《矩阵论》PPT课件

合集下载

矩阵论第一章第二节PPT课件

矩阵论第一章第二节PPT课件

分析: 设 dimV n, 1, 2, , n 是V的一组基,
线性变换 在这组基下的矩阵为A.
设 0是 的特征值,它的一个特征向量 在基
1,2,
, n 下的坐标记为
x01 ,
x0n
则 ( )在基 1, 2 ,
, n下的坐标为
x01 A ,
x0n
x01
而0
的坐标是
0
x0n
21 11
k 1 k
k k 1
.
例. 在线性空间 P3 中,线性变换 定义如下:
(1 ) (2 )
( 5, 0, (0, 1,
3) 6)
,
(3 ) (5, 1,9)
其中, 12((01,,10,,12)) 3 (3, 1,0)
(1)求 在标准基 1, 2 , 3 下的矩阵. (2)求 在 1,2 ,3 下的矩阵.
② 若 是 的属于特征值 0的特征向量,则 k (k P,k 0) 也是 的属于0 的特征向量.
(k ) k ( ) k(0 ) 0(k )
由此知,特征向量不是被特征值所唯一确定的, 但是特征值却是被特征向量所唯一确定的,即
若 ( ) 且 ( ) ,则 .
2、特征值与特征向量的求法
5 0 5
因而,
AX
0 3
1 6
1 9
,
5 0 5
5 0 5 1 0 3 1
A
0 3
1 6
1 9
X
1
0 3
1 6
1 9
0 2
1 1
1 0
1 7
5 4 27
20 5 18
20
2 24
(2)设 在1,2 ,3下的矩阵为B,则A与B相似,且

矩阵论课件

矩阵论课件
矩阵论
第二章
第一节
矩阵与约当标准形
矩阵
第二节 不变因子及初等因子
第三节 约当标准形 第四节 凯莱—哈米尔顿定理 最小多项式
4 December 2014 河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
第一节
定义 设 P
矩阵
为数域, 为数字,P[ ] [ ]为关于 中的元素(数)为元素的矩
4 December 2014
河北科技大学
机动 目录 上页 下页 返回 结束
定理 设 矩阵 A( ) aij
阵,且 rank( A( )) r ,则


矩阵论
m n
为非零的多项式矩
A( )
d1 ( ) d 2 ( ) r ( ) 0 J ( ) 0 0 d ( ) r 0 0 0 diag d1 ( ), d 2 ( ), , d r ( ), 0, , 0 --称为 A( )的 Smith (史密斯)标准形.
矩阵论
Dn ( ) a ;
n
Dn1 ( )
4 December 2014
D1 ( ) 1.
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
定义 把 矩阵 A( ) 的每个次数大于零的不变因子
在复数域 [ ]中分解成标准分解式,即分解成首项 系数为1的互不相同的一次因式方幂的乘积,所有 这些一次因式 的方幂 ( 相同的必须按出现次数 计 算) ,称为 A( )的初等因子.
[ ]中分解成标准分解式,所有出现的一次因式的
标准形)
方幂就是 A( )的全部初等因子.

(精品课件)研究生教材《矩阵理论》PPT演示文档

(精品课件)研究生教材《矩阵理论》PPT演示文档

列和第
行, x ( x1 , x2 ,, xn ) ,则有
( 2) ( n)
Ax x1 A x2 A xn A
这就是说,矩阵乘一个列向量,其结果是将该矩 阵的列向量进行线性组合,组合系数即是该列向量 的对应系数。 若令 y ( y1 , y2 ,, ym ), 则有:
yA y1 A(1) x2 A( 2) xm A( m)
其余元素均为0的矩阵。借助这些矩阵,任意 矩阵 A aij , 均能唯一地表示成: A
m n
n ij ij

a E .
i 1 j 1
m
对矩阵乘法的表达,可以利用下述性质:
Eij Ekl jk Eil ,1 i, j, k , l n,
其中 jk 是Kronecker符号,即当
.函数与极限
5
【定义1.1.4 】 一个 一个
m p
pn
p
矩阵 B bij
m n
矩阵 C cij , 其中


