2(log 5.1)ag =-,0.8(2)bg =,cg=(3),则a ,b ,c 的大小关系为( )A .ab c<<B .cb a<< C .ba c<< D .bc a<<【分析】由奇函数()f x 在R 上是增函数,则()()g x x f x =偶函数,且在(0,)+∞单调递增,则22(lo g 5.1)(lo g 5.1)a g g =-=,则22lo g 5.13<<,0.8122<<,即可求得ba c<< 【解答】解:奇函数()f x 在R 上是增函数,当0x>,()(0)0f x f >=,且()0f x '>,()()g x xf x ∴=,则()()()0g x f x xf x '=+'>,()g x ∴在(0,)+∞单调递增,且()()g x x f x =偶函数,22(lo g 5.1)(lo g 5.1)a g g ∴=-=, 则22lo g 5.13<<,0.8122<<,由()g x 在(0,)+∞单调递增,则0.82(2)(lo g 5.1)g g g<<(3),b a c∴<<,故选:C .【点评】本题考查函数奇偶性,考查函数单调性的应用,考查转化思想,属于基础题. 5.若函数21()f x xa x x=++在1(,)2+∞是增函数,则a 的取值范围是()A .[1-,0]B .[1-,)+∞C .[0,3]D .[3,)+∞【分析】由函数21()f x xa x x=++在1(2,)+∞上是增函数,可得21()20f x x a x'=+-…在1(2,)+∞上恒成立,进而可转化为212a xx-…在1(2,)+∞上恒成立,构造函数求出212xx-在1(2,)+∞上的最值,可得a 的取值范围.【解答】解:21()f x x a x x=++在1(2,)+∞上是增函数,故21()20f x x a x'=+-…在1(2,)+∞上恒成立,即212a x x-…在1(2,)+∞上恒成立,令21()2h x x x=-, 则32()2h x x'=--,当1(2x ∈,)+∞时,()0h x '<,则()h x 为减函数.1()()32h x h ∴<=3a ∴….故选:D .【点评】本题考查的知识点是利用导数研究函数的单调性,恒成立问题,是导数的综合应用,难度中档.6.若定义在R 上的函数()f x 满足(0)1f =-,其导函数()f x '满足()1f x k '>>,则下列结论中一定错误的是( )A .11()f k k<B .11()1f k k >- C .11()11f k k <-- D .1()11k f k k >-- 【分析】根据导数的概念得出()(0)1f x f k x->>,用11x k =-代入可判断出11()11f k k >--,即可判断答案. 【解答】解;()(0)(0)limx f x f f x →-'=-()1f x k '>>, ∴()(0)1f x f k x ->>,即()11f x k x+>>,当11xk =-时,11()1111k f k k k k +>⨯=---,即11()1111k f k k k >-=---故11()11f k k >--,所以11()11f k k <--,一定出错,另解:设()()1g x f x kx =-+,(0)0g =,且()()0g x f x k '='->,()g x 在R 上递增,1k >,对选项一一判断,可得C错.故选:C .【点评】本题考查了导数的概念,不等式的化简运算,属于中档题,理解了变量的代换问题. 7.已知21()s in ()42f x xx π=++,()f x '为()f x 的导函数,则()f x '的图象是()A .B .C .D .【分析】先化简2211()s in ()c o s 424f x xx xxπ=++=+,再求其导数,得出导函数是奇函数,排除B ,D .再根据导函数的导函数小于0的x 的范围,确定导函数在(3π-,)3π上单调递减,从而排除C ,即可得出正确答案. 【解答】解:由2211()s in ()c o s 424f x xx xxπ=++=+,1()s in 2f x x x ∴'=-,它是一个奇函数,其图象关于原点对称,故排除B ,D . 又1()c o s 2f x x''=-,当33x ππ-<<时,1c o s 2x>,()0f x ∴''<,故函数()yf x ='在区间(3π-,)3π上单调递减,故排除C .故选:A .【点评】本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减. 二.填空题(共12小题)8.已知函数31()2xxf x x x ee=-+-,其中e 是自然对数的底数.若2(1)(2)0f a f a -+….则实数a 的取值范围是 [1-,1]2.【分析】求出()f x 的导数,由基本不等式和二次函数的性质,可得()f x 在R 上递增;再由奇偶性的定义,可得()f x 为奇函数,原不等式即为221a a-…,运用二次不等式的解法即可得到所求范围. 【解答】解:函数31()2xxf x x x ee=-+-的导数为: 211()3220xxxxf x x e ee'=-++-+=…,可得()f x 在R 上递增;又331()()()220xxxxf x f x x x e ex x ee--+=-++-+-+-=,可得()f x 为奇函数,则2(1)(2)0f a f a -+…, 即有2(2)(1)f a f a --… 由((1))(1)f a f a --=--,2(2)(1)f a f a -…,即有221a a -…, 解得112a-剟,故答案为:[1-,1]2.【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题. 9.函数()f x 的定义域为R ,(1)2f -=,对任意x R∈,()2f x '>,则()24f x x >+的解集为(1,)-+∞ .【分析】构建函数()()(24)F x f x x =-+,由(1)2f -=得出(1)F -的值,求出()F x 的导函数,根据()2f x '>,得到()F x 在R 上为增函数,根据函数的增减性即可得到()F x 大于0的解集,进而得到所求不等式的解集. 【解答】解:设()()(24)F x f x x =-+,则(1)(1)(24)220F f -=---+=-=,又对任意x R∈,()2f x '>,所以()()20F x f x '='->,即()F x 在R 上单调递增, 则()0F x >的解集为(1,)-+∞,即()24f x x >+的解集为(1,)-+∞.故答案为:(1,)-+∞【点评】本题考查学生灵活运用函数思想求解不等式,解题的关键是构建函数,确定函数的单调性,属于中档题. 10.设函数()f x '是奇函数()()f x x R ∈的导函数,(1)f -=,当0x>时,()()0x f x f x '-<,则使得()0f x >成立的x 的取值范围是(-∞,1)(0-⋃,1) .【分析】构造函数()()f x g x x=,利用()g x 的导数判断函数()g x 的单调性与奇偶性,画出函数()g x 的大致图象,结合图形求出不等式()0f x >的解集.