弯曲内力与弯曲应力
材料力学第04章(弯曲内力)-06讲解
下面几章中,将以对称弯曲为主,讨论梁的应力和变形计算。
§4–2 受弯杆件的简化 梁的支承条件与载荷情况一般都比较复杂,为了便于
分析计算,应进行必要的简化,抽象出计算简图。
1. 构件本身的简化
a
F
A
B
l
a
F
A
B
l
取梁的轴线来代替梁
2. 支座简化 (1)固定铰支座
固定铰
2个约束,1个自由度。
(2)可动铰支座
按照习惯,正值的剪力值绘于x轴上方,正的弯矩值绘于x 轴的下方(即绘于梁弯曲时受拉的一侧)。
(b)
FSx qx 0 x l
M x qx x qx2
22
(c)
0 x l
材料力学Ⅰ电子教案
(a) (b) (c)
第四章 弯曲应力
梁横截面上最大剪力值? 最大弯矩值? 位置?
固定铰
1个约束,2个自由度。
(3)固定端
Fx
固定端
3个约束,0个自由度。
M Fy
可动铰 可动铰
3. 梁的三种基本形式 (1)简支梁 A
F
B
F
F
F
(2)外伸梁
B A
q (3)悬臂梁
4. 载荷的简化
作用于梁上的载荷(包括支座反力)可简化为三种类型:
q
F
M
B A
集中力、集中力偶和分布载荷。
5. 静定梁与超静定梁 静定梁:由静力学方程可求出支反力,如上述三种基本形式
向上的外力产生
正弯矩
9kN
M
9kN
向下的外力产生
负弯矩
左:M=9×2-4×1=14kN.m
右:M=9×4-4×3-10×1=14kN.m
材料力学-弯曲变形
(向下)
qB
qmax
w(l)
Pl 2 2EI
(顺时针)
例题2
图示的等截面简支梁长为l,抗弯刚度为
EI,在右端受有集中力偶M0的作用,求梁任
一截面的转角和挠度。
y
解:
由整体平衡得 FAx=0, FAy= FBy= M0/l 从而,截面的弯矩为
M(x)= xFAy= xM0/l
FAx A x o
FAy
横截面变形:
线位移:长度变化
水平方向—小变形假定,挠曲轴平坦,忽略不计 垂直方向—挠度 w= w(x)
转角:角度变化
横截面相对于原位置转过的夹角,
一般用q (x)表示截面转角,并且以逆时针为正
q'
对于细长梁,略去剪力对变形影响 平截面假设成立: 变形的横截面与挠曲轴垂直
q q tan q dw
(l 2
a2)
y
例题3
P x
A
C
于是,梁的挠曲线方程为 FAx
l
w
w1 w2
(x) (x)
0 xa a xb
FAy
a
b
Pb
6 EIl
Pa
6 EIl
x3 (b2 l2 )x (l x)3 (a2 l2
)(l
x)
0 xa a xl
转角方程为
q w ww12((xx))
0 xa a xb
Pb 2EIl
x2
C1
ቤተ መጻሕፍቲ ባይዱdx
Pb 6EIl
x3
C1x
D1
同理,对CB段
w2
w2dx C2
Pa EIl
(l
x)dx
C2
材料力学弯曲内力
材料力学弯曲内力材料力学是研究物质在外力作用下的变形和破坏规律的科学。
而弯曲内力则是材料力学中的一个重要概念,它在工程实践中有着广泛的应用。
弯曲内力是指在梁或梁式结构中由外力引起的内部应力状态,它是由梁的外部受力状态和几何形状决定的。
在工程设计和结构分析中,了解和计算弯曲内力是非常重要的,本文将对材料力学中的弯曲内力进行详细的介绍。
首先,我们来看一下弯曲内力的产生原理。
当梁受到外力作用时,梁内部会产生弯曲变形,这时梁内部就会产生弯曲应力。
弯曲内力包括正应力和剪应力两部分,正应力是沿梁的纵向方向产生的拉压应力,而剪应力则是梁内部产生的剪切应力。
这些内力的大小和分布是由梁的受力情况和截面形状决定的。
其次,我们来讨论一下弯曲内力的计算方法。
在工程实践中,我们通常采用梁的截面性质和外力矩的大小来计算弯曲内力。
对于矩形截面的梁,我们可以通过简单的公式来计算出弯曲内力的大小和分布。
而对于复杂形状的截面,我们则需要借助数值计算或者有限元分析来得到准确的结果。
在实际工程中,我们通常会使用专业的结构分析软件来进行弯曲内力的计算,这样可以大大提高计算的准确性和效率。
接着,我们来谈一下弯曲内力的影响因素。
弯曲内力的大小和分布受到多种因素的影响,包括外力的大小和方向、梁的截面形状和材料性质等。
在设计和分析过程中,我们需要充分考虑这些因素,以确保结构的安全性和稳定性。
此外,梁的支座条件和边界约束也会对弯曲内力产生影响,这些因素需要在计算中进行合理的考虑和处理。
最后,我们来总结一下弯曲内力的重要性。
弯曲内力是梁和梁式结构中非常重要的内部应力状态,它直接影响着结构的安全性和稳定性。
在工程设计和分析中,准确计算和合理分析弯曲内力是非常重要的,它可以帮助工程师们更好地理解和把握结构的受力情况,从而保证结构的安全性和可靠性。
总之,弯曲内力是材料力学中一个重要的概念,它在工程实践中有着广泛的应用。
通过对弯曲内力的了解和计算,我们可以更好地设计和分析工程结构,保证结构的安全性和稳定性。
材料力学弯曲应力_图文
§5-3 横力弯曲时的正应力
例题6-1
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBY
C 截面的曲率半径ρ y
解:1. 求支反力
x 90kN M
x
(压应力)
目录
目录
§5-2 纯弯曲时的正应力
正应力分布
z
M
C
zzy
x
dA σ
y
目录
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
目录
§5-3 横力弯曲时的正应力
横力弯曲
6-2
目录
§5-3 横力弯曲时的正应力
横力弯曲正应力公式
弹性力学精确分析表明 ,当跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时 ,纯弯曲正应力公式对于横 力弯曲近似成立。 横力弯曲最大正应力
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
2. C 截面最大正应力
B
x
180
K
30 C 截面弯矩 z
FBY
y
C 截面惯性矩
x 90kN M
x
目录
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
《材料力学》 第五章 弯曲内力与弯曲应力
第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
平面弯曲1(内力及内力图)
ΙΙ. ΙΙ. 梁的计算简图
一、载荷和约束力的类 型
1.集中力 2.集中力偶 3.分布力
F
m
q
二、梁的支座类型
1.固定铰支座
2.活动铰支座
3.固定端
三、梁的类型
1.简支梁
2.外伸梁 3.悬臂梁
约束力不超过三个, 以上三种梁统称为 : 静定梁(约束力不超过三个, 可由平衡方程求解。) 可由平衡方程求解。) 2
11
由外力写内力
力引起正剪力; 1.相对于横截面来说,左 段向上、右段向下的外 力引起正剪力; 相对于横截面来说, 段向上、 反之则反。 反之则反。
2.相对于横截面来说,左 、右段向上的外力引起 正弯矩; 相对于横截面来说, 正弯矩; 反之则反。 反之则反。
3.相对于横截面来说,外 力矩或外力偶,左段顺 时针转, 相对于横截面来说, 力矩或外力偶, 时针转, 反之则反。 右段逆时针转引起正弯 矩;反之则反。
3 .根据方程作图
Pa (a<x<l) l Pa (a ≤ x ≤ l ) M = FB ( l − x ) = (l − x ) l
Pa l
x
0
+
M
Pab l
8
例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 解:
FA = FB = ql 2
18
例. 作图示梁的Fs、M图 作图示梁的F
y
解:
Fa Fa FA = (↓),FB = + F(↑) l l
x1
A
B
x2
C
FxBiblioteka axlAB段
Fa Fs = − l Fa M=− x l
材料力学第五章
y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力
?
