江苏省普通高等学校高三数学随堂小测评(九)(2021年整理)

合集下载

江苏省普通高等学校高三数学随堂小测评(二十七)(2021年整理)

江苏省普通高等学校高三数学随堂小测评(二十七)(2021年整理)

江苏省普通高等学校2017年高三数学随堂小测评(二十七)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省普通高等学校2017年高三数学随堂小测评(二十七))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省普通高等学校2017年高三数学随堂小测评(二十七)的全部内容。

随堂小测评(二十七)1。

若集合U={1,2,3,4,5},A={2,3},B={3,4},则∁U(A∪B)=__________.2。

若函数f(x)=2x-(k2-3)·2-x,则k=2是函数f(x)为奇函数的____________(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)条件.3. 在△ABC中,内角A,B,C所对应的边分别为a,b,c,若c2=(a-b)2+6,C=错误!,则△ABC的面积为__________.4。

已知单位向量e1与e2的夹角为α,且cosα=错误!,向量a=3e1-2e2与b=3e1-e2的夹角为β,则cosβ=____________.5。

已知双曲线错误!-错误!=1(a>0,b>0)的左、右焦点分别为F1、F2,以F1F2为直径的圆与双曲线在第一象限的交点为P,若∠PF1F2=30°,则该双曲线的离心率为__________.6. 已知函数f(x)=x(|x|+4),且f(a2)+f(a)<0,则a的取值范围是__________.7. 记等差数列{a n}的前n项和为S n.已知a1=2,且数列{S n}也为等差数列,则a13的值为____________.随堂小测评(二十七)1。

{1,5} 解析:∵ A∪B={2,3,4},∴∁U(A∪B)={1,5}.2.充分不必要解析:由k=2,得f(x)=2x-2-x,f(-x)=-f(x),则f(x)为奇函数;反之,f(x)为奇函数,f(-x)=-f(x),得k2=4,则k=±2,而不是k=2.则答案为充分不必要条件. 本题考查充要条件,函数的奇偶性.本题属于中等题.3.错误!解析:由余弦定理得c2=a2+b2-2abcosC=a2+b2-ab,又c2=(a-b)2+6,即c2=a2+b2-2ab+6,故ab=6,S△ABC=错误!absinC=错误!。

江苏高三数学20套数学附加题

江苏高三数学20套数学附加题

实战演练·高三数学附加分20套江苏省普通高等学校招生考试高三模拟测试卷(一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,AB 、CD 是半径为1的圆O 的两条弦,它们相交于AB 的中点P ,若PC =98,OP =12,求PD 的长.B. (选修4-2:矩阵与变换)已知曲线C :xy =1,若矩阵M =⎣⎢⎡⎦⎥⎤22-222222对应的变换将曲线C 变为曲线C′,求曲线C′的方程.C. (选修4-4:坐标系与参数方程)在极坐标系中,圆C 的方程为 ρ=2acos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数).若直线l 与圆C 相切,求实数a 的值.D. (选修4-5:不等式选讲)已知x 1、x 2、x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 23x 2+x 21x 3≥1.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知点A(1,2)在抛物线Γ:y 2=2px 上.(1) 若△ABC 的三个顶点都在抛物线Γ上,记三边AB 、BC 、CA 所在直线的斜率分别为k 1、k 2、k 3,求1k 1-1k 2+1k 3的值; (2) 若四边形ABCD 的四个顶点都在抛物线Γ上,记四边AB 、BC 、CD 、DA 所在直线的斜率分别为k 1、k 2、k 3、k 4,求1k 1-1k 2+1k 3-1k 4的值.23. 设m 是给定的正整数,有序数组(a 1,a 2,a 3,…,a 2m )中a i =2或-2(1≤i ≤2m).(1) 求满足“对任意的k(k ∈N *,1≤k ≤m),都有a 2k -1a 2k=-1”的有序数组(a 1,a 2,a 3,…,a 2m )的个数A ;(2) 若对任意的k 、l(k 、l ∈N *,1≤k ≤l ≤m),都有| i =2k -12la i |≤4成立,求满足“存在k(k ∈N *,1≤k ≤m),使得a 2k -1a 2k≠-1”的有序数组(a 1,a 2,a 3,…,a 2m )的个数B.江苏省普通高等学校招生考试高三模拟测试卷(二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)在△ABC 中,已知CM 是∠ACB 的平分线,△AMC 的外接圆交BC 于点N ,且BN =2AM.求证:AB =2AC.B. (选修4-2:矩阵与变换)设二阶矩阵A 、B 满足A -1=⎣⎢⎡⎦⎥⎤1 23 4,(BA )-1=⎣⎢⎡⎦⎥⎤1 00 1,求B -1.C. (选修4-4:坐标系与参数方程)在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A 、B 两点,且AB =3,求直线l 的方程.D. (选修4-5:不等式选讲)已知x、y、z均为正数,求证:xyz+yzx+zxy≥1x+1y+1z.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,设P1,P2,…,P6为单位圆上逆时针均匀分布的六个点.现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S.(1) 求S=32的概率;(2) 求S的分布列及数学期望E(S).23.记1,2,…,n满足下列性质T的排列a1,a2,…,a n的个数为f(n)(n≥2,n∈N*).性质T:排列a1,a2,…,a n中有且只有一个a i>a i+1(i∈{1,2,…,n-1}).(1) 求f(3);(2) 求f(n).江苏省普通高等学校招生考试高三模拟测试卷(三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,MN 为两圆的公共弦,一条直线与两圆及公共弦依次交于A 、B 、C 、D 、E ,求证:AB·CD =BC·DE.B. (选修4-2:矩阵与变换)已知a 、b ∈R ,若M =⎣⎢⎡⎦⎥⎤-1a b 3所对应的变换T M 把直线2x -y =3变换成自身,试求实数a 、b.C. (选修4-4:坐标系与参数方程)在极坐标系中,求点M ⎝⎛⎭⎫2,π6关于直线θ=π4的对称点N 的极坐标,并求MN 的长.D. (选修4-5:不等式选讲)已知x 、y 、z 均为正数.求证:x yz +y zx +z xy ≥1x +1y +1z.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在空间直角坐标系Oxyz 中,正四棱锥PABCD 的侧棱长与底边长都为32,点M 、N 分别在PA 、BD 上,且PM PA =BN BD =13. (1) 求证:MN ⊥AD ;(2) 求MN 与平面PAD 所成角的正弦值.23.设ξ为随机变量,从棱长为1的正方体ABCDA 1B 1C 1D 1的八个顶点中任取四个点,当四点共面时,ξ=0,当四点不共面时,ξ的值为四点组成的四面体的体积.(1) 求概率P(ξ=0);(2) 求ξ的分布列,并求其数学期望E(ξ).江苏省普通高等学校招生考试高三模拟测试卷(四)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A、B、C、D四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,锐角三角形ABC的角平分线AD的延长线交它的外接圆于点E,若△ABC面积S=34AD·AE,求∠BAC的大小.B. (选修4-2:矩阵与变换)求使等式⎣⎢⎡⎦⎥⎤1234=⎣⎢⎡⎦⎥⎤1002M⎣⎢⎡⎦⎥⎤100-1成立的矩阵M.C. (选修4-4:坐标系与参数方程)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O、B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M轨迹的长度.D. (选修4-5:不等式选讲)已知a、b、c均为正数,且a+2b+4c=3.求1a+1+1b+1+1c+1的最小值,并指出取得最小值时a、b、c的值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知过一个凸多边形的不相邻的两个端点的连线段称为该凸多边形的对角线.(1) 分别求出凸四边形、凸五边形、凸六边形的对角线的条数;(2) 猜想凸n边形的对角线条数f(n),并用数学归纳法证明.23.从集合M={1,2,3,4,5,6,7,8,9}中任取三个元素构成子集{a,b,c}.(1) 求a、b、c中任意两数之差的绝对值均不小于2的概率;(2) 记a、b、c三个数中相邻自然数的组数为ξ(如集合{3,4,5}中3和4相邻,4和5相邻,ξ=2),求随机变量ξ的分布列及其数学期望E(ξ).江苏省普通高等学校招生考试高三模拟测试卷(五)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,等腰梯形ABCD 内接于圆O ,AB ∥CD.过点A 作圆O 的切线交CD 的延长线于点E.求证:∠DAE =∠BAC.B. (选修4-2:矩阵与变换)已知直线l :ax -y =0在矩阵A =⎣⎢⎡⎦⎥⎤0 112对应的变换作用下得到直线l′,若直线l′过点(1,1),求实数a 的值.C. (选修4-4:坐标系与参数方程)在极坐标系中,已知点P ⎝⎛⎭⎫23,π6,直线l :ρcos ⎝⎛⎭⎫θ+π4=22,求点P 到直线l 的距离.D. (选修4-5:不等式选讲)已知x≥1,y≥1,求证:x2y+xy2+1≤x2y2+x+y.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在三棱锥PABC中,已知平面PAB⊥平面ABC,AC⊥BC,AC=BC=2a,点O、D分别是AB、PB的中点,PO⊥AB,连结CD.(1) 若PA=2a,求异面直线PA与CD所成角的余弦值的大小;(2) 若二面角APBC的余弦值的大小为55,求PA.23. 设集合A、B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集.(1) 若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数;(2) 若M={a1,a2,a3,…,a n},求所有不同的有序集合对(A,B)的个数.江苏省普通高等学校招生考试高三模拟测试卷(六)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,已知AB 是圆O 的直径,圆O 交BC 于点D ,过点D 作圆O 的切线DE 交AC 于点E ,且DE ⊥AC.求证:AC =2OD.B. (选修4-2:矩阵与变换)已知矩阵⎣⎢⎡⎦⎥⎤x 32 1的一个特征值为4,求另一个特征值及其对应的一个特征向量.C. (选修4-4:坐标系与参数方程)求经过极坐标为O(0,0)、A ⎝⎛⎭⎫6,π2、B ⎝⎛⎭⎫62,π4三点的圆的直角坐标方程.D. (选修4-5:不等式选讲)已知正数a 、b 、c 满足abc =1,求(a +2)(b +2)(c +2)的最小值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知曲线C :y 2=2x -4.(1) 求曲线C 在点A(3,2)处的切线方程; (2) 过原点O 作直线l 与曲线C 交于A 、B 两不同点,求线段AB 的中点M 的轨迹方程.23已知数列{a n }满足a 1=23,a n +1·(1+a n )=1.(1) 试计算a 2,a 3,a 4,a 5的值;(2) 猜想|a n +1-a n |与115⎝⎛⎭⎫25n -1(其中n ∈N *)的大小关系,并证明你的猜想.江苏省普通高等学校招生考试高三模拟测试卷(七)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,AB 是圆O 的一条直径,C 、D 是圆O 上不同于A 、B 的两点,过B 作圆O 的切线与AD 的延长线相交于点M ,AD 与BC 相交于N 点,BN =BM.求证:(1) ∠NBD =∠DBM ;(2) AM 是∠BAC 的角平分线.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤2n m 1的一个特征根为λ=2,它对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤12.(1) 求m 与n 的值;(2) 求A -1.C. (选修4-4:坐标系与参数方程)已知在平面直角坐标系xOy 中,圆M 的参数方程为⎩⎨⎧x =532+2cos θ,y =72+2sin θ(θ为参数),以Ox 轴为极轴,O 为极点建立极坐标系,在该极坐标系下,圆N 是以点⎝⎛⎭⎫3,π3为圆心,且过点⎝⎛⎭⎫2,π2的圆.(1) 求圆M 及圆N 在平面直角坐标系xOy 下的直角坐标方程; (2) 求圆M 上任一点P 与圆N 上任一点Q 之间距离的最小值.D. (选修4-5:不等式选讲)已知:a +b +c =1,a 、b 、c>0.求证: (1) abc ≤127;(2) a 2+b 2+c 2≥3abc.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知直线l :y =2x -4与抛物线C :y 2=4x 相交于A 、B 两点,T(t ,0)(t>0且t ≠2)为x 轴上任意一点,连结AT 、BT 并延长与抛物线C 分别相交于A 1、B 1.(1) 设A 1B 1斜率为k ,求证:k·t 为定值;(2) 设直线AB 、A 1B 1与x 轴分别交于M 、N ,令S △ATM =S 1,S △BTM =S 2,S △B 1TN =S 3,S △A 1TN =S 4,若S 1、S 2、S 3、S 4构成等比数列,求t 的值.23如图,在三棱柱ABCA 1B 1C 1中,底面△ABC 为直角三角形,∠ACB =π2,顶点C 1在底面△ABC 内的射影是点B ,且AC =BC =BC 1=3,点T 是平面ABC 1内一点.(1) 若T 是△ABC 1的重心,求直线A 1T 与平面ABC 1所成的角;(2) 是否存在点T ,使TB 1=TC 且平面TA 1C 1⊥平面ACC 1A 1?若存在,求出线段TC 的长度;若不存在,说明理由.江苏省普通高等学校招生考试高三模拟测试卷(八)数学附加分(满分40分,考试时间30分钟)21. (本小题满分10分)已知二阶矩阵M 有特征值λ=5,属于特征值λ=5的一个特征向量是e =⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换为(-2,4),求矩阵M .22. (本小题满分10分)已知直线l 的极坐标方程是ρcos ⎝⎛⎭⎫θ+π4=42,圆M 的参数方程是⎩⎨⎧x =1+2cos θ,y =-1+2sin θ(θ是参数).(1) 将直线的极坐标方程化为普通方程; (2) 求圆上的点到直线l 上点距离的最小值.23. (本小题满分10分)如图,在底面边长为1,侧棱长为2的正四棱柱ABCDA 1B 1C 1D 1中,P 是侧棱CC 1上的一点,CP =m.(1) 若m =1,求异面直线AP 与BD 1所成角的余弦;(2) 是否存在实数m ,使直线AP 与平面AB 1D 1所成角的正弦值是13若存在,请求出m的值;若不存在,请说明理由.24. (本小题满分10分)在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次.在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次.某同学在A 处的命中率为p ,在B 处的命中率为q.该同学选择先在A 处投一球,以后都在B 处投,用X 表示该同学投篮训练结束后所得的总分,其分布列为X 0 2 3 4 5 Pp 1p 2p 3p 4p 5(1) 若p =0.25,p 1=0.03,求该同学用上述方式投篮得分是5分的概率;(2) 若该同学在B 处连续投篮3次,投中一次得2分,用Y 表示该同学投篮结束后所得的总分.若p<23q ,试比较E(X)与E(Y)的大小.江苏省普通高等学校招生考试高三模拟测试卷(九)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,锐角△ABC 的内心为D ,过点A 作直线BD 的垂线,垂足为F ,点E 为内切圆D 与边AC 的切点.若∠C =50°,求∠DEF 的度数.B. (选修4-2:矩阵与变换)设矩阵M =⎣⎢⎡⎦⎥⎤a 00 b (其中a >0,b >0),若曲线C :x 2+y 2=1在矩阵M 所对应的变换作用下得到曲线C′:x 24+y 2=1,求a +b 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l 的参数方程是⎩⎨⎧x =22t ,y =22t +42(t 为参数),以O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ+π4.由直线l 上的点向圆C 引切线,求切线长的最小值.D. (选修4-5:不等式选讲)已知a 、b 、c 均为正数,求证:a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥6 3.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某品牌汽车4S 店经销A 、B 、C 三种排量的汽车,其中A 、B 、C 三种排量的汽车依次有5、4、3款不同车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能.(1) 求该单位购买的3辆汽车均为B 种排量汽车的概率;(2) 记该单位购买的3辆汽车的排量种数为X ,求X 的分布列及数学期望.23. 已知点A(-1,0),F(1,0),动点P 满足AP →·AF →=2|FP →|.(1) 求动点P 的轨迹C 的方程;(2) 在直线l :y =2x +2上取一点Q ,过点Q 作轨迹C 的两条切线,切点分别为M 、N ,问:是否存在点Q ,使得直线MN ∥l ?若存在,求出点Q 的坐标;若不存在,请说明理由.江苏省普通高等学校招生考试高三模拟测试卷(十)数学附加分(满分40分,考试时间30分钟)21. (本小题满分10分)已知矩阵M =⎣⎢⎡⎦⎥⎤2 32 1,求矩阵M 的特征值,并任选择一个特征值,求其对应的特征向量.22.(本小题满分10分)在极坐标系中,已知圆C 的圆心坐标为C ⎝⎛⎭⎫2,π3,半径R =2,试判断圆C 是否通过极点,并求圆C 的极坐标方程.23. (本小题满分10分)如图,已知四棱锥SABCD的底面是边长为4的正方形,顶点S在底面上的射影O落在正方形ABCD内,且O到AB、AD的距离分别是2、1.又P是SC的中点,E是BC上一点,CE=1,SO=3,过O在底面内分别作AB、BC垂线Ox、Oy,分别以Ox、Oy、OS为x、y、z轴建立空间直角坐标系.(1) 求平面PDE的一个法向量;(2) 问在棱SA上是否存在一点Q,使直线BQ∥平面PDE?若存在,请给出点Q在棱SA上的位置;若不存在,请说明理由.24.(本小题满分10分)已知抛物线C:x2=4y,在直线y=-1上任取一点M,过M作抛物线C的两条切线MA、MB.(1) 求证:直线AB过一个定点,并求出这个定点;(2) 当弦AB中点的纵坐标为2时,求△ABM的外接圆的方程.江苏省普通高等学校招生考试高三模拟测试卷(十一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 为圆的内接三角形,AB =AC ,BD 为圆的弦,且BD ∥AC.过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F.(1) 求证:四边形ACBE 为平行四边形; (2) 若AE =6,BD =5,求线段CF 的长.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤ 1 a -1 b 的一个特征值为2,其对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤21.(1) 求矩阵A ;(2) 若A ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b ,求x 、y 的值.C. (选修4-4:坐标系与参数方程)在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4(ρ∈R )对称的曲线的极坐标方程.D. (选修4-5:不等式选讲)已知x、y∈R,且|x+y|≤16,|x-y|≤14,求证:|x+5y|≤1.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某中学有4位学生申请A、B、C三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1) 求恰有2人申请A大学的概率;(2) 求被申请大学的个数X的概率分布列与数学期望E(X).23.设f(n)是定义在N*上的增函数,f(4)=5,且满足:①任意n∈N*,有f(n)∈Z;②任意m、n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).(1) 求f(1),f(2),f(3)的值;(2) 求f(n)的表达式.江苏省普通高等学校招生考试高三模拟测试卷(十二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 为四边形ABCD 的外接圆,且AB =AD ,E 是CB 延长线上一点,直线EA 与圆O 相切.求证:CD AB =ABBE.B. (选修4-2:矩阵与变换)已知矩阵M =⎣⎢⎡⎦⎥⎤1 22 1,β=⎣⎢⎡⎦⎥⎤17,计算M 6β.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,圆的参数方程为⎩⎪⎨⎪⎧x =2+2cos α,y =2sin α(α为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系.求:(1) 圆的普通方程; (2) 圆的极坐标方程.D. (选修4-5:不等式选讲)已知函数f(x)=|x +1|+|x -2|-|a 2-2a|.若函数f(x)的图象恒在x 轴上方,求实数a 的取值范围.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 甲、乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为23,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.(1) 求甲同学至少有4次投中的概率;(2) 求乙同学投篮次数ξ的分布列和数学期望.23.设S n =C 0n -C 1n -1+C 2n -2-…+(-1)m C m n -m ,m 、n ∈N *且m <n ,其中当n 为偶数时,m =n2;当n 为奇数时,m =n -12. (1) 证明:当n ∈N *,n ≥2时,S n +1=S n -S n -1;(2) 记S =12 014C 02 014-12 013C 12 013+12 012C 22 012-12 011C 32 011+…-11 007C 1 0071 007,求S 的值.江苏省普通高等学校招生考试高三模拟测试卷(十三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 内接于圆O ,D 为弦BC 上的一点,过D 作直线DP ∥CA ,交AB 于点E ,交圆O 在A 点处的切线于点P.求证:△PAE ∽△BDE.B. (选修4-2:矩阵与变换)已知二阶矩阵M 有特征值λ=1及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤ 1-1且M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31,求矩阵M .C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,设动点P 、Q 都在曲线C :⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A(1,0)间的距离为d ,求d 的取值范围.D. (选修4-5:不等式选讲)已知:a ≥2,x ∈R .求证:|x -1+a|+|x -a|≥3.【必做题】 第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 在长方体ABCDA 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点且AEEB =λ.(1) 证明:D 1E ⊥A 1D ;(2) 若二面角D 1ECD 的大小为π4,求λ的值.23. 设数列{a n }共有n(n ≥3,n ∈N )项,且a 1=a n =1,对每个i(1≤i ≤n -1,i ∈N ),均有a i +1a i ∈⎩⎨⎧⎭⎬⎫12,1,2. (1) 当n =3时,写出满足条件的所有数列{a n }(不必写出过程);(2) 当n =8时,求满足条件的数列{a n }的个数.江苏省普通高等学校招生考试高三模拟测试卷(十四)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)已知圆O 的内接△ABC 中,D 为BC 上一点,且△ADC 为正三角形,点E 为BC 的延长线上一点,AE 为圆O 的切线,求证:CD 2=BD ·EC.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤a k 0 1(k ≠0)的一个特征向量为α=⎣⎢⎡⎦⎥⎤ k -1,A 的逆矩阵A -1对应的变换将点(3,1)变为点(1,1).求实数a 、k 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知M 是椭圆x 24+y 212=1上在第一象限的点,A(2,0)、B(0,23)是椭圆两个顶点,求四边形OAMB 面积的最大值.D. (选修4-5:不等式选讲)已知a 、b 、c ∈R ,a 2+2b 2+3c 2=6,求a +b +c 的最大值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在正四棱锥PABCD 中,PA =AB =2,点M 、N 分别在线段PA 和BD 上,BN =13BD.(1) 若PM =13PA ,求证:MN ⊥AD ;(2) 若二面角MBDA 的大小为π4,求线段MN 的长度.23. 已知非空有限实数集S 的所有非空子集依次记为S 1,S 2,S 3,…,集合S k 中所有元素的平均值记为b k .将所有b k 组成数组T :b 1,b 2,b 3,…,数组T 中所有数的平均值记为m(T).(1) 若S ={1,2},求m(T);(2) 若S ={a 1,a 2,…,a n }(n ∈N *,n ≥2),求m(T).江苏省普通高等学校招生考试高三模拟测试卷(十五)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 中,∠ACB =90°,以边AC 上的点O 为圆心,OA 为半径作圆,与边AB 、AC 分别交于点E 、F ,EC 与圆O 交于点D ,连结AD 并延长交BC 于P ,已知AE =EB =4,AD =5,求AP 的长.B. (选修4-2:矩阵与变换)已知点M(3,-1)绕原点逆时针旋转90°后,且在矩阵⎣⎢⎡⎦⎥⎤a 02b 对应的变换作用下,得到点N(3,5),求a 、b 的值.C. (选修4-4:坐标系与参数方程)如图,在极坐标系中,设极径为ρ(ρ>0),极角为θ(0≤θ<2π).圆A 的极坐标方程为ρ=2cos θ,点C 在极轴的上方,∠AOC =π6.△OPQ 是以OQ 为斜边的等腰直角三角形,若C为OP 的中点,求点Q 的极坐标.D. (选修4-5:不等式选讲)已知不等式|a-2|≤x2+2y2+3z2对满足x+y+z=1的一切实数x、y、z都成立,求实数a的取值范围.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在空间直角坐标系Axyz中,已知斜四棱柱ABCDA1B1C1D1的底面是边长为3的正方形,点B、D、B1分别在x、y、z轴上,B1A=3,P是侧棱B1B上的一点,BP=2PB1.(1) 写出点C1、P、D1的坐标;(2) 设直线C1E⊥平面D1PC,E在平面ABCD内,求点E的坐标.23.如图,圆周上有n个固定点,分别为A1,A2,…,A n(n∈N*,n≥2),在每一个点上分别标上1,2,3中的某一个数字,但相邻的两个数字不相同,记所有的标法总数为a n.(1) 写出a2,a3,a4的值;(2) 写出a n的表达式,并用数学归纳法证明.江苏省普通高等学校招生考试高三模拟测试卷(十六)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 的两弦AB 和CD 交于点E ,EF ∥CB ,EF 交AD 的延长线于点F.求证:△DEF ∽△EAF.B. (选修4-2:矩阵与变换)若矩阵M =⎣⎢⎡⎦⎥⎤a 0-1 2把直线l :x +y -2=0变换为另一条直线l′:x +y -4=0,试求实数a 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,直线l 经过点P(0,1),曲线C 的方程为x 2+y 2-2x =0,若直线l 与曲线C 相交于A 、B 两点,求PA·PB 的值.D. (选修4-5:不等式选讲)已知x >0,y >0,a ∈R ,b ∈R .求证:⎝ ⎛⎭⎪⎫ax +by x +y 2≤a 2x +b 2y x +y .【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 在平面直角坐标系xOy 中,已知定点F(1,0),点P 在y 轴上运动,点M 在x 轴上,点N 为平面内的动点,且满足PM →·PF →=0,PM →+PN →=0.(1) 求动点N 的轨迹C 的方程;(2) 设点Q 是直线l :x =-1上任意一点,过点Q 作轨迹C 的两条切线QS 、QT ,切点分别为S 、T ,设切线QS 、QT 的斜率分别为k 1、k 2,直线QF 的斜率为k 0,求证:k 1+k 2=2k 0.23.各项均为正数的数列{x n }对一切n ∈N *均满足x n +1x n +1<2.证明:(1) x n <x n +1; (2) 1-1n<x n <1.江苏省普通高等学校招生考试高三模拟测试卷(十七)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修41:几何证明选讲)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC =CD ,过C 作圆O 的切线交AD 于E.若AB =10,ED =3,求BC 的长.B. (选修42:矩阵与变换) 已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤2301对应的变换作用下变为直线l′:x +by =1.(1) 求实数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.C. (选修44:坐标系与参数方程)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cost ,y =2sint (t 为参数),曲线C 在点(1,3)处的切线为l.以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求l 的极坐标方程.D. (选修45:不等式选讲)设x 、y 、z ∈R ,且满足:x 2+y 2+z 2=1,x +2y +3z =14,求证:x +y +z =3147.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 一批产品需要进行质量检验,质检部门规定的检验方案是:先从这批产品中任取3件作检验,若3件产品都是合格品,则通过检验;若有2件产品是合格品,则再从这批产品中任取1件作检验,这1件产品是合格品才能通过检验,否则不能通过检验,也不再抽检;若少于2件是合格品,则不能通过检验,也不再抽检.假设这批产品的合格率为80%,且各件产品是否为合格品相互独立.(1) 求这批产品通过检验的概率;(2) 已知每件产品检验费为125元,并且所抽取的产品都要检验,记这批产品的检验费为ξ元,求ξ的概率分布及数学期望.23.已知数列{a n }和{b n }的通项公式分别为a n =3n -19,b n =2n .将{a n }与{b n }中的公共项按照从小到大的顺序排列构成一个新数列记为{c n }.(1) 试写出c 1,c 2,c 3,c 4的值,并由此归纳数列{c n }的通项公式; (2) 证明你在(1)所猜想的结论.江苏省普通高等学校招生考试高三模拟测试卷(十八)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为圆O 上一点,AE =AC ,DE 交AB 于点F.求证:△PDF ∽△POC.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤1 2c d (c 、d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤11,求矩阵A 的逆矩阵A -1.C. (选修4-4:坐标系与参数方程) 在极坐标系中,已知圆A 的圆心为(4,0),半径为4,点M 为圆A 上异于极点O 的动点,求弦OM 中点的轨迹的极坐标方程.D. (选修4-5:不等式选讲)已知x、y、z∈R,且x+2y+3z+8=0.求证:(x-1)2+(y+2)2+(z-3)2≥14.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在直三棱柱ABCA1B1C1中,已知CA=CB=1,AA1=2,∠BCA=90°.(1) 求异面直线BA1与CB1夹角的余弦值;(2) 求二面角BAB1C平面角的余弦值.23.在数列{a n}中,已知a1=20,a2=30,a n+1=3a n-a n-1(n∈N*,n≥2).(1) 当n=2,3时,分别求a2n-a n-1a n+1的值,并判断a2n-a n-1a n+1(n≥2)是否为定值,然后给出证明;(2) 求出所有的正整数n,使得5a n+1a n+1为完全平方数.江苏省普通高等学校招生考试高三模拟测试卷(十九)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,设AB 、CD 是圆O 的两条弦,直线AB 是线段CD 的垂直平分线.已知AB =6,CD =25,求线段AC 的长度.B. (选修4-2:矩阵与变换)设矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤ 1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32,求ad -bc 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.设点A 、B 分别在曲线C 1:⎩⎪⎨⎪⎧x =3+cos θ,y =4+sin θ(θ为参数)和曲线C 2:ρ=1上,求线段AB 的最小值.。

