上海市徐汇区2019-2020学年中考数学三模考试卷含解析
2024年上海市徐汇区中考三模数学试卷含详解
初三数学摸拟试卷(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.下列各数中,与112282-相等的是()A.122B.126C.2D.42.某公司三月份的产值为a 万元,比二月份增长了%m ,那么二月份的产值(单位:万元)为()A.()1%+a m B.()1%-a m C.1%+a m D.1%-a m 3.下列二次根式里,被开方数中各因式的指数都为1的是()A.B.C.D.4.如果点C 是线段AB 的中点,那么下列结论正确的是()A .0AC BC +=uuu r uu u r B.0AC BC -=uuu r uu u r C.0AC BC += D.0AC BC -= 5.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h 和注水时间t 之间关系的是()A. B.C. D.6.已知四边形ABCD 中,对角线AC 与BD 相交于点O ,AD BC ∥,下列判断中错误..的是()A.如果AB CD =,AC BD =,那么四边形ABCD 是矩形B.如果AB CD ∥,OA OB =,那么四边形ABCD 是矩形C.如果AD BC =,AC BD ⊥,那么四边形ABCD 是菱形D.如果OA OC =,AC BD ⊥,那么四边形ABCD 是菱形二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.当<2x -=________.8.不等式组10260x x -->⎧⎨--≤⎩的整数解是________.9.如果关于x 的方程210ax x -+=有实数根,那么a 的取值范围是________.10.在实数范围内分解因式,2231-+=x y xy ________.11.如果实数x 满足2211210x x x x ⎛⎫+-+-= ⎪⎝⎭,那么1x x +的值是________.12.如果一次函数()211y m x m =-+-的图像一定经过第二、三象限,那么常数m 的取值范围为________.13.某班进行一次班级活动,要在2名男同学和3名女同学中,随机选出2名学生担任主持人,那么选出的2名学生恰好是一男一女的概率是________.14.一斜坡的坡角为α,坡长比坡高多100米,那么斜坡的高为________(用α的锐角三角比表示).15.在Rt ABC △中,90ACB ∠=︒,点G 是重心,如果3AG =,4BG =,那么CG =________.16.如图,⊙A 和⊙B 的半径分别为5和1,AB =3,点O 在直线AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是________.17.如图,在ABC 中,4AB AC ==,1cos 4B =,BD 是中线,将ABC 沿直线BD 翻折后,点A 落在点E ,那么CE 的长为________.18.在一个三角形中,如果一个内角是另一内角的n 倍(n 为整数),那么我们称这个三角形为n 倍三角形.如果一个三角形既是2倍角三角形,又是3倍角三角形,那么这个三角形最小的内角度数为________.三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答应纸上]19.已知:1-==x y ,求:21122⎛⎫- ⎪⎝⎭x y 值.20.已知点()2,3A m +在双曲线my x=上.(1)求此双曲线的表达式与点A 的坐标;(2)如果点(),5B a a -在此双曲线上,图像经过点A 、B 的一次函数的函数值y 随x 的增大而增大,求此一次函数的解析式.21.已知:如图,在ABC 中,AB AC =,DC BC ⊥,2DC BC ==,90ADB ∠=︒,BD 与AC 相交于点G .求:(1)AB 的长;(2)AG 的长.22.20个集装箱装满了甲、乙、丙三种商品共120吨,每个集装箱都只装载一种商品,根据下表提供的信息,解答以下问题:商品类型甲乙丙每个集装箱装载量(吨)865每吨价值(万元)121520(1)如果甲种商品装x 个集装箱,乙种商品装y 个集装箱,求y 与x 之间的关系式;(2)如果其中5个集装箱装了甲种商品,求每个集装箱装载商品总价值的中位数.23.已知:如图,在梯形ABCD 中,AD BC ∥,AB CD AD ==,点E 在BA 的延长线上,AE BC =.(1)求证:2BCD AED ∠=∠;(2)当ED 平分BEC ∠时,求证:EBC 是等腰直角三角形.24.如图,抛物线2y ax bx c =++顶点为坐标原点O 、且经过点()3,3A ,直线经过点A 和点()0,6B .(1)求抛物线与直线的表达式;(2)如果将此抛物线平移,平移后新抛物线的顶点C 在原抛物线上,新抛物线的对称轴与直线AB 在原抛物线的内部相交于点D ,且45COD ∠=︒,求新抛物线的表达式.25.已知:O 的直径8AB B = ,与O 相交于点C 、D ,O 的直径CF 与B 相交于点E ,设B 的半径为x ,OE 的长为y .(1)如图,当点E 在线段OC 上时,求y 关于x 的函数解析式,并写出定义域;(2)当点E 在直径CF 上时,如果OE 的长为3,求公共弦CD 的长;(3)设B 与AB 相交于G ,试问OEG 能否为等腰三角形?如果能够,请直接写出BC 弧的长度(不必写过程);如果不能,请简要说明理由初三数学摸拟试卷(满分150分,100分钟完成)一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.下列各数中,与112282-相等的是()A.122B.126C.2D.4【答案】A【分析】本题考查了幂的乘方逆运算和同底数幂乘法的逆运算,正确运用公式是解题关键.先利用幂的乘方的逆运算将128的底变为2,再通过同底数幂乘法的逆运算变出122,即可计算.【详解】解:()111311111111322222222222822222222222+-=-=-=-=⨯-=,故选:A .2.某公司三月份的产值为a 万元,比二月份增长了%m ,那么二月份的产值(单位:万元)为()A.()1%+a mB.()1%-a m C.1%+a m D.1%-a m 【答案】C【分析】本题考查了列代数式,根据“三月份的产值为a 万元,比二月份增长了%m ”,得出答案即可,理解题意、正确列出代数式是解题的关键.【详解】解:∵三月份的产值为a 万元,比二月份增长了%m ,∴二月份的产值()1%1%aa m m =¸+=+,故选:C .3.下列二次根式里,被开方数中各因式的指数都为1的是()A.B.C.D.【答案】B【分析】根据二次根式的定义判断即可.【详解】解:A .x ,y 的指数分别为2,2,此选项错误;B .22xy +的指数为1,此选项正确;C .x +y 的指数为2,此选项错误;D .x ,y 的指数分别为1,2.此选项错误;故选:B .【点睛】本题主要考查了二次根式的定义,分清因数和指数是解答此题的关键.4.如果点C 是线段AB 的中点,那么下列结论正确的是()A.0AC BC +=uuu r uu u r B.0AC BC -=uuu r uu u r C.0AC BC += D.0AC BC -= 【答案】C【分析】根据点C 是线段AB 的中点,可以判断AC BC =,但它们的方向相反,继而即可得出答案.【详解】解:由题意,∵点C 是线段AB 的中点,∴AC BC= ∵AC 与BC为相反向量,∴0AC BC +=;故选:C .【点睛】本题考查了平面向量的知识,注意向量包括长度及方向,及0与0的不同.5.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h 和注水时间t 之间关系的是()A.B.C. D.【答案】C【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,每一段h 随t 的增大而增大,增大的速度是先快后慢.故选C .【点睛】此题考查了函数的图象,根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.6.已知四边形ABCD 中,对角线AC 与BD 相交于点O ,AD BC ∥,下列判断中错误..的是()A.如果AB CD =,AC BD =,那么四边形ABCD 是矩形B.如果AB CD ∥,OA OB =,那么四边形ABCD 是矩形C.如果AD BC =,AC BD ⊥,那么四边形ABCD 是菱形D.如果OA OC =,AC BD ⊥,那么四边形ABCD 是菱形【答案】A【分析】本题考查了平行四边形、矩形、菱形、正方形的判定,根据平行四边形、矩形、菱形、正方形的判定方法逐项进行分析判定即可得答案.【详解】解:A 、如果AD BC ≠,AD BC ∥,那么四边形ABCD 是梯形,不是平行四边形也就不是矩形,故A 选项错误,符合题意;B 、如果AB CD ∥,AD BC ∥,则四边形ABCD 是平行四边形,则12OA AC =,12OB BD =,因为OA OB =所以AC BD =,那么平行四边形ABCD 是矩形,故B 选项正确,不符合题意;C 、如果AD BC =,AD BC ∥,则四边形ABCD 是平行四边形,又AC BD ⊥,那么平行四边形ABCD 是菱形,故C 选项正确,不符合题意;D 、如果AD BC ∥,OA OC =,则可以证得四边形ABCD 是平行四边形,又AC BD ⊥,那么平行四边形ABCD 是菱形,故D 选项正确,不符合题意,故选A .二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.当<2x -=________.【答案】12--x【分析】本题考查了二次根式的性质与化简,熟练掌握a =是解题的关键.a =的进行计算即可.12x ==+,∵<2x -,∴11<2022x -++<∴1122x x =+=--.故答案为:12--x .8.不等式组10260x x -->⎧⎨--≤⎩的整数解是________.【答案】3-,2-【分析】本题考查了解一元一次不等式组,整数解的问题,熟练掌握知识点是解题的关键.写解每一个不等式,再取解集的公共部分,然后即可求解.【详解】解:10260x x -->⎧⎨--≤⎩①②,由①得:1x <-,由②得:3x ≥-,∴原不等式的解集为:31x -≤<-,∴整数解为:3-,2-,故答案为:3-,2-.9.如果关于x 的方程210ax x -+=有实数根,那么a 的取值范围是________.【答案】14a ≤【分析】本题考查了一元二次方程的判别式,根据关于x 的方程210ax x -+=有实数根,得出240b ac ∆=-≥,代入数值进行计算,即可作答.【详解】解:∵关于x 的方程210ax x -+=有实数根,∴()2Δ1410a =--⨯≥,解得14a ≤,故答案为:14a ≤.10.在实数范围内分解因式,2231-+=x y xy ________.【答案】3322⎛⎫⎛⎫+-- ⎪⎪ ⎪⎪⎝⎭⎝⎭xy xy 【分析】本题考查因式分解,二次根式的乘法,熟练掌握公式法进行因式分解是解决本题的关键.根据题意,利用十字相乘因式分解.【详解】解:2231x y xy -+()233322xy xy ⎛⎫⎛⎫+-=-+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3322xy xy ⎛⎫⎛⎫+-=-- ⎪⎪ ⎪⎪⎝⎭⎝⎭.11.如果实数x 满足2211210x x x x ⎛⎫+-+-= ⎪⎝⎭,那么1x x +的值是________.【答案】3【分析】本题主要考查了用换元法解一元二次方程、解分式方程,利用完全平方公式把方程变形是解题的关键.利用完全平方公式把方程变形为211230x x x x ⎛⎫⎛⎫+-+-= ⎪ ⎪⎝⎭⎝⎭,利用换元法,设1x m x +=,则2230m m --=,转化为解一元二次方程,求出1x x+可能的值,分别得出分式方程,计算检验是否有解,即可得出答案.【详解】解:∵2211210x x x x ⎛⎫+-+-= ⎪⎝⎭,∴22112230x x xx 骣÷ç++-+-=÷ç÷ç桫,211230x x x x ⎛⎫⎛⎫+-+-= ⎪ ⎝⎭⎝⎭,设1x m x+=,则2230m m --=,因式分解得:()()310m m -+=,∴30m -=或10m +=,解得:3m =或1m =-,当3m =时,则13x x+=,整理得:2310x x -+=,∴439435222b x a -===,解得:1352x +=,2352x -=,经检验,1352x +=,2352x =都是方程13x x +=的解,∴1x x+的值为3;当1m =-时,则11x x+=-,整理得:210x x ++=,241430b ac ∆=-=-=-<,∴11x x+=-时,方程无解.综上所述,1x x+的值为3,故答案为:3.12.如果一次函数()211y m x m =-+-的图像一定经过第二、三象限,那么常数m 的取值范围为________.【答案】1m >-且1m ≠【分析】本题考查一次函数的图像与性质,运用数形结合思想解题是解题的关键,根据“一次函数()211y m x m =-+-的图像一定经过第二、三象限”可知,此图像与x 轴的交点在原点的左边,即与x 轴交点的横坐标小于0,从而得解.【详解】解:∵一次函数()211y m x m =-+-的图像一定经过第二、三象限,∴此图像与x 轴的交点在原点的左边,且10m -≠,即1m ≠,∴此图像与与x 轴交点的横坐标小于0,令()2110y m x m =-+-=,解得:21101m x m m -=-=--<-,解得:1m >-,∴常数m 的取值范围为1m >-且1m ≠,故答案为:1m >-且1m ≠.13.某班进行一次班级活动,要在2名男同学和3名女同学中,随机选出2名学生担任主持人,那么选出的2名学生恰好是一男一女的概率是________.【答案】35##0.6【分析】本题考查的是画树状图法求概率.树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.先画出树状图得出所有等可能的情况数,再找出符合条件的情况数,然后根据概率公式即可得到答案.【详解】解:根据题意画图如下:共有20种等可能的情况数,选出的2位同学恰好为一男一女的有12种,则主持人是一男一女的概率为123205=.故答案为:35.14.一斜坡的坡角为α,坡长比坡高多100米,那么斜坡的高为________(用α的锐角三角比表示).【答案】100sin 1sin -αα【分析】本题考查了正弦函数的应用.利用所给角的正弦函数求解.【详解】解:如图所示.由题意得100AB BC =+,∵90C ∠=︒,sin sin A A BC B α==,∴0s n 10i BC BC α+=,整理得100sin 1sin BC αα=-,∴斜坡的高为100sin 1sin -αα米.故答案为:100sin 1sin -αα.15.在Rt ABC △中,90ACB ∠=︒,点G 是重心,如果3AG =,4BG =,那么CG =________.【答案】【分析】本题考查了重心的定义与性质,结合勾股定理,直角三角形斜边中线的性质,关键是掌握重心性质并运用勾股定理列式求解是解题关键.本题先利用重心求出AD 和BE ,再利用勾股定理列式整体法求出AB ,最后利用直角三角形斜边中线性质和重心性质求出CG .【详解】解:如图,设AG 延长线交BC 于点D ,BG 延长线交AC 于点E ,CG 延长线交AB 于点F ,∵点G 是重心,3AG =,4BG =,∴3922AD AG ==,362BE BG ==,∵90ACB ∠=︒,∴222AD AC CD =+,222BE CE BC =+,∴22222292262BC AC AC BC ⎧⎛⎫⎛⎫=+⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩①②,①+②得:22815536444AC BC +=+,化简得:2245AC BC +=,∴22245AB AC BC =+=,∴AB =,∵点G 是重心,90ACB ∠=︒,∴12CF AB ==∴23CG CF ==,.16.如图,⊙A 和⊙B 的半径分别为5和1,AB =3,点O 在直线AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是________.【答案】32或92.【分析】根据两圆内切时圆心距=两圆半径之差的绝对值,分两种情况求解即可.【详解】当点O 在点A 左侧时,⊙O 半径r=101922-=,当点O 在点B 右侧时,⊙O 半径r=107322-=.故填92或32.【点睛】此题考查圆与圆之间的位置关系,解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量之间的联系.17.如图,在ABC 中,4AB AC ==,1cos 4B =,BD 是中线,将ABC 沿直线BD 翻折后,点A 落在点E ,那么CE 的长为________.【答案】6【分析】本题考查三角形的翻折综合计算,涉及三角函数,等腰三角形,平行四边形及勾股定理,能正确进行线段的转换及作辅助线解非直角三角形是解题关键.本题先过点A 作AM BC ⊥于点M ,计算得出AD CD DE BC ===,再证明四边形BCED 是平行四边形,得CE BD =,再在BCD △中求解BD 即可.【详解】解:如图,过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,∵4AB AC ==,∴BM CM =,∵1cos 44BM BM B AB ===,∴1BM CM ==,∴2BC =,∵BD 是中线,∴122CD AD AC ===,由翻折知2AD DE ==,∴AD CD DE BC ===,∴CBD CDB ∠=∠,设DCB α∠=,∴1802CDB α︒-∠=,∴1801809022ADB αα︒-∠=︒-=︒+,由翻折知902EDB ADB α∠=∠=︒+,∴1809022EDC EDB CDB ααα︒-∠=∠-∠=︒+-=,∴EDC DCB ∠=∠,∴DE BC ∥,∴四边形BCED 是平行四边形,∴CE BD =,∵DN BC ⊥,∴1cos cos 24CN CN C B CD ====,∴12CN =,∴13222BN BC CN =-=-=,152DN ==,∴BD ==∴CE BD ==,.18.在一个三角形中,如果一个内角是另一内角的n 倍(n 为整数),那么我们称这个三角形为n 倍三角形.如果一个三角形既是2倍角三角形,又是3倍角三角形,那么这个三角形最小的内角度数为________.【答案】30︒或20︒或18︒或360(11°【分析】根据n 倍三角形的定义结合三角形内角和定理,进行分类讨论计算即可.【详解】设最小的内角为x ︒.分类讨论:①当2倍角为2x ︒,3倍角为3x ︒时,可得:23180x x x ︒+︒+︒=︒,解得30x =.②当2倍角为2x ︒,3倍角为6x ︒时,可得:26180x x x ︒+︒+︒=︒,解得20x =.③当3倍角为3x ︒,2倍角为6x ︒时,可得:36180x x x ︒+︒+︒=︒,解得18x =.④当3x ︒即是2倍角又是三倍角时,即另一个内角为32x ︒,可得:331802x x x ︒+︒+︒=︒,解得36011x =.综上可知,最小的内角为30︒或20︒或18︒或360()11°.【点睛】本题考查三角形内角和定理.理解题干中n 倍三角形的定义以及利用分类讨论的思想是解答本题的关键.三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答应纸上]19.已知:1-==x y ,求:21122⎛⎫- ⎪⎝⎭x y 值.【答案】2【分析】本题考查了负整数指数幂、分母有理化以及完全平方公式的运算,先整理得出2x =+,2y =-1xy =,再运用完全平方公式展开代入数值,进行计算即可作答.【详解】解:∵1-==x y∴2x =+,2y =1xy=.∴21111122222222212x y x y x y ⎛⎫-=+-=+⨯= ⎪⎝⎭20.已知点()2,3A m +在双曲线m y x=上.(1)求此双曲线的表达式与点A 的坐标;(2)如果点(),5B a a -在此双曲线上,图像经过点A 、B 的一次函数的函数值y 随x 的增大而增大,求此一次函数的解析式.【答案】(1)6y x =-,()2,3A -;(2)1y x 42=-.【分析】(1)把点A (2,m +3)代入m y x =求得m ,即可求出结果;(2)把点B (a ,5-a )代入m y x =求得a 得到B 点的坐标,根据A 点坐标和函数的增减性排除掉不符合题意的点,再由待定系数法求出一次函数解析式.【详解】解:(1)∵点A (2,m +3)在双曲线m y x=上,∴.32m m +=,解得:m =-6,∴m +3=-3,∴此双曲线的表达式为6y x -=,点A 的坐标为(2,-3);(2)∵点B (a ,5-a )在此双曲线6y x -=上,∴6.5a a--=,解得:a =-1或a =6,经检验:1,6a a =-=都是原方程的根,且符合题意,∴点B 的坐标为(-1,6)或(6,-1),∵一次函数的函数值y 随x 的增大而增大,由(1)知A (2,-3),∴点B 的坐标只能为(6,-1),设一次函数的解析式为y =kx +b ,∴3216k b k b -=+⎧⎨-=+⎩,解得:124k b ⎧=⎪⎨⎪=-⎩,∴一次函数的解析式为1y x 42=-.【点睛】本题主要考查了待定系数法求反比例函数解析式和一次函数解析式以及一次函数的性质,熟练掌握待定系数法求解析式是解题的关键.21.已知:如图,在ABC 中,AB AC =,DC BC ⊥,2DC BC ==,90ADB ∠=︒,BD 与AC 相交于点G.求:(1)AB 的长;(2)AG 的长.【答案】(1)AB =(2)AG =【分析】(1)过点A 作AE BC ⊥于E ,交BD 于F .则45CDB CBD ∠=∠=︒,由勾股定理得,BD =.由AB AC =,AE BC ⊥,可得112BE BC ==,45EFB EBF ∠=︒=∠,则1EF BE ==,45AFD EFB ∠=∠=︒,AD DF =,由勾股定理得,BF =,则AD DF BD BF ==-=,由勾股定理得,AB =,计算求解即可;(2)由题意知,2cos 45DF CD AF ===︒,证明()AAS AGF CGD ≌,则AG CG =,由AG CG +=可求AG .【小问1详解】解:过点A 作AE BC ⊥于E ,交BD 于F .∵90BCD ∠=︒,2BC CD ==,∴45CDB CBD ∠=∠=︒,由勾股定理得,BD ==.∵AB AC =,AE BC ⊥,∴112BE BC ==,45EFB EBF ∠=︒=∠,∴1EF BE ==,45AFD EFB ∠=∠=︒,∴45DAF AFD ∠=︒=∠,∴AD DF =,由勾股定理得,BF ==∴AD DF BD BF ==-=由勾股定理得,AB ==∴AB =;【小问2详解】解:由题意知,2cos 45DF CD AF ===︒,又∵45AFG CDG ∠=︒=∠,AGF CGD ∠=∠,∴()AAS AGF CGD ≌,∴AG CG =,∵AG CG +=∴102AG GC ==,∴102AG =.【点睛】本题考查了等腰三角形的判定与性质,勾股定理,余弦,全等三角形的判定与性质等知识.熟练掌握等腰三角形的判定与性质,勾股定理,余弦,全等三角形的判定与性质是解题的关键.22.20个集装箱装满了甲、乙、丙三种商品共120吨,每个集装箱都只装载一种商品,根据下表提供的信息,解答以下问题:商品类型甲乙丙每个集装箱装载量(吨)865每吨价值(万元)121520(1)如果甲种商品装x 个集装箱,乙种商品装y 个集装箱,求y 与x 之间的关系式;(2)如果其中5个集装箱装了甲种商品,求每个集装箱装载商品总价值的中位数.【答案】(1)320y x =-+(2)每个集装箱装载商品总价值的中位数是98万元【分析】本题考查了根据实际问题列函数关系式及中位数,正确认识题中图表及理解题意是解题关键.(1)先列出三种商品装集装箱的个数的式子,再利用三种商品共120吨列式即可;(2)先得出三种商品装载集装箱的个数,再得出20个集装箱装载商品总价值分别是多少,利用中位数定义即可求解.【小问1详解】解:∵甲种商品装x 个集装箱,乙种商品装y 个集装箱,一共20个集装箱,∴丙种商品装()20x y --个集装箱,∴由题意得:()86520120x y x y ++--=,化简得:320y x =-+;【小问2详解】当5x =时,35205y =-⨯+=,20205510x y --=--=,∴甲、乙、丙三种商品装载集装箱个数分别是5、5、10,由表可知每个甲集装箱装载商品总价值为81296⨯=(万元),每个乙集装箱装载商品总价值为61590⨯=(万元),每个丙集装箱装载商品总价值为520100⨯=(万元),∴20个集装箱装载商品总价值有5个90万元,5个96万元,10个100万元,∴这20个数据从小到大排列后第10、11个数据分别是96、100万元,∴每个集装箱装载商品总价值的中位数是96100982+=(万元).23.已知:如图,在梯形ABCD 中,AD BC ∥,AB CD AD ==,点E 在BA 的延长线上,AE BC =.(1)求证:2BCD AED ∠=∠;(2)当ED 平分BEC ∠时,求证:EBC 是等腰直角三角形.【答案】(1)见解析(2)见解析【分析】(1)连接AC ,由梯形ABCD ,AD BC ∥,可得EAD B ∠=∠,DAC BCA ∠=∠.证明()SAS DEA ACB ≌.则AED BCA ∠=∠.由AD CD =,可得DCA DAC BCA ∠=∠=∠.进而可得22BCD DCA BCA BCA AED ∠=∠+∠==∠.(2)由ED 平分BEC ∠,可得2AEC AED ∠=∠.即AEC BCD ∠=∠,由梯形ABCD ,AD BC ∥,AB CD =,可得EAD B BCD AEC ∠=∠=∠=∠.则CE BC AE ==.证明()SSS AED CED ≌,则ECD EAD B ∠=∠=∠,由180AEC ECD BCD B ∠+∠+∠+∠=︒,可求45AEC ECD BCD B ∠=∠=∠=∠=︒,进而可得90ECB ECD BCD ∠=∠+∠=︒,进而结论得证.【小问1详解】证明:连接AC ,∵梯形ABCD ,AD BC ∥,∴EAD B ∠=∠,DAC BCA ∠=∠.又∵AE BC =,AD AB =,∴()SAS DEA ACB ≌.∴AED BCA ∠=∠.∵AD CD =,∴DCA DAC BCA ∠=∠=∠.∴22BCD DCA BCA BCA AED ∠=∠+∠==∠,∴2BCD AED ∠=∠.【小问2详解】证明:∵ED 平分BEC ∠,∴2AEC AED ∠=∠.∵2BCD AED ∠=∠,∴AEC BCD ∠=∠,∵梯形ABCD ,AD BC ∥,AB CD =,∴EAD B BCD AEC ∠=∠=∠=∠.∴CE BC AE ==.∵AE CE DE DE AD CD ===,,,∴()SSS AED CED ≌,∴ECD EAD B ∠=∠=∠,∵180AEC ECD BCD B ∠+∠+∠+∠=︒,∴45AEC ECD BCD B ∠=∠=∠=∠=︒,∴90ECB ECD BCD ∠=∠+∠=︒,∴EBC 是等腰直角三角形.【点睛】本题考查了等腰梯形的性质,平行线的性质,角平分线,全等三角形的判定与性质,三角形内角和定理,等腰三角形的判定等知识.熟练掌握等腰梯形的性质,平行线的性质,角平分线,全等三角形的判定与性质,三角形内角和定理,等腰三角形的判定是解题的关键.24.如图,抛物线2y ax bx c =++顶点为坐标原点O 、且经过点()3,3A ,直线经过点A 和点()0,6B .(1)求抛物线与直线的表达式;(2)如果将此抛物线平移,平移后新抛物线的顶点C 在原抛物线上,新抛物线的对称轴与直线AB 在原抛物线的内部相交于点D ,且45COD ∠=︒,求新抛物线的表达式.【答案】(1)抛物线表达式为213y x =,直线的表达式为6y x =-+(2)新抛物线的表达式2133324y x ⎛⎫=-+ ⎪⎝⎭或21335935322y x ⎛--=-+ ⎝⎭【分析】(1)利用待定系数法求解即可;(2)设直线6y x =-+与x 轴交于点E ,求出()6,0E ,设点D 的坐标为(),6m m -+,则点C 的坐标为21,3m m ⎛⎫ ⎪⎝⎭,分①当点D 在线段AB 上时,②当点D 在AB 延长线上时两种情况讨论即可;本题考查二次函数的图象与性质,相似三角形的判定与性质,熟练掌握知识点的应用是解题的关键.