矩阵 A aij

的乘积是一个
cij aik bkj ,1 i m,1 j n.
j 1
★矩阵的乘法有下述性质: (M1)结合律:( AB)C A( BC);
并将其分块成
P Q1P2 ,
P 11 P P 21
.函数与极限
P 12 P22
26
其中
P 11 , P 12 , P 21 , P 22
分别为
r1 r2 ,
r1 ( p r2 ), ( p r1 ) r2 , ( p r1 ) ( p r2 )
A( E pq Eqp ) (aii Eii E pq aii Eii Eqp ) a pp E pq aqq Eqp ;

《矩阵论》课件 共39页PPT资料

《矩阵论》课件 共39页PPT资料

n
x 1
xi ;
i1
1
x
2


n i1
xi
2 2
;
x


max
1 i n
xi
;
1
x
n p i 1
xi
p p ,
p1
x , x , x , x ( p 1)都是 C n上的向量范数。
1
2

p
引6理 .1.1 如 果p实 1,q数 1且111,则 对 pq
向 量 范,数1,,n为V的 一 组,V基中 任 一 向量
n
可唯一地表示为xii, x(x1,, xn)T Pn. i1
则 是x1,, xn的连续函. 数
定义6.1.2 设 , 是n维线性V空 上间 定义的 ab
种 向 量,范 如数 果 存 在 两 无个关与的 正 常
其中p 实 1,q 数 1且 111. pq
定理6.1.2(Minkowski不等式)
设 x ( x 1 , ,x n ) T ,y ( y 1 , ,y n ) T C n ,则
1
1
1
i n1xiyi p p i n1xi p p i n1yi p p
定理6.1.5 设V是 数 域 P上 的n维 线 性 空,间 1,,n 为V的 一 组,基 则V中 任 一 向可 量唯 一 地 表 示
n
xii , x (x1,, xn)T Pn.又 设 是Pn上 的
i1
向 量 范,数 令 v
x,
则 是V上的向量范. 数 v
定理6.1.6 设 是数域 P上n维线性空V上 间的任一

矩阵论ppt

矩阵论ppt

a
则称方阵范数 A 与向量范数 x a 是相容的.
4 February 2018 河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
性质:
(1 ) P n n 上的每一个方阵范数,在 P n 上都存在与它 相容的向量范数;
(2 ) P n n 上任意两种方阵范数 A a , A b 都是等价的, 即 存 在 两 个 与 A 无 关 的 正 的 常 数 C1 , C2 , 使 得 对

矩阵论
j H n n H n
1 H n


j 1
j 1 i 1
4 February 2018
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
注 (1 ) F - 范数的优点之一是矩阵乘以酉矩阵U 之 后 F -范数不变,即: UA F A F AU F . 事实上:
H A ( A A); (3) 2
nn
n n Cc ,则
列模和最大者
行模和最大者
H
H
( A A) 是 A A 的最大特征值
2
(4) A
F

a
j 1 i 1
n
m
ij
tr A A ;
H


F -范数
4 February 2018
河北科技大学
机动 目录 上页 下页 返回 结束
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
矩阵序列的极限计算具有以下性质:
设 Am 和 Bm 为两个 n阶矩阵序列
lim Am A ,则对 Cnn 中任何方阵范数 , Am 有界; (1 ) 如果 m

