2016年中考压轴题专题与圆有关的最值问题附答案
中考压轴题专题:与圆有关的最值问题(附答案)
与圆有关的最值(取值范围)问题引例1:在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________.引例2:如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,»ABBC=,AC=,求的最大值.a b a b引例3:如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为( ).A.3 B.6 CD.一、题目分析:此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C与两个定点O、A构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;2.引例2:通过圆的基本性质,寻找动点C与两个定点A、B构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D、E与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE、直径所在的直角三角形,从而转化为弦DE与半径AP之间的数量关系,其实质是高中“正弦定理”的直接运用;综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.二、解题策略1.直观感觉,画出图形;2.特殊位置,比较结果;3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.A 三、中考展望与题型训练例一、斜率运用1.如图,A 点的坐标为(﹣2,1),以A 为圆心的⊙A 切x 轴于点B ,P (m ,n)为⊙A 上的一个动点,请探索n+m 的最大值.例二、圆外一点与圆的最近点、最远点1.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .2.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧»AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)在点P 的运动过程中,线段CD 长度的取值范围为 ;(2)在点P 的运动过程中,线段AD 长度的最大值为 .例三、正弦定理 1.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=D 是线段BC 上的一个动点,以AD 为直径作⊙O 分别交AB ,AC 于E ,F 两点,连接EF ,则线段EF 长度的最小值为 .2. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,则PM 长度的最大值是 .A例四、柯西不等式、配方法1.如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x (2<x <4),则当x= 时,PD•CD 的值最大,且最大值是为 .2.如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 半径的最小值为( ).D. 23.在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与轴相交于点A ,与轴相交于点B ,线段AB 长度的x y 最小值是 .例四、相切的应用(有公共点、最大或最小夹角)1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 边上一点,过点D 作CD 的垂线交直线BC 于点E ,则线段CE 长度的最小值是 .2.如图,Rt△ABC 中,∠C=90°,∠A=30°,AB=4,以AC 上的一点O 为圆心OA 为半径作⊙O ,若⊙O 与边BC 始终有交点(包括B 、C 两点),则线段AO 的取值范围是 .3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O 于点Q,则PQ的最小值为( )A.B.C.3 D.2例五、其他知识的综合运用1.(2015•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E 重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2.(2013秋•相城区校级期末)如图,已知A、B是⊙O与x轴的两个交点,⊙O的半径为1,P是该圆上第一象限内的一个动点,直线PA、PB分别交直线x=2于C、D两点,E为线段CD的中点.(1)判断直线PE与⊙O的位置关系并说明理由;(2)求线段CD长的最小值;(3)若E点的纵坐标为m,则m的范围为 .B【题型训练】1.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C,若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,则⊙O的半径r的取值范围为 .2.已知:如图,RtΔABC中,∠B=90º,∠A=30º,BC=6cm,点O从A点出发,沿AB以每秒cm的速度向B点方向运动,当点O运动了t秒(t>0)时,以O点为圆心的圆与边AC相切于点D,与边AB相交于E、F两点,过E作EG⊥DE交射线BC于G.(1)若点G在线段BC上,则t的取值范围是;(2)若点G在线段BC的延长线上,则t的取值范围是 .3.如图,⊙M,⊙N的半径分别为2cm,4cm,圆心距MN=10cm.P为⊙M上的任意一点,Q为⊙N上的任意一点,直线PQ与连心线所夹的锐角度数为,当P、Q在两圆上任意运动时,lα的最大值为; (B);; (D) tanα∠43344.如图,在矩形ABCD中,AB=3,BC=4,O 为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为( ).(A)4 (B) (C) (D)215358174 5.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB 分别相交于点P、Q,则线段PQ长度的最小值是( ).A. B. C.5 D.1942456.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E在AB边上运动(点E不与点A重合),过A、D、E三点作⊙O,⊙O交AC于另一点F,在此运动变化的过程中,线段EF长度的最小值为.7.如图,A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心的坐标为(-1,0),半径为1,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是( ).A.2 B.1 C. D.22-8.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1,D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( ).A.3 B. C.103D.41139.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,⊙C的半径为1,点P在斜边AB上,PQ 切⊙O于点Q,则切线长PQ长度的最小值为( ).B.10.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的范围为 .11.在直角坐标系中,点A的坐标为(3,0),点P()是第一象限内一点,且AB=2,m n,则的范围为 .m n-12.在坐标系中,点A的坐标为(3,0),点P是y轴右侧一点,且AP=2,点B上直线y=x+1上一动点,且PB⊥AP于点P,则,则的取值范围是 .tan ABP m∠=m13.在平面直角坐标系中,M(3,4),P是以M为圆心,2为半径的⊙M上一动点,A(-1,0)、B(1,0),连接PA、PB,则PA2+PB2最大值是 .蔡老师点评:与圆有关的最值问题,看着无从下手,但只要仔细观察,分析图形,寻找动点与定点之间不变的维系条件,构建关系,将研究的问题转化为变量与常量之间的关系,就能找到解决问题的突破口!几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考试题中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.参考答案:引例1.解:C在以A为圆心,以2为半径作圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°,∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC,tan∠BOC=tan∠OAC= =,随着C的移动,∠BOC越来越大,∵C在第一象限,∴C不到x轴点,即∠BOC<90°,∴tan∠BOC≥,故答案为:m≥.引例1图引例2图+≤引例2.a b原题:(2013•武汉模拟)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作圆O,C为半圆AB上不与A、B重合的一动点,射线AC交⊙O 于点E,BC=a,AC=b.(1)求证:AE=b+a;(2)求a+b的最大值;(3)若m是关于x的方程:x2+ax=b2+ab的一个根,求m的取值范围.【考点】圆的综合题.【分析】(1)首先连接BE,由△OAB为等边三角形,可得∠AOB=60°,又由圆周角定理,可求得∠E的度数,又由AB为⊙D的直径,可求得CE的长,继而求得AE=b+a;(2)首先过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,可得(a+b)2=a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,即可求得答案;(3)由x2+ax=b2+ab,可得(x﹣b)(x+b+a)=0,则可求得x的值,继而可求得m 的取值范围.【解答】解:(1)连接BE,∵△OAB为等边三角形,∴∠AOB=60°,∴∠AEB=30°,∵AB为直径,∴∠ACB=∠BCE=90°,∵BC=a,∴BE=2a,CE=a,∵AC=b,∴AE=b+a;(2)过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,∴a2+b2=1,∵S△ABC=AC•BC=AB•CH,∴AC•BC=AB•CH,∴(a+b)2=a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,∴a+b≤,故a+b的最大值为,(3)∵x2+ax=b2+ab,∴x2﹣b2+ax﹣ab=0,∴(x+b)(x﹣b)+a(x﹣b)=0,∴(x﹣b)(x+b+a)=0,∴x=b或x=﹣(b+a),当m=b时,m=b=AC<AB=1,∴0<m<1,当m=﹣(b+a)时,由(1)知AE=﹣m,又∵AB<AE≤2AO=2,∴1<﹣m≤2,∴﹣2≤m<﹣1,∴m的取值范围为0<m<1或﹣2≤m<﹣1.【点评】此题考查了圆周角定理、等边三角形的性质、完全平方公式的应用以及一元二次方程的解法.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.引例3.解:连接EP,DP,过P点作PM垂直DE于点M,过O做OF⊥AC与F,连接AO,如图,∵∠BAC=60°,∴∠DPE=120°.∵PE=PD,PM⊥DE,∴∠EPM=60°,∴ED=2EM=2EP•sin60°=EP=PA.当P与A、O共线时,且在O点右侧时,⊙P直径最大.∵⊙O与∠BAC两边均相切,且∠BAC=60°,∴∠OAF=30°,OF=1,∴AO==2,AP=2+1=3,∴DE=PA=3.故答案为:D。
中考数学专题隐圆中最值问题
几何求最值是初中数学难点之一,而“隐圆”问题便是常见的一类考题,此类问题综合性强 (常常会牵扯到三角形、四边形、甚至坐标系等问题),隐蔽性强(不容易想到),加上部分题 目的计算量很大,很容易造成同学们的丢分。近年来在全国各地的中考或名校的模拟考试中经常 会出现“隐圆”求最值的问题(2014、2015、2016连续三年陕西中考的压轴题的最后一问都牵 扯到了隐圆)。此类题目出现的位置一般是在填空的最后一题或是压轴题,基本都是难题。广大 学生在此问题上经常丢分,甚至已经到了谈“隐圆”变色的地步。
A
P BD
P'
E
C
方法总结
名师说法
附:圆外一点到圆上的最小距离和最大距离 如图:点 P 为圆O 外一点,连接 PO 交圆O 于M 点,延长 PO 交圆O 于 N 点。 则线段 PM 长为点 P 到圆O 上一点的最小距离;线段 PN 长为点 P 到圆O 上一点的最大距离
P
O
N
M
名师数学
温馨提示:
在动点运动的过程中同学们要注意的是:虽然点在动(或不确定位置), 但题目一定会有一些量是不变的,可能是某条线段的长度不变,也可能是 某个角度不变,也有可能某个线与线、线与角、角与角的关系不变,这样 才能化动态问题为定态问题。这个需要同学们对题目进行认真的分析和B = 900 ,AB = 6 ,BC = 8 ,D 为 AC 边一动点,过点 D 作DE ⊥DF
,分别交 AB 边、 BC 边于 E 、 F 两点,则 EF 的最小值是
。
A
E
D
B
F
C
思路)分析:
由于在四边形 EBFD 中 ,DE ⊥ DF ,∠B = 90o ,所以 E、B、F、D 四点共圆(对角互补的四边形 四个顶点共圆),且 EF 为圆的直径(如图 2)。所以,要求 EF 的最小值其实质就是求圆的直 径最小值。
专题11 最值模型-阿氏圆问题(解析版)
专题11 最值模型-阿氏圆问题最值问题在中考数学常以压轴题的形式考查,“阿氏圆”又称“阿波罗尼斯圆”,主要考查转化与化归等的数学思想。
在各类考试中都以高档题为主,中考说明中曾多处涉及。
本专题就最值模型中的阿氏圆问题进行梳理及对应试题分析,方便掌握。
【模型背景】已知平面上两点A、B,则所有满足PA=k·PB(k≠1)的点P的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。
【模型解读】如图 1 所示,⊙O的半径为r,点A、B都在⊙O外,P为⊙O上一动点,已知r=k·OB,连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?如图2,在线段OB上截取OC使OC=k·r,则可说明△BPO与△PCO相似,即k·PB=PC。
故本题求“PA+k·PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。
如图3所示:注意区分胡不归模型和阿氏圆模型:在前面的“胡不归”问题中,我们见识了“k·P A+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【最值原理】两点之间线段最短及垂线段最短解题。
例1.(2022·安徽·九年级期末)如图,在Rt△ABC中,△ACB=90°,CB=7,AC=9,以C为圆心、3为半径作△C,P为△C上一动点,连接AP、BP,则13AP+BP的最小值为()A.7B.2C.410D.13【答案】B【详解】思路引领:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.利用相似三角形的性质证明MP13=P A,可得13AP+BP=PM+PB≥BM,利用勾股定理求出BM即可解决问题.答案详解:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.∵PC=3,CM=1,CA=9,∵PC2=CM•CA,∵PC CM CA CP=,∵∵PCM=∵ACP,∵∵PCM∵∵ACP,∵13 PM PCPA AC==,∵PM13=P A,∵13AP+BP=PM+PB,∵PM+PB≥BM,在Rt∵BCM中,∵∵BCM=90°,CM=1,BC=7,∵BM2217=+=52,∵13AP+BP≥52,∵13AP+BP的最小值为52.故选:B.例2.(2020·广西中考真题)如图,在Rt中,AB=AC=4,点E,F分别是AB,AC的中点,点PABC是扇形AEF 的上任意一点,连接BP ,CP ,则BP +CP 的最小值是_____..【分析】在AB 上取一点T ,使得AT =1,连接PT ,P A ,CT .证明,推出==,推出PT =PB ,推出PB +CP =CP +PT ,根据PC +PT ≥TC ,求出CT 即可解决问题. 【详解】解:在AB 上取一点T ,使得AT =1,连接PT ,P A ,CT .∵P A =2.AT =1,AB =4,∵P A 2=AT •AB ,∵=, ∵∵P AT =∵P AB ,∵,∵==,∵PT =PB ,∵PB +CP =CP +PT , ∵PC +PT ≥TC ,在Rt 中,∵∵CAT =90°,AT =1,AC =4,∵CT ,∵PB +PC ,∵PB +PC . 【点睛】本题考查等腰直角三角形的性质,三角形相似的判定与性质,勾股定理的应用,三角形的三边关系,圆的基本性质,掌握以上知识是解题的关键.例3.(2022·四川成都·模拟预测)如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的EF 1217PAT BAP ∽PT PB AP AB 1212124=PA ATAB PA PAT BAP ∽PT PB AP AB 121212ACT 22AT AC +171217121717一个动点,则12PD PC -的最大值为_______.【答案】152【分析】如图,连接BP ,在BC 上取一点M ,使得BM =32,进而证明BPM BCP △∽△,则在点P 运动的任意时刻,均有PM =12PC ,从而将问题转化为求PD -PM 的最大值.连接PD ,在△PDM 中,PD -PM <DM ,故当D 、M 、P 共线时,PD -PM =DM 为最大值,勾股定理即可求得DM .【详解】如图,连接BP ,在BC 上取一点M ,使得BM =32, 31232BM BP ==,3162BP BC ==BM BP BP BC ∴= PBM CBP ∠=∠∴BPM BCP △∽△12MP BM PC BP ∴==12MP PC ∴=12PD PC PD MD ∴-=-在△PDM 中,PD -PM <DM ,当D 、M 、P 共线时,PD -PM =DM 为最大值,四边形ABCD 是正方形90C ∴∠=︒在Rt CDM 中,2222915622DM DC MC ⎛⎫=+=+= ⎪⎝⎭故答案为:152. 【点睛】本题考查了圆的性质,相似三角形的性质与判定,勾股定理,构造12PC 是解题的关键. 例4.(2022·浙江·舟山九年级期末)如图,矩形ABCD 中,4,2AB AD ==,以B 为圆心,以BC 为半径画圆交边AB 于点E ,点P 是弧CE 上的一个动点,连结,PD PA ,则12AP DP +的最小值为( )A 10B 11C 13D 14【答案】C【分析】连接BP ,取BE 的中点G ,连接PG ,通过两组对应边成比例且夹角相等,证明BPG BAP ,得到12PG AP =,则12AP DP PG DP +=+,当P 、D 、G 三点共线时,取最小值,求出DG 的长得到最小值. 【详解】解:如图,连接BP ,取BE 的中点G ,连接PG ,△2AD BC BP ===,4AB =,△2142BP BA ==, △G 是BE 的中点,△12BG BP =,△BP BG BA BP=, △PBG ABP ∠=∠,△BPGBAP ,△12PG BP AP BA ==,△12PG AP =, 则12AP DP PG DP +=+,当P 、D 、G 三点共线时,取最小值,即DG 长, 224913DG AD AG =+=+=.故选:C .【点睛】本题考查矩形和圆的基本性质,相似三角形的性质和判定,解题的关键是构造相似三角形将12AP 转换成PG ,再根据三点共线求出最小值.例5.(2022·广东·广州市第二中学九年级阶段练习)如图,在平面直角坐标系中,A (2,0),B (0,2),C (4,0),D (5,3),点P 是第一象限内一动点,且135APB ∠=︒,则4PD +2PC 的最小值为_______.【答案】20【分析】取一点(1,0)T ,连接OP ,PT ,TD ,首先利用四点共圆证明2OP =,再利用相似三角形的性质证明12PT PC =,推出14+2=4(+)=4(+)2PD PC PD PC PD PT ,根据+PD PT DT ≥,过点D 作DE OC ⊥交OC 于点E ,即可求出DT 的最小值,即可得.【详解】解:如图所示,取一点(1,0)T ,连接OP ,PT ,TD ,△A (2,0),B (0,2),C (4,0),△OA =OB =2,OC =4,以O 为圆心,OA 为半径作O ,在优弧AB 上取一点Q ,连接QB ,QA ,△1452Q AOB ∠=∠=︒,135APB ∠=︒,△45135180Q APB ∠+∠=︒+︒=︒, △A ,P ,B ,Q 四点共圆,△2OP OA ==,△2OP =,1OT =,4OC =,△2OP OC OT =,△OP OT OC OP=,△POT POC ∠=∠,△POT COP △∽△,△12PT OP PC OC ==,△12PT PC =, △14+2=4(+)=4(+)2PD PC PD PC PD PT ,过点D 作DE OC ⊥交OC 于点E , △D 的坐标为(5,3),△点E 的坐标为(5,0),TE =4,△22=3+4=5DT△+PD PT DT ≥,△4+220PD PC ≥,△4+2PD PC 的最小值是20,故答案为:20.【点睛】本题考查了四点共圆,相似三角形,勾股定理,三角形三边关系,解题的关键是掌握这些知识点.例6.(2021·浙江金华·一模)问题提出:如图1,在等边△ABC中,AB=9,△C半径为3,P为圆上一动点,连结AP,BP,求AP+13BP的最小值(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将13BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)如图2,连结CP,在CB上取点D,使CD=1,则有13== CD CP CP CB又△△PCD=△△△△△13=PDBP△PD=13BP△AP+13BP=AP+PD△当A,P,D三点共线时,AP+PD取到最小值请你完成余下的思考,并直接写出答案:AP+13BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=4,则12AP+PC的最小值为.(请在图3中添加相应的辅助线)(3)拓展延伸:如图4,在扇形COD中,O为圆心,△COD=120°,OC=4.OA=2,OB=3,点P是CD上一点,求2P A+PB的最小值,画出示意图并写出求解过程.【答案】(1)BCP,PCD,BCP,2592;(2)210;(3)作图与求解过程见解析,2P A+PB的最小值为97.【分析】(1)连结AD,过点A作AF△CB于点F,AP+13BP=AP+PD,要使AP+13BP最小,AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即可求解;(2)在AB上截取BF=2,连接PF,PC,AB=8,PB=4,BF=2,证明△ABP△△PBF,当点F,点P,点C 三点共线时,AP+PC的值最小,即可求解;(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB△OD于点M,确定12OA OPOP OF==,且△AOP=△AOP,△AOP△△POF,当点F,点P,点B三点共线时,2AP+PB的值最小,即可求解.【详解】解:(1)如图1,连结AD,过点A作AF△CB于点F,△AP+13BP=AP+PD,要使AP+13BP最小,△AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+13BP最小值为AD,△AC=9,AF△BC,△ACB=60°△CF=3,AF=932;△DF=CF﹣CD=3﹣1=2,△AD=22259 =2AF DF+,△AP+13BP的最小值为2592;故答案为:2592;(2)如图2,在AB上截取BF=2,连接PF,PC,△AB=8,PB=4,BF=2,△12BP BFAB BP==,且△ABP=△ABP,△△ABP△△PBF,△12FP BPAP AB==,△PF=12AP,△12AP+PC=PF+PC,△当点F,点P,点C三点共线时,AP+PC的值最小,△CF=222262210BF BC+=+=,△12AP+PC的值最小值为210,故答案为:210;(3)如图3,延长OC,使CF=4,连接BF,OP,PF,过点F作FB△OD于点M,△OC=4,FC=4,△FO=8,且OP=4,OA=2,△12OA OPOP OF==,且△AOP=△AOP△△AOP△△POF△1=2AP OAPF OF=,△PF=2AP△2P A+PB=PF+PB,△当点F,点P,点B三点共线时,2AP+PB的值最小,△△COD=120°,△△FOM=60°,且FO=8,FM△OM△OM=4,FM=43,△MB=OM+OB=4+3=7△FB=2297FM MB+=,△2P A+PB的最小值为97.【点睛】本题主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,解本题的关键是根据材料中的思路构造出相似三角形..例7.(2022·广东·二模)(1)初步研究:如图1,在△P AB中,已知P A=2,AB=4,Q为AB上一点且AQ=1,证明:PB=2PQ;(2)结论运用:如图2,已知正方形ABCD的边长为4,△A的半径为2,点P是△A上的一个动点,求2PC+PB的最小值;(3)拓展推广:如图3,已知菱形ABCD的边长为4,△A=60°,△A的半径为2,点P是△A上的一个动点,求2PC−PB的最大值.【答案】(1)见解析;(2)10;(3)237【分析】(1)证明△P AQ△△BAP,根据相似三角形的性质即可证明PB=2PQ;(2)在AB上取一点Q,使得AQ=1,由(1)得PB=2PQ,推出当点C、P、Q三点共线时,PC+PQ的值最小,再利用勾股定理即可求得2PC+PB的最小值;(3)作出如图的辅助线,同(2)法推出当点P在CQ 交△A的点P′时,PC−PQ的值最大,再利用勾股定理即可求得2PC−PB的最大值.【详解】解:(1)证明:△P A=2,AB=4,AQ=1,△P A2=AQ⋅AB=4.△PA AB AQ PA=.又△△A=△A,△△P AQ△△BAP.△12PQ PAPB AB==.△PB=2PQ;(2)如图,在AB上取一点Q,使得AQ=1,连接AP,PQ,CQ.△AP=2,AB=4,AQ=1.由(1)得PB=2PQ,△2PC+PB=2PC+2PQ=2(PC+PQ).△PC+PQ≥QC,△当点C、P、Q三点共线时,PC+PQ的值最小.△QC =22QB BC +=5,△2PC +PB =2(PC +PQ )≥10.△2PC +PB 的最小值为10.(3)如图,在AB 上取一点Q ,使得AQ =1,连接AP ,PQ ,CQ ,延长CQ 交△A 于点P ′,过点C 作CH 垂直AB 的延长线于点H .易得AP =2,AB =4,AQ =1.由(1)得PB =2PQ ,△2PC −PB =2PC −2PQ =2(PC −PQ ) ,△PC −PQ ≤QC ,△当点P 在CQ 交△A 的点P ′时,PC −PQ 的值最大.△QC =22QH CH + =37,△2PC −PB =2(PC −PQ )≤237.△2PC −PB 的最大值为237.【点睛】本题考查了圆有关的性质,正方形的性质,菱形的性质,相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决.例8.(2022·江苏·苏州九年级阶段练习)阅读以下材料,并按要求完成相应的任务.已知平面上两点AB 、,则所有符合0(PA k k PB=>且1)k ≠的点P 会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆. 阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标中,在x 轴,y 轴上分别有点()(),0,0,C m D n ,点P 是平面内一动点,且OP r =,设OP k OD=,求PC kPD +的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD 上取点M ,使得::OM OP OP OD k ==;第二步:证明kPD PM =;第三步:连接CM ,此时CM 即为所求的最小值.下面是该题的解答过程(部分):解:在OD 上取点M ,使得::OM OP OP OD k ==,又,POD MOP POM DOP ∠=∠∴.任务:()1将以上解答过程补充完整.()2如图2,在Rt ABC 中,90,4,3,ACB AC BC D ∠=︒==为ABC 内一动点,满足2CD =,利用()1中的结论,请直接写出23AD BD +的最小值.【答案】(1)222.m k r +(2)4103. 【分析】 △ 将PC+kPD 转化成PC+MP ,当PC+kPD 最小,即PC+MP 最小,图中可以看出当C 、P 、M 共线最小,利用勾股定理求出即可;△ 根据上一问得出的结果,把图2的各个点与图1对应代入,C 对应O,D 对应P ,A 对应C ,B 对应M ,当D 在AB 上时23AD BD +为最小值,所以23AD BD +=2223AC CD ⎛⎫+ ⎪⎝⎭ = 224410433⎛⎫+= ⎪⎝⎭ 【详解】解()1:,MP PD k MP kPD =∴=∴,PC kPD PC MP ∴+=+,当PC kPD +取最小值时,PC MP +有最小值,即,,C P M 三点共线时有最小值,利用勾股定理得()2222222.CM OC OM m kr m k r =+=+=+ ()223AD BD +的最小值为4103, 提示:4AC m ==,2433CD kr ==,23AD BD ∴+的最小值为224410433⎛⎫+= ⎪⎝⎭. 