【小问1详解】∵抛物线2y ax bx c =++顶点为坐标原点O ,∴0b =,0c =,∵点()3,3A 在二次函数图象上,∴39a =,∴13a =,∴抛物线表达式为213y x =,设直线的表达式为1y kx b =+,∵直线经过点A 和点()0,6B ,∴113306k b k b =+⎧⎨=+⎩,∴116k b =-⎧⎨=⎩,∴直线的表达式为6y x =-+;【小问2详解】设直线6y x =-+与x 轴交于点E ,∴当0y =时,6x =,∴()6,0E ,∴6OE OB ==,∴45EBO ∠=︒,设点D 的坐标为(),6m m -+,∴点C 的坐标为21,3m m ⎛⎫ ⎪⎝⎭,∵CD y ∥轴,∴∠=∠BOD ODC ,当点D 在线段AB 上时,如图,∵45=︒=∠∠DBO COD ,∴∽△△CDO DOB ,∴=CD DO DO OB,∴2=⋅C D D O OB ,∴()2222621236OD m m m m =+-=-+,2163=-+-CD m m ,∴22121236663m m m m ⎛⎫-+=-+-⎪⎝⎭,∴2460m m -=,∵0m ≠,∴32m =,∴点C 的坐标为33,24⎛⎫ ⎪⎝⎭,∴新拋物线的表达式2133324y x ⎛⎫=-+ ⎪⎝⎭,当点D 在AB 延长线上时,延长DC 交x 轴于点H ,在DH 的延长线上截取HF HO =,连接FO ,如图,则45==∠∠∠︒=HFO HOF COD ,662=--=-DF m m m ,∵∠=∠ODF CDO ,∴△∽△CDO ODF ,∴=CD DO DO DF,∴2=⋅C D D O DF ,∴()221212366263m m m m m ⎛⎫-+=--+- ⎪⎝⎭,∴32390--=m m m ,∵0m ≠,∴32±=m (正值不符合题意,舍去),∴点C 的坐标为335935,22⎛-- ⎝⎭.∴新抛物线的表达式2139322y x ⎛--=-+ ⎝⎭.25.已知:O 的直径8AB B = ,与O 相交于点C 、D ,O 的直径CF 与B 相交于点E ,设B 的半径为x ,OE 的长为y .(1)如图,当点E 在线段OC 上时,求y 关于x 的函数解析式,并写出定义域;(2)当点E 在直径CF 上时,如果OE 的长为3,求公共弦CD 的长;(3)设B 与AB 相交于G ,试问OEG 能否为等腰三角形?如果能够,请直接写出BC 弧的长度(不必写过程);如果不能,请简要说明理由【答案】(1)()214044y x x =-<≤(21537(3)OEG 能为等腰三角形, BC 的长度为45π或127π【分析】本题主要考查了垂径定理、相似三角形的性质与判定,解直角三角形,圆的基本知识,做题时一定要分析各种情况,不要遗漏.(1)欲求y 关于x 的函数解析式,连接BE ,证明BCE OCB ∽即可;(2)求公共弦CD 的长,作BM CE ⊥,垂足为M .通过圆的知识得出12BM CD =,转化为求BM 的长;分为两种情况:点E 在线段OC 上时;点E 在线段OF 上时,求出BM 的长;(3)OEG 为等腰三角形,分为两种情况:点E 在线段OC 上时;点E 在线段OF 上时,根据角的关系先求出角的度数,从而求出 BC的长度.【小问1详解】解:连接BE ,∵O 的直径8AB =,∴142OC OB AB ===.∵BC BE OC OB ==,,∴BEC C CBO ∠=∠=∠.∴BCE OCB ∽.∴CE BC CB OC=.∵–4CE OC OE y ==-,∴44y x x -=.∴y 关于x 的函数解析式为()214044y x x =-<≤;【小问2详解】解:如图所所示,当点E 在线段OC 上时,作BM CE ⊥,垂足为M ,∵43OC OE ==,,∴1CE =,∴1122EM CE ==,∴72OM =,∴152B M ===;设两圆的公共弦CD 与AB 相交于H ,则AB 垂直平分CD .∴sin sin OC COB OB COB B C M H ⋅∠=⋅∠==.∴22CD CH BM ===.当点E 在线段OF 上时,作BM CE ⊥,垂足为M ,∵7OE OC OE =+=,∴1722EM CE ==∴–71322OM EM OE ==-=,∴372B M ==.同理可得2237CD CH BM ===综上所述,CD 1537【小问3详解】解:如图所示,当点E 在线段OC 上时,∵BG BE =,∴BEG BGE ∠=∠,∵180180BEG OEG BGE OGE +≠︒+=︒∠∠,∠∠,∴OEG OGE ≠∠∠,即OE OG ≠;∵180EOB OEB EBG ++=︒∠∠∠,∴180EOB OEG BEG EBG +++=︒∠∠∠∠,又∵180EGO BGE +=︒∠∠,∴EGO EOB OEG EBO =++∠∠∠∠,∴EOG EGO ≠∠∠,即OE GE ≠;当OG EG =时,设2OEG EOG x ==∠∠,∴4BEG BGE OEG EOG x ==+=∠∠∠∠,∴1801808OBE OEB EOB x =︒--=︒-∠∠∠,由(1)得180902BOC BEC OCB CBO x ︒-∠=∠=∠==︒-∠,∴1802CBE BEC BCE x =︒--=∠∠∠,∴1808290x x x ︒-+=︒-,解得18x =︒,∴36BOC ∠=︒,∴ BC 的长为36441805ππ⨯⨯=;如图所示,当点E 在线段OF 上时,同理可证明OG OE OG GE ≠≠,,当OE GE =时,设EOG EGO x ==∠∠,则1802GEO x =︒-∠,∵BG BE =,∴BEG BGE x ==∠∠,∴1801802GBE BGE BEG x =︒--=︒-∠∠∠;∵BC BE =,∴3180BCE BEC BEG GEO x ==-=-︒∠∠∠∠,∴1805406CBE BEC BEC x =︒--=︒-∠∠∠,∵OC OB =,∴3180OBC OCB x ==-︒∠∠,∴318018025406x x x -︒+︒-=︒-,解得5407x ⎛⎫=︒ ⎪⎝⎭,∴ BC 的长为54041271807ππ⨯⨯=;45π或127π.综上所述,OEG能为等腰三角形, BC的长度为。
上海市徐汇区2019-2020学年中考数学三模试卷含解析
上海市徐汇区2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13 B.14 C.15 D.162.图中三视图对应的正三棱柱是()A.B.C.D.3.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.4.下列基本几何体中,三视图都是相同图形的是()A.B.C.D.5.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A .50°B .60°C .70°D .80°6.函数y=2x -的自变量x 的取值范围是( ) A .x≠2B .x <2C .x≥2D .x >27.如图,已知▱ABCD 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么S △AFE :S 四边形FCDE 为( )A .1:3B .1:4C .1:5D .1:68.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为( ) A .3.82×107B .3.82×108C .3.82×109D .0.382×10109.关于二次函数2241y x x =+-,下列说法正确的是( ) A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-310.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( ) A .±1B .1C .-1D .011.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°12.二次函数y=﹣(x ﹣1)2+5,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( ) A .B .2C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:32816a a a -+=__________.14.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在圆O 上,BD =CD ,AB =10,AC =6,连接OD 交BC 于点E ,DE =______.15.如图1,在平面直角坐标系中,将▱ABCD 放置在第一象限,且AB ∥x 轴,直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么ABCD 面积为_____.16.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第4个图案中有__________白色纸片,第n 个图案中有__________张白色纸片.17.化简:21211x x +=+-_____________. 18.如图,一次函数y 1=kx+b 的图象与反比例函数y 2=mx(x<0)的图象相交于点A 和点B .当y 1>y 2>0时,x 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到万人次,比2017年春节假日增加万人次.(2)2018年2月15日﹣20日期间,山西省35个重点景区每日接待游客数量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客数量(万人次)7.56 82.83 119.51 84.38 103.2 151.55这组数据的中位数是万人次.(3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为,理由是.(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A,B,C,D四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率.20.(6分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕着点B顺时针旋转角a(0°<a<90°)得到△A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论.(2)如图2,当a=30°时,试判断四边形BC1DA的形状,并证明.(3)在(2)的条件下,求线段DE的长度.21.(6分)已知反比例函数的图象过点A(3,2).(1)试求该反比例函数的表达式;(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.22.(8分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.23.(8分)【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;【联想拓展】(2)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.24.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长25.(10分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.26.(12分)某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图(1)D组的人数是人,补全频数分布直方图,扇形图中m=;(2)本次调查数据中的中位数落在组;(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?27.(12分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【详解】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°. 所以AFI BGC DHE GHI V V V V 、、、都是等边三角形. 所以31AI AF BG BC ====,. 3317GI GH AI AB BG ∴==++=++=, 7232DE HE HI EF FI ==--=--=, 7124CD HG CG HD .=--=--= 所以六边形的周长为3+1+4+2+2+3=15; 故选C . 2.A 【解析】 【分析】由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解 【详解】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A 选项正确. 故选A . 【点睛】本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键.3.A【解析】试题分析:观察图形可知,该几何体的主视图是.故选A.考点:简单组合体的三视图.4.C【解析】【分析】根据主视图、左视图、俯视图的定义,可得答案.【详解】球的三视图都是圆,故选C.【点睛】本题考查了简单几何体的三视图,熟记特殊几何体的三视图是解题关键.5.B【解析】试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.考点:旋转的性质.6.D【解析】【分析】根据被开放式的非负性和分母不等于零列出不等式即可解题.【详解】有意义,解:∵函数x-2∴x-2>0,即x>2故选D【点睛】本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.7.C【解析】【分析】根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC 面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.【详解】解:连接CE,∵AE∥BC,E为AD中点,∴12 AE AFBC FC==.∴△FEC面积是△AEF面积的2倍.设△AEF面积为x,则△AEC面积为3x,∵E为AD中点,∴△DEC面积=△AEC面积=3x.∴四边形FCDE面积为1x,所以S△AFE:S四边形FCDE为1:1.故选:C.【点睛】本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.8.B【解析】【分析】根据题目中的数据可以用科学记数法表示出来,本题得以解决.【详解】解:3.82亿=3.82×108,故选B.【点睛】本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.9.D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A 错误,该函数的对称轴是直线x=-1,故选项B 错误,当x <-1时,y 随x 的增大而减小,故选项C 错误,当x=-1时,y 取得最小值,此时y=-3,故选项D 正确,故选D .点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.10.C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k=1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k=1时,34430∆=--+=-<,∴k=1不合题意,故舍去,当k=−1时,34450∆=-++=>,符合题意,∴k=−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键. 11.D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.12.D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n 分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=52,∴m=11 8,∵m<0,∴此种情形不合题意,所以m+n=﹣1+52=12. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a(a -4)2【解析】【分析】首先提取公因式a ,进而利用完全平方公式分解因式得出即可.【详解】32816a a a -+22816()4.)(a a a a a =-+=-故答案为:2()4.a a -【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.14.1【解析】【分析】先利用垂径定理得到OD ⊥BC ,则BE=CE ,再证明OE 为△ABC 的中位线得到116322OE AC ==⨯=,入境计算OD−OE 即可.【详解】解:∵BD =CD , ∴¶¶BDCD =, ∴OD ⊥BC ,∴BE =CE ,而OA =OB ,∴OE 为△ABC 的中位线,∴116322OE AC ==⨯=, ∴DE =OD -OE =5-3=1.故答案为1.【点睛】此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.15.1【解析】【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经过B,则AB=1-4=4,当直线经过D点,设其交AB与E,则DE=22,作DF⊥AB于点F.利用三角函数即可求得DF即平行四边形的高,然后利用平行四边形的面积公式即可求解【详解】解:由图象可知,当移动距离为4时,直线经过点A,当移动距离为7时,直线经过点D,移动距离为1时,直线经过点B,则AB=1﹣4=4,当直线经过点D,设其交AB于点E,则DE=22,作DF⊥AB于点F,∵y=﹣x于x轴负方向成45°角,且AB∥x轴,∴∠DEF=45°,∴DF=EF,∴在直角三角形DFE中,DF2+EF2=DE2,∴2DF2=1∴DF=2,那么ABCD面积为:AB•DF=4×2=1,故答案为1.【点睛】此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关键在于利用好辅助线16.13 3n+1【解析】分析:观察图形发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片即可.详解:∵第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,∴第4个图案中有白色纸片3×4+1=13张第n个图案中有白色纸片3n+1张,故答案为:13、3n+1.点睛:考查学生的探究能力,解题时必须仔细观察规律,通过归纳得出结论.17.11 x-【解析】【分析】根据分式的运算法则即可求解. 【详解】原式=1211 (1)(1)(1)(1)(1)(1)1x xx x x x x x x -++==+-+-+--.故答案为:11 x-.【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.18.-2<x<-0.5【解析】【分析】根据图象可直接得到y1>y2>0时x的取值范围.【详解】根据图象得:当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5,故答案为﹣2<x<﹣0.5.【点睛】本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)1365.45、414.4(2)93.79(3)30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%(4)1 2【解析】【分析】(1)由图1可得答案;(2)根据中位数的定义求解可得;(3)由近3年平均涨幅在30%左右即可做出估计;(4)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.【详解】(1)2018年首次突破了“千万”大关,达到1365.45万人次,比2017年春节假日增加1365.45﹣951.05=414.4万人次.故答案为:1365.45、414.4;(2)这组数据的中位数是84.38+103.22=93.79万人次, 故答案为:93.79;(3)2019年春节假日山西旅游总收入比2018年同期增长的百分率约为30%,理由是:近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%,故答案为:30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%.(4)画树状图如下:则共有12种等可能的结果数,其中送给好朋友的两枚书签中恰好有“剪纸艺术”的结果数为6, 所以送给好朋友的两枚书签中恰好有“剪纸艺术”的概率为12. 【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率,也考查了条形统计图与样本估计总体.20.(1)1EA FC =.(2)四边形1BC DA 是菱形.(3)2233. 【解析】【分析】 (1)根据等边对等角及旋转的特征可得1ABE C BF ≅V V即可证得结论; (2)先根据两组对边分别平行的四边形是平行四边形,再得到邻边相等即可判断结论;(3)过点E 作EG AB ⊥于点G ,解Rt AEG V 可得AE 的长,结合菱形的性质即可求得结果.【详解】(1)1EA FC =.证明:(证法一)AB BC A C =∴∠=∠Q ,.由旋转可知,111,,AB BC A C ABE C BF =∠=∠∠=∠∴1A BF CBE V V ≌.∴BE BF ,=又1AB BC =Q ,∴11A C A B CB ∠=∠=,,即1EA FC =.(证法二)AB BC A C =∴∠=∠Q ,.由旋转可知,1BA BE BC BF -=-,而1EBC FBA ∠=∠∴1A BF CBE ∴≅V V∴BE BF ,=∴1BA BE BC BF -=-即1EA FC =.(2)四边形1BC DA 是菱形.证明:111130,A ABA AC AB ︒∠=∠=∴Q ‖同理1AC BC ‖ ∴四边形1BC DA 是平行四边形.又1AB BC =Q ,∴四边形1BC DA 是菱形 (3)过点E 作EG AB ⊥于点E ,则1AG BG ==.在EG AB ⊥中, 233AE = .由(2)知四边形1BC DA 是菱形,∴1AG BG ==.∴2233ED AD AE =-=-. 【点睛】解答本题的关键是掌握好旋转的性质,平行四边形判定与性质,的菱形的判定与性质,选择适当的条件解决问题.21.(1);(2)MB=MD . 【解析】【分析】(1)将A(3,2)分别代入y= ,y=ax 中,得a 、k 的值,进而可得正比例函数和反比例函数的表达式;(2)有S △OMB=S △OAC=×=3 ,可得矩形OBDC 的面积为12;即OC×OB=12 ;进而可得m 、n 的值,故可得BM 与DM 的大小;比较可得其大小关系.【详解】(1)将A(3,2)代入中,得2,∴k=6,∴反比例函数的表达式为.(2)BM=DM,理由:∵S △OMB=S△OAC=×=3,∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,即OC·OB=12,∵OC=3,∴OB=4,即n=4,∴,∴MB=,MD=,∴MB=MD.【点睛】本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键.22.(1)y1=﹣15t(t﹣30)(0≤t≤30);(2)∴y2=2(020)4120(2030)t tt t≤<⎧⎨-+≤≤⎩;(3)上市第20天,国内、外市场的日销售总量y最大,最大值为80万件.【解析】【分析】(1)根据题意得出y1与t之间是二次函数关系,然后利用待定系数法求出函数解析式;(2)利用待定系数法分别求出两个函数解析式,从而得出答案;(3)分0≤t<20、t=20和20≤t≤30三种情况根据y=y1+y2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最值.【详解】解:(1)由图表数据观察可知y1与t之间是二次函数关系,设y1=a(t﹣0)(t﹣30)再代入t=5,y1=25可得a=﹣1 5∴y1=﹣15t(t﹣30)(0≤t≤30)(2)由函数图象可知y2与t之间是分段的一次函数由图象可知:0≤t<20时,y2=2t,当20≤t≤30时,y2=﹣4t+120,∴y 2=()2(020)41202030t t t t ≤<⎧⎨-+≤≤⎩, (3)当0≤t <20时,y=y 1+y 2=﹣15t (t ﹣30)+2t=80﹣15(t ﹣20)2 , 可知抛物线开口向下,t 的取值范围在对称轴左侧,y 随t 的增大而增大,所以最大值小于当t=20时的值80,当20≤t≤30时,y=y 1+y 2=﹣15t (t ﹣30)﹣4t+120=125﹣15(t ﹣5)2 , 可知抛物线开口向下,t 的取值范围在对称轴右侧,y 随t 的增大而减小,所以最大值为当t=20时的值80,故上市第20天,国内、外市场的日销售总量y 最大,最大值为80万件.23.(1)DF=EF+BE .理由见解析;(2)CF=1.【解析】(1)把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,证出△AEF ≌△AFG ,根据全等三角形的性质得出EF=FG ,即可得出答案;(2)根据旋转的性质的AG=AE ,CG=BE ,∠ACG=∠B ,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根据勾股定理有FG 2=FC 2+CG 2=BE 2+FC 2;关键全等三角形的性质得到FG=EF ,利用勾股定理可得CF.解:(1)DF=EF+BE .理由:如图1所示,∵AB=AD ,∴把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,∵∠ADC=∠ABE=90°,∴点C 、D 、G 在一条直线上,∴EB=DG ,AE=AG ,∠EAB=∠GAD , ∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,∵∠EAF=15°,∴∠FAG=∠EAG ﹣∠EAF=90°﹣15°=15°,∴∠EAF=∠GAF ,在△EAF 和△GAF 中,,∴△EAF ≌△GAF ,∴EF=FG ,∵FD=FG+DG ,∴DF=EF+BE ; (2)∵∠BAC=90°,AB=AC ,∴将△ABE 绕点A 顺时针旋转90°得△ACG ,连接FG ,如图2,∴AG=AE ,CG=BE ,∠ACG=∠B ,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG 2=FC 2+CG 2=BE 2+FC 2;又∵∠EAF=15°,而∠EAG=90°,∴∠GAF=90°﹣15°,在△AGF 与△AEF 中,,∴△AEF ≌△AGF ,∴EF=FG ,∴CF 2=EF 2﹣BE 2=52﹣32=16,∴CF=1.“点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.24.解:(1)①DE ∥AC .②12S S =.(1)12S S =仍然成立,证明见解析;(3)3或2.【解析】【详解】(1)①由旋转可知:AC=DC ,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC 是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE ∥AC .②过D 作DN ⊥AC 交AC 于点N ,过E 作EM ⊥AC 交AC 延长线于M ,过C 作CF ⊥AB 交AB 于点F .由①可知:△ADC 是等边三角形, DE ∥AC ,∴DN=CF,DN=EM .∴CF=EM .∵∠C=90°,∠B =30°∴AB=1AC .又∵AD=AC∴BD=AC . ∵1211S CF BD S AC EM 22=⋅=⋅, ∴12S S =.(1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,ACN DCMCMD NAC CD∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S1;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF1⊥BD,∵∠ABC=20°,F1D∥BE,∴∠F1F1D=∠ABC=20°,∵BF1=DF1,∠F1BD=12∠ABC=30°,∠F1DB=90°,∴∠F1DF1=∠ABC=20°,∴△DF1F1是等边三角形,∴DF1=DF1,过点D作DG⊥BC于G,∵BD=CD,∠ABC=20°,点D是角平分线上一点,∴∠DBC=∠DCB=12×20°=30°,BG=12BC=92,∴3∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF1=320°-150°-20°=150°,∴∠CDF 1=∠CDF 1, ∵在△CDF 1和△CDF 1中,1212DF DF CDF CDF CD CD ⎧⎪∠⎨⎪⎩===, ∴△CDF 1≌△CDF 1(SAS ), ∴点F 1也是所求的点,∵∠ABC=20°,点D 是角平分线上一点,DE ∥AB , ∴∠DBC=∠BDE=∠ABD=12×20°=30°, 又∵BD=33, ∴BE=12×33÷cos30°=3, ∴BF 1=3,BF 1=BF 1+F 1F 1=3+3=2, 故BF 的长为3或2.25.(1);(2)列表见解析,. 【解析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M 落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P (摸出的球为标有数字2的小球)=;(2)列表如下: 小华 小丽 -12-1 (-1,-1)(-1,0) (-1,2) 0(0,-1)(0,0)(0,2)2(2,-1)(2,0)(2,2)共有9种等可能的结果数,其中点M 落在如图所示的正方形网格内(包括边界)的结果数为6, ∴P (点M 落在如图所示的正方形网格内)==.考点:1列表或树状图求概率;2平面直角坐标系.26.(1)16、84°;(2)C ;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有3000(人) 【解析】 【分析】(1)根据百分比=所长人数÷总人数,圆心角=360︒⨯百分比,计算即可; (2)根据中位数的定义计算即可; (3)用一半估计总体的思考问题即可; 【详解】(1)由题意总人数610%60÷==人, D 组人数6061419516----==人; B 组的圆心角为143608460︒⨯=︒; (2)根据A 组6人,B 组14人,C 组19人,D 组16人,E 组5人可知本次调查数据中的中位数落在C 组;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有404500300060⨯=人. 【点睛】本题主要考查了数据的统计,熟练掌握扇形图圆心角度数求解方法,总体求解方法等相关内容是解决本题的关键.27.(1)50人;(2)补图见解析;(3)110. 【解析】分析:(1)根据化学学科人数及其所占百分比可得总人数; (2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得. 详解:(1)该班学生总数为10÷20%=50人; (2)历史学科的人数为50﹣(5+10+15+6+6)=8人, 补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为21= 2010.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.。