第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力
理论力学10弯曲的应力分析和强度计算
= q( x)
dx
20
弯曲的应力分析和强度计算
dx
M c = 0 M ( x) + dM ( x) − M ( x) − Q ( x)dx − q ( x)dx = 0
∑
dM ( x) = Q( x)
dx
d 2M ( x)
2
= q( x)
2
2、集中力、dx集中力偶作用处的剪力及弯矩
∑F y =0
ΔQ = P
3 3
b0 h0 bh
3 36
弯曲的应力分析和强度计算
思考:
梁的截面形状如图所示,在xOz平面内作用有正 弯矩,绝对值最大的正应力位置为哪一点?
z a
b
y
c
37
弯曲的应力分析和强度计算
有一直径为d的钢丝,绕在直径为D的圆筒上,钢丝仍
处于弹性阶段。此时钢丝的弯曲最大正应力为多少?为了减 少弯曲应力,应增大还是减小钢丝的直径?
弯矩符号规定:弯矩使微段梁凹向上为正,反之为负。
10
弯曲的应力分析和强度计算
思考:
梁的内力符号是否和坐标系有关? 答:无关。
如图所示连续梁,AB和BC部分的内力情况如何?
A
E
0
0
P
B C FD
α
X C = P cos α
答:轴力不为零,剪力和弯矩为零。
11
例1
如图所示为受集中力及均布载荷作用的外伸梁,试求Ⅰ-Ⅰ, Ⅱ-Ⅱ截面上的剪力和弯矩。
的正应力为零,在中性轴两侧,一侧受拉应力,一侧受
压应力,与中性轴距离相等各点的正应力数值相等。 32
弯曲的应力分析和强度计算
3、静力学条件
∑F x =0
σ dA = FN = 0
弯曲内力的知识点总结
弯曲内力的知识点总结1. 弯曲内力的产生原因弯曲内力的产生原因主要是由于外力作用在梁上产生的弯矩。
当梁在弯曲作用下,上部会产生拉应力,下部产生压应力,由于这些应力的存在,会产生相应的应变。
这些内部的应力和应变就是弯曲内力。
2. 弯曲内力的计算弯曲内力可以通过弯曲方程进行计算。
弯曲方程描述了弯曲时材料内部应力的大小和分布。
在梁的不同截面上,受到的弯曲内力的大小和方向是不同的,需要通过弯曲方程计算得出。
3. 弯曲内力的影响因素弯曲内力的大小和分布受多种因素影响,包括弯矩的大小和方向、梁的截面形状和尺寸、材料的力学性质等。
在进行结构设计时,需要综合考虑这些因素,确保结构受力合理、安全可靠。
4. 弯曲内力的作用弯曲内力是结构中非常重要的一种内力,直接影响结构的稳定性和安全性。
对于梁、柱、桁架等结构,弯曲内力是决定其受力性能的关键因素之一。
合理地分析和设计弯曲内力,可以保证结构的稳定性和安全性。
5. 弯曲内力的分布规律弯曲内力的分布规律是指在杆件或梁上受弯矩作用时,内部产生的应力和应变的分布规律。
这些规律直接影响结构的受力性能和变形特性。
通过对弯曲内力的分布规律进行研究,可以更好地理解结构的受力行为并进行合理的设计与分析。
6. 弯曲内力的应力分析弯曲内力还涉及到应力分析的问题,因为在杆件或梁上不同位置受到的弯曲内力有所不同,从而产生的应力也不同。
合理地进行弯曲内力的应力分析可以帮助工程师更好地理解结构的受力性能,进行合理的设计和施工。
7. 弯曲内力的变形分析弯曲内力还会引起结构的变形,这种变形对于结构的使用性能和安全性都有很大的影响。
通过对弯曲内力的变形分析,可以帮助工程师更好地理解结构的变形特性,并进行合理的设计和施工。
总之,弯曲内力是结构工程中非常重要的一种内力,对结构的稳定性和安全性有着直接的影响。
对弯曲内力的认识和分析是结构工程设计的重要内容之一。
希望以上的知识点总结对您有所帮助。
材料力学公式汇总
材料力学公式汇总一、轴向拉压。
1. 轴力计算。
- 截面法:F_N=∑ F_i(F_N为轴力,F_i为截面一侧外力的代数和,拉力为正,压力为负)2. 正应力计算。
- σ=(F_N)/(A)(σ为正应力,A为横截面面积)3. 胡克定律。
- Δ L=(F_NL)/(EA)(Δ L为轴向变形量,L为杆件原长,E为弹性模量)4. 泊松比。
- ν =-(varepsilon')/(varepsilon)(ν为泊松比,varepsilon为轴向线应变,varepsilon'为横向线应变)二、扭转。
1. 扭矩计算。
- 截面法:T=∑ M_i(T为扭矩,M_i为截面一侧外力偶矩的代数和,右手螺旋法则确定正负,拇指指向截面外法线方向时,扭矩为正)2. 切应力计算(圆轴扭转)- τ=(Tρ)/(I_p)(τ为切应力,ρ为所求点到圆心的距离,I_p为极惯性矩)- 对于圆轴最大切应力:τ_max=(T)/(W_t)(W_t=(I_p)/(R),R为圆轴半径)- 对于实心圆轴:I_p=(π D^4)/(32),W_t=(π D^3)/(16)(D为圆轴直径)- 对于空心圆轴:I_p=(π)/(32)(D^4 - d^4),W_t=(π)/(16D)(D^4 - d^4)(d为空心圆轴内径)3. 扭转角计算(圆轴扭转)- φ=(TL)/(GI_p)(φ为扭转角,L为轴长,G为切变模量)三、弯曲内力。
1. 剪力和弯矩计算。
- 截面法:F_Q=∑ F_i(F_Q为剪力,截面左侧向上的外力或右侧向下的外力为正)- M=∑ M_i(M为弯矩,使梁下侧受拉的弯矩为正)2. 剪力图和弯矩图绘制。