【解答】解:设()()f xg x x=,则()g x 的导数为:2()()()x f x f x g x x'-'=,当0x >时总有()()xf x f x '<成立,即当0x>时,()g x '恒小于0, ∴当0x>时,函数()()f xg x x =为减函数,又()()()()()f x f x f xg x g x xxx---====--,∴函数()g x 为定义域上的偶函数又(1)(1)01f g --==-,∴函数()g x 的大致图象如图所示:数形结合可得,不等式()0()0f x xg x >⇔⋅>⇔0()0x g x >⎧⎨>⎩或0()0x g x <⎧⎨<⎩,01x ⇔<<或1x <-.()0f x ∴>成立的x 的取值范围是(-∞,1)(0-⋃,1).故答案为:(-∞,1)(0-⋃,1).【点评】本题考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式的应用问题,是综合题目. 11.已知函数3(21)34,(),a x a x tf x x x x t-+-⎧=⎨->⎩…,无论t 取何值,函数()f x 在区间(,)-∞+∞总是不单调.则a 的取值范围是 12a ….【分析】首先分析3()f x x x=-,其单调区间.然后根据无论t 取何值,函数()f x 在区间(,)-∞+∞总是不单调,判断()(21)34f x a x a =-+-的单调性,求出a 的取值范围即可.【解答】解:对于函数3()f x x x=-,2()31f x x '=-x t>当2310x ->时,即3x>或3x<-此时3()f x x x=-,为增函数当2310x -<时,33x -<<x t>,3()f x x x∴=-,一定存在单调递增区间要使无论t 取何值, 函数()f x 在区间(,)-∞+∞总是不单调()(21)34f x a x a ∴=-+-不能为增函数210a ∴-…∴12a …故答案为:12a ….【点评】本题考查函数单调性的判定与应用,3次函数与1次函数的单调性的判断,属于中档题. 12.已知()f x 的定义域为(-∞,0)(0⋃,)+∞,()f x '是()f x 的导函数,且满足()2()0x f x f x '->,若()f x 是偶函数,f(1)1=,则不等式2()f x x>的解集为(-∞,1)(1-⋃,)+∞ .【分析】构造函数2()()(0)f xg x x x=≠,依题意可知它是偶函数且在(0,)+∞上单调递增,于是2()f x x>等价转化为()g x g>(1),即(||)(|1|)||1g x g x >⇒>,从而可得答案.【解答】解:令2()()(0)f xg x x x=≠,则243()2()()2()()x f x x f x x f x f x g x xx'-'-'==,因为足()2()0x f x f x '->,所以,当0x>时,()0g x '>,所以()g x 在(0,)+∞上单调递增. 又()f x 是偶函数,故2()()(0)f xg x x x=≠也是偶函数,而f(1)1=,故g (1)2(1)1f f==(1)1=,因此,2()f x x>⇔2()1f x x>,即()g x g >(1),即(||)(|1|)g x g >所以,||1x >,解得:1x >或1x<-.则不等式2()f x x>的解集为(-∞,1)(1-⋃,)+∞,故答案为:(-∞,1)(1-⋃,)+∞.【点评】本题考查利用导数研究函数的单调性,构造函数2()()(0)f xg x x x=≠,并判断它为偶函数且在(0,)+∞上单调递增是关键,考查等价转化思想与逻辑思维能力及运算能力,属于中档题. 13.函数()(3)xf x x e=-的单调递增区间是(2,)+∞ .【分析】先求出函数的导数,令导函数大于0,解不等式求出即可.【解答】解:()(2)xf x x e'=-,令()0f x '>,解得:2x >,()f x ∴在(2,)+∞递增,故答案为:(2,)+∞.【点评】本题考查了函数的单调性,导数的应用,是一道基础题. 14.设函数()f x 在R 上存在导数()f x ',对任意的x R∈有2()()f x f x x-+=,且在(0,)+∞上()f x x'>.若(2)f a f --(a )22a-…,则实数a 的取值范围是(-∞,1] .【分析】令21()()2g x f x x=-,由()()g x g x -+=,可得函数()g x 为奇函数.利用导数可得函数()g x 在R 上是增函数,(2)f a f--(a )22a-…,即(2)g a g-…(a ),可得2a a-…,由此解得a 的范围. 【解答】解:令21()()2g x f x x=-,2211()()()()022g x g x f x xf x x-+=--+-=,∴函数()g x 为奇函数.(0,)x ∈+∞时,()()0g x f x x '='->,故函数()g x 在(0,)+∞上是增函数,故函数()g x 在(,0)-∞上也是增函数, 由(0)0f =,可得()g x 在R 上是增函数. (2)f a f--(a )22a-…,等价于2(2)(2)2a f a f---…(a )22a-,即(2)g a g-…(a ),2a a∴-…,解得1a …,故答案为:(-∞,1].【点评】本题主要考查函数的奇偶性、单调性的应用,体现了转化的数学思想,属于中档题. 15.已知三次函数32()()32a b f x x xc xd a b =+++<在R 上单调递增,则a b c b a++-的最小值为3 .【分析】由题意得2()f x a x b x c'=++在R 上恒大于或等于0,得0a>,△240ba c =-…,将此代入a b c b a++-,将式子进行放缩,以b a为单位建立函数关系式,最后构造出运用基本不等式的模型使问题得到解决. 【解答】解:由题意2()0f x a x b x c '=++…在R 上恒成立,则0a>,△240ba c =-….∴222222111()441b b a a b ba b c aa b a c aa b b aa b aa b aa++++++++==----…令(1)b tt a=>,222111(2)1(13)194(16)31414141t ta b c t t t b at t t t +++++-+===-++-----厖.(当且仅当4t =,即4bc a==时取“=” )故答案为:3【点评】本题考查了利用导数工具研究三次函数的单调性以及函数与方程的综合应用问题,属于中档题. 16.已知函数21()22f x m xln x x=+-在定义域内是增函数,则实数m 的取值范围为[1,)+∞ .【分析】函数21()22f x m xl nx x =+-在定义域(0)x >内是增函数⇔2121()20f x m x mxx x'=+-⇔-厖对于任意0x>.⇔221()m a xm xx-….利用导数即可得出.【解答】解:函数21()22f x m x l n xx =+-在定义域(0)x >内是增函数,∴1()20f x m x x'=+-…,化为221m xx-….