上海市徐汇区2019-2020学年第三次中考模拟考试数学试卷含解析
上海市徐汇区2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-5的相反数是( )A .5B .15C .5D .15- 2.下列算式中,结果等于x 6的是( )A .x 2•x 2•x 2B .x 2+x 2+x 2C .x 2•x 3D .x 4+x 23.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h4.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a ,b ,c ,d 之间关系的式子中不正确的是( )A .a ﹣d =b ﹣cB .a+c+2=b+dC .a+b+14=c+dD .a+d =b+c5.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )A .45°B .60°C .70°D .90°6.如图,ABC ∆的三边,,AB BC CA 的长分别为20,30,40,点O 是ABC ∆三条角平分线的交点,则::ABO BCO CAO S S S ∆∆∆等于( )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶57.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是( )A .AE=6cmB .4sin EBC 5∠= C .当0<t≤10时,22y t 5=D .当t=12s 时,△PBQ 是等腰三角形8.如图,直线y=3x+6与x ,y 轴分别交于点A ,B ,以OB 为底边在y 轴右侧作等腰△OBC ,将点C 向左平移5个单位,使其对应点C′恰好落在直线AB 上,则点C 的坐标为( )A .(3,3)B .(4,3)C .(﹣1,3)D .(3,4)9.如图,点A 、B 、C 、D 在⊙O 上,∠AOC =120°,点B 是弧AC 的中点,则∠D 的度数是( )A .60°B .35°C .30.5°D .30°10.关于x 的方程x 2+(k 2﹣4)x+k+1=0的两个根互为相反数,则k 值是( )A .﹣1B .±2C .2D .﹣211.下列分式中,最简分式是( )A .2211x x -+ B .211x x +- C .2222x xy y x xy -+- D .236212x x -+ 12.一、单选题点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.14.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD =30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=kx(k≠0)的图象恰好经过A′,B,则k的值为_____.15.三人中有两人性别相同的概率是_____________.16.已知反比例函数y=2mx,当x>0时,y随x增大而减小,则m的取值范围是_____.17.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.18.16的算术平方根是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?20.(6分)如图,已知点D在反比例函数y=mx的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=25.(1)求反比例函数y=m x和直线y=kx+b 的解析式; (2)连接CD ,试判断线段AC 与线段CD 的关系,并说明理由;(3)点E 为x 轴上点A 右侧的一点,且AE=OC ,连接BE 交直线CA 与点M ,求∠BMC 的度数.21.(6分)已知关于 的方程mx 2+(2m-1)x+m-1=0(m≠0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数的值. 22.(8分)如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.23.(8分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m 、200m 、1000m (分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 .24.(10分)已知关于x 的一元二次方程2(3)0x m x m ---=.求证:方程有两个不相等的实数根;如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.25.(10分)如图,△ABC 与△A 1B 1C 1是位似图形.(1)在网格上建立平面直角坐标系,使得点A 的坐标为(-6,-1),点C 1的坐标为(-3,2),则点B 的坐标为____________;(2)以点A 为位似中心,在网格图中作△AB 2C 2,使△AB 2C 2和△ABC 位似,且位似比为1∶2;(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.26.(12分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.27.(12分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(3取1.732)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.2.A【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;B、x2+x2+x2=3x2,故选项B不符合题意;C、x2•x3=x5,故选项C不符合题意;D、x4+x2,无法计算,故选项D不符合题意.故选A.3.C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.4.A【解析】【分析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,选项D不符合题意.故选:A.【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.5.D【解析】已知△ABC 绕点A 按逆时针方向旋转l20°得到△AB′C′,根据旋转的性质可得∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质和三角形的内角和定理可得∠AB′B=12(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠A B′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选D .6.C【解析】【分析】作OF ⊥AB 于F ,OE ⊥AC 于E ,OD ⊥BC 于D ,根据角平分线的性质得到OD=OE=OF ,根据三角形的面积公式计算即可.【详解】作OF ⊥AB 于F ,OE ⊥AC 于E ,OD ⊥BC 于D ,∵三条角平分线交于点O ,OF ⊥AB ,OE ⊥AC ,OD ⊥BC ,∴OD=OE=OF ,∴S △ABO :S △BCO :S △CAO =AB :BC :CA=20:30:40=2:3:4,故选C .【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.D【解析】(1)结论A 正确,理由如下:解析函数图象可知,BC=10cm ,ED=4cm ,故AE=AD ﹣ED=BC ﹣ED=10﹣4=6cm .(2)结论B 正确,理由如下:如图,连接EC ,过点E 作EF ⊥BC 于点F ,由函数图象可知,BC=BE=10cm ,BEC 11S 40BC EF 10EF 5EF 22∆==⋅⋅=⋅⋅=,∴EF=1.∴EF 84sin EBC BE 105∠===. (3)结论C 正确,理由如下: 如图,过点P 作PG ⊥BQ 于点G ,∵BQ=BP=t ,∴2BPQ 11142y S BQ PG BQ BP sin EBC t t t 22255∆==⋅⋅=⋅⋅⋅∠=⋅⋅⋅=. (4)结论D 错误,理由如下:当t=12s 时,点Q 与点C 重合,点P 运动到ED 的中点,设为N ,如图,连接NB ,NC .此时AN=1,ND=2,由勾股定理求得:NB=2NC=217∵BC=10,∴△BCN 不是等腰三角形,即此时△PBQ 不是等腰三角形.故选D .8.B【解析】令x=0,y=6,∴B (0,6),∵等腰△OBC ,∴点C 在线段OB 的垂直平分线上,∴设C (a ,3),则C '(a -5,3),∴3=3(a -5)+6,解得a=4,∴C (4,3).故选B.点睛:掌握等腰三角形的性质、函数图像的平移.9.D【解析】【分析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC ,再根据圆周角定理即可解答.【详解】连接OB,∵点B是弧AC的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选D.【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理. 10.D【解析】【分析】根据一元二次方程根与系数的关系列出方程求解即可.【详解】设方程的两根分别为x1,x1,∵x1+(k1-4)x+k-1=0的两实数根互为相反数,∴x1+x1,=-(k1-4)=0,解得k=±1,当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;∴k=-1.故选D.【点睛】本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=−ba,x1x1=ca,反过来也成立.11.A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.12.A【解析】【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1).故选A.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1 3【解析】【分析】根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答.【详解】∵共有15个方格,其中黑色方格占5个,∴这粒豆子落在黑色方格中的概率是515=13,故答案为13.【点睛】此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键.14【解析】【分析】【详解】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=12m,A′E=3m,∴A′(12m,3m),∵反比例函数kyx=(k≠0)的图象恰好经过点A′,B,∴12m•32m=m,∴m=43,∴k=43故答案为43 315.1【解析】分析:由题意和生活实际可知:“三个人中,至少有两个人的性别是相同的”即可得到所求概率为1.详解:∵三人的性别存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性别是“2男1女”;(4)三人的性别是“2女1男”,∴三人中至少有两个人的性别是相同的,∴P(三人中有二人性别相同)=1.点睛:列出本题中所有的等可能结果是解题的关键.16.m>1.【解析】分析:根据反比例函数y=2mx-,当x>0时,y随x增大而减小,可得出m﹣1>0,解之即可得出m的取值范围.详解:∵反比例函数y=2mx-,当x>0时,y随x增大而减小,∴m﹣1>0,解得:m>1.故答案为m>1.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣1>0是解题的关键.17.132. 【解析】【详解】试题分析:解:∵在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D 为AB 的中点,∴CD=AD=BD=AB=2.5,过D′作D′E ⊥BC ,∵将△ACD 绕着点C 逆时针旋转,使点A 落在CB 的延长线A′处,点D 落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案为.考点:旋转的性质.18.4【解析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【解析】【分析】(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可.(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.【详解】(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点睛】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.20.(1)6yx-=,2y x25=-(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;(2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.本题解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=2 5,∴25OCOA=,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣6x,设直线AC关系式为y=kx+b,∵过A(1,0),C(0,﹣2),∴052k bb=+⎧⎨-=⎩,解得252kb⎧=⎪⎨⎪=-⎩,∴y=25x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中OA BCAOC DBCOC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如图,连接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,∴四边形AEBD为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=41°.21.(1)证明见解析(2)m=1或m=-1【解析】试题分析:(1)由于m≠0,则计算判别式的值得到1=V ,从而可判断方程总有两个不相等的实数根; (2)先利用求根公式得到1211,1x x m=-=-,然后利用有理数的整除性确定整数m 的值. 试题解析:(1)证明:∵m≠0,∴方程为一元二次方程, Q 2(21)4(1)10m m m =---=>V , ∴此方程总有两个不相等的实数根;(2)∵(21)12m x m--±=, 1211,1x x m∴=-=-, ∵方程的两个实数根都是整数,且m 是整数,∴m=1或m=−1.22.(1)证明见解析;(2)BH =.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC ∥BD ,即可得出结论;(2)先利用相似三角形求出BF ,进而利用勾股定理求出AF ,最后利用面积即可得出结论.【详解】(1)连接OC ,∵AB 是⊙O 的直径,点C 是的中点,∴∠AOC =90°,∵OA =OB ,CD =AC ,∴OC 是△ABD 是中位线,∴OC ∥BD ,∴∠ABD =∠AOC =90°,∴AB ⊥BD ,∵点B 在⊙O 上,∴BD 是⊙O 的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.(1)25;(1)35;(3)310;【解析】【分析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P 1==; (3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P 1==. 故答案为. 考点:列表法与树状图法.24.(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(1)根据根与系数的关系可以得到关于m 的方程,从而可以求得m 的值.试题解析:(1)证明:∵()230x m x m ---=,∴△=[﹣(m ﹣3)]1﹣4×1×(﹣m )=m 1﹣1m+9=(m ﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵()230x m x m ---=,方程的两实根为1x ,2x ,且2212127x x x x +-=,∴123x x m +=- ,12x x m =- ,∴()2121237x x x x +-=,∴(m ﹣3)1﹣3×(﹣m )=7,解得,m 1=1,m 1=1,即m 的值是1或1.25.(1)作图见解析;点B 的坐标为:(﹣2,﹣5);(2)作图见解析;(3)62+45【解析】分析:(1)直接利用已知点位置得出B 点坐标即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP 的周长.详解:(1)如图所示:点B 的坐标为:(﹣2,﹣5);故答案为(﹣2,﹣5);(2)如图所示:△AB 2C 2,即为所求;(3)如图所示:P 点即为所求,P 点坐标为:(﹣2,1),四边形ABCP 的周长为:2244+2224+2222+2224+252525故答案为25点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.26.足球单价是60元,篮球单价是90元.【解析】【分析】设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可.【详解】解:足球的单价分别为x元,篮球单价是1.5x元,可得:24002250151.5x x-=,解得:x=60,经检验x=60是原方程的解,且符合题意,1.5x=1.5×60=90,答:足球单价是60元,篮球单价是90元.【点睛】本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验.27.不需要改道行驶【解析】【详解】解:过点A作AH⊥CF交CF于点H,由图可知,∵∠ACH=75°-15°=60°,∴()1.732AH AC sin60125125108.252=⋅︒==⨯=米. ∵AH >100米,∴消防车不需要改道行驶.过点A 作AH ⊥CF 交CF 于点H ,应用三角函数求出AH 的长,大于100米,不需要改道行驶,不大于100米,需要改道行驶.。
上海市徐汇区2019-2020学年中考三诊数学试题含解析
上海市徐汇区2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将抛物线y=x 2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为( ) A .y=(x ﹣2)2+3 B .y=(x ﹣2)2﹣3 C .y=(x+2)2+3 D .y=(x+2)2﹣32.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S 6,则S 6的值为( )A .3B .23 C .332 D .2333.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩ B .1003100x y x y +=⎧⎨+=⎩ C .100131003x y x y +=⎧⎪⎨+=⎪⎩D .1003100x y x y +=⎧⎨+=⎩ 4.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A .甲B .乙C .丙D .丁5.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.在下列网格中,小正方形的边长为1,点A 、B 、O 都在格点上,则A ∠的正弦值是()n n n nA 5B .5C 25D .127.若反比例函数kyx=的图像经过点1(,2)2A-,则一次函数y kx k=-+与kyx=在同一平面直角坐标系中的大致图像是()A.B.C.D.8.在实数225,,0,36,-1.41472π,,有理数有()A.1个B.2个C.3个D.4个9.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到DEF∆,则四边形ABFD的周长为()A.8 B.10 C.12 D.1610.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,33),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(32,332) B.(2,332) C.(332,32) D.(32,3﹣332)11.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)12.在平面直角坐标系xOy中,若点P(3,4)在⊙O内,则⊙O的半径r的取值范围是()A.0<r<3 B.r>4 C.0<r<5 D.r>5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组11251xx-≥⎧⎨-<⎩的解集是_____;14.当x=_____时,分式22xx--值为零.15.在ABC V 中,若211sin (cos )022A B -+-=,则C ∠的度数是______. 16.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 是线段BO 上的一个动点,点F 为射线DC 上一点,若∠ABC=60°,∠AEF=120°,AB=4,则EF 可能的整数值是_____.17.一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为18.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n 次的运算结果是____________(用含字母x 和n 的代数式表示).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)在矩形ABCD 中,AD=2AB ,E 是AD 的中点,一块三角板的直角顶点与点E 重合,两直角边与AB ,BC 分别交于点M ,N ,求证:BM=CN .20.(6分)如图,∠BAC 的平分线交△ABC 的外接圆于点D ,交BC 于点F ,∠ABC 的平分线交AD 于点E .(1)求证:DE =DB :(2)若∠BAC =90°,BD =4,求△ABC 外接圆的半径;(3)若BD =6,DF =4,求AD 的长21.(6分)在直角坐标系中,过原点O 及点A (8,0),C (0,6)作矩形OABC 、连结OB ,点D 为OB 的中点,点E 是线段AB 上的动点,连结DE ,作DF ⊥DE ,交OA 于点F ,连结EF .已知点E 从A 点出发,以每秒1个单位长度的速度在线段AB 上移动,设移动时间为t 秒.如图1,当t=3时,求DF 的长.如图2,当点E 在线段AB 上移动的过程中,∠DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan ∠DEF 的值.连结AD ,当AD 将△DEF 分成的两部分的面积之比为1:2时,求相应的t 的值.22.(8分)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F .求证:OE =OF .23.(8分)(1)计算:8﹣2sin45°+(2﹣π)0﹣(13)﹣1; (2)先化简,再求值2a a ab-•(a 2﹣b 2),其中a =2,b =﹣22. 24.(10分)如图,抛物线y =﹣x 2+bx+c 与x 轴交于点A 和点B (3,0),与y 轴交于点C (0,3),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接DB .(1)求此抛物线的解析式及顶点D 的坐标;(2)点M 是抛物线上的动点,设点M 的横坐标为m .①当∠MBA =∠BDE 时,求点M 的坐标;②过点M 作MN ∥x 轴,与抛物线交于点N ,P 为x 轴上一点,连接PM ,PN ,将△PMN 沿着MN 翻折,得△QMN ,若四边形MPNQ 恰好为正方形,直接写出m 的值.25.(10分)已知关于x 的一元二次方程22410x x k ++-=有实数根.(1)求k 的取值范围;(2)若k 为正整数,且方程有两个非零的整数根,求k 的取值.26.(12分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?27.(12分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE 相交于点F.求证:△ABE≌△CAD;求∠BFD的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选:D.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.2.C【解析】【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6×12×1×1×sin60°33故选C.【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.3.C【解析】【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x匹,小马有y匹,由题意得:100131003x yx y+=⎧⎪⎨+=⎪⎩,故选C.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.4.D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.5.D根据轴对称图形与中心对称图形的概念求解.