- 利用载荷、剪力、弯矩之间的微分关系:(dF_Q)/(dx)=q(x),(dM)/(dx)=F_Q,frac{d^2M}{dx^2} = q(x)(q(x)为分布载荷集度)四、弯曲应力。
1. 正应力计算(梁的纯弯曲)- σ=(My)/(I_z)(σ为正应力,M为弯矩,y为所求点到中性轴的距离,I_z为截面对中性轴的惯性矩)- 最大正应力:σ_max=(M)/(W_z)(W_z=(I_z)/(y_max))- 对于矩形截面:I_z=frac{bh^3}{12},W_z=frac{bh^2}{6}(b为截面宽度,h 为截面高度)- 对于圆形截面:I_z=(π D^4)/(64),W_z=(π D^3)/(32)2. 切应力计算(矩形截面梁)- τ=frac{F_QS_z^*}{bI_z}(S_z^*为所求点以上(或以下)部分截面对中性轴的静矩,b为截面宽度)- 最大切应力(矩形截面):τ_max=(3F_Q)/(2bh)(发生在中性轴上)五、弯曲变形。
材料力学知识点总结
材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性等问题的一门学科。
它是工程力学的重要组成部分,对于机械、土木、航空航天等工程领域都有着至关重要的作用。
以下是对材料力学主要知识点的总结。
一、拉伸与压缩在拉伸和压缩的情况下,我们主要关注杆件的内力、应力和变形。
内力是指杆件在外力作用下,其内部各部分之间相互作用的力。
通过截面法可以求出内力。
应力则是单位面积上的内力。
正应力计算公式为σ = N / A ,其中 N 为轴力,A 为横截面面积。
对于拉伸和压缩变形,其变形量Δl 可以通过公式Δl = Nl / EA 计算,其中 E 为材料的弹性模量,l 为杆件长度。
二、剪切与挤压剪切是指在一对相距很近、大小相同、指向相反的横向外力作用下,杆件的横截面发生相对错动的变形。
剪切应力τ = Q / A ,其中 Q 为剪力,A 为剪切面面积。
挤压是连接件在接触面上相互压紧的现象,挤压应力σbs = Fbs /Abs ,Fbs 为挤压力,Abs 为挤压面面积。
三、扭转当杆件受到绕轴线的外力偶作用时,会发生扭转。
扭矩 T 可以通过外力偶矩计算得到。
圆轴扭转时的切应力分布规律是沿半径线性分布,最大切应力在圆轴表面。
扭转角φ 可以通过公式φ = Tl / GIp 计算,G 为材料的切变模量,Ip 为极惯性矩。
四、弯曲弯曲是指杆件在垂直于轴线的横向力或作用于轴线平面内的力偶作用下,轴线由直线变为曲线的变形。
弯矩是弯曲内力的一种,通过截面法可以求出。
弯曲应力的分布与截面形状有关,对于矩形截面,最大正应力在截面边缘。
挠度和转角是弯曲变形的两个重要参数,可以通过积分等方法求解。
五、应力状态与强度理论一点的应力状态可以用应力单元体来表示。
常用的强度理论有第一强度理论(最大拉应力理论)、第二强度理论(最大伸长线应变理论)、第三强度理论(最大切应力理论)和第四强度理论(形状改变比能理论)。
强度理论用于判断材料在复杂应力状态下是否发生破坏。
材料力学弯曲内力
材料力学弯曲内力材料力学是研究物质受力和变形的科学。
在工程学中,材料力学的应用非常广泛,其中弯曲内力是一个重要的研究对象。
弯曲内力是指在材料受到外力作用下,产生的弯曲应力和弯曲应变。
了解和分析材料的弯曲内力对于工程设计和材料选用具有重要意义。
首先,我们来了解一下弯曲内力的产生原因。
在工程结构中,由于外力的作用,材料会产生弯曲变形,这时就会产生弯曲内力。
弯曲内力的大小和方向取决于外力的大小、作用点的位置以及材料的几何形状和材料性质。
在工程实践中,我们需要通过理论分析和实验测试来确定材料的弯曲内力,以便进行结构设计和材料选用。
其次,我们需要了解弯曲内力的计算方法。
在弯曲内力的计算中,我们通常采用弯矩和剪力图的方法。
弯矩图是描述材料在受弯曲作用下,不同位置上的弯矩大小和方向的图形,而剪力图则是描述材料在受弯曲作用下,不同位置上的剪力大小和方向的图形。
通过分析弯矩和剪力图,我们可以得到材料在不同位置上的弯曲内力大小和方向,从而进行合理的结构设计和材料选用。
此外,材料的弯曲内力还与材料的强度和刚度密切相关。
在工程设计中,我们需要根据材料的弯曲内力来选择合适的材料,以保证结构的安全性和稳定性。
一般来说,材料的抗弯强度和弯曲刚度越大,其受力性能越好,适用范围也越广。
因此,在工程实践中,我们需要充分考虑材料的强度和刚度对弯曲内力的影响,从而进行合理的材料选用和结构设计。
最后,我们需要注意弯曲内力对材料的影响。
在工程实践中,弯曲内力会对材料的疲劳寿命、变形性能和使用安全性产生重要影响。
因此,我们需要通过理论分析和实验测试来充分了解材料的弯曲内力特性,从而进行合理的结构设计和材料选用,以保证工程结构的安全可靠性。
总之,材料力学弯曲内力是工程设计和材料选用中的重要内容。
了解和分析材料的弯曲内力对于工程实践具有重要意义。
通过深入研究材料的弯曲内力特性,我们可以更好地进行结构设计和材料选用,从而保证工程结构的安全可靠性。
第八章 弯曲内力、应力及强度计算
例8-3 如图所示的悬臂梁上作用有均布载荷q,试画出该梁的 剪力图和弯矩图。
解:(1) 列剪力方程和弯矩方程,
将梁左端A点取作坐标原点。
剪力方程和弯矩方程