令221()g x xx=-,233222(1)()x g x xxx-'=-+=-,解()g x '>,得01x <<;解()0g x '<,得1x >.因此当1x =时,()g x 取得最大值,g (1)1=.1m ∴….故答案为[1,)+∞.【点评】正确把问题等价转化、利用导数研究函数的单调性、极值与最值是解题的关键. 17.函数212yxln x=-的单调递减区间为(0,1] .【分析】根据题意,先求函数212yxln x=-的定义域,进而求得其导数,即211xy x x x-'=-=,令其导数小于等于0,可得210x x -…,结合函数的定义域,解可得答案. 【解答】解:对于函数212yxln x=-,易得其定义域为{|0}x x>,211x y x xx-'=-=,令210x x-…,又由0x>,则221010x x x-⇔-剟,且0x>;解可得01x <…,即函数212yxln x=-的单调递减区间为(0,1],故答案为(0,1]【点评】本题考查利用导数求函数的单调区间,注意首先应求函数的定义域. 18.已知函数321()242f x x xx =+-+,则函数的单调减区间为2[1,]3- .【分析】对函数进行求导即可求出单调区间. 【解答】解:31()242f x x x x =+-+2()32(32)(1)f x x x x x ∴'=+-=-+令2()0,13f x x '-剟?.∴函数的单调减区间为2[1,]3-.【点评】此题较为容易,考查了导数与函数的单调性问题,注意区间端点的取值就可以了. 19.设定义域为R的函数()f x 满足()()f x f x '>,则不等式1()(21)x ef x f x -<-的解为(1,)+∞ .【分析】令()()xf xg x e=,求出函数的导数,根据函数的单调性得到关于x 的不等式,解出即可.【解答】解:令()()xf xg x e=,则()()()xf x f xg x e'-'=>,故()g x 在R 递增, 不等式1()(21)x e f x f x -<-,即21()(21)xx f x f x ee--<,故()(21)g x g x <-,故21xx <-,解得:1x >,故答案为:(1,)+∞【点评】本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道常规题. 三.解答题(共5小题) 20.已知函数1()f x x a ln xx=-+.(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:1212()()2f x f x a x x -<--.【分析】(1)求出函数的定义域和导数,利用函数单调性和导数之间的关系进行求解即可. (2)将不等式进行等价转化,构造新函数,研究函数的单调性和最值即可得到结论. 【解答】解:(1)函数的定义域为(0,)+∞, 函数的导数22211()1a xa x f x xxx-+'=--+=-,设2()1g x x a x =-+,当0a …时,()0g x >恒成立,即()0f x '<恒成立,此时函数()f x 在(0,)+∞上是减函数,当0a>时,判别式△24a =-,①当02a <…时,△0…,即()0g x …,即()0f x '…恒成立,此时函数()f x 在(0,)+∞上是减函数, ②当2a>时,x ,()f x ',()f x 的变化如下表:综上当2a …时,()f x 在(0,)+∞上是减函数,当2a>时,在(02和2,)+∞上是减函数,则22上是增函数.(2)由(1)知2a>,不妨设12x x <,则121x x <<<,121x x =,则1221122112121()()()(1)()2()()f x f x x x a ln x ln x x x a ln x ln x x x -=-++-=-+-,则12121212()()()2f x f x a ln x ln x x x x x --=-+--,则问题转为证明12121ln x ln x x x -<-即可,即证明1212ln x ln x x x ->-,则111111ln x lnx x x ->-, 即11111ln x ln x x x +>-,即证11112ln x x x >-在(0,1)上恒成立,设1()2h x ln x x x=-+,(01)x <<,其中h (1)0=, 求导得222222121(1)()10x x x h x xxxx-+-'=--=-=-<,则()h x 在(0,1)上单调递减,()h x h∴>(1),即120ln xx x-+>,故12ln x x x>-,则1212()()2f x f x a x x -<--成立.(2)另解:注意到11()()f x a ln x f x x x=--=-,即1()()0f x f x +=,不妨设12x x <,由韦达定理得121x x =,122x x a +=>,得121x x <<<,121x x =,可得221()()0f x f x +=,即12()()0f x f x +=,要证1212()()2f x f x a x x -<--,只要证2212()()2f x f x a x x --<--,即证22220a a ln x a x x -+<,2(1)x >,构造函数()2a h x a ln x a x x=-+,(1)x >,22(1)()a x h x x--'=…,()h x ∴在(1,)+∞上单调递减,()h x h∴<(1)0=,20a a ln x a x x∴-+<成立,即22220a a ln x a x x -+<,2(1)x >成立.即1212()()2f x f x a x x -<--成立.【点评】本题主要考查函数的单调性的判断,以及函数与不等式的综合,求函数的导数,利用导数的应用是解决本题的关键.综合性较强,难度较大. 21.设函数2()(1)xf x x e=-⋅.(1)讨论()f x 的单调性;(2)当0x …时,()1f x a x +…,求实数a 的取值范围.【分析】(1)求出函数的导数,求出极值点,利用导函数的符号,判断函数的单调性即可. (2)化简()(1)(1)xf x x x e=-+.()1f x a x +…,下面对a 的范围进行讨论:①当1a …时,②当01a <<时,设函数()1xg x e x =--,则()10(0)xg x e x '=->>,推出结论;③当0a …时,推出结果,然后得到a 的取值范围.法二:0x …时,2()(1)10xg x e x a x =-++…恒成立,推出()g x ',求解[()]g x '',当(0)10g a '=-…时,判断函数的单调性,判断满足题意,当(0)10g a '=-<时,推出()(0)0g m g <=,不合题意,得到结果. 【解答】解:(1)因为2()(1)xf x x e=-,x R∈,所以2()(12)xf x x x e'=--,令()0f x '=可知1x=-±当1x<--1x>-+()0f x '<,当11x --<<-+时()0f x '>,所以()f x在(,1-∞--,(1-+)+∞上单调递减,在(1--,1-+上单调递增;(2)由题可知()(1)(1)xf x x x e=-+.