【详解】A 、不是轴对称图形,是中心对称图形,故此选项不合题意;B 、是轴对称图形,不是中心对称图形,故此选项不合题意;C 、不是轴对称图形,不是中心对称图形,故此选项不合题意;D 、是轴对称图形,是中心对称图形,故此选项符合题意;故选D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.A【解析】【分析】由题意根据勾股定理求出OA ,进而根据正弦的定义进行分析解答即可.【详解】解:由题意得,2OC =,4AC =,由勾股定理得,2225AO AC OC =+=5OC sinA OA ∴== 故选:A .【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7.D【解析】【分析】 甶待定系数法可求出函数的解析式为:1y x=-,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象. 【详解】解:由于函数kyx=的图像经过点1,22A⎛⎫-⎪⎝⎭,则有1k,=-∴图象过第二、四象限,∵k=-1,∴一次函数y=x-1,∴图象经过第一、三、四象限,故选:D.【点睛】本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;8.D【解析】试题分析:根据有理数是有限小数或无限循环小数,可得答案:22,?0,?1.4147-是有理数,故选D.考点:有理数.9.B【解析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.故选C.“点睛”本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.10.A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=33×33=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=33.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=33,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D的坐标为(32,33).故选A.11.A【解析】【分析】关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(-1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.12.D【解析】【分析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围.【详解】∵点P的坐标为(3,4),∴OP2234=+=1.∵点P(3,4)在⊙O内,∴OP<r,即r>1.故选D.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≤1【解析】分析:分别求出不等式组中两个不等式的解集,找出解集的公共部分即可确定出不等式组的解集.详解:10251x x -≤⎧⎨-<⎩①②, 由①得:x 1.≤由②得:x 3<.则不等式组的解集为:x 1≤.故答案为x≤1.点睛:本题主要考查了解一元一次不等式组.14.﹣1.【解析】 试题解析:分式22x x --的值为0, 则:2020.x x ⎧-=⎨-≠⎩解得: 2.x =-故答案为 2.-15.90o【解析】【分析】 先根据非负数的性质求出1sinA 2=,1cosB 2=,再由特殊角的三角函数值求出A ∠与B ∠的值,根据三角形内角和定理即可得出结论.【详解】Q 在ABC V 中,211sinA (cosB )022-+-=, 1sinA 2∴=,1cosB 2=, A 30∠∴=o ,B 60o ∠=,C 180306090∠∴=--=o o o o ,故答案为:90o .【点睛】本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键. 16.2,3,1.【解析】分析:根据题意得出EF 的取值范围,从而得出EF 的值.详解:∵AB=1,∠ABC=60°, ∴当点E 和点B 重合时,∠FBD=90°,∠BDC=30°,则EF=1;当点E 和点O 重合时,∠DEF=30°,则△EFD 为等腰三角形,则EF=FD=2,∴EF 可能的整数值为2、3、1.点睛:本题主要考查的就是菱形的性质以及直角三角形的勾股定理,属于中等难度的题型.解决这个问题的关键就是找出当点E 在何处时取到最大值和最小值,从而得出答案.17.7 2°或144°【解析】【详解】∵五次操作后,发现赛车回到出发点,∴正好走了一个正五边形,因为原地逆时针方向旋转角a(0°<α<180°),那么朝左和朝右就是两个不同的结论所以∴角α=(5-2)•180°÷5=108°,则180°-108°=72°或者角α=(5-2)•180°÷5=108°,180°-72°÷2=144° 18.2(21)1n n x x -+ 【解析】 试题分析:根据题意得121x y x =+;2431x y x =+;3871x y x =+;根据以上规律可得:n y =2(21)1n n x x -+. 考点:规律题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.证明见解析.【解析】试题分析:作EF BC ⊥于点F ,然后证明Rt AME V ≌Rt FNE V ,从而求出所AM FN =,所以BM 与CN 的长度相等.试题解析:在矩形ABCD 中,AD=2AB ,E 是AD 的中点,作EF ⊥BC 于点F ,则有AB=AE=EF=FC ,90,90AEM DEN FEN DEN ∠+∠=∠+∠=o o Q ,∴∠AEM=∠FEN ,在Rt △AME 和Rt △FNE 中,∵E 为AB 的中点,∴AB=CF ,∠AEM=∠FEN ,AE=EF ,∠MAE=∠NFE ,∴Rt △AME ≌Rt △FNE ,∴AM=FN,∴MB=CN.20.(1)见解析;(2)22(3)1【解析】【分析】(1)通过证明∠BED=∠DBE得到DB=DE;(2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=2BD=42,从而得到△ABC外接圆的半径;(3)证明△DBF∽△ADB,然后利用相似比求AD的长.【详解】(1)证明:∵AD平分∠BAC,BE平分∠ABD,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,∴DB=DE;(2)解:连接CD,如图,∵∠BAC=10°,∴BC为直径,∴∠BDC=10°,∵∠1=∠2,∴DB=BC,∴△DBC为等腰直角三角形,∴BC=BD=4,∴△ABC外接圆的半径为2;(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,∴△DBF∽△ADB,∴=,即=,∴AD=1.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.21.(1)3;(2)∠DEF的大小不变,tan∠DEF=34;(3)7541或7517.【解析】【详解】(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=12OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴BD BNDO NA=,BD AMDO OM=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴34 DF DMDE DN==,∵∠EDF=90°,∴tan∠DEF=34 DFDE=;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=34(3﹣t),∴AF=4+MF=﹣34t+254,∵点G为EF的三等分点,∴G(37112t+,23t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:80 43k bk b+=⎧⎨+=⎩,解得:346 kb⎧=-⎪⎨⎪=⎩,∴直线AD的解析式为y=﹣34x+6,把G(37112t+,23t)代入得:t=7541;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=34(t﹣3),∴AF=4﹣MF=﹣34t+254,∵点G为EF的三等分点,∴G(3236t+,13t),代入直线AD的解析式y=﹣34x+6得:t=7517;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为7541或7517.考点:四边形综合题.22.见解析【解析】【分析】由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.【详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥DC,∴∠EAO=∠FCO,在△AEO和△CFO中,EAO FCOOA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEO≌△CFO(ASA),∴OE=OF.【点睛】本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.23.(1)2-2 (2)-2【解析】试题分析:(1)将原式第一项被开方数8变为4×2,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果;(2)先把2a ab-和a2﹣b2分解因式约分化简,然后将a和b的值代入化简后的式子中计算,即可得到原式的值.解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1=2﹣2×+1﹣3=2﹣+1﹣3=﹣2;(2)•(a2﹣b2)=•(a+b)(a﹣b)=a+b,当a=,b=﹣2时,原式=+(﹣2)=﹣.24.(1)(1,4)(2)①点M坐标(﹣12,74)或(﹣32,﹣94);②m的值为3172±或1172±【解析】【分析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA=2233m mMGBG m-++=-,tan∠BDE=BEDE=12,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.【详解】解:(1)把点B (3,0),C (0,3)代入y=﹣x 2+bx+c ,得到930{3b c c -++==,解得23b c ì=ïí=ïî, ∴抛物线的解析式为y=﹣x 2+2x+3,∵y=﹣x 2+2x ﹣1+1+3=﹣(x ﹣1)2+4,∴顶点D 坐标(1,4);(2)①作MG ⊥x 轴于G ,连接BM .则∠MGB=90°,设M (m ,﹣m 2+2m+3),∴MG=|﹣m 2+2m+3|,BG=3﹣m ,∴tan ∠MBA=2233m m MG BG m-++=-, ∵DE ⊥x 轴,D (1,4),∴∠DEB=90°,DE=4,OE=1,∵B (3,0),∴BE=2,∴tan ∠BDE=BE DE =12, ∵∠MBA=∠BDE , ∴2233m m m -++-=12, 当点M 在x 轴上方时,2233m m m-++- =12, 解得m=﹣12或3(舍弃), ∴M (﹣12,74), 当点M 在x 轴下方时,2233m m m--- =12, 解得m=﹣32或m=3(舍弃), ∴点M (﹣32,﹣94),综上所述,满足条件的点M坐标(﹣12,74)或(﹣32,﹣94);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m时,解得m=3172±,当﹣m2+2m+3=m﹣1时,解得117±,∴满足条件的m 317±117±.【点睛】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.25.(1)3k≤;(2)k=1【解析】【分析】(1)根据一元二次方程2x2+4x+k﹣1=0有实数根,可得出△≥0,解不等式即可得出结论;(2)分别把k的正整数值代入方程2x2+4x+k﹣1=0,根据解方程的结果进行分析解答.【详解】(1)由题意得:△=16﹣8(k﹣1)≥0,∴k≤1.(2)∵k为正整数,∴k=1,2,1.当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x =0,解得:x=0或x=-2,有一个根为零;当k=2时,方程2x2+4x+k﹣1=0变为:2x2+4x +1=0,解得:x=222-±,无整数根;当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x +2=0,解得:x1=x2=-1,有两个非零的整数根.综上所述:k=1.【点睛】本题考查了一元二次方程根的判别式:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(1)△<0⇔方程没有实数根.26.官有200人,兵有800人【解析】【分析】设官有x 人,兵有y 人,根据1000官兵正好分1000匹布,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】解:设官有x 人,兵有y 人, 依题意,得:10001410004x y x y +=⎧⎪⎨+=⎪⎩,解得:200800x y =⎧⎨=⎩. 答:官有200人,兵有800人.【点睛】本题主要考查二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.27.(1)证明见解析;(2)60BFD ∠=︒.【解析】试题分析:(1)根据等边三角形的性质根据SAS 即可证明△ABE ≌△CAD ;(2)由三角形全等可以得出∠ABE=∠CAD ,由外角与内角的关系就可以得出结论.试题解析:(1)∵△ABC 为等边三角形,∴AB=BC=AC ,∠ABC=∠ACB=∠BAC=60°.在△ABE 和△CAD 中,AB=CA , ∠BAC=∠C ,AE =CD ,∴△ABE ≌△CAD (SAS ),(2)∵△ABE ≌△CAD ,∴∠ABE=∠CAD ,∵∠BAD+∠CAD=60°,∴∠BAD+∠EBA=60°,∵∠BFD=∠ABE+∠BAD,∴∠BFD=60°.。
徐汇区2019学年初三一模数学试卷含答案
2019学年第一学期徐汇区学习能力诊断卷初三数学 试卷 2020.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.已知二次函数322-+-=x x y ,那么下列关于该函数的判断正确的是(A )该函数图像有最高点)3,0(-; (B )该函数图像有最低点)3,0(-;(C )该函数图像在x 轴的下方; (D )该函数图像在对称轴左侧是下降的.2.如图,EF CD AB ////,2=AC ,5=AE ,5.1=BD ,那么下列结论正确的是 (A )415=DF ; (B )415=EF ; (C )415=CD ; (D )415=BF . 3.已知点P 是线段AB 上的点,且AB BP AP ⋅=2,那么AB AP :的值是(A )215-; (B )253-; (C )215+; (D )253+. 4.在ABC Rt ∆中,︒=∠90B ,3=BC ,5=AC ,那么下列结论正确的是(A )43sin =A ; (B )54cos =A ;(C )45cot =A ; (D )34tan =A . 5.跳伞运动员小李在200米的空中测得地面上的着落点A 的俯角为︒60,那么此时小李离 着落点A 的距离是(A )200米; (B )400米; (C )33200米; (D )33400米. 6.下列命题中,假命题是(A )凡有内角为︒30的直角三角形都相似;(B )凡有内角为︒45的等腰三角形都相似;(C )凡有内角为︒60的直角三角形都相似;(D )凡有内角为︒90的等腰三角形都相似.二、填空题(本大题共12题,每题4分,满分48分)7.计算:=︒⋅︒-︒45tan 30cot 60sin 2__▲___.8.已知线段4=a 厘米、9=c 厘米,那么线段a 、c 的比例中项=b __▲___厘米.9.如果两个相似三角形的对应高比是2:3,那么它们的相似比是__▲___.A B C D E F (第2题图)10.四边形ABCD 和四边形D C B A ''''是相似图形,点A 、B 、C 、D 分别与点A '、B '、C '、D '对应,已知3=BC ,4.2=CD ,2=''C B ,那么D C ''的长是__▲___.11.已知二次函数2)2(2+=x y ,如果2->x ,那么y 随x 的增大而__▲___.12.同一时刻,高为12米的学校旗杆的影长为9米,一座铁塔的影长为21米,那么此铁塔的高是__▲___米.13.一山坡的坡度3:1=i ,小刚从山坡脚下点P 处上坡走了1050米到达点N 处,那么他上升的高度是_▲_米.14.在ABC ∆中,点E D 、分别在边AC AB 、上,6=AB ,4=AC ,5=BC ,2=AD ,3=AE ,那么DE 的长是__▲___.15.如图,在ABC Rt ∆中,︒=∠90C ,2=AC ,1=BC ,正方形DEFG 内接于ABC ∆, 点F G 、分别在边BC AC 、上,点E D 、在斜边AB 上,那么正方形DEFG 的边长是 __▲___.16. 如图,在ABC ∆中,点D 在边BC 上,AC AD ⊥,C BAD ∠=∠,2=BD ,6=CD ,那么C tan 的值是__▲___.17.我们把有两条中线互相垂直的三角形称为“中垂三角形”.如图,ABC ∆是“中垂三角形”,其中ABC ∆的中线CE BD 、互相垂直于点G ,如果9=BD ,12=CE ,那么E D 、两点间的距离是__▲___.18.如图,在矩形ABCD 中,3=AB ,4=AD ,将矩形ABCD 绕着点B 顺时针旋转后得到矩形D C B A ''',点A 的对应点A '在对角线AC 上,点C 、D 分别与点C '、D '对应,D A ''与边BC 交于点E ,那么BE 的长是__▲___.三、(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.(本题满分10分)已知:5:3:2::=c b a . (1)求代数式cb ac b a -++-323的值; (2)如果243=+-c b a ,求a 、b 、c 的值.20.(本题满分10分)已知二次函数)0(2≠++=a c bx ax y 自变量x 的值和它对应的函数值y 如下表所示:(1)请写出该二次函数图像的开口方向、对称轴、顶点坐标和的值;(2)设该二次函数图像与x 轴的左交点为B ,它的顶点为A ,该图像上点C 的横坐标为4,求ABC ∆的面积. (第18题图) A B C D (第16题图) A B C D (第15题图) AB C D E F G (第17题图) A B C D E G21.(本题满分10分)如图,一艘游轮在离开码头A 处后,沿南偏西︒60方向行驶到达B 处,此时从B 处发现灯塔C 在游轮的东北方向,已知灯塔C 在码头A 的正西方向200米处,求此时游轮与灯塔C 的距离(精确到1米). 参考数据:414.12≈,732.13≈,449.26≈.22.(本题满分10分)如图,在ABC ∆中,BE AD 、是ABC ∆的角平分线,CE BE =,2=AB ,3=AC .(1)设AB a =,BC =b ,求向量BE (用向量a 、b 表示);(2)将ABC ∆沿直线AD 翻折后,点B 与边AC 上的点F 重合,联结DF ,求CEB CDF S S ∆∆:的值.23.(本题满分12分)如图,在ACB ∆中,点D 、E 、F 、G 分别在边AB 、AC 、BC 上,AD AB 3=,AE CE 2=,CG FG BF ==,DG 与EF 交于点H . (1)求证: AB HG AC FH ⋅=⋅;(2)联结DF 、EG ,求证:GEF FDG A ∠+∠=∠.24.(本题满分12分)A B C D EF G H (第23题图) AB C D E(第22题图)如图,将抛物线4342+-=x y 平移后,新抛物线经过原抛物线的顶点C ,新抛物线与x 轴正半轴交于点B ,联结BC ,4tan =B ,设新抛物线与x 轴的另一交点是A ,新抛物线的顶点是D .(1)求点D 的坐标;(2)设点E 在新抛物线上,联结AC 、DC ,如果CE 平分DCA ∠,求点E 的坐标;(3)在(2)的条件下,将抛物线4342+-=x y 沿x 轴左右平移,点C 的对应点为F ,当DEF ∆和ABC ∆相似时,请直接写出平移后所得抛物线的表达式.25.(本题满分14分)如图,在ABC ∆中,5==AC AB ,6=BC ,点D 是边AB 上的动点(点D 不与点A 、B 重合),点G 在边AB 的延长线上,A CDE ∠=∠,ABC GBE ∠=∠,DE 与边BC 交于点F .(1)求A cos 的值;(2)当ACD A ∠=∠2时,求AD 的长;(3)点D 在边AB 上运动的过程中,BE AD :的值是否会发生变化?如果不变化,请求BE AD :的值;如果变化,请说明理由.4342+x D B A C G F E (第25题图) B A C (备用图)2019学年第一学期徐汇区初三年级数学学科期终学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.D ; 3.A ; 4.B ; 5.D ; 6.B .二.填空题:(本大题共12题,满分48分)7.0; 8.6; 9.2:3; 10.58; 11.增大; 12.28; 13.50; 14.25; 15.752; 16.21; 17.5; 18.825. 三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. 解:(1)由题意,设k c k b k a 5,3,2===.∴1533225323323=-⨯+⨯+-⨯=-++-kk k k k k c b a c b a . (2)由题意和(1),得 245323=+-⨯k k k ;解得 3=k ;∴632=⨯=a ,933=⨯=b ,1535=⨯=c .20.解:(1)该二次函数图像的开口方向向上;对称轴是直线2=x ; 顶点坐标是)1,2(-;m 的值是3.(2)由题意,得)1,2(-A 、)0,1(B 、)3,4(C ;∵20,18,2222===AC BC AB ;∴222AC BC AB =+;∴︒=∠90ABC ; ∴323221=⨯⨯=∆ABC S . 21.解:过点B 作AC BD ⊥,垂足为D .由题意,得︒=∠30DAB ,︒=∠45DBC ;又DBC BCD ∠=︒=︒-︒=∠454590;∴DC DB =;设x DC DB ==,则200+=x DA .在BDA Rt ∆中,︒=∠90BDA ,∴DB DA DAB =∠cot ,即xx 20030cot +=︒; ∴2003+=x x ,解得)13(100+=x ;∴3863.386)414.1449.2(100)26(1002≈=+⨯≈+==x BC . 答:此时游轮与灯塔C 的距离约为386米.22.解:(1)∵CE BE =,∴EBC C ∠=∠;∵BE 平分ABC ∠,∴EBC ABE ∠=∠;∴C ABE ∠=∠;又CAB BAE ∠=∠,∴ABE ∆∽ACB ∆;∴ACAB AB AE =; 即322=AE ;得34=AE ;∴94=AC AE ;∴AC AE 94= ; 又=AC +AB b a BC +=; ∴=BE +BA b a b a a AE 9495)(94+-=++-=. (2)由题意,可得EBC ABC AFD ∠=∠=∠2,2==AB AF ; 又C EBC AEB ∠+∠=∠,EBC ABE C ∠=∠=∠,∴AFD EBC AEB ∠=∠=∠2;∴BE DF //;∴CDF ∆∽CBE ∆;∴259)351()(22===∆∆CE CF S S CBE CDF . 23.证明:(1)∵AD AB 3=,AE CE 2=,CG FG BF ==, ∴31,31,31,31====BC CG BC BF AC AE AB AD ; ∴BCBF AC AE BC CG AB AD ==,; ∴AC DG //,AB EF //;∴C HGF ∠=∠,B HFG ∠=∠;∴HFG ∆∽ABC ∆; ∴ABFH AC HG =;即AB HG AC FH ⋅=⋅. (2)∵AB EF //,AC DG //,∴1==FB GF HD GH ,1==GFCG FH HE ; ∴FHHE HD GH =;∴DF EG //; ∴HGE FDG ∠=∠;又HEG HGE FHG ∠+∠=∠,∴HEG FDG FHG ∠+∠=∠;∵HFG ∆∽ABC ∆,∴A FHG ∠=∠;∴GEF FDG A ∠+∠=∠.24.解:(1)由题意,设新抛物线的表达式为4342++-=bx x y . ∵抛物线4342+-=x y 的顶点为C ,∴)4,0(C ,4=OC ; 在BOC Rt ∆中,︒=∠90BOC ,∴4tan ==OBOC B ,得1=OB ;∴)0,1(B ; 由题意,得0434=++-b ,解得38-=b ; ∴新抛物线的表达式为438342+--=x x y ;∴)316,1(-D . (2)由题意,可得)0,3(-A ;过点D 作OC DM ⊥,垂足为M .∴)316,0(M ; ∴4,3,34,1====CO AO CM DM ;∴43==CO AO CM DM ; 又︒=∠=∠90AOC DMC ,∴DMC ∆∽AOC ∆,∴ACO DCM ∠=∠;∵CE 平分DCA ∠,∴ACE DCE ∠=∠;∴︒=∠+∠180)(2DCE DCM ;∴AOC MCE ∠=︒=∠90;∴AO CE //;∴点E 与点C 关于直线1-=x 对称;∴)4,2(-E .(3)有两种情况满足要求,平移后所得抛物线的表达式为:4)32(342++-=x y 或4)121(342+--=x y . 25.解:(1)过点B A 、分别作BC AH ⊥、AC BG ⊥,垂足分别为G H 、.在AHC Rt ∆中,︒=∠90AHC ,53cos ==∠AC CH ACB ; 在BGC Rt ∆中,︒=∠90BGC ,53cos ==∠BC CG GCB ; 得518=CG ;∴575185=-=AG ; 在ABG Rt ∆中,︒=∠90AGB ,∴257cos ==AB AG A . (2)以点D 为圆心DA 长为半径作弧交AC 于点M ,过点D 作AC DN ⊥于N .∴可设x DA DM ==;∴ACD A AMD ∠=∠=∠2, 又MCD MDC AMD ∠+∠=∠;∴MDC MCD ∠=∠;∴x DM CM ==;则x AM -=5;在AND Rt ∆中,︒=∠90AND ,∵257cos ==AD AN A , 即25725=-x x ;解得 39125=x ;即39125=AD . (3)点D 在边AB 上运动过程中,BE AD :的值不变,65:=BE AD . 联结CE .∵AC AB =,∴ACB ABC ∠=∠;∴︒=∠+∠1802ABC A ; 又︒=∠+∠+∠180GBE ABC CBE ,ABC GBE ∠=∠,∴︒=∠+∠1802ABC CBE ;∴CBE A ∠=∠;∵CDE A CBE ∠=∠=∠,DFC BFE ∠=∠;∴BFE ∆∽DFC ∆; ∴DCF BEF ∠=∠,CFEF DF BF =; 又EFC BFD ∠=∠,∴BFD ∆∽EFC ∆;∴ECF BDF ∠=∠. 又BEF BDF EBG ∠+∠=∠,ECF DCF DCE ∠+∠=∠, ∴ACB ABC GBE DCE ∠=∠=∠=∠;∴DCF ACB DCF DCE ∠-∠=∠-∠;即ACD BCE ∠=∠;∴ACD ∆∽CBE ∆; ∴65==BC AC BE AD .。
【附5套中考模拟试卷】上海市徐汇区2019-2020学年中考数学模拟试题含解析
16.正方形EFGH的顶点在边长为3的正方形ABCD边上,若AE=x,正方形EFGH的面积为y,则y与x的函数关系式为______.
17.如图,四边形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,设Q、R分别是AB、AD上的动点,则△CQR的周长的最小值为_________.
26.(12分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.
(1)求证:DE是⊙O的切线;
(2)求EF的长.
27.(12分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。
23.(8分)如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.
(1)求证:四边形ABCD是菱形.