江苏省普通高等学校高三数学随堂小测评(十二)(2021年整理)

江苏省普通高等学校高三数学随堂小测评(十二)(2021年整理)

江苏省普通高等学校2017年高三数学随堂小测评(十二)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省普通高等学校2017年高三数学随堂小测评(十二))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省普通高等学校2017年高三数学随堂小测评(十二)的全部内容。

随堂小测评(十二)1。

设集合M={x|x2-3x-4〈0},N={x|0≤x≤5},则M∩N=____________.2. 函数f(x)=错误!的定义域为____________.3。

向量a=(2,3),b=(-1,2),若m a+b与a-2b平行,则m=____________.4. 若不等式x2-2x+3≤a2-2a-1在R上的解集是,则实数a的取值范围是____________.5。

已知抛物线y2=4px(p>0)与双曲线x2a2-错误!=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为____________.6。

已知f(x)=错误!,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2 014=a2 016,则a20+a11=____________.7。

如图,在长方体ABCDA1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则三棱锥AB1D1D的体积为________ cm3.随堂小测评(十二)1。

[0,4)解析:因为M={x|x2-3x-4〈0}={x|-1<x<4},N={x|0≤x≤5},所以M∩N={x|0≤x〈4}.2。

错误!∪(2,+∞)解析:根据题意,得错误!解得错误!3。

高三数学2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)数学试题(解析版)

高三数学2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)数学试题(解析版)