下面对a 的范围进行讨论:①当1a …时,设函数()(1)xh x x e=-,则()0(0)xh x x e x '=-<>,因此()h x 在[0,)+∞上单调递减, 又因为(0)1h =,所以()1h x …,所以()(1)()11f x x h x x a x =+++剟;②当01a <<时,设函数()1xg x e x =--,则()10(0)x g x e x '=->>,所以()g x 在[0,)+∞上单调递增, 又(0)1010g =--=,所以1x e x +….因为当01x <<时2()(1)(1)f x x x >-+,所以22(1)(1)1(1)x x a x x a x x -+--=---,取0(0,1)2x =,则2000(1)(1)10x x a x -+--=,所以00()1f x a x >+,矛盾;③当0a …时,取0(0,1)2x =,则20000()(1)(1)11f x x x a x >-+=+…,矛盾;综上所述,a 的取值范围是[1,)+∞. (2)法二:0x …时,2()(1)10x g x e x a x =-++…恒成立,2()(21)x g x e x x a'=+-+,2[()](41)0(0)xg x e x x x ''=++>…,()g x '在0x …时单调递增,当(0)10g a '=-…时,0x>时()0g x '>恒成立,()g x 单调递增,则0x …时,()(0)0g x g =…,符合题意,当(0)10g a '=-<时,(||)0g a '>,于是存在0m>使得()g m '=,当0x m<<时,()0g x '<,()g x 单调递减,有()(0)0g x g <=,不合题意,所以1a ….综上所述,a 的取值范围是[1,)+∞.【点评】本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力. 22.已知函数2()(2)(1)xf x x e a x =-+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.【分析】(Ⅰ)求出()f x 的导数,讨论当0a …时,2e a<-时,2e a=-时,02e a -<<,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a 讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由2()(2)(1)x f x x e a x =-+-,可得()(1)2(1)(1)(2)xxf x x e a x x e a '=-+-=-+,①当0a …时,由()0f x '>,可得1x>;由()0f x '<,可得1x<,即有()f x 在(,1)-∞递减;在(1,)+∞递增(如右上图); ②当0a <时,(如右下图), 由20xe a +=,可得(2)x ln a =-,由(2)1ln a -=,解得2e a=-,若2e a =-,则()0f x '…恒成立,即有()f x 在R 上递增;若2e a <-时,由()0f x '>,可得1x<或(2)x ln a >-;由()0f x '<,可得1(2)x ln a <<-.即有()f x 在(,1)-∞,((2)ln a -,)+∞递增;在(1,(2))ln a -递减; 若02e a -<<,由()0f x '>,可得(2)xln a <-或1x>;由()0f x '<,可得(2)1ln a x -<<.即有()f x 在(-∞,(2))ln a -,(1,)+∞递增;在((2)ln a -,1)递减; (Ⅱ)①由(Ⅰ)可得当0a>时,()f x 在(,1)-∞递减;在(1,)+∞递增, 且f(1)0e =-<,x→+∞,()f x →+∞;当x→-∞时()0f x >或找到一个1x <使得()0f x >对于0a>恒成立,()f x 有两个零点;②当0a =时,()(2)xf x x e=-,所以()f x 只有一个零点2x=;③当0a <时, 若2e a<-时,()f x 在(1,(2))ln a -递减,在(,1)-∞,((2)ln a -,)+∞递增,又当1x …时,()0f x <,所以()f x 不存在两个零点;当2e a -…时,在(-∞,(2))ln a -单调增,在(1,)+∞单调增,在((2)ln a -,1)单调减, 只有((2))f ln a -等于0才有两个零点,而当1x …时,()0f x <,所以只有一个零点不符题意.综上可得,()f x 有两个零点时,a 的取值范围为(0,)+∞.【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题. 24.已知函数()1f x x a ln x=--.(1)若()0f x …,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm++⋯+<,求m 的最小值.【分析】(1)通过对函数()1(0)f x x a ln x x =-->求导,分0a …、0a>两种情况考虑导函数()f x '与0的大小关系可得结论;(2)通过(1)可知1ln x x -…,进而取特殊值可知11(1)22kkln +<,*k N∈.一方面利用等比数列的求和公式放缩可知2111(1)(1)(1)222ne ++⋯+<,另一方面可知2111(1)(1)(1)2222n++⋯+>,从而当3n …时,2111(1)(1)(1)(2222n++⋯+∈,)e ,比较可得结论.【解答】解:(1)因为函数()1f x x a ln x=--,0x>,所以()1a x a f x x x-'=-=,且f(1)0=.所以当0a …时()0f x '>恒成立,此时()yf x =在(0,)+∞上单调递增,故当01x <<时,()f x f <(1)0=,这与()0f x …矛盾;当0a>时令()0f x '=,解得x a=,所以()y f x =在(0,)a 上单调递减,在(,)a +∞上单调递增,即()m in f x f=(a ),若1a≠,则f (a )f<(1)0=,从而与()0f x …矛盾;所以1a =;(2)由(1)可知当1a =时()10f x x ln x =--…,即1ln x x -…,所以(1)ln xx +…当且仅当0x=时取等号,所以11(1)22kkln +<,*k N∈.221111111(1)(1)(1)112222222nnnln ln ln ++++⋯++<++⋯+=-<,即2111(1)(1)(1)222ne++⋯+<;因为m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm++⋯+<成立,当3n=时,23111135(1)(1)(1)222264+++=>,所以m 的最小值为3.【点评】本题是一道关于函数与不等式的综合题,考查分类讨论的思想,考查转化与化归思想,考查运算求解能力,考查等比数列的求和公式,考查放缩法,注意解题方法的积累,属于难题.。