(2)若AC=8,AB=5,求ED的长.
24.(10分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.
3.若关于 , 的二元一次方程组 的解也是二元一次方程 的解,则 的值为
A. B. C. D.
4.如图图形中是中心对称图形的是( )
2019-2020上海徐汇中学数学中考试卷及答案
解析:A 【解析】
试题分析:∵今后项目的数量﹣今年的数量=20,∴ 106960 50760 20 .故选 A. x 500 x
考点:由实际问题抽象出分式方程.
二、填空题
13.【解析】分析:在图形左侧添加正方形网格分别延长 ABAC 连接它们延长 线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所 示由图形可知∴ tan∠ BAC=故答案为点睛:本题考查了锐角三角函 解析: 1
竖线,画法正确的是:
.
故选 C. 【点睛】 本题考查了三视图的知识,关键是找准主视图所看的方向.
6.B
解析:B 【解析】 【分析】
根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到 m 2 0 ,
3 m≥0 , 3 m 2 4m 2 1 0 ,然后解不等式组即可. 4
故选: B . 【点睛】 本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.
8.C
解析:C 【解析】
【分析】 设第 n 个图形中有 an 个点(n 为正整数),观察图形,根据各图形中点的个数的变化可得
出变化规律“an= n2+ n+1(n 为正整数)”,再代入 n=9 即可求出结论.
【详解】 设第 n 个图形中有 an 个点(n 为正整数), 观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,
【详解】
=6 -3 =3 ,
∵1.7< <2,
∴5<3 <6,即 5<
<6,
故选 C.
【点睛】
上海市徐汇区2019-2020学年中考第三次质量检测数学试题含解析
上海市徐汇区2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线AB 、CD 相交于点O ,射线OM 平分∠AOD ,点P 在射线OM 上(点P 与点O 不重合),如果以点P 为圆心的圆与直线AB 相离,那么圆P 与直线CD 的位置关系是( )A .相离B .相切C .相交D .不确定2.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个3.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )A .正方体B .球C .圆锥D .圆柱体4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=15.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣56.下列各数中,无理数是( )A .0B .227C .4D .π7.如图,直线a 、b 被c 所截,若a ∥b ,∠1=45°,∠2=65°,则∠3的度数为( )A .110°B .115°C .120°D .130°8.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°9.下列运算正确的是 ( )A .22a +a=33aB .()32m =5mC .()222x y x y +=+D .63a a ÷=3a 10.如图,在△ABC 中,DE ∥BC ,若23AD DB =,则AE EC 等于( )A .13B .25C .23D .3511.如图,l 1、l 2、l 3两两相交于A 、B 、C 三点,它们与y 轴正半轴分别交于点D 、E 、F ,若A 、B 、C 三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是( )①13EA EC =,②S △ABC =1,③OF=5,④点B 的坐标为(2,2.5)A .1个B .2个C .3个D .4个12.如果一组数据1、2、x 、5、6的众数是6,则这组数据的中位数是( )A .1B .2C .5D .6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在四边形纸片ABCD 中,AB =BC ,AD =CD ,∠A =∠C =90°,∠B =150°.将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD =_________.14.如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 .15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm ,则截面圆的半径为 cm .16.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 _______mm .17.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律.已知21i =-,那么(1)(1)i i +⋅-=________. 18.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是________小时.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:品名猕猴桃芒果批发价(元/千克)20 40零售价(元/千克)26 50()1他购进的猕猴桃和芒果各多少千克?()2如果猕猴桃和芒果全部卖完,他能赚多少钱?20.(6分)如图1,在菱形ABCD中,AB=65,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t=秒时,DF的长度有最小值,最小值等于;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?21.(6分)如图,AB是⊙O的直径,C、D为⊙O上两点,且»»AC BD,过点O作OE⊥AC于点E⊙O=的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.(1)求证:∠F =∠B ;(2)若AB =12,BG =10,求AF 的长.22.(8分)先化简,再求值:2(m ﹣1)2+3(2m+1),其中m 是方程2x 2+2x ﹣1=0的根23.(8分)计算:|﹣1|+9﹣(1﹣3)0﹣(12)﹣1. 24.(10分)计算:(-13)-2 – 2(34+)+ 112- 25.(10分)如图, 二次函数23y ax bx =++的图象与 x 轴交于()30A -,和()10B ,两点,与 y 轴交于点 C ,一次函数的图象过点 A 、C .(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围.26.(12分)综合与实践:概念理解:将△ABC 绕点 A 按逆时针方向旋转,旋转角记为 θ(0°≤θ≤90°),并使各边长变为原来的 n 倍,得到△AB′C′,如图,我们将这种变换记为[θ,n ],''AB C S ∆:ABC S ∆= .问题解决:(2)如图,在△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n ]得到△AB′C′,使点 B ,C ,C′在同一直线上,且四边形 ABB′C′为矩形,求 θ 和 n 的值.拓广探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,对△ABC 作变换 得到△AB′C′,则四边形ABB′C′为正方形27.(12分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE 于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据角平分线的性质和点与直线的位置关系解答即可.【详解】解:如图所示;∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,∴以点P为圆心的圆与直线CD相离,故选:A.【点睛】此题考查直线与圆的位置关系,关键是根据角平分线的性质解答.2.B【解析】试题分析:∵当y 1=y 2时,即2x 4x 2x -+=时,解得:x=0或x=2,∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -21y x 4x =-+直线2y 2x =的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线()221y x 4x x 24=-+=--+的最大值为4,∴M 大于4的x 值不存在.∴③正确; ∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,2x 4x 2-+=,解得12x 2x 2==.∴使得M=2的x 值是1或2+综上所述,正确的有②③2个.故选B .3.D【解析】【分析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D .【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.4.B【解析】试题分析:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B .5.A【解析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A . 考点:科学记数法—表示较小的数.6.D【解析】【分析】利用无理数定义判断即可.【详解】解:π是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.7.A【解析】试题分析:首先根据三角形的外角性质得到∠1+∠2=∠4,然后根据平行线的性质得到∠3=∠4求解.解:根据三角形的外角性质,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故选A.点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小.8.B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.9.D【解析】【分析】根据整式的混合运算计算得到结果,即可作出判断.【详解】A 、22a 与a 不是同类项,不能合并,不符合题意;B 、()32m =6m ,不符合题意;C 、原式=22x 2y xy ++,不符合题意;D 、63a a ÷=3a ,符合题意,故选D .【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.10.C【解析】试题解析::∵DE ∥BC , ∴23AE AD EC DB ==, 故选C .考点:平行线分线段成比例.11.C【解析】【分析】 ①如图,由平行线等分线段定理(或分线段成比例定理)易得:13EA OA EC OC '='=; ②设过点B 且与y 轴平行的直线交AC 于点G ,则S △ABC =S △AGB +S △BCG ,易得:S △AED =12,△AED ∽△AGB 且相似比=1,所以,△AED ≌△AGB ,所以,S △AGB =12,又易得G 为AC 中点,所以,S △AGB =S △BGC =12,从而得结论;③易知,BG=DE=1,又△BGC ∽△FEC ,列比例式可得结论;④易知,点B 的位置会随着点A 在直线x=1上的位置变化而相应的发生变化,所以④错误.【详解】解:①如图,∵OE ∥AA'∥CC',且OA'=1,OC'=1, ∴13EA OA EC OC '='=, 故 ①正确;②设过点B 且与y 轴平行的直线交AC 于点G (如图),则S △ABC =S △AGB +S △BCG ,∵DE=1,OA'=1,∴S△AED=12×1×1=12,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=12,同理得:G为AC中点,∴S△ABG=S△BCG=12,∴S△ABC=1,故②正确;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴13 BG CGEF CE==,∴EF=1.即OF=5,故③正确;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,故④错误;故选C.【点睛】本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.12.C。
上海市徐汇区2019-2020学年中考第三次适应性考试数学试题含解析
上海市徐汇区2019-2020学年中考第三次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B .从一副扑克牌中任意抽取一张,这张牌是“红色的”C .掷一枚质地均匀的硬币,落地时结果是“正面朝上”D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是62.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个3.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF4.若3x >﹣3y ,则下列不等式中一定成立的是 ( )A .0x y +>B .0x y ->C .0x y +<D .0x y -<5.已知一元二次方程x 2-8x+15=0的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( )A .13B .11或13C .11D .126.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( )A .3,2B .3,4C .5,2D .5,47.2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为( )A .2.536×104人B .2.536×105人C .2.536×106人D .2.536×107人8.下列运算正确的是( )A.4x+5y=9xy B.(−m)3•m7=m10C.(x3y)5=x8y5D.a12÷a8=a49.花园甜瓜是乐陵的特色时令水果.甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为()kg.A.180 B.200 C.240 D.30010.多项式4a﹣a3分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)211.二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是()A.4个B.3个C.2个D.1个12.下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x﹣1 C.34y x=D.1yx=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=331122⨯+⨯=1.类似地,可以求得sin15°的值是_______.14.如图,⊙O的直径AB=8,C为»AB的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为_____.15.如图,已知反比例函数y=(x>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则△OAD的面积为_____.16.已知(x+y)2=25,(x﹣y)2=9,则x2+y2=_____.17.分解因式:2m2-8=_______________.18.若关于x的方程x2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.(1)问题探究:如图1,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求ACBC的值.(3)应用拓展:如图3,已知l1∥l1,l1与l1之间的距离为1.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的2倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l1于点D.求CD的值.20.(6分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA、PB、AB、OP,已知PB是⊙O的切线.(1)求证:∠PBA=∠C;(2)若OP ∥BC ,且OP=9,⊙O 的半径为32,求BC 的长.21.(6分)已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC =40°.(1)如图1,若D 为弧AB 的中点,求∠ABC 和∠ABD 的度数;(2)如图2,过点D 作⊙O 的切线,与AB 的延长线交于点P ,若DP ∥AC ,求∠OCD 的度数.22.(8分)已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD.23.(8分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m ,在随机抽取1张,将卡片的数字即为n .(1)请用列表或树状图的方式把(m ,n )所有的结果表示出来.(2)求选出的(m ,n )在二、四象限的概率.24.(10分)计算:(-1)-127012⎛⎫- ⎪⎝⎭325.(10分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB 段为监测区,C 、D 为监测点(如图).已知C 、D 、B 在同一条直线上,且AC BC ⊥,CD=400米,tan 2ADC ∠=,35ABC ∠=︒.求道路AB 段的长;(精确到1米)如果AB 段限速为60千米/时,一辆车通过AB 段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin350.57358︒≈,cos350.8195︒≈,tan350.7︒≈)26.(12分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?27.(12分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.求m的值;求|m﹣1|+(m+6)0的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D选项符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.2.D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D.3.B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.4.A【解析】两边都除以3,得x>﹣y,两边都加y,得:x+y>0,故选A.5.B【解析】试题解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,综上,△ABC的周长为11或1.故选B.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.6.B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.7.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2536000人=2.536×106人.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.D【解析】【分析】各式计算得到结果,即可作出判断.【详解】解:A、4x+5y=4x+5y,错误;B、(-m)3•m7=-m10,错误;C、(x3y)5=x15y5,错误;D、a12÷a8=a4,正确;故选D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.9.B【解析】【分析】根据题意去设所进乌梅的数量为xkg,根据前后一共获利750元,列出方程,求出x值即可.【详解】解:设小李所进甜瓜的数量为()x kg ,根据题意得:3000300040150(150)20x x x⨯⨯--⨯⨯%%=750, 解得:200x =,经检验200x =是原方程的解.答:小李所进甜瓜的数量为200kg .故选:B .【点睛】本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.10.B【解析】【分析】首先提取公因式a ,再利用平方差公式分解因式得出答案.【详解】4a ﹣a 3=a (4﹣a 2)=a (2﹣a )(2+a ).故选:B .【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.11.D【解析】①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2, 所以﹣2b a=﹣1,可得b=2a , 当x=﹣3时,y <0,即9a ﹣3b+c <0,9a ﹣6a+c <0,3a+c <0,∵a <0,∴4a+c <0,所以①选项结论正确;②∵抛物线的对称轴是直线x=﹣1,∴y=a ﹣b+c 的值最大,即把x=m (m≠﹣1)代入得:y=am 2+bm+c <a ﹣b+c ,∴am 2+bm <a ﹣b ,m (am+b )+b <a ,所以此选项结论不正确;③ax 2+(b ﹣1)x+c=0,△=(b ﹣1)2﹣4ac ,∵a <0,c >0,∴ac <0,∴﹣4ac >0,∵(b ﹣1)2≥0,∴△>0,∴关于x 的一元二次方程ax 2+(b ﹣1)x+c=0有实数根;④由图象得:当x >﹣1时,y 随x 的增大而减小,∵当k 为常数时,0≤k 2≤k 2+1,∴当x=k 2的值大于x=k 2+1的函数值,即ak 4+bk 2+c >a (k 2+1)2+b (k 2+1)+c ,ak 4+bk 2>a (k 2+1)2+b (k 2+1),所以此选项结论不正确;所以正确结论的个数是1个,故选D .12.D【解析】A 、、∵y =x 2,∴对称轴x=0,当图象在对称轴右侧,y 随着x 的增大而增大;而在对称轴左侧,y 随着x 的增大而减小,故此选项错误B 、k >0,y 随x 增大而增大,故此选项错误C 、B 、k >0,y 随x 增大而增大,故此选项错误D 、y=1x(x >0),反比例函数,k >0,故在第一象限内y 随x 的增大而减小,故此选项正确 二、填空题:(本大题共6个小题,每小题4分,共24分.)13. 【解析】试题分析:sin15°=sin (60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°=12222-⨯=4.故答考点:特殊角的三角函数值;新定义.14.2π【解析】分析:以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的¶AC,依据△ACQ中,AQ=4,即可得到点D运动的路径长为904180π⨯⨯=2π.详解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°.∵⊙O的直径为AB,C 为¶AB的中点,∴∠APC=45°.又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的¶AC.又∵AB=8,C为¶AB的中点,∴AC=42,∴△ACQ中,AQ=4,∴点D运动的路径长为904180π⨯⨯=2π.故答案为2π.点睛:本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键.15..【解析】【分析】由点B的坐标为(2,3),而点C为OB的中点,则C点坐标为(1,1.5),利用待定系数法可得到k=1.5,然后利用k的几何意义即可得到△OAD的面积.【详解】∵点B的坐标为(2,3),点C为OB的中点,∴C点坐标为(1,1.5),∴k=1×1.5=1.5,即反比例函数解析式为y=,∴S△OAD=×1.5=.故答案为:.【点睛】 本题考查了反比例函数的几何意义,一般的,从反比例函数(k 为常数,k≠0)图像上任一点P ,向x 轴和y 轴作垂线你,以点P 及点P 的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P 及点P 的一个垂足和坐标原点为顶点的三角形的面积等于 . 16.17【解析】【分析】先利用完全平方公式展开,然后再求和.【详解】根据(x+y )2=25,x 2+y 2+2xy=25;(x ﹣y )2=9, x 2+y 2-2xy=9,所以x 2+y 2=17.【点睛】(1)完全平方公式:2222a b a ab b ±=±+().(2)平方差公式:(a+b)(a-b)=22a b +.(3)常用等价变形:()2222 ,a b b a b a a b -=-=-+=-+ ()33a b b a -=--, ()()b a b a -=--,()22a b a b --=+.17.2(m+2)(m-2)【解析】【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.【详解】2m 2-8,=2(m 2-4),=2(m+2)(m-2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.18.30°【解析】试题解析:∵关于x 的方程22sin 0x x α-+=有两个相等的实数根,∴()2241sin 0V ,α=--⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°;故答案为30°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)△ABC 是“等高底”三角形;(1)13;(3)CD 的值为2103,12,1. 【解析】【分析】(1)过A 作AD ⊥BC 于D ,则△ADC 是直角三角形,∠ADC=90°,根据30°所对的直角边等于斜边的一半可得:132AD AC ==,根据“等高底”三角形的概念即可判断. (1)点B 是'AA C V 的重心,得到2BC BD =,设BD x =,则23AD BC x CD x ===,, 根据勾股定理可得13AC x =,即可求出它们的比值.(3)分两种情况进行讨论:①当2AB BC =时和②当2AC BC =时.【详解】(1)△ABC 是“等高底”三角形;理由:如图1,过A 作AD ⊥BC 于D ,则△ADC 是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴132AD AC ==, ∴AD=BC=3,即△ABC 是“等高底”三角形;(1)如图1,∵△ABC 是“等高底”三角形,BC 是“等底”,∴AD BC =,∵△ABC 关于BC 所在直线的对称图形是'A BC V ,∴∠ADC=90°,∵点B 是'AA C V 的重心,∴2BC BD =,设BD x =,则23AD BC x CD x ===,, 由勾股定理得13AC x =, ∴1313.AC x BC == (3)①当2AB BC =时,Ⅰ.如图3,作AE ⊥BC 于E ,DF ⊥AC 于F ,∵“等高底”△ABC 的“等底”为BC ,l 1∥l 1,l 1与l 1之间的距离为1,2AB BC =. ∴222BC AE AB ,,===∴BE=1,即EC=4,∴5AC ,=∵△ABC 绕点C 按顺时针方向旋转45°得到△A'B'C ,∴∠DCF=45°,设DF CF x ==,∵l 1∥l 1,∴ACE DAF ∠=∠,∴1,2DF AE AF CE == 即2AF x =, ∴325AC x ==,∴225,210,33x CD x === Ⅱ.如图4,此时△ABC 等腰直角三角形,∵△ABC 绕点C 按顺时针方向旋转45°得到''A B C V ,∴ACD V 是等腰直角三角形, ∴222CD AC ==. ②当2AC BC =时,Ⅰ.如图5,此时△ABC 是等腰直角三角形,∵△ABC 绕点C 按顺时针方向旋转45°得到△A'B'C ,∴1'A C l ⊥,∴2CD AB BC ===;Ⅱ.如图6,作AE BC ⊥于E ,则AE BC =,∴22AC BC ==,∴45ACE ∠=︒,∴△ABC 绕点C 按顺时针方向旋转45°,得到''A B C V 时,点A'在直线l 1上,∴'A C ∥l 1,即直线'A C 与l 1无交点,综上所述,CD 210,22,2.3【点睛】属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.20.(1)证明见解析;(2)BC=1.【解析】【分析】(1)连接OB,根据切线的性质和圆周角定理求出∠PBO=∠ABC=90°,即可求出答案;(2)求出△ABC∽△PBO,得出比例式,代入求出即可.【详解】(1)连接OB,∵PB是⊙O的切线,∴PB⊥OB,∴∠PBA+∠OBA=90°,∵AC是⊙O的直径,∴∠ABC=90°,∠C+∠BAC=90°,∵OA=OB,∴∠OBA=∠BAO,∴∠PBA=∠C;(2)∵⊙O的半径是2,∴22,∵OP∥BC,∴∠BOP=∠OBC,∵OB=OC,∴∠OBC=∠C,∴∠BOP=∠C,∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴BCBO=ACOP3262,∴BC=1.【点睛】本题考查平行线的性质,切线的性质,相似三角形的性质和判定,圆周角定理等知识点,能综合运用知识点进行推理是解题关键.21.(1)45°;(2)26°.【解析】【分析】(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.【详解】(1)∵AB是⊙O的直径,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)连接OD ,∵DP 切⊙O 于点D ,∴OD ⊥DP ,即∠ODP=90°,∵DP ∥AC ,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD 是△ODP 的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA ,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD ﹣∠OCA=64°﹣38°=26°.【点睛】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.证明见解析【解析】试题分析:先利用等角的余角相等得到.DAE BAF ∠=∠根据有两组角对应相等,即可证明两三角形相似. 试题解析:∵四边形ABCD 为矩形,90,BAD D ∴∠=∠=o90DAE BAE ∴∠+∠=o ,BF AE ⊥Q 于点F ,90ABF BAE ∴∠+∠=o ,DAE BAF ∴∠=∠,.ABF EAD ∴V V ∽点睛:两组角对应相等,两三角形相似.23.(1)详见解析;(2)P=23. 【解析】试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.试题解析:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,-1),(2,﹣3),(2,4),(-1,2),(-1,﹣3),(1,4),(﹣3,2),(﹣3,-1),(﹣3,4),(﹣4,2),(4,-1),(4,﹣3).(2)(m,n)在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3,4),(﹣4,2),(4,-1),(4,﹣3),∴所选出的m,n在第二、三四象限的概率为:P=812=23点睛:(1)利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).(2)定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P()mAn=.(3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.(4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.24.-1【解析】试题分析:根据运算顺序先分别进行负指数幂的计算、二次根式的化简、0次幂的运算、绝对值的化简,然后再进行加减法运算即可.试题解析:原式=-1-331331+=-1.25.(1)AB≈1395 米;(2)没有超速.【解析】【分析】(1)先根据tan∠ADC=2求出AC,再根据∠ABC=35°结合正弦值求解即可(2)根据速度的计算公式求解即可.【详解】解:(1)∵AC⊥BC,∴∠C=90°,∵tan∠ADC=ACCD=2,∵CD=400,∴AC =800,在Rt △ABC 中,∵∠ABC =35°,AC =800,∴AB =sin 35AC ︒=8000.57358≈1395 米; (2)∵AB =1395, ∴该车的速度=139590=55.8km/h <60千米/时, 故没有超速.【点睛】此题重点考察学生对三角函数值的实际应用,熟练掌握三角函数值的实际应用是解题的关键.26.(1)y 1=273x -+;y 2=13x 2﹣4x+2;(2)5月出售每千克收益最大,最大为73. 【解析】【分析】(1)观察图象找出点的坐标,利用待定系数法即可求出y 1和y 2的解析式;(2)由收益W=y 1-y 2列出W 与x 的函数关系式,利用配方求出二次函数的最大值.【详解】 解:(1)设y 1=kx+b ,将(3,5)和(6,3)代入得,3563k b k b +=⎧⎨+=⎩,解得237k b ⎧=-⎪⎨⎪=⎩. ∴y 1=﹣23x+1. 设y 2=a (x ﹣6)2+1,把(3,4)代入得,4=a (3﹣6)2+1,解得a =13. ∴y 2=13(x ﹣6)2+1,即y 2=13x 2﹣4x+2. (2)收益W =y 1﹣y 2, =﹣23x+1﹣(13x 2﹣4x+2) =﹣13(x ﹣5)2+73, ∵a =﹣13<0, ∴当x =5时,W 最大值=73. 故5月出售每千克收益最大,最大为73元. 【点睛】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法27.(1) ;(2【解析】试题分析:()1 点A 表示 向右直爬2个单位到达点B ,点B 表示的数为2m =,()2把m 的值代入,对式子进行化简即可.试题解析:()1 由题意A 点和B 点的距离为2,其A 点的坐标为 因此B 点坐标 2.m =()2把m 的值代入得:()()00162126m m -++=-+,(018=-+,11=+,=。