2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)数学试题注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.样本数据16,24,14,10,20,30,12,14,40的中位数为()A.14B.16C.18D.20【答案】B 【解析】【分析】由中位数定义即可得.【详解】将这些数据从小到大排列可得:10,12,14,14,16,20,24,30,40,则其中位数为16.故选:B.2.椭圆2221(1)x y a a+=>的离心率为12,则=a ()A.233B.C.D.2【答案】A 【解析】【分析】由椭圆的离心率公式即可求解.【详解】由题意得12e a ==,解得233a =,故选:A.3.记等差数列{}n a 的前n 项和为3712,6,17n S a a a +==,则16S =()A.120B.140C.160D.180【答案】C 【解析】【分析】利用下标和性质先求出512a a +的值,然后根据前n 项和公式结合下标和性质求解出16S 的值.【详解】因为37526a a a +==,所以53a =,所以51231720a a +=+=,所以()()116165121681602a a S a a +⨯==+=,故选:C.4.设,αβ是两个平面,,m l 是两条直线,则下列命题为真命题的是()A.若,,m l αβαβ⊥∥∥,则m l ⊥B.若,,m l m l αβ⊂⊂∥,则αβ∥C.若,,m l l αβαβ= ∥∥,则m l ∥D.若,,m l m l αβ⊥⊥∥,则αβ⊥【答案】C 【解析】【分析】由线面平行性质判断真命题,举反例判定假命题即可.【详解】对于A ,,m l 可能平行,相交或异面,故A 错误,对于B ,,αβ可能相交或平行,故B 错误,对于D ,,αβ平行,不可能垂直,故D 错误,由线面平行性质得C 正确,故选:C5.甲、乙、丙等5人站成一排,且甲不在两端,乙和丙之间恰有2人,则不同排法共有()A.20种B.16种C.12种D.8种【答案】B 【解析】【分析】分类讨论:乙丙及中间2人占据首四位、乙丙及中间2人占据尾四位,然后根据分类加法计数原理求得结果.【详解】因为乙和丙之间恰有2人,所以乙丙及中间2人占据首四位或尾四位,①当乙丙及中间2人占据首四位,此时还剩末位,故甲在乙丙中间,排乙丙有22A 种方法,排甲有12A 种方法,剩余两个位置两人全排列有22A 种排法,所以有212222A A A 8⨯⨯=种方法;②当乙丙及中间2人占据尾四位,此时还剩首位,故甲在乙丙中间,排乙丙有22A 种方法,排甲有12A 种方法,剩余两个位置两人全排列有22A 种排法,所以有212222A A A 8⨯⨯=种方法;由分类加法计数原理可知,一共有8816+=种排法,故选:B.6.已知Q 为直线:210l x y ++=上的动点,点P 满足()1,3QP =-,记P 的轨迹为E ,则()A.EB.E 是一条与l 相交的直线C.E 上的点到lD.E 是两条平行直线【答案】C 【解析】【分析】设(),P x y ,由()1,3QP =-可得Q 点坐标,由Q 在直线上,故可将点代入坐标,即可得P 轨迹E ,结合选项即可得出正确答案.【详解】设(),P x y ,由()1,3QP =-,则()1,3Q x y -+,由Q 在直线:210l x y ++=上,故()12310x y -+++=,化简得260x y ++=,即P 的轨迹为E 为直线且与直线l 平行,E 上的点到l的距离d ==A 、B 、D 错误,C 正确.故选:C .7.已知3ππ,π,tan24tan 44θθθ⎛⎫⎛⎫∈=-+ ⎪ ⎪⎝⎭⎝⎭,则21sin22cos sin2θθθ+=+()A.14 B.34C.1D.32【答案】A 【解析】【分析】根据正弦、余弦、正切二倍角公式,将21sin22cos sin2θθθ++齐次化即可得出答案.【详解】由题3ππ,π,tan24tan 44θθθ⎛⎫⎛⎫∈=-+⎪ ⎪⎝⎭⎝⎭,得()()224tan 12tan 4tan 12tan 1tan 1tan θθθθθθ-+=⇒-+=--,则()()2tan 1tan 20tan 2θθθ++=⇒=-或1tan 2θ=-,因为()3π,π,tan 1,04θθ⎛⎫∈∈-⎪⎝⎭,所以1tan 2θ=-,222221sin2sin cos 2sin cos tan 12tan 2cos sin22cos 2sin cos 22tan θθθθθθθθθθθθθ+++++==+++()11114214+-==+-.故选:A8.设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过坐标原点的直线与C 交于,A B 两点,211222,4F B F A F A F B a =⋅=,则C 的离心率为()A.B.2C.D.【答案】D 【解析】【分析】由双曲线的对称性可得12F A F B =、12F B F A =且四边形12AF BF 为平行四边形,由题意可得出21F BF ∠,结合余弦定理表示出与a 、c 有关齐次式即可得离心率.【详解】由双曲线的对称性可知12F A F B =,12F B F A =,有四边形12AF BF 为平行四边形,令12F A F B m ==,则122F B F A m ==,由双曲线定义可知212F A F A a -=,故有22m m a -=,即2m a =,即122F A F B m a ===,124F B F A a ==,2222222cos 24cos 4F A F B F A F B AF B a a AF B a ⋅=⋅∠=⨯∠=,则21cos 2AF B ∠=,即23AF B π∠=,故212π3F BF ∠=,则有()()()222222121221124221cos 22422a a c F B F B F F F BF F B F Ba a+-+-∠===-⋅⨯⨯,即2222041162a c a -=-,即2204116162e -=-,则27e =,由1e >,故e =.故选:D.【点睛】关键点睛:本题考查双曲线的离心率,解题关键是找到关于a 、b 、c 之间的等量关系,本题中结合题意与双曲线的定义得出1F A 、2F B 与a 的具体关系及21F BF ∠的大小,借助余弦定理表示出与a 、c 有关齐次式,即可得解.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()3π3πsin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()A.函数π4f x ⎛⎫-⎪⎝⎭为偶函数B.曲线()y f x =的对称轴为π,Z x k k =∈C.()f x 在区间ππ,32⎛⎫⎪⎝⎭单调递增D.()f x 的最小值为2-【答案】AC 【解析】【分析】利用辅助角公式化简()3π3πsin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,再根据三角函数的性质逐项判断即可.【详解】()3π3πsin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭3π3π3π3πsin 2cos sin cos 2cos2cos sin2sin 4444x x x x =++-2222sin 2cos 2cos2sin22222x x x x x =-+--=,即()f x x =,对于A ,i ππ42n 2x x f x ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭-⎝⎭,易知为偶函数,所以A 正确;对于B ,()f x x =对称轴为πππ2π,Z ,Z 242k x k k x k =+∈⇒=+∈,故B 错误;对于C ,ππ2π,,2,π323x x ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,sin2y x =单调递减,则()f x x =单调递增,故C 正确;对于D ,()f x x =,则[]sin21,1x ∈-,所以()f x ⎡∈⎣,故D 错误;故选:AC10.已知复数,z w 均不为0,则()A.22||z z = B.22||z z z z =C .z z w w-=- D.z z w w=【答案】BCD 【解析】【分析】设出i z a b =+、i w c d =+,结合复数的运算、共轭复数定义及复数的模的性质逐个计算即可得.【详解】设i z a b =+(),R a b ∈、i w c d =+(),R c d ∈;对A :设i z a b =+(),R a b ∈,则()222222i 2i 2i z a b a ab b a b ab =+=+-=-+,2222||z ab ==+,故A 错误;对B :2z z z z z=⋅,又2z z z ⋅=,即有22||z z z z =,故B 正确;对C :()i i i a b c d z a c d w b =+-=+----,则()i a c z w b d ----=,i z a b =-,i w c d =-,则()i i i z w a b c d a c b d =--+=----,即有z z w w -=-,故C 正确;对D :()()()()()22i i i i i i i z c w a b c d ac bd ad bc a b c d c d c d d +-+--+===++-+==22c d ==+,22z w c d ===+22c d =+,故z z w w=,故D 正确.故选:BCD.11.已知函数()f x 的定义域为R ,且102f ⎛⎫≠⎪⎝⎭,若()()()4f x y f x f y xy ++=,则()A.102f ⎛⎫-= ⎪⎝⎭B.122f ⎛⎫=-⎪⎝⎭C.函数12f x ⎛⎫- ⎪⎝⎭是偶函数 D.函数12f x ⎛⎫+⎪⎝⎭是减函数【答案】ABD 【解析】【分析】对抽象函数采用赋值法,令12x =、0y =,结合题意可得()01f =-,对A :令12x =、0y =,代入计算即可得;对B 、C 、D :令12y =-,可得122f x x ⎛⎫-=- ⎪⎝⎭,即可得函数12f x ⎛⎫- ⎪⎝⎭及函数12f x ⎛⎫+ ⎪⎝⎭函数的性质,代入1x =,即可得12f ⎛⎫ ⎪⎝⎭.【详解】令12x =、0y =,则有()()1110100222f f f f f ⎛⎫⎛⎫⎛⎫⎡⎤+⨯=+= ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭,又102f ⎛⎫≠⎪⎝⎭,故()100f +=,即()01f =-,令12x =、12y =-,则有1111114222222f f f ⎛⎫⎛⎫⎛⎫⎛⎫-+-=⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,即()110122f f f ⎛⎫⎛⎫+-=-⎪ ⎪⎝⎭⎝⎭,由()01f =-,可得11022f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,又102f ⎛⎫≠⎪⎝⎭,故102f ⎛⎫-= ⎪⎝⎭,故A 正确;令12y =-,则有()1114222f x f x f x ⎛⎫⎛⎫⎛⎫-+-=⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即122f x x ⎛⎫-=- ⎪⎝⎭,故函数12f x ⎛⎫- ⎪⎝⎭是奇函数,有()1121222f x x x ⎛⎫+-=-+=-- ⎪⎝⎭,即1222f x x ⎛⎫+=-- ⎪⎝⎭,即函数12f x ⎛⎫+⎪⎝⎭是减函数,令1x =,有12122f ⎛⎫=-⨯=-⎪⎝⎭,故B 正确、C 错误、D 正确.故选:ABD.【点睛】关键点睛:本题关键在于利用赋值法解决抽象函数问题,借助赋值法,得到()01f =-,再重新赋值,得到102f ⎛⎫-= ⎪⎝⎭,再得到122f x x ⎛⎫-=- ⎪⎝⎭.三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}{}2,0,2,4,3A B x x m =-=-≤,若A B A = ,则m 的最小值为__________.【答案】5【解析】【分析】由A B A = 可得A B ⊆,解出集合B 后结合集合的关系计算即可得.【详解】由A B A = ,故A B ⊆,由3x m -≤,得33m x m -+≤≤+,故有4323m m ≤+⎧⎨-≥-+⎩,即15m m ≥⎧⎨≥⎩,即5m ≥,即m 的最小值为5.故答案为:5.13.已知轴截面为正三角形的圆锥MM '的高与球O 的直径相等,则圆锥MM '的体积与球O 的体积的比值是__________,圆锥MM '的表面积与球O 的表面积的比值是__________.【答案】①.23②.1【解析】【分析】设圆锥的底面圆半径r 以及球的半径R ,用r 表示出圆锥的高h 和母线l 以及球的半径R ,然后根据体积公式求出体积比,根据表面积公式求得表面积之比.【详解】设圆锥的底面半径为r ,球的半径为R ,因为圆锥的轴截面为正三角形,所以圆锥的高h =,母线2l r =,由题可知:2h R =,所以球的半径32R =所以圆锥的体积为()23113ππ33V r r =⨯⨯=,球的体积33324433πππ3322V R r ⎛⎫==⨯= ⎪ ⎪⎝⎭,所以3123π233rV V ==;圆锥的表面积221ππ3πS rl r r =+=,球的表面积222234π4π3π2S R r ⎛⎫==⨯= ⎪ ⎪⎝⎭,所以21223π13πS r S r ==,故答案为:23;1.14.以max M表示数集M 中最大的数.设01a b c <<<<,已知2b a ≥或1a b +≤,则{}max ,,1b a c b c ---的最小值为__________.【答案】15##0.2【解析】【分析】利用换元法可得11b n pa m n p =--⎧⎨=---⎩,进而根据不等式的性质,分情况讨论求解.【详解】令,,1,b a m c b n c p -=-=-=其中,,0m n p >,所以11b n pa m n p =--⎧⎨=---⎩,若2b a ≥,则()121b n p m n p =--≥---,故21m n p ++≥,令{}{}=max ,,1max ,,M b a c b c m n p ---=,因此22M mM n M p≥⎧⎪≥⎨⎪≥⎩,故421M m n p ≥++≥,则14M ≥,若1a b +≤,则111n p m n p --+---≤,即221m n p ++≥,{}{}=max ,,1max ,,M b a c b c m n p ---=,则2222M mM n M p≥⎧⎪≥⎨⎪≥⎩,故5221M m n p ≥++≥,则15M ≥,当且仅当221m n p ++=且{}1max ,,5m n p =时等号成立,如取15m n p ===时可满足等号成立,综上可知{}max ,,1b a c b c ---的最小值为15,故答案为:15【点睛】关键点睛:本题的关键是利用换元法,在2b a ≥和1a b +≤前提下进行合理分类讨论,根据题意得到相对应的不等式组,注意题目的条件关键词是“或”.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()2ln 2f x x x ax =+++在点()()22f ,处的切线与直线230x y +=垂直.(1)求a ;(2)求()f x 的单调区间和极值.【答案】(1)3a =-(2)单调递增区间为10,2⎛⎫ ⎪⎝⎭、()1,+∞,单调递减区间为1,12⎛⎫⎪⎝⎭,极大值3ln 24-,极小值0【解析】【分析】(1)结合导数的几何意义及直线垂直的性质计算即可得;(2)借助导数可讨论单调性,即可得极值.【小问1详解】()12f x x a x '=++,则()1922222f a a '=+⨯+=+,由题意可得92123a ⎛⎫⎛⎫+⨯-=- ⎪ ⎪⎝⎭⎝⎭,解得3a =-;【小问2详解】由3a =-,故()2ln 32f x x x x =+-+,则()()()2211123123x x x x f x x x x x---+'=+-==,0x >,故当102x <<时,()0f x ¢>,当112x <<时,()0f x '<,当1x >时,()0f x ¢>,故()f x 的单调递增区间为10,2⎛⎫ ⎪⎝⎭、()1,+∞,()f x 的单调递减区间为1,12⎛⎫ ⎪⎝⎭,故()f x 有极大值211113ln 32ln 222224f ⎛⎫⎛⎫=+-⨯+=- ⎪ ⎪⎝⎭⎝⎭,有极小值()21ln113120f =+-⨯+=.16.盒中有标记数字1,2,3,4的小球各2个,随机一次取出3个小球.(1)求取出的3个小球上的数字两两不同的概率;(2)记取出的3个小球上的最小数字为X ,求X 的分布列及数学期望()E X .【答案】(1)47(2)分布列见解析,()107E X =【解析】【分析】(1)先确定3个不同数字的小球,然后再从确定的每种小球中取1个,通过计算可求符合要求的取法数,再除以总的取法数可得结果;(2)先确定X 的可取值为1,2,3,然后计算出不同取值的概率,注意X 的每种取值对应两种情况,由此可求分布列和期望()E X .【小问1详解】记“取出的3个小球上的数字两两不同”为事件M ,先确定3个不同数字的小球,有34C 种方法,然后每种小球各取1个,有111222C C C ⨯⨯种取法,所以()3111422238C C C C 4=C 7P M ⨯⨯⨯=.【小问2详解】由题意可知,X 的可取值为1,2,3,当1X =时,分为两种情况:只有一个数字为1的小球、有两个数字为1的小球,所以()1221262638C C C C 91=C 14P X +==;当2X =时,分为两种情况:只有一个数字为2的小球、有两个数字为2的小球,所以()1221242438C C C C 22=C 7P X +==;当3X =时,分为两种情况:只有一个数字为3的小球、有两个数字为3的小球,所以()1221222238C C C C 13=C 14P X +==,所以X 的分布列为:X123P 91427114所以()92110123147147E X =⨯+⨯+⨯=.17.如图,平行六面体1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,11112,,45AA C CB C CD C CO =∠=∠∠=︒.(1)证明:1C O ⊥平面ABCD ;(2)求二面角1B AA D --的正弦值.【答案】(1)证明见解析;(2)223【解析】【分析】(1)根据题意,利用线面垂直的判定定理证明即可.(2)建立空间直角坐标系,利用向量法求二面角的正弦值.【小问1详解】连接11,BC DC ,因为底面ABCD 是边长为2的正方形,所以BC DC =,又因为11C CB C CD ∠=∠,11CC CC =,所以11C CB C CD ≅ ,所以11BC DC =,点O 为线段BD 中点,所以1C O BD ⊥,在1C CO △中,1122,CC CO AC ===,145C CO ∠=︒,所以222111112cos 22C C OC C O C CO C O C C OC+-∠==⇒=⨯⨯,则222111C C OC C O C O OC =+⇒⊥,又OC BD O = ,OC ⊂平面ABCD ,BD ⊂平面ABCD ,所以1C O ⊥平面ABCD .【小问2详解】【方法一】:由题知正方形ABCD 中AC BD ⊥,1C O ⊥平面ABCD ,所以建系如图所示,则()())()(12,0,0,2,0,2,0,0,2,0,0,0,0,2B D A C C ,则112,0,2AA CC == ,()()2,2,0,2,2,0AB AD == ,设面1BAA 的法向量为()111,,m x y z = ,面1DAA 的法向量为()222,,n x y z = ,则1111122000220z AA m AB m x ⎧⎧+=⋅=⎪⇒⎨⋅=+=⎪⎪⎩⎩ ,取11x =,则()1,1,1m =- 2212222000220z AA n AD m x ⎧=⋅=⎪⇒⎨⋅=-=⎪⎪⎩⎩ 取21x =,则()1,1,1n =-- .设二面角1B AA D --大小为θ,则21122cos sin 1cos 3333m n m n θθθ⋅===⇒=-=⋅⨯ ,所以二面角1B AA D --的正弦值为223.【方法二】:以O 为坐标原点,OB 的方向为x 轴正方向,建立如图所示的空间直角坐标系O xyz -.由题设得2,0,0)B ,(0,2,0)A ,1(0,22,2)A -,(2,0,0)D ,(12C ,()2,0C ,11(0,2,2)AA CC ==- ,2,2,0)AB = ,(2,2,0)AD = .设(,,)m x y z = 是平面1AA B 的法向量,则100m AA m AB ⎧⋅=⎪⎨⋅=⎪⎩,即00⎧+=⎪+=,可取(1,1,1)m =-- .设(,,)n p q r = 是平面1AA D 的法向量,则100n AA n AD ⎧⋅=⎪⎨⋅=⎪⎩,即00⎧+=⎪⎨=⎪⎩,可取(1,1,1)n = .所以1cos ,||||3m n m n m n ⋅〈〉==-⋅ .因此二面角1B AA D --的正弦值为223.18.已知抛物线2:4C y x =的焦点为F ,过F 的直线l 交C 于,A B 两点,过F 与l 垂直的直线交C 于,D E 两点,其中,B D 在x 轴上方,,M N 分别为,AB DE 的中点.(1)证明:直线MN 过定点;(2)设G 为直线AE 与直线BD 的交点,求GMN 面积的最小值.【答案】(1)证明见解析(2)8【解析】【分析】(1)设出直线AB 与直线CD 的方程,联立曲线后得到与纵坐标有关韦达定理,结合题意,表示出直线MN 后即可得定点坐标;(2)设出直线AE 与直线BD 的方程,联立两直线后结合第一问中韦达定理得出点G 的横坐标恒为1-,再结合面积公式及基本不等式即可得.我们也可以利用面积得到1||||8GMN S AB DE =⨯⨯△,再结合基本不等式可求最小值.【小问1详解】【方法一】:由2:4C y x =,故()1,0F ,由直线AB 与直线CD 垂直,故两只直线斜率都存在且不为0,设直线AB 、CD 分别为11x m y =+、21x m y =+,有121m m =-,()11,A x y 、()22,B x y 、()33,E x y 、()44,D x y ,联立2:4C y x =与直线AB ,即有2141y x x m y ⎧=⎨=+⎩,消去x 可得21440y m y --=,2116160m ∆=+>,故1214y y m +=、124y y =-,则()2121112112111242x x m y m y m y y m +=+++=++=+,故2121212x x m +=+,12122y y m +=,即()21121,2M m m +,同理可得()22221,2N m m +,当22122121m m +≠+时,则()()22111222122:2122121MN m m l y x m m m m -=--++-+,即()()21212211112221212121221212m m m m m m x y x m m m m m m m m m m +-+=--+=-+-+++1212212121212211212122m m m m x x m m m m m m m m m m =--=-+++-++-,由121m m =-,即()2121211213x y x m m m m m m +=-=-+++,故3x =时,有()211330y m m =-=+,此时MN 过定点,且该定点为()3,0,当22122121m m +=+时,即2212m m =时,由121m m =-,即11m =±时,有213:MN l x =+=,亦过定点()3,0,故直线MN 过定点,且该定点为()3,0;【方法二】:设()11,A x y ,()22,B x y ,不妨设12x x <.设:1l x my =+,则0m >.由241y x x my ⎧=⎨=+⎩,得2440y my --=,故124y y m +=,124y y =-,1222y y m +=,()1221222122m y y x x m +++==+.所以()221,2M m m +.同理可得2221,N m m ⎛⎫+- ⎪⎝⎭.若1m ≠,则直线()222:212(3)11m m MN y x m m x m m =--+=---,MN 过点(3,0).若1m =,则直线:3MN x =,MN 过点(3,0).综上,直线MN 过定点(3,0).【小问2详解】法1:由()11,A x y 、()22,B x y 、()33,E x y 、()44,D x y ,则()311131:AE y y l y x x y x x -=-+-,由2114y x =、2224y x =,故22231113131112231313131313144444y y y y y y y y y x x y x y y y y y y y y y y y y y ⎛⎫-+=-+=-+=+ ⎪+++++⎝⎭-,同理可得2442424:BD y y x l y y y y y =+++,联立两直线,即13313124424244y y x y y y y y y y x y y y y y ⎧=+⎪++⎪⎨⎪=+⎪++⎩,有13243131424244y y y y x x y y y y y y y y +=+++++,即()()()()42134231243144x y y y y y y x y y y y y y +++=+++,有()()()2431134242314y y y y y y y y x y y y y +-+=+--,由124y y =-,同理344y y =-,故()()()()243113422341241341234231423144y y y y y y y y y y y y y y y y y y y y x y y y y y y y y +-++--==+--+--()()24134231414y y y y y y y y -+--==-+--,故1G x =-,过点G 作//GQ x 轴,交直线MN 于点Q ,则12GMN M N Q G S y y x x =-⨯- ,由()21121,2M m m +、()22221,2N m m +,故121122224M N y y m m m m -=-=+≥,当且仅当11m =±时,等号成立,下证4Q G x x -≥:由抛物线的对称性,不妨设10m >,则20m <,当11m >时,有()2111,0m m =-∈-,则点G 在x 轴上方,点Q 亦在x 轴上方,有21111101m m m m =>+-,由直线MN 过定点()3,0,此时()314Q G x x ->--=,同理,当11m <时,有点G 在x 轴下方,点Q 亦在x 轴下方,有2110m m <+,故此时4Q G x x ->,当且仅当11m =时,3Q x =,故4Q G x x -≥恒成立,且11m =±时,等号成立,故1144822GMN M N Q G S y y x x =-⨯-≥⨯⨯= ,法2:设H 为AD 的中点,S 为直线GM 与AD 的交点.由M ,H 分别为AB ,AD 的中点知MH DG ∥,所以GHD MGD S S =△△,故GSH MSD S S =△△.设T 为直线GN 与AD 的交点,同理可得GHT TAN S S =△△.所以GMN ADMN S S =△四边形.由(1)中的法2可得()21241AB y m =-=+,同理可得2141DE m ⎛⎫=+ ⎪⎝⎭.所以()22111211828GMN S DN AM AB DE m m ⎛⎫=⨯⨯=⨯⨯=++≥ ⎪⎝⎭ ,当且仅当21m =时等号成立.因此GMN 的面积的最小值为8.【点睛】关键点睛:第二问关键在于借助直线联立及第一问中韦达定理得出点G 的横坐标恒为1-,此时可根据三角形的面积公式及基本不等式求取最值.19.离散对数在密码学中有重要的应用.设p 是素数,集合{}1,2,,1X p =- ,若,,u v X m ∈∈N ,记u v⊗为uv 除以p 的余数,,m u ⊗为m u 除以p 的余数;设a X ∈,2,2,1,,,,p a a a ⊗-⊗ 两两不同,若{}(),0,1,,2n a b n p ⊗=∈- ,则称n 是以a 为底b 的离散对数,记为log()a n p b =.(1)若11,2p a ==,求1,p a -⊗;(2)对{}12,0,1,,2m m p ∈- ,记12m m ⊕为12m m +除以1p -的余数(当12m m +能被1p -整除时,120m m ⊕=).证明:()log()log()log()a a a p b c p b p c ⊗=⊕,其中,b c X ∈;(3)已知log()a n p b =.对{},1,2,,2x X k p ∈∈- ,令,,12,k k y ay x b ⊗⊗==⊗.证明:()2,21n p x y y -⊗=⊗.【答案】(1)1(2)证明见解析(3)证明见解析【解析】【分析】(1)第一问直接根据新定义来即可.(2)第二问结合新定义、带余除法以及费马小定理即可得证.(3)根据新定义进行转换即可得证.【小问1详解】若11,2p a ==,又注意到102102493111==⨯+,所以1,01,21p a -⊗⊗==.【小问2详解】【方法一】:当2p =时,此时{1}X =,此时1b c ==,1b c ⊗=,故()log()0,log()0,log()0a a a p b c p b p c ⊗===,此时()log()log()log()a a a p b c p b p c ⊗=⊕.当2p >时,因2,2,1,,,,p a a a ⊗-⊗ 相异,故2a ≥,而a X ∈,故,a p 互质.记()12=log(),log(),=log()a a a n p b c n p b n p c ⊗=,则12,N m m ∃∈,使得1212,n n a pm b a pm c =+=+,故()()1212n n a pm b pm c +=++,故12(mod )n n a bc p +≡,设()121,02n n t p s s p +=-+≤≤-,则12n n s ⊕=,因为1,2,3,..1p -除以p 的余数两两相异,且(),2,3,..1a a a p a -除以p 的余数两两相异,故()()1!23,..1(mod )p a a a p a p ⎡⎤-≡⨯⨯⨯-⎣⎦,故()11mod p ap -≡,故()12mod n n s a a bc p +≡≡,而(mod )(mod ),n a b c p bc p ≡⊗=其中02n p ≤≤-,故s n =即()log()log()log()a a a p b c p b p c ⊗=⊕.法2:记11,1n n a a m p ⊗=+,22,2n n a a m p ⊗=+,1212,,,,n n n n kp a a a a ⊗⊗⊗⊗=+⊗⨯,其中1m ,2m ,k 是整数,则()121221.,..1212n n n n n n aa a m a m a m m p k p ⋅⊗⊗⊗⊗=⊗++++,可知2211,,,n n n n a a a ⊗⊗⋅⊗⊗=.因为1,a ,2,a ⊗,…,2,p a -⊗两两不同,所以存在{0,1,,2}i p ∈⋅⋅⋅-,使得1,,p i a a -⊗⊗=,即1p i i a a a --=()11p i a ---可以被p 整除,于是11p i a ---可以被p 整除,即1,1p i a --⊗=.若0i ≠,则1{1,2,,2}p i p --∈⋅⋅⋅-,1,1p i a --⊗≠,因此0i =,,11p a -⊗=.记log()a n p b =,log()a m p c =,(1)n m n m l p +=⊕+-,其中l 是整数,则,,,(1),,(1),,n m n m n m l p n m l p n m b c a a a a a a a ⊗⊗⋅⊗⊕+-⊗⊕⊗-⊗⊕⊗=⊗=⊗==⊗=,即log()()log()log()a a a p b c p b p c ⊗=⊕.【小问3详解】【方法二】:当2b ≥时,由(2)可得()11mod p bp -≡,若1b =,则()11mod p b p -≡也成立.因为log()a n p b =,所以()mod n a b p ≡.另一方面,()()()()()22,2,,,2121n p n p n p k k y y y y x b a --⊗-⊗⊗⊗⊗≡≡⊗()()()()()()()()112211mod mod k k kn p k p k k p xb a xb b x b x p x p -----≡≡≡≡≡.由于x X ∈,所以()2,21n p x y y -⊗=⊗.法2:由题设和(2)的法2的证明知:,,,,2(k k nk k n n n y x b x b b b x a a a x a a a ⊗⊗⊗⊗=⊗=⊗⊗⊗⋅⋅⋅⊗=⊗⊗⊗⋅⋅⋅⊗=⊗⊗⊗⋅⋅⋅⊗ ,(2)(2)(2),,,,2,2,2,1111n p nk n p n p k k k p p p y y y y a a a a a a ---⊗⊗⊗⊗-⊗-⊗-⊗=⊗⊗⋅⋅⋅⊗=⊗⊗⋅⋅⋅⊗=⊗⊗⋅⋅⋅⊗ .故(2),2,2,2,21nk nk n p p p p y y x a a a a a a -⊗-⊗-⊗-⊗⊗=⊗⊗⊗⋅⋅⋅⊗⊗⊗⊗⋅⋅⋅⊗ 1,1,1,nk p p p x a a a -⊗-⊗-⊗=⊗⊗⊗⋅⋅⋅⊗ .由(2)法2的证明知,11p a -⊗=,所以(2).21n p y y x -⊗⊗=.【点睛】关键点睛:本题的关键是充分理解新定义,然后结合带余除法以及费马小定理等初等数论知识即可顺利得解.。