【点睛】此题主要考查了新定义的理解与应用,快速准确的掌握新定义并能举一反三是解题的关键.课后专项训练1.(2022·福建南平九年级期中)如图,在Rt△ABC 中,△ACB =90°,CB =7,AC =9,以C 为圆心、3为半径作△C ,P 为△C 上一动点,连接AP 、BP ,则13AP +BP 的最小值为( )A .2.B .3C .5D .2【答案】D【分析】作辅助线构造相似三角形,进而找到P 在何时会使得13AP +BP 有最小值,进而得到答案. 【详解】解:如图,连接CP ,作PE 交AC 于点E ,使CPE PAC ∠=∠△=PCE ACP ∠∠ △PCE △APC △ △PC EP AC AP = △9,3AC PC == △13EP AP = △13AP BP EP BP +=+,当B 、P 、E 三点共线,即P 运动P '时有最小值EB△EC PC PC AC = △1EC = △2252EB EC CB =+= △13AP BP +的最小值为52 故选:D .【点睛】本题考查相似三角形,解直角三角形;懂得依题意作辅助线构造相似三角形是解题的关键.2.(2022·江苏·无锡市九年级期中)如图,△O与y轴、x轴的正半轴分别相交于点M、点N,△O半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接P A,PB,则3P A+PB的最小值为___.【答案】85【分析】如图,在y轴上取一点C(0,9),连接PC, 根据13OA APOP PC==,△AOP是公共角,可得△AOP△△POC,得PC=3P A,当B,C,P三点共线时,3P A+PB的值最小为BC,利用勾股定理求出BC的长即可得答案.【详解】如图,在y轴上取一点C(0,9),连接PC,△△O半径为3,点A(0,1),点B(2,0),△OP=3,OA=1,OB=2,OC=9,△1=3OA OPOP OC=,△AOP是公共角,△△AOP△△POC,△PC=3P A,△3P A+PB=PC+PB,△当B,C,P三点共线时,3P A+PB最小值为BC,△BC =22OC OB +=2292+=85,△3P A +PB 的最小值为85.故答案为:85【点睛】本题主要考查相似三角形的判定与性质及最小值问题,正确理解C 、P 、B 三点在同一条直线上时3P A +PB 有最小值,熟练掌握相似三角形的判定定理是解题关键.3.(2022·陕西·三模)如图,在四边形ABCD 中, 3AB =260AC BAC ACD =∠=∠=︒,,设•AD k BD =,则k 的最小值为 ___________.21##12-【分析】如图,过点C 作CJ AB ⊥于点J ,过点B 作BM DC ⊥交DC 的延长线于点M ,在AB 的上方构造Rt ABE △,使得ABE MBD ∽,取BE 的中点F ,连接AF DF ,.由ABE MBD ∽,推出232,903BE AB BAE M DB MB ===∠=∠=︒,设BD m =,则2BE m =,由勾股定理求得DF ,根据两点之间线段最短可得AD 的最小值,进而根据•AD k BD =,即可求解.【详解】解:如图,过点C 作CJ AB ⊥于点J ,过点B 作BM DC ⊥交DC 的延长线于点M ,在AB 的上方构造Rt ABE △,使得ABE MBD ∽,取BE 的中点F ,连接AF DF ,.在Rt ACJ 中,260AC CAJ =∠=︒,,△sin 603CJ AC =⋅︒=,△60ACD BAC ∠=∠=︒,△AB CD ∥, △BM CD CJ AB ⊥⊥,,△四边形BJCM 是矩形,△3BM CJ ==,90MBJ ∠=︒,△ABE MBD ∽,△232,903BE AB BAE M DB MB ===∠=∠=︒,△设BD m =,则2BE m =, △EF FB =,△12AF BE m ==,△ABE MBD ∠=∠,△90EBD ABM ∠=∠=︒,△222DF BF BD m =+=, △2AD DF AF m m ≥-=-,△AD 的最小值为2m m -,△AD kBD =,△k 是最小值为221m m m-=-.故答案为:21-. 【点睛】本题考查轴对称问题,勾股定理,相似三角形的性质等知识,解题的关键是相似构造相似三角形解决问题.4.(2022·湖北武汉·模拟预测)【新知探究】新定义:平面内两定点 A , B ,所有满足PA PB= k ( k 为定值)的P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”,【问题解决】如图,在△ABC 中,CB = 4 ,AB= 2AC ,则△ABC 面积的最大值为_____.【答案】16 3【分析】以A为顶点,AC为边,在△ABC外部作△CAP=△ABC,AP与BC的延长线交于点P,证出△APC△△BPA,列出比例式可得BP=2AP,CP=12AP,从而求出AP、BP和CP,即可求出点A的运动轨迹,最后找出距离BC最远的A点的位置即可求出结论.【详解】解:以A为顶点,AC为边,在△ABC外部作△CAP=△ABC,AP与BC的延长线交于点P,△△APC=△BPA,AB= 2AC△△APC△△BPA,△12AP CP ACBP AP AB===△BP=2AP,CP=12AP△BP-CP=BC=4△2AP-12AP=4解得:AP=83△BP=163,CP=43,即点P为定点△点A的轨迹为以点P为圆心,83为半径的圆上,如下图所示,过点P作BC的垂线,交圆P于点A1,此时A1到BC的距离最大,即△ABC的面积最大S△A1BC=12BC·A1P=12×4×83=163即△ABC面积的最大值为163故答案为:163.【点睛】此题考查的是相似三角形的判定及性质、确定点的运动轨迹和求三角形的面积,掌握相似三角形的判定及性质、圆的定义和三角形的面积公式是解决此题的关键.5.(2022·浙江·九年级期中)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接P A,PB,则P A+PB的最小值为.【解答】解:如图,在CB上取一点F,使得CF=,连接PF,AF.∵∠DCE=90°,DE=4,DP=PE,∴PC=DE=2,∵=,=,∴=,∵∠PCF=∠BCP,∴△PCF∽△BCP,∴==,∴PF=PB,∴P A+PB=P A+PF,∵P A+PF≥AF,AF===,∴P A+PB≥,∴P A+PB的最小值为,故答案为.6.(2022·江苏·苏州九年级阶段练习)如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在CG的最小值为_____.边CD上,且线段EF=4,点G为线段EF的中点,连接BG、CG,则BG+12【答案】5【分析】因为DG=12EF=2,所以G在以D为圆心,2为半径圆上运动,取DI=1,可证△GDI△△CDG,从而得出GI=12CG,然后根据三角形三边关系,得出BI是其最小值【详解】解:如图,在Rt△DEF中,G是EF的中点,△DG=122EF=,△点G在以D为圆心,2为半径的圆上运动,在CD上截取DI=1,连接GI,△DIDG=DGCD=12,△△GDI=△CDG,△△GDI△△CDG,△IG DICG DG==12,△IG=12CG,△BG+12CG=BG+IG≥BI,△当B、G、I共线时,BG+12CG最小=BI,在Rt△BCI中,CI=3,BC=4,△BI=5,故答案是:5.【点睛】本题考查了相似三角形的性质与判定,圆的概念,求得点G的运动轨迹是解题的关键.7.(2022·山西·九年级专题练习)如图,在ABC 中,90,2B AB CB ∠=︒==,以点B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,则2PA PC 的最小值是___________.【答案】5 【分析】作BH △AC 于H ,取BC 的中点D ,连接PD ,如图,根据切线的性质得BH 为△B 的半径,再根据等腰直角三角形的性质得到BH 12=AC 2=,接着证明△BPD △△BCP 得到PD 22=PC ,所以P A 22+PC =P A +PD ,而P A +PD ≥AD (当且仅当A 、P 、D 共线时取等号),从而计算出AD 得到P A 22PC +的最小值. 【详解】解:作BH △AC 于H ,取BC 的中点D ,连接PD ,如图,△AC 为切线,△BH 为△B 的半径,△△ABC =90°,AB =CB =2,△AC 2=BA =22,△BH 12=AC 2=,△BP 2=, △22PB BC =,1222BD BP ==,而△PBD =△CBP ,△△BPD △△BCP , △22PD PB PC BC ==,△PD 22=PC ,△P A 22+PC =P A +PD , 而P A +PD ≥AD (当且仅当A 、P 、D 共线时取等号),而AD 22215=+=,△P A +PD 的最小值为5,即P A 22PC +的最小值为5.故答案为:5.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.解决问题的关键是利用相似比确定线段PD22PC.也考查了等腰直角三角形的性质.8.(2022·湖北·九年级专题练习)如图,已知正方形ABCD的边长为4,△B的半径为2,点P是△B上的一个动点,则PD﹣12PC的最大值为_____.【答案】5【详解】分析: 由PD−12PC=PD−PG≤DG,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG=5.详解: 在BC上取一点G,使得BG=1,如图,△221PBBG==,422BCPB==,△PB BCBG PB=,△△PBG=△PBC,△△PBG△△CBP,△12PG BGPC PB==,△PG=12PC,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG=2243+=5.故答案为5点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.9.(2022·北京·九年级专题练习)如图,边长为4的正方形,内切圆记为△O,P是△O2P A +PB的最小值为________.【答案】25【分析】2P A+PB=2(P A+22PB),利用相似三角形构造22PB即可解答.【详解】解:设△O 半径为r ,OP =r =12BC =2,OB =2r =22,取OB 的中点I ,连接PI ,△OI =IB =2,△222OP OI ==,2222OB OP == ,△OP OB OI OP = ,△O 是公共角,△△BOP △△POI , △22PI OI PB OP ==,△PI =22PB ,△AP +22PB =AP +PI , △当A 、P 、I 在一条直线上时,AP +22PB 最小,作IE △AB 于E , △△ABO =45°,△IE =BE =22BI =1,△AE =AB −BE =3, △AI =223110+=,△AP +22PB 最小值=AI =10, △2P A +PB =2(P A +22PB ),△2P A +PB 的最小值是2AI =21025⨯=.故答案是25. 【点睛】本题是“阿氏圆”问题,解决问题的关键是构造相似三角形.10.(2022·山东·九年级专题练习)如图,在Rt ABC 中,90ACB ∠=︒,4CB =,6CA =,圆C 半径为2,P 为圆上一动点,连接,2,1A A P P P P B B +最小值__________.13BP AP +最小值__________.【答案】37;2373.【分析】如图,连接CP,在CB上取点D,使CD=1,连结AD,可证△PCD△△BCP.可得PD=12BP,当点A,P,D在同一条直线时,AP+12BP的值最小,在Rt△ACD中,由CD=1,CA=6,根据勾股定理AD=2216+=37即可;在AC上取CE=23,△PCE△△ACP.可得PE=13AP,当点B,P,E在同一条直线时,BP+13AP的值最小,在Rt△BCE中,由CE=23,CB=4,根据勾股定理BE=2222374=33⎛⎫+⎪⎝⎭即可.【详解】解:如图,连接CP,在CB上取点D,使CD=1,连结AD,△CP=2,BC=4,△CD121=,CP242CPBC==,△CD1=CP2CPBC=,又△△PCD=△BCP,△△PCD△△BCP.△12PDBP=,△PD=12BP,△AP+12BP=AP+PD,当点A,P,D在同一条直线时,AP+12BP的值最小,在Rt△ACD中,△CD=1,CA=6,△AD=2216+=37,△AP+12BP的最小值为37.故答案为:37在AC上取CE=23,连接CP,PE△21213==,2363CE CP CP AB ==△13CE CP CP AB == 又△△PCE =△ACP ,△△PCE △△ACP .△13PE AP =,△PE =13AP ,△BP +13AP =BP +PE , 当点B ,P ,E 在同一条直线时,BP +13AP 的值最小, 在Rt △BCE 中,△CE =23,CB =4,△BD =2222374=33⎛⎫+ ⎪⎝⎭, △BP +13AP 的最小值为2373.故答案为:2373. 【点睛】本题考查圆的性质,构造相似三角形解决比例问题,勾股定理,掌握圆的性质,相似三角形的判定与性质,勾股定理,关键是引辅助线准确作出图形是解题关键.11.(2022·重庆·九年级专题练习)(1)如图1,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么PD +23PC 的最小值为__,PD ﹣23PC 的最大值为__. (2)如图2,已知菱形ABCD 的边长为4,△B =60°,圆B 的半径为2,点P 是圆B 上的一个动点,那么PD +12PC 的最小值为__,PD ﹣12PC 的最大值为__.【答案】 106 106 37 37【分析】(1)如图3中,在BC 上取一点G ,使得4BG =,先证明PBG CBP ,得到23PG PC =,所以32PD PC PD PG +=+,而PD PG DG +≥(当且仅当G 、P 、D 共线时取等号),从而计算出DG 得到23PD PC +的最小值,32PD PC PD PG -=-,而PD PG DG -≤(当且仅当G 、P 、D 共线时取等号),从而计算出DG 得到23PD PC -的最大值; (2)如图4中,在BC 上取一点G ,使得1BG =,作DF BC ⊥交于点F ,解法同(1).【详解】(1)如图3中,在BC 上取一点G ,使得4BG =,6342PB BG ==,9362BC PB ==,PBG PBC ∠=∠, PBG CBP ∴,23PG BG PC PB ∴==, 23PG PC ∴=,32PD PC PD PG ∴+=+, PD PG DG +≥(当且仅当G 、P 、D 共线时取等号),PD PG ∴+的最小值为2259106DG =+=,32PD PC +的最小值为106,32PD PC PD PG DG -=-≤, 23PD PC ∴-的最大值为106,故答案为:106,106; (2)如图4中,在BC 上取一点G ,使得1BG =,作DF BC ⊥交于点F ,221PB BG ==,422BC PB ==,PBG PBC ∠=∠, PBG CBP ∴,12PG BG PC PB ∴==,12PG PC ∴=,12PD PC PD PG ∴+=+, PD PG DG +≥(当且仅当G 、P 、D 共线时取等号),PD PG ∴+的最小值为DG , 12PD PC ∴+的最小值为DG , 在Rt CDF 中,60DCF ∠=︒,4CD =,sin 6023DF CD ∴=⋅︒=,2CF =,在Rt GDF 中,22(23)537DG =+=,12PD PC ∴+的最小值为37, 12PD PC PD PG DG -=-≤,12PD PC ∴-的最大值为37,故答案为:37,37. 【点睛】本题考查圆的综合题、正方形的性质、菱形的性质、相似三角形的判定与性质,解决问题的关键是学会构建相似三角形解决问题.12.(2022·江苏淮安·九年级期中)问题提出:如图1,在等边△ABC 中,AB =12,△C 半径为6,P 为圆上一动点,连结AP ,BP ,求AP +12BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD=3,则有CDCP=CPCB=12,又△△PCD=△BCP,△△PCD△△BCP,△PDBP=12,△PD=12BP,△AP+12BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+12BP的最小值为.(2)自主探索:如图1,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,13AP+PC的最小值为.(3)拓展延伸:如图2,扇形COD中,O为圆心,△COD=120°,OC=4,OA=2,OB=3,点P是CD上一点,求2PA+PB的最小值,画出示意图并写出求解过程.【答案】(1)AP+12BP的最小值为313;(2)13AP+PC的值最小值为52;(3)2PA+PB的最小值为97,见解析.【分析】(1)由等边三角形的性质可得CF=6,AF=63,由勾股定理可求AD的长;(2)在AB上截取BF=1,连接PF,PC,由PB1BFAB3BP==,可证△ABP△△PBF,可得PF=13AP,即13AP+PC=PF+PC,则当点F,点P,点C三点共线时,13AP+PC的值最小,由勾股定理可求13AP+PC的值最小值;(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB△OD于点M,由OA1OPOP2OF==,可得△AOP△△POF,可得PF=2AP,即2PA+PB=PF+PB,则当点F,点P,点B三点共线时,2AP+PB的值最小,由勾股定理可求2PA+PB的最小值.【详解】解:(1)解:(1)如图1,连结AD,过点A作AF△CB于点F,△AP+12BP=AP+PD,要使AP+12BP最小,△AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+12BP最小值为AD,△AC=12,AF△BC,△ACB=60°△CF=6,AF=63△DF=CF-CD=6-3=3△AD=22AF DF+=313△AP+12BP的最小值为313(2)如图,在AB上截取BF=1,连接PF,PC,△AB=9,PB=3,BF=1△PB1BFAB3BP==,且△ABP=△ABP,△△ABP△△PBF,△FP BP1AP AB3==△PF=13AP△13AP+PC=PF+PC,△当点F,点P,点C三点共线时,13AP+PC的值最小,△CF=22BF BC +=149+=52△13AP+PC 的值最小值为52,(3)如图,延长OC ,使CF=4,连接BF ,OP ,PF ,过点F 作FB△OD 于点M , △OC=4,FC=4,△FO=8,且OP=4,OA=2, △OA 1OPOP 2OF==,且△AOP=△AOP△△AOP△△POF △AP OA 1PF OF 2==△PF=2AP△2PA+PB=PF+PB , △当点F ,点P ,点B 三点共线时,2AP+PB 的值最小, △△COD=120°,△△FOM=60°,且FO=8,FM△OM △OM=4,FM=43△MB=OM+OB=4+3=7△FB=22FM MB +=97△2PA+PB 的最小值为97.【点睛】此题是圆的综合题,主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出相似三角形,也是解本题的难点.13.(2022·湖北·九年级专题练习)(1)如图1,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +24PD PC +的最小值,12PD PC -的最大值.(2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,求23PD PC+的最小值,23PD PC -的最大值,2PC PD 的最小值.(3)如图3,已知菱形ABCD 的边长为4,=60B ∠︒,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值和12PD PC -的最大值.3PC 的最小值【答案】见详解【分析】(1)如图1中,在BC 上取一点G ,使得BG=1.由△PBG△△CBP ,推出12PG BG PC PB ==,推出PG=12PC ,推出PD+12PC=DP+PG ,由DP+PG≥DG ,当D 、G 、P 共线时,PD+12PC 的值最小,最小值为DG=2243+=5.由PD-12PC=PD-PG≤DG ,当点P 在DG 的延长线上时,PD-12PC 的值最大(如图2中),最大值为DG=5;可以把24PD PC +转化为4(24PD PC +),这样只需求出24PD PC +的最小值,问题即可解决。
问题8.1与圆有关的最值问题-最新高三数学专题讲解(解析版)
精选问题一与圆有关的最值问题经过对近几年的高考试题的剖析比较发现, 高考对直线与圆的考察, 体现逐年加重的趋向, 与圆有关的最值问题 , 更是高考的热门问题. 因为圆既能与平面几何相联系, 又能与圆锥曲线相联合, 命题方式比较灵巧, 故与圆有关的最值问题备授命题者的喜爱. 本文就此问题从内容和办理方法长进行概括, 以帮助同学们攻陷这个难点 .一、与圆有关的最值问题的联系点与直线的倾斜角或斜率的最值问题利用公式 k = tan ( ≠90°) 将直线的斜率与倾斜角密切联系到一同, 经过正切函数的图象能够解决已知斜率的范围探究倾斜角的最值, 或许已经倾斜角的范围探究斜率的最值.办理方法:直线倾斜角的范围是[0, π), 而这个区间不是正切函数的单一区间, 所以依据斜率求倾斜角的范π与π, 当α∈ 0,π+围时,要分 0,,π 两种状况议论.由正切函数图象能够看出时 , 斜率k∈[0,2 2 2ππ,π时 , 斜率k∈( -∞ ,0)∞) ;当α=2时 , 斜率不存在;当α∈2 .【例 1】坐标平面内有相异两点A(cos ,sin 2 ), B(0,1) ,经过两点的直线的的倾斜角的取值范围是( ).A., B.0, 3 , C.0, 3 , D ., 34 4 4 4 4 4 4 4【答案】 C【评论】由斜率取值范围确立直线倾斜角的范围要利用正切函数y=tan x 的图象,特别要注意倾斜角取值范围的限制;求解直线的倾斜角与斜率问题要擅长利用数形联合的思想, 要注意直线的倾斜角由锐角变到直角及由直角变到钝角时 , 需依照正切函数y= tan x的单一性求k的范围.【小试牛刀】【2017 届山东菏泽一中宏志部高三上学期月考】若过点P 23, 2 的直线与圆 x2 y2 4 有公共点 , 则该直线的倾斜角的取值范围是()A. 0, B . 0 ,6 3C. 0, D . 0 ,6 3【答案】 B【分析】当过点P(23, 2) 的直线与圆 x2 y2 4 相切时,设斜率为k,则此直线方程为y+2=k( x 2 3) ,即 kx y 2 3k 2 0 . 由圆心到直线的距离等于半径可得| 2 3k 2 |, 求得k 221k 0或k 3 ,故直线的倾斜角的取值范围是[0, ] ,所以B选项是正确的.3与距离有关的最值问题在运动变化中 , 动点到直线、圆的距离会发生变化, 在变化过程中 , 就会出现一些最值问题, 如距离最小 , 最大等 . 这些问题经常联系到平面几何知识, 利用数形联合思想可直接获得有关结论, 解题时即可利用这些结论直接确立最值问题. 常有的结论有:( 1)圆外一点A到圆上距离近来为AO r ,最远为 AO r ;( 2)过圆内一点的弦最长为圆的直径, 最短为该点为中点的弦;( 3)直线与圆相离 , 则圆上点到直线的最短距离为圆心到直线的距离 d r ,近来为 d r ;( 4)过两定点的全部圆中, 面积最小的是以这两个定点为直径端点的圆的面积.( 5)直线外一点与直线上的点的距离中, 最短的是点到直线的距离;( 6)两个动点分别在两条平行线上运动, 这两个动点间的最短距离为两条平行线间的距离.【例 2】过点M2y225 交于A,B两点, C为圆心,当ACB 最小时 , 1,2 的直线l与圆C:x 3 4直线 l 的方程是.答案 : x y 3 0分析:要使ACB 最小 , 由余弦定理可知 , 需弦长AB 最短 . 要使得弦长最短 , 借助结论可知当M 1,2 为弦的中点时最短 . 因圆心和M 1,24 21,则所求的直线斜率为1,由点斜式可得所在直线的 k13y 1 (x 2) x y 3 0 .【评论】与圆有关的长度或距离的最值问题的解法.一般依据长度或距离的几何意义, 利用圆的几何性质数形联合求解.本题经过两次转变, 最后转变为求过定点的弦长最短的问题.【例 3】【 2016-2017 学年湖北大冶市实验中学高二上学期月考】若圆 C : x2 y 2 2x 4 y 3 0 对于直线 2ax by 6 0 对称,则由点 ( a,b) 向圆C所作的切线长的最小值是()A.2 B . 3 C.4 D.6【答案】 C【评论】与切线长有关的问题及与切线有关的夹角问题, 解题时应注意圆心与切点连线与切线垂直, 从而得出一个直角三角形.【小试牛刀】【 2016 届河北省武邑中学高三上学期测试】在平面直角坐标系x y 中,圆C1 : x 1 2 225 ,圆 C 2 : x2y 302上存在一点 P ,使得过点 P 可作一y 6 17 r 2.若圆 C2条射线与圆C1挨次交于点, , 知足 2 , 则半径r的取值范围是()A.5,55 B . 5,50 C . 10,50 D . 10,55【答案】 A【分析】由题 , 知圆C 的圆心为 ( 1,6) ,半径为5,圆 C 的圆心为(17,30) , 半径为r , 两圆圆心距为1 2(17 1)2 (30 6)2 30 ,如图,可知当 AB 为圆 C1的直径时获得最大值, 所以当点P位于点P1所在地点时 r 获得最小值,当点 P 位于点 P2所在地点时 r 获得最大值.因为| AB |max 10 ,|PA| 2|AB|, 所以r min 5 , r max55 ,应选A.[根源: ZXXK]与面积有关的最值问题与圆的面积的最值问题 , 一般转变为追求圆的半径有关的函数关系或许几何图形的关系, 借助函数求最值的方法 , 如配方法 , 基本不等式法等求解, 有时能够经过转变思想 , 利用数形联合思想求解 .【例 4】在平面直角坐标系中, A, B分别是x轴和y轴上的动点 , 若以AB为直径的圆C与直线2x y 4 0 相切,则圆C面积的最小值为()A. 4B. 3C. (6 2 5)D. 55 4 4【答案】 A【分析】设直线l :2 x y 4 0.因为|OC| 1| AB | d C l , 所以圆心 C 的轨迹为以 O为焦点 , l为准线的2抛物线 . 圆 C 半径最小值为1d O l 1 4 2 , 圆C面积的最小值为( 2 ) 2 4 .选 A.2 2 5 5 5 5【例 5】动圆 C经过点F (1,0) , 而且与直线x 1 相切 , 若动圆 C 与直线y x 2 2 1总有公共点,则圆C 的面积()A.有最大值8 B .有最小值 2 C .有最小值3 D .有最小值 4【答案】 D【分析】设圆心为(a,b) ,半径为 r , r |CF | | a 1| ,即 (a 1)2 b2 ( a 1)2,即 a 1b2,∴圆心为4(1b2 , b) , r 1 b2 1,圆心到直线 y x 2 2 1的距离为4 4b2| 4 b 2 2 1| b21,∴ b 2(2 2 3) 或b 2 ,当 b 2d 2 4时 , r min 1 4 1 2 ,∴ S min r 2 4 .4【小试牛刀】【 2016-2017 学年广东潮阳黄图盛中学高二上期中】已知点A( 2,0) ,B (0, 2), 点 P是圆(x 1)2 y2 1 上随意一点 , 则PAB 面积的最大值是()B. 3 2C.3 2【答案】 B二、与圆有关的最值问题的常用的办理方法数形联合法办理与圆有关的最值问题, 应充足考虑圆的几何性质, 并依据代数式的几何意义, 借助数形联合思想求解.2 2【例 6】已知实数x, y 知足方程 x + y -4x+1=0,求:y(1)x的最大值和最小值;(2)y- x 的最大值和最小值;(3)x2+ y2的最大值和最小值.【剖析】 (1) 利用斜率模型; (2) 利用截距模型; (3) 利用距离模型【分析】原方程变形为( x- 2) 2+y2= 3, 表示以 (2,0) 为圆心 , 半径r=3的圆.y(1) 设x= k,即 y=kx,由题知,直线 y=kx 与圆恒有公共点,则圆心到直线的距离小于等于半径 3.|2 k- 0| 2 y∴k2+1 ≤ 3. ∴k ≤3, 即-3≤k≤ 3, ∴x的最大值为3, 最小值为- 3.(2) 设 y-x= b,则当直线 y- x= b 与圆相切时, b 取最值,由|2 - 0+b|=3, 得b=- 2±6, 2∴y- x 的最大值为6-2,最小值为-2- 6.(3) 令d=x2+y2表示原点与点 ( x, y) 的距离 ,∵原点与圆心(2,0) 的距离为2, ∴d max= 2+3, d min= 2- 3.∴ x2+ y2的最大值为(2+3) 2= 7+ 4 3, 最小值为 (2 -3) 2= 7- 4 3.【评论】研究与圆有关的最值问题时, 可借助图形的性质, 利用数形联合求解.常有的最值问题有以下几种y- b种类:①形如μ=x-a形式的最值问题, 可转变为动直线斜率的最值问题;②形如t=ax+by形式的最值问题 , 可转变为动直线截距的最值问题;③形如 ( x-a) 2+( y-b) 2形式的最值问题 , 可转变为动点到定点的距离的平方的最值问题.