上海市徐汇区2019-2020学年中考数学仿真第三次备考试题含解析
上海市徐汇区2019-2020学年中考数学仿真第三次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )A .a b 0+>B .ab<0C .a>bD .b a 0->2.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确3. “保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( ) 月用水量(吨) 4 5 6 9 户数(户) 3421A .中位数是5吨B .众数是5吨C .极差是3吨D .平均数是5.3吨4.如图,△ABC 中,AB =4,AC =3,BC =2,将△ABC 绕点A 顺时针旋转60°得到△AED ,则BE 的长为( )A .5B .4C .3D .25.如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E .若BF=8,AB=5,则AE 的长为( )A .5B .6C .8D .126.如图,直角三角形ABC 中,∠C=90°,AC=2,AB=4,分别以AC 、BC 为直径作半圆,则图中阴影部分的面积为( )A .2π﹣3B .π+3C .π+23D .2π﹣237.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为( ) A .5.46×108B .5.46×109C .5.46×1010D .5.46×10118.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( )A .80(1+x )2=100B .100(1﹣x )2=80C .80(1+2x )=100D .80(1+x 2)=1009.如图,在平行四边形ABCD 中,AC 与BD 相交于O ,且AO=BD=4,AD=3,则△BOC 的周长为( )A .9B .10C .12D .1410.要使式子2a a+有意义,a 的取值范围是( ) A .0a ≠B .且0a ≠ C .2a >-. 或0a ≠ D .2a ≥- 且0a ≠11.如图,四边形ABCD 中,AB=CD ,AD ∥BC ,以点B 为圆心,BA 为半径的圆弧与BC 交于点E ,四边形AECD 是平行四边形,AB=3,则»AE 的弧长为( )A .2πB .πC .32π D .312.如图,在ABC △中,D 、E 分别为AB 、AC 边上的点,DE BC P ,BE 与CD 相交于点F ,则下列结论一定正确的是( )A .DF AEFC AC = B .AD ECAB AC= C .AD DEDB BC= D .DF EFBF FC= 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(2016辽宁省沈阳市)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=20,DE 是△ABC 的中位线,点M 是边BC 上一点,BM=3,点N 是线段MC 上的一个动点,连接DN ,ME ,DN 与ME 相交于点O .若△OMN 是直角三角形,则DO 的长是______.14.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 是切点,AB 123OP 6=,=则劣弧AB 的长为 .(结果保留π)15.在平面直角坐标系中,将点A (﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.16.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是y=60t ﹣232t .在飞机着陆滑行中,最后4s 滑行的距离是_____m . 17.不等式组1x x m >-⎧⎨<⎩有2个整数解,则m 的取值范围是_____. 18.已知函数22y x x =--,当 时,函数值y 随x 的增大而增大.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)先化简,再求值:,其中x=1.20.(6分)如图,点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AD 的两侧,且AE=DF ,∠A=∠D ,AB=DC .(1)求证:四边形BFCE 是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE 是菱形.21.(6分)如图,四边形ABCD 是平行四边形,点E 在BC 上,点F 在AD 上,BE=DF ,求证:AE=CF .22.(8分)综合与实践﹣﹣旋转中的数学问题背景:在一次综合实践活动课上,同学们以两个矩形为对象,研究相似矩形旋转中的问题:已知矩形ABCD ∽矩形A′B′C′D′,它们各自对角线的交点重合于点O ,连接AA′,CC′.请你帮他们解决下列问题: 观察发现:(1)如图1,若A′B′∥AB ,则AA′与CC′的数量关系是______;操作探究:(2)将图1中的矩形ABCD 保持不动,矩形A′B′C′D′绕点O 逆时针旋转角度α(0°<α≤90°),如图2,在矩形A′B′C′D′旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;操作计算:(3)如图3,在(2)的条件下,当矩形A′B′C′D′绕点O 旋转至AA′⊥A′D′时,若AB=6,BC=8,A′B′=3,求AA′的长.23.(8分)如图,在平面直角坐标系xOy 中,以直线52x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于点D .(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F ,G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆的面积相等,求点G 的坐标;(3)若在x 轴上有且只有一点P ,使90APB ∠=︒,求k 的值.24.(10分)如图,在梯形ABCD 中,//AD BC ,5AB DC ==,1AD =,9BC =,点P 为边BC 上一动点,作PH ⊥DC ,垂足H 在边DC 上,以点P 为圆心,PH 为半径画圆,交射线PB 于点E . (1)当圆P 过点A 时,求圆P 的半径;(2)分别联结EH 和EA ,当ABE CEH ∆∆∽时,以点B 为圆心,r 为半径的圆B 与圆P 相交,试求圆B 的半径r 的取值范围;(3)将劣弧¼EH沿直线EH 翻折交BC 于点F ,试通过计算说明线段EH 和EF 的比值为定值,并求出次定值.25.(10分)如图,AB 是⊙O 的直径,点F ,C 是⊙O 上两点,且»»»AF FCCB ==,连接AC ,AF ,过点C 作CD ⊥AF 交AF 延长线于点D ,垂足为D . (1)求证:CD 是⊙O 的切线; (2)若CD=23,求⊙O 的半径.26.(12分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是38;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为12.求 x 和 y 的值.27.(12分)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】根据各点在数轴上位置即可得出结论. 【详解】由图可知,b<a<0,A. ∵b<a<0,∴a+b<0,故本选项错误;B. ∵b<a<0,∴ab>0,故本选项错误;C. ∵b<a<0,∴a>b ,故本选项正确;D. ∵b<a<0,∴b−a<0,故本选项错误. 故选C. 2.A 【解析】 【分析】过两把直尺的交点C 作CF ⊥BO 与点F ,由题意得CE ⊥AO ,因为是两把完全相同的长方形直尺,可得CE=CF ,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP 平分∠AOB 【详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.3.C【解析】【分析】根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.【详解】解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;C、极差为9﹣4=5(吨),错误,故选项正确;D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.故选:C.【点睛】此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.4.B【解析】【分析】根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.【详解】解:∵△ABC绕点A顺时针旋转 60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.5.B【解析】试题分析:由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1.故选B.考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质6.D【解析】分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CD.∵∠C=90°,AC=2,AB=4,∴2242-3.∴阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC=2211113223 222ππ⨯+⨯-⨯⨯=322ππ+-2π=-.故选:D .点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S 半圆ACD +S 半圆BCD -S △ABC 是解答本题的关键. 7.C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】解:将546亿用科学记数法表示为:5.46×1010 ,故本题选C. 【点睛】本题考查的是科学计数法,熟练掌握它的定义是解题的关键. 8.A 【解析】 【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x ,根据“从80吨增加到100吨”,即可得出方程. 【详解】由题意知,蔬菜产量的年平均增长率为x ,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x )吨, 2018年蔬菜产量为80(1+x )(1+x )吨,预计2018年蔬菜产量达到100吨, 即: 80(1+x )2=100, 故选A . 【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程. 9.A 【解析】 【分析】利用平行四边形的性质即可解决问题. 【详解】∵四边形ABCD 是平行四边形, ∴AD=BC=3,OD=OB=12BD =2,OA=OC=4, ∴△OBC 的周长=3+2+4=9, 故选:A . 【点睛】题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分. 10.D 【解析】 【分析】根据二次根式和分式有意义的条件计算即可. 【详解】有意义, ∴a+2≥0且a≠0, 解得a≥-2且a≠0. 故本题答案为:D. 【点睛】二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0. 11.B 【解析】∵四边形AECD 是平行四边形, ∴AE=CD , ∵AB=BE=CD=3, ∴AB=BE=AE ,∴△ABE 是等边三角形, ∴∠B=60°, ∴AE u u u r的弧长=6023360ππ⨯⨯=.故选B. 12.A 【解析】根据平行线分线段成比例定理逐项分析即可. 【详解】A.∵DE BCP,∴DF DEFC BC=,AE DEAC BC=,∴DF AEFC AC=,故A正确;B. ∵DE BCP,∴AD AEAB AC=,故B不正确;C. ∵DE BCP,∴AD DEAB BC=,故C不正确;D. ∵DE BCP,∴DF EFCF BF=,故D不正确;故选A.【点睛】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.推论:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.256或5013.【解析】由图可知,在△OMN中,∠OMN的度数是一个定值,且∠OMN不为直角. 故当∠ONM=90°或∠MON=90°时,△OMN是直角三角形. 因此,本题需要按以下两种情况分别求解.(1) 当∠ONM=90°时,则DN⊥BC.过点E作EF⊥BC,垂足为F.(如图)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∴在Rt△ABC中,2cos cos45201022AC BC C BC=⋅=⋅︒=⨯=,∵DE是△ABC的中位线,∴111025222CE AC==⨯=,∴在Rt△CFE中,2sin sin455252EF CE C BC=⋅=⋅︒=⨯=,5FC EF==.∵BM=3,BC=20,FC=5,∴MF=BC-BM-FC=20-3-5=12. ∵EF=5,MF=12,∴在Rt△MFE中,5 tan12EFEMFMF∠==,∵DE是△ABC的中位线,BC=20,∴11201022DE BC==⨯=,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴5 tan tan12DEO EMF∠=∠=,∴在Rt△ODE中,525tan10126 DO DE DEO=⋅∠=⨯=.(2) 当∠MON=90°时,则DN⊥ME.过点E作EF⊥BC,垂足为F.(如图)∵EF=5,MF=12,∴在Rt△MFE中,222212513ME MF EF+=+=,∴在Rt△MFE中,5 sin13EFEMFME∠==,∵∠DEO=∠EMF,∴5 sin sin13DEO EMF∠=∠=,∵DE=10,∴在Rt△DOE中,550sin101313 DO DE DEO=⋅∠=⨯=.综上所述,DO的长是256或5013.故本题应填写:256或5013.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.14.8π.【解析】试题分析:因为AB为切线,P为切点,22,636,12,260,60OP AB AP BPOP OB OP PBOP AB OB OPPOB POA︒︒∴⊥∴===∴=+=⊥=∴∠=∠=QQ劣弧AB所对圆心角考点:勾股定理;垂径定理;弧长公式.15.(0,0)【解析】【分析】根据坐标的平移规律解答即可.【详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【点睛】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16.24【解析】【分析】先利用二次函数的性质求出飞机滑行20s停止,此时滑行距离为600m,然后再将t=20-4=16代入求得16s 时滑行的距离,即可求出最后4s滑行的距离.【详解】y=60t ﹣23t 2=32-(t-20)2+600,即飞机着陆后滑行20s 时停止,滑行距离为600m , 当t=20-4=16时,y=576,600-576=24,即最后4s 滑行的距离是24m ,故答案为24.【点睛】本题考查二次函数的应用,解题的关键是理解题意,熟练应用二次函数的性质解决问题.17.1<m≤2【解析】【分析】首先根据不等式恰好有2个整数解求出不等式组的解集为1x m -<<,再确定12m <≤.【详解】Q 不等式组1x x m >-⎧⎨<⎩有2个整数解, ∴其整数解有0、1这2个,∴12m <≤.故答案为:12m <≤.【点睛】此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.18.x≤﹣1.【解析】试题分析:∵22y x x =--=2(1)1x -++,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y 随x 的增大而增大,故答案为x≤﹣1.考点:二次函数的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.【解析】【分析】这道求代数式值的题目,不应考虑把x 的值直接代入,通常做法是先化简,然后再代入求值.【详解】解:原式=•﹣=﹣=﹣=,当x=1时,原式==.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的运算法则.20.(1)证明见试题解析;(2)1.【解析】【详解】试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.试题解析:(1)∵AB=DC,∴AC=DB,在△AEC和△DFB中{AC DB A D AE DF=∠=∠=,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,∴当BE=1时,四边形BFCE是菱形,故答案为1.【考点】平行四边形的判定;菱形的判定.21.见解析【解析】【分析】根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点睛】本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.22.(1)AA′=CC′;(2)成立,证明见解析;(3)AA′=22132【解析】【分析】(1)连接AC、A′C′,根据题意得到点A、A′、C′、C在同一条直线上,根据矩形的性质得到OA=OC,OA′=OC′,得到答案;(2)连接AC、A′C′,证明△A′OA≌△C′OC,根据全等三角形的性质证明;(3)连接AC,过C作CE⊥AB′,交AB′的延长线于E,根据相似多边形的性质求出B′C′,根据勾股定理计算即可.【详解】(1)AA′=CC′,理由如下:连接AC、A′C′,∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,∵A′B′∥AB,∴点A、A′、C′、C在同一条直线上,由矩形的性质可知,OA=OC,OA′=OC′,∴AA′=CC′,故答案为A A′=CC′;(2)(1)中的结论还成立,AA′=CC′,理由如下:连接AC、A′C′,则AC、A′C′都经过点O,由旋转的性质可知,∠A′OA=∠C′OC ,∵四边形ABCD 和四边形A′B′C′D′都是矩形,∴OA=OC ,OA′=OC′,在△A′OA 和△C′OC 中,{OA OCA OA C OC OA OC =∠=∠'=''',∴△A′OA ≌△C′OC ,∴AA′=CC′;(3)连接AC ,过C 作CE ⊥AB′,交AB′的延长线于E ,∵矩形ABCD ∽矩形A′B′C′D′, ∴AB BC A B B C ='''',即683B C ='', 解得,B′C′=4,∵∠EB′C=∠B′C′C=∠E=90°,∴四边形B′ECC′为矩形,∴EC=B′C′=4,在Rt △ABC 中,22AB BC +=10, 在Rt △AEC 中,22AC CE -21∴21﹣3,又AA′=CC′=B′E ,∴2213-. 【点睛】本题考查的是矩形的性质、旋转变换的性质、全等三角形的判定和性质,掌握旋转变换的性质、矩形的性质是解题的关键.23.(1)255y x x =-+.;(2)点G 坐标为()13,1G -;2931767317,G ⎛⎫+- ⎪ ⎪⎝⎭.(3)261k =-+. 【解析】分析:(1)根据已知列出方程组求解即可;(2)作AM ⊥x 轴,BN ⊥x 轴,垂足分别为M ,N ,求出直线l 的解析式,再分两种情况分别求出G 点坐标即可;(3)根据题意分析得出以AB 为直径的圆与x 轴只有一个交点,且P 为切点,P 为MN 的中点,运用三角形相似建立等量关系列出方程求解即可. 详解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =. ∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==.32MQ =Q ,2NQ ∴=,911,24B ⎛⎫ ⎪⎝⎭, 1,91,24k m k m +=⎧⎪∴⎨+=⎪⎩,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x ∴=+,102D ,⎛⎫ ⎪⎝⎭. 同理,152BC y x =-+. BCD BCG S S ∆∆=Q ,∴①//DG BC (G 在BC 下方),1122DG y x =-+,2115522x x x ∴-+=-+,即22990x x -+=,123,32x x ∴==. 52x >Q ,3x ∴=,()3,1G ∴-. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x ∴=-+,21195522x x x ∴-+=-+,22990x x ∴--=.52x >Q ,x ∴=G ∴⎝⎭.综上所述,点G 坐标为()13,1G -;2G ⎝⎭. (3)由题意可得:1k m +=.1m k ∴=-,11y kx k ∴=+-,2155kx k x x ∴+-=-+,即()2540x k x k -+++=.11x ∴=,24x k =+,()24,31B k k k ∴+++.设AB 的中点为'O , P Q 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ∴⊥轴,P ∴为MN 的中点,5,02k P +⎛⎫∴⎪⎝⎭. AMP PNB ∆∆Q ∽,AM PN PM BN∴=,••AM BN PN PM ∴=, ()2551314122k k k k k ++⎛⎫⎛⎫∴⨯++=+-- ⎪⎪⎝⎭⎝⎭,即23650k k +-=,960∆=>.0k >Q ,1k ∴==-+. 点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键.24.(1)x=1 (2)55928r << (1)3EH EF = 【解析】【分析】(1)作AM ⊥BC 、连接AP ,由等腰梯形性质知BM=4、AM=1,据此知tanB=tanC=34,从而可设PH=1k ,则CH=4k 、PC=5k ,再表示出PA 的长,根据PA=PH 建立关于k 的方程,解之可得;(2)由PH=PE=1k 、CH=4k 、PC=5k 及BC=9知BE=9−8k ,由△ABE ∽△CEH 得=AB CE BE CH,据此求得k 的值,从而得出圆P 的半径,再根据两圆间的位置关系求解可得;(1)在圆P上取点F关于EH的对称点G,连接EG,作PQ⊥EG、HN⊥BC,先证△EPQ≌△PHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC=35、cosC=45,据此得出NC=165k、HN=125k及PN=PC−NC=95k,继而表示出EF、EH的长,从而出答案.【详解】(1)作AM⊥BC于点M,连接AP,如图1,∵梯形ABCD中,AD//BC,且AB=DC=5、AD=1、BC=9,∴BM=4、AM=1,∴tanB=tanC=34,∵PH⊥DC,∴设PH=1k,则CH=4k、PC=5k,∵BC=9,∴PM=BC−BM−PC=5−5k,∴AP2=AM2+PM2=9+(5−5k) 2,∵PA=PH,∴9+(5−5k) 2=9k2,解得:k=1或k=178,当k=178时,CP=5k=858>9,舍去;∴k=1,则圆P的半径为1.(2)如图2,由(1)知,PH=PE=1k、CH=4k、PC=5k,∵BC=9,∴BE=BC−PE−PC=9−8k ,∵△ABE ∽△CEH , ∴=AB CE BE CH ,即=58984k k k- , 解得:k=1316, 则PH=3916 ,即圆P 的半径为3916, ∵圆B 与圆P 相交,且BE=9−8k=52, ∴52<r<598; (1)在圆P 上取点F 关于EH 的对称点G ,连接EG ,作PQ ⊥EG 于G ,HN ⊥BC 于N ,则EG=EF 、∠1=∠1、EQ=QG 、EF=EG=2EQ ,∴∠GEP=2∠1,∵PE=PH ,∴∠1=∠2,∴∠4=∠1+∠2=2∠1,∴∠GEP=∠4,∴△EPQ ≌△PHN ,∴EQ=PN ,由(1)知PH=1k 、HC=4k 、PC=5k ,∴sinC=35 、cosC=45, ∴NC=165k 、HN=125 k , ∴PN=PC−NC=95k , ∴EF=EG=2EQ=2PN=185 k ,22125HN EN + ,∴3EH EF , 故线段EH 和EF 的比值为定值.【点睛】此题考查全等三角形的性质,相似三角形的性质,解直角三角形,勾股定理,解题关键在于作辅助线. 25.(2)1【解析】试题分析:(1)连结OC ,由»FC=»BC ,根据圆周角定理得∠FAC=∠BAC ,而∠OAC=∠OCA ,则∠FAC=∠OCA ,可判断OC ∥AF ,由于CD ⊥AF ,所以OC ⊥CD ,然后根据切线的判定定理得到CD 是⊙O 的切线;(2)连结BC ,由AB 为直径得∠ACB=90°,由»AF =»FC=»BC ,得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt △ADC 中,利用含30°的直角三角形三边的关系得Rt △ACB 中,利用含30°的直角三角形三边的关系得,AB=2BC=8,所以⊙O 的半径为1. 试题解析:(1)证明:连结OC ,如图, ∵»FC=»BC ∴∠FAC=∠BAC∵OA=OC∴∠OAC=∠OCA∴∠FAC=∠OCA∴OC ∥AF∵CD ⊥AF∴OC ⊥CD∴CD 是⊙O 的切线(2)解:连结BC ,如图∵AB 为直径∴∠ACB=90°∵»AF =»FC=»BC ∴∠BOC=13×180°=60° ∴∠BAC=30°∴∠DAC=30°在Rt △ADC 中,CD=23 ∴AC=2CD=13在Rt △ACB 中,BC=33AC=33×13=1 ∴AB=2BC=8∴⊙O 的半径为1. 考点:圆周角定理, 切线的判定定理,30°的直角三角形三边的关系26.x=15,y=1 【解析】 【分析】根据概率的求法:在围棋盒中有x 颗黑色棋子和y 颗白色棋子,共x+y 颗棋子,如果它是黑色棋子的概率是38,有38x x y +=成立.化简可得y 与x 的函数关系式; (2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y 颗棋子,则取得黑色棋子的概率变为12,结合(1)的条件,可得38101102x x y x x y ⎧⎪+⎪⎨+⎪⎪++⎩==,解可得x=15,y=1. 【详解】依题意得,38101102x x y x x y ⎧=⎪+⎪⎨+⎪=⎪++⎩, 化简得,53010x y x y -=⎧⎨-=-⎩, 解得,1525x y =⎧⎨=⎩., 检验当x=15,y=1时,0x y +≠,100x y ++≠,∴x=15,y=1是原方程的解,经检验,符合题意.答:x=15,y=1.【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 27.(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x =+.(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或3(1,2-或3(1,)2-. 【解析】 分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-.(注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+,①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得: 1317t +=2317t -=. 综上所述P 的坐标为()1,2--或()1,4-或317⎛+- ⎝⎭或317⎛-- ⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.。
上海市徐汇区2019-2020学年中考中招适应性测试卷数学试题(5)含解析
上海市徐汇区2019-2020学年中考中招适应性测试卷数学试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.2.如图,是一次函数y=kx+b与反比例函数y=2x的图象,则关于x的不等式kx+b>2x的解集为A.x>1 B.﹣2<x<1C.﹣2<x<0或x>1 D.x<﹣23.下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有( )A.2个B.3个C.4个D.5个4.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()A.50.5~60.5 分B.60.5~70.5 分C.70.5~80.5 分D.80.5~90.5 分5.已知=2{=1x y 是二元一次方程组+=8{=1mx ny nx my -的解,则2m n -的算术平方根为( ) A .±2B .C .2D .46.若分式12x -有意义...,则x 的取值范围是( ) A .2x =;B .2x ≠;C .2x >;D .2x <.7.一个数和它的倒数相等,则这个数是( ) A .1B .0C .±1D .±1和08.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省32400000斤,这些粮食可供9万人吃一年.“32400000”这个数据用科学记数法表示为( )A .532410⨯B .632.410⨯C .73.2410⨯D .80.3210⨯.9.若⊙O 的半径为5cm ,OA=4cm ,则点A 与⊙O 的位置关系是( ) A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外D .内含10.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A -,(2,)B b ,则正方形ABCD 的面积是( )A .13B .20C .25D .3411.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .12.下列图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .菱形C .平行四边形D .正五边形二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.若关于x 的方程2x m2x 22x++=--有增根,则m 的值是 ▲ 14.若反比例函数y=2kx-的图象位于第一、三象限,则正整数k 的值是_____. 15.已知二次函数y=x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).16.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号). 17.因式分解:2m 2﹣8n 2= .18.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为 cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1|.20.(6分)如图1,点D 为正ABC ∆的BC 边上一点(D 不与点,B C 重合),点,E F 分别在边,AB AC 上,且EDF B ∠=∠.(1)求证:~BDE CFD ∆∆;(2)设,BD a CD b ==,BDE ∆的面积为1S ,CDF ∆的面积为2S ,求12S S ⋅(用含,a b 的式子表示); (3)如图2,若点D 为BC 边的中点,求证: 2DF EF FC =⋅.图1 图221.(6分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:排球10 9.5 9.5 10 8 9 9.5 97 10 4 5.5 10 9.5 9.5 10篮球9.5 9 8.5 8.5 10 9.5 10 86 9.5 10 9.5 9 8.5 9.5 6整理、描述数据:按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:项目平均数中位数众数排球8.75 9.5 10篮球8.81 9.25 9.5得出结论:(1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)22.(8分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:观点频数频率A a 0.2B 12 0.24C 8 bD 20 0.4(1)参加本次讨论的学生共有人;表中a=,b=;(2)在扇形统计图中,求D所在扇形的圆心角的度数;(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.23.(8分)某厂按用户的月需求量(件)完成一种产品的生产,其中.每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比.经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据.