FQ (x) qx (0 x l) M (x) 1 qx2 (0 x l)
2
(2) 画剪力图和弯矩图
剪力图是一倾斜直线
弯矩图是一抛物线
解 (1)计算1-1截面上弯矩
M1 P 200 1.5103 200103 300N m
(2) 计算 1-1 截面惯性矩
Ix
bh2 12
1.8 32 12
4.05 10 3 m4
(3) 计算1-1截面上各指定点的正应力
A
M1 yA Ix
300 1.5 102 4.05102
111106 N/m2
拉应力
B
M1 yB Ix
300 1.5 102 4.05102
111106 N/m2
压应力
A
M1 yC Ix
M1 0 0N/m 2 Ix
D
M1 yD Ix
3001.5102 4.05102
74.1106 N/m2
压应力
例8-9 一简支木梁受力如图(a)所示。已知q=2kN/m,l=2m。试比 较梁在竖放(图(b))和平放(图(c))时横截面C处的最大正应力。
3、 画剪力图和弯矩图
FQ FQ
FQ
max
ql 2
ql 2 M max 8
例 4 简支梁AB,在C 点处受集中力P 作用, 如图所示。 试作此梁的弯矩图。
解 (1)求支座反力
M B 0 Pb FAl 0
FY 0 FA FB P 0
(2) 列弯矩方程
第七章-弯曲应力(1) (2)
M
z
Q
横截面上内力 横截面上切应力
横截面上正应力
Q dA
A
M y dA
A
切应力和正应力的分布函数不知道,2个方程确定不了
切应力无穷个未知数、正应力无穷个未知数,实质是 超静定问题 解决之前,先简化受力状态 —— 理想模型方法
8
横力弯曲与纯弯曲 横力弯曲 ——
剪力Q不为零 ( Bending by transverse force ) 例如AC, DB段
E
A
(-) B
D
(+) 10kN*m
y2
C
拉应力
a
e
压应力
y1
压应力 B截面
b
d
拉应力 D截面
危险点:
a, b, d
33
(3)计算危险点应力 拉应力
a
e
压应力
校核强度
M B y2 a Iz 30 MPa (拉) M B y1 b Iz
70 MPa (压)
压应力 B截面
b
d
强度问题 弯曲问题的整个分析过程: 弯曲内力 弯曲应力 弯曲变形 刚度问题
5
本章主要内容
7.1 弯曲正应力 7.2 弯曲正应力强度条件 7.3 弯曲切应力及强度条件 7.4 弯曲中心 7.5 提高弯曲强度的一些措施
这一堂课先效仿前人,探求出来弯曲正应力
公式,然后解决弯曲正应力强度问题
6
知道公式会用,不知推导,行不行?不行。
2
解:1 画 M 图求有关弯矩
qLx qx M1 ( ) 2 2
2
2
x 1
60kNm
M max qL / 8 67.5kNm
材料力学复习提纲
材料力学复习提纲二弯曲变形的基本理论:一、弯曲内力1、基本概念:平面弯曲、纯弯曲、横力弯曲、中性层、中性轴、惯性矩、极惯性矩、主轴、主矩、形心主轴、形心主矩、抗弯截面模2、弯曲内力:剪力方程、弯矩方程、剪力图、弯矩图; 符号规定3、剪力方程、弯矩方程1、首先求出支反力,并按实际方向标注结构图中;2、根据受力情况分成若干段;3、在段内任取一截面,设该截面到坐标原点的距离为x,则截面一侧所有竖向外力的代数和即为该截面的剪力方程,截面左侧向上的外力为正,向下的外力为负,右侧反之;4、在段内任取一截面,设该截面到坐标原点的距离为x,则截面一侧所有竖向外力对该截面形心之矩的代数和即为该截面的弯矩方程,截面左侧顺时针的力偶为正,逆时针的力偶为负,右侧反之;对所有各段均应写出剪力方程和弯矩方程4、作剪力图和弯矩图1、根据剪力方程和弯矩方程作图;剪力正值在坐标轴的上侧,弯矩正值在坐标轴的下侧,要逐段画出;2、利用微积分关系画图;二、弯曲应力1、正应力及其分布规律()()max max max3243411-1266432zz Zz z z zz z I M EM M M y y y W EII I W y bh bh d d I W I W σσσρρππα==========⨯抗弯截面模量矩形圆形空心2、剪应力及其分布规律一般公式 z zQS EI τ*=3、强度有条件正应力强度条件 [][][]max zz zMMM W W W σσσσ=≤≤≥剪应力强度条件 []maxmax maxz maz z QS QI EIE S τττ**≤==工字型 4、提高强度和刚度的措施1、改变载荷作用方式,降低追大弯矩;2、选择合理截面,尽量提高zW A的比值; 3、减少中性轴附近的材料; 4、采用变截面梁或等强度两;三、弯曲变形1、挠曲线近似微分方程: ()EIy M x ''=-掌握边界条件和连续条件的确定法2、叠加法计算梁的变形 掌握六种常用挠度和转角的数据3、梁的刚度条件 ;[]maxy f l≤max 1.5Q Aτ=max 43QAτ=max 2Q A=max max z zQS EI *=压杆的稳定问题的基本理论;1、基本概念:稳定、理想压杆和实际压杆、临界力、欧拉公式、柔度λ、柔度界限值P λ、 临界应力cr σ、杆长系数μ1、2、、、惯性半径mix i =2、临界应力总图3、稳定校核压杆稳定校核的方法有两种:1、安全系数法 在工程中,根据压杆的工作情况规定了不同的安全系数st n ,如在金属结构中 