【小试牛刀】【 2017 届河北武邑中学高三周考】已知直线l : x y 6 0 和曲线M : x2 y 2 2x 2 y 2 0 ,点 A 在直线l上,若直线AC与曲线 M 起码有一个公共点 C ,且MAC 300,则点 A 的横坐标的取值范围是()A.0,5 B .1,5C.1,3 D .0,3【答案】 B【分析】设 A x0 ,6 x0 d AM sin30 2 2, 依题意有圆心到直线的距离 2 ,即x0 1 5 x016 ,解得 x0 1,5 .成立函数关系求最值依据题目条件列出对于所求目标函数的关系式, 而后依据关系的特色采用参数法、配方法、鉴别式法等进行求解 .【例 7】设P,Q分别为x2 y 6 2 2 和椭圆x2y2 1 上的点,则 P,Q 两点间的最大距离是()10A.52B.462C. 7 2D.6 2【答案】 D[ 根源:]【分析】依题意P, Q 两点间的最大距离能够转变为圆心到椭圆上的点的最大距离再加上; 圆的半径 2 .设Q( x, y) . 圆心到椭圆的最大距离dx 2( y 6)29 y 2 12 y 469( x 2 )2 50 5 2.所3以 P,Q 两点间的最大距离是 6 2.应选 D.2.3 利用基本不等式求解最值假如所求的表达式是知足基本不等式的构造特色 , 如 a b 或许 a b 的表达式求最值 , 经常利用题设条件建立两个变量的等量关系 , 从而求解最值 . 同时需要注意 , “一正二定三相等”的考证.【例 8】 设 mR , 过定点 A 的动直线 x my0 和过定点 B 的动直线 mx y m 3 0交于点 P( x,y) ,则 |PA | |PB |的最大值是.【剖析】依据 | PA |2 | PB |2 | AB |2 10 , 可用均值不等式求最值【分析】易得 A(0,0), B(1,3) . 设 P( x, y) , 则消去 m 得: x 2y 2x 3 y 0 , 所以点 P 在以 AB 为直径的圆上, PAPB , 所以 | PA|2|PB|2| AB|210, |PA| |PB ||AB |25 .2【小试牛刀】 【 2017 届河北武邑中学高三周考】设 m, nR ,若直线 m 1 xn 1 y2 0 与圆221相切 , 则 m n 的取值范围是(x 1y 1)A . 1 3,13B. ,1 31 3,C . 22 2,2 2 2D.,22 22 2 2,【答案】 D【分析】直线与圆相切, 圆心到直线的距离等于半径 , 即m n1, 化简得 mn m n 2 ,m 1 2n 21m n2由基本不等式得m n2 mn, 令 tm n , 则 t 24t 8 0,解得2t ,2 2 2 2 2 2,.【迁徙运用】1.【 2017 河北优秀结盟上学期月考】由直线 y = x + 1 上的一点向圆 (x -3) 2+ y 2= 1 引切线 , 则切线长的最小值为()B. 2 2C.7【答案】 C3,0 ,r=1 ,圆心到直线x y 1 0 3 1【分析】圆的圆心为的距离为 d 2 2 ,所以由勾股定理可22 212 7知切线长的最小值为 22【. 2017 福建福州外国语上期末模】已知平面上两点 A a,0 , B a,0 a 0 ,若圆2 2x 3 y 44上存在点 P ,使得APB 90 , 则a的取值范围是()A.3,6 B .3,7C. 4,6 D . 0,7【答案】 C3.【 2017 届河南中原名校豫南九校高三上学期质检四】假如直线ax by 7 a 0 ,b 0 和函数f x 1 log m x m 0 ,m 1 的图象恒过同一个定点 , 且该定点一直落在圆x b2y a 121 25 的内部或圆上 , 那么b的取值范围是()aA.3,4B . 0,34 , C. 4 , D . 0,3 4 3 4 3 3 4【答案】 A【分析】依据指数函数的性质, 可知函数f x1 log m x , m 0 ,m 1 恒过定点 1 ,1 , 将点1,1 代入a b 7ax by 7,可得 a b 7 ,因为1,1一直落在所给圆的内部或圆上,所以 a 2 b 2 25 ,由a2 b2 25,解a 3 a 4 b得b4 或 b3, 这说明点 a ,b 在以 3 ,4 和 4,3 为端点的线段上运动, 所以 a 的取值范围是3 , 443.选A.4.【 2017 届湖南师大附中高三上学期月考四】设直线l : 3x 4 y a 0 , 圆 C : ( x 2)2y 22,若在圆C 上存在两点 P , Q , 在直线 l 上存在一点 M , 使得PMQ90 , 则 a 的取值范围是()A .C .18,616,4B . 6 5 2,6 5 2D.6 5 2, 6 5 2【答案】 C【分析】圆 C 半径为 2 , 从直线上的点向圆上的点连线成角 , 当且仅当两条线均为切线时 , 所成的角最大 ,此时四边形 MPOQ 为正方形 , 边长为2 , 所以对角线 OM2 , 故圆心 C 到直线 l 的距离 d 2 , 所以有3 2 a6 a4,选 C.32422 , 求出 16 a55.【 2017 湖北宜昌葛洲坝中学上期中】 若圆 C :x 2+ y 2- 2 2 x - 2 2 y - 12= 0 上有四个不一样的点到直线 l :x - y + c =0 的距离为 2, 则 c 的取值范围是()[ 根源: ]A . [ - 2,2]B .[ -2 2,2 2 ]C . (- 2,2 ) D.(- 22,2 2)【答案】 D【分析】圆 C : x 2+ y 2- 2 2 x - 2 2 y - 12= 0, 配方为:22x2y216 , [根源:]∵圆上有四个不一样的点到直线l : x-y+c=0 的距离为 2,∴圆心到直线 l 的距离 dc2 ,2解得2 2 c 2 26.【 2017 届重庆市一中高三上学期期中】设A, B在圆x 2y 21 上运动 , 且AB3, 点 P在直线3x 4 y12 0PA PB上运动,则的最小值为( ). 3B.4C. 17D. 19A55【答案】 D7.【 2017 届四川省高三高考适应性测试】 已知圆的方程为x 2 y 26x 0 , 过点 1 ,2 的该圆的全部弦中 , 最短的弦长为( )A.1B.12【答案】 C【分析】 x2y 2 6x 0 ( x 3) 2 y 29, 最短的弦长为29 (3 1)2222,选 C.8.【 2017 重庆万州二中上期中】已知圆C : x 2 y 2 8x 150, 直线 y kx 2 上起码存在一点P ,使得以点 P 为圆心 , 半径为 1的圆与圆 C 有公共点 , 则 k 的最小值是( )A.4B.534C.3D.553【答案】 A【分析】因为圆 C 的方程为 x 2 y 28x 15 0 , 整理得 ( x4) 2 y 2 1 , 所以圆心为 C (4,0) , 半 径为r 1, 又因为直线 y kx 2 上起码存在一点 P , 使得以点 P 为圆心 , 半径为 1的圆与圆 C 有公共点 , 所以点C 到直线 y kx 2 的距离小于或等于4k 0 22 , 化简 3k2 4k4 k0,所以2,所以 k 2 10,解得3k 的最小值是4,应选 A.39.【 2016 学年四川省雅安中学期中】已知点P ( t,t ),t∈R,点 m 是圆 x 2 ( y1)21 上的动点 , 点 N 是圆14(x 2) 2 y 2上的动点 , 则 PNPM 的最大值是()4B.2 C .3 D .【答案】 B【分析】如图:圆 x 2( y 1)21 的圆心 E (0,1 ) , 圆的圆心 F ( 2,0 ) , 这两个圆的半径都是 1 4 2要使 |PN||-|PM| 最大 , 需 |PN| 最大 , 且 |PM| 最小 , 由图可得 ,|PN| 最大值为 |PF|+ 1 ,12 PM|的最小值为 |PE|-2PN PM =|PF|-|PE|+1, 点 P ( t,t )在直线 y=x 上 ,E ( 0,1 )对于 y=x 的对称点 E ′( 1,0 ) , 直线 FE ′与 y=x 的交点为原点 O,则|PF|-|PE|=|PF|- |PE ′| ≤|E ′F|=1, 故 |PF|-|PE|+1的最大值为 1+1=2, 故答案为B .10.【 2016 届浙江省临海市台州中学高三上第三次统练】已知 P( x, y) 是直线 kx y 4 0(k 0) 上一动点 ,PA 、 PB 是圆 C : x 2 y 22 y A B 是切点 , 若四边形 PACB 的最小面积是 2, 则 k的0 的两条切线 , 、 值为()A.3B.21C.22D.2 2【答案】 D【分析】圆 C 的方程可化为x2 ( y 1)2 1 ,因为四边形PACB的最小面积是 2 ,且此时切线长为 2 ,故圆心0,1 到直线kx y 4 0 的距离为 5 ,即 5 5 ,解得k 2 ,又 k 0 ,所以 k 2 .k 2111.【 2016 湖北宜昌一中高二上学期期中】.直线3ax by 1(a, b R) 与圆O1: x2 y2 2 订交于A,B 两点 , 且△ AOB是直角三角形( O是坐标原点) , 则点 P(a,b )与点( 0,1 )之间距离的最大值是A.错误!未找到引用源。
人教备战中考数学压轴题专题圆的综合的经典综合题含答案
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).(1)当G(4,8)时,则∠FGE= °(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).【答案】(1)90;(2)作图见解析,P(7,7),PH是分割线.【解析】试题分析:(1)根据勾股定理求出△FEG的三边长,根据勾股定理逆定理可判定△FEG是直角三角形,且∠FGE="90" °.(2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P在以EF为直径的圆上;另一方面,由于四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形,从而OP是正方形的对角线,即点P在∠FOE的角平分线上,因此可得P(7,7),PH是分割线.试题解析:(1)连接FE,∵E(8,0),F(0 , 6),G(4,8),∴根据勾股定理,得FG=,EG=,FE=10.∵,即.∴△FEG是直角三角形,且∠FGE=90 °.(2)作图如下:P(7,7),PH是分割线.考点:1.网格问题;2.勾股定理和逆定理;3.作图(设计);4.圆周角定理.2.如图,AB是⊙O的直径,PA是⊙O的切线,点C在⊙O上,CB∥PO.(1)判断PC与⊙O的位置关系,并说明理由;(2)若AB=6,CB=4,求PC的长.【答案】(1)PC是⊙O的切线,理由见解析;(235 2【解析】试题分析:(1)要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.(2)可以连接AC,根据已知先证明△ACB∽△PCO,再根据勾股定理和相似三角形的性质求出PC的长.试题解析:(1)结论:PC是⊙O的切线.证明:连接OC∵CB∥PO∴∠POA=∠B,∠POC=∠OCB∵OC=OB∴∠OCB=∠B∴∠POA=∠POC又∵OA=OC,OP=OP∴△APO≌△CPO∴∠OAP=∠OCP∵PA是⊙O的切线∴∠OAP=90°∴∠OCP=90°∴PC是⊙O的切线.(2)连接AC∵AB是⊙O的直径∴∠ACB=90°(6分)由(1)知∠PCO=90°,∠B=∠OCB=∠POC∵∠ACB=∠PCO∴△ACB∽△PCO∴∴.点睛:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.3.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.4.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(6,0)与点B(0,-2),点D 在劣弧OA上,连结BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰为⊙M的切线,求此时点E的坐标.【答案】(1)M的半径r2;(2)证明见解析;(3)点E的坐标为(2632).【解析】试题分析:根据点A和点B的坐标得出OA和OB的长度,根据Rt△AOB的勾股定理得出AB的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD,然后结合已知条件得出角平分线;根据角平分线得出△ABE≌△HBE,从而得出2,从而求出OH 的长度,即点E的纵坐标,根据Rt△AOB的三角函数得出∠ABO的度数,从而得出∠CBO 的度数,然后根据Rt△HBE得出HE的长度,即点E的横坐标.试题解析:(1)∵点A6,0),点B为(02)∴62∴根据Rt△AOB的勾股定理可得:2∴M的半径r=122.(2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴BH=BA=22∴OH=22-2=2在Rt △AOB 中,3OA OB=∴∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,HE=263=∴点E 的坐标为(26,2)考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.5.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF 3【答案】(1)详见解析;(2633π-. 【解析】【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC,如图,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCA+∠ACO=90º,∵AB是⊙O的直径,∴∠ACB=∠ACO+OCB=90º∴∠PCA=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠PCA=∠ABC;(2)连接OE,如图,∵△ACB中,∠ACB=90º,∠CAB=2∠B,∴∠B=30º,∠CAB=60º,∴△OCA是等边三角形,∵CD⊥AB,∴∠ACD+∠CAD=∠CAD+∠ABC=90º,∴∠ACD=∠B=30º,∵PC∥AE,∴∠PCA=∠CAE=30º,∴FC=FA,同理,CF=FM,∴AM=2CF=23,Rt△ACM中,易得AC=23×3=3=OC,∵∠B=∠CAE=30º,∴∠AOC=∠COE=60º,∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB,连接OM,EG⊥AB交AB于G点,如图所示,∵OA=OB,∴MO⊥AB,∴MO=3∵△CDO≌△EDO(AAS),∴332∴1332ABM S AB MO ∆=⨯=, 同样,易求934AOE S ∆=, 260333602BOE S ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形=93363333424ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.6.如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC ,AB 相交于点D ,E ,连接AD .已知∠CAD =∠B .(1)求证:AD 是⊙O 的切线;(2)若CD =2,AC =4,BD =6,求⊙O 的半径.【答案】(1)详见解析;(2)35. 【解析】【分析】 (1)解答时先根据角的大小关系得到∠1=∠3,根据直角三角形中角的大小关系得出OD ⊥AD ,从而证明AD 为圆O 的切线;(2)根据直角三角形勾股定理和两三角形相似可以得出结果【详解】(1)证明:连接OD ,∵OB =OD ,∴∠3=∠B ,∵∠B =∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)过点O作OF⊥BC,垂足为F,∵OF⊥BD∴DF=BF=12BD=3∵AC=4,CD=2,∠ACD=90°∴AD=22AC CD=25∵∠CAD=∠B,∠OFB=∠ACD=90°∴△BFO∽△ACD∴BFAC = OB AD即34=25∴OB=352∴⊙O的半径为352.【点睛】此题重点考查学生对直线与圆的位置关系,圆的半径的求解,掌握勾股定理,两三角形相似的判定条件是解题的关键7.(问题情境)如图1,点E是平行四边形ABCD的边AD上一点,连接BE、CE.求证:BCE 1S2=S平行四边形ABCD.(说明:S表示面积)请以“问题情境”为基础,继续下面的探究(探究应用1)如图2,以平行四边形ABCD的边AD为直径作⊙O,⊙O与BC边相切于点H,与BD相交于点M.若AD=6,BD=y,AM=x,试求y与x之间的函数关系式.(探究应用2)如图3,在图1的基础上,点F在CD上,连接AF、BF,AF与CE相交于点G,若AF=CE,求证:BG平分∠AGC.(迁移拓展)如图4,平行四边形ABCD中,AB:BC=4:3,∠ABC=120°,E是AB的中点,F在BC上,且BF:FC=2:1,过D分别作DG⊥AF于G,DH⊥CE于H,请直接写出DG:DH的值.【答案】【问题情境】见解析;【探究应用1】18yx=;【探究应用2】见解析;【迁移【解析】【分析】(1)作EF⊥BC于F,则S△BCE=12BC×EF,S平行四边形ABCD=BC×EF,即可得出结论;(2)连接OH,由切线的性质得出OH⊥BC,OH=12AD=3,求出平行四边形ABCD的面积=AD×OH=18,由圆周角定理得出AM⊥BD,得出△ABD的面积=12BD×AM=12平行四边形的面积=9,即可得出结果;(3)作BM⊥AF于M,BN⊥CE于N,同图1得:△ABF的面积=△BCE的面积=12平行四边形ABCD的面积,得出12AF×BM=12CE×BN,证出BM=BN,即可得出BG平分∠AGC.(4)作AP⊥BC于P,EQ⊥BC于Q,由平行四边形的性质得出∠ABP=60°,得出∠BAP=30°,设AB=4x,则BC=3x,由直角三角形的性质得出BP=12AB=2x,BQ=12BE,AP=BP=,由已知得出BE=2x,BF=2x,得出BQ=x,EQ x,PF=4x,QF=3x,QC=4x,由勾股定理求出AF=x,CE,连接DF、DE,由三角形的面积关系得出AF×DG=CE×DH,即可得出结果.【详解】(1)证明:作EF⊥BC于F,如图1所示:则S△BCE=12BC×EF,S平行四边形ABCD=BC×EF,∴12BCE ABCD S S =.(2)解:连接OH ,如图2所示:∵⊙O 与BC 边相切于点H , ∴OH ⊥BC ,OH =12AD =3, ∴平行四边形ABCD 的面积=AD×OH =6×3=18,∵AD 是⊙O 的直径,∴∠AMD =90°,∴AM ⊥BD ,∴△ABD 的面积=12BD×AM =12平行四边形的面积=9, 即12xy =9, ∴y 与x 之间的函数关系式y =18x ; (3)证明:作BM ⊥AF 于M ,BN ⊥CE 于N ,如图3所示:同图1得:△ABF 的面积=△BCE 的面积=12平行四边形ABCD 的面积, ∴12AF×BM =12CE×BN , ∵AF =CE ,∴BM =BN ,∴BG 平分∠AGC . (4)解:作AP ⊥BC 于P ,EQ ⊥BC 于Q ,如图4所示:∵平行四边形ABCD 中,AB :BC =4:3,∠ABC =120°,∴∠ABP =60°,∴∠BAP =30°,设AB =4x ,则BC =3x ,∴BP =12AB =2x ,BQ =12BE ,AP BP =, ∵E 是AB 的中点,F 在BC 上,且BF :FC =2:1,∴BE =2x ,BF =2x ,∴BQ =x , ∴EQ,PF =4x ,QF =3x ,QC =4x ,由勾股定理得:AF =x ,CE , 连接DF 、DE ,则△CDE 的面积=△ADF 的面积=12平行四边形ABCD 的面积,∴AF×DG =CE×DH ,∴DG :DH =CE :AF =19x :27x 19:27=.【点睛】本题是圆的综合题目,考查了圆周角定理、平行四边形的性质、三角形面积公式、含30°角的直角三角形的性质、勾股定理、角平分线的判定等知识;本题综合性强,需要添加辅助线,熟练掌握平行四边形的性质和勾股定理是解题的关键.8.对于平面直角坐标系xoy 中的图形P ,Q ,给出如下定义:M 为图形P 上任意一点,N 为图形Q 上任意一点,如果M ,N 两点间的距离有最小值,那么称这个最小值为图形P ,Q 间的“非常距离”,记作d (P ,Q ).已知点A (4,0),B (0,4),连接AB .(1)d (点O ,AB )= ;(2)⊙O 半径为r ,若d (⊙O ,AB )=0,求r 的取值范围;(3)点C (-3,-2),连接AC ,BC ,⊙T 的圆心为T (t ,0),半径为2,d (⊙T ,△ABC ),且0<d <2,求t 的取值范围.【答案】(1)222)224r ≤≤;(3)25252t -<<-或6<r <8.【解析】【分析】(1)如下图所示,由题意得:过点O 作AB 的垂线,则垂线段即为所求;(2)如下图所示,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB ,交AB 于点E ,则:OB=2, OE=22,即可求解; (3)分⊙T 在△ABC 左侧、⊙T 在△ABC 右侧两种情况,求解即可.【详解】(1)过点O 作OD ⊥AB 交AB 于点D ,根据“非常距离”的定义可知,d (点O ,AB )=OD=2AB =22442+=22; (2)如图,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB,则OE=22,OB=OA=4,∵⊙O 与线段AB 的“非常距离”为0,∴224r ≤≤;(3)当⊙T 在△ABC 左侧时,如图,当⊙T 与BC 相切时,d=0,BC=2236+=35,过点C 作CE ⊥y 轴,过点T 作TF ⊥BC,则△TFH ∽△BEC,∴TF TH BE BC=, 即2=635TH , ∴TH=5,∵HO ∥CE,∴△BHO ∽△BEC,∴HO=2,此时T(-5-2,0);当d=2时,如图,同理可得,此时T (252--);∵0<d <2,∴25252t --<<--;当⊙T 在△ABC 右侧时,如图,当p=0时,t=6,当p=2时,t=8.∵0<d <2,∴6<r <8; 综上,25252t --<<--或6<r <8.【点睛】本题主要考查圆的综合问题,解题的关键是理解并掌握“非常距离”的定义与直线与圆的位置关系和分类讨论思想的运用.9.如图,AB 是半圆⊙O 的直径,点C 是半圆⊙O 上的点,连接AC ,BC ,点E 是AC 的中点,点F 是射线OE 上一点.(1)如图1,连接FA ,FC ,若∠AFC =2∠BAC ,求证:FA ⊥AB ;(2)如图2,过点C 作CD ⊥AB 于点D ,点G 是线段CD 上一点(不与点C 重合),连接FA ,FG ,FG 与AC 相交于点P ,且AF =FG .①试猜想∠AFG 和∠B 的数量关系,并证明;②连接OG ,若OE =BD ,∠GOE =90°,⊙O 的半径为2,求EP 的长.【答案】(1)见解析;(2)①结论:∠GFA =2∠ABC .理由见解析;②PE 3. 【解析】【分析】 (1)证明∠OFA =∠BAC ,由∠EAO +∠EOA =90°,推出∠OFA +∠AOE =90°,推出∠FAO =90°即可解决问题.(2)①结论:∠GFA =2∠ABC .连接FC .由FC =FG =FA ,以F 为圆心FC 为半径作⊙F .因为AG AG =,推出∠GFA =2∠ACG ,再证明∠ACG =∠ABC .②图2﹣1中,连接AG ,作FH ⊥AG 于H .想办法证明∠GFA =120°,求出EF ,OF ,OG 即可解决问题.【详解】(1)证明:连接OC .∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵AG AG,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA=2∠ABC.②如图2﹣1中,连接AG,作FH⊥AG于H.∵BD =OE ,∠CDB =∠AEO =90°,∠B =∠AOE ,∴△CDB ≌△AEO (AAS ),∴CD =AE ,∵EC =EA ,∴AC =2CD .∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 222213AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 603AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=, ∴PE 3. 【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=65时,试探究△APM与△PCN是否相似,并说明理由.【答案】(1)半径为35;(2)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD⊥AC,垂足为点D,∵⊙P与边AC相切,∴BD就是⊙P的半径,在Rt△ABD中,tanA= 1BD2AD ,设BD=x,则AD=2x,∴x2+(2x)2=152,解得:5∴半径为35; (2)相似,理由见解析, 如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,∴PH 垂直平分MN ,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(65)2解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中,MH=()22356-=3,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5,∴3535AM MP ==,35PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.。
中考数学专题复习 圆压轴八大模型题(学生用)(word文档良心出品)
圆压轴题八大模型题(一)引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题的位置上,是试卷中综合性与难度都比较大的习题。
一般都会在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。
把握了这些方法与技巧,就能台阶性地帮助考生解决问题。
类型1 弧中点的运用 在⊙O 中,点C 是⌒AD 的中点,CE ⊥AB 于点E .(1)在图1中,你会发现这些结论吗? ①AP =CP =FP ; ②CH =AD ;②AC 2=AP ·AD =CF ·CB =AE ·A B .(2)在图2中,你能找出所有与△ABC 相似的三角形吗?【典例】(2018·湖南永州)如图,线段AB 为⊙O 的直径,点C ,E 在⊙O 上,=,CD ⊥AB ,垂足为点D ,连接BE ,弦BE 与线段CD 相交于点F . (1)求证:CF =BF ;(2)若cos ∠ABE =,在AB 的延长线上取一点M ,使BM =4,⊙O 的半径为6.求证:直线CM 是⊙O 的切线.【变式运用】1.(2018·四川宜宾)如图,AB 是半圆的直径,AC 是一条弦,D 是AC 的中点,DE ⊥AB 于点E 且DE 交AC 于点F ,DB 交AC 于点G ,若=,OHP F EDCBA(图1)(图1-2)则= .2.(2018·泸州)如图,在平行四边形ABCD 中,E 为BC 边上的一点,且AE 与DE 分别平分∠BAD 和∠ADC 。
(1)求证:AE ⊥DE ;(2)设以AD 为直径的半圆交AB 于F ,连接DF 交AE 于G ,已知CD =5,AE =8,求FGAF值。
3. (2017·泸州)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,C 是AD 的中点,弦CE ⊥AB 于点H ,连结AD ,分别交CE 、BC 于点P 、Q ,连结BD 。
人教中考数学压轴题专题复习——圆的综合的综合及详细答案
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.【答案】(1)见解析;(2)1010. 【解析】 分析:(1)要证DE 是⊙O 的切线,必须证ED ⊥OD ,即∠EDB+∠ODB=90°(2)要证AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又BD ⊥AC ,所以△ABC 为等腰直角三角形,所以∠CAB=45°,再由正弦的概念求解即可.详解:(1)证明:连接O 、D 与B 、D 两点,∵△BDC 是Rt △,且E 为BC 中点,∴∠EDB=∠EBD .(2分)又∵OD=OB 且∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°.∴DE 是⊙O 的切线.(2)解:∵∠EDO=∠B=90°,若要四边形AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又∵BD ⊥AC ,∴△ABC 为等腰直角三角形.∴∠C AB=45°.过E 作EH ⊥AC 于H ,设BC=2k ,则EH=22k ,AE=5k , ∴sin ∠CAE=1010EH AE .点睛:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.3.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
专题4.2圆---利用“隐圆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)
D
Q
Q
C
N N
H
O O
A
MM
P P
B
∵MN=2NH= ON2-OH2 = 262-OH2
∴当OH最短时,MN最长.