月份(月) 1 2成本(万元/件) 11 12需求量(件/月) 120 100(1)求与满足的关系式,请说明一件产品的利润能否是12万元;(2)求,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第个月和第个月的利润相差最大,求.24.(10分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:本次调查中,一共调查了位好友.已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?25.(10分)如图,已知抛物线y=13x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC 相似,若存在,求出点Q的坐标,若不存在,请说明理由.26.(12分)如图所示,在△ABC中,AB=CB,以BC为直径的⊙O交AC于点E,过点E作⊙O的切线交AB于点F.(1)求证:EF⊥AB;(2)若AC=16,⊙O的半径是5,求EF的长.27.(12分)计算:2sin60°+|33(π﹣2)0﹣(12)﹣1参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.详解:A.是轴对称图形,也是中心对称图形,故此选项错误;B.不是轴对称图形,也不是中心对称图形,故此选项错误;C.不是轴对称图形,是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.2.C【解析】【分析】根据反比例函数与一次函数在同一坐标系内的图象可直接解答.【详解】观察图象,两函数图象的交点坐标为(1,2),(-2,-1),kx+b>2x的解就是一次函数y=kx+b图象在反比例函数y=2x的图象的上方的时候x的取值范围,由图象可得:-2<x<0或x>1,【点睛】本题考查的是反比例涵数与一次函数图象在同一坐标系中二者的图象之间的关系.一般这种类型的题不要计算反比计算表达式,解不等式,直接从从图象上直接解答.3.C【解析】【分析】根据平方根,数轴,有理数的分类逐一分析即可.【详解】①∵,∴是错误的;②数轴上的点与实数成一一对应关系,故说法正确;③∵=4,故-2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如和是错误的;⑥无理数都是无限小数,故说法正确;故正确的是②③④⑥共4个;故选C.【点睛】本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如等,也有π这样的数.4.C【解析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.C二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,∴2+=8{2=1m nn m-,解得=3{=2mn..即2m n-的算术平方根为1.故选C.6.B【解析】【分析】分式的分母不为零,即x-2≠1.【详解】∵分式12x-有意义...,∴x-2≠1,∴2x≠.故选:B.【点睛】考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.7.C【解析】【分析】根据倒数的定义即可求解.【详解】±1的倒数等于它本身,故C符合题意.故选:C.【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.8.C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】32400000=3.24×107元.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.A【解析】【分析】直接利用点与圆的位置关系进而得出答案.【详解】解:∵⊙O的半径为5cm,OA=4cm,∴点A与⊙O的位置关系是:点A在⊙O内.故选A.【点睛】此题主要考查了点与圆的位置关系,正确①点P在圆外⇔d>r,②点P在圆上⇔d=r,③点P在圆内⇔d<r是解题关键.10.D【解析】作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,2222∴=+=+=,AD AO OD3534=,故选D.∴正方形ABCD的面积是34343411.A【解析】【分析】画出从正面看到的图形即可得到它的主视图.【详解】这个几何体的主视图为:故选:A.【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.12.B【解析】【分析】在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内一个图形绕某个点旋转180°,如果旋转前后的图形能互相重合,那么这个图形叫做中心对称图形,分别判断各选项即可解答.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;B、菱形是轴对称图形,也是中心对称图形,故此选项正确;C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;D、正五边形是轴对称图形,不是中心对称图形,故此选项错误.故选:B.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于1的未知数的值求出x的值,然后代入进行计算即可求出m的值:方程两边都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x-2=1,解得x=2.∴2-2-m=2(2-2),解得m=1.14.1.【解析】【分析】由反比例函数的性质列出不等式,解出k的范围,在这个范围写出k的整数解则可.解:∵反比例函数的图象在一、三象限,∴2﹣k>0,即k<2.又∵k是正整数,∴k的值是:1.故答案为:1.【点睛】本题考查了反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.15.增大.【解析】【分析】根据二次函数的增减性可求得答案【详解】∵二次函数y=x2的对称轴是y轴,开口方向向上,∴当y随x的增大而增大.故答案为:增大.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.16.②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A 种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.17.2(m+2n)(m﹣2n).试题分析:根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解.解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).考点:提公因式法与公式法的综合运用.18.8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可解:∵DE是BC的垂直平分线,∴BD=CD,∴AB=AD+BD=AD+CD,∴△ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.【解析】【分析】根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解.【详解】⨯1原式=22=1【点睛】本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键.20.(1)详见解析;(1)详见解析;(3)详见解析.【解析】【分析】(1)根据两角对应相等的两个三角形相似即可判断;(1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,S1=12•BD•EG=12•BD•EG=12•a•BE•sin60°=3•a•BE,S1=12•CD•FH=3•b•CF,可得S1•S1=316ab•BE•CF,由(1)得△BDE∽△CFD,BD FCBE CD=,即BE•FC=BD•CD=ab,即可推出S1•S1=316a1b1;(3)想办法证明△DFE∽△CFD,推出EF DFDF FC=,即DF1=EF•FC;【详解】(1)证明:如图1中,在△BDE中,∠BDE+∠DEB+∠B=180°,又∠BDE+∠EDF+∠FDC=180°,∴∠BDE+∠DEB+∠B=∠BDE+∠EDF+∠FDC,∵∠EDF=∠B,∴∠DEB=∠FDC,又∠B=∠C,∴△BDE∽△CFD.(1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,S1=12•BD•EG=12•BD•EG=12•a•BE•sin60°=34•a•BE,S1=12•CD•FH=34•b•CF,∴S1•S1=316ab•BE•CF由(1)得△BDE∽△CFD,∴BD FCBE CD=,即BE•FC=BD•CD=ab,∴S1•S1=316a1b1.(3)由(1)得△BDE∽△CFD,∴BD FC BE CD=,又BD=CD,∴CD FC DE DF=,又∠EDF=∠C=60°,∴△DFE∽△CFD,∴F DFDF FC=,即DF1=EF•FC.【点睛】本题考查了相似形综合题、等边三角形的性质、相似三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找相似三角形的相似的条件.21.130 小明平均数接近,而排球成绩的中位数和众数都较高.【解析】【分析】()1根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;()2根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.【详解】解:补全表格成绩:()1达到优秀的人数约为16013016⨯=(人);故答案为130;()2同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高.(答案不唯一,理由需支持判断结论)故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.【点睛】本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.22.(1)50、10、0.16;(2)144°;(3)1 2 .【解析】【分析】(1)由B观点的人数和所占的频率即可求出总人数;由总人数即可求出a、b的值,(2)用360°乘以D观点的频率即可得;(3)画出树状图,然后根据概率公式列式计算即可得解【详解】解:(1)参加本次讨论的学生共有12÷0.24=50,则a=50×0.2=10,b=8÷50=0.16,故答案为50、10、0.16;(2)D所在扇形的圆心角的度数为360°×0.4=144°;(3)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率为61 122.【点睛】此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.23.(1),不可能;(2)不存在;(3)1或11.【解析】试题分析:(1)根据每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,结合表格,用待定系数法求y与x之间的函数关系式,再列方程求解,检验所得结果是还符合题意;(2)将表格中的n,对应的x值,代入到,求出k,根据某个月既无盈利也不亏损,得到一个关于n的一元二次方程,判断根的情况;(3)用含m的代数式表示出第m个月,第(m+1)个月的利润,再对它们的差的情况讨论.试题解析:(1)由题意设,由表中数据,得解得∴.由题意,若,则.∵x>0,∴.∴不可能.(2)将n=1,x=120代入,得120=2-2k+9k+27.解得k=13.将n=2,x=100代入也符合.∴k=13.由题意,得18=6+,求得x=50.∴50=,即.∵,∴方程无实数根.∴不存在.(3)第m个月的利润为w==;∴第(m+1)个月的利润为W′=.若W≥W′,W-W′=48(6-m),m取最小1,W-W′=240最大.若W<W′,W′-W=48(m-6),m+1≤12,m取最大11,W′-W=240最大.∴m=1或11.考点:待定系数法,一元二次方程根的判别式,二次函数的性质,二次函数的应用. 24.(1)30;(2)①补图见解析;②120;③70人.【解析】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为:30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A 类人数为10、D 类人数为2, 补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°, 故答案为:120;③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230=70人. 点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据. 25. (1) 抛物线的解析式为y=13x 2-2x+1,(2) 四边形AECP 的面积的最大值是814,点P (92,﹣54);(3) Q (4,1)或(-3,1). 【解析】 【分析】(1)把点A ,B 的坐标代入抛物线的解析式中,求b ,c ;(2)设P(m ,13m 2−2m +1),根据S 四边形AECP =S △AEC +S △APC ,把S 四边形AECP 用含m 式子表示,根据二次函数的性质求解;(3)设Q(t ,1),分别求出点A ,B ,C ,P 的坐标,求出AB ,BC ,CA ;用含t 的式子表示出PQ ,CQ ,判断出∠BAC =∠PCA =45°,则要分两种情况讨论,根据相似三角形的对应边成比例求t. 【详解】解:(1)将A(0,1),B(9,10)代入函数解析式得:13×81+9b +c =10,c =1,解得b =−2,c =1, 所以抛物线的解析式y =13x 2−2x +1;(2)∵AC ∥x 轴,A(0,1), ∴13x 2−2x +1=1,解得x 1=6,x 2=0(舍),即C 点坐标为(6,1), ∵点A(0,1),点B(9,10),∴直线AB的解析式为y=x+1,设P(m,13m2−2m+1),∴E(m,m+1),∴PE=m+1−(13m2−2m+1)=−13m2+3m.∵AC⊥PE,AC=6,∴S四边形AECP=S△AEC+S△APC=12AC⋅EF+12AC⋅PF=12AC⋅(EF+PF)=12AC⋅EP=12×6(−13m2+3m)=−m2+9m.∵0<m<6,∴当m=92时,四边形AECP的面积最大值是814,此时P(9524,);(3)∵y=13x2−2x+1=13(x−3)2−2,P(3,−2),PF=y F−y p=3,CF=x F−x C=3,∴PF=CF,∴∠PCF=45∘,同理可得∠EAF=45∘,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的点Q,设Q(t,1)且AB=92,AC=6,CP=32,∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,CQ:AC=CP:AB,(6−t):6=32:92,解得t=4,所以Q(4,1);②当△CQP∽△ABC时,CQ:AB=CP:AC,(6−t):9232:=6,解得t=−3,所以Q(−3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与△ABC 相似,Q点的坐标为(4,1)或(−3,1).【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,平行于坐标轴的直线上两点间的距离是较大的坐标减较小的坐标;解(3)的关键是利用相似三角形的性质的出关于CQ的比例,要分类讨论,以防遗漏.26.(1)证明见解析;(2) 4.8.【解析】【分析】(1)连结OE,根据等腰三角形的性质可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,两直线平行即可判定OE∥AB,又因EF是⊙O的切线,根据切线的性质可得EF⊥OE,由此即可证得EF⊥AB;(2)连结BE,根据直径所对的圆周角为直角可得,∠BEC=90°,再由等腰三角形三线合一的性质求得AE=EC =8,在Rt△BEC中,根据勾股定理求的BE=6,再由△ABE的面积=△BEC的面积,根据直角三角形面积的两种表示法可得8×6=10×EF,由此即可求得EF=4.8.【详解】(1)证明:连结OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切线,∴EF⊥OE,∴EF⊥AB.(2)连结BE.∵BC是⊙O的直径,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面积=△BEC的面积,即8×6=10×EF,∴EF=4.8.【点睛】本题考查了切线的性质定理、圆周角定理、等腰三角形的性质与判定、勾股定理及直角三角形的两种面积求法等知识点,熟练运算这些知识是解决问题的关键.27.1【解析】【分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.【详解】原式=1×32+33+1﹣1=1.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.。
上海市徐汇区2019-2020学年中考中招适应性测试卷数学试题(1)含解析
上海市徐汇区2019-2020学年中考中招适应性测试卷数学试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A.16cm B.20cm C.24cm D.28cm2.将一把直尺与一块三角板如图所示放置,若140∠=︒则∠2的度数为( )A.50°B.110°C.130°D.150°3.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,弦2CD=.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A.19B.29C.23D.134.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )A.60海里B.45海里C.3D.3海里5.已知一次函数y=kx+b 的大致图象如图所示,则关于x 的一元二次方程x2﹣2x+kb+1=0 的根的情况是( )A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个根是06.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为()A.5B.51-C.12D.17.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于()A.2 B.3 C.23D.328.下列运算中正确的是( )A.x2÷x8=x−6B.a·a2=a2C.(a2)3=a5D.(3a)3=9a3 9.4-的相反数是()A.4 B.4-C.14-D.1410.下列事件中,必然事件是()A.抛掷一枚硬币,正面朝上B.打开电视,正在播放广告C.体育课上,小刚跑完1000米所用时间为1分钟D .袋中只有4个球,且都是红球,任意摸出一球是红球11.如图所示是放置在正方形网格中的一个ABC ∆ ,则tan ABC ∠的值为( )A .255B .55C .2D .1212.如图是一个正方体展开图,把展开图折叠成正方体后,“爱”字一面相对面上的字是( )A .美B .丽C .泗D .阳 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将点P (﹣1,3)绕原点顺时针旋转180°后坐标变为_____.14.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____. 15.如图,CD 是⊙O 直径,AB 是弦,若CD ⊥AB ,∠BCD=25°,则∠AOD=_____°.16.计算5个数据的方差时,得s 2=15[(5﹣x )2+(8﹣x )2+(7﹣x )2+(4﹣x )2+(6﹣x )2],则x 的值为_____. 17.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m .水面下降2.5m ,水面宽度增加_____m .18.如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC 、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE , 连结 DE , 则 DE 长的最小值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+,则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744 0737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值.20.(6分)解方程:3x 2﹣2x ﹣2=1.21.(6分)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB ,现决定从小岛架一座与观光小道垂直的小桥PD ,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.1°,∠PBA=26.1.请帮助小张求出小桥PD 的长并确定小桥在小道上的位置.(以A ,B 为参照点,结果精确到0.1米)(参考数据:sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)22.(8分)先化简,再求值:(1﹣11a+)÷221aa-,其中a=﹣1.23.(8分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.(1)求证:DE是⊙O的切线;(2)求EF的长.24.(10分)如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.(1)求证:四边形ABCD是平行四边形;(2)若AB=BE=2,sin∠ACD=32,求四边形ABCD的面积.25.(10分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.如图1,当点E在边BC上时,求证DE=EB;如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH =1.求CG的长.26.(12分)在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=12∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=55,AB=10,求BP的长.27.(12分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)这组数据的中位数是,众数是;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.【详解】∵长方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵长方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,AD=2222--=24(cm).AF DF=257故选C.【点睛】本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.2.C【解析】【分析】如图,根据长方形的性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【详解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键.3.D【解析】【分析】连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.解:如图,连接OC 、OD 、BD ,∵点C 、D 是半圆O 的三等分点,∴»»»==AC CDDB , ∴∠AOC=∠COD=∠DOB=60°,∵OC=OD ,∴△COD 是等边三角形,∴OC=OD=CD ,∵2CD =,∴2OC OD CD ===,∵OB=OD ,∴△BOD 是等边三角形,则∠ODB=60°,∴∠ODB=∠COD=60°,∴OC ∥BD ,∴=V V BCD BOD S S ,∴S 阴影=S 扇形OBD 226060223603603πππ⋅⨯===OD , S 半圆O 222222πππ⋅⨯===OD , 飞镖落在阴影区域的概率21233ππ=÷=, 故选:D .【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.4.D【解析】【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP 的长,求出答案.解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:=故选:D.【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.5.A【解析】【分析】判断根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.【详解】∵一次函数y=kx+b的图像经过第一、三、四象限∴k>0,b<0∴△=b2−4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x2﹣2x+kb+1=0有两个不等的实数根,故选A.【点睛】根的判别式6.B【解析】分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.详解:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,=,∴CP=QC-,故选B.点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.7.A【解析】分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E ∽△DAB 知2A DE ABDS A D AD S ''=V V (),据此求解可得. 详解:如图,∵S △ABC =9、S △A′EF =1,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB , 则2A DE ABD S A D AD S ''=V V (),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.8.A【解析】【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【详解】解:A 、x 2÷x 8=x -6,故该选项正确; B 、a•a 2=a 3,故该选项错误;C 、(a 2)3=a 6,故该选项错误;D 、(3a )3=27a 3,故该选项错误;故选A .此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则.9.A【解析】【分析】直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,则1的绝对值是1.故选A.【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.10.D【解析】试题解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;B. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;C. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;D. 袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.故选D.点睛:事件分为确定事件和不确定事件.必然事件和不可能事件叫做确定事件.11.D【解析】【分析】首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.【详解】解:过点A向CB引垂线,与CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=2142 ADBD==此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.12.D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”字一面相对面上的字是“阳”;故本题答案为:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(1,﹣3)【解析】【分析】画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.【详解】如图所示:点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).故答案是:(1,-3).【点睛】考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.14.m>-1首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-=+⎧⎨+=⎩①②,①+②得1x+1y=1m+4,则x+y=m+1,根据题意得m+1>0,解得m>﹣1.故答案是:m>﹣1.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.15.50【解析】【分析】由CD是⊙O的直径,弦AB⊥CD,根据垂径定理的即可求得»AD=»BD,又由圆周角定理,可得∠AOD=50°.【详解】∵CD是⊙O的直径,弦AB⊥CD,∴»AD=»BD,∵∠BCD=25°=,∴∠AOD=2∠BCD=50°,故答案为50【点睛】本题考查角度的求解,解题的关键是利用垂径定理.16.1【解析】【分析】根据平均数的定义计算即可.解:5874665x++++==故答案为1.【点睛】本题主要考查平均数的求法,掌握平均数的公式是解题的关键.17.1.【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O 为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,∴抛物线解析式为y=-0.5x1+1,当水面下降1.5米,通过抛物线在图上的观察可转化为:当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1.5代入抛物线解析式得出:-1.5=-0.5x1+1,解得:x=±3,1×3-4=1,所以水面下降1.5m,水面宽度增加1米.故答案为1.【点睛】本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.18.2【解析】 试题分析:由题意得,;C 为AB 上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE ,AD=CD ;CE=BE ;由勾股定理得,解得;而AC+BC=AB=4,,∵=16;,∴,,得出考点:不等式的性质 点评:本题考查不等式的性质,会用勾股定理,完全平方公式,不等关系等知识,它们是解决本题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)3;(2)1312n +-;(3)1218,95N N == 【解析】【分析】()1设塔的顶层共有x 盏灯,根据题意列出方程,进行解答即可.()2参照题目中的解题方法进行计算即可.()3由题意求得数列的每一项,及前n 项和S n =2n+1-2-n ,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n 消去即可,分别分别即可求得N 的值【详解】()1设塔的顶层共有x 盏灯,由题意得01234562222222381x x x x x x x ++++++=.解得3x =,∴顶层共有3盏灯.()2设13927...3n S =+++++,133927...,33n n S +=+++++()()133927...3313927...3n n n S S +∴-=++++-++++++,即:1231,n S +=-1312n S +-=. 即13113927...3.2n n+-+++++= ()3由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n 项,根据等比数列前n 项和公式,求得每项和分别为:12321,21,21,,21n ---⋯-,每项含有的项数为:1,2,3,…,n , 总共的项数为1(1)232n n N n +=+++⋯+=, 所有项数的和为123:21212121,n n S -+-+-+⋯+-()1232222,n n =+++⋯+-()221,21n n -=--122n n +=--,由题意可知:12n +为2的整数幂,只需将−2−n 消去即可,则①1+2+(−2−n)=0,解得:n=1,总共有()111232+⨯+=,不满足N>10, ②1+2+4+(−2−n)=0,解得:n=5,总共有()1553182+⨯+=, 满足:10100N <<, ③1+2+4+8+(−2−n)=0,解得:n=13,总共有()113134952+⨯+=, 满足:10100N <<, ④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有()1292954402+⨯+=, 不满足100N <, ∴1218,95N N ==【点睛】 考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.20.12x x == 【解析】【分析】先找出a ,b ,c ,再求出b 2-4ac=28,根据公式即可求出答案.