江苏省普通高等学校高三数学随堂小测评(四) Word版含答案

江苏省普通高等学校高三数学随堂小测评(四) Word版含答案

随堂小测评(四)1. 设集合M ={2,0,x},集合N ={0,1},若N M ,则实数x 的值为__________.2. 若复数z 满足z --2=i(1+i)(i 为虚数单位),则z =____________.3. 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为____________.4. 若一组样本数据8,x ,10,11,9的平均数为10,则该组样本数据的方差为____________.5. 若实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y ≤2,x -y ≥-1,x +y ≥1,则目标函数z =2x +y 的最小值为__________.6. 若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时{a n }的前n 项和最大.7. 动直线y =k(x -2)与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取得最大值时,k 的值为____________.随堂小测评(四) 1. 1 解析:由NM 知1∈M ,则x =1.本题考查了集合的子集的概念.本题属于容易题.2. 1-i 解析:设z =x +yi(x ,y ∈R ),则x -yi -2=i -1.∴⎩⎪⎨⎪⎧x -2=-1,-y =1,解得⎩⎪⎨⎪⎧x =1,y =-1,∴ z =1-i. 3.x 29-y 227=1 解析:由渐近线方程y =3x ,得b a = 3.抛物线y 2=24x 的准线方程为x =-6,故双曲线的一个焦点为(-6,0),即c =6.由⎩⎨⎧a 2+b 2=36,b =3a ,得a 2=9,b 2=27. 4. 2解析:8,x ,10,11,9的平均数为10,则x =12. 该组样本数据的方差s 2=(4+4+1+1)÷5=2.本题考查了平均数和方差公式.本题属于容易题.5. 1解析:本题画出可行域发现z =2x +y 过点(0,1)时,z =2x +y 的最小值为1.本题主要考查简单的线性规划问题.本题属于容易题.6. 8解析:由a 7+a 8+a 9>0得3a 8>0,a 8>0,a 7+a 10=a 8+a 9<0,则a 9<0,故当n =8时,S n 最大.7.-33解析:△AOB 的面积取得最大值,则∠AOB =90°,则半圆的圆心到直线的距离为12,利用点到直线的距离公式可得k 2=13,由图形知k <0,则k 的值为-33.本题考查三角形面积公式,点到直线的距离公式.本题属于中等题.。

江苏省普通高等学校高三数学随堂小测评(二十) Word版含答案

江苏省普通高等学校高三数学随堂小测评(二十) Word版含答案

随堂小测评(二十)1. 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k 为____________.2. 如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩,则方差较小的那组同学成绩的方差为__________.3. 设等差数列{a n }的前n n 576+a 8=-2,则当S n 取得最大值时n 的值是__________.4. 如图,在平面四边形ABCD 中,若AC =3,BD =2,则(AB →+DC →)·(AC →+BD →)=__________.5. 已知函数f(x)=⎩⎪⎨⎪⎧-x 2,x ≥0,x 2+2x ,x<0,则不等式f(f(x))≤3的解集为__________. 6. 若△ABC 的内角满足sinA +2sinB =2sinC ,则cosC 的最小值是__________.7. 已知A 为椭圆x 29+y 25=1上的动点,MN 为圆(x -1)2+y 2=1的一条直径,则AM →·AN →的最大值为__________.随堂小测评(二十)1. 3解析:2a -3b =(2k -3,-6),由(2a -3b )⊥c 得(2k -3)×2+(-6)×1=0,k =3.2.143解析:乙组数学成绩波动较小,则其方差较小,他们的数学成绩为90,91,95,平均数为92,则s 2=(90-92)2+(91-92)2+(95-92)23=143.本题考查了平均数及方差的概念及计算公式.本题属于容易题.3. 6解析:由a 5+a 7=4得a 6=2,由a 6+a 8=-2得a 7=-1.则当n =6时,S n 最大.4. 5解析:(AB →+DC →)·(AC →+BD →)=(AC →+CB →+BC →-BD →)·(AC →+BD →)=(AC →-BD →)·(AC →+BD →)=AC → 2-BD → 2=9-4=5.5.(-∞,3] 解析:由f(x)≤3,得x ≥-3,而f(f(x))≤3,则f(x)≥-3.即-x 2≥-3,则不等式f(f(x))≤3的解集为(-∞,3].本题考查了分段函数的求值和一元二次不等式的解法(本题也可以利用函数的图象来求解),属于中等题.6.6-24解析:由sinA +2sinB =2sinC 和正弦定理得a +2b =2c ,即c =a 2+22b ·cosC =a 2+b 2-c 22ab =a 2+b 2-⎝⎛⎭⎫a 2+22b 22ab =38·a b +14·b a -24≥2·38·a b ·14·b a -24=6-24,当且仅当38·a b =14·b a 即a b =23时,等号成立,所以cosC 的最小值为6-24. 7. 15解析:设圆心为C(1,0),AM →·AN →=(AC →+CM →)·(AC →+CN →)=(AC →+CM →)·(AC →-CM →)=AC → 2-CM →2,而AC max =4,CM =1,则AM →·AN →的最大值为16-1=15. 本题考查了向量的线性表示,数量积的运算律,以及数形结合思想和化归思想的运用.本题属于中等题.。

江苏省普通高等学校高三数学随堂小测评(六) Word版含答案

江苏省普通高等学校高三数学随堂小测评(六) Word版含答案

随堂小测评(六)1. 已知集合A ={-1,1,3},B ={2,2a -1},A ∩B ={1},则实数a 的值为__________.2. 已知复数z =(1+i)(1-2i)(i 为虚数单位),则z 的实部为________.3. 现有在外观上没有区别的5件产品,其中3件合格,2件不合格,从中任意抽检2件,则一件合格,另一件不合格的概率为__________.4. 已知一个空间几何体的所有棱长均为1 cm ,其表面展开图如图所示,则该空间几何体的体积V =________ cm 3.5. 已知双曲线x 24-y 2m =1的渐近线方程为y =±22x ,则m =_______. 6. 在矩形ABCD 中,对角线AC 与相邻两边所成的角为α、β,则有cos 2α+cos 2β=1.类比到空间中的一个正确命题是:在长方体ABCDA 1B 1C 1D 1中,对角线AC 1与相邻三个面所成的角为α、β、γ,则有____________.7. 已知圆C :(x -a)2+(y -a)2=1(a >0)与直线y =3x 相交于P 、Q 两点,若∠PCQ =90°,则实数a =________.随堂小测评(六)1. 1解析:2a-1=1,a =1.本题主要考查集合的概念与运算等基础知识.本题属于容易题.2. 3解析:复数z =(1+i)(1-2i)=3-i ,z 的实部为3.本题考查复数的基本运算和复数实部的概念.本题属于容易题. 3.35解析:从5件产品中任意抽取2件有10种不同的方法,其中抽得一件合格、另一件不合格的方法种数为6种,所以所求的概率为P =610=35.本题主要考查概率知识.本题属于容易题.4. 1+26解析:几何体是由一个棱长为1的正方体和一个正四棱锥组成,正方体的体积为1,正四棱锥的高为22,底面积为1,体积为26,则该空间几何体体积V =1+26.本题考查了正方体和正四棱锥的体积.本题属于容易题.5. 2解析:双曲线x 24-y 2m =1(m>0)的渐近线方程为x 24-y 2m =0,即y =±m 2x ,又双曲线x 24-y 2m =1的渐近线方程为y =±22x ,所以m =2. 本题主要考查了双曲线的渐近线方程,属于容易题.6. cos 2α+cos 2β+cos 2γ=2 解析:设长方体的长、宽、高分别为a 、b 、c ,则cos 2α=a 2+b 2a 2+b 2+c 2,cos 2β=b 2+c 2a 2+b 2+c 2,cos 2γ=c 2+a 2a 2+b 2+c2,故cos 2α+cos 2β+cos 2γ=2(c 2+a 2+b 2)a 2+b 2+c 2=2.本题考查类比问题,考查线面角的概念及简单计算.属于中等题.7.52解析:圆的半径为1,∠PCQ =90°,故圆心到直线的距离为22.由点到直线距离公式得|3a -a|9+1=22,又a>0,故a =52.本题考查直线与圆的位置关系及点到直线距离公式,属于中等题.。