与“圆”有关的最值问题
强化训练
提升能力
4.如图,在Rt△ABC中,∠C=90º,BC=6,AC=8,D,E分别是BC,AC上的一点,且
24/5
DE=6.若以DE为直径的圆与斜边AB相交于M,N两点,则MN的最大值为_____.
A
M
D
E
B
N
C
针对训练
点圆最值---点心线
考点4-1
1.如图,⊙O、⊙C,OC=5,点A、B分别是平面内的动点,且OA=4,BC=3,则OB长
2 ,AC长的最大值为_____
8 ,OB长的最小值为______
9 ,AC长的最小值
的最大值为______
12 ,AB长的最小值为____.
0
为______
1 ,AB长的最大值为______
2.如图,在矩形ABCD中,AB=4,AD=6,点E是AB边上的中点,点F是线段BC边上
的动点,将△EBF沿EF所在直线折叠得到△EB´F,连接B´C,则B´C最小值是
A
2 10-2
________.
A
B
O
C
D
B´
E
B´
B
F
C
模型分析
线圆最值---心垂线
考点4-2
BC、CD上两个动点,且∠EAF=60º,则△AEF的面积是否存在最小值?若存在,
求出其最小值;若不存在,请说明理由. 定角夹定高
【简答】将△ADF绕点A顺时针旋转120º,得△ABF´,则∠EAF´=60º,易证
2016年中考压轴题专题:与圆有关的最值问题(附答案)
B yC x A OD B O C A 与圆有关的最值(取值范围)问题引例1:在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan ∠BOC=m ,则m 的取值范围是_________.引例2:如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径作⊙O ,C 为半圆弧AB 上的一个动点(不与A 、B 两点重合),射线AC 交⊙O 于点E ,BC=a ,AC=b ,求a b 的最大值.引例3:如图,∠BAC=60°,半径长为1的圆O 与∠BAC 的两边相切,P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ).A .3B .6C .332D .33一、题目分析:此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C 与两个定点O 、A 构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;2.引例2:通过圆的基本性质,寻找动点C 与两个定点A 、B 构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D 、E 与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE 、直径所在的直角三角形,从而转化为弦DE 与半径AP 之间的数量关系,其实质是高中“正弦定理”的直接运用;综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.二、解题策略1.直观感觉,画出图形;2.特殊位置,比较结果;3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.B AC MD DOPC B A 三、中考展望与题型训练例一、斜率运用1.如图,A 点的坐标为(﹣2,1),以A 为圆心的⊙A 切x 轴于点B ,P (m ,n )为⊙A 上的一个动点,请探索n+m 的最大值.例二、圆外一点与圆的最近点、最远点1.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .2.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)在点P 的运动过程中,线段CD 长度的取值范围为 ; (2)在点P 的运动过程中,线段AD 长度的最大值为 .例三、正弦定理 1.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=22D 是线段BC 上的一个动点,以AD 为直径作⊙O 分别交AB ,AC 于E ,F 两点,连接EF ,则线段EF 长度的最小值为 .2. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,则PM 长度的最大值是 .O A E B AC OD OD CE A B例四、柯西不等式、配方法1.如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x (2<x <4),则当x= 时,PD•CD 的值最大,且最大值是为 .2.如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 半径的最小值为( ).23322 D. 23.在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B ,线段AB 长度的最小值是 .例四、相切的应用(有公共点、最大或最小夹角)1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 边上一点,过点D 作CD 的垂线交直线BC 于点E ,则线段CE 长度的最小值是 .2.如图,Rt△ABC 中,∠C=90°,∠A=30°,AB=4,以AC 上的一点O 为圆心OA 为半径作⊙O ,若⊙O 与边BC 始终有交点(包括B 、C 两点),则线段AO 的取值范围是 .3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A.B.C.3 D.2例五、其他知识的综合运用1.(2015•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E 重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2.(2013秋•相城区校级期末)如图,已知A、B是⊙O与x轴的两个交点,⊙O的半径为1,P是该圆上第一象限内的一个动点,直线PA、PB分别交直线x=2于C、D两点,E为线段CD的中点.(1)判断直线PE与⊙O的位置关系并说明理由;(2)求线段CD长的最小值;(3)若E点的纵坐标为m,则m的范围为.l Q P N M O A D BC E F C AD B Q P O A B D CP 【题型训练】1.如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,OA=5,OA 与⊙O 相交于点P ,AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C ,若在⊙O 上存在点Q ,使△QAC 是以AC 为底边的等腰三角形,则⊙O 的半径r 的取值范围为 .2.已知:如图,Rt ΔABC 中,∠B=90º,∠A=30º,BC=6cm ,点O 从A 点出发,沿AB 以每秒3cm 的速度向B 点方向运动,当点O 运动了t 秒(t >0)时,以O 点为圆心的圆与边AC 相切于点D ,与边AB 相交于E 、F 两点,过E 作EG ⊥DE 交射线BC 于G.(1)若点G 在线段BC 上,则t 的取值范围是 ;(2)若点G 在线段BC 的延长线上,则t 的取值范围是 .3.如图,⊙M ,⊙N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为⊙M 上的任意一点,Q 为⊙N 上的任意一点,直线PQ 与连心线l 所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α∠的最大值为( ).(A)612; (B)43; (C)33; (D)344.如图,在矩形ABCD 中,AB=3,BC=4,O 为矩形ABCD 的中心,以D 为圆心1为半径作⊙D ,P 为⊙D 上的一个动点,连接AP 、OP ,则△AOP 面积的最大值为( ).(A)4 (B)215 (C)358 (D)1745.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( ).A .194B .245C .5D .426.如图,在等腰Rt △ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作⊙O ,⊙O 交AC 于另一点F ,在此运动变化的过程中,线段EF 长度的最小值为 .7.如图,A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心的坐标为(-1,0),半径为1,若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是( ).A .2B .1 C.22- D.22AQC PBO ABxyPO A xyP8.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1,D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( ).A.3 B.113C.103D.49.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,⊙C的半径为1,点P在斜边AB上,PQ 切⊙O于点Q,则切线长PQ长度的最小值为( ).7 B.2210.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的范围为 .11.在直角坐标系中,点A的坐标为(3,0),点P(m n,)是第一象限内一点,且AB=2,则m n-的范围为 .12.在坐标系中,点A的坐标为(3,0),点P是y轴右侧一点,且AP=2,点B上直线y=x+1上一动点,且PB⊥AP于点P,则tan ABP m∠=,则m的取值范围是 .13.在平面直角坐标系中,M(3,4),P是以M为圆心,2为半径的⊙M上一动点,A(-1,0)、B(1,0),连接PA、PB,则PA2+PB2最大值是 .蔡老师点评:与圆有关的最值问题,看着无从下手,但只要仔细观察,分析图形,寻找动点与定点之间不变的维系条件,构建关系,将研究的问题转化为变量与常量之间的关系,就能找到解决问题的突破口!几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考试题中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.参考答案:引例1. 解:C 在以A 为圆心,以2为半径作圆周上,只有当OC 与圆A 相切(即到C 点)时,∠BOC 最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°, ∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC ,tan ∠BOC=tan ∠OAC==,随着C 的移动,∠BOC 越来越大,∵C 在第一象限,∴C 不到x 轴点,即∠BOC <90°, ∴tan ∠BOC ≥,故答案为:m ≥.引例1图引例2图 引例2.2a b +≤;原题:(2013•武汉模拟)如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径作圆O ,C 为半圆AB 上不与A 、B 重合的一动点,射线AC 交⊙O 于点E ,BC=a ,AC=b .(1)求证:AE=b+a ;(2)求a+b 的最大值;(3)若m 是关于x 的方程:x 2+ax=b 2+ab 的一个根,求m 的取值范围.【考点】圆的综合题.【分析】(1)首先连接BE ,由△OAB 为等边三角形,可得∠AOB=60°,又由圆周角定理,可求得∠E 的度数,又由AB 为⊙D 的直径,可求得CE 的长,继而求得AE=b+a ;(2)首先过点C 作CH ⊥AB 于H ,在Rt △ABC 中,BC=a ,AC=b ,AB=1,可得(a+b ) 2= a 2+b 2+2ab=1+2ab=1+2CH •AB=1+2CH ≤1+2AD=1+AB=2,即可求得答案;(3)由x 2+ax=b 2+ab ,可得(x ﹣b )(x+b+a )=0,则可求得x 的值,继而可求得m 的取值范围.【解答】解:(1)连接BE ,∵△OAB 为等边三角形,∴∠AOB=60°,∴∠AEB=30°,∵AB 为直径,∴∠ACB=∠BCE=90°,∵BC=a ,∴BE=2a ,CE=a ,∵AC=b ,∴AE=b+a ;(2)过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,∴a2+b2=1,∵S△ABC=AC•BC=AB•CH,∴AC•BC=AB•CH,∴(a+b)2=a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,∴a+b≤,故a+b的最大值为,(3)∵x2+ax=b2+ab,∴x2﹣b2+ax﹣ab=0,∴(x+b)(x﹣b)+a(x﹣b)=0,∴(x﹣b)(x+b+a)=0,∴x=b或x=﹣(b+a),当m=b时,m=b=AC<AB=1,∴0<m<1,当m=﹣(b+a)时,由(1)知AE=﹣m,又∵AB<AE≤2AO=2,∴1<﹣m≤2,∴﹣2≤m<﹣1,∴m的取值范围为0<m<1或﹣2≤m<﹣1.【点评】此题考查了圆周角定理、等边三角形的性质、完全平方公式的应用以及一元二次方程的解法.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.引例3.解:连接EP,DP,过P点作PM垂直DE于点M,过O做OF⊥AC与F,连接AO,如图,∵∠BAC=60°,∴∠DPE=120°.∵PE=PD,PM⊥DE,∴∠EPM=60°,∴ED=2EM=2EP•sin60°=EP=PA.当P与A、O共线时,且在O点右侧时,⊙P直径最大.∵⊙O与∠BAC两边均相切,且∠BAC=60°,∴∠OAF=30°,OF=1,∴AO==2,AP=2+1=3,∴DE=PA=3.故答案为:D。
(完整版)中考数学几何综合压轴题初三难题训练(真题附答案)
中考数学几何综合压轴题初三难题训练1. (2015金华中考)如图,正方形 ABCD 和正三角形 AEF 都内接于eO , EF 与BC , CD 分别相交 于点G , H ,则-EF 的值是()GHA.——B. 2C. . 3D. 222.(2015遵义中考)将正方形 ABCD 绕点A 按逆时针方向旋转 30°,得正方形 AB 1GD 1,B^!交CD 于点E , AB 3,则四边形A^ED 的内切圆半径为()D ,E 分别是OA ,OB 的中点,则图中影阴部分的面积为 ___________ cm 2 .A. D.3. (2015遵义中考)如图,在圆心角为90°的扇形OAB 中,半径 OA 2cm ,C 为弧AB 的中点,6Di到E ,且有 EBD CAB • (1) 求证:BE 是eO 的切线;(2 )若BC 3 , AC 5,求圆的直径 AD 及切线BE 的长.5. (2016岳阳中考)数学活动 旋转变换(1) 如图①,在 VABC 中, ABC 130°,将VABC 绕点C 逆时针旋转500得到VABC ,连接 BB ,求ABB 的大小;(2) 如图②,在 VABC 中, ABC 150° , AB 3, BC 5,将VABC 绕点C 逆时针旋转 60° 得到VABC ,连接BB ,以A 为圆心,AB 长为半径作圆.(I)猜想:直线 BB 与e A 的位置关系,并证明你的结论; (H)连接AB ,求线段AB 的长度;(3)如图③,在 VABC 中, ABC 90° 180° , AB m , BC n ,将VABC 绕点 C 逆180°得到VABC ,连接AB 和BB ,以A 为圆心,AB 长为半与角 满足什么条件时,直线 BB 与e A 相切,请说明理由,并求此条件下线段AB 的长度(结果用角或角 的三角函数及字母 m , n 所组成的式子表示)时针旋转2角度0° 2径作圆,问:角6. (2016成都中考)如图,在RtVABC中,ABC 90°,以CB为半径作eC,交AC于点D,交AC 的延长线于点E,连接BD , BE .(1)求证:VABD s VAEB ;AB 4(2)当一—时,求tanE ;BC 3BE父于点F .(3 )在(2 )的条件下,作BAC的平分线,与7. (2016苏州中考)如图,在矩形ABCD中,AB 6cm , AD 8cm •点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作圆O,点P与点O同时出发,设它们的运动时间为t (单位:s)(0 t 8)•3(1)如图,连接DQ,当DQ平分BDC时,t的值为.(2)如图,连接CM,若VCMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续连行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与圆O相切时,求t的值;并判断此时PM与圆O是否也相切?说明理由.8. (2015扬州中考)如图,已知 eO 的直径AB 12cm , AC 是eO 的弦,过点 延长线于点P ,连接BC •(1) 求证: PCA B ;(2) 已知 P 400 ,点Q 在优弧ABC 上,从点A 开始逆时针运动到点 重合),当VABQ 与VABC 的面积相等时,求动点 Q 所经过的弧长.C 作eO 的切线交BA 的C 停止(点Q 与点C 不9. ( 2015大庆中考)如图, 四边形ABCD 内接于eO ,ADPBC P 为BD 上一点,APB BAD . (1) 证明:AB CD ;(2) 证明:DP BD AD BC ; (3) 证明:BD 2 AB 2 AD BC .10. (2015武汉中考)如图,AB是eO的直径,ABT 4^ , AT AB •(1)求证:AT是eO的切线;(2)连接OT交e O于点C,连接AC,求tan TAC的值.11. (2016随州中考)如图,AB是eO的弦,点C为半径OA的中点,过点C作CD OA交弦AB 于点E,连接BD,且DE DB •(1)判断BD与eO的位置关系,并说明理由;5(2)若CD 15 , BE 10 , ta nA -,求eO 的直径.1212. (2015德州中考)如图,eO的半径为1 , A, P , B , C是eO上的四个点, APC CPB 60°•(1) 判断VABC的形状:;(2) 试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3) 当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.13. (2016淮安中考)问题背景:如图1,在四边形 ADBC 中, ACB形,所以CE . 2CD ,从而得出结论:AC BC . 2CD •(1) 简单应用:在图1中,若AC 2 , BC 2 2,则CD •(2) 如图3, AB 是eO 的直径,点 C 、D 在e 上,AD BD ,若AB 13, BC 12,求CD 的 长. (3) 拓展规律:如图 4 , ACB ADB 90° , AD BD ,若 AC m , BC n m n ,求 CD 的长(用含m , n 的代数式表示)1(4 )如图5 , ACB 90° , AC BC ,点P 为AB 的中点,若点E 满足AE 1AC ,3CE CA ,点Q 为AE 的中点,则线段 PQ 与AC 的数量关系是.ADB 90° , A D BD ,探究线段 AC,BC,CD 之间的数量关系•小吴同学探究此问题的思路是:将 VBCD 绕点D ,逆时针旋转 90°到 VAED 处,点 B,C 分别落在点 A,E 处(如图2),易证点 C,A,E 在同一条直线上,并且VCDE 是等腰直角三角li14. (2015宜昌中考)如图,四边形ABCD为菱形,对角线AC , BD相交于点E , F是边BA延长线上一点,连接EF,以EF为直径作eO,交边DC于D,G两点,AD分别与EF,GF交于I , H两占八、、♦(1)求FDE的度数;(2)试判断四边形FACD的形状,并证明你的结论;(3)当G为线段DC的中点时,(i)求证:FD FI ;(ii)设AC 2m, BD 2n,求eO的面积与菱形ABCD的面积之比.15. (2015株洲中考)已知AB是圆O的切线,切点为B,直线AO交圆O于C , D两点,CD 2 , DAB 30°,动点P在直线AB上运动,PC交圆O于另一点Q .(1)当点P运动到使Q , C两点重合时(如图1),求AP的长;(2)点P在运动过程中,有几个位置(几种情况)使VCQD的面积为丄?(直接写出答案)21(3)当使VCQD的面积为丄,且Q位于以CD为直径的的上半圆上,CQ QD时(如图2),2求AP的长.第11页(共29页)第12页(共29页)第一部分 1.C【解析】如图,连接 AC 、BD 、OF ,其中AC 与EF 交于点I . QAO 是EAF 的角平分线,OAF 60o 2 30o .QOA OF ,OFA OAF 30° ,COF 60° ,BD CO 2 1 1 GH BD 2r r , 2 2竺3 3 .GH r作 DAB 1与 AB 1C 1的角平分线交于点 O ,过O 作OF AB 1 , 则 OAF 30° , AB 1O 4^ ,答案EF 3 o r 2 23r . QAO 2OI ,OI -r , CI 21 r r2 FI r sin60°GH CI 11 r , 22.B 【解析】设eO 的半径为r ,则 OF r ,第13页(共29页)故B i FOF 〔OA , 2 设B i Fx , 则AF :丄3 x , 故 3 2 x 2 2 x 2 2x ,解得x3 -,负值舍去. 2 四边形AB iE D 的内切圆半径为宁-第二部分3. n 1二2 2 2 【解析】连接0C ,过C 点作CF OA 于F •Q 半径OA 2cm , C 为A B 的中点,D 、E 分别是OA 、OB 的中点, OD OE 1cm , OC 2cm , AOC 4^ •CF . 2 • 鸟白图形ACDS 扇形OACS VOCD 2 45 n 221 2 1 23601 n2 2 cm . 2 2Q S VODE 〔OD 2 1 OE cm 2 2S 阴影S 扇形OAB S 空白图形ACD S VODE90 n 221 2 1—n ------ —360 2 2 21 —n _! 12 cm . 2 2 2第三部分4. (1)如图,连接OB .第14页(共29页)QBD BC ,CAB BAD .Q EBD CAB ,BAD EBD .QAD 是eO 的直径,ABD 90o , OA BO .BAD ABO .EBD ABO .OBE EBD OBD ABD OBD ABD 90°.Q 点B 在e O 上,BE 是eO 的切线.(2)如图,设圆的半径为 R ,连接CD .QAD 为eO 的直径,ACCD 90° .QBC BD ,OB CD .OB PAC .QOA OD ,1 5 OF AC .2 2Q 四边形ACBD 是圆内接四边形,BDE ACB .Q DBE ACB ,VDBE s VCAB . DB DEAC BC .3DE 5 3 .DEQ OBE OFD 90 ,DF PBE .QR 0 ,R 3.QBE 是eO 的切线,5. (1)如图①中, QVA BC 是由VABC 旋转得到,ABC ABC 130°,CB CBCBB CBB ,Q BCB 50o ,CBB CB B 650,ABB ABC BB C 65° .(2 )(1)结论:直线 BB ,是e A 的切线. 理由:如图②中,150°,CB CB ,Q ABC ABC CBB CBB ,Q BCB 60° ,CBB CB B 60° ,ABB ABC BBC 90° .AB BB ,直线BB ,是e A 的切线.(H) Q 在 RtVABB 中,Q AB B 90° , BB BC 5 , AB AB 3,AB AB 2 BB 2 34 .(3 )如图③中,当 180°时,直线BB ,是e A 的切线 理由:Q ABC ABC ,CB CB ,OF OB ODOEBE JDE AE * 2 3 3\5 5 3 115(3)解法一:在 RtVABC 中, -AC 2 BG -AB 2 11BG 即 5x BG 4x 3x ,解得BG 2 2 12 x . 590°.AB BB ,直线BB ,是e A 的切线.在VCBB 中QCB CB n , BCB 2 ,BB 2 nsin ,在 RtVA BB 中,AB . BB 2 AB 2 ,m 2 4n 2si n 26. (1) QDE 为e C 的直径,DBE 90° . 又 Q ABC 90° ,DBE DBC 90° , CBE DBC 90° ,ABD CBE .又QCB CE ,CBE E , ABD E .又 Q BAD EAB ,VABD ^VAEB .(2 )由(1)知,VABD s VAEB 在 RtVDBE 中,BD 1 tanEBE 2CBB CBB ,Q BCB 2 ,CBB ABB CB B 180° 2-------------? 2ABC BBC90°180° 90°BD BE ABAEABQ - BC设 AB 4x ,贝U CE 在 RtVABC 中,AB CB 3x .5x ,AE AC CE 5x 3x 8x BD BE AB AE 4x8xQAF 是 BAC 的平分线, BF AB 4x 1 FHEF 2BG BE 32 2 12 8FH BG一x x3 3 5 5 1又 Qta nE2EH 2FH 16 x ,5AM AE EM24 x ・ 5 在 RtVAHF 中, 2 2 AH HF AF 1 2 3即 224 x5e C 的半径是3xQAF 平分 BAC , FE AE 8x 2AE 于 H , 【解析】解法二:如图 2过点A 作EB 延长线的垂线,垂足为点在 VBAE 中,有 1 2 3 E 180°90° 90° , 4 2 E 45 ,VGAF 为等腰直角三角形8.5 L ,AFeC 的半径是NG BN a ,CG 3 a ,4 NC BC 9 a,4BH 9a, 5AB 3a , AC AG 3a ,tan NAC NG AG sin NAC 10105a ,4 15 a,4 13由( 2) 可知, AE 8x , tanEAG AE 于点M , 解法三:AE 于点G ,FM BAC 的平分线,QAF 是AE 10 .在 RtVDBE 中,设 BP 4t ,则 PQ 3t , BQ 5t .Q DQ 平分 BDC , QC CD , QP BD .CQ PQ 3t .QCQ 8 5t.3t 8 5t ,即 t 1.(2)如图,过点M 作ME BC 于点E .在 RtVAFM 中, FM AF sin NAC 2 卫互,AM 10 5 3 10 5 在 RtVEFM 中, EM FM tanE2 10 QBH a,5 EH 18 a, 5 DE 9 a ,2 DC 9 a ,4 AD 3 a,2 又QAE DE3 a 2 9 a2 9a,10 106DC 3.1087. (1)【解析】由题意可VBPQ s VBCD .DH AE10 ,a在 RtVABD 中,AB 6cm , AD 8cm ,BD 10cm .由 BPQ BCD , QBP DBC ,得 VPBQ ^VCBD .PB PQ BQBC CD BD .Q PB 4t ,PQ 3t , BQ 5t .Q MQ MC ,1 1 QE CE —QC - 8 5t2 2Q VMEQ s VDCB , EQ BCMQ BD1 -8 5t 23t40t 49(3)如图1,设QM 所在直线交CD 于点F . ① Q VQCF s VBCD , CF CDCQ CB CF 68 5t 8E15 -t , DF 4 又DO 3t , DO DF CF 6 ,即点O 始终在QM 所在直线的左侧.②如图,设MQ与eO相切时,切点我G,连接OG ,OG BCOF BD,0.88吗3t 10,4丄4t3当t -时,正方形PQMN的边长为3解法一:连接MO并延长交PQ于点贝U VMOG s VMHQ ,OG MGHQ MQ,260.815HQ4,HQ241328PH13 °HK14 213HK HQ .