1.8 3.0st n =;其他可在有关设计手册中查到;设压杆临界力为cr P ,工作压力为P ,则:cr cr P n n p σσ⎛⎫== ⎪⎝⎭或,式中 n 为工作安全系数,则稳定条件为: st n n ≥2、折减系数法 这种方法是将工程中的压杆稳定问题,转换成轴向压缩问题,用折减系数φ将材料的许用压应力[]σ打一个较大的折扣;φ是柔度λ的函数,根据大量的实验和工()22cr EI P l πμ=li μλ=Pλ=S S a bσλ-=mix i b =矩形短边4i d =圆形直径mixi 工字型查表221234235304 1.1229.30.19P P S S S P cr S P cr l i E aEb a b Q a MPab MPaa MPab MPaμλσλσπσλλλσλλλλσλ→→⇒→⇒=-⇒=≥⇒=≤≤⇒=-====计算程序:比较:钢松木程实践已将它们之间的关系制成了表格、图像和公式,只要算出压杆的柔度λ,就可在有关的资料中查到相应的φ值,不分细长杆,中长杆和短粗杆;其稳定表达式为:[]PAσφσ=≤复习题一、是非题 在题后的括号内正确的画“√” ;错误的画“×”1、平面图形对过形心轴的静矩等于零,惯性矩也等于零; × ;2、梁横截面上各点剪应力的大小与该点到中性轴的距离成反比; ×3、矩形截面梁上、下边缘的正应力最大,剪应力为零; √4、剪应力互等定理一定要在弹性范围内使用; ×5、所有压杆的临界力都可以用欧拉公式计算; ×6、梁横截面上各点正应力大小与该点到中性轴的距离成正比; √7、细长压杆的承载能力主要取决于强度条件; ×8、形状不同但截面面积相等的梁,在相同的弯矩下最大正应力相同; ×9、欧拉公式只适用于大柔度压杆的稳定性计算; √ 10、细长压杆的临界力只与压杆的材料、长度、截面尺寸和形状有关; × 11、梁横截面中性轴上的正应力等于零,剪应力最大; × 12、矩形截面梁上、下边缘的正应力最大,剪应力为零; √ 13、横截面只有弯矩而无剪力的弯曲称为纯弯曲; √ 14、均布荷载作用下的悬臂梁,其最大挠度与杆长三次方成正比; √ 15、无论是压杆、还是拉杆都需考虑稳定性问题; × 16、若某段梁的弯矩等于零,该段梁变形后仍为直线; √ 17、均布荷载下梁的弯矩图为抛物线,抛物线顶点所对截面的剪力等于零; √ 18、中性轴将梁的横截面分为受拉、受压两个部分; √ 19、压杆的柔度与材料的性质无关; √ 20、某段梁上无外力作用,该段梁的剪力为常数; √ 21、梁的中性轴处应力等于零; × 22、材料不同、但其它条件相同两压杆的柔度相同; √ 24、平面图形对其对称轴的静矩为零; √ 25、截面面积相等、形状不同的梁,其承载能力相同; × 26、竖向荷载作用下,梁横截面上最大剪应力发生在截面的上下边缘; ×27、压杆的柔度λ不仅与压杆的长度、支座情况和截面形状有关而且还与压杆的横截面积有关; √ 28、在匀质材料的变截面梁中,最大正应力σmax不一定出现在弯矩值绝对值最大的截上 √二、选择题备选答案中只有一个是正确的,将你所选项前字母填入题后的括号内;1、 矩形截面里梁在横力弯曲时,在横截面的中性轴处 BA 正应力最大,剪应力为零;;B 正应力为零,剪应力最大 ;C 正应力和剪应力均最大;D 正应力和剪应力均为零2、圆形截面抗扭截面模量W P 与抗弯截面模量W zA W P =W Z ;B W P=2W Z ;C 2W P =W Z ;3、图示梁1、2截面剪力与弯矩的关系为 AA Q 1=Q 2,M 1=M 2;B Q 1≠Q 2,M 1≠M 2;C Q 1=Q 2,M 1≠M 2;D Q 1≠Q 2,M 1=M 2;4、图示细长压杆长为l 、抗弯刚度为EI ,该压杆的临界力为: A A 224lEIP cr π=; B 22lEIP cr π=C 2249.0l EIP cr π=; D 224lEIP cr π=5、两根梁尺寸、受力和支承情况完全相同,但材料不同,弹性模量分别为1E 和2E217E E =,则两根梁的挠度之比21/y y 为: BA ﹒4/1B ﹒7/1C ﹒49/1D ﹒7/16、圆形截面对圆心CAA ﹒I P =I Z ;B ﹒I P =2I Z ;C ﹒2I P =I Z ;7正确的是 A A a,b,c,d ;B d,a,b,c ; C c,d,a,b ;D b,c,d,a ;8、图示矩形截面采用两种放置方式,从弯曲正应力强度观点, 承载能力b 是a 的多少倍 AA ﹒2;B ﹒4;C ﹒6;D ﹒8;9、图示梁欲使C 点挠度为零,则P 与q 的关系为 B A ﹒2/ql P = B ﹒8/5ql P = C ﹒6/5ql P = D ﹒5/3ql P =10、长方形截面细长压杆,2/1/=h b ;如果将b 改为h 后仍为细长杆,临界力cr P 是原来多少倍 A ﹒2 B ﹒4 C ﹒6 D ﹒811、图示梁支座B 两侧截面剪力与弯矩的关系为 : DA ﹒Q 1=Q 2,M 1=M 2;B ﹒Q 1≠Q 2,M 1≠M 2;C ﹒Q 1=Q 2,M 1≠M 2;D ﹒Q 1≠Q 2,M 1=M 2;12、材料相同的悬臂梁I 、Ⅱ,所受荷载及截面尺寸如图所示;下列关于它们的挠度的结论正确的为A A ﹒I 梁最大挠度是Ⅱ梁的4/1倍 B ﹒I 梁最大挠度是Ⅱ梁的2/1倍 C ﹒I 梁最大挠度是Ⅱ梁的2倍 D ﹒I 、Ⅱ梁最大挠度相等13.