江苏省普通高等学校高三数学随堂小测评二十

江苏省普通高等学校高三数学随堂小测评二十

江苏省普通高等学校高三数学随堂小测评二十080901891. 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k 为____________.2. 如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩,则方差较小的那组同学成绩的方差为__________.甲组乙组 88 6 2 9 0 1 53. 设等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取得最大值时n 的值是__________.4. 如图,在平面四边形ABCD 中,若AC =3,BD =2,则(AB →+DC →)·(AC →+BD →)=__________.5. 已知函数f(x)=⎩⎪⎨⎪⎧-x 2,x ≥0,x 2+2x ,x<0,则不等式f(f(x))≤3的解集为__________. 6. 若△ABC 的内角满足sinA +2sinB =2sinC ,则cosC 的最小值是__________.7. 已知A 为椭圆x 29+y 25=1上的动点,MN 为圆(x -1)2+y 2=1的一条直径,则AM →·AN →的最大值为__________.随堂小测评(二十)1. 3 解析:2a -3b =(2k -3,-6),由(2a -3b )⊥c 得(2k -3)×2+(-6)×1=0,k =3.2. 143解析:乙组数学成绩波动较小,则其方差较小,他们的数学成绩为90,91,95,平均数为92,则s 2=(90-92)2+(91-92)2+(95-92)23=143.本题考查了平均数及方差的概念及计算公式.本题属于容易题.3. 6 解析:由a 5+a 7=4得a 6=2,由a 6+a 8=-2得a 7=-1.则当n =6时,S n 最大.4. 5 解析:(AB →+DC →)·(AC →+BD →)=(AC →+CB →+BC →-BD →)·(AC →+BD →)=(AC →-BD →)·(AC →+BD →)=AC → 2-BD → 2=9-4=5.5. (-∞,3] 解析:由f(x)≤3,得x≥-3,而f(f(x))≤3,则f(x)≥-3.即-x 2≥-3,则不等式f(f(x))≤3的解集为(-∞,3].本题考查了分段函数的求值和一元二次不等式的解法(本题也可以利用函数的图象来求解),属于中等题.6. 6-24 解析:由sinA +2sinB =2sinC 和正弦定理得a +2b =2c ,即c =a 2+22b ·cosC =a 2+b 2-c 22ab =a 2+b 2-⎝ ⎛⎭⎪⎫a 2+22b 22ab =38·a b +14·b a -24≥2·38·a b ·14·b a -24=6-24,当且仅当38·a b =14·b a 即a b =23时,等号成立,所以cosC 的最小值为6-24. 7. 15 解析:设圆心为C(1,0),AM →·AN →=(AC →+CM →)·(AC →+CN →)=(AC →+CM →)·(AC →-CM →)=AC → 2-CM → 2,而AC max =4,CM =1,则AM →·AN →的最大值为16-1=15. 本题考查了向量的线性表示,数量积的运算律,以及数形结合思想和化归思想的运用.本题属于中等题.。

江苏省普通高等学校高三数学随堂小测评(六)

江苏省普通高等学校高三数学随堂小测评(六)

随堂小测评(六)1. 已知集合A={-1,1,3},B={2,2a-1},A∩B={1},则实数a的值为__________.2。

已知复数z=(1+i)(1-2i)(i为虚数单位),则z的实部为________.3. 现有在外观上没有区别的5件产品,其中3件合格,2件不合格,从中任意抽检2件,则一件合格,另一件不合格的概率为__________.4。

已知一个空间几何体的所有棱长均为 1 cm,其表面展开图如图所示,则该空间几何体的体积V=________ cm3。

5. 已知双曲线错误!-错误!=1的渐近线方程为y=±错误!x,则m=_______.6. 在矩形ABCD中,对角线AC与相邻两边所成的角为α、β,则有cos2α+cos2β=1。

类比到空间中的一个正确命题是:在长方体ABCDA1B1C1D1中,对角线AC1与相邻三个面所成的角为α、β、γ,则有____________.7. 已知圆C:(x-a)2+(y-a)2=1(a>0)与直线y=3x相交于P、Q两点,若∠PCQ =90°,则实数a=________.随堂小测评(六)1。

1 解析:2a-1=1,a=1.本题主要考查集合的概念与运算等基础知识.本题属于容易题.2. 3 解析:复数z=(1+i)(1-2i)=3-i,z的实部为3.本题考查复数的基本运算和复数实部的概念.本题属于容易题.3.错误!解析:从5件产品中任意抽取2件有10种不同的方法,其中抽得一件合格、另一件不合格的方法种数为6种,所以所求的概率为P=错误!=错误!。

本题主要考查概率知识.本题属于容易题.4. 1+错误!解析:几何体是由一个棱长为1的正方体和一个正四棱锥组成,正方体的体积为1,正四棱锥的高为22,底面积为1,体积为错误!,则该空间几何体体积V=1+错误!。

本题考查了正方体和正四棱锥的体积.本题属于容易题.5。

2 解析:双曲线错误!-错误!=1(m〉0)的渐近线方程为错误!-错误!=0,即y=±m2x,又双曲线错误!-错误!=1的渐近线方程为y=±错误!x,所以m=2. 本题主要考查了双曲线的渐近线方程,属于容易题.6。

江苏省普通高等学校高三数学随堂小测评(二十一) Word版含答案

江苏省普通高等学校高三数学随堂小测评(二十一) Word版含答案

随堂小测评(二十一)1. 若复数(a -2)+i(i 是虚数单位)是纯虚数,则实数a =__________.2. 已知sin α=13,且α∈⎝⎛⎭⎫π2,π,则tan α=____________. 3. 为了了解某校男生体重情况,将样本数据整理后,画出其频率分布直方图(如图).已知图中从左到右的前3个小组的频率之比为1∶2∶3,第3小组的频数为12,则样本容量是____________.4. 在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为__________.5. 已知等差数列{a n }满足:a 1=-8,a 2=-6.若将a 1,a 4,a 5都加上同一个数m ,所得的三个数依次成等比数列,则m 的值为____________.6. 若抛物线y 2=8x 的焦点F 与双曲线x 23-y 2n =1的一个焦点重合,则n 的值为____________.7. 在△ABC 中,BC =2,A =2π3,则AB →·AC →的最小值为____________. 随堂小测评(二十一)1. 2解析:a -2=0,a =2.本题主要考查纯虚数的概念,属于容易题.2.-24解析:∵ α∈⎝⎛⎭⎫π2,π,∴ cos α=-1-⎝⎛⎭⎫132=-223.∴ tan α=-24. 3. 32解析:前3组的频数和为1212=24,后2组的频率和为(0.037 5+0.012 5)×5=0.25,∴前3组频率和为1-0.25=0.75,∴样本容量为240.75=32. 4.2555解析:圆心(2,-1)到直线x +2y -3=0的距离为|2+2×(-1)-3|12+22=355,则弦长为2·4-⎝⎛⎭⎫3552=2555. 5.-1 解析:由a 1=-8,a 2=-6,得d =2,则a 4=-2,a 5=0,a 1,a 4,a 5都加上同一个数m ,所得的三个数为-8+m ,-2+m ,m ,则(-8+m)m =(-2+m)2,解得m =-1.本题考查了等差数列与等比数列的通项公式与简单性质.本题属于容易题.6. 1解析:抛物线y 2=8x 的焦点F(2,0),则c =2,c 2=3+n ,则n =1.本题考查了抛物线与双曲线的焦点的概念以及双曲线中基本量之间的关系.本题属于容易题.7.-23解析:在△ABC 中,AB 2+AC 2-BC 2=2AB·AC ·cosA ,即AB 2+AC 2-4=-AB·AC ,AB 2+AC 2=4-AB·AC.又AB 2+AC 2≥2AB ·AC ,则有4-AB·AC ≥2AB·AC ,AB ·AC ≤43.所以AB →·AC →=AB·AC·cos ∠A ≥-23.。

江苏省普通高等学校高三数学随堂小测评(二十三)

江苏省普通高等学校高三数学随堂小测评(二十三)

随堂小测评(二十三)1。

已知p:x2-2x-3<0,q:错误!<0,若p且q为真,则x的取值范围是____________.2。

复数(3+i)m-(2+i)对应的点在第三象限内,则实数m的取值范围是____________.3. 如果函数y=3cos(2x+φ)的图象关于点错误!中心对称,那么|φ|的最小值为____________.4。

某用人单位从甲、乙、丙、丁4名应聘者中招聘2人,若每名应聘者被录用的机会均等,则甲、乙2人中至少有1人被录用的概率为________.5. 已知{a n}是递增数列,且对任意的n∈N*,a n=n2+λn恒成立,则实数λ的取值范围是____________.6。

如图,在△ABC中,已知AB=4,AC=6,∠BAC=60°,点D,E分别在边AB,AC 上,且错误!=2错误!,错误!=3错误!,点F为DE的中点,则错误!·错误!的值为__________.7。

在平面直角坐标系xOy中,圆C的方程为(x-1)2+(y-1)2=9,直线l:y=kx +3与圆C相交于A、B两点,M为弦AB上一动点,以M为圆心,2为半径的圆与圆C总有公共点,则实数k的取值范围为__________.随堂小测评(二十三)1。

(-1,2)解析:由题意错误!即错误!则-1<x<2。

2。

错误!解析:(3+i)m-(2+i)=(3m-2)+(m-1)i.由题意有错误!解得m<错误!。

3。

错误!解析:由题意3cos错误!=0,错误!+φ=kπ+错误!,则φ=kπ-错误!,k ∈Z.所以|φ|的最小值错误!.4。

错误!解析:基本事件为{甲乙,甲丙,甲丁,乙丙,乙丁,丙丁},从而甲、乙2人中至少有1人被录用的概率为错误!。

本题考查用列举法求古典概型的概率.本题属于容易题.5. (-3,+∞)解析:设f(n)=a n=n2+λn,其图象的对称轴为直线n=-错误!,要使数列{a n}为递增数列,只需使定义在正整数上的函数f(n)为增函数,故只需满足f(1)<f (2),即λ>-3。

江苏省普通高等学校高三数学随堂小测评(二十)

江苏省普通高等学校高三数学随堂小测评(二十)

随堂小测评(二十)1。

已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k 为____________.2。

如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩,则方差较小的那组同学成绩的方差为__________.甲组乙组 8 86 2 9 0 1 53。

设等差数列{a n }的前n n 576+a 8=-2,则当S n 取得最大值时n 的值是__________.4. 如图,在平面四边形ABCD 中,若AC =3,BD =2,则(错误!+错误!)·(错误!+错误!)=__________.5. 已知函数f(x)=⎩⎨⎧-x 2x ≥0,x 2+2x ,x 〈0,则不等式f (f(x ))≤3的解集为__________.6。

若△ABC 的内角满足sinA +2sinB =2sinC,则cosC 的最小值是__________.7。

已知A 为椭圆错误!+错误!=1上的动点,MN 为圆(x -1)2+y 2=1的一条直径,则错误!·错误!的最大值为__________.随堂小测评(二十)1。

3 解析:2a-3b=(2k-3,-6),由(2a-3b)⊥c得(2k-3)×2+(-6)×1=0,k=3.2.错误!解析:乙组数学成绩波动较小,则其方差较小,他们的数学成绩为90,91,95,平均数为92,则s2=错误!=错误!。

本题考查了平均数及方差的概念及计算公式.本题属于容易题.3. 6 解析:由a5+a7=4得a6=2,由a6+a8=-2得a7=-1。

则当n=6时,S n最大.4. 5 解析:(错误!+错误!)·(错误!+错误!)=(错误!+错误!+错误!-错误!)·(错误!+错误!)=(错误!-错误!)·(错误!+错误!)=错误!2-错误!2=9-4=5.5. (-∞,错误!] 解析:由f(x)≤3,得x≥-3,而f(f(x))≤3,则f(x)≥-3。