点O不在PMQ的平分线上,当QM1与eO相切时,PM与eO【解析】解法二:连接OM , OP ,Q SVMPQ SVMOQ S VPOQ S VPOM ,则VOGF s VBCD ,534 , QF-,FG3 5 .H,过点H作HK PM于点K不相切.OQ,设点O到MP的距离为h ,1 4 0.8 1 344142 h 8 .2 2 152h7 20.8 .15当QM与eO相切时,PM与eO不相切QAB是eO的直径,ACB 1 2 90o,又PC是eO的切线,PCO PCA 1 90°,2 PCA.又OC OB .2 B,PCA B .(2) Q P 40°,AOC 50°.QAB 12,AO 6 .AOQ 130°时,VABQ与VABC的面积相等,优弧ABQ所对的圆心角为230°时,VABQ与VABC的面积相等,13n31803180当BOQ 50°时,即9. (1) Q AD PBC ,ADB DBC ,AB DC ,AB CD .(2) Q APB BAD , BAD BCD 180° , APBBCD APD ,Q ADB CBD .VADPWDBC ,AD DPBD BC ,DP BD AD BC .QBD 2DE 2 BE 2, DE 2 CD 2 CE 2 ,2 BD 2CD 2 BE 2 CE 2AB 2 BE CE BE CEAB 2 AD BC.10. (1) QAB AT ,ATB B 45°.BAT 90° .AT 是eO 的切线.(2 )设eO 半径为r ,延长TO 交eO 于D ,连接AD .点Q 所经过的弧长 230 n 6 180 23 n3AAPD 180° , (3)如图,过点D 作DE BC 交BC 于E .QCD是直径,CAD BAT 90°.TAC OAD D . 又ATC DTA,VTAC s VTDA.TA TCTD AT .TA2TC TD , 即4r2 TC TC 2r 解得TC 5 1r.tan TAC tan DACADTCAT.5 1 r2r51211. (1)连接OB .QOB OA, DE DB ,A OBA, DEB ABD.QCD OA,A AEC A DEB 90°,OBA ABD 90°,OB BD ,BD是eO的切线;(2)如图,过点D作DG BE于G .QDE DB,1EG -BE 5,2GDE A,VACE s VDGE,QVACE s VDGE12. (1)等边三角形(2) PA PB PC .证明:如图,在PC上截取PD PA,连接AD .PA AD , PAD 60o.Q BAC 60o,PAB DAC .Q APC 60o,VPAD是等边三角形.Q ACE DGE 90°, AEC GED ,tan EDG tanAEGDG5—,即DG 12 .12在RtVEDG 中,DE .DG2 EG213. QCD 15, DECE 2 .13 ,ACDGCEGE,AC CE DGGE245e O的直径2OA 4AD96QAB AC ,VPAB 也VDAC .PB DC .QPD DC PC ,PA PB PC .(3)当点P 为A B 的中点时,四边形 APBC 面积最大.理由如下:如图,过点 P 作PE AB ,垂足为E , 过点C 作CF AB ,垂足为F ,四边形APBC 面积最大. Qe O 的半径为1,其内接正三角形的边长AB 31S 四边形APBC 匚 2 32 3 . 13. (1) CD 3(2)连接 AC 、BD 、AD ,Q AB 是eO 的直径,ADB ACB 90° ,Q A D B D ,AD BD ,将VBCD 绕点D ,逆时针旋转90°到VAED 处,如图3 ,EADDBC , Q DBCDAC 180° , EADDAC 180° , E 、A 、C 三点共线,Q AB 13,BC 12,由勾股定理可求得: AC 5 ,Q BC AE ,CE AE AC 17,2 AB PE ,S VABC 1AB CF . 2S 四边形APBC 1 — AB PE 2 Q 当点P 为A B 的中点时, CF . PE CF PC , PC 为eO 直径, Q S VPABQ EDA CDB ,EDA ADC CDB ADC ,即 EDCADB 90° ,Q CD ED , VEDC 是等腰直角三角形,CE 2CD ,17近 CD 2(3)以AB 为直径作eO ,连接OD 并延长交eO 于点D 1 , 连接D 1A ,D 1B , D 1C ,如图D 1C又Q 0D 是eO 的直径,DCD 1 90o ,Q AC m , BC n由勾股定理可求得: 2 2 DQ AB2 n22PQ = -^」AC • 614.( 1)QEF 为eO 的直径,FDE 90° .(2)四边形FACD 为平行四边形•理由如下:QABCD 为菱形,AB PCD , AC BD ,AEB 90° • 又 FDE 90o ,AC PFD •四边形FACD 为平行四边形.(3)(i )如图,连接GE •由(2)的证明过程可知: ACBC ■ 2D 1C ,ABm 2 2 Q D 1C 2 CD 2 2 D 1D 2CD m 2 n 2CD (4)Q 在RtVDEC 中,G 为CD 的中点,EG DG ,弧DG 弧EG ,1 2.又EF 为eO 的直径,FGE 90° ,FG EG .QG 为DC 中点,E 为AC 中点,GE 为VDAC 的中位线,EG PAD . FGADF l HDFHI 90o . 1 3 24 90o , 3 4 ,FD FI .(ii ) Q 菱形ABCD , AE CE m , BE DE nQ 四边形FACD 为平行四边形,FD AC 2m FIQ FD PAC , 3 8 .又34 7, 78 , EI EA m . 在 RtVFDE 中,FE 2 FD 2 DE 2 ,3m $ 2m $ n 2,解得,n 5m .2 3m9 2 1 S eo n 测,S 菱形ABCD — 2m 2n 2mn 2 4 2 S e O : S 菱形ABCD 9 n m 2:2 5m 2葺5. 4 4015. (1) QAB 是圆O 的切线,OBA 90o .2 5m 2 ,QRtVOBA中,CD 2, DAB 30°,OB 1 ,OB OC AC 1 .Q当点P , C运动到Q , C两点重合时,PC为圆O的切线,PCA 90°,Q DAB 30°, AC 1 ,AP -A/3•3(2)有4个位置使VCQD的面积为-•21【解析】由于CD的长度2,而S VCQD1, 故CD上的高的长度为-,从而如下图,我们可得到答案.2(3)过点Q作QN AD于点N,过点P作PM AD于点M •QNQCD是圆O的直径,CQD 90°• 易证VQCN s VDQN •QN CNDN QNQN2 CN DN .1x 2 x4解得X i 2 3, x22QCQ QD ,CNCNQN易证VPMC s VQNC .易得列空2 3MP QNCM 2 3 MP .在RtVAMP中易得AM 3MP , QAM CM AC 1,2,3 MP . 3MP 1 ,MP 3 14 ,薦1AP2MP21 2.又QCB CE,3 E .。
中考数学压轴题二次函数与圆
中考数(Shu)学压轴题二次函数与圆一(Yi)、二次函数与圆(Yuan)综合【例1】已知(Zhi):抛物线与(Yu)轴(Zhou)相交于两(Liang)点,且(Qie).(Ⅰ)若,且为正整数,求抛物线的解析式;(Ⅱ)若,求的取值范围;(Ⅲ)试判断是否存在,使经过点和点的圆与轴相切于点,若存在,求出的值;若不存在,试说明理由;(Ⅳ)若直线过点,与(Ⅰ)中的抛物线相交于两点,且使,求直线的解析式.【解析】(Ⅰ)解法一:由题意得,.解得,.为正整数,∴.∴.解法二:由题意知,当时,.(以下同解法一)解法三:,.又.∴.(以下同解法一.)解法四:令,即,∴.(以下同解法三.)(Ⅱ)解法一:.,即.,∴.解得:.∴的取值范围是.解法二:由题意知,当时,.解得:.∴的取值范围是.解法三:由(Ⅰ)的解法三、四知,.∴∴.∴的(De)取值范围是.(Ⅲ)存(Cun)在.解法一(Yi):因为过两点的(De)圆与轴(Zhou)相切于点,所(Suo)以两点(Dian)在轴的同(Tong)侧,∴.由切割线定理知,,即.∴,∴∴.解法二:连接.圆心所在直线,设直线与轴交于点,圆心为,则.,∴在中,.即.解得.(Ⅳ)设,则.过分别向轴引垂线,垂足分别为.则.所以由平行线分线段成比例定理知,.因此,,即.过分别向轴引垂线,垂足分别为,则.所以....,或.当时,点.直线过,解得当时,点.直线过,解得故所求直线的解析式为:,或.【例2】已知抛物线与y轴的交点为C,顶点为M,直线CM的解析式并且线段CM的长为(1)求抛物线的解析式。
(2)设抛物(Wu)线与x轴有(You)两个交点A(X1 ,0)、B(X2,0),且(Qie)点A在(Zai)B的左侧,求线(Xian)段AB的(De)长。
(3)若(Ruo)以AB为(Wei)直径作⊙N,请你判断直线CM与⊙N的位置关系,并说明理由。
【解析】(1)解法一:由已知,直线CM:y=-x+2与y轴交于点C(0,2)抛物线.过点C(0,2),所以c=2,抛物线的顶点M在直线CM上,所以,解得或若,点C、M重合,不合题意,舍去,所以.即M过M点作y轴的垂线,垂足为Q,在所以,,解得,。
中考复习圆专题含答案
中考专题复习——圆一、垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.转为几何语言:∵CD是直径,CD⊥AB,∴AM=BM,⌒AC=⌒BC,⌒AD=⌒BD如果把条件和结论看成是5个条件,相互间是否还有其它关系呢?如图,在下列五个条件中:①CD是直径,②CD⊥AB,③AM=BM,④⌒AC=⌒BC,⑤⌒AD=⌒BD只要具备其中两个条件,就可推出其余三个结论.你可以写出相应的命题吗?条件结论命题①②③④⑤垂直于弦的直径平分弦,并且平分弦所的两条弧.①③②④⑤平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.①④ ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.①⑤ ②③④ ②③ ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧. ②④ ①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平分弦和所对的另一条弧.②⑤ ①③④ ③④ ①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦,并且平分弦所对的另一条弧.③⑤ ①②④ ④⑤ ①②③ 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.垂径定理是《圆》这一章的重要内容,在实际生活中有着广泛的应用.在各地中考题中对垂径定理的考查频频出现,这类问题常常需要结合勾股定理来解决,现以中考题为例说明如下:类型一 求直径【例1】如图,O ⊙的直径AB 垂直弦CD 于点P ,且点P 是半径OB 的中点,6 cm CD =,则直径AB 的长是( ).A . 2 3 cmB . 3 2 cmC . 4 2 cmD . 4 3 cm【解析】解决本题的关键是构造直角三角形,根据勾股定理列出方程求解即可.连接OD ,由垂径定理可知PD =362121=⨯=CD (cm).设半径OD =x cm ,则OP=x OB 2121=(cm). 在Rt △OPD 中,因为222OP DP OD +=,所以222132x x ⎛⎫+= ⎪⎝⎭.解这个方程,得23x =.所以直径AB 的长为342=x (cm),故应选D . 类型二 求弦长【例2】如图,AB O 是⊙的直径,弦CD AB ⊥于点E ,60COB ∠=°,⊙O 的半径为 3 cm ,则弦CD 的长为( ).A .3cm 2B . 3 cmC . 2 3 cmD . 9 cm 【解析】因为60COB ∠=°,CD AB ⊥,所以∠CEO =90°,∠OCD =30°.又因为⊙O 3 cm ,所以OE =12OC 3.由勾股定理可得222233(3)22CE OC OE ⎛⎫=--= ⎪ ⎪⎝⎭. 所以CD =2CE =3(cm).故应选B . 类型三 求弦心距【例3】⊙O 的半径为10 cm ,弦AB =12 cm ,则圆心到弦AB 的距离为( ).A .2 cmB .6 cmC .8 cmD .10 cm【解析】画出示意图如图,作OC AB ⊥于点C ,连接OA , 由垂径定理,得AC =1112622AB =⨯=. 在Rt △AOC 中,由勾股定理,得OC =22221068OA AC -=-=(cm).故应选C .类型四 求拱高【例4】如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ).A .5米B .8米C .7米D .53米 【解析】设石拱桥圆弧的圆心为O ,连接OA 、OD ,则OD ⊥AB .又因为OA =13,由垂径定理可得AD =11241222AB =⨯=. 所以在Rt △AOD 中,OD 222213125OA AD -=-=. 所以CD =OC -OD =13-5=8(米).故应选B .类型五 探究线段的最小值【例5】如图,⊙O 的半径 5 cm OA =,弦8 cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是________cm .【解析】因为连接直线外一点与直线上各点的所有线段中,垂线段最短, 所以需作出弦AB 的弦心距.过点O 作OC ⊥AB , C 为垂足,由垂径定理,知AC=118422AB =⨯=(cm). 在Rt △AOC 中,由勾股定理可得OC 2222543OA AC -=-=. 故点P 到圆心O 的最短距离为3 cm .二、 圆周角定理及推论《圆周角》解题技巧在数学里,把一个对象转化为另一个对象,常常可以化繁为简,化未知为已知,从而达到解决问题的目的,这种思考问题的方法,就是“转化”.在研究与圆周角有关的问题时,常进行等角间的转化.【例1】如图,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC ,OC ,BC .(1)求证:∠ACO =∠BCD .(2)若EB =8 cm ,CD =24 cm ,求⊙O 的直径.【分析】(1)欲证∠ACO =∠BCD ,关键是进行等角间的转化:∠ACO =∠OAC ,∠BCD =∠OAC ,转化的依据是等腰三角形的性质定理和圆周角的“等弧所对的圆周角相等”;(2)借助勾股定理构建方程即可求得⊙O 的直径.解:(1)∵AB 为⊙O 的直径,CD 是弦,且AB CD 于点E ,∴CE =ED ,︵CB =︵DB . ∴∠BCD =∠BAC . ∵OA =OC , ∴∠OAC =∠OCA . ∴∠ACO =∠BCD .(2)设⊙O 的半径为R cm ,则OE =OB -EB =R -8.∴CE =21CD =21×24=12.在Rt△CEO中,由勾股定理可得OC2=OE2+CE2,即R2=(R-8)2+122.解得R=13.所以2R=2×13=26.【例2】如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC 上,AB=AD,∠BFC=∠BAD=2∠DFC.求证:(1)CD⊥DF;(2)BC=2CD.【分析】(1)欲证CD⊥DF,可转化为证明∠FCD+∠CFD=90°.由圆周角的性质有∠FCD=∠ABD,再联系条件∠BAD=2∠CFD,不难向等腰△ABD的内角和定理进行联想,从而找到解题的切入点;(2)欲证BC=2CD,现在还有一个条件∠BFC=∠BAD没有用,注意到∠BFC=∠ABF+∠BAC,∠BAD=∠CAD+∠BAC,从而有∠ABF=∠CAD,而∠CAD=∠CBD,故∠ABF=∠CBD,即∠ABD=∠FBC,而∠ABD=∠ADB=∠FCB,从而∠FBC=∠FCB,于是得FB=FC.思考到这里,不妨再回头看看证题目标BC=2CD,可考虑取BC的中点G,于是问题转化为证明CG=CD,即证△FGC≌△FDC.证明:(1)∵AB=AD,∴∠ABD=∠ADB.在△ABD中,∠BAD+2∠ABD=180°.又∠BAD=2∠DFC,∠FCD=∠ABD,∴2∠DFC+2∠FCD=180°.∴∠DFC+∠FCD=90°.∴∠FDC=90°.∴CD⊥DF.(2)∵∠BFC=∠ABF+∠BAC,∠BAD=∠CAD+∠BAC,∴∠ABF=∠CAD.又∠CAD=∠CBD,∴∠ABF=∠CBD,即∠ABD=∠FBC,而∠ABD=∠ADB=∠FCB,∴∠FBC=∠FCB,∴FB=FC.取BC的中点G,连接FG.∴FG⊥BC.∴∠FGC=90°.∵AB=AD,∴︵AB=︵AD,∴∠ACB=∠ACD.∵∠FGC=∠FDC=90°,FC=FC,∴△FGC≌△FDC.∴CG=CD.∵BC=2CG,∴BC=2CD.三、切线及切线长定理怎样证明直线与圆相切?在直线与圆的各种位置关系中,相切是一种重要的位置关系.现介绍以下三种判别直线与圆相切的基本方法:(1)利用切线的定义——在已知条件中有“半径与一条直线交于该半径的外端”,于是只需直接证明这条直线垂直于这个半径即可.【例1】已知:△ABC内接于⊙O,⊙O的直径AE交BC于F点,点P在BC的延长线上,且∠CAP=∠ABC.求证:PA是⊙O的切线.【证明】连接EC.∵AE是⊙O的直径,∴∠ACE=90°.∴∠E+∠EAC=90°.∵∠E=∠B,∠B=∠CAP,∴∠E=∠CAP.∴∠EAC+∠CAP=∠EAC+∠E=90°.∴∠EAP=90°.∴PA⊥OA.又PA经过点A,∴PA是⊙O的切线.(2)利用切线的判定定理——在已知条件中,有“一条直线过圆上某一点(即为切点),但没有半径”,于是先连接圆心与这个点成为半径,然后再证明这条直线和这条半径垂直.【例2】以Rt△ABC的直角边BC为直径作⊙O交斜边AB于点P,点Q为AC的中点.求证:PQ为⊙O的切线.B【证明】连接OP,CP.∵BC为直径,∴∠BPC=90°,即∠APC=90°.又点Q为AC的中点,∴QP=QC.∴∠1=∠2.又OP=OC,∴∠3=∠4.又∠ACB=90°,∴∠2+∠4=∠1+∠3=∠ACB=90°.∴∠OPQ=90°.∵点P在⊙O上,且点P为半径OP的端点,∴QP为⊙O的切线.说明:要证PQ与半径垂直,即连接OP.这是判别相切中添加辅助线的常用方法.(3)证明“d=R”,在已知条件中“没有半径,也没有明确直线与圆的公共交点”,于是过圆心作直线的垂线,然后再证明这条垂线段的长(d)等于圆的半径(R)即可.【例3】已知,在△ABC中,AD⊥BC于点D,且AD=12BC,点E,F分别为AB,AC的中点,点O为EF的中点.求证:以EF为直径的圆与BC相切.【证明】作OH⊥BC于点H,设AD与EF交于点M.∵点E,F分别为AB,AC的中点,∴EF=12 BC.∴点M也是AD的中点,即MD=12 AD.又AD=12BC,∴EF=AD,MD=12EF.又AD⊥BC,∴OH∥MD.∴四边形OHDM是矩形.∴OH=MD=12EF.∴OH是⊙O的半径.∴以EF为直径的圆与BC相切.与《切线长定理》相关的中考压轴题1.已知:以Rt △ABC 的直角边AB 为直径作⊙O ,与斜边AC 交于点D ,过点D 作⊙O 的切线交BC 边于点E .(1)如图,求证:EB =EC =ED ;(2)试问在线段DC 上是否存在点F ,满足BC 2=4DF •DC ?若存在,作出点F ,并予以证明;若不存在,请说明理由.分析:(1)连接BD ,已知ED 、EB 都是⊙O 的切线,由切线长定理可证得OE 垂直平分BD ,而BD ⊥AC (圆周角定理),则OE ∥AC ;由于O 是AB 的中点,可证得OE 是△ABC 的中位线,即E 是BC 中点,那么Rt △BDC 中,DE 就是斜边BC 的中线,由此可证得所求的结论;(2)由(1)知:BC =2BE =2DE ,则所求的比例关系式可转化为22BC ⎛⎫ ⎪⎝⎭=DF •DC ,即DE 2=DF •DC ,那么只需作出与△DEC 相似的△DFE 即可,这两个三角形的公共角为∠CDE ,只需作出∠DEF =∠C 即可;①∠DEC >∠C ,即180°-2∠C >∠C ,0°<∠C <60°时,∠DEF 的EF 边与线段CD 相交,那么交点即为所求的F 点;②∠DEC =∠C ,即180°-2∠C =∠C ,∠C =60°时,F 与C 点重合,F 点仍在线段CD 上,此种情况也成立;③∠DEC<∠C,即180°-2∠C<∠C,60°<∠C<90°时,∠DEF的EF边与线段的延长线相交,与线段CD没有交点,所以在这种情况下不存在符合条件的F点.解:(1)证明:连接BD.由于ED、EB是⊙O的切线,由切线长定理,得ED=EB,∠DEO=∠BEO,∴OE垂直平分BD.又∵AB是⊙O的直径,∴AD⊥BD.∴AD∥OE.即OE∥AC.又O为AB的中点,∴OE为△ABC的中位线,∴BE=EC,∴EB=EC=ED.(2)解:在△DEC中,由于ED=EC,∴∠C=∠CDE,∴∠DEC=180°-2∠C.①当∠DEC>∠C时,有180°-2∠C>∠C,即0°<∠C<60°时,在线段DC上存在点F满足条件.在∠DEC内,以ED为一边,作∠DEF,使∠DEF=∠C,且EF交DC于点F,则点F即为所求.这是因为:在△DCE和△DEF中,∠CDE=∠EDF,∠C=∠DEF,∴△DEF∽△DCE.∴DE2=DF•DC.即212BC⎛⎫⎪⎝⎭=DF•DC.∴BC2=4DF•DC.②当∠DEC=∠C时,△DEC为等边三角形,即∠DEC=∠C=60°,此时,C点即为满足条件的F点,于是,DF=DC=DE,仍有BC2=4DE2=4DF•DC.③当∠DEC<∠C时,即180°﹣2∠C<∠C,60°<∠C<90°;所作的∠DEF >∠DEC,此时点F在DC的延长线上,故线段DC上不存在满足条件的点F.点评:此题主要考查了直角三角形的性质、切线长定理、三角形中位线定理及相似三角形的判定和性质;(2)题一定要注意“线段DC上是否存在点F”的条件,以免造成多解.2.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.分析:过D作DF⊥BC于F,设AD=x,则DE=AD=x,EC=BC=x+6,根据勾股定理就得到一个关于x的方程,就可以解得AD的长;△ADP和△BCP相似,有△ADP∽△BCP和△ADP∽△BPC两种情况进行讨论,根据相似三角形的对应边的比相等,就可以求出AP的长.解:(1)方法1:过D作DF⊥BC于F,在Rt△DFC中,DF=AB=8,FC=BC-AD=6,∴DC2=62+82=100,即DC=10.设AD=x,则DE=AD=x,EC=BC=x+6,∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8.方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE,设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC.即:x(x+6)=16,解得x1=2,x2=-8,(舍去)∴AD=2,BC=2+6=8.(2)存在符合条件的P点.设AP=y,则BP=8-y,△ADP与△BCP相似,有两种情况:①△ADP∽△BCP时,有AD APBC PB=,即288yy=-.∴y=85.②△ADP∽△BPC时,有AD APBP BC=,即288yy=-.∴y=4.故存在符合条件的点P,此时AP=85或4.点评:本题主要考查了相似三角形的判定性质,对应边的比相等的两三角形相似.3.如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).分析:(Ⅰ)根据切线的性质及切线长定理可证明△PAC为等边三角形,则∠P的大小可求;(Ⅱ)由(Ⅰ)知PA=PC,在Rt△ACB中,利用30°的特殊角度可求得AC 的长.解:(Ⅰ)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,∴∠BAP=90°;∵∠BAC=30°,∴∠CAP=90°-∠BAC=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,∴△PAC为等边三角形,∴∠P=60°.(Ⅱ)如图,连接BC,则∠ACB=90°.在Rt△ACB中,AB=2,∠BAC=30°,∵cos∠BAC=ACAB,∴AC=AB•cos∠BAC=2cos30°3∵△PAC为等边三角形,∴PA=AC,∴PA3.点评:本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.四、 正多边形与圆4.(1)已知如图①所示,△ABC 是⊙O 的内接正三角形,点P 为︵BC 上一动点,求证PA =PB +PC .下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.证明:在AP 上截取AE =CP ,连接BE . ∵△ABC 是正三角形, ∴AB =CB .∴∠1和∠2是同弧所对的圆周角. ∴∠1=∠2. ∴△ABE ≌△CBP .③OPFEDBA②ODCBA①21E POCB(2)如图②所示,四边形ABCD 是⊙O 的内接正方形,点P 为︵BC 上一动点,求证:PA =PC 2PB .(3)如图③所示,六边形ABCDEF 是⊙O 的内接正六边形,点P 为︵BC 上一动点,请探究PA 、PB 、PC 三者之间有何数量关系,直接写出结论.4.证明:⑥F⑤④(1)如图④所示,延长BP 至E ,使PE =PC ,连接CE . 易知∠CPE =∠CAB =60°,∴△PCE 是等边三角形. ∴CE =PC ,∠ECP =60°. ∴∠ECP +∠PCB =∠BCA +∠PCB , 即∠ECB =∠PCA .在△CAP 和△CBE 中,CA =CB ,CP =CE ,∠PCA =∠ECB , ∴△CAP ≌△CBE . ∴PA =BE =PB +PC .(2)如图⑤所示,过点B 作BE ⊥PB 交PA 于E . ∵∠1+∠2=∠2+∠3=90°, ∴∠1=∠3.又∵AB =BC,∠BAP =∠BCP , ∴△ABE ≌△CBP ,∴PC =AE .∵∠APB=45°,∴BP =BE ,∴PE PB. ∴PA =AE +PE =PC PB . (3)PA =PC .证明:如图⑥所示,在AP 上截取AQ =PC ,连接BQ . ∵∠BAP =∠BCP ,AB =BC ,AQ =CP , ∴△ABQ ≌△CBP ,∴BQ =BP . 又∵∠APB =30°,∴PQ =3PB . ∴PA =PQ +AQ =3PB +PC .五、 与圆有关的计算1.如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则弧AMB 的度数是( ).A .60°B .90°C .120°D .150°2.如图,王虎使一长为4 cm 、宽为3 cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木板档住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( ).A .10 cmB .4π cmC .72π cmD .52cm3.如图,有一圆锥形粮堆,其正视图是边长为6 cm 的正三角形ABC ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是________cm (结果不取近似值).4、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=3,BC=1,将Rt△ABC绕点C 旋转90°后得Rt△A'B'C,再将Rt△A'B'C绕点B'旋转为Rt△A''B'C'使得点A,C,B',A''在同一条直线上,则点A运动到点A''所走的路径长为___________.。
高中数学与圆有关的轨迹问题与最值问题
b a 1 ,解得 a 1 , b 2 ,从而 r 2 2 (5 分)
圆 C 方程为: (x 1)2 ( y 2)2 8(6 分)
(Ⅱ)设 M (x, y) , B(x0
,
y0
)
,则有
1
x0 2
x,
y0 2
y , (8
分)
解得 x0 2x 1 , y0 2 y ,代入圆 C 方程得: (2x 2)2 (2y 2)2 8 , (10 分)
| MA | 2
(x 3)2 y2 2
化简整理得: x2 y2 2x 3 0 ,即 (x 1)2 y2 4 ,
点 M 的轨迹方程 (x 1)2 y2 4 ,轨迹是以 (1, 0) 为圆心,以 2 为半径的圆;
(2)由(1)可知, P(x, y) 为圆 (x 1)2 y2 4 上任意一点, 3x1 ,
(1)求动点 M 的阿波罗尼斯圆的方程; (2)过 P(2,3) 作该圆的切线 l ,求 l 的方程.
【解答】解:(1)设动点 M 坐标为 (x, y) ,则 AM (x 4)2 y2 , BM (x 1)2 y2 ,
又知 AM 2BM ,则 (x 4)2 y2 2 (x 1)2 y2 ,得 x2 y2 4 .
专题 05 与圆有关的轨迹问题与最值问题
题型一 轨迹问题
1.动圆 x2 y2 (4m 2)x 2my 4m2 4m 1 0 的圆心的轨迹方程是 x 2y 1 0(x 1) .
【解答】解:把圆的方程化为标准方程得 [x (2m 1)]2 ( y m)2 m2 (m 0)
3 / 13
【解答】解: ( 1) 由两点式可知,对角线 AC 所在直线的方程为 y 2 2 2 , x4 04
整理得 y x 2 0 ,
(完整版)中考数学专题复习圆压轴八大模型题(学生用)(最新整理)
2.(2018·云南昆明)如图,AB 是⊙O 的直径,ED 切⊙O 于点 C,AD 交⊙O 于点 F,∠AC 平分∠BAD,连接 BF. (1)求证:AD⊥ED; (2)若 CD=4,AF=2,求⊙O 的半径.
圆压轴题八大模型题(二)
引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题 的位置上,是试卷中综合性与难度都比较大的习题。一般都会在固定习题模型的基础上变化 与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用 技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。
直线 CM 是⊙O 的切线.
【变式运用】
1.(2018·四川宜宾)如图,AB 是半圆的直径,AC 是一条弦,D 是 AC 的中点,DE⊥AB 于点 E 且 DE 交 AC 于点 F,DB 交 AC 于点 G,若 = ,则
= .
(图 1-2)
2.(2018·泸州)如图,在平行四边形 ABCD 中,E 为 BC 边上的一点,且 AE 与 DE 分别 平分∠BAD 和∠ADC。(1)求证:AE⊥DE;(2)设以 AD 为直径的半圆交 AB 于 F,连接 DF
求 PA 和 AD.
求 AD、PD、PA 的长.
【典例】 (2018·四川乐山)如图,P 是⊙O 外的一点,PA、PB 是⊙O 的两条切线,A、B 是切点,PO 交 AB 于点 F,延长 BO 交⊙O 于点 C,交 PA 的延长交于点 Q,连结 AC. (1)求证:AC∥PO;
(2)设 D 为 PB 的中点,QD 交 AB 于点 E,若⊙O 的半径为 3,CQ=2,求 的值.
2016年中考数学试题分项版解析(第02期)专题16 压轴题
专题16 压轴题一、选择题1.(2016四川省凉山州)已知,一元二次方程28150x x -+=的两根分别是⊙O 1和⊙O 2的半径,当⊙O 1和⊙O 2相切时,O 1O 2的长度是( )A .2B .8C .2或8D .2<O 2O 2<8 【答案】C .考点:1.圆与圆的位置关系;2.根与系数的关系;3.分类讨论.2.(2016四川省宜宾市)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.2 【答案】A . 【解析】试题分析:首先连接OP ,由矩形的两条边AB 、BC 的长分别为3和4,可求得OA =OD =5,△AOD 的面积,然后由S △A O D =S △A O P +S △D O P =12OA •PE +OD •PF 求得答案. 试题解析:连接OP ,∵矩形的两条边AB 、BC 的长分别为6和8,∴S 矩形A B C D=AB •BC =48,OA =OC ,OB =OD ,AC =BD =10,∴OA =OD =5,∴S △A C D =12S 矩形A B C D=24,∴S △A O D =12S △A C D =12,∵S △A O D =S △A O P +S △D O P =12OA •PE +12OD •PF =12×5×PE +12×5×PF =52(PE +PF )=12,解得:PE +PF =4.8.故选A .考点:1.矩形的性质;2.和差倍分;3.定值问题.3.(2016四川省宜宾市)宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4 B.5 C.6 D.7【答案】B.故选B.考点:1.二元一次方程组的应用;2.方案型.4.(2016四川省泸州市)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A B C.D【答案】D .考点:1.正多边形和圆;2.分类讨论.5.(2016四川省自贡市)圆锥的底面半径为4cm ,高为5cm ,则它的表面积为( )A .12πcm 2B .26πcm 2C cm 2D .16)πcm 2【答案】D . 【解析】试题分析:利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.试题解析:底面半径为4cm ,则底面周长=8πcm ,底面面积=16πcm 2;由勾股定理得,母线长cm ,圆锥的侧面面积=182π⨯=cm 2,∴它的表面积=16π+=16)π cm 2,故选D . 考点:1.圆锥的计算;2.压轴题.6.(2016甘肃省白银市)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.【答案】A.当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12•(4﹣x)•x=2122x x-+,故选A.考点:1.动点问题的函数图象;2.分类讨论.二、填空题7.(2016四川省凉山州)如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=CD=P是四边形ABCD四条边上的一个动点,若P到BD的距离为52,则满足条件的点P有个.【答案】2.考点:1.点到直线的距离;2.分类讨论.8.(2016四川省宜宾市)如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为⑤当△ABP≌△ADN时,BP=4.【答案】①②⑤.考点:相似形综合题.9.(2016四川省自贡市)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为cm2.【答案】16.考点:1.一次函数综合题;2.压轴题.10.(2016江苏省宿迁市)如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.【答案】4.考点:1.矩形的性质;2.等腰三角形的性质;3.勾股定理;4.分类讨论.11.(2016江西省)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.【答案】5.【解析】试题分析:分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE AE=②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;③当PA=PE时,底边AE=5;即可得出结论.试题解析:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE AE=②当PE=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴PB==4,∴底边考点:1.矩形的性质;2.等腰三角形的性质;3.勾股定理;4.分类讨论.12.(2016甘肃省兰州市)对于一个矩形ABCD 及⊙M 给出如下定义:在同一平面内,如果矩形ABCD 的四个顶点到⊙M 上一点的距离相等,那么称这个矩形ABCD 是⊙M 的“伴侣矩形”.如图,在平面直角坐标系xOy 中,直线l :3y =-交x 轴于点M ,⊙M 的半径为2,矩形ABC D 沿直线运动(BD 在直线l 上),BD =2,AB ∥y 轴,当矩形ABCD 是⊙M 的“伴侣矩形”时,点C 的坐标为 .【答案】(12,2-)或(32,2). 【解析】试题分析:根据“伴侣矩形”的定义可知:圆上的点一定在矩形的对角线交点上,因为只有对角线交点到四个顶点的距离相等,由此画出图形,先求出直线与x 轴和y 轴两交点的坐标,和矩形的长和宽;有两种情况:①矩形在x 轴下方时,作辅助线构建相似三角形得比例式,分别求出DG 和DH 的长,从而求出CG 的长,根据坐标特点写出点C 的坐标;②矩形在x 轴上方时,也分别过C 、B 两点向两坐标轴作垂线,利用平行相似得比例式,求出C 的坐标.考点:1.圆的综合题;2.新定义;3.分类讨论.三、解答题13.(2016上海市)如图,抛物线25y ax bx =+-(a ≠0)经过点A (4,﹣5),与x 轴的负半轴交于点B ,与y 轴交于点C ,且OC =5OB ,抛物线的顶点为点D .(1)求这条抛物线的表达式;(2)联结AB 、BC 、CD 、DA ,求四边形ABCD 的面积;(3)如果点E 在y 轴的正半轴上,且∠BEO =∠ABC ,求点E 的坐标.【答案】(1)245y x x =--;(2)18;(3)E (0,32).(2)由245y x x =--,得顶点D 的坐标为(2,﹣9).连接AC ,∵点A 的坐标是(4,﹣5),点C 的坐标是(0,﹣5),又S △ABC =12×4×5=10,S △ACD =12×4×4=8,∴S 四边形ABCD =S △ABC +S △ACD =18; (3)过点C 作CH ⊥AB ,垂足为点H .∵S △ABC =12×AB ×CH =10,AB =,∴CH =,在RT △BCH 中,∠BHC =90°,BC =,BH ==,∴tan ∠CBH =23CH BH =.∵在RT △BOE 中,∠BOE =90°,tan ∠BEO =BO EO,∵∠BEO =∠ABC ,∴BO EO =23,得EO =32,∴点E 的坐标为(0,32). 考点:二次函数综合题.14.(2016上海市)如图所示,梯形ABCD 中,AB ∥DC ,∠B =90°,AD =15,AB =16,BC =12,点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且∠AGE =∠DAB .(1)求线段CD 的长;(2)如果△AEC 是以EG 为腰的等腰三角形,求线段AE 的长;(3)如果点F 在边CD 上(不与点C 、D 重合),设AE =x ,DF =y ,求y 关于x 的函数解析式,并写出x 的取值范围.【答案】(1)7;(2)15或252;(3)22518x y x -=(2592x <<).考点:1.四边形综合题;2.相似三角形综合题;3.分类讨论;4.压轴题.15.(2016北京市)在等边△ABC中:(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC 的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).【答案】(1)40°;(2)①作图见解析;②证明见解析.考点:三角形综合题.16.(2016北京市)在平面直角坐标系xOy 中,点P 的坐标为(1x ,1y ),点Q 的坐标为(2x ,2y ),且12x x ≠,12y y ≠,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x =3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.【答案】(1)①2;②1y x =- 或 1y x =-+;(2)1≤m ≤5 或者51m -≤≤-.考点:1.圆的综合题;2.新定义.17.(2016吉林省长春市)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD时,t的值为.【答案】(1)EF=t;(2)t=83;(3)228(0)383 (4)3tSt⎧≤≤⎪⎪=⎨⎪+-<≤⎪⎩;(4)t=4;t=3.考点:1.四边形综合题;2.动点型;3.分类讨论;4.分段函数;5.压轴题.18.(2016吉林省长春市)如图,在平面直角坐标系中.有抛物线2(3)4y a x =-+和2()y a x h =-.抛物线2(3)4y a x =-+经过原点,与x 轴正半轴交于点A ,与其对称轴交于点B .P 是抛物线2(3)4y a x =-+上一点,且在x 轴上方.过点P 作x 轴的垂线交抛物线2()y a x h =-于点Q .过点Q 作PQ 的垂线交抛物线2()y a x h =-于点'Q (不与点Q 重合),连结'PQ .设点P 的横坐标为m .(1)求a 的值;(2)当抛物线2()y a x h =-经过原点时,设△'PQQ 与△OAB 重叠部分图形的周长为l .②求l 与m 之间的函数关系式;(3)当h 为何值时,存在点P ,使以点O 、A 、Q 、'Q 为顶点的四边形是轴对称图形?直接写出h 的值.【答案】(1)49a =-;(2)①43;②24 (03)1171010(36)163m m l m m m <≤⎧⎪=⎨-++<<⎪⎩;(3)h =3或3-3+考点:1.二次函数综合题;2.分类讨论;3.压轴题.19.(2016四川省凉山州)为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【答案】(1)A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)共有三种方案,详见解析,购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;考点:1.一元一次不等式组的应用;2.二元一次方程组的应用;3.最值问题;4.方案型.20.(2016四川省凉山州)如图,已知抛物线2y ax bx c =++(a ≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标; (3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3). 【解析】试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA =AC 、②MA =MC 、③AC =MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2y ax bx c =++中,得:09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩考点:1.二次函数综合题;2.分类讨论;3.综合题;4.动点型.21.(2016四川省宜宾市)如图,已知二次函数21y a x b x =+过(﹣2,4),(﹣4,4)两点.(1)求二次函数1y 的解析式;(2)将1y 沿x 轴翻折,再向右平移2个单位,得到抛物线2y ,直线y =m (m >0)交2y 于M 、N 两点,求线段MN 的长度(用含m 的代数式表示);(3)在(2)的条件下,1y 、2y 交于A 、B 两点,如果直线y =m 与1y 、2y 的图象形成的封闭曲线交于C 、D 两点(C 在左侧),直线y =﹣m 与1y 、2y 的图象形成的封闭曲线交于E 、F 两点(E 在左侧),求证:四边形CEFD 是平行四边形.【答案】(1)21132y x x =--;(2)(3)证明见解析.CD =12x x -==,由219(1)22y m y x =-⎧⎪⎨=+-⎪⎩,消去y 得到22820x x m +-+=,设两个根为1x ,2x ,则EF =12x x -==∴EF =CD ,EF ∥CD ,∴四边形CEFD 是平行四边形.考点:二次函数综合题.22.(2016四川省巴中市)已知:如图,四边形ABCD 是平行四边形,延长BA 至点E ,使AE +CD =AD .连结CE ,求证:C E 平分∠BCD .【答案】证明见解析.考点:1.平行四边形的性质;2.和差倍分.23.(2016四川省巴中市)如图,在平面直角坐标系中,抛物线245y mx mx m =+-(m <0)与x 轴交于点A 、B (点A 在点B 的左侧),该抛物线的对称轴与直线3y x =相交于点E ,与x 轴相交于点D ,点P 在直线y x =上(不与原点重合),连接PD ,过点P 作PF ⊥PD 交y 轴于点F ,连接DF .(1)如图①所示,若抛物线顶点的纵坐标为 (2)求A 、B 两点的坐标;(3)如图②所示,小红在探究点P 的位置发现:当点P 与点E 重合时,∠PDF 的大小为定值,进而猜想:对于直线3y x =上任意一点P (不与原点重合),∠PDF 的大小为定值.请你判断该猜想是否正确,并说明理由.【答案】(1)2333y x x =--+;(2)A (﹣5,0)、B (1,0);(3)∠PDF =60°.考点:1.二次函数综合题;2.定值问题.24.(2016四川省广安市)如图,抛物线2y x bx c =++与直线132y x =-交于A 、B 两点,其中点A 在y 轴上,点B 坐标为(﹣4,﹣5),点P 为y 轴左侧的抛物线上一动点,过点P 作PC ⊥x 轴于点C ,交AB 于点D .(1)求抛物线的解析式;(2)以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由. (3)当点P 运动到直线AB 下方某一处时,过点P 作PM ⊥AB ,垂足为M ,连接PA 使△PAM 为等腰直角三角形,请直接写出此时点P 的坐标.【答案】(1)2932y x x =+-;(2)P (2-1--,(﹣1,132-),(﹣3,152-);(3)P (32-,152-). 【解析】试题分析:(1)先确定出点A 坐标,然后用待定系数法求抛物线解析式;(2)先用m 表示出PD ,当PD =OA =3,故存在以O ,A ,P ,D 为顶点的平行四边形,得到243m m +=,分两种情况进行讨论计算即可;(3)由△PAM 为等腰直角三角形,得到∠BAP =45°,从而求出直线AP 的解析式,最后求出直线AP 和抛物线的交点坐标即可. 试题解析:(1)∵直线132y x =-交于A 、B 两点,其中点A 在y 轴上,∴A (0,﹣3),∵B (﹣4,﹣5),考点:1.二次函数综合题;2.动点型;3.存在型;4.分类讨论;5.压轴题.25.(2016四川省成都市)如图,在Rt △ABC 中,∠ABC =90°,以CB 为半径作⊙C ,交AC 于点D ,交AC 的延长线于点E ,连接ED ,BE . (1)求证:△ABD ∽△AEB ; (2)当43AB BC 时,求tanE ; (3)在(2)的条件下,作∠BAC 的平分线,与BE 交于点F ,若AF =2,求⊙C 的半径.【答案】(1)证明见解析;(2)12;(3)8.考点:圆的综合题.26.(2016四川省成都市)如图,在平面直角坐标系xOy 中,抛物线2(1)3y a x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,83-),顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧. (1)求a 的值及点A ,B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否为菱形?若能,求出点N 的坐标;若不能,请说明理由.【答案】(1)13a =,A (-4,0),B (2,0);(2)y =2x +2或4433y x =--;(3)存在,N (-132-, 1). 【解析】由⎪⎩⎪⎨⎧-+=+=3832312x x y k kx y ,∴038)32(312=---+k x k x ,∴1223x x k+=-+,212123y y kx k kx k k +=+++=,∵点M 是线段PQ 的中点,∴由中点坐标公式的点M (312k -,232k ).假设存在这样的N 点如图,直线DN ∥PQ ,设直线DN 的解析式为y =kx +k ﹣3,由⎪⎩⎪⎨⎧-+=-+=38323132x x y k kx y ,解考点:1.二次函数综合题;2.压轴题.27.(2016四川省攀枝花市)如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.(1)当t为何值时,点Q与点D重合?(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值范围.【答案】(1)3011;(2;(3)0<t ≤1813或3011<t ≤5.考点:1.圆的综合题;2.分类讨论;3.动点型;4.压轴题.28.(2016四川省攀枝花市)如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C (0,﹣3) (1)求抛物线的解析式;(2)点P 在抛物线位于第四象限的部分上运动,当四边形ABPC 的面积最大时,求点P 的坐标和四边形ABPC 的最大面积.(3)直线l 经过A 、C 两点,点Q 在抛物线位于y 轴左侧的部分上运动,直线m 经过点B 和点Q ,是否存在直线m ,使得直线l 、m 与x 轴围成的三角形和直线l 、m 与y 轴围成的三角形相似?若存在,求出直线m 的解析式,若不存在,请说明理由.【答案】(1)223y x x =--;(2)P 点坐标为(32,154-)时,四边形ABPC 的面积最大,最大面积为758;(3)存在,113y x =-.在223y x x =--中,令y =0可得2023x x =--,解得x =﹣1或x =3,∴A 点坐标为(﹣1,0),∴AB =3﹣(﹣1)=4,且OC =3,∴S △ABC =12AB •OC =12×4×3=6,∵B (3,0),C (0,﹣3),∴直线BC 解析式为y =x ﹣3,设P 点坐标为(x ,223x x --),则M 点坐标为(x ,x ﹣3),∵P 点在第四限,∴PM =23(23)x x x ----=23x x -+,∴S △PBC =12PM •OH +12PM •HB =12PM •(OH +HB )=12PM •OB =32PM ,∴当PM 有最大值时,△PBC 的面积最大,则四边形ABPC 的面积最大,∵PM =23x x -+=239()24x --+,∴当x =32时,PM max =94,则S △PBC =3924⨯=278,此时P 点坐标为(32,154-),S 四边形ABPC =S △ABC +S △PBC =6+278=758,即当P 点坐标为(32,154-)时,四边形ABPC 的面积最大,最大面积为758;考点:1.二次函数综合题;2.存在型;3.最值问题;4.二次函数的最值;5.动点型;6.压轴题.29.(2016四川省泸州市)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:B E是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.【答案】(1)证明见解析;(2)考点:1.圆的综合题;2.三角形的外接圆与外心;3.切线的判定.30.(2016四川省泸州市)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线2=+相交于A(1,,B(4,0)两点.y mx nx(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△B C N、S△P M N满足S△B C N=2S△P M N,求出MNNC的值,并求出此时点M的坐标.【答案】(1)2y=+;(2)D(1,0)或(0)或(0);(3),M(1,).综上可知存在满足条件的D 点,其坐标为(1,0)或(0,2)或(0,2);(3)如图2,过P 作PF ⊥CM 于点F ,∵PM ∥OA ,∴Rt △ADO ∽Rt △MFP ,∴MF ADPF OD==∴MF =,在Rt △ABD 中,BD =3,AD =∴tan ∠ABD =∴∠ABD =60°,设BC =a ,则CN =a ,在Rt △PFN 中,∠PNF =∠BNC =30°,∴tan ∠PNF =3PF PN =,∴FN =,∴MN =MF +FN =PF ,∵S △B C N =2S △P M N ,∴22122=⨯⨯,∴a =PF ,∴NC =a =PF ,∴MNNC ==,∴MN =NC ==a ,∴MC =MN +NC =()a ,∴M 点坐标为(4﹣a ,()a ),又M 点在抛物线上,代入可得2))a a -+-=()a ,解得a =3或a =0(舍去),OC =4﹣a =1,MC =,∴点M 的坐标为(1,).考点:1.二次函数综合题;2.分类讨论;3.动点型;4.存在型;5.压轴题. 31.(2016四川省资阳市)已知抛物线与x 轴交于A (6,0)、B (54-,0)两点,与y 轴交于点C ,过抛物线上点M (1,3)作MN ⊥x 轴于点N ,连接OM .(1)求此抛物线的解析式;(2)如图1,将△OMN 沿x 轴向右平移t 个单位(0≤t ≤5)到△O ′M ′N ′的位置,MN ′、M ′O ′与直线AC 分别交于点E 、F .①当点F 为M ′O ′的中点时,求t 的值;②如图2,若直线M ′N ′与抛物线相交于点G ,过点G 作GH ∥M ′O ′交AC 于点H ,试确定线段EH 是否存在最大值?若存在,求出它的最大值及此时t 的值;若不存在,请说明理由.【答案】(1)241921515y x x =-++;(2)①1;②t =2时,EH 最大值为考点:1.二次函数综合题;2.最值问题;3.二次函数的最值;4.存在型;5.平移的性质;6.压轴题.32.(2016山东省临沂市)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?【答案】(1)22 (01)157 (1)x xyx x<<⎧=⎨+>⎩甲,=163y x+乙;(2)当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.当0<x <12或x >4时,选甲快递公司省钱. 考点:1.一次函数的应用;2.分段函数;3.方案型.33.(2016山东省临沂市)如图,在平面直角坐标系中,直线y =﹣2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动;同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,PA =QA ?(3)在抛物线的对称轴上,是否存在点M ,使以A ,B ,M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)21566y x x =-,直角三角形;(2)103;(3)M 1(52),M 2(52,M 3(52,2),M 4(52,2-).(3)存在,∵21566y x x =-,∴抛物线的对称轴为x =52,∵A (5,0),B (0,10),∴AB = 设点M (52,m );①若BM =BA 时,∴225()(10)1252m +-=,∴m 1=202+,m 2=202-M 1(52,202+),M 2(52②若AM =AB 时,∴225()1252m +=,∴m 3=2,m 4=2-,∴M 3(52,2),M 4(52,2-); ③若MA =MB 时,∴222255(5)()(10)22m m -+=+-,∴m =5,∴M (52,5),此时点M 恰好是线段AB 的中点,构不成三角形,舍去;∴点M 的坐标为:M 1(52,202+),M 2(52,202-),M 3(52,2),M 4(52,2-).考点:1.二次函数综合题;2.动点型;3.存在型;4.分类讨论;5.压轴题.34.(2016山东省德州市)如图,⊙O 是△ABC 的外接圆,AE 平分∠BAC 交⊙O 于点E ,交BC 于点D ,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:B E=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.【答案】(1)直线l与⊙O相切;(2)证明见解析;(3)214.∵AE平分∠BAC,∴∠BAE=∠CAE,∴BE CE,∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l,∴直线l与⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB =∠BAE +∠ABF ,∴∠EBF =∠EFB ,∴BE =EF .(3)由(2)得BE =EF =DE +DF =7.∵∠DBE =∠BAE ,∠DEB =∠BEA ,∴△BED ∽△AEB ,∴DE BE BE AE =,即477AE=,解得;AE =494,∴AF =AE ﹣EF =494﹣7=214. 考点:圆的综合题.35.(2016山东省德州市)已知,m ,n 是一元二次方程2+430x x +=的两个实数根,且|m |<|n |,抛物线2y x bx c =++的图象经过点A (m ,0),B (0,n ),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,试求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)△BCD 是直角三角形;(3)S =2213(03)2213 (03)22t t t t t t t ⎧-+<<⎪⎪⎨⎪-<>⎪⎩或.考点:1.二次函数综合题;2.分类讨论.36.(2016江苏省宿迁市)如图,在平面直角坐标系xOy 中,将二次函数21y x =-的图象M 沿x 轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N . (1)求N 的函数表达式;(2)设点P (m ,n )是以点C (1,4)为圆心、1为半径的圆上一动点,二次函数的图象M 与x 轴相交于两点A 、B ,求22PA PB +的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M 与N 所围成封闭图形内(包括边界)整点的个数.【答案】(1)245y x x =-++;(2)38+(3)25.。