矩阵论课件

矩阵论课件
机动 目录 上页 下页 返回 结束
矩阵论
对于满秩方阵 A,A1存在, 且 AA1 A1 A I , 故当然有

AA-1 A A A-1 AA-1 A ( AA-1 )* AA-1 ( A-1 A)* A-1 A
这四个对满秩方阵显然成立的等式构成了Penrose 广义逆的启示.
4 December 2014
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
第一节 和相容方程组求解问题相应的广 义逆矩阵 A
1.广义逆矩阵的定义及性质
设 线 性 方 程 组 AX b 是 相 容 的 , 其 中
A C mn , X C n , b C m ,
则 AX b相容 b R( A) (矩阵 A 的象空间) .
0 ,Ar 为 r 阶满 0
0 1 1 Ar 1 Q P I 0 Q r 0 0 1 Ar 令 C P , D I r 0 Q 1 0
1 1 C L D* ( DD* )1(C *C )1C * . 则 A - DR
3. 反射 g 逆
定义 设 A C mn ,若存在G C nm ,使得
(1) AGA A;

(2) GAG G ;
同时成立,则称G 为 A 的一个反射(或自反)广 义逆矩阵,简称为反射 g 逆,记作: Ar ,其全体 记作: A{1, 2}.
4 December 2014
河北科技大学
(4) 若G1G2 A{1},则G1 AG2 A{1, 2};
(5) A{1, 2} A{1};

R
L
4 December 2014

(课件)矩阵论

(课件)矩阵论

=
aB 11 1
+
(a12

a 11
)
B 2
+
( a 21

a 12
)
B 3
+
( a 22

a
21
)
B 4
坐标为
β
=
(a11
,
a 12

a 11
,
a
21

a 12
,
a 22
− a21 )Τ
[注] 一个元素在两个不同的基下的坐标可能相同,也可能不同.
例如:
A
=
E 22
在上述两个基下的坐标都是 (0,
0,
(Ⅱ) 定义的数乘运算封闭, 即
∀ x ∈V , ∀ k ∈ K , 对应唯一 元素(kx)∈V , 且满足 (5) 数对元素分配律: k( x + y) = kx + ky (∀y ∈V ) (6) 元素对数分配律: (k + l )x = kx + lx (∀l ∈ K ) (7) 数因子结合律: k(lx) = (kl )x (∀l ∈ K ) (8) 有单位数:单位数1∈ K , 使得 1x = x . 则称V 为 K 上的线性空间.
mn
∑ ∑ (2) A = (ai j )m×n =
ai j Ei j .
i=1 j=1
故 Ei j (i = 1,2,L, m ; j = 1,2,L, n) 是 R m×n 的一个基, dimR m×n = mn .
第一章 线性空间与线性变换(第 1 节)
5
2.坐标:给定线性空间V
n
的基
x 1
解 采用中介法求过渡矩阵.

矩阵理论课件-第一章 线性代数引论

矩阵理论课件-第一章 线性代数引论
推论2 V中任意一个元素y, 均可由V的一个基底 x1, … , xn唯一表出.
坐标:
n
设 dim V=n, x1, , xn为一组基,y V , 令y= ai xi ,称 i 1
有序数组(a1, , an )T 为y在基x1, , xn下的坐标,它由 y与基x1, , xn唯一确定.
n
例如Pn(x)={ ai xi | ai R}为n+1维空间,1,x, ,xn可作为 i0
2 0 -2 1
注:实际上即
1
0
1 2
1 1
3 1
是标准基(1
,
2
,
3
,
4
)到
1
2
2
2
(1,2,3,4 )的过渡矩阵. 第二问也可用前面讲的公式.
四、子空间和维数定理
子空间:设V是数域F上的线性空间,W V,W非空, 若W中向量关于V的加法和数乘运算也构成F上的线性 空间,则称W为V的子空间.
例1 恒等变换 T:V V,Tx=x,x V. 零变换 T:V V,Tx=0,x V.
例2 伸缩变换:取定k 0,令 T: R3 R3, Tx=kx,x R3. T将R3中任一向量拉伸(k>1)或 压缩(k<1)k倍.
例3 平面旋转变换:取定 (0,2),x (x1, x2 )

cos
W1 W2不一定为子空间,例如两个坐标轴之并.
定理 3 设W1,W2为V的两个子空间,则
dim(W1 W2 ) dim W1 dim W2 dim(W1 W2 ).
直和:如果和空间W1 W2中的任一向量均可唯一的表成W1中 的一个向量和W2中的一个向量之和,则称W1 W2是W1与W2的 直和,记为W1 W(2 或W1 W2).