江苏省普通高等学校高三数学20套随堂小测试试题

江苏省普通高等学校高三数学20套随堂小测试试题

随堂小测评(一)1. 已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A∪B)=____________.2. 函数f(x)=x -2+1x -3的定义域是__________.3. 已知正三角形ABC 的边长为23,圆O 是该三角形的内切圆,P 是圆O 上的任意一点,则PA →·PB →的最大值为____________.4. 根据如图所示的伪代码,可知输出的结果S 为________.S←1I←1 While I<8 S←S+2 I←I+3 End While Print S5. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知A =π6,a =1,b =3,则B=________.6. 若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则lna 1+lna 2+…+lna 20=____________.7. 已知函数f(x)=2sin(ωx +φ)(ω>0,0≤φ<2π)的部分图象如图所示,则f(π)=__________.1. 设集合M ={x|x 2+2x =0,x ∈R },N ={x|x 2-2x =0,x ∈R },则M ∪N =__________. 2. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只颜色不同的概率为________.3. 已知角φ的终边经过点P(1,-2),若函数f(x)=sin(3x +φ),则f ⎝ ⎛⎭⎪⎫π12=__________.4. 对于直线m ,n 和平面α,β,γ,有如下四个命题: ① 若m∥α,m ⊥n ,则n⊥α; ② 若m⊥α,m ⊥n ,则n∥α; ③ 若α⊥β,γ⊥β,则α∥γ; ④ 若m⊥α,m ∥n ,nβ,则α⊥β.其中正确的命题是__________.(填序号)5. 过点P ⎝ ⎛⎭⎪⎫12,1的直线l 与圆C :(x -1)2+y 2=4交于A ,B 两点,当∠ACB 最小时,直线l 的方程为__________.6. 设x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为__________.7. 将函数f(x)=sin ⎝ ⎛⎭⎪⎫3x +π4的图象向右平移π3个单位长度,得到y =g(x)的图象,则函数y =g(x)在⎣⎢⎡⎦⎥⎤π3,2π3上的最小值为________.1. 已知集合M ={x|x =a 2-3a +2,a ∈R },N ={x|y =log 2(x 2+2x -3)},则M∩N=__________.2. 设F 1,F 2是双曲线C :x 2a 2-y2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若PF 1+PF 2=6a ,且△PF 1F 2的最小内角为30°,则双曲线的离心率为__________.3. 在△ABC 中,∠C =90°,M 是BC 的中点,若sin ∠BAM =13,则sin ∠BAC =__________.4. 已知i 是虚数单位,则1-i(1+i )2的实部为__________.5. 已知函数f(x)=⎩⎪⎨⎪⎧2x 3+3x 2+m ,0≤x ≤1,mx +5,x >1.若函数f(x)的图象与x 轴有且只有两个不同的交点,则实数m 的取值范围为____________.6. 已知常数t 是负实数,则函数f(x)=12t 2-tx -x 2的定义域是____________. 7. 在体积为V 的三棱锥SABC 的棱AB 上任取一点P ,则三棱锥SAPC 的体积大于V3的概率是____________.1. 设集合M ={2,0,x},集合N ={0,1},若NM ,则实数x 的值为__________.2. 若复数z 满足z --2=i(1+i)(i 为虚数单位),则z =____________.3. 已知双曲线x 2a 2-y2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为____________.4. 若一组样本数据8,x ,10,11,9的平均数为10,则该组样本数据的方差为____________.5. 若实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y≤2,x -y≥-1,x +y≥1,则目标函数z =2x +y 的最小值为__________.6. 若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时{a n }的前n 项和最大.7. 动直线y =k(x -2)与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取得最大值时,k 的值为____________.1. 函数y=x-1的定义域为A,函数y=lg(2-x)的定义域为B,则A∩B=__________.2. 已知复数z=2i1-i-1,其中i为虚数单位,则z的模为__________.3. 已知向量a=(1,2),b=(0,-1),c=(k,-2),若(a-2b)⊥c,则实数k=____________.4. 在△ABC中,已知sinA∶sinB∶sinC=2∶3∶4,则cosC=________.5. 下图是一个算法的流程图,则输出的n=__________.6. 在平面直角坐标系xOy中,若曲线y=lnx在x=e(e为自然对数的底数)处的切线与直线ax-y+3=0垂直,则实数a的值为________.7. 设数列{a n}为等差数列,数列{b n}为等比数列.若a1<a2,b1<b2,且b i=a2i(i=1,2,3),则数列{b n}的公比为__________.1. 已知集合A ={-1,1,3},B ={2,2a-1},A ∩B ={1},则实数a 的值为__________. 2. 已知复数z =(1+i)(1-2i)(i 为虚数单位),则z 的实部为________.3. 现有在外观上没有区别的5件产品,其中3件合格,2件不合格,从中任意抽检2件,则一件合格,另一件不合格的概率为__________.4. 已知一个空间几何体的所有棱长均为1 cm ,其表面展开图如图所示,则该空间几何体的体积V =________ cm 3.5. 已知双曲线x 24-y 2m =1的渐近线方程为y =±22x ,则m =_______.6. 在矩形ABCD 中,对角线AC 与相邻两边所成的角为α、β,则有cos 2α+cos 2β=1.类比到空间中的一个正确命题是:在长方体ABCDA 1B 1C 1D 1中,对角线AC 1与相邻三个面所成的角为α、β、γ,则有____________.7. 已知圆C :(x -a)2+(y -a)2=1(a >0)与直线y =3x 相交于P 、Q 两点,若∠PCQ=90°,则实数a =________.1. 已知集合A ={x|x =2k -1,k ∈Z },B ={x|-1≤x≤3},则A∩B=__________.2. 设复数z =a +i1-i (i 是虚数单位,a ∈R ).若复数z 的虚部为3,则a =__________.3. 下图是一个算法的伪代码,输出结果是__________.S←0a←1For I From 1 To 3 Step 1 a←2×a S←S+a End For Print S4. 在三张奖券中有一、二等奖各一张,另一张无奖,甲、乙两人各抽取一张(不放回),两人都中奖的概率为__________.5. 已知ω>0,函数f(x)=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是__________.6. 设函数f(x)=x 2+c ,g(x)=ae x的图象的一个公共点为P(2,t),且曲线y =f(x),y =g(x)在点P 处有相同的切线,函数y =f(x)-g(x)的负零点在区间(k ,k +1)(k∈Z )内,则k =__________.7. 设数列{a n }满足a 1=3,当a n ≠0时,a n +1=⎩⎨⎧⎭⎬⎫1a n ;当a n =0时,a n +1=0.则a 2 016=____________.(注:[x]为不超过实数x 的最大整数,记{x}=x -[x].)1. 已知复数z 满足(1-i)z =1+i ,则z 的模为____________.2. 已知集合A ={0,1,2},则集合B ={x -y|x∈A,y ∈A}中元素的个数是__________.3. 实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x ≥1,y ≥1,则z =x -2y 的最小值为__________.4. 在区间[-1,1]上随机地取一个实数x ,则使得cos πx 2的值介于0到12的概率为__________.5. 已知等差数列{a n },a 3+a 8=10,则3a 5+a 7=__________.6. 如图,圆O 的内接△ABC 中,M 是BC 的中点,AC =3.若AO →·AM →=4,则AB =__________.7. 设f(x)=4x 3+mx 2+(m -3)x +n(m 、n∈R )是R 上的单调增函数,则m =____________.1. 已知集合A ={x|y =lg(x -x 2)},B ={x|x 2-cx <0,c >0}.若A B ,则实数c 的取值范围是____________.2. 已知复数z 满足(3+4i)z =1(i 为虚数单位),则z 的模为________.3. 在锐角△ABC 中,角A 、B 所对的边长分别为a 、b ,若2asinB =3b ,则角A 等于____________.4. 设向量a ,b 满足|a +b|=10,|a -b|=6,则a·b =__________.5. 若实数x ,y 满足x +y -4≥0,则z =x 2+y 2+6x -2y +10的最小值为____________.6. 已知S n 是等差数列{a n }的前n 项和,若S 7=7,S 15=75,则数列⎩⎨⎧⎭⎬⎫S n n 的前20项和为__________.7. 在三棱柱ABCA 1B 1C 1中,侧棱AA 1⊥平面AB 1C 1,AA 1=1,底面△ABC 是边长为2的正三角形,则此三棱柱的体积为____________.1. 设集合A =⎩⎨⎧⎭⎬⎫-1,0,12,3,B ={x|x 2≥1},则A∩B=__________.2. 已知z =(a -i)(1+i )(a∈R ,i 为虚数单位),若复数z 在复平面内对应的点在实轴上,则a =____________.3. 已知双曲线C 的离心率为2,它的一个焦点是抛物线x 2=8y 的焦点,则双曲线C 的标准方程为____________.4. 下图是一个算法流程图,则输出k 的值是____________.5. 在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知b -c =14a ,2sinB =3sinC ,则cosA =____________.6. 若实数x ,y 满足x >y >0,且log 2x +log 2y =1,则x 2+y2x -y的最小值为____________.7. 在等比数列{a n }中,a 1=1,前n 项和为S n .若数列⎩⎨⎧⎭⎬⎫S n +12也是等比数列,则S n =____________.1. 设全集U ={x∈N |x≥2},集合A ={x∈N |x 2≥5},则∁U A =__________. 2. 已知等差数列{a n }的首项a 1=1,前三项之和S 3=9,则a n =________.3. 在平面向量a 、b 中,若a =(4,-3),|b|=1,且a ·b =5,则向量b =____________.4. 为了解某学校1 500名高中男生的身体发育情况,抽查了该校100名高中男生的体重情况.根据所得数据画出样本的频率分布直方图如图,据此估计该校高中男生体重在70~78 kg 的人数为__________.5. 过圆x 2+(y -2)2=4外一点A(2,-2),引圆的两条切线,切点为T 1、T 2,则直线T 1T 2的方程为____________.6. 已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =________.7. 已知不等式组⎩⎪⎨⎪⎧x≤1,x +y +2≥0,kx -y≥0表示的平面区域为Ω,其中k≥0,则当Ω的面积最小时k 为__________.1. 设集合M ={x|x 2-3x -4<0},N ={x|0≤x≤5},则M∩N=____________. 2. 函数f(x)=1(log 2x )2-1的定义域为____________.3. 向量a =(2,3),b =(-1,2),若m a +b 与a -2b 平行,则m =____________.4. 若不等式x 2-2x +3≤a 2-2a -1在R 上的解集是则实数a 的取值范围是____________.5. 已知抛物线y 2=4px(p >0)与双曲线x 2a 2-y2b2=1(a>0,b>0)有相同的焦点F ,点A 是两曲线的交点,且AF⊥x 轴,则双曲线的离心率为____________.6. 已知f(x)=11+x,各项均为正数的数列{a n }满足a 1=1,a n +2=f(a n ),若a 2 014=a 2 016,则a 20+a 11=____________.7. 如图,在长方体ABCDA 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则三棱锥AB 1D 1D 的体积为________ cm 3.1. 已知tan α=2,则sin (π+α)+cos (π-α)sin (-α)+cos (-α)=____________.2. 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是____________.3. 设函数f(x)=2x +lnx ,则f(x)的极________值点为x =________.4. 下面的程序运行后输出的结果为________.x←5y←-20 If x<0 Then x←y-3 Else y←y+3 End IfPrint x -y ;y -x5. 已知x >0,y >0,且2x +1y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是____________.6. 已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=____________.7. 若数列{a n }中,a 1=12,且对任意的正整数p 、q ,都有a p +q =a p ·a q ,则a n =____________.1. 设全集为R ,集合A ={x|x 2-9<0},B ={x|-1<x≤5},则A∩(∁R B)=____________. 2. 已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a =____________.3. 设函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫x∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f(x)的表达式为____________.4. “sin α=cos α”是“cos2α=0”的______________(填“充分不必要”“必要不充分”“充分必要”或“既不充分也不必要”)条件.5. 在平面直角坐标系中,O 为原点,A(-1,0),B(0,3),C(3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是____________.6. 已知数列{a n }满足a 1=254,a n +1-a n =2n ,则当n =____________时,a nn 取得最小值.7. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB|=____________.1. 已知集合A={0,1,2,3},B={2,3,4,5},则A∪B中元素的个数为____________.2. 设复数z满足z2=3+4i(i为虚数单位),则z的模为________.3. 袋中装有大小相同且质地一样的四个球,四个球上分别标有“2”“3”“4”“6”这四个数.现从中随机选取三个球,则所选的三球上的数恰好能构成等差数列的概率是__________.4. 为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50,75)中的频数为100,则n=________.5. 已知四边形ABC D为梯形,AB∥CD,l为空间一直线,则“l垂直于两腰AD、BC”是“l垂直于两底AB、DC”的______________(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)条件.6. 已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是____________.7. 在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为____________.1. 集合A ={0,2},B ={1,a 2},若A∪B={0,1,2,4},则实数a =____________. 2. 在等差数列{a n }中,若a n +a n +2=4n +6(n∈N *),则该数列的通项公式a n =____________.3. 已知a ,b ,c 是单位向量,a ⊥b ,则(a +b +2c )·c 的最大值是________.4. 已知正六棱锥PABCDEF 的底面边长为2,侧棱长为4,则此六棱锥的体积为____________.5. 已知函数y =cosx 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是____________.6. 在平面直角坐标系xOy 中,若曲线y =ax 2+b x (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是____________.7. 已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -4≤0,2x -y +1≥0,x +4y -4≥0,则z =|x|+|y -3|的取值范围是____________.1. 设复数z=1+i,若1,1z对应的向量分别为OA→和OB→,则|AB→|=__________.2. 已知集合A={x|x2-1=0},集合B=[0,2],则A∩B=__________.3. 不等式2x2-x<4的解集为____________.4. 已知函数y=log2(ax-1)在(1,2)上单调递增,则a的取值范围为______________.5. 已知等差数列{a n}的首项为4,公差为2,前n项和为S n.若S k-a k+5=44(k∈N*),则k=__________.6. 下列四个命题:①过平面外一点有且只有一条直线与该平面垂直;②过平面外一点有且只有一条直线与该平面平行;③如果两个平行平面和第三个平面相交,那么所得的两条交线平行;④如果两个平面互相垂直,那么经过第一个平面内一点且垂直于第二个平面的直线必在第一个平面内.其中所有真命题是__________.(填序号)7. 设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交曲线C于A、B两点,O为坐标原点,则△OAB的面积为____________.1. 函数f(x)=lnx +1-x 的定义域为____________.2. 下图是某个容量为100的样本的频率分布直方图,则在区间[4,5)上的数据的频数为____________.3. 已知抛物线y 2=2px 过点M(2,2),则点M 到抛物线焦点的距离为____________. 4. 如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD=30°,∠BDC =120°,CD =10 m ,并在点C 测得塔顶A 的仰角为60°,则塔高AB =________ m.5. 已知向量a =(2,1),b =(1,-2).若m a +n b =(9,-8)(m ,n ∈R ),则m -n =____________.6. 已知tan α=-2,tan(α+β)=17,则tan β=__________.7. 设数列{a n }满足a 1=1,且a n +1-a n =n +1(n∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为____________.1. 若复数z 1=a -i ,z 2=1+i(i 为虚数单位),且z 1·z 2为纯虚数,则实数a =____________.2. 已知α、β均为锐角,且cos(α+β)=sin αsin β,则tan α的最大值是________.3. 以抛物线y 2=4x 的焦点为顶点,顶点为中心,离心率为2的双曲线的标准方程为____________.4. 已知等差数列{a n }中,a 4+a 6=10,前5项和S 5=5,则其公差为____________.5. 已知直线l 1:x -2y -1=0和直线l 2:ax -by +1=0,a 、b∈{1,2,3,4},则直线l 1与直线l 2没有公共点的概率为____________.6. 若不等式x 2+2+|x 3-2x|≥ax 对x∈(0,4)恒成立,则实数a 的取值范围是____________.7. 设函数f(x)=3sin ⎝ ⎛⎭⎪⎫πx +π3和g(x)=sin ⎝ ⎛⎭⎪⎫π6-πx 的图象在y 轴左、右两侧靠近y 轴的交点分别为M 、N ,已知O 为原点,则OM →·ON →=__________.1. 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k 为____________.2. 如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩,则方差较小的那组同学成绩的方差为__________.3. 设等差数列{a n }的前n n 576+a 8=-2,则当S n 取得最大值时n 的值是__________.4. 如图,在平面四边形ABCD 中,若AC =3,BD =2,则(AB →+DC →)·(AC →+BD →)=__________.5. 已知函数f(x)=⎩⎪⎨⎪⎧-x 2,x ≥0,x 2+2x ,x<0,则不等式f(f(x))≤3的解集为__________.6. 若△ABC 的内角满足sinA +2sinB =2sinC ,则cosC 的最小值是__________.7. 已知A 为椭圆x 29+y 25=1上的动点,MN 为圆(x -1)2+y 2=1的一条直径,则AM →·AN →的最大值为__________.1. 若复数(a -2)+i(i 是虚数单位)是纯虚数,则实数a =__________.2. 已知sin α=13,且α∈⎝ ⎛⎭⎪⎫π2,π,则tan α=____________. 3. 为了了解某校男生体重情况,将样本数据整理后,画出其频率分布直方图(如图).已知图中从左到右的前3个小组的频率之比为1∶2∶3,第3小组的频数为12,则样本容量是____________.4. 在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为__________.5. 已知等差数列{a n }满足:a 1=-8,a 2=-6.若将a 1,a 4,a 5都加上同一个数m ,所得的三个数依次成等比数列,则m 的值为____________.6. 若抛物线y 2=8x 的焦点F 与双曲线x 23-y 2n =1的一个焦点重合,则n 的值为____________.7. 在△ABC 中,BC =2,A =2π3,则AB →·AC →的最小值为____________.1. 在复平面内,复数z 1的对应点是Z 1(1,1),z 2的对应点是Z 2(1,-1),则z 1·z 2=__________.2. 函数f(x)=sin ⎝ ⎛⎭⎪⎫x -π4的图象在区间⎣⎢⎡⎦⎥⎤-π2,π2内的一条对称轴是____________. 3. 已知|a|=3,|b|=4,(a +b )·(a +3b )=33,则a 与b 的夹角为__________.4. 运行如图所示的流程图,如果输入a =1,b =2,则输出的a 的值为__________.5. 已知数列{a n }中,a 1=-1,a n +1·a n =a n +1-a n ,则数列通项a n =__________.6. 已知△ABC 的面积为12,且sinA =14,则1b +2c的最小值为__________. 7. 已知圆x 2+y 2=1与x 轴的两个交点为A 、B ,若圆内的动点P 使得PA 、PO 、PB 成等比数列,则PA →·PB →的取值范围为____________.1. 已知p :x 2-2x -3<0,q :1x -2<0,若p 且q 为真,则x 的取值范围是____________. 2. 复数(3+i)m -(2+i)对应的点在第三象限内,则实数m 的取值范围是____________.3. 如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为____________.4. 某用人单位从甲、乙、丙、丁4名应聘者中招聘2人,若每名应聘者被录用的机会均等,则甲、乙2人中至少有1人被录用的概率为________.5. 已知{a n }是递增数列,且对任意的n∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是____________.6. 如图,在△ABC 中,已知AB =4,AC =6,∠BAC =60°,点D ,E 分别在边AB ,AC 上,且AB →=2AD →,AC →=3AE →,点F 为DE 的中点,则BF →·DE →的值为__________.7. 在平面直角坐标系xOy 中,圆C 的方程为(x -1)2+(y -1)2=9,直线l :y =kx +3与圆C 相交于A 、B 两点,M 为弦AB 上一动点,以M 为圆心,2为半径的圆与圆C 总有公共点,则实数k 的取值范围为__________.1. 已知集合M ={3,2a },N ={a ,b},若M∩N={4},则M∪N=________.2. 已知复数z =3-2i i(i 是虚数单位),则复数z 所对应的点位于复平面的第________象限.3. 根据如图所示的伪代码,输出的S 的值为________.S←0I←0While I ≤4I←I+1S←S+IEnd WhilePrint S4. 设l 、m 为两条不同的直线,α、β为两个不同的平面,下列命题中正确的是________.(填序号)① 若l⊥α,m ∥β,α⊥β,则l⊥m;② 若l∥m,m ⊥α,l ⊥β,则α∥β;③ 若l∥α,m ∥β,且α∥β,则l∥m;④ 若α⊥β,α∩β=m ,lβ,l ⊥m ,则l⊥α. 5. 