专题:与圆有关的3类最值问题
与圆有关的3类最值问题1.斜率型最值问题【方法点拨】形如μ=y -b x -a 型的最值问题,可转化过定点(a ,b)的动直线斜率的最值问题求解. 【典例】已知实数x ,y 满足方程x 2+y 2-4x +1=0,求y x的最大值和最小值.解:原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆.y x的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =k x . 当直线y =k x 与圆相切时(如图),斜率k 取得最大值或最小值,此时|2k -0|k 2+1=3, 解得k =± 3.∴y x的最大值为3,最小值为- 3.【练习】已知圆C :(x +2)2+y 2=1,P (x ,y )为圆上任意一点,则y -2x -1的最大值为________. 解析: 设y -2x -1=k ,即k x -y -k +2=0, 圆心C (-2,0),r =1.当直线与圆相切时,k 有最值,∴|-2k -0-k +2|k 2+1=1,解得k =3±34. ∴y -2x -1的最大值为3+34. 答案:3+34【方法点拨】形如μ=ax +by 型的最值问题,常转化为动直线截距的最值问题求解.如本题可令b =y -x ,即y =x +b ,从而将y -x 的最值转化为求直线y =x +b 的截距的最值问题.另外,此类问题也常用三角代换求解.【典例】已知实数x ,y 满足方程x 2+y 2-4x +1=0,求y -x 的最大值和最小值.解:y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3, 解得b =-2± 6.所以y -x 的最大值为-2+6,最小值为-2- 6.【练习】已知P (x ,y )为圆(x -2)2+y 2=1上的动点,则|3x +4y -3|的最大值为________.解析:设t =3x +4y -3,即3x +4y -3-t =0.由圆心(2,0)到直线3x +4y -3-t =0的距离d =|6-3-t |32+42≤1, 解得-2≤t ≤8.所以|3x +4y -3|max =8.答案:8【方法点拨】形如μ=(x -a )2+(y -b )2型的最值问题,可转化为动点(x ,y )与定点(a ,b )的距离的平方求最值.【典例】已知实数x ,y 满足方程x 2+y 2-4x +1=0,求x 2+y 2的最大值和最小值.解:如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值. 又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.【练习】设点P (x ,y )是圆:x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则P A ―→·PB ―→的最大值为________.解析:由题意,知P A ―→=(2-x ,-y ),PB ―→=(-2-x ,-y ),所以P A ―→·PB ―→=x 2+y 2-4,由于点P (x ,y )是圆上的点,故其坐标满足方程x 2+(y -3)2=1,故x 2=-(y -3)2+1,所以P A ―→·PB ―→=-(y -3)2+1+y 2-4=6y -12.易知2≤y ≤4,所以,当y =4时,P A ―→·PB ―→的值最大,最大值为6×4-12=12.答案:12。
压轴题:与圆有关的最值(取值范围)问题
B yC x A OD B OC A压轴题:与圆有关的最值(取值范围)问题(含答案)年级 初三 辅导科目 数学页数6学员姓名学情分析成绩基础不错,巩固提高教学目标1、对圆学得较好的学生巩固提高。
2、以专题形式系统讲解圆部分知。
教学内容例题讲解引例1:在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan∠BOC=m ,则m 的取值范围是_________.引例2:如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径作⊙O ,C 为半圆弧AB 上的一个动点(不与A 、B 两点重合),射线AC 交⊙O 于点E ,BC=a ,AC=b ,求a b 的最大值.引例3:如图,∠BAC=60°,半径长为1的圆O 与∠BAC 的两边相切,P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ).A .3B .6C .332D .33一、题目分析:此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C 与两个定点O 、A 构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;2.引例2:通过圆的基本性质,寻找动点C 与两个定点A 、B 构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D 、E 与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE 、直径所在的直角三角形,从而转化为弦DE 与半径AP 之间的数量关系,其实质是高中“正弦定理”的直接运用;综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.二、解题策略1.直观感觉,画出图形; 2.特殊位置,比较结果;3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.B AC MD DO P CB A 三、中考展望与题型训练 例一、斜率运用1.如图,A 点的坐标为(﹣2,1),以A 为圆心的⊙A 切x 轴于点B ,P (m ,n )为⊙A 上的一个动点,请探索n+m 的最大值.例二、圆外一点与圆的最近点、最远点1.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .2.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)在点P 的运动过程中,线段CD 长度的取值范围为 ; (2)在点P 的运动过程中,线段AD 长度的最大值为 .例三、正弦定理 1.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=22,D 是线段BC 上的一个动点,以AD 为直径作⊙O 分别交AB ,AC 于E ,F 两点,连接EF ,则线段EF 长度的最小值为 .2. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,则PM 长度的最大值是 .例四、柯西不等式、配方法O A B CE B AC OD O D C EA B1.如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x (2<x <4),则当x= 时,PD•CD 的值最大,且最大值是为 .2.如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 半径的最小值为( ). A.4 B.233 C.322D. 23.在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B ,线段AB 长度的最小值是 .例四、相切的应用(有公共点、最大或最小夹角)1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 边上一点,过点D 作CD 的垂线交直线BC 于点E ,则线段CE 长度的最小值是 .2.如图,Rt△ABC 中,∠C=90°,∠A=30°,AB=4,以AC 上的一点O 为圆心OA 为半径作⊙O ,若⊙O 与边BC 始终有交点(包括B 、C 两点),则线段AO 的取值范围是 .3.如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为()A.B.C.3 D.2例五、其他知识的综合运用1.(2015•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ 的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2.(2013秋•相城区校级期末)如图,已知A、B是⊙O与x轴的两个交点,⊙O的半径为1,P是该圆上第一象限内的一个动点,直线PA、PB分别交直线x=2于C、D两点,E为线段CD的中点.(1)判断直线PE与⊙O的位置关系并说明理由;(2)求线段CD长的最小值;(3)若E点的纵坐标为m,则m的范围为.【题型训练】1.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C,若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,则⊙O的半径r的取值范围为 .2.已知:如图,RtΔABC中,∠B=90º,∠A=30º,BC=6cm,点O从A点出发,沿AB以每秒3cm的速度向B点方向l Q P NM O A D BC E F C AD B Q PO A B DCP 运动,当点O 运动了t 秒(t >0)时,以O 点为圆心的圆与边AC 相切于点D ,与边AB 相交于E 、F 两点,过E 作EG ⊥DE 交射线BC 于G.(1)若点G 在线段BC 上,则t 的取值范围是 ;(2)若点G 在线段BC 的延长线上,则t 的取值范围是 .3.如图,⊙M ,⊙N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为⊙M 上的任意一点,Q 为⊙N 上的任意一点,直线PQ 与连心线l 所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α∠的最大值为( ).(A)612; (B)43; (C)33; (D)344.如图,在矩形ABCD 中,AB=3,BC=4,O 为矩形ABCD 的中心,以D 为圆心1为半径作⊙D ,P 为⊙D 上的一个动点,连接AP 、OP ,则△AOP 面积的最大值为( ).(A)4 (B)215 (C)358 (D)1745.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( ).A .194B .245C .5D .426.如图,在等腰Rt △ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作⊙O ,⊙O 交AC 于另一点F ,在此运动变化的过程中,线段EF 长度的最小值为 .7.如图,A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心的坐标为(-1,0),半径为1,若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是( ). A .2 B .1 C.222-D.22-8.如图,已知A 、B 两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1,D 是⊙C 上的一个动点,射线AD 与y 轴交于点E ,则△ABE 面积的最大值是( ).A .3B .113C .103 D .49.如图,等腰Rt △ABC 中,∠ACB=90°,AC=BC=4,⊙C 的半径为1,点P 在斜边AB 上,PQ 切⊙O 于点Q ,则切线长PQ 长度的最小值为( ).A.7B.22C. 3D.410.如图∠BAC =60°,半径长1的⊙O 与∠BAC 的两边相切,P 为⊙O 上一动点,以P 为圆心,PA 长为半径的⊙P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的范围为 .A Q C P BO A B x yPO A x yP11.在直角坐标系中,点A 的坐标为(3,0),点P (m n ,)是第一象限内一点,且AB=2,则m n -的范围为 . 12.在坐标系中,点A 的坐标为(3,0),点P 是y 轴右侧一点,且AP=2,点B 上直线y=x+1上一动点,且PB ⊥AP 于点P ,则tan ABP m ∠=,则m 的取值范围是 .13.在平面直角坐标系中,M (3,4),P 是以M 为圆心,2为半径的⊙M 上一动点,A (-1,0)、B (1,0),连接PA 、PB ,则PA 2+PB 2最大值是 . 点评点评:与圆有关的最值问题,看着无从下手,但只要仔细观察,分析图形,寻找动点与定点之间不变的维系条件,构建关系,将研究的问题转化为变量与常量之间的关系,就能找到解决问题的突破口!几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考试题中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法. 答案参考答案:引例1. 解:C 在以A 为圆心,以2为半径作圆周上,只有当OC 与圆A 相切(即到C 点)时,∠BOC 最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°, ∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC ,tan ∠BOC=tan ∠OAC==,随着C 的移动,∠BOC 越来越大,∵C 在第一象限,∴C 不到x 轴点,即∠BOC <90°, ∴tan ∠BOC≥,故答案为:m≥.引例1图引例2图引例2.2a b +≤;原题:(2013•武汉模拟)如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径作圆O ,C 为半圆AB 上不与A 、B 重合的一动点,射线AC 交⊙O 于点E ,BC=a ,AC=b . (1)求证:AE=b+a ; (2)求a+b 的最大值;(3)若m 是关于x 的方程:x 2+ax=b 2+ab 的一个根,求m 的取值范围.【考点】圆的综合题. 【分析】(1)首先连接BE ,由△OAB 为等边三角形,可得∠AOB=60°,又由圆周角定理,可求得∠E 的度数,又由AB 为⊙D 的直径,可求得CE 的长,继而求得AE=b+a ;(2)首先过点C 作CH ⊥AB 于H ,在Rt △ABC 中,BC=a ,AC=b ,AB=1,可得(a+b ) 2= a 2+b 2+2ab=1+2ab =1+2CH•AB=1+2CH≤1+2AD=1+AB=2,即可求得答案; (3)由x 2+ax=b 2+ab ,可得(x ﹣b )(x+b+a )=0,则可求得x 的值,继而可求得m 的取值范围. 【解答】解:(1)连接BE ,∵△OAB 为等边三角形,∴∠AOB=60°,∴∠AEB=30°, ∵AB 为直径,∴∠ACB=∠BCE=90°,∵BC=a ,∴BE=2a ,CE=a ,∵AC=b ,∴AE=b+a ; (2)过点C 作CH ⊥AB 于H ,在Rt △ABC 中,BC=a ,AC=b ,AB=1,∴a 2+b 2=1, ∵S △ABC =A C•BC=AB•CH ,∴AC•BC=AB•CH ,∴(a+b ) 2=a 2+b 2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,∴a+b≤,故a+b 的最大值为,(3)∵x 2+ax=b 2+ab ,∴x 2﹣b 2+ax ﹣ab=0,∴(x+b )(x ﹣b )+a (x ﹣b )=0,∴(x﹣b)(x+b+a)=0,∴x=b或x=﹣(b+a),当m=b时,m=b=AC<AB=1,∴0<m<1,当m=﹣(b+a)时,由(1)知AE=﹣m,又∵AB<AE≤2AO=2,∴1<﹣m≤2,∴﹣2≤m<﹣1,∴m的取值范围为0<m<1或﹣2≤m<﹣1.【点评】此题考查了圆周角定理、等边三角形的性质、完全平方公式的应用以及一元二次方程的解法.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.引例3.解:连接EP,DP,过P点作PM垂直DE于点M,过O做OF⊥AC与F,连接AO,如图,∵∠BAC=60°,∴∠DPE=120°.∵PE=PD,PM⊥DE,∴∠EPM=60°,∴ED=2EM=2EP•sin60°=EP=PA.当P与A、O共线时,且在O点右侧时,⊙P直径最大.∵⊙O与∠BAC两边均相切,且∠BAC=60°,∴∠OAF=30°,OF=1,∴AO==2,AP=2+1=3,∴DE=PA=3.故答案为:D。
专题复习三(与圆有关的最值问题)
问题2:利用几何意义求与圆有关的最值
例:已知实数x, y满足方程x 2 y 2 4 x 1 0 求下列各式的最大值与 最小值: y (1) ; x (2) y x;
涉及与圆有关的最值问 题, 利用数形结合与几何意 义求解 y b 形如u 转化为直线斜率 xa 形如t ax by 转化为直线截距
专题复习三
与圆有关的最值问题
问题1:定点、定直线到圆的最大(小)距离
定点与圆上的点的距离 的最大值与最小值
y D P A
O
•
定直线与圆上点的距离 的最大值与最小值yCຫໍສະໝຸດ DC P BE
A
x
B
x
O
|AB|最短、|AC|最长
|AB|最短、|AC|最 长
问题1:练习题
1.直线y x 1上的点到圆x 2 y 2 4 x 2 y 4 0 的最近距离是__________ __ 变式:圆x 2 y 2 4 x 2 y 4 0上到直线y x 1 距离最近的点的坐标是 __________ __ 2.圆x 2 y 2 4 x 4 y 10 0上的点到直线 x y 14 0 的最大距离与最小距离 的差是 __________ _ 3.点M在圆C1 : x 2 y 2 6 x 2 y 1 0上,点N 在圆C2 : x 2 y 2 2 x 4 y 1 0上,求 MN 的最大值.
(3) x 2 y 2; y 1 ( 4) ; x4 含有x 2与y 2的 转化为两点间距离 (5) x 2 10x y 2 14 y;
问题2:基础训练
1 1. 已知x, y满足( x 1) y , 分别求x 2 y 2、 4 y x y、 的最值. x 2.若x, y满足( x 1) 2 ( y 2) 2 4, 求S 2 x y的最大值与最小值 . y 1 2 2 3.实数x, y满足x y 4 x 2 y 0, 求 和x y的取值范围 . x 1 4.实数x, y满足x 2 y 2 4 x 6 y 12 0, 求下列式子的最值: y (1) ; (2) x 2 y 2 ; (3) x y; (4) x y. x
圆专题:与圆有关的最值问题-2022-2023学年高二数学上学期同步讲与练解析版
圆专题:与圆有关的最值问题一、圆上的点到定点的距离最值问题一般都是转化为点到圆心的距离处理,加半径为最大值,减半径为最小值 已知圆及圆外一定点,设圆的半径为则圆上点到点距离的最小值为,最大值为 即连结并延长,为与圆的交点,为延长线与圆的交点.二、圆上的点到直线的距离最值问题已知圆和圆外的一条直线,则圆上点到直线距离的最小值为,距离的最大值为(过圆心作的垂线,垂足为,与圆交于,其反向延长线交圆于三、切线长度最值问题1、代数法:直接利用勾股定理求出切线长,把切线长中的变量统一成一个,转化成函数求最值;2、几何法:把切线长最值问题转化成圆心到直线的距离问题.已知圆和圆外的一条直线,则过直线上的点作圆的切线,切线长的最小值为.CP C r P PM PC r =-PN PC r =+PC M PC N PC C lC l PM d r -=-C l PN d r -=+C l P CP C M C N C l l PM四、过圆内定点的弦长最值已知圆及圆内一定点,则过点的所有弦中最长的为直径,最短的为与该直径垂直的弦.五、利用代数法的几何意义求最值 1、形如ax by y --=的最值问题,可以转化为过点),(y x 和点),(b a 的动直线斜率的最值问题;2、形如22)()(b y a x z -+-=的最值问题,可以转化为点),(y x 和点),(b a 的距离的平方的最值问题;3、形如by ax z +=的最值问题,可以转化为动直线纵截距的最值问题lCPMC P P MN题型一 圆上的点到定点的距离最值【例1】若点M 在曲线2264120x y x y +--+=上,O 为坐标原点,则OM 的取值范围是______.【答案】13131⎡⎤⎣⎦【解析】曲线2264120x y x y +--+=,即()()22321x y -+-=,表示圆心()3,2C ,半径1r =的圆,则223213OC +因为点M 在曲线2264120x y x y +--+=上,所以OC r OM OC r -≤≤+,131131OM ≤≤,即13131OM ⎡⎤∈⎣⎦; 故答案为:13131⎡⎤⎣⎦【变式1-1】在圆()()22232x y -++=上与点(0,5)-距离最大的点的坐标是______.【答案】()32-,【解析】()()22025382-+-+=>,∴点(0,5)-在圆外∴圆上与点(0,5)-距离最远的点,在圆心与点(0,5)-连线上,且与点(0,5)-分别在圆心两侧,令直线解析式:y kx b =+,由于直线通过点(2,3)-和(0,5)-,可得直线解析式:5y x =-, 与圆的方程联立,可得()()22222x x -+-=,3x ∴=或1x =∴交点坐标为(3,2)-和(1,4)-,其中距离点(0,5)-较大的一个点为(3,2)-.【变式1-2】已知圆C :222x y +=,点(,3)A m m -,则点A 到圆C 上点的最小距离为( )A .1B .2C 2D 32 【答案】C【解析】由圆C :222x y +=,得圆()0,0C ,半径r 2,所以()2223269AC m m m m =+--+()23239222m -+ 所以点A 到圆C 3222.故选:C.【变式1-3】已知点()2,0A -,()2,0B ,()4,3C ,动点P 满足PA PB ⊥,则PC 的取值范围为( )A .[]2,5B .[]2,8C .[]3,7D .[]4,6 【答案】C【解析】由题设,P 在以||AB 为直径的圆上,令(,)P x y ,则224x y +=(P 不与,A B 重合),所以PC 的取值范围,即为()4,3C 到圆224x y +=上点的距离范围,又圆心(0,0)到C 的距离22(40)(30)5d -+-,圆的半径为2, 所以PC 的取值范围为[,]d r d r -+,即[]3,7.故选:C【变式1-4】已知(2,0)A -,(2,0)B ,点P 是圆223)7)1:((C x y -+=上的动点,则22||||AP BP +的最小值为A .9B .14C .26D .28【解析】设O 为坐标原点,设(,)P x y ,圆C 圆心为7)C ,则()222222222||||(2)(2)282|8|AP BP x y x y x y PO +=+++-+=++=+, 又222min ||(||)(41)9PO OC r =-=-=,所以()22min ||||18826AP BP +=+=,故选:C.【变式1-5】已知直线l 与圆22:9O x y +=交于A ,B 两点,点()4,0P 满足PA PB ⊥,若AB 的中点为M ,则OM 的最大值为( ) A .222+B .32 C .3222+ D .322【答案】A【解析】设1122(,),(,)A x y B x y ,AB 中点(,)M x y ,则122x x x +=,122y y y +=,又22119x y +=,22229x y +=,则222212121212112222(()2)182x y x y x x x x y y y y +--++=+=++,所以221221229x y y x x y -=++,又PA PB ⊥,则0PA PB ⋅=,而11(4,)PA x y =-,22(4,)PB x y =-, 所以1212124()160x x x x y y -++=+,即1212816x x x y y -=+,综上,22228169x y x --=+,整理得22(2)12x y +-=,即为M 的轨迹方程, 所以M 在圆心为(2,0)2的圆上, 则22max(20)(02220)OM-=-=+,故选:A.题型二 两圆上的动点的距离最值【例2】已知点,P Q 分别为圆()()221:241C x y -++=与圆()()222:234C x y +++=的任意一点,则PQ 的取值范围是( )A .17174⎡⎤⎣⎦B .17173⎡⎤⎣⎦C .17172⎡⎤⎣⎦D .17171⎡⎤⎣⎦【解析】()()221:241C x y -++=的圆心为()12,4C -,半径11r =,()()222:234C x y +++=的圆心为()22,3C --,半径22r =,圆心距()()221222431712d r r =++-+=>+=+,∴两圆相离,∴[]1212,PQ d r r d r r ∈--++=17173⎡⎤⎣⎦,故选:B.【变式2-1】已知两定点(2,0)A -,(1,0)B ,如果动点P 满足2PA PB =,点Q 是圆22(2)(3)3x y -+-=上的动点,则PQ 的最大值为( )A .53B .53+C .323+D .323-【答案】B【解析】设(,)P x y ,因为2PA PB =2222(2)2(1)x y x y ++=-+22(2)4x y ∴-+=因此PQ 最大值为两圆心距离加上两圆半径,即为22(22)3+2+3=5+3-+【变式2-2】已知直线1:0l kx y +=()k R ∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为( ) A .32 B .52 C .522+ D .322+【答案】C【解析】由0220kx y x ky k +=⎧⎨-+-=⎩,消去参数k 得22(1(1)2x y -+-=),所以A 在以(1,1)C 2又点B 是圆22(2)(3)2x y +++=上的动点,此圆圆心为(2,3)D --2,22(12))(13)5CD +++,∴AB 的最大值为22522CD =+ C.【变式2-3】设圆221:104250C x y x y +-++=与圆222:142250C x y x y +-++=,点A ,B 分别是1C ,2C 上的动点,M 为直线y x =上的动点,则||||MA MB +的最小值为( )A .3157-B .3137-C .524-D .534- 【答案】B【解析】根据题意,圆221:104250C x y x y +-++=,即22(5)(2)4x y -++=,其圆1C 的圆心(5,2)-,2r =,圆222:142250C x y x y +-++=,即22(7)(1)25x y -++=, 其圆2C 的圆心(7,1)-,5R =,如图所示:对于直线y x =上的任一点M ,有1212||||||||||||7MA MB MC MC R r MC MC ++--=+-, 求||||MA MB +的最小值即求12||||7MC MC +-的最小值,即可看作直线y x =上一点到两定点1C 、2C 距离之和的最小值减去7, 由平面几何的知识易知当1C 关于直线y x =对称的点为(2,5)C -, 与M 、2C 共线时,12||||MC MC +的最小值,其最小值为2||313CC =, 故||||MA MB +的最小值为3137-;故选:B .【变式2-4】已知圆221:(1)(1)1C x y -+-=,圆222:(3)(2)4C x y -+-=,动点P 在x 轴上,动点M ,N 分别在圆1C 和圆2C 上,则||||PM PN +的最小值是 . 133【解析】如图所示,圆1C 关于x 轴的对称圆的圆心坐标(1,1)A -,半径为1,圆2C 的圆心坐标2(3,2)C ,半径为2, 连接2AC ,故2||4913AC =+=, 故||||PM PN +的最小值是133- 故答案为:133-.【变式2-5】已知圆()()221:111C x y -++=,圆()()222:459C x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PNPM-的最大值是( )A .254B .9C .7D .252 【答案】B【解析】圆()()221:111C x y -++=的圆心为()11,1C -,半径为1,圆()()222:459C x y -+-=的圆心为()24,5C ,半径为3.