矩阵论课件01线性空间

矩阵论课件01线性空间

第一讲 线性空间一、 线性空间的定义及性质 [知识预备]★集合:笼统的说是指一些事物(或者对象)组成 的整体 集合的表示:枚举、表达式 集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。

★数域:一种数集,对四则运算封闭(除数不为零)。

比如有理数域、实数域(R )和复数域(C )。

实数域和复数域是工程上较常用的两个数域。

线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。

线性空间的概念是某类事物从量的方面的一个抽象。

1.线性空间的定义:设V 是一个非空集合,其元素用x,y,z 等表示;K 是一个数域,其元素用k,l,m 等表示。

如果V 满足[如下8条性质,分两类] (I )在V 中定义一个“加法”运算,即当x,y V ∈时,有唯一的和x y V +∈(封闭性),且加法运算满足下列性质 (1)结合律 ()()x y z x y z ++=++;(2)交换律 x y y x +=+;(3)零元律 存在零元素o ,使x +o x =;(4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o ,且称y 为x 的负元素,记为(x -)。

则有()x x +-= o 。

(II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y k x k y +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。

注意:1)线性空间不能离开某一数域来定义,因为同一个集合,如果数域不同,该集合构成的线性空间也不同。

(2)两种运算、八条性质数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。

戴华《矩阵论》 第一章线性空间与内积空间 ppt课件

戴华《矩阵论》   第一章线性空间与内积空间  ppt课件
22r111221221000001001000001iiieeee????????????????????????显然111221112212211000101aeeeeee??????????????????类似地211221112212211000101aeeeeee?????????????????????312211112212200111010aeeeeee??????????????????则基iii到基i的过渡矩阵为11100001100111100c??????????????412211112212200111010aeeeeee?????????????????????而基iii到基ii的过渡矩阵为21111111011001000c????????????所以1234111221221aaaaeeeec1234111221222bbbbeeeec从而112ccc?1123421aaaacc?因此基i到基ii的过渡矩阵为21110111122???2100010?????????1234111221222bbbbeeeec注意
(a,bR)都有a+bi=(1,i)( a ),所以(a,b) T即为k的坐
标。
b
ppt课件
30
例 1.3.2 实数域 R上的线性空间R [x]n中的向量组 1,x, x2 ,… xn-1
是 基底, R [x]n的维数为 n。
例1.3.3 实数域 R上的线性空间 Rnn 的维数为
nn,标准基为Eij:(i=1,2…n;j=1,2…n)
27
ppt课件
28
注: (1)若把线性空间V 看作无穷个向量组成的向
量组,那么 V 的基就是向量组的极大无关组, V 的 维数就是向量组的秩.

矩阵论课件

矩阵论课件

P 是数域, 若 n是正整数, 则系数属于 P 而未知元为 x 的
所有次数不超过 n 的多项式的集合,此集合连同零多 项式在内按通常多项式的加法及数与多项式的乘法, 构成数域 P 上的一个线性空间全体记作: Pn [ x ].
4 December 2014 河北科技大学
机动 目录 上页 下页 返回 结束
, t 可以由1 , 2 ,
, s 线性表
, t 线性相关.
推论1 若 1 , 2 ,
, t 可 以 由 1 , 2 ,
, s 线 性 表 示 , 且
1 , 2 , , t 线性无关,则 t s .
推论2 若 1 , 2 ,
, t 与 1 , 2 , , s 等 价 ,且 均 线性 无
实数域 R 上的线性空间简称为实线性空间; 复数域 C 上的线性空间简称为复线性空间.
下面看几个线性空间的例子.
4 December 2014
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
例1 若 P= 是数域,V 是分量属于 P= 的 n元有序数组的集合
V a1 , a2 ,
, an | ai P,i 1, 2,
矩阵论
例4 所有定义在区间 a , b a t b 上的实值连续
函数全体构成的集合, 按照函数的加法及数与函数 的数量乘法,构成实数域 R 上的一个线性空间,记 作: R a , b .
例5 实(复)系数齐次线性方程组 Ax 0( A R mn
或 C mn ; x R n 或 C n ;行向量和列向量不做区别) 的解空间 S 构成 R 或C 上的一个线性空间.
才成立,称 x1 , x2 ,

矩阵论课件

矩阵论课件

三、
基变换与坐标变换 基是不唯一的,因此,需要研究基改变时坐标变换的规律。
设 x1 , x 2
, x n 是 V n 的旧基, y1 , y 2
, y n 是 V n 的新基,由于两者都是
基,所以可以相互线性表示
y j = ∑ c ij x i
i =1 n
(i = 1,2
, n)
c1n ⎤ ⎥ c 2n ⎥ = [x1 , x 2 ⎥ ⎥ c nn ⎦
第一讲
一、 线性空间的定义及性质
线性空间
[知识预备] ★集合:笼统的说是指一些事物(或者对象)组成的整体。 集合的表示:枚举、表达式 集合的运算:并( ∪ ) ,交( ∩ ) 另外,集合的“和” (+) :并不是严格意义上集合的运算,因为 它限定了集合中元素须有可加性。 ★数域:一种数集,对四则运算封闭(除数不为零) 。比如有理 数域、实数域(R)和复数域(C) 。实数域和复数域是工程上较常用 的两个数域。 线性空间是线性代数最基本的概念之一, 也是学习现代矩阵论的 重要基础。
3
和 O 2 均为零元素, 按零元律有 [交换律]
O1 + O 2 = O1 = O 2 + O1 = O 2
所以
O1 = O 2
即 O1 和 O 2 相同,与假设相矛盾,故只有一个零元素。 ②任一元素的负元素也是唯一的。假设 ∀x ∈ V ,存在两个负元 素 y 和 z ,则根据负元律有
x+ y=O= x+z y = y + O = y + ( x + z) = ( y + x) + z = O + z = z
念是个非常重要的概念,有了线性相关性才有下面的线性空间的维 数、基和坐标。 4.线性空间的维数 定义:线性空间 V 中最大线性无关元素组所含元素个数称为 V 的维 数,记为 dim V 。 本课程只考虑有限维情况,对于无限维情况不涉及 。

矩阵论简明教程整理全PPT课件

矩阵论简明教程整理全PPT课件

k
ei
e
H j
E ei , ej , k
第45页/共188页
Remark
det E u,v, det In uvH det 1 vHu
1 vHu (由n Im AB m In BA 得到)
第46页/共188页
四、其他特殊矩阵
1幂零矩阵:Ak 0, k : 某正整数; 2幂等矩阵:A2 A; 3 实对称正定矩阵:
a a jn 1 j1 2 j2
anjn
j1 j2 jn
第13页/共188页
二、块矩阵的行列式
1、设A Cmm , B Cmn , C Cnm , D Cnn , 则
1 A
0A
BA
0 AD
0D 0D CD
2 A B 1mn C D 1mn B A
CD
AB
DC
3 A B m A B
minrank A, rank B
第30页/共188页
推论1
设ACmn , B Cnk ,且AB 0,则
rank A rank B n
第31页/共188页
§1.4 特殊矩阵
一、 几类基本的特殊矩阵
1、零矩阵,单位矩阵 2、对角矩阵
a11
D
a22
diag
a11
,
a22
,
ann
第50页/共188页
§2.1 矩阵的特征值与特征向量
一、特征值与特征向量 1、定义 定义1
设ACnn ,若存在数 C和x Cn , x 0使得 Ax x
则称是A的特征值,x称为A属于的特征向量。
第51页/共188页
2、特征多项式 定义2
设ACnn , 称In A为A的特征矩阵,称detIn A 为A的特征多项式,称detIn A 0为A的特征方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档