存在实数x ,使得x 2-4bx +3b <0成立,则b 的取值范围是____________.6. 已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为____________.7. 在Rt △ABC 中,CA =CB =2,M 、N 是斜边AB 上的两个动点,且MN =2,则CM →·CN →的取值范围为____________.1. 已知z·(1+i)=2+i ,则复数z =__________.2. 在等比数列{a n }中,已知a 3=4,a 7-2a 5-32=0,则a 7=__________.3. 设向量a =(sin2θ,cos θ),b =(cos θ,1),则“a∥b”是“tan θ=12”成立的______________(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)条件.4. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为__________.5. 一个社会调查机构就某地居民的月收入情况调查了10 000人,并根据所得数据画出样本的频率分布直方图(如图所示).为了分析居民的收入与年龄、学历、职业等方面的关系,再从这10 000人中用分层抽样方法抽出100人作进一步调查,则在[2 500,3 500)(元/月)收入段应抽出________人.6. 若斜率互为相反数且相交于点P(1,1)的两条直线被圆O :x 2+y 2=4所截得的弦长之比为62,则这两条直线的斜率之积为__________. 7. 若二次函数f(x)=ax 2-4x +c 的值域为[0,+∞),则a c 2+4+c a 2+4的最小值为__________.1. 已知全集U ={-2,-1,0,1,2},集合A ={-1,0,1},B ={-2,-1,0},则A∩∁U B =__________.2. 函数f(x)=xn 2-3n(n∈Z )是偶函数,且y =f(x)在(0,+∞)上是减函数,则n =________.3. 已知实数x ,y 满足条件⎩⎪⎨⎪⎧|x|≤1,|y|≤1,则z =2x +y 的最小值是________.4. 若实数m ,n ∈{-1,1,2,3},且m≠n,则方程x 2m +y 2n=1表示的曲线是焦点在x 轴上的双曲线的概率为________.5. 设S n 是公差不为零的等差数列{a n }的前n 项和,若a 1=20,且a 3,a 7,a 9成等比数列,则S 10=__________.6. 函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的图象向左平移φ⎝⎛⎭⎪⎫0<φ<π2个单位后,所得函数图象关于原点中心对称,则φ=____________.7. 已知圆M :(x -1)2+(y -1)2=4,直线l :x +y -6=0,A 为直线l 上一点.若圆M 上存在两点B ,C ,使得∠BAC=60°,则点A 横坐标的取值范围是__________.1. 若集合U ={1,2,3,4,5},A ={2,3},B ={3,4},则∁U (A∪B)=__________.2. 若函数f(x)=2x -(k 2-3)·2-x,则k =2是函数f(x)为奇函数的____________(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)条件.3. 在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,若c 2=(a -b)2+6,C =π3,则△ABC 的面积为__________.4. 已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=____________.5. 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,以F 1F 2为直径的圆与双曲线在第一象限的交点为P ,若∠PF 1F 2=30°,则该双曲线的离心率为__________.6. 已知函数f(x)=x(|x|+4),且f(a 2)+f(a)<0,则a 的取值范围是__________.7. 记等差数列{a n }的前n 项和为S n .已知a 1=2,且数列{S n }也为等差数列,则a 13的值为____________.1. 若复数z =(x +i)(1+i)是纯虚数,其中x 为实数,i 为虚数单位,则z 的共轭复数z -=__________.2. 已知一组数据4,6,5,8,7,6,那么这组数据的平均数为__________.3. 已知A 、B 均为集合U ={2,4,6,8,10}的子集,且A∩B={4},(∁U B )∩A={10},则A =__________.4. 函数y =1x+2lnx 的单调递减区间为__________. 5. 直线ax +2y +6=0与直线x +(a -1)y +(a 2-1)=0平行,则a =__________.6. 已知圆锥的底面半径和高相等,侧面积为42π,过圆锥的两条母线作截面,截面为等边三角形,则圆锥底面中心到截面的距离为________.7. 在△ABC 中,点D 在边BC 上,且DC =2BD ,AB ∶AD ∶AC =3∶k∶1,则实数k 的取值范围为__________.随堂小测评(一)1. {4} 解析:A∪B={1,2,3},所以∁U (A∪B)={4}.2. [2,3)∪(3,+∞) 解析:要使函数有意义,x 须满足⎩⎪⎨⎪⎧x -2≥0,x -3≠0,解得x≥2且x≠3. 3. 1 解析:在正三角形ABC 中,内切圆半径r =13·32·23=1,AO =BO =2,∠AOB =120°,∠POD =θ(θ∈[0,π]).PA →·PB →=(PO →+OA →)·(PO →+OB →)=PO → 2+(OA →+OB →)·PO →+OA →·OB →=OP → 2+2OD →·PO →+OA →·OB →=OP → 2-2OD →·OP →+OA →·OB →=1+2cos θ+4cos120°=2cos θ-1.∴ (PA →·PB →)max =1.4. 7 解析:由题设流程图的循环体执行如下:第1次循环S =3,I =4;第2次循环S =5,I =7;第3次循环S =7,I =10.本题考查流程图基础知识,关键把握每一次循环体执行情况.本题属于容易题.5. π3或2π3 解析:由正弦定理得a sinA =b sinB ,即1sin π6=3sinB ,解得sinB =32.因为b>a ,所以B =π3或2π3. 6. 50 解析:由等比数列性质得a 10a 11=a 9a 12,则a 10a 11=e 5,∴ lna 1+lna 2+…+lna 20=ln(a 1·a 2·…·a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=50. 7. 2 解析:由图象知最小正周期T =23⎝ ⎛⎭⎪⎫5π4-π4=2π3=2πω,故ω=3.又x =π4时,3·π4+φ=2k π(k∈Z ),可得φ=5π4,所以f(π)=2sin ⎝⎛⎭⎪⎫3π+5π4= 2.本题考查ω与周期的关系,以及利用五点作图法逆求φ的值.本题属于中等难度题.随堂小测评(二)1. {-2,0,2} 解析:∵ M={-2,0},N ={0,2},∴ M ∪N ={-2,0,2}.2. 56解析:基本事件有6种:(白,红),(白,黄1),(白,黄2),(红,黄1),(红,黄2),(黄1,黄2),其中颜色不同的事件有5种,则这2只球颜色不同的概率为56.本题考查了古典概型求法,主要是用列举法列出基本事件总数.本题属于容易题.3. -1010 解析:因为角φ的终边经过点P(1,-2),所以sin φ=-25,cos φ=15,所以f ⎝ ⎛⎭⎪⎫π12=sin ⎝ ⎛⎭⎪⎫π4+φ=22(15-25)=-1010. 4. ④ 解析:①②n 与α可能平行、垂直或在平面α内;③α与γ可能平行、垂直或相交.5. 2x -4y +3=0 解析:当直线l 与直线CP 垂直时,∠ACB 最小.∴ k PC =1-012-1=-2.∴ k l =12.∴ l 的方程为y -1=12⎝⎛⎭⎪⎫x -12,即2x -4y +3=0. 6. 8 解析:画出可行域,可知该区域为三角形,经比较斜率,可知目标函数z =2x -y 在两条直线x -3y +1=0与x +y -7=0的交点(5,2)处时,取得最大值z =8.7. -22 解析:由题意g(x)=sin ⎣⎢⎡⎦⎥⎤3⎝⎛⎭⎪⎫x -π3+π4=sin ⎝ ⎛⎭⎪⎫3x -3π4,又x∈⎣⎢⎡⎦⎥⎤π3,2π3,则3x -3π4∈⎣⎢⎡⎦⎥⎤π4,5π4,sin(3x -3π4)∈⎣⎢⎡⎦⎥⎤-22,1.故y =g(x)的最小值为-22. 随堂小测评(三)1. (1,+∞) 解析:M =⎩⎨⎧⎭⎬⎫x|x =⎝ ⎛⎭⎪⎫a -322-14,a ∈R =[-14,+∞),N =(-∞,-3)∪(1,+∞),M ∩N =(1,+∞).2. 3 解析:不妨设P 点在右支上,PF 1-PF 2=2a ,又PF 1+PF 2=6a ,则PF 1=4a ,PF 2=2a ,则∠PF 1F 2为△PF 1F 2的最小内角,∠PF 1F 2=30°.cos ∠PF 1F 2=(4a )2+(2c )2-(2a )22·4a ·2c =3a 2+c 24ac =32.化简得⎝ ⎛⎭⎪⎫c a 2-23·c a +3=0,e = 3. 3. 63 解析:设BC =a ,AC =b ,作CD 垂直AB ,ME 垂直AB ,CM =BM =a 2,AM =b 2+a 24,CD =2ME ,sin ∠BAM =ME AM =13,ME =13AM ,CD =ab a 2+b 2,则12ab ·1a 2+b 2=13b 2+a 24,化简得2b 2=a 2,所以sin ∠BAC =CD AC =63. 4. -12 解析:1-i (1+i )2=1-i 2i =(1-i )(-i )2i (-i )=-1-i 2,实部为-12.本题主要考查复数的概念及四则运算等基础知识.本题属于容易题. 5. (-5,0) 解析:当m =0时,函数f(x)的图象与x 轴有且只有1个交点;当m>0时,函数f(x)的图象与x 轴没有交点;当m<0时,函数f(x)的图象要与x 轴有且只有两个不同的交点,则f(0)<0,且f(1)>0,得实数m 的取值范围为(-5,0).本题综合考查了函数思想和数形结合思想的运用.本题属于中等题.6. [3t ,-4t] 解析:12t 2-tx -x 2≥0(x +4t)(x -3t)≤0,∵ t<0,∴ x ∈[3t ,-4t].7. 23 解析:由题意可知V SAPC V SABC >13.如图所示,三棱锥SABC 与三棱锥SAPC 的高相同,因此V SAPC V SABC =S △APC S △ABC =PM BN =AP AB >13(PM ,BN 为其高线),故所求概率为23. 随堂小测评(四)1. 1 解析:由N M 知1∈M,则x =1.本题考查了集合的子集的概念.本题属于容易题.2. 1-i 解析:设z =x +yi(x ,y ∈R ),则x -yi -2=i -1.∴ ⎩⎪⎨⎪⎧x -2=-1,-y =1,解得⎩⎪⎨⎪⎧x =1,y =-1,∴ z =1-i. 3. x 29-y 227=1 解析:由渐近线方程y =3x ,得b a= 3.抛物线y 2=24x 的准线方程为x =-6,故双曲线的一个焦点为(-6,0),即c =6.由⎩⎨⎧a 2+b 2=36,b =3a ,得a 2=9,b 2=27. 4. 2 解析:8,x ,10,11,9的平均数为10,则x =12. 该组样本数据的方差s 2=(4+4+1+1)÷5=2.本题考查了平均数和方差公式.本题属于容易题.5. 1 解析:本题画出可行域发现z =2x +y 过点(0,1)时,z =2x +y 的最小值为1.本题主要考查简单的线性规划问题.本题属于容易题.6. 8 解析:由a 7+a 8+a 9>0得3a 8>0,a 8>0,a 7+a 10=a 8+a 9<0,则a 9<0,故当n =8时,S n 最大.7. -33解析:△AOB 的面积取得最大值,则∠AOB=90°,则半圆的圆心到直线的距离为12,利用点到直线的距离公式可得k 2=13,由图形知k <0,则k 的值为-33.本题考查三角形面积公式,点到直线的距离公式.本题属于中等题.随堂小测评(五)1. [1,2) 解析:A =[1,+∞),B =(-∞,2),则A∩B=[1,2).2. 5 解析:z =-2+i ,z 的模为 5.本题主要考查复数的概念及四则运算等基础知识.本题属于容易题.3. 8 解析:a -2b =(1,4),(a -2b )·c =k -8=0,则k =8.本题考查了向量的坐标运算,属于容易题.4. -14 解析:由正弦定理a∶b∶c=2∶3∶4,因此cosC =a 2+b 2-c 22ab =4+9-162×2×3=-14. 5. 9 解析:由流程图的循环体执行如下:第1次循环S =2,n =3;第2次循环S =10,n =5;第3次循环S =42,n =7;第4次循环S =170,n =9.本题考查流程图基础知识,关键把握每一次循环体执行情况.本题属于容易题.6. -e 解析:k 1=e -1,k 2=a ,两直线垂直,则e -1 a =-1,a =-e.本题考查了导数的几何意义及两条直线垂直,属于容易题. 7. 3+2 2 解析:设a 1,a 2,a 3分别为a -d ,a ,a +d.因为a 1<a 2,所以d >0.又b 22=b 1b 3,所以a 4=(a -d)2(a +d)2=(a 2-d 2)2,则a 2=d 2-a 2或a 2=a 2-d 2(舍去),则d =±2a.若d =-2a ,则q =b 2b 1=⎝ ⎛⎭⎪⎫a 2a 12=(1-2)2=3-22<1,舍去;若d =2a ,则q =⎝ ⎛⎭⎪⎫a 2a 12=3+2 2.随堂小测评(六)1. 1 解析:2a -1=1,a =1.本题主要考查集合的概念与运算等基础知识.本题属于容易题.2. 3 解析:复数z =(1+i)(1-2i)=3-i ,z 的实部为3.本题考查复数的基本运算和复数实部的概念.本题属于容易题.3. 35解析:从5件产品中任意抽取2件有10种不同的方法,其中抽得一件合格、另一件不合格的方法种数为6种,所以所求的概率为P =610=35.本题主要考查概率知识.本题属于容易题.4. 1+26 解析:几何体是由一个棱长为1的正方体和一个正四棱锥组成,正方体的体积为1,正四棱锥的高为22,底面积为1,体积为26,则该空间几何体体积V =1+26.本题考查了正方体和正四棱锥的体积.本题属于容易题.5. 2 解析:双曲线x 24-y 2m =1(m>0)的渐近线方程为x 24-y 2m =0,即y =±m 2x ,又双曲线x 24-y 2m =1的渐近线方程为y =±22x ,所以m =2. 本题主要考查了双曲线的渐近线方程,属于容易题.6. cos 2α+cos 2β+cos 2γ=2 解析:设长方体的长、宽、高分别为a 、b 、c ,则cos2α=a 2+b 2a 2+b 2+c 2,cos 2β=b 2+c 2a 2+b 2+c 2,cos 2γ=c 2+a 2a 2+b 2+c2,故cos 2α+cos 2β+cos 2γ=2(c 2+a 2+b 2)a 2+b 2+c2=2.本题考查类比问题,考查线面角的概念及简单计算.属于中等题. 7. 52 解析:圆的半径为1,∠PCQ =90°,故圆心到直线的距离为22.由点到直线距离公式得|3a -a|9+1=22,又a>0,故a =52.本题考查直线与圆的位置关系及点到直线距离公式,属于中等题.随堂小测评(七)1. {-1,1,3} 解析:B 中的奇数有-1,1,3, A ∩B ={-1,1,3}.本题主要考查集合的概念与运算等基础知识.本题属于容易题.2. 5 解析:∵ z=a +i 1-i =(a +i )(1+i )(1-i )(1+i )=a -12+a +12i ,且z 的虚部为3,∴ a +12=3,解得a =5.本题主要考查复数的基本概念、基本运算等基础知识,属于容易题.3. 14 解析:图中伪代码表示的算法是S =2+4+8=14,所以输出S =14.本题主要考查算法流程图的基础知识,属于容易题.4. 13解析:用列举法列出基本事件总数:(一、二),(一、无),(二、一),(二、无),(无、二),(无、一),两人都中奖的基本事件数为2,两人都中奖的概率为13.本题主要考查古典概型的求法.本题属于容易题.5. ⎣⎢⎡⎦⎥⎤12,54 解析:由π2<x <π得π2ω+π4<ωx +π4<πω+π4,由题意知⎝⎛⎭⎪⎫π2ω+π4,πω+π4⎣⎢⎡⎦⎥⎤π2,3π2, 所以⎩⎪⎨⎪⎧π2ω+π4≥π2,πω+π4≤3π2,解得12≤ω≤54. 6. -1 解析:由题意,因为函数f(x)=x 2+c 与g(x)=ae x 的图象的一个公共点为P(2,t),所以c +4=ae 2=t ,f ′(x)=2x ,g ′(x)=ae x .因为曲线y =f(x),y =g(x)在点P 处有相同的切线,所以f′(2)=g′(2),即4=ae 2,所以a =4e 2,c =0,f(x)=x 2,g(x)=4e2e x .记F(x)=f(x)-g(x),因为F(-1)=f(-1)-g(-1)=1-4e 3>0,F(0)=f(0)-g(0)=0-4e2<0,所以F(-1)F(0)<0,所以函数F(x)=f(x)-g(x)的负零点在区间(-1,0)内,故k =-1.本题主要考查导数的几何意义、导数的求法,函数零点存在性定理及其应用等基础知识,考查等价转化与数形结合思想,属于中等题.7. 3-12 解析:由已知条件给出的数列递推关系可得a 2=⎩⎨⎧⎭⎬⎫1a 1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫13=13-0=33,a 3=⎩⎨⎧⎭⎬⎫1a 2={3}=3-1,a 4=⎩⎨⎧⎭⎬⎫1a 3=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫13-1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3+12=3+12-1=3-12,a 5=⎩⎨⎧⎭⎬⎫1a 4=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫23-1={3+1}=3+1-2=3-1,由此计算过程可发现,当n 为大于2的奇数时,a n =3-1,当n 为大于2的偶数时,a n =3-12,故a 2 016=3-12.本题用新定义创新考查了递推数列,考查了阅读理解与归纳推理能力,属于中等题.随堂小测评(八)1. 1 解析:z =1+i 1-i =2i 2=i ,z 的模为1.本题主要考查复数模的概念及四则运算等基础知识.本题属于容易题. 2. 5 解析:B ={0,-1,-2,1,2}.3. -2 解析:画出可行域,其中A ⎝ ⎛⎭⎪⎫1,32.由图可知,z min =-2.本题考查线性规划基础知识.本题属于容易题.4. 13解析:这是一个几何概型,其概率的值就是对应区间长度的比值.因为-1≤x≤1时-π2≤πx 2≤π2,又当-π2≤πx 2≤-π3或π3≤πx 2≤π2时,0≤cos πx 2≤12,此时-1≤x≤-23或23≤x ≤1,故所求概率P =13+132=13. 5. 20 解析:3a 5+a 7=2a 5+(a 7+a 5)=2a 5+2a 6=2(a 5+a 6)=2(a 3+a 8)=20.6. 7 解析:取AC 的中点N ,则AO →=AN →+NO →,ON ⊥AC ,则AO →·AC →=(AN →+NO →)·AC →=12|AC →|2.同理AO →·AB →=12|AB →|2.又AO →·AM →=4,则AO →·AM →=12AO →·(AB →+AC →)=14|AB →|2+14|AC →|2=4,得AB =7.本题考查了向量的分解、垂径定理、数量积等内容.本题属于中等题. 7. 6 解析:f′(x)=12x 2+2mx +m -3≥0恒成立,则Δ=4m 2-48(m -3)≤0,即m2-12m +36=(m -6)2≤0,即m =6.本题考查函数单调性与导数、一元二次不等式恒成立的条件,本题属于中等题.随堂小测评(九)1. [1,+∞) 解析:A =(0,1),B =(0,c).若A B ,则c≥1.2. 15 解析:z =13+4i =3-4i (3+4i )(3-4i )=3-4i 25,z 的模为15.本题主要考查复数的概念及四则运算等基础知识.本题属于容易题.3. π3解析:由正弦定理得2sinAsinB =3sinB.∵ sinB ≠0, ∴ sinA =32.又△ABC 为锐角三角形,∴ A =π3. 4. 1 解析:(a +b )2=a 2+2a·b +b 2=10,(a -b )2=a 2-2a·b +b 2=6,两式相减得4a·b =4,故a·b =1.5. 18 解析:z =x 2+y 2+6x -2y +10=(x +3)2+(y -1)2的最小值即点(-3,1)到直线x +y -4=0的距离的平方,即32的平方,答案为18.本题考查了线性规划的知识和点到直线的距离公式.本题属于中等题.6. 55 解析:设公差为d ,则⎩⎪⎨⎪⎧7a 1+7×62d =7,15a 1+15×142d =75⎩⎪⎨⎪⎧a 1=-2,d =1, 故S n =-2n +n (n -1)2×1=n 22-5n 2,S n n =n 2-52,这是等差数列,首项为-2,公差为12,故前20项和为-2×20+20×192×12=55.本题考查等差数列的通项及前n 项和公式,对基本量的计算要准确.属于中等题.7. 2 解析:△A 1B 1C 1边长为2,高为3,AA 1=1,△AB 1C 1的高为2,则△AB 1C 1的面积为2,三棱锥A 1AB 1C 1体积为23,三棱柱的体积为三棱锥A 1AB 1C 1体积的3倍,即 2.本题主要考查同底的柱体体积与锥体体积的关系以及线面垂直的性质运用.本题属于中等题.随堂小测评(十)1. {-1,3} 解析:(-1)2≥1,32≥1,则A∩B={-1,3}.本题主要考查集合的交集运算,属于容易题.2. 1 解析:z =(a -i)(1+i)=a +1+(a -1)i ,∵ z 在复平面内对应的点在实轴上,∴ a -1=0,从而a =1.3. y 2-x 23=1 解析:c =2,a =1,则b 2=3,双曲线的焦点在y 轴上,则双曲线的标准方程为y 2-x 23=1.本题考查抛物线的焦点、双曲线的离心率等概念.本题属于容易题. 4. 6 解析:由题设流程图的循环体执行如下:第1次循环后S =38,k =2;第2次循环后S =34,k =3;第3次循环后S =26,k =4;第4次循环后S =10,k =5;第5次循环后S =-22,k =6.本题考查流程图基础知识,关键把握每一次循环体执行情况.本题属于容易题.5. -14 解析:由正弦定理得2b =3c ,又b -c =14a ,则b =32c ,a =2c ,cosA =b 2+c 2-a 22bc =94c 2+c 2-4c 22·32c ·c =-14.6. 4 解析:由log 2x +log 2y =1,得xy =2,x 2+y 2x -y =x 2-2xy +y 2+2xy x -y =(x -y )2+4x -y=x -y +4x -y ≥4,则x 2+y 2x -y的最小值为4.本题考查对数的运算以及基本不等式的运用.本题属于中等题.7. 3n -12 解析:设等比数列{a n }的公比为q ,当q =1时,S n =n ,S n +12=n +12,此时⎩⎨⎧⎭⎬⎫S n +12不是等比数列;当q≠1时,S n =1-q n 1-q ,∴ S n +12=1-q n 1-q +12=1-q n +12-12q 1-q =12(3-q )-q n 1-q.∵ ⎩⎨⎧⎭⎬⎫S n +12是等比数列,∴ q =3,从而S n =3n -12. 随堂小测评(十一)1. {2} 解析:∁U A ={x∈N |2≤x<5}={2}.2. 2n -1 解析:设等差数列{a n }的公差为d ,由S 3=a 1+(a 1+d)+(a 1+2d)=9,即3a 1+3d =9,所以a 1+d =3.因为a 1=1,所以d =2,故a n =a 1+(n -1)d =1+2(n -1)=2n -1.3. ⎝ ⎛⎭⎪⎫45,-35 解析:|a|=5,cos 〈a ,b 〉=a·b |a||b|=1,a 、b 方向相同,则b =15a =⎝⎛⎭⎪⎫45,-35. 4. 180 解析:由频率分布直方图得到体重在70~78 kg 的男生的频率为(0.02+0.01)×4=0.12,所以该校1 500名高中男生中体重在70~78 kg 的人数大约为0.12×1 500=180.5. x -2y +2=0 解析:设切点为(x 1,y 1),(x 2,y 2),则AT 1的方程为x 1x +(y 1-2)(y -2)=4,AT 2的方程为x 2x +(y 2-2)(y -2)=4,则2x 1-4(y 1-2)=4,2x 2-4(y 2-2)=4,所以2x -4(y -2)=4,即x -2y +2=0.6. ⎝ ⎛⎭⎪⎫32n -1 解析:因为a n +1=S n +1-S n ,所以由S n =2a n +1,得S n =2(S n +1-S n ),整理得3S n =2S n +1,所以S n +1S n =32,所以数列{S n }是以S 1=a 1=1为首项,公比q =32的等比数列,所以S n =⎝ ⎛⎭⎪⎫32n -1. 7. 1 解析:平面区域为三条直线围成的△ABC,由⎩⎪⎨⎪⎧x =1,x +y +2=0,得A(1,-3);由⎩⎪⎨⎪⎧x =1,kx -y =0,得B(1,k);由⎩⎪⎨⎪⎧x +y +2=0,kx -y =0,得C ⎝ ⎛⎭⎪⎫-2k +1,-2k k +1;S =12|AB|(1-x C )=12(k +3)⎝ ⎛⎭⎪⎫1+2k +1=12⎝ ⎛⎭⎪⎫k +1+4k +1+4.∵ k ≥0,∴ k +1>0,∴ S ≥12⎣⎢⎡⎦⎥⎤2(k +1)·4k +1+4=4,当且仅当k +1=4k +1,即k =1时,等号成立. 随堂小测评(十二)1. [0,4) 解析:因为M ={x|x 2-3x -4<0}={x|-1<x<4},N ={x|0≤x≤5},所以M∩N={x|0≤x<4}.2. ⎝ ⎛⎭⎪⎫0,12∪(2,+∞) 解析:根据题意,得⎩⎪⎨⎪⎧x>0,(log 2x )2-1>0, 解得⎩⎪⎨⎪⎧x >0,x >2或x <12. 3. -12解析:m a +b =(2m ,3m)+(-1,2)=(2m -1,3m +2),a -2b =(2,3)-(-2,4)=(4,-1),则-2m +1=12m +8,解得m =-12. 4. {a|-1<a <3} 解析:由题意得a 2-2a -1<x 2-2x +3=(x -1)2+2恒成立,所以a 2-2a -3<0,解得-1<a <3.5. 2+1 解析:设双曲线的左焦点为F′,连结AF′.∵ F 是抛物线y 2=4px 的焦点,且AF⊥x 轴,∴ 设A(p ,y 0),得y 20=4p×p,得y 0=2p ,A(p ,2p),∴ 在Rt △AFF ′中,|AF|=|FF′|=2p ,得|AF′|=22p ,∴ 双曲线x 2a 2-y 2b2=1的焦距2c =|FF′|=2p ,实轴2a =|AF′|-|AF|=2p(2-1),由此可得离心率为e =c a =2c 2a =2p 2p (2-1)=2+1. 6. 3+13526 解析:由题意得a 3=12,a 5=23,…,a 11=813.。