导数的单调性练习题

导数的单调性练习题

导数单调性练习题1.函数f(x)=ax 3-x 在R 上为减函数.则( )A .a≤0B .a <1C .a <0D .a≤1 2.函数x x x f ln )(=.则( )(A )在),0(∞上递增; (B )在),0(∞上递减;(C (D3.函数32()31f x x x =-+是减函数的区间为( )A.(2,)+∞B.(,2)-∞C.(,0)-∞ D.(0,2)4、设函数f (x )在定义域内可导.y =f (x )的图象如右图.则导函数f ′(x )的图象可能是( )5.设函数()y f x =的图像如左图.则导函数'()y f x =的图像可能是下图中的()、6、曲线y =13x 3+x 在点⎝ ⎛⎭⎪⎫1,43处的切线与坐标轴围成的三角形面积为( )A.19B.29C.13D.237、函数f (x )=x 2-2ln x 的单调减区间是________8、函数y =x sin x +cos x .x ∈(-π.π)的单调增区间是________9、已知函数f (x )=x 2+2x +a ln x .若函数f (x )在(0,1)上单调.则实数a 的取值范围是________________本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

10.函数xe x xf )3()(-=的单调递增区间是________________ 11、求下列函数的导数(1)y =2)13(1-x (2)y =sin 3(3x +4π)12、求曲线在点(1,1)处的切线方程?13.已知函数)(ln )(R a x a x x f ∈-=求当2=a 时.求曲线)(x f y =在点))1(,1(f A 处的切线方程;(3ln 1)y x x =+1.A 【解析】试题分析:当0=a 时,x x f -=)( 在R 上为减函数,成立;当0≠a 时, )(x f 的导函数为13)(2-='ax x f ,根据题意可知, 013)(2≤-='ax x f 在R 上恒成立,所以0a <且0∆≤,可得0a <.综上可知0≤a .考点:导数法判断函数的单调性;二次函数恒成立. 2.D 【解析】试题分析:因为函数x x x f ln )(=.所以()f x '=lnx+1, ()f x '>0,解得又()f x '<0,解得则函数的单调递减区间为故选D.考点:导数与函数的单调性.3.D 【解析】试题分析:由()y f x =图象知.函数先增.再减.再增.对应的导数值.应该是先大于零.再小于零.最后大于0.故选D. 考点:导数与函数的单调性. 4.D 【解析】由已知得'()0f x ≥在()1,x ∈+∞恒成立.因为1x >.的取值范围是[)1,+∞. 【考点】利用导数判断函数的单调性. 5.B 【解析】试题分析:函数的定义域为),0(+∞.所以01≥-k 即1≥k .令0)(='x f ..由于函数在区间(k-1.k+1)内不是单调函数.答案选B.考点:函数的单调性与导数6.D .本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

导数运算及函数单调性(有答案)

导数运算及函数单调性(有答案)

导数及函数单调性班级班级 姓名姓名1.下列求导运算正确的是(.下列求导运算正确的是( )''22'2'3111.()1 B.(log )ln 2.(3)3log .(cos )2sin x x A x x x x x C e D x x x x+=+===-2.已知32'()32,(1)4, f x ax x f a =++-=若则的值等于()19101613. B. C. D.3333A3.若曲线y =f (x )在点(x 0, f (x 0))处的切线方程为2x -y +1=0,则(,则( )A .f ’(x 0)>0 B .f ’(x 0)<0 C .f ’(x 0)=0 D .f ’(x 0)不存在不存在4.下列函数中,在x =0处的导数不等于零的是处的导数不等于零的是 ( )A .)1(x x y -=B .xe x y -+= C .y=l n (1-x 2) D.x e x y ×=2 5.若y =32x lg (1-co s2x ),则x y ¢为 ( )A .4·9x [2ln 3lg (1-co s2x )+lge ·co t x ] B . 4·9x[2ln 3lg (1-co s2x )+lg 10·co t x ] C . 2·9x[ln 3·lg (1-co s2x )+lge ·co t x ] D . 以上皆非以上皆非6. (05湖北卷)在函数x x y 83-=的图象上,其切线的倾斜角小于4p的点中,坐标为整数的点的个数是数的点的个数是 ( ) A .3 B .2 C .1 D .0 7.设()f x ¢是函数()f x 的导函数的导函数,,()y f x ¢=图象如下左图图象如下左图,,则()y f x =图象最有可能是图象最有可能是 ( ))8.若函数1)(23+++=mx x x x f 是R 上的单调函数,则实数m 的取值范围是(的取值范围是( )A .),31(+¥B .)31,(-¥C .),31[+¥D .]31,(-¥9. 已知抛物线y 2=2px (p >0)与一个定点M (p ,p ),则抛物线上与M 点的距离最小的点为( ) A.(0,0) B.(2p,p ) C.(p p 2,2) D.(p p 332,2) 1010.函数.函数f(x)=x(x -1)(x -2)·…·(x -100)在0x =处的导数值(处的导数值( )A.0 B.2100 C.200 D.100!O 1 2 y xy=f /(x)O1 2 yxO 12 yxO1 2 yx O 12 yxA B C D 1111.若.若f ′(x 0)=2,k x f k x f k 2)()(lim000--® =_________.12.设函数),,())()(()(是两两不等的常数c b a c x b x a x x f ---=,则)()(b f ba f a ¢+¢ =¢+)(c f c . .13.设P 点是曲线3233+-=x x y 上的任意一点,P 点处切线倾斜角为a ,则角a 的取值范围是______________。

1、数学百题练—导数的单调性(基础篇)