截面形状不同、但面积相同,其它条件也相同的梁, 其承载能力的大小关系为 AA ﹒矩形>方形>圆形;B ﹒方形>圆形>矩形;C ﹒圆形>方形>矩形;D ﹒方形>矩形>圆形;14.T 形截面梁,横截面上a 、b 、c 三点正应力的大小关系为 B A ﹒σa =σb =σc ;B ﹒σa =σb ,σc =0;C ﹒σa >σb ,σc =0;D ﹒σa <σb ,σc =0;15.梁受力如图,在B 截面处,正确答案是 DA 剪力图有突变,弯矩图连续光滑;B 剪力图有尖角,弯矩图连续光滑;C 剪力图、弯矩图都有尖角;D 剪力图有突变,弯矩图有尖角;16.抗弯刚度相同的悬臂梁I 、Ⅱ如图所示;下列关于它们的挠度的结论正确的为; C()A I 、Ⅱ梁最大挠度相等 ()B I 梁最大挠度是Ⅱ梁的2/1倍()C I 梁最大挠度是Ⅱ梁的4/1倍 ()D I 梁最大挠度是Ⅱ梁的2倍17、如图所示的悬臂梁,自由端受力偶M 的作用, 梁中性层上正应力σ及剪应力τ正确的是: C()A 0,0=≠τσ ()B 0,0≠=τσ()C 0,0==τσ()D 0,0≠≠τσ三、填空题将答案填在题后的划线中1、图示圆截面压杆长m l 5.0=、直径mm d 20=,该压杆的柔度为:矩形方形圆形 zλ=2、用积分法求图示梁的变形,试写出确定积分常数的边界条件和变形连续条件:3、图示圆截面悬臂梁,若其它条件不变,而直径增加一倍,则其最大正应力是原来截面上最大正应力的 1/8 倍;4、图示简支等截面梁C 处的挠度为 0 ;5、试画出矩形截面梁横截面沿高度的正应力分布规律,若截面弯矩为M , 则A 、C 两点的正=A σ ;=C σ ;67、图示梁支座B 左侧Ⅰ—Ⅰ截面的剪力和弯矩分别为:Q 1 = ;z正应力分布规律M 1= ;8、图示悬臂梁自由端C 的转角和挠度分别为:=C θ ;=C y ;9.图示悬臂梁自由端C 的转角和挠度分别为:=Cθ ;=C y ;10、梁在弯曲时,横截面上正应力沿高度是按 分布的,中性轴上的正应力为 ;矩形截面梁横截面上剪应力沿高度是按 分布的,中性轴上的剪应力为 ;11、图示矩形对C Z 轴的惯性矩ZC I =,对y 轴的惯性矩y I =12、利用叠加法计算杆件组合变形的条件是:1变形为 小变形;2材料处于 线弹性;13、按图示钢结构()a 变换成()b 的形式,若两种情形下CD 为细长杆,结构承载能力将:降低;14、图示三种截面的截面积相等,高度相同,则图_____所示截面的z W 最大,图_____所示截面的z W 最小;C(a)(b)(c)15、图示荷载,支座的四种布置中,从强度考虑,最佳方案为;四、计算题1、练习作以下各题的Q、M图,要标出各控制点的Q、M值;含作业中的题2、根据题意计算梁的强度,设计截面或求承载能力;1、矩形截面梁b=20cm、h=30cm,求梁的最大正应力m ax和最大剪应力m ax τ;2、求图示矩形截面梁1—1截面的最大正应力和最大剪应力;单位mm)3、求图示矩形截面梁D 截面上a 、b 、c 三点的正应力;Ca4、16号工字钢截面的尺寸及受力如图所示;[]MPa 160=σ试校核正应力强度条件;5、图示外伸梁,受均布荷载作用,已知:m KN q /10=,m a 4=,[]MPa 160=σ,试校核该梁的强度;6、图示为一铸铁梁,kN P 91=,kN P 42=,许用拉应力[]MPa 30=+σ,许用压应力[]MPa 60=-σ,461063.7m Iy-⨯=,试校核此梁的强度;max max 4628.8MPaMPa σσ-+==3、变形计算,练习以下各题,求指定位移;部分答案供参考AA B Cy yθAC78B BC CqAc By θc By θc BqA12561 437113246B B qa qa y EI EI θ=↓=2 45768C ql y EI =↓ 6 4348c B qa qa y EIEI θ=↓= 7 43472448A B ql ql y EIEIθ=↓=8 332C ql y EI=↓4、以下为压杆练习题,按要求求解;1、图示圆截面压杆,已知mm d 100=、GPa E 200=、MPa P 200=σ;试求可用欧拉公式计算临界力杆的长度;2、两端铰支压杆,尺寸如图所示;已知材料的弹性模量GPa E 200=,比例极限MPa P 200=σ,直线经验公式)(12.1304MPa cr λσ-=; 若取稳定安全系数3=w n ,试确定容许压力; 3、图示压杆的GPa E 70=、MPa P 175=σ, 此压杆是否适用于欧拉公式,若能用, 临界力为多少;4、图示圆截面压杆,已知:m l 1=、mm d 40=,材料的GPa E 200=, 比例极限MPa P 200=σ,直线经验公式)(12.1304MPa cr λσ-=; 试求压杆的临界力;5、图示蒸气机的活塞杆AB,所受的压力KN P 120=,cm l 180=,截面为圆形,直径cm d 5.7=,GPa E 210=,MPa p 240=σ;规定8=st n ,两端视为铰接1=μ,试P y z 10040lPd校核该活塞杆的稳定性;6、图示结构,尺寸如图所示,立柱为圆截面,材料的GPa E 