江苏省普通高等学校高三数学随堂小测评(七)

江苏省普通高等学校高三数学随堂小测评(七)

随堂小测评(七)1。

已知集合A={x|x=2k-1,k∈Z},B={x|-1≤x≤3},则A∩B=__________.2。

设复数z=错误!(i是虚数单位,a∈R).若复数z的虚部为3,则a=__________.3。

下图是一个算法的伪代码,输出结果是__________.S←0a←1For I From 1 To 3 Step 1a←2×aS←S+aEnd ForPrint S4. 在三张奖券中有一、二等奖各一张,另一张无奖,甲、乙两人各抽取一张(不放回),两人都中奖的概率为__________.5。

已知ω>0,函数f(x)=sin错误!在错误!上单调递减,则ω的取值范围是__________.6. 设函数f(x)=x2+c,g(x)=ae x的图象的一个公共点为P(2,t),且曲线y=f (x),y=g(x)在点P处有相同的切线,函数y=f(x)-g(x)的负零点在区间(k,k+1)(k∈Z)内,则k=__________.7. 设数列{a n}满足a1=错误!,当a n≠0时,a n+1=错误!;当a n=0时,a n+1=0。

则a2 016=____________.(注:[x]为不超过实数x的最大整数,记{x}=x-[x].)随堂小测评(七)1。

{-1,1,3}解析:B中的奇数有-1,1,3, A∩B={-1,1,3}.本题主要考查集合的概念与运算等基础知识.本题属于容易题.2. 5 解析:∵ z=a+i1-i=错误!=错误!+错误!i,且z的虚部为3,∴错误!=3,解得a =5。

本题主要考查复数的基本概念、基本运算等基础知识,属于容易题.3. 14 解析:图中伪代码表示的算法是S=2+4+8=14,所以输出S=14.本题主要考查算法流程图的基础知识,属于容易题.4。

错误!解析:用列举法列出基本事件总数:(一、二),(一、无),(二、一),(二、无),(无、二),(无、一),两人都中奖的基本事件数为2,两人都中奖的概率为错误!.本题主要考查古典概型的求法.本题属于容易题.5。

江苏省普通高等学校高三数学随堂小测评(十五)(2021年整理)

江苏省普通高等学校高三数学随堂小测评(十五)(2021年整理)

江苏省普通高等学校2017年高三数学随堂小测评(十五)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省普通高等学校2017年高三数学随堂小测评(十五))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省普通高等学校2017年高三数学随堂小测评(十五)的全部内容。

随堂小测评(十五)1. 已知集合A={0,1,2,3},B={2,3,4,5},则A∪B中元素的个数为____________.2. 设复数z满足z2=3+4i(i为虚数单位),则z的模为________.3。

袋中装有大小相同且质地一样的四个球,四个球上分别标有“2”“3”“4”“6”这四个数.现从中随机选取三个球,则所选的三球上的数恰好能构成等差数列的概率是__________.4。

为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50,75)中的频数为100,则n=________.5。

已知四边形ABC D为梯形,AB∥CD,l为空间一直线,则“l垂直于两腰AD、BC"是“l 垂直于两底AB、DC”的______________(填“充分不必要”“必要不充分"“充要"或“既不充分也不必要”)条件.6. 已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是____________.7. 在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为____________.随堂小测评(十五)1。

江苏省普通高等学校高三数学随堂小测评(十六)(2021年整理)

江苏省普通高等学校高三数学随堂小测评(十六)(2021年整理)

江苏省普通高等学校2017年高三数学随堂小测评(十六)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省普通高等学校2017年高三数学随堂小测评(十六))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省普通高等学校2017年高三数学随堂小测评(十六)的全部内容。

随堂小测评(十六)1。

集合A={0,2},B={1,a2},若A∪B={0,1,2,4},则实数a=____________.2. 在等差数列{a n}中,若a n+a n+2=4n+6(n∈N*),则该数列的通项公式a n=____________.3. 已知a,b,c是单位向量,a⊥b,则(a+b+2c)·c的最大值是________.4. 已知正六棱锥PABCDEF的底面边长为2,侧棱长为4,则此六棱锥的体积为____________.5。

已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为错误!的交点,则φ的值是____________.6. 在平面直角坐标系xOy中,若曲线y=ax2+错误!(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是____________.7. 已知实数x,y满足错误!则z=|x|+|y-3|的取值范围是____________.随堂小测评(十六)1。

±2 解析:∵ A={0,2},B={1,a2},又A∪B={0,1,2,4},∴ a2=4,解得a=±2.2. 2n+1 解析:设a n=kn+b,a n+2= kn+2k+b,a n+a n+2=2kn+2k+2b=4n+6,则2k=4,2k+2b=6,则k=2,b=1,故a n=2n+1.本题考查了等差数列通项公式的特征,并利用待定系数法求等差数列通项公式.本题属于容易题.3。

江苏省普通高等学校高三数学随堂小测评(十四)(2021年整理)

江苏省普通高等学校高三数学随堂小测评(十四)(2021年整理)

江苏省普通高等学校2017年高三数学随堂小测评(十四)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省普通高等学校2017年高三数学随堂小测评(十四))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省普通高等学校2017年高三数学随堂小测评(十四)的全部内容。

随堂小测评(十四)1。

设全集为R,集合A={x|x2-9〈0},B={x|-1〈x≤5},则A∩(∁R B)=____________.2. 已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a=____________.3. 设函数f(x)=sin(ωx+φ)错误!的部分图象如图所示,则函数f(x)的表达式为____________.4. “sinα=cosα"是“cos2α=0”的______________(填“充分不必要"“必要不充分"“充分必要”或“既不充分也不必要”)条件.5. 在平面直角坐标系中,O为原点,A(-1,0),B(0,错误!),C(3,0),动点D满足|错误!|=1,则|错误!+错误!+错误!|的取值范围是____________.6。

已知数列{a n}满足a1=错误!,a n+1-a n=2n,则当n=____________时,错误!取得最小值.7。

设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=____________.随堂小测评(十四)1。

(-3,-1] 解析:∵ A=(-3,3),∁R B =(-∞,-1]∪(5,+∞),∴ A ∩(∁R B )=(-3,-1].2。

江苏省普通高等学校高三数学随堂小测评(二十六)(2021年整理)

江苏省普通高等学校高三数学随堂小测评(二十六)(2021年整理)

江苏省普通高等学校2017年高三数学随堂小测评(二十六)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省普通高等学校2017年高三数学随堂小测评(二十六))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省普通高等学校2017年高三数学随堂小测评(二十六)的全部内容。

随堂小测评(二十六)1。

已知全集U={-2,-1,0,1,2},集合A={-1,0,1},B={-2,-1,0},则A∩∁U B =__________.2. 函数f(x)=xn2-3n(n∈Z)是偶函数,且y=f(x)在(0,+∞)上是减函数,则n=________.3. 已知实数x,y满足条件错误!则z=2x+y的最小值是________.4。

若实数m,n∈{-1,1,2,3},且m≠n,则方程错误!+错误!=1表示的曲线是焦点在x轴上的双曲线的概率为________.5. 设S n是公差不为零的等差数列{a n}的前n项和,若a1=20,且a3,a7,a9成等比数列,则S10=__________.6。

函数y=3sin错误!的图象向左平移φ错误!个单位后,所得函数图象关于原点中心对称,则φ=____________.7. 已知圆M:(x-1)2+(y-1)2=4,直线l:x+y-6=0,A为直线l上一点.若圆M上存在两点B,C,使得∠BAC=60°,则点A横坐标的取值范围是__________.随堂小测评(二十六)1。

{1}解析:因为∁U B={1,2},所以A∩∁U B={1}.2. 1或2 解析:由n2-3n<0,得0<n<3。

又n∈Z,则n=1,2。

江苏省普通高等学校高三数学随堂小测评(二十五)(2021年整理)

江苏省普通高等学校高三数学随堂小测评(二十五)(2021年整理)

江苏省普通高等学校2017年高三数学随堂小测评(二十五)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省普通高等学校2017年高三数学随堂小测评(二十五))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省普通高等学校2017年高三数学随堂小测评(二十五)的全部内容。

随堂小测评(二十五)1。

已知z·(1+i)=2+i,则复数z=__________.2。

在等比数列{a n}中,已知a3=4,a7-2a5-32=0,则a7=__________.3。

设向量a=(sin2θ,cosθ),b=(cosθ,1),则“a∥b”是“tanθ=12"成立的______________(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)条件.4. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为__________.5. 一个社会调查机构就某地居民的月收入情况调查了10 000人,并根据所得数据画出样本的频率分布直方图(如图所示).为了分析居民的收入与年龄、学历、职业等方面的关系,再从这10 000人中用分层抽样方法抽出100人作进一步调查,则在[2 500,3 500)(元/月)收入段应抽出________人.6。

若斜率互为相反数且相交于点P(1,1)的两条直线被圆O:x2+y2=4所截得的弦长之比为错误!,则这两条直线的斜率之积为__________.7。

若二次函数f(x)=ax2-4x+c的值域为[0,+∞),则错误!+错误!的最小值为__________.随堂小测评(二十五)1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省普通高等学校2017年高三数学随堂小测评(九)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省普通高等学校2017年高三数学随堂小测评(九))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省普通高等学校2017年高三数学随堂小测评(九)的全部内容。

随堂小测评(九)
1. 已知集合A={x|y=lg(x-x2)},B={x|x2-cx<0,c>0}.若A B,则实数c的取值范围是____________.
2。

已知复数z满足(3+4i)z=1(i为虚数单位),则z的模为________.
3。

在锐角△ABC中,角A、B所对的边长分别为a、b,若2asinB=错误!b,则角A等于____________.
4。

设向量a,b满足|a+b|=错误!,|a-b|=错误!,则a·b=__________.
5。

若实数x,y满足x+y-4≥0,则z=x2+y2+6x-2y+10的最小值为____________.
6. 已知S n是等差数列{a n}的前n项和,若S7=7,S15=75,则数列错误!的前20项和为__________.
7。

在三棱柱ABCA1B1C1中,侧棱AA1⊥平面AB1C1,AA1=1,底面△ABC是边长为2的正三角形,则此三棱柱的体积为____________.
随堂小测评(九)
1. [1,+∞)解析:A=(0,1),B=(0,c).若A B,则c≥1。

2。

错误!解析:z=错误!=错误!=错误!,z的模为错误!。

本题主要考查复数的概念及四则运算等基础知识.本题属于容易题.
3。

π
3
解析:由正弦定理得2sinAsinB=3sinB.∵ sinB≠0,
∴ sinA=错误!.又△ABC为锐角三角形,∴ A=错误!。

4.1 解析:(a+b)2=a2+2a·b+b2=10,(a-b)2=a2-2a·b+b2=6,两式相减得4a·b =4,故a·b=1。

5。

18 解析:z=x2+y2+6x-2y+10=(x+3)2+(y-1)2的最小值即点(-3,1)到直线x+y-4=0的距离的平方,即3错误!的平方,答案为18.本题考查了线性规划的知识和点到直线的距离公式.本题属于中等题.
6. 55 解析:设公差为d,则错误!错误!
故S n=-2n+错误!×1=错误!-错误!,错误!=错误!-错误!,这是等差数列,首项为-2,公差为错误!,故前20项和为-2×20+错误!×错误!=55.本题考查等差数列的通项及前n项和公式,对基本量的计算要准确.属于中等题.
7。

错误!解析:△A1B1C1边长为2,高为错误!,AA1=1,△AB1C1的高为错误!,则△AB1C1的面积为错误!,三棱锥A1AB1C1体积为错误!,三棱柱的体积为三棱锥A1AB1C1体积的3倍,即错误!。

本题主要考查同底的柱体体积与锥体体积的关系以及线面垂直的性质运用.本题属于中等题.。

相关文档
最新文档