()max minmaxPN PM PN PM-=-,又2max 3PN PC =+,1min 1PM PC =-,所以,()()()2121max 314PN PM PC PC PC PC -=+--=-+. 点()24,5C 关于x 轴的对称点为()24,5C '-,()()2221211241515PC PC PC PC C C ''-=-≤=-+-+,所以,()max 549PN PM -=+=, 故选:B .【变式2-6】已知圆()221:2(3)1C x y ++-=,圆222:(4),(2)4,C x y M N -+-=分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN -的最大值为( )A 371B 373C .351D .2013173【答案】B【解析】由已知圆心1(2,3)C -,半径为1,圆心2(4,2)C ,半径为2,11PM PC C M ≤+,22PN PC C N ≥-,∴11PM PN PC C M -≤+-()22PC C N -1211123PC PC C M C N PC PC =-++=-+123373C C ≤+=,当且仅当12,,P C C 三点共线时等号成立,此时M 为1PC 的延长线与圆1C 的交点,N 为线段2PC 与圆2C 的交点. 故选:B .题型三 圆上的点到直线的距离最值【例3】点P 为圆22(1)2x y -+=上一动点,点P 到直线3yx的最短距离为( )A .22B .1C 2D .22【答案】C【解析】圆22(1)2x y -+=的圆心为(1,0),半径2r =则圆心(2,0)到直线30x y -+=的距离为22103221(1)d -+=+-所以直线与圆相离, 则点P 到直线3yx的最短距离为圆心到直线的距离再减去半径.所以点P 到直线20l x y -+=:的最短距离为2222=.故选:C .【变式3-1】已知P 是半圆C 22y y x -=-上的点,Q 是直线10x y --=上的一点,则PQ 的最小值为( ) A 32 B 21 C 21 D 2【答案】D2222202(1)1(0)20x y y x x y x x y y -≥⎧-=-⇒⇒+-=≤⎨+-=⎩,如图所示, 显然当P 运动到坐标原点时,PQ 有最小值, 最小值为原点到直线10x y --=的距离, 即22min 121(1)PQ -=+-=D【变式3-2】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围为( )A .[]2,6B .[]4,8C .[]28,D .[]4,6 【答案】A【解析】圆心()2,0到直线20x y ++=距离202222d ++==所以点P 到AB 距离即高h 的范围2,32⎡⎤⎣⎦,又可求得22AB =,所以ABP △面积12S AB h =⋅的取值范围为[]2,6.故选:A.【变式3-3】圆面224440x y x y --++≤与圆面222220x y x y ---+≤的公共部分M(含边界)上的点到直线3450x y ++=的最短距离为( ) A .225B .325 C .165 D .95【答案】D【解析】由224440x y x y --++≤,即()()22224x y -+-≤,圆心为()2,2C ,半径12r =,222220x y x y ---+≤,即()()22114x y -+-≤,圆心为()1,1B ,半径22r =,则两圆面公共部分M 的平面区域如下图黑色阴影部分所示: 则圆心C 到直线3450x y ++=的距离223242519534d ⨯+⨯+=+, 则黑色阴影区域内的点到直线3450x y ++=的最短距离为1199255d r -=-=; 故选:D题型四 圆的切线长度最值问题【例4】直线1y x =-上一点向圆()2231x y -+=引切线长的最小值为( )A .22B .1C 7D .3 【答案】B【解析】圆()2231x y -+=的圆心为()3,0,半径为1,圆心到直线10x y --=212=>. ()22211-=,故选:B【变式4-1】已知过坐标原点O 的直线与圆22:86210C x y x y +-++=相切,则切线长(点O 与切点间的距离)为( )A .3B .4C 21D .5 【答案】C【解析】圆C 的标准方程为()()22434-++=x y ,圆心()4,3C -,半径2r =,所以5OC =,切线长为22225221L OC r =-=-故选C.【变式4-2】已知圆O :223x y +=,l 为过(2M 的圆的切线,A 为l 上任一点,过A 作圆N :()2224x y ++=的切线,则切线长的最小值是__________.39【解析】由题,直线OM 2,故直线l 的斜率为2 故l 的方程为)221y x =-,即230x -=. 又N 到l 的距离22203312d -+-==+ 251339433⎛⎫-== ⎪⎝⎭【变式4-3】若圆C :222270x y x y +---=关于直线30ax by ++=对称,由点P (,)a b 向圆C 作切线,切点为A ,则线段P A 的最小值为___. 142【解析】圆22:2270C x y x y +---=化为22(1)(1)9x y -+-=,圆的圆心坐标为()1,1,半径为3r =.圆22(1)(1)9x y -+-=关于直线30ax by ++=对称,所以()1,1在直线上,∴30++=a b ,即3b a =--, 点(,)a b 22(1)(1)a b -+-所以点(,)a b 向圆C 所作切线长:()()2223711924212a b a ⎛⎫-+--=++ ⎪⎝⎭当且仅当32a =-14.题型五 过圆内定点的弦长最值【例5】直线()13y k x -=-被圆()()22224x y -+-=所截得的最短弦长等于( )A 2B .23C .22D 5【答案】C【解析】圆22(2)(2)4x y -+-=的圆心为(2,2)C ,半径2r =,又直线1(3)y k x -=-,∴直线恒过定点(3,1)P ,当圆被直线截得的弦最短时,圆心(2,2)C 与定点(3,1)P 的连线垂直于弦, 22(23)(21)2-+-∴所截得的最短弦长:2222(2)22-=C .【变式5-1】已知圆O :2210x y +=,已知直线l :()2,ax by a b a b +=-∈R 与圆O的交点分别M ,N ,当直线l 被圆O 截得的弦长最小时,MN =( ) A 35B 55C .5D .35【答案】C【解析】直线l :()2,ax by a b a b +=-∈R ,即()()210a x b y -++=,所以直线过定点()2,1A -,()22||215OA =+-,圆O 半径10r =点A 在圆O 内,所以当直线与OA 垂直的时候,||MN 最短, 此时22||2||25MN r OA =-=C .【变式5-2】当圆22:4630C x y x y +-+-=的圆心到直线:10l mx y m ++-=的距离最大时,m =( )A .34B .43C .34- D .43- 【答案】C【解析】因为圆22:4630C x y x y +-+-=的圆心为(2,3)C -,半径4R =,又因为直线:10l mx y m ++-=过定点A(-1,1), 故当CA 与直线l 垂直时,圆心到直线的距离最大, 此时有1AC l k k =-,即4()13m ,解得34m =-.故选:C.【变式5-3】已知点P 在直线4x y +=上,过点P 作圆22:4O x y +=的两条切线,切点分别为A ,B ,点M 在圆22:(4)(5)1G x y -+-=上,则点M 到直线AB 距离的最大值为( )A .4B .6C 101D 131【答案】B【解析】根据题意,设(,)P m n 为直线4x y +=上的一点,则4m n +=,过点P 作圆22:4O x y +=的切线,切点分别为A 、B ,则有OA PA ⊥,OB PB ⊥,则点A 、B 在以OP 为直径的圆上, 以OP 为直径的圆的圆心为C (2m ,)2n ,半径221||2m n r OP += 则其方程为2222()()224m n m n x y +-+-=,变形可得220xy mx ny +--=,联立222240x y x y mx ny ⎧+=⎨+--=⎩,可得圆C 和圆O 公共弦AB 为:40mx ny +-=, 又由4m n +=,则有(4)40mx m y +--=, 变形可得()440m x y y -+-=,则有0440x y y -=⎧⎨-=⎩,解可得1x y ==,故直线AB 恒过定点()1,1Q ,点M 在圆22:(4)(5)1G x y -+-=上,则点M 到直线AB 距离的最大值为22||1(41)(51)16GQ +-+-=.故选:B .题型六 利用代数式几何意义求最值【例6】已知实数x ,y 满足2266140x y x y +--+=,求2223x y x +++的最大值与最小值.【答案】最大值为51,最小值为11【解析】已知方程2266140x y x y +--+=可化为()()22334x y -+-=,则此方程表圆,且圆心C 的坐标为()3,3,半径长2r =. 又()22222312x y x x y +++=+++.它表示圆上的(),P x y 到()1,0E -的距离的平方再加2;所以当点P 与点E 的距离最大或最小时,所求式子就取最大值或最小值,显然点P 与点E 距离的最大值为2CE +, 点P 与点E 距离的最小值为2CE -. 又因为()223135CE =++=,则2223x y x +++的最大值为27251+=,2223x y x +++的最小值为23211+=;即2223x y x +++的最大值为51,最小值为11.【变式6-1】已知点(),P x y 在圆:()2211x y +-=上运动.试求:(1)(223x y +的最值;(2)12y x --的最值; 【答案】(1)最大值为9,最小值为1;(233 【解析】(1)设圆()2211xy +-=的圆心为()0,1A ,半径1r =,点(),Px y 在圆上,所以(223x y +表示(),P x y 到定点()3,0E 的距离的平方, 因为()22312AE =+=,所以AE r PE AE r -≤≤+,即13PE ≤≤,所以(22139x y ≤+≤,即(223x y +的最大值为9,最小值为1;(2)点(),P x y 在圆上,则12y x --表示圆上的点P 与点()2,1B 的连线的斜率, 根据题意画出图形,当P 与C (或)D 重合时,直线()BC BD 与圆A 相切,设直线BC 解析式为1(2)y k x -=-,即210kx y k --+=,∴圆心(0,1)到直线BC 的距离d r =,即2|2|11k k -=+,解得3k =, 333k ,即31323y x --, ∴12y x --33【变式6-2】设(,)P x y 是圆22(2)1C x y -+=上任意一点,则22(5)(4)x y -++的最大值为( )A .6B .25C .26D .36 【答案】【解析】22(5)(4)x y -++表示圆C 上的点到点(5,4)-的距离的平方,圆22(2)1C x y -+=的圆心(2,0)C ,半径为1,圆心C 到点(5,4)-的距离为22(25)45-+=,22(5)(4)x y ∴-++的最大值是2(51)36+=.故选:D .【变式6-3】已知圆22:(3)(4)1C x y -+-=,点(0,1)A -与(0,1)B ,P 为圆C 上动点,当22||||PA PB +取最大值时点P 坐标是 . 【答案】18(5,24)5. 【解析】设(,)P x y ,则22222222||||(1)(1)2()2d PA PB x y x y x y =+=++++-=++,22x y +的几何意义是(,)P x y 到原点的距离,由已知,圆心(3,4)C ,半径为1,C 到O 的距离||5CO =,∴22x y +的最大值是516+=,d ∴的最大值为226274⨯+=,由直线43y x =与圆22:(3)(4)1C x y -+-=,可得(512)(518)0x x --=,125x ∴=或185x =,∴当22||||PA PB +取最大值时点P 坐标是18(5,24)5.故答案为:18(5,24)5.题型七 面积的最值问题【例7】已知圆E 经过点(0,0)A ,(1,1)B ,(2,0)C . (1)求圆E 的方程;(2)若P 为圆E 上的一动点,求ABP ∆面积的最大值. 【答案】(1)22(1)1x y -+=【解析】(1)设圆的方程为220x y Dx Ey F ++++=,22(40)D E F +->,由题意可得020420F D E F D F =⎧⎪+++=⎨⎪++=⎩,解得200D E F =⎧⎪=⎨⎪=⎩,则圆E 的方程为2220x y x +-=即22(1)1x y -+=; (2)(0,0)A ,(1,1)B AB ∴的方程:0x y -=,且||2AB =,∴圆心(1,0)E 到直线AB 的距离为|1|222d ==, ∴点P 到直线AB 的距离的最大值为212+, ∴121212||(1)2(1)22222ABPS AB ∆+⨯⨯+=⨯⨯+=. 故ABP ∆面积的最大值为122+.【变式7-1】已知圆22:(1)(1)4C x y -+-=,P 为直线:220l xy 上的动点,过点P 作圆C 的切线PA ,切点为A ,当PAC △的面积最小时,PAC △的外接圆的方程为( )A .22115224x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭ B .22119224x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭C .221524x y ⎛⎫+-= ⎪⎝⎭ D .221524x y ⎛⎫-+= ⎪⎝⎭ 【答案】C【解析】由题可知,PA AC ⊥,半径2AC =,圆心(1,1)C ,所以222142PACSPA AC PA PC AC PC =⋅==-=-要使PAC △的面积最小,即PC 最小,PC 的最小值为点(1,1)C 到直线:220l xy 22212521+++即当P 点运动到PC l ⊥时,PACS最小,直线l 的斜率为2-,此时直线PC 的方程为11(x 1)2y -=-, 由11(1)2220y x x y ⎧-=-⎪⎨⎪++=⎩,解得10x y =-⎧⎨=⎩,所以(1,0)P -,因为PAC △是直角三角形,所以斜边PC 的中点坐标为10,2⎛⎫⎪⎝⎭,而()()2211105PC =++-所以PAC △的外接圆圆心为10,2⎛⎫⎪⎝⎭5,所以PAC △的外接圆的方程为221524x y ⎛⎫+-= ⎪⎝⎭.故选:C.【变式7-2】已知C :222220x y x y +---=,直线l :220x y ++=,M 为直线l 上的动点,过点M 作C 的切线MA ,MB ,切点为A ,B ,当四边形MACB 的面积取最小值时,直线AB 的方程为 ____. 【答案】210x y ++=【解析】C :222220x y x y +---=的标准方程为22(1)(1)4x y -+-=,则圆心()11C ,,半径2r =. 因为四边形MACB 的面积22?22||4CAM S S CA AM AM CM ====- 要使四边形MACB 面积最小,则需CM 最小,此时CM 与直线l 垂直, 直线CM 的方程为()121y x -=-,即21y x =-,联立21220y x x y =-⎧⎨++=⎩,解得()0,1M -.则5CM =则以CM 为直径的圆的方程为221524x y ⎛⎫-+= ⎪⎝⎭,与C 的方程作差可得直线AB 的方程为210x y ++=.【变式7-3】点P 是直线2100++=x y 上的动点,P A ,PB 与圆224+=x y 分别相切于A ,B 两点,则四边形P AOB 面积的最小值为________. 【答案】8【解析】如图所示,因为S 四边形P AOB =2S △POA .又OA ⊥AP , 所以222122242=⨯=-=-四边形PAOB S OA PA OP OA OP 为使四边形P AOB 面积最小,当且仅当|OP |达到最小, 即为点O 到直线2100++=x y 的距离:min 222521==+OP 故所求最小值为()222548-=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B yC x A OD B O C A 与圆有关的最值(取值范围)问题引例1:在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan ∠BOC=m ,则m 的取值范围是_________.引例2:如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径作⊙O ,C 为半圆弧»AB 上的一个动点(不与A 、B 两点重合),射线AC 交⊙O 于点E ,BC=a ,AC=b ,求a b 的最大值.引例3:如图,∠BAC=60°,半径长为1的圆O 与∠BAC 的两边相切,P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ).A .3B .6C .332D .33一、题目分析:此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C 与两个定点O 、A 构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;2.引例2:通过圆的基本性质,寻找动点C 与两个定点A 、B 构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D 、E 与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE 、直径所在的直角三角形,从而转化为弦DE 与半径AP 之间的数量关系,其实质是高中“正弦定理”的直接运用;综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.二、解题策略1.直观感觉,画出图形;2.特殊位置,比较结果;3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.A M D DOC B A 三、中考展望与题型训练例一、斜率运用1.如图,A 点的坐标为(﹣2,1),以A 为圆心的⊙A 切x 轴于点B ,P (m ,n )为⊙A 上的一个动点,请探索n+m 的最大值.例二、圆外一点与圆的最近点、最远点1.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .2.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧»AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)在点P 的运动过程中,线段CD 长度的取值范围为 ; (2)在点P 的运动过程中,线段AD 长度的最大值为 .例三、正弦定理 1.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=22D 是线段BC 上的一个动点,以AD 为直径作⊙O 分别交AB ,AC 于E ,F 两点,连接EF ,则线段EF 长度的最小值为 .2. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,则PM 长度的最大值是 .O A B C E B AC OD OD CE A B例四、柯西不等式、配方法1.如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x (2<x <4),则当x= 时,PD•CD 的值最大,且最大值是为 .2.如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 半径的最小值为( ).23322 D. 23.在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B ,线段AB 长度的最小值是 .例四、相切的应用(有公共点、最大或最小夹角)1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 边上一点,过点D 作CD 的垂线交直线BC 于点E ,则线段CE 长度的最小值是 .2.如图,Rt△ABC 中,∠C=90°,∠A=30°,AB=4,以AC 上的一点O 为圆心OA 为半径作⊙O ,若⊙O 与边BC 始终有交点(包括B 、C 两点),则线段AO 的取值范围是 .3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A.B.C.3 D.2例五、其他知识的综合运用1.(2015•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E 重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2.(2013秋•相城区校级期末)如图,已知A、B是⊙O与x轴的两个交点,⊙O的半径为1,P是该圆上第一象限内的一个动点,直线PA、PB分别交直线x=2于C、D两点,E为线段CD的中点.(1)判断直线PE与⊙O的位置关系并说明理由;(2)求线段CD长的最小值;(3)若E点的纵坐标为m,则m的范围为.l Q P N M O A D BC E F C AD B Q P O A B D CP 【题型训练】1.如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,OA=5,OA 与⊙O 相交于点P ,AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C ,若在⊙O 上存在点Q ,使△QAC 是以AC 为底边的等腰三角形,则⊙O 的半径r 的取值范围为 .2.已知:如图,Rt ΔABC 中,∠B=90º,∠A=30º,BC=6cm ,点O 从A 点出发,沿AB 以每秒3cm 的速度向B 点方向运动,当点O 运动了t 秒(t >0)时,以O 点为圆心的圆与边AC 相切于点D ,与边AB 相交于E 、F 两点,过E 作EG ⊥DE 交射线BC 于G.(1)若点G 在线段BC 上,则t 的取值范围是 ;(2)若点G 在线段BC 的延长线上,则t 的取值范围是 .3.如图,⊙M ,⊙N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为⊙M 上的任意一点,Q 为⊙N 上的任意一点,直线PQ 与连心线l 所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α∠的最大值为( ).(A)6; (B)43; (C)3; (D)344.如图,在矩形ABCD 中,AB=3,BC=4,O 为矩形ABCD 的中心,以D 为圆心1为半径作⊙D ,P 为⊙D 上的一个动点,连接AP 、OP ,则△AOP 面积的最大值为( ).(A)4 (B)215 (C)358 (D)1745.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( ).A .194B .245C .5D .426.如图,在等腰Rt △ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作⊙O ,⊙O 交AC 于另一点F ,在此运动变化的过程中,线段EF 长度的最小值为 .7.如图,A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心的坐标为(-1,0),半径为1,若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是( ).A .2B .1 C.22- D.22AQC PBO ABxyPO A xyP8.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1,D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( ).A.3 B.113C.103D.49.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,⊙C的半径为1,点P在斜边AB上,PQ 切⊙O于点Q,则切线长PQ长度的最小值为( ).7 B.2210.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的范围为 .11.在直角坐标系中,点A的坐标为(3,0),点P(m n,)是第一象限内一点,且AB=2,则m n-的范围为 .12.在坐标系中,点A的坐标为(3,0),点P是y轴右侧一点,且AP=2,点B上直线y=x+1上一动点,且PB⊥AP于点P,则tan ABP m∠=,则m的取值范围是 .13.在平面直角坐标系中,M(3,4),P是以M为圆心,2为半径的⊙M上一动点,A(-1,0)、B(1,0),连接PA、PB,则PA2+PB2最大值是 .蔡老师点评:与圆有关的最值问题,看着无从下手,但只要仔细观察,分析图形,寻找动点与定点之间不变的维系条件,构建关系,将研究的问题转化为变量与常量之间的关系,就能找到解决问题的突破口!几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考试题中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.参考答案:引例1. 解:C 在以A 为圆心,以2为半径作圆周上,只有当OC 与圆A 相切(即到C 点)时,∠BOC 最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°, ∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC ,tan ∠BOC=tan ∠OAC==,随着C 的移动,∠BOC 越来越大,∵C 在第一象限,∴C 不到x 轴点,即∠BOC <90°, ∴tan ∠BOC ≥,故答案为:m ≥.引例1图引例2图 引例2.2a b +≤;原题:(2013•武汉模拟)如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径作圆O ,C 为半圆AB 上不与A 、B 重合的一动点,射线AC 交⊙O 于点E ,BC=a ,AC=b .(1)求证:AE=b+a ;(2)求a+b 的最大值;(3)若m 是关于x 的方程:x 2+ax=b 2+ab 的一个根,求m 的取值范围.【考点】圆的综合题.【分析】(1)首先连接BE ,由△OAB 为等边三角形,可得∠AOB=60°,又由圆周角定理,可求得∠E 的度数,又由AB 为⊙D 的直径,可求得CE 的长,继而求得AE=b+a ;(2)首先过点C 作CH ⊥AB 于H ,在Rt △ABC 中,BC=a ,AC=b ,AB=1,可得(a+b ) 2= a 2+b 2+2ab=1+2ab=1+2CH •AB=1+2CH ≤1+2AD=1+AB=2,即可求得答案;(3)由x 2+ax=b 2+ab ,可得(x ﹣b )(x+b+a )=0,则可求得x 的值,继而可求得m 的取值范围.【解答】解:(1)连接BE ,∵△OAB 为等边三角形,∴∠AOB=60°,∴∠AEB=30°, ∵AB 为直径,∴∠ACB=∠BCE=90°,∵BC=a ,∴BE=2a ,CE=a ,∵AC=b ,∴AE=b+a ;(2)过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,∴a2+b2=1,∵S△ABC=AC•BC=AB•CH,∴AC•BC=AB•CH,∴(a+b)2=a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,∴a+b≤,故a+b的最大值为,(3)∵x2+ax=b2+ab,∴x2﹣b2+ax﹣ab=0,∴(x+b)(x﹣b)+a(x﹣b)=0,∴(x﹣b)(x+b+a)=0,∴x=b或x=﹣(b+a),当m=b时,m=b=AC<AB=1,∴0<m<1,当m=﹣(b+a)时,由(1)知AE=﹣m,又∵AB<AE≤2AO=2,∴1<﹣m≤2,∴﹣2≤m<﹣1,∴m的取值范围为0<m<1或﹣2≤m<﹣1.【点评】此题考查了圆周角定理、等边三角形的性质、完全平方公式的应用以及一元二次方程的解法.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.引例3.解:连接EP,DP,过P点作PM垂直DE于点M,过O做OF⊥AC与F,连接AO,如图,∵∠BAC=60°,∴∠DPE=120°.∵PE=PD,PM⊥DE,∴∠EPM=60°,∴ED=2EM=2EP•sin60°=EP=PA.当P与A、O共线时,且在O点右侧时,⊙P直径最大.∵⊙O与∠BAC两边均相切,且∠BAC=60°,∴∠OAF=30°,OF=1,∴AO==2,AP=2+1=3,∴DE=PA=3.故答案为:D。