200=,MPa p 200=σ;若稳定安全系数2=st n ,试校核该立柱的稳定性; 2.152st n n =≥=;7、桁架ABC 由两根具有相同截面形状和尺寸及同样材料的细长杆组成,β已知,试求使荷载P 为最大时的θ角设πθ<<0;2arctan(cos )θθ=8、图示结构,力作用线沿竖直方向;AC 和BC 均为圆截面杆,其直径分别mm d AC 16=,mm d CB 14=,材料为3A 钢,GPa E 206=,直线公式λσb a cr -=的系数MPa a 310=,MPa b 14.1=;105=p λ,4.61=s λ,稳定安全系数4.2=st n ,校核该结构的稳定性;失稳9、求图是压杆的临界力;25a mm =,25d mm =,5210E MPa =⨯。
第六章:梁弯曲时的内力和应力
剪力图和弯矩图:以梁轴线为横坐标,分别以剪力值和弯矩值为纵坐标, 按适当比例作出剪力和弯矩沿轴线的变化曲线,称作剪力图和弯矩图。
剪力、弯矩方程便于分析和计算,剪力、弯矩图形象直观,两者对于解 决梁的弯曲强度和刚度问题都非常重要,四者均是分析弯曲问题的基础。
第三节:剪力图和弯矩图
5-5 截面
FS5 q 2 FB 5.5 kN
1 23 4
5
1 23 4
5
M5 (q 2)1 8 kN m
第三节:剪力图和弯矩图
第三节:剪力图和弯矩图
一、剪力、弯矩方程与剪力、弯矩图
剪力方程和弯矩方程:为了描述剪力与弯矩沿梁轴线变化的情况,沿梁 轴线选取坐标 x 表示梁截面位置,则剪力和弯矩是 x 的函数,函数的解 析表达式分别称为剪力方程和弯矩方程。
M 为常数,即对应弯矩图应为水平直线; 其他两段的弯矩图则均为斜直线。
第三节:剪力图和弯矩图
3)判断剪力图和弯矩图形状 AC、CD、DB 各段梁的剪力图均为水 平直线。在 CD 段,弯矩 M 为常数,对 应弯矩图应为水平直线;其他两段的弯 矩图则均为斜直线。
4)作剪力图和弯矩图
剪力图 弯矩图
第四节:弯曲时的正应力
第一节:梁的计算简图 第二节:弯曲时的内力计算 第三节:剪力图和弯矩图 第四节:弯曲时的正应力 第五节:正应力强度计算 第六节:弯曲切应力 第七节:提高梁弯曲强度的一些措施
第一节:梁的计算简图
第一节:梁的计算简图
一、梁的支座 梁的支座形式:工程中常见的梁的支座有以下三种形式。 1、固定铰支座:如图 a)所示,固定铰支座限制梁在支承处任何方向的 线位移,其支座反力可用两个正交分量表示,即沿梁轴线方向的 FAx 和 垂直于梁轴线方向的 FAy 。
弯曲内力和应力基本概念练习解答
弯曲内力练习一、选择题1.外伸梁受均布载荷作用,如图所示。
以下结论中( )是错误的。
A .AB 段剪力表达式为()qx x F Q -=;B .AB 段弯矩表达式为221)(qx x M -=; C.BC段剪力表达式为()L qa x F Q 22=; D.BC 段弯矩表达式为)(2)(2x L Lqa x M --=。
2.外伸梁受集中力偶作用,如图所示,以下结论中( )是错误的。
A .当力偶作用点C 位于支座B 的右侧时,梁的弯矩图为梯形;B.当C 点位于支座B 的右侧时,梁上各截面的弯矩()0≥x M ; C.当C 点在梁上移动时,梁的剪力图不改变;D.当C 点在梁上移动时,梁的中央截面上弯矩不改变。
题2图 题1图3.简支梁受集中力作用,如图所示,以下结论中( )是错误的。
A .AC 段,剪力表达式为 ()LFb x F S =; B.AC 段,弯矩表达式为x LFb x M =)(; C.CB 段,剪力表达式为 ()L Fa x F S =; D.CB 段,弯矩表达式为)()(x L LFa x M -=。
4.简支梁的四种受载情况如图,设M 1、M 2、M 3、M 4分别表示梁(a )、(b )、(c )、(d )中的最大弯矩,则下列结论中( )是正确的。
A .M 1 >M 2 = M 3 >M 4; B. M 1 >M 2 > M 3 >M 4; C.M 1 >M 2 >M 3 = M 4; D. M 1 >M 2 >M 4> M 3 。
5.外伸梁受均布载荷作用,如图所示。
以下梁的剪力、弯矩图(a ) (b ) (c ) (d )中( )是正确的。
A .(a ); B.(b ); C.(c ); D.(d )。
弯曲应力一. 选择题1.在推导弯曲正应力公式y I M Z=σ时,假设纵向线段间无挤压,这是为了( )。
A .保证正应力合力F N = ∫A σdA =0;B.保证纵向线段为单向拉伸(压缩);C.保证梁发生平面弯曲;D.保证梁不发生扭转变形。
建筑力学
梁的弯曲
(2)纯弯曲正应力
σ= My Iz
M为梁横截面上的弯矩; y为梁横截面上任意一点坐标; ������������为梁横截面对中性轴的惯性矩.
以中性层为界,靠近凸边的正应力为拉应力, 取正值; 靠近凹边的正应力为压应力,取负值。
梁的弯曲
例:一悬臂梁的截面为矩形,自由端受集中力作用,已知P=4kN,h=60mm,b=40mm, l=250mm。求固定端截面上a点的正应力及固定端截面上的最大正应力。
梁的弯曲
例:已知 F1 = F2 = F = 60kN,a = 230mm,b = 100 mm 和c = 1000 mm. 求 C 、D 点处横截面上的剪力和弯矩.