1、数学百题练—导数的单调性(基础篇)

高中数学百题练————导数的单调性(基础篇)适用学员:考试成绩在60—110分练习导数的单调性选择和填空的简单小题主要练习函数的单调区间、函数图像及比较大小一二导数的单调性分卷I分卷I 注释 评卷人 得分一、单选题(注释)1、 函数的图象大致为( )2、函数的导函数的部分图象为( )A B C D3、若函数的导函数则函数的单调递减区间是( )A .B .C .D .4、已知在R 上可导,且,则的大小关系是( )A .B .C .D .不确定5、若函数恰有三个单调区间,则实数的取值范围为()A .B .C .D .6、函数的单调递增区间是()A .B.(0,3) C.(1,4) D .7、若函数在R 上可导,且满足,则()A .B .C .D .8、若函数在区间内是增函数,则实数的取值范围是()A .B .C .D .9、函数的的单调递增区间是()A .B .C .D .和10、已知函数在(1,4)上是减函数,则实数的取值范围是()A .B .C .D .11、已知函数与轴切于点,且极小值为,则()三A.12 B.13 C.15 D.1612、三次函数当时有极大值,当时有极小值,且函数过原点,则此函数是()A .B .C .D .13、已知函数(为常数)在上有最大值3,那么此函数在上的最小值为()A.-29 B.-37 C.-5 D.-114、在区间上的最大值是()A.-2 B.0 C.2 D.4分卷II分卷II 注释评卷人得分二、填空题(注释)15、函数的单调递增区间是.16、如图是函数的导函数的图象,对此图象,有如下结论:四①在区间(-2,1)内是增函数;②在区间(1,3)内是减函数;③在时,取得极大值;④在时,取得极小值。

其中正确的是.17、函数的单调递增区间是.18、函数单调递减区间是19、已知存在实数,满足对任意的实数,直线都不是曲线的切线,则实数的取值范围是.20、已知函数在区间上恰有一个极值点,则实数的取值范围是21、已知关于x 的方程的三个实根分别为一个椭圆,一个抛物线,一个双曲线的离心率,则的取值范围________五22、若曲线在点处与直线相切,则为.评卷人得分三、解答题(注释)23、已知函数,,其中R.(1)讨论的单调性;(2)若在其定义域内为增函数,求正实数的取值范围;(3)设函数,当时,若,,总有成立,求实数的取值范围.24、已知实数a满足1<a≤2,设函数f (x)=x3-x2+a x.(Ⅰ) 当a=2时,求f (x)的极小值;(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b ∈R) 的极小值点与f (x)的极小值点相同,求证:g(x)的极大值小于或等于10.25、设有极值,(Ⅰ)求的取值范围;(Ⅱ)求极大值点和极小值点.26、已知函数(I)若,判断函数在定义域内的单调性;六(II )若函数在内存在极值,求实数m的取值范围。

导数单调性练习题

导数单调性练习题

导数单调性练习题姓名----------------1.(2010·全国)曲线y =x 3-2x +1在点(1,0)处的切线方程为( )A .y =x -1B .y =-x +1C .y =2x -2D .y =-2x +22.y =x 2cos x 的导数为( )A .2x cos x +x 2sin xB .2x cos x -x 2sin xC .2x cos xD .-x 2 sin x3.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( )A.94e 2 B .2e 2 C .e 2 D.e 224.已知函数f (x ) (x ∈R)的图象上任一点(x 0,y 0)处的切线方程为y -y 0=(x 0-2)(x 20-1)·(x -x 0),那么函数f (x )的单调减区间是( )A .[-1,+∞)B .(-∞,2]C .(-∞,-1)和(1,2)D .[2,+∞)5.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( ) A .m ≥32B .m >32C .m ≤32D .m <326.已知f (x)=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为________.7.曲线y =x 2在(1,1)处的切线方程为________________.9.已知直线y =kx 与曲线y =ln x 有公共点,则k 的最大值为________.8.已知函数f (x )=(m -2)x 2+(m 2-4)x +m 是偶函数,函数g (x )=-x 3+2x 2+mx +5在(-∞,+∞)内单调递减,则实数m =________.10.(14分)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,求a 的值11.(14分)若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.12.(14分)已知函数f (x )=x 3-3ax -1,a ≠0.(1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.。

导数与单调性训练题及答案

导数与单调性训练题及答案

导数与单调性训练题及答案1、若函数bx x x f +-=334)(有三个单调区间,则b 的取值范围是 。

2、若函数)(3x x a y -=的递减区间为⎪⎪⎭⎫ ⎝⎛-33,33,则a 的取值范围是( ) A .a >0 B .-1<a <0 C .a >1 D .0<a <13、设函数)(x f y =是偶函数,若曲线)(x f y =在点(1,f(1))处的切线的斜率为1,则该曲线在点(-1,f (-1))处的切线的斜率为( )A .1B .-1C .不存在D .24、已知函数ax x x x f 22131)(23++-=在⎪⎭⎫ ⎝⎛+∞,32上存在单调增区间,则a 的取值范围是 。

5、)(x f 是定义在R 上的偶函数,当0<x 时,0)()(<'∙+x f x x f ,且0)4(=-f ,则不等式0)(>x xf 的解集是( )A . ),4()0,4(+∞-B .)4,0()0,4( -C . ),4()4,(+∞--∞D .)4,0()4,( --∞6、定义在R 上的可导函数)(x f ,已知)(x f ey '= 的图象如图所示,则)(x f y = 的增区间是( )A .)1,(-∞B .)2,(-∞C .)1,0(D .)2,1(7、已知e 为自然对数的底数,则函数y =xe x 的单调递增区间是( )A .[-1,+∞)B .(-∞,-1]C .[1,+∞)D .(-∞,1]8、已知函数f(x)=12x 3+ax +4,则“a>0”是“f(x)在R 上单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件9、如果函数f(x)的导函数f ′(x)的图像如图所示,那么函数f(x)的图像最有可能的是()10、函数f(x)在定义域R 内可导,若f(x)=f(2-x),且当x ∈(-∞,1)时,(x -1)f ′(x)<0,设a =f(0),b =f(12),c =f(3),则()A .a<b<cB .c<a<bC .c<b<aD .b<c<a11、已知函数f(x)(x ∈R)的图像上任一点(x 0,y 0)处的切线方程为y -y 0=(x 0-2)(x 02-1)(x -x 0),那么函数f(x)的单调减区间是( )A .[-1,+∞)B .(-∞,2]C .(-∞,-1)和(1,2)D .[2,+∞)12、已知函数y =f(x)的图像是下列四个图像之一,且其导函数y =f ′(x)的图像如图所示,则该函数的图像是( )13、设函数f ′(x)是奇函数f(x)(x ∈R)的导函数,f(-1)=0,当x>0时,xf ′(x)-f(x)<0,则使得f(x)>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)14、已知函数f(x)的导函数为f ′(x)=5+cosx ,x ∈(-1,1),且f(0)=0,若f(1-x)+f(1-x 2)<0,则实数x 的取值范围为________.15、若函数f(x)的定义域为R ,且满足f(2)=2,f ′(x)>1,则不等式f(x)-x>0的解集为________.16、已知函数f(x)=kx 3+3(k -1)x 2-k 2+1(k>0)的单调递减区间是(0,4).(1)实数k 的值为________;(2)若在(0,4)上为减函数,则实数k 的取值范围是________.17、若函数1)(23+++=mx x x x f 是R 上的单调函数,求实数m 的取值范围。

导函数单调性基础练习题

导函数单调性基础练习题

导函数单调性基础练习题一、选择题1.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象最有可能的是( )2.函数f (x )=2x -sin x 在(-∞,+∞)上( )A .是增函数B .是减函数C .在(0,+∞)上增,在(-∞,0)上减D .在(0,+∞)上减,在(-∞,0)上增3.函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是( )A .(13,+∞)B .(-∞,13] C .[13,+∞) D .(-∞,13) 4.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)5.已知()f x 是定义在()(),00,-∞⋃+∞上的奇函数,且0x >时()()20xf x f x '+>,又()10f -=,则()0f x <的解集为( )A .()(),11,-∞-+∞B .()()1,00,1-C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃6.()f x 是定义在(0,)+∞上的非负、可导函数,且满足()()0xf x f x '-≤,对任意正数a ,b 若a b ≤,则必有( )A .22()()a f b b f a ≤B .22()()a f b b f a ≥C .22()()a f a b f b ≤D .22()()a f a b f b ≥二、填空题7.函数y =x 3-x 2-x 的单调递增区间为______________.8.若函数f (x )=x 3+bx 2+cx +d 的单调减区间为(-1,3),则b =______,c =________. 9.已知函数f (x )=ax +1x +2在(-2,+∞)上单调递减,则a 的取值范围是_________________.三、解答题10.已知函数2()ln (21)f x x ax a x =+++.(1)若函数()f x 在1x =处取得极值,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)讨论函数()f x 的单调性;11.已知函数321()13f x x ax =-+.(1)求函数()f x 的单调递减区间;(2)若()1f x ≥在区间[3,)+∞上恒成立,求a 的最大值.导函数单调性基础练习题答案1、C2、A[解析] f ′(x )=2-cos x >0在(-∞,+∞)上恒成立.3、C[解析] y ′=3x 2+2x +m ,由题意知3x 2+2x +m ≥0在R 上恒成立,∴Δ=4-12m ≤0,∴m ≥13. 4、D[解析] 由条件知f ′(x )=k -1x≥0在(1,+∞)上恒成立,∴k ≥1. 5.D 解:由题可知,当0x >时()()20xf x f x '+>,令()()2g x x f x =⋅,0x >,则()()()()()2220g x x f x xf x x xf x f x '''=+=+>⎡⎤⎣⎦,所以()g x 在()0,∞+上单调递增,因为()f x 是定义在()(),00,-∞⋃+∞上的奇函数,则()()f x f x -=-,所以()()()()()22g x x f x x f x g x -=-⋅-=-⋅=-,得()g x 也是定义在()(),00,-∞⋃+∞上的奇函数,所以()g x 在(),0-∞和()0,∞+上单调递增,又()10f -=,则()()()21110g f -=-⋅-=,所以()10g =,所以可知()0g x <时,解得:1x <-或01x <<,则()0f x <,即()()20g x f x x=<,即()0g x <,所以()0g x <的解集为:()(),10,1-∞-⋃,即()0f x <的解集为()(),10,1-∞-⋃.6、.A 【详解()()(0);f x g x x x =>则2()()();xf x f x g x x -''=因为()()0xf x f x '-≤;所以0x >时,()0,g x '≤则函数()()f x g x x=在(0,)+∞上是减函数或常函数;所以对任意正数a ,b ,若a b ≤,则必有()()()().f a f b g a g b a b=≥=()f x 是定义在(0,)+∞上的非负、可导函数,()()0bf a af b ∴≥>110,0,a b a b<≤∴≥>两式相乘得2211()()()()bf a af b b f a a f b a b ⨯≥⨯⇒≥ 7、[解析]∵y ′=3x 2-2x -1=(3x +1)(x -1),∴由y ′>0,得x >1或x <-13.8、[解析] f ′(x )=3x 2+2bx +c ,由条件知⎩⎪⎨⎪⎧ f ′(-1)=0f ′(3)=9,即⎩⎪⎨⎪⎧ 3-2b +c =027+6b +c =0,解得b =-3,c =-9.9、[解析] f ′(x )=a (x +2)-ax -1(x +2)2=2a -1(x +2)2,题意得x >-2时,f ′(x )≤0恒成立,∴2a -1≤0,∴a ≤12.又当a =12时,f (x )=12x +1x +2=12,此时,函数f (x )在(-2,+∞)上不是减函数,∴a ≠12.综上可知,a 的取值范围为(-∞,12). 10、.(1)求导:1()221f x ax a x'=+++,由已知有()01f '=,即12210a a +++=,所以12a =-,则21()ln 2f x x x =-,所以切点为(2,ln 22)-,切线斜率3(2)2k f '==-,故切线方程为:31ln 22y x =-++. (2)()f x 的定义域为(0,)+∞且1(21)(1)()221ax x f x ax a x x++'=+++=, 若0a ≥,则当(0,)x ∈+∞时,'()0f x >,故()f x 在(0,)+∞上单调递增; 若0a <,则当'1(0,),()02x f x a ∈->,当'1(,),()02x f x a ∈-+∞<, 故()f x 在1(0,)2a -上单调递增,在1(,)2a-+∞上单调递减. 11、(1)2()2f x x ax '=-.当0a =时,()0f x '≥,()f x 在(,)-∞+∞内单调递增;当0a >时,由()0f x '<得:02x a <<;当0a <时,由()0f x '<得:20a x <<.综上所述,当0a =时,无递减区间;当0a >时,()f x 的单调递减区间是(0,2)a ;当0a <时,()f x 的单调递减区间是(2,0)a .(2)因为()1f x ≥在区间[3,)+∞上恒成立,即32103x ax -≥在区间[3,)+∞上恒成立.所以13a x ≤在区间[3,)+∞上恒成立.因为3x ≥,所以113x ≥.所以1a ≤. 所以若()1f x ≥在区间[3,)+∞上恒成立,a 的最大值为1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数单调性练习题
1.函数f(x)=ax 3
-x 在R 上为减函数.则( )
A .a≤0
B .a <1
C .a <0
D .a≤1 2.函数x x x f ln )(=.则( )
(A )在),0(∞上递增; (B )在),0(∞上递减;
(C )在)1,0(e 上递增; (D )在)1,0(e
上递减 3.函数3
2
()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)
4、设函数f (x )在定义域可导.y =f (x )的图象如右图.则导函数f ′(x )的图象可能是( )
5.设函数()y f x =的图像如左图.则导函数'()y f x =的图像可能是下图中的()

6、曲线y =13x 3+x 在点⎝ ⎛
⎭⎪⎫1,43处的切线与坐标轴围成的三角形面积为( )
A.19
B.29
C.13
D.2
3
7、函数f (x )=x 2
-2ln x 的单调减区间是________
8、函数y =x sin x +cos x .x ∈(-π.π)的单调增区间是________
9、已知函数f (x )=x 2
+2x +a ln x .若函数f (x )在(0,1)上单调.则实数a 的取值围是________________
10.________________
11、求下列函数的导数
(1)y(2)y=sin3(3x
12(1,1)处的切线方程?
13..
切线方程;
1
【解析】
,成立;
根据题意可知
考点:导数法判断函数的单调性;二次函数恒成立.
2.D
【解析】
试题分析:解得则函数的单
解得则函数的单调递减区间为故选
D.
考点:导数与函数的单调性.
3.D
【解析】
.函数先增.再减.再增.对应的导数值.应该是先大于零.再小
于零.最后大于0.故选D.
考点:导数与函数的单调性.
4.D
【解析】
.
【考点】利用导数判断函数的单调性.
5.B
【解析】
试题分析:函数的定义域为.所以即
舍).由于函数在区间(k-1.k+1)不是单调函数.
答案选B.
考点:函数的单调性与导数
6.D.
【解析】
试题分析:根据图象可知..后单调递增.后为常数.
变化规律为先负.后正.后为零.故选D.
考点:导数的运用.
7.A
【解析】
试题分析:..
值围即为函的值域.求导可令
..
考点:1、函数单调性.值域;2、导数.
8.C
【解析】
试题分析:由图象可知f(x)的图象过点(1.0)与(2.0)f(x)的极值点.
所以
.是方程的两根.因此
答案选C.
考点:导数与极值
9.B
【解析】
试题分析:先求出函数为递增时b的围.∵已
y′=x2+2bx+b+2.∵f(x)是R上的单调增函数.∴x2+2bx+b+2≥0恒成立.∴△≤0.即b2 b 2≤0.则b的取值是1≤b≤2.故选B.
考点:函数的单调性与导数的关系..
10.D.
【解析】
试题分析:先根确进而可得到
.
上为奇函数且为单调递增的.
故选D.
考点:利用导数研究函数的单调性.
11.D.
【解析】
调递减.
考点:1.奇函数的性质;2.利用导数判断函数的单调性.
12.C
【解析】
试题分析:
令.则当时..即在是减函
数. ..
.
考点:1求导;2用导数研究函数的单调性。

13.
【解析】
试题分析:(Ⅰ)
式;(Ⅱ)由(Ⅰ)知.
利用导数求右侧函数的最小值即可.
试题解析:
所以

(Ⅱ)由(Ⅰ)得
成立即
等价于
.
从而.
.
因此
.
.
∴ 12分
考点:1、导数几何意义;2、利用导数求函数的极值、最值.
14.(1(2)详见解析.
【解析】
试题分析:(1故切线方程为
(2
导数求函数的单调区间和极值点.从而判断函数大致图象.本题
.故只需说明
(1曲的切线方程为
(2)由(1)得..设
.由题设得.当
时单调递增.所以
在有唯一实根.当时.令.则

.综
上.
考点:1、导数的几何意义;2、利用导数判断函数单调性;3、利用导数求函数的最值.
15.(12)
【解析】
试题分析:(1
值;
(2)由(1
试题解析:
解:(1
(2)由(1
故舍去.
考点:1、导数的求法;2、导数的几何意义;3、导数在研究函数性质中的应用.
16.(1)详见解析;(2
【解析】
试题分析:(1.
论..(2)构
.得到
从而求出
.
(1
.
.
.
.
.
.
.
(2
.
.
.
.
.
.
.
考点:1.分类讨论;2.函数的最值;3.函数的零点。

相关文档
最新文档