【详解】解:x即12x x ==∴原方程的解为12x x ==. 【点睛】本题考查对解一元二次方程-提公因式法、公式法,因式分解法等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.21.49.2米【解析】【分析】设PD=x 米,在Rt △PAD 中表示出AD ,在Rt △PDB 中表示出BD ,再由AB=80.0米,可得出方程,解出即可得出PD 的长度,继而也可确定小桥在小道上的位置.【详解】解:设PD=x 米,∵PD ⊥AB ,∴∠ADP=∠BDP=90°.在Rt △PAD 中,x tan PAD AD ∠=,∴x x 5AD x tan38.50.804===︒. 在Rt △PBD 中,x tan PBD DB ∠=,∴x x DB 2x tan26.50.50===︒. 又∵AB=80.0米,∴5x 2x 80.04+=,解得:x≈24.6,即PD≈24.6米. ∴DB=2x=49.2米.答:小桥PD 的长度约为24.6米,位于AB 之间距B 点约49.2米.22.原式=12a -=﹣2. 【解析】分析:原式利用分式混合运算顺序和运算法则化简,再将a 的值代入计算可得.详解:原式=112()+11(1)(1)a a a a a a +-÷++- =(1)(1)·12a a a a a+-+ =12a -, 当a=﹣1时,原式=312--=﹣2.点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.23.(1)见解析;(2) 33 2.【解析】【分析】(1)连接OD,根据切线的判定方法即可求出答案;(2)由于OD∥AC,点O是AB的中点,从而可知OD为△ABC的中位线,在Rt△CDE中,∠C=60°,CE=12CD=1,所以AE=AC−CE=4−1=3,在Rt△AEF中,所以EF=AE•sinA=3×sin60°=33.【详解】(1)连接OD,∵△ABC是等边三角形,∴∠C=∠A=∠B=60°,∵OD=OB,∴△ODB是等边三角形,∴∠ODB=60°∴∠ODB=∠C,∴OD∥AC,∴DE⊥AC∴OD⊥DE,∴DE是⊙O的切线(2)∵OD∥AC,点O是AB的中点,∴OD为△ABC的中位线,∴BD=CD=2在Rt△CDE中,∠C=60°,∴∠CDE=30°,∴CE=12CD=1 ∴AE=AC ﹣CE=4﹣1=3在Rt △AEF 中,∠A=60°,∴ 【点睛】本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型.24.(1)证明见解析;(2)S 平行四边形ABCD .【解析】试题分析:(1)根据平行四边形的性质得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根据平行线的判定得出AD ∥BC ,根据平行四边形的判定推出即可;(2)证明△ABE 是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE 和DE ,得出AC 的长,即可求出四边形ABCD 的面积.试题解析:(1)∵AB ∥CD ,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC ,∴∠ADC+∠BCD=180°,∴AD ∥BC ,∵AB ∥CD ,∴四边形ABCD 是平行四边形;(2)∵sin ∠ACD=60°, ∵四边形ABCD 是平行四边形,∴AB ∥CD ,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE 是等边三角形,∴AE=AB=2,∵DE ⊥AC ,∴∠CDE=90°﹣60°=30°,∴CE=12CD=1,∴AC=AE+CE=3,∴S 平行四边形ABCD =2S △ACD25.(1)证明见解析;(2)ED=EB ,证明见解析;(1)CG=2.【解析】【分析】(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE ;(2)、取AB 的中点O ,连接CO 、EO ,根据△ACO 和△CDE 为等边三角形,从而得出△ACD 和△OCE 全等,然后得出△COE 和△BOE 全等,从而得出答案;(1)、取AB 的中点O ,连接CO 、EO 、EB ,根据题意得出△COE 和△BOE 全等,然后得出△CEG 和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.【详解】(1)∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2) ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.26.(1)证明见解析;(2)40 3【解析】【分析】(1)连接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可.【详解】解:(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=12∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=12∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切线;(2)∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠=BDAB,AB=10,∴∴∵由三角形面积公式得:AD×BC=BE×AC,∴10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴BEPB=AEAB,∴PB=AB BEAE⨯=1086⨯=403.【点睛】本题考查了切线的判定、圆周角定理、勾股定理、解直角三角形、相似三角形的性质和判定等知识点,能综合运用性质定理进行推理是解此题的关键.27.(1) 7、7和8;(2)见解析;(3)第一次调查时,平均每天的非机动车逆向行驶的次数3次【解析】【分析】(1)将数据按照从下到大的顺序重新排列,再根据中位数和众数的定义解答可得;(2)根据折线图确定逆向行驶7次的天数,从而补全直方图;(3)利用加权平均数公式求得违章的平均次数,从而求解.【详解】解:(1)∵被抽查的数据重新排列为:5、5、6、7、7、7、8、8、8、9,∴中位数为7+72=7,众数是7和8,故答案为:7、7和8;(2)补全图形如下:(3)∵第一次调查时,平均每天的非机动车逆向行驶的次数为52+73+83+910⨯⨯⨯=7(次),∴第一次调查时,平均每天的非机动车逆向行驶的次数3次.【点睛】本题考查的是条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.。
上海市徐汇区2019-2020学年中考中招适应性测试卷数学试题(3)含解析
上海市徐汇区2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图不变,左视图不变B.左视图改变,俯视图改变C.主视图改变,俯视图改变D.俯视图不变,左视图改变2.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3D.x=33.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有()A.1种B.2种C.3种D.6种4.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°5.“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件6.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A.12B.2C3D37.PM2.5是指大气中直径小于或等于2.5μm (1μm=0.000001m )的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( ) A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯8.运用乘法公式计算(3﹣a )(a+3)的结果是( ) A .a 2﹣6a+9B .a 2﹣9C .9﹣a 2D .a 2﹣3a+99.如图所示的四张扑克牌背面完全相同,洗匀后背面朝上,则从中任意翻开一张,牌面数字是 3 的倍数的概率为( )A .14B .13C .12D .3410.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .11.下列四个函数图象中,当x<0时,函数值y 随自变量x 的增大而减小的是( )A .B .C .D .12.如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x 的一元二次方程()2k 1x 4x 10-++=有两个不相等的实数根,则k 的取值范围是______.14.如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为»BC的中点,P是直径AB上一动点,则PC+PD的最小值为________.15.尺规作图:过直线外一点作已知直线的平行线.已知:如图,直线l与直线l外一点P.求作:过点P与直线l平行的直线.作法如下:(1)在直线l上任取两点A、B,连接AP、BP;(2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;(3)过点P、M作直线;(4)直线PM即为所求.请回答:PM平行于l的依据是_____.16.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么AFAG的值为__________.17.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC =3,则AE=_____.18.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB 的长为23,则a的值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)综合与实践﹣猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合.同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为:;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…小丽:连接AF,图中出现新的等腰三角形,如△AFB,…小凯:不妨设图中不断变化的角∠BAF的度数为n,并设法用n表示图中的一些角,可证明结论.请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发现线段CG∥DF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,∠ABC=α,其余条件不变,请探究∠DFG 的度数,并直接写出结果(用含α的式子表示).20.(6分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.21.(6分)已知,如图所示直线y=kx+2(k≠0)与反比例函数y=mx(m≠0)分别交于点P,与y轴、x轴分别交于点A和点B,且cos∠ABO=5,过P点作x轴的垂线交于点C,连接AC,(1)求一次函数的解析式.(2)若AC是△PCB的中线,求反比例函数的关系式.22.(8分)如图,现有一块钢板余料ABCED,它是矩形缺了一角,90,6,10,A B D AB dm AD dm∠=∠=∠=︒==4,2BC dm ED dm==.王师傅准备从这块余料中裁出一个矩形AFPQ(P为线段CE上一动点).设AF x=,矩形AFPQ的面积为y.(1)求y与x之间的函数关系式,并注明x的取值范围;(2)x为何值时,y取最大值?最大值是多少?23.(8分)已知,关于x 的方程x 2﹣mx+14m 2﹣1=0, (1)不解方程,判断此方程根的情况;(2)若x =2是该方程的一个根,求m 的值.24.(10分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人? (2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?25.(10分)如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.26.(12分)三辆汽车经过某收费站下高速时,在2个收费通道A ,B 中,可随机选择其中的一个通过. (1)三辆汽车经过此收费站时,都选择A 通道通过的概率是 ;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.27.(12分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分的学生成绩进行统计,绘制统计图如图(不完整).类别分数段A 50.5~60.5B 60.5~70.5C 70.5~80.5D 80.5~90.5E 90.5~100.5请你根据上面的信息,解答下列问题.(1)若A组的频数比B组小24,求频数直方图中的a,b的值;(2)在扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数直方图;(3)若成绩在80分以上为优秀,全校共有2 000名学生,估计成绩优秀的学生有多少名?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】分别得到将正方体①移走前后的三视图,依此即可作出判断.【详解】将正方体①移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体①移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市徐汇区2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.观察下列图案,是轴对称而不是中心对称的是()A.B.C.D.2.下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查3.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣64.二元一次方程组632x yx y+=⎧⎨-=-⎩的解是()A.51xy=⎧⎨=⎩B.42xy=⎧⎨=⎩C.51xy=-⎧⎨=-⎩D.42xy=-⎧⎨=-⎩5.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个6.计算(x-2)(x+5)的结果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-107.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A .(2017,0)B .(2017,12)C .(2018,3)D .(2018,0)8.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3xB .由,得2x ﹣2﹣x =﹣4C .由,得2y-15=3yD .由,得3(y+1)=2y+69.下列四个图案中,不是轴对称图案的是( )A .B .C .D .10.如图,等腰直角三角形ABC 位于第一象限,2AB AC ==,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与ABC △有交点,则k 的取值范围是( ).A .12k <<B .13k ≤≤C .14k ≤<D .14k ≤≤11.抛物线y =x 2+2x +3的对称轴是( )A .直线x =1B .直线x =-1C .直线x =-2D .直线x =212.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C ..D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系xOy 中,点A 的坐标为A(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC=90°,点B 在点A 的右侧,点C 在第一象限。
将△ABC 绕点A 逆时针旋转75°,如果点C 的对应点E 恰好落在y 轴的正半轴上,那么边AB 的长为____.14.计算12-3的结果是______.15.已知b 是a ,c 的比例中项,若a=4,c=16,则b=________.16.已知二次函数2y ax bx c =++的图象如图所示,若方程2ax bx c k ++=有两个不相等的实数根,则k的取值范围是_____________.17.点A 到⊙O 的最小距离为1,最大距离为3,则⊙O 的半径长为_____.18.因式分解:9a 3b ﹣ab =_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?20.(6分)(8分)如图,在平面直角坐标系中,O 为原点,直线AB 分别与x 轴、y 轴交于B 和A ,与反比例函数的图象交于C 、D ,CE ⊥x 轴于点E ,tan ∠ABO=12,OB=4,OE=1.(1)求直线AB和反比例函数的解析式;(1)求△OCD的面积.21.(6分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于12EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.22.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?23.(8分)计算:-2-2 - 12+2 1sin60π3⎛⎫-︒+-⎪⎝⎭24.(10分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.求证:FC∥AB.25.(10分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=3(0)xxf的图象交于A(1,m)、B(n,1)两点.(1)求直线AB的解析式;(2)根据图象写出当y1>y2时,x的取值范围;(3)若点P在y轴上,求PA+PB的最小值.26.(12分)如图,AB为⊙O的直径,点E在⊙O上,C为»BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若AD=2,AC=6,求AB的长.27.(12分)已知,关于x的一元二次方程(k﹣1)x22k=0 有实数根,求k的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、是轴对称图形,也是中心对称图形,故本选项不符合题意.故选A.点睛:在同一平面内,如果把一个图形绕某一点旋转180o,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做对称中心.2.D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.由此,对各选项进行辨析即可.【详解】A 、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B 、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C 、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D 、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确; 故选D .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.D【解析】【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).【详解】解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而60.0000025 2.510-=⨯. 故选D .4.B【解析】【分析】利用加减消元法解二元一次方程组即可得出答案【详解】解:①﹣②得到y =2,把y =2代入①得到x =4,∴42x y =⎧⎨=⎩, 故选:B .此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.C【解析】【分析】分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.【详解】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.6.C【解析】【分析】根据多项式乘以多项式的法则进行计算即可.【详解】故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.7.C【解析】【分析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为23F滚动7次时的横坐标为8,纵坐标为3,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为2,纵坐标为3,点F滚动7次时的横坐标为8,纵坐标为3,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为3,∴点F滚动2107次时的坐标为(2018,3),故选C.【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.8.D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.9.B【解析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A 、是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项正确;C 、是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项错误.故选:B .【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.10.D【解析】设直线y=x 与BC 交于E 点,分别过A 、E 两点作x 轴的垂线,垂足为D 、F ,则A (1,1),而AB=AC=2,则B (3,1),△ABC 为等腰直角三角形,E 为BC 的中点,由中点坐标公式求E 点坐标,当双曲线与△ABC 有唯一交点时,这个交点分别为A 、E ,由此可求出k 的取值范围.解:∵2AC BC ==,90CAB ∠=︒.()1,1A .又∵y x =过点A ,交BC 于点E ,∴2EF ED ==, ∴()2,2E ,∴14k ≤≤.故选D.11.B【解析】【分析】 根据抛物线的对称轴公式:2b x a =-计算即可. 【详解】解:抛物线y =x 2+2x +3的对称轴是直线2121x =-=-⨯ 故选B .此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.12.B【解析】试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:A 、不是轴对称图形,是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、不是轴对称图形,也不是中心对称图形,不符合题意;D 、是轴对称图形,不是中心对称图形,不符合题意.故选B .考点:轴对称图形和中心对称图形二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2 【解析】【分析】依据旋转的性质,即可得到60OAE ∠=︒,再根据1OA =,90EOA ∠=︒,即可得出2AE =,2AC =.最后在Rt ABC ∆中,可得到2AB BC ==. 【详解】依题可知,45BAC ∠=︒,75CAE ∠=︒,AC AE =,∴60OAE ∠=︒,在Rt AOE ∆中,1OA =,90EOA ∠=︒,60OAE ∠=︒,2AE ∴=,2AC ∴=.∴在Rt ABC ∆中,2AB BC ==.故答案为:2.【点睛】本题考查了坐标与图形变化,等腰直角三角形的性质以及含30°角的直角三角形的综合运用,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.14. 【解析】【分析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.==【点睛】考点:二次根式的加减法.15.±8【解析】【分析】根据比例中项的定义即可求解.【详解】∵b 是a ,c 的比例中项,若a=4,c=16,∴b 2=ac=4×16=64,∴b=±8,故答案为±8 【点睛】此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a ∶b=b ∶c 或=a b b c,那么线段b 叫做线段a 、c 的比例中项.16.5k <【解析】分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可.详解:由图象可知:二次函数y=ax 2+bx+c 的顶点坐标为(1,1), ∴244ac b a -=1,即b 2-4ac=-20a , ∵ax 2+bx+c=k 有两个不相等的实数根,∴方程ax 2+bx+c-k=0的判别式△>0,即b 2-4a (c-k )=b 2-4ac+4ak=-20a+4ak=-4a (1-k )>0∵抛物线开口向下∴a <0∴1-k >0∴k <1.故答案为k <1.点睛:本题主要考查了抛物线与x 轴的交点问题,以及数形结合法;二次函数中当b 2-4ac >0时,二次函数y=ax 2+bx+c 的图象与x 轴有两个交点.17.1或2【解析】分类讨论:点在圆内,点在圆外,根据线段的和差,可得直径,根据圆的性质,可得答案.【详解】点在圆内,圆的直径为1+3=4,圆的半径为2;点在圆外,圆的直径为3−1=2,圆的半径为1,故答案为1或2.【点睛】本题考查点与圆的位置关系,关键是分类讨论:点在圆内,点在圆外.18.ab(3a+1)(3a-1).【解析】试题分析:原式提取公因式后,利用平方差公式分解即可.试题解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).考点: 提公因式法与公式法的综合运用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.客房8间,房客63人【解析】【分析】设该店有x间客房,以人数相等为等量关系列出方程即可.【详解】设该店有x间客房,则7799x x+=-解得8x=7778763x+=⨯+=答:该店有客房8间,房客63人.【点睛】本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键.20.(1)122y x=-+,6yx=-;(1)2.【解析】试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;(1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.试题解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x轴于点E,tan∠ABO=AO CEBO BE==12,∴OA=1,CE=3,∴点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(﹣1,3),设直线AB的解析式为y kx b =+,则240b k b =⎧⎨+=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,故直线AB 的解析式为122y x =-+,设反比例函数的解析式为m y x =(0m ≠),将点C 的坐标代入,得3=2m -,∴m=﹣3.∴该反比例函数的解析式为6y x=-; (1)联立反比例函数的解析式和直线AB 的解析式可得6122y x y x ⎧=-⎪⎪⎨⎪=-+⎪⎩,可得交点D 的坐标为(3,﹣1),则△BOD 的面积=4×1÷1=1,△BOD 的面积=4×3÷1=3,故△OCD 的面积为1+3=2.考点:反比例函数与一次函数的交点问题.21.∠CMA =35°.【解析】【分析】根据两直线平行,同旁内角互补得出70CAB ∠=︒,再根据AM 是CAB ∠的平分线,即可得出MAB ∠的度数,再由两直线平行,内错角相等即可得出结论.【详解】∵AB ∥CD ,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,AM 是CAB ∠的平分线,∴1352MAB CAB ∠=∠=︒. 又∵AB ∥CD ,∴∠CMA=∠BAM=35°.【点睛】本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.22.(1)4元或6元;(2)九折.【解析】【详解】解:(1)设每千克核桃应降价x 元.根据题意,得(60﹣x ﹣40)(100+x 2×20)=2240, 化简,得 x 2﹣10x+24=0,解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元.此时,售价为:60﹣6=54(元),54100%=90%60⨯. 答:该店应按原售价的九折出售.23. 742-【解析】【分析】 直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案.【详解】解:原式=171144--+=-【点睛】本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.24.答案见解析【解析】【分析】利用已知条件容易证明△ADE ≌△CFE ,得出角相等,然后利用平行线的判定可以证明FC ∥AB .【详解】解:∵E 是AC 的中点,∴AE=CE .在△ADE 与△CFE 中,∵AE=EC ,∠AED=∠CEF ,DE=EF ,∴△ADE ≌△CFE (SAS ),∴∠EAD=∠ECF ,∴FC ∥AB .【点睛】本题主要考查了全等三角形的性质与判定,平行线的判定定理.通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用.25.(1)y=﹣x+4;(2)1<x <1;(1)【解析】【分析】(1)依据反比例函数y 2=3x(x >0)的图象交于A (1,m )、B (n ,1)两点,即可得到A (1,1)、B (1,1),代入一次函数y 1=kx+b ,可得直线AB 的解析式;(2)当1<x <1时,正比例函数图象在反比例函数图象的上方,即可得到当y 1>y 2时,x 的取值范围是1<x <1;(1)作点A 关于y 轴的对称点C ,连接BC 交y 轴于点P ,则PA+PB 的最小值等于BC 的长,利用勾股定理即可得到BC 的长.【详解】(1)A (1,m )、B (n ,1)两点坐标分别代入反比例函数y 2=3x(x >0),可得 m=1,n=1,∴A (1,1)、B (1,1),把A (1,1)、B (1,1)代入一次函数y 1=kx+b ,可得 313k b k b +⎧⎨+⎩==,解得14k b -⎧⎨⎩==, ∴直线AB 的解析式为y=-x+4;(2)观察函数图象,发现:当1<x <1时,正比例函数图象在反比例函数图象的上方,∴当y 1>y 2时,x 的取值范围是1<x <1.(1)如图,作点A 关于y 轴的对称点C ,连接BC 交y 轴于点P ,则PA+PB 的最小值等于BC 的长, 过C 作y 轴的平行线,过B 作x 轴的平行线,交于点D ,则Rt △BCD 中,22222425CD BD +=+=∴PA+PB 的最小值为5【点睛】本题考查的是反比例函数与一次函数的交点问题,根据函数图象的上下位置关系结合交点的横坐标,得出不等式的取值范围是解答此题的关键.26.(1)证明见解析(2)3【解析】【分析】(1)连接OC ,由C 为BE ∧的中点,得到12∠=∠,等量代换得到2ACO ∠=∠,根据平行线的性质得到OC CD ⊥,即可得到结论;(2)连接CE ,由勾股定理得到222CD AC AD =-2CD AD DE =⋅,根据勾股定理得到223CE CD DE =+=,由圆周角定理得到90ACB ∠=︒,即可得到结论.【详解】()1相切,连接OC ,∵C 为¶BE的中点, ∴12∠=∠,∵OA OC =,∴1ACO ∠=∠,∴2ACO ∠=∠,∴//AD OC ,∵CD AD ⊥,∴OC CD ⊥,∴直线CD 与O e 相切;()2方法1:连接CE ,∵2AD =,6AC =∵90ADC ∠=o ,∴222CD AC AD -∵CD 是O e 的切线,∴2CD AD DE =⋅,∴1DE =,∴223CE CD DE =+∵C 为¶BE的中点, ∴3BC CE ==∵AB 为O e 的直径,∴90ACB ∠=o ,∴223AB AC BC =+=.方法2:∵DCA B ∠=∠,易得ADC ACB V V ∽, ∴AD AC AC AB=, ∴3AB =.【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.27.0≤k≤65且 k≠1. 【解析】【分析】根据二次项系数非零、被开方数非负及根的判别式△≥0,即可得出关于 k 的一元一次不等式组,解之即可求出 k 的取值范围. 【详解】解:∵关于 x 的一元二次方程(k ﹣1)x 2+x+3=0 有实数根, ∴2k≥0,k-1≠0,2k 2-4⨯3(k-1)≥0,解得:0≤k≤65且 k≠1. ∴k 的取值范围为 0≤k≤65且 k≠1. 【点睛】本题考查了根的判别式、二次根式以及一元二次方程的定义,根据二次项系数非零、被开方数非负及根的判别式△≥0,列出关于 k 的一元一次不等式组是解题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.。