F1=F
FRA
FRB F2=F
C
A
D
B
b
a c
(1)求支座反力 FRA FRB F =60kN
梁的弯曲
(2)计算C 横截面上的剪力FSC 和弯矩 MC
梁的弯曲
Fq
B
A
C
a
a
F
=
A
B
+
q
A
B
叠加
A ( A )F ( A )q
a2 (3F 4qa) 12EI
3.5 12 8
0.44(kN
m)
Iz 25.6cm4 25.6104 mm4 y1 1.52cm 15.2mm y2 3.28cm 32.8mm
梁的弯曲
计算正应力 最大拉应力发生在跨中截面的下边缘
l max
M max Iz
y2
0.44106 32.8 25.6104 56.38(MPa )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fs(+)
Fs(–)
Fs(+)
Fs(–)
②弯矩M: 使梁微段变成上凹下凸形状的为正弯矩;反之为负值。
M(+)
M(+)
M(–)
M(–)
可编辑版
16
三、注意的问题
1、在截开面上设正的内力方向。 2、在截开前不能将外力平移或简化。
1、固定端——有三个约束反力。 FXA
MA
可编辑版 FAY
9
2、固定铰支座 ——有二个约束反力。
3、可动铰支座 ——有一个约束反力。
可编辑版
FAY FAX
FAY
10
(五)、梁的三种基本形式: 1、悬臂梁:
2、简支梁:
q(x)— 分布力
L M — 集中力偶
3、外伸梁:
L q — 均布力
F — 集中力
L
L
(L称为梁的跨长)
可编辑版
11
(六)、静定梁与超静定梁 静定梁:由静力学方程可求出支 反力。
超静定梁:由静力学方程不 可求出支反力或不能求出全 部支反力。
可编辑版
P P
P
12
§5—2 弯曲内力与内力图
一、内力的确定(截面法):
a
F
[例]已知:如图,F,a,l。
求:距A端x处截面上内力。
A FAX A
RA
M1 Q1
Q1RA0.81.50.80.7(kN)
M 1R A 2 0 .8 0 .5 1 .5 2 0 .8 0 .5
2--2截面右段左侧截面:
2.6(kNm)
q R B Q 21.21.52.91.1(kN)
M2 Q2
M 2 R B 1 .5 1 .2 1 .5 0 .75
Q 1q,L M 1q1 lx
2--2
Y0, q (x 2 a ) q L Q 2 0
mC0, qL 2xM 21 2q(x2a)20
M2
Q 2q(x2aL)
M21 2q(x2a)2qL2 x
可编辑版
18
0.8kN
2 1.2kN/m [例]:梁1-1、2-2截面处的内力。
1
解:(1)确定支座反力
A
四、简易法求内力:
FS Fi(一侧), MMi (一侧)。
左上右下剪力为正,左顺右逆弯矩为正。
可编辑版
17
x1
qL 1
2
1a
2
qL
Q1
qL
M1
q
Q2 x2
q
[例]:求1--1、2--2截面处的内力。
解 1--1
Y 0 , q L Q 1 0 .
b
m C 0 ,q1 L M 1 x 0 .
Fs
F(l a), l
MF(l a) x l
可编辑版
14
1. 弯矩:M 构件受弯时,横截面上
存在垂直于截面的内力偶矩 (弯矩)。
2. 剪力:Fs 构件受弯时,横截面上
存在平行于截面的内力(剪 力)。
FAX A
mF B
FAY
x
m
FBY
A FAY
Fs
C
M
Fs
F
M
C
FBY
可编辑版
15
二、内力的正负规定:
B
Y 0 ,R A R B 0 .8 1 .2 3 0
1.5m 1.5m RA
2m 1
0.8
3m 2 1.5m
RB
M B 0 ,1 . 2 3 1 . 5 0 . 8 4 . 5 R A 6 0
R A 1 .5(k)N ,R B 2 .9(k)N
(2) 1-1截面左段右侧截面:
§5—8 提高弯曲强度的措施 弯曲应力部分小结
作业
可编辑版
2
§5—1 工程实例、基本概念
一、实例 工厂厂房的天车大梁: 火车的轮轴:
F
F
F F
F
F
可编辑版
3
楼房的横梁:
阳台的挑梁:
可编辑版
4
可编辑版
5
二、弯曲的概念: 受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。 P
2 .9 1 .5 1 .2 1 .5 0 .75
3.0(kNm)
可编辑版
19
[例]:求图所示梁1--1、2--2截面处的内力。
Fa R B 1 R C 2
F 解:(1)
Y 0 , R B R C F 0
a
a
a
M B 0 ,R C a F 2 a F 0 a
上海工程技术大学基础教学学院工程力学部
可编辑版
1
第五章 弯曲内力与应力
§5—1 工程实例、基本概念
§5—2 弯曲内力与内力图
§5—3 剪力、弯矩与分布荷载间的关系及应用
§5—4 按叠加原理作弯矩图
§5—5 平面刚架和曲杆的内力图
弯曲内力部分小结
§5—6 弯曲正应力及强度计算 §5—7 弯曲剪应力及强度计算
F B
Y0, FAYFs 0.
Fs FAYF(lla)
FBY
mC0, MFAY x0.
MFAY xF(lla)x
M ∴ 弯曲构件内力:F s -剪力,M-弯矩。
或,研究对象:m - m 截面的右段:
F
Y0, FsFFBY0.
mC0, F B ( lY x ) F ( a x ) M 0 .
FBY
1.3a 1
2 0.5a
R C 3 F , R B 2 F
三、梁的概念:主要产生弯曲变形的杆。
q
M
四、平面弯曲的概念:
RA
NB
可编辑版
6
F1
q
F2
M
纵向对称面
平面弯曲
受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在 梁的纵向对称平面内(通过或平行形心主轴上且过 弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平 面曲线。
可编辑版
7
五、弯曲的分类: 1、按杆的形状分——直杆的弯曲;曲杆的弯曲。 2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。 3、按杆的横截面有无对称轴分——
有对称轴的弯曲;无对称轴的弯曲。 4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。 5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
可编辑版
8
六、梁、荷载及支座的简化
(一)、简化的原则:便于计算,且符合实际要求。 (二)、梁的简化:以梁的轴线代替梁本身。 (三)、荷载的简化: 1、集中力——荷载作用的范围与整个杆的长度相比非常小时。 2、分布力——荷载作用的范围与整个杆的长度相比不很小时。 3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。 (四)、支座的简化:
B 解:①求外力
l
X0, F AX 0
m A 0 , F Bl YF a 0
F B
Y 0 ,F A Y F F B Y 0
FAY
FBY
FAX =0 以后可省略不求
FBYF l ,aFAYF(lla)
可编辑版
13
②求内力
m FAX A
FAY
x
m
A Fs
C
FAY
Fs
M C
研究对象:m - m 截面的左段: