北师版七年级数学下册各单元测试题
七年级数学下册《第五章生活中的轴对称》单元测试卷附答案-北师大版
七年级数学下册《第五章生活中的轴对称》单元测试卷附答案-北师大版一、单选题1.下列图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.∠=︒,则∠2为()2.如图,将一个长方形纸条折成如图的形状,若已知1116A.125°B.124°C.122°D.116°3.一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为()A.30B.24C.18D.24或304.面对新冠疫情,我国毫不动摇坚持动态清零总方针,外防输入,内防反弹.下面是支付宝“国家政务服务平台”上与疫情防控相关的四个小程序图标,其中是轴对称图形的是()A.B.C.D.5.下列汉字中,可以看成轴对称图形的是()A.B.C.D.6.如图,把长方形ABCD沿EF折叠后使两部分重合,若∠1=40°,则∠AEF= ()A.110°B.100°C.120°D.140°7.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°8.如图,将∠ABC绕点A顺时针旋转角100°,得到∠ADE,若点E恰好在CB的延长线上,则∠BED的度数为()A.80°B.70°C.60°D.50°9.如图,在∠ABC中,∠ACB=90°,BE平分∠ABC,DE∠AB于D.如果AC=10cm,那么AE+DE 等于()A.6cm B.8cm C.10cm D.12cm10.下面是四位同学作∠ABC关于直线MN的轴对称图形,其中正确的是()A.B.C .D .二、填空题11.如图,APT 与CPT 关于直线PT 对称,A APT ∠=∠,延长AT 交PC 于点F 当A ∠= °时FTC C ∠=∠.12.如图,∠ABC 中,∠B=40°,点D 为边BC 上一点,将∠ADC 沿直线AD 折叠后,点C 落到点E 处,若DE∠AB ,则∠ADE 的度数为 °.13.如图,ABC 中,DE 垂直平分BC ,若ABD 的周长为104AB =,,则AC = .14.如图是由三个小正方形组成的图形请你在图中补画一个小正方形使补画后的图形为轴对称图形,共有 种补法.三、作图题15.如图,在正方形网格中,ABC 的三个顶点均在格点上.(1)画出111A B C ,使得111A B C 和ABC 关于直线l 对称;(2)过点C 作线段CD ,使得CD AB ,且CD AB .四、解答题16.如图,在∠ABC 中,高线CD 将∠ACB 分成20°和50°的两个小角.请你判断一下∠ABC 是轴对称图形吗?并说明你的理由.17.如图,长方形纸片ABCD ,点E 为BC 边的中点,将纸片沿AE 折叠,点B 的对应点为'B ,连接'.B C 求证:AE ∠'B C .18.如图,在∠ABC 中,AF 平分∠BAC 交BC 于点F ,AC 的垂直平分线交BC 于点E ,交AC 于点D ,∠B =60°,∠C =26°,求∠FAE 的度数.19.如图,在平面直角坐标系xOy 中,A (1,2),B (3,1),C (﹣2,﹣1).(1)在图中作出∠ABC关于y轴的对称图形∠A1B1C1(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1五、综合题20.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD= ▲ °;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则∠PMN的周长为.21.已知:如图,∠ABD和∠BDC的平分线交于点E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB CD;(2)试探究DF与DB的数量关系,并说明理由.22.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与∠ABC关于直线l成轴对称的∠AB′C′;(2)求∠ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.参考答案与解析1.【答案】A【解析】【解答】解:A、是中心对称图形,但不是轴对称图形,故符合题意;B、不是中心对称图形,但是轴对称图形,故不符合题意;C、是中心对称图形,也是轴对称图形,故不符合题意;D、不是中心对称图形,但是轴对称图形,故不符合题意.故答案为:A.【分析】中心对称图形的定义:一个图形绕对称中心旋转180°后能够与原图形完全重合,这个图形叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此一一判断得出答案.2.【答案】C【解析】【解答】解:如图∵纸条的两边互相平行∴∠1+∠3=180°∵∠1=116°∴∠3=180°-∠1=180°-116°=64°根据翻折的性质得,2∠4+∠3=180°∴∠4= 12(180°-∠3)=12(180°-64°)=58°∵纸条的两边互相平行∴∠2+∠4=180°∴∠2=122°故答案为:C.【分析】由两直线平行同旁内角互补得∠1+∠3=180°,∠2+∠4=180°,结合已知可求得∠3的度数,由翻折性质得2∠4+∠3=180°可求得∠4的度数,把∠4的度数代入∠2+∠4=180°计算可求解.3.【答案】A【解析】【解答】当三边6,6,12时,6+6=12,不符合三角形的三边关系,应舍去;当三边是6,12,12时,符合三角形的三边关系,此时周长是30.故答案为:A.【分析】利用三角形三边的关系及等腰三角形的性质求解即可。
2023-2024学年初中数学北师大版七年级下第1章 整式的乘除单元测试(含答案解析)
2023-2024学年北师大版初中数学单元测试学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;一、选择题(本大题共计30小题,每题3分,共计90分)1.下列计算正确的是( )A. left( -a^3bright) ^2=a^6b^2B. a^3cdot a^2=a^6C. 2a+3b=5abD. left( a-2right) ^2=a^2-2a+4【答案】A【解析】解: A,\left( -a^3b\right) ^2=a^6b^2,故 A正确;B,a^3\cdot a^2=a^3+2=a^5,故 B错误;C,3a和2b不是同类项,不能进行合并,故 C错误;D,\left( a-2\right) ^2=a^2-4a+4,故 D错误.故选 A.2.若m为有理数,则\left(-m\right)^3+\left(-m\right)^3的结果是( )A. 2m^3B. -2m^3C. 0D. m^6【答案】B【解析】解:原式=-m^3-m^3=-2m^3.故选 B.3.下列代数式的运算,一定正确的是()A. 3a^2-a^2=2B. (3a)^2=9a^2C. (a^3)^4=a^7D. a^2+ b^2=(a+ b)(a-b)【答案】B【解析】4.计算(-0.25)^2019\times (-4)^2020等于()A. -1B. + 1C. + 4D. -4【答案】D【解析】5.下列计算正确的是()A. sqrt9=pm sqrt3B. sqrt2+sqrt3=sqrt6C. sqrt4div sqrt2=2D. sqrt8=2sqrt2【答案】D【解析】解:\mathrm A.\sqrt9=3,故选项错误;\mathrm B.\sqrt2与\sqrt3不是同类二次根式,不能合并,故选项错误;\mathrm C.\sqrt4\div\sqrt2=\sqrt\dfrac42=\sqrt2,故选项错误;\mathrm D.\sqrt8=2\sqrt2,故选项正确.故选\mathrm D.6.下列计算结果正确的是( )A. 3a^4-2a^4=1B. left( a^4right) ^2=a^6C. left( -2a^2right) ^3=-8a^6D. a^5cdot a^2=a^25【答案】C【解析】解: A,3a^4-2a^4=a^4,故 A错误;B,\left( a^4\right) ^2=a^8,故 B错误;C,\left( -2a^2\right) ^3=-8a^6,故 C正确;D.a^5\cdot a^2=a^7,故 D错误.故选 C.7.计算\left(-a^4\right)^2的结果为( )A. -a^6B. -a^8C. a^6D. a^8【答案】D【解析】解:(-a^4)^2=(-1)^2\times (a^4)^2=a^8.故选 D.8.计算x^2\cdot x^5的结果是()A. x^10B. x^7C. 2x^7D. 2x^10【答案】B【解析】解:x^2\cdot x^5=x^2+5=x^7.故选 B.9.计算\left( -ab^3\right) ^2的结果是( )A. a^2b^6B. -a^2b^6C. a^2b^9D. -a^2b^9【答案】A【解析】解:\left( -ab^3\right) ^2=a^2b^6.故选 A.10.下列运算正确的是()A. a^3cdot a^2=a^6B. left( -a^2right) ^3=a^6C. left(-a^3right)^2=a^6D. -2mn-mn=-mn【答案】C【解析】解:\mathrm A,因为a^3\cdot a^2=a^3+2=a^5,故\mathrm A错误;\mathrm B,因为\left(-a^2\right)^3=-a^6,故\mathrm B错误;\mathrm C,因为\left(-a^3\right)^2=a^6,故\mathrm C正确;\mathrm D,因为-2mn-mn=-3mn,故\mathrm D错误.故选\mathrm C.11.下列计算正确的是( )A. m^3+m^2=m^5B. m^6div m^2=m^3C. left( -2mright) ^3=-8m^3D. left(m+1right)^2=m^2+1【答案】C【解析】解:\textA,m^3和m^2不是同类项,不能合并,故\textA错误;\textB,m^6\div m^2=m^6-2=m^4,故\textB错误;\textC,(-2m)^3=-8m^3,故\textC正确;\textD,(m+1)^2=m^2+2m+1,故\textD错误.故选\textC.12.下列运算中,正确的是()A. a^3cdot a^2=a^6B. a+ a=a^2C. (a-b)^2=a^2-b^2D. (a^2)^3=a^6【答案】D【解析】a+ a=2a,故选项B不合题意(1)(a-b)^2=a^2-2ab+ b^2,故选项C不合题意(2)(a^2)^3=a^6,正确,故选项D符合题意.故选:D.13.下列运算正确的是()A. a^2+a^3=a^5B. acdot a^3= a^4C. (ab)^4= ab^4D. (a^3)^3= a^6【答案】B【解析】解: A,a^2与a^3不是同类项,不能合并,故此选项错误;B,a\cdot a^3=a^4,此选项正确;C,\left(ab\right)^4=a^4b^4,故此选项错误;D,\left(a^3\right)^3=a^9,故此选项错误.故选 B.14.下列各式计算结果为a^5的是( )A. a^3+a^2B. a^3times a^2C. left(a^2right)^3D. a^10div a^2【答案】B【解析】解: A,a^3和a^2不是同类项,不能合并,故 A错误;B,a^3\times a^2=a^3+2=a^5,故 B正确;C,(a^2)^3=a^2\times 3=a^6,故 C错误;D,a^10\div a^2=a^10-2=10^8,故 D错误.故选 B.15.下列运算正确的是( )A. sqrt2+sqrt3=sqrt5B. 3xy-xy=3C. dfraca^2+b^2a+b=a+bD. (a^2b)^3=a^6b^3【答案】D【解析】解:\textA, \sqrt2+\sqrt3eq\sqrt5,故\textA错误;\textB, 3xy-xy=2xy,故\textB错误;\textC, \dfraca^2+b^2a+beq a+b,故\textC错误;\textD, \left(a^2b\right)^3=a^6b^3,故\textD正确.故选\textD.16.下列运算结果为a^6的是( )A. a^2+a^4B. a^2cdot a^3C. left(-a^2right)^3D. left(-a^3right)^2【答案】D【解析】解: A,a^2 与a^4不是同类项,不能合并;B,a^2\cdot a^3=a^2+3=a^5 ;C,\left(-a^2\right)^3=-a^6 ;D,\left(-a^3\right)^2=a^6.故选 D.17.下列计算错误的是( )A. x^2+x^2=2x^2B. (x-y)^2=x^2-y^2C. left(x^2 yright)^3=x^6 y^3D. (-x)^2 cdot x^3=x^5【答案】B【解析】解:x^2+x^2=2 x^2 ,故选项 A正确;(x-y)^2=x^2-2 x y+y^2,故选项 B不正确;\left(x^2 y\right)^3=x^6 y^3,故选项 C正确;(-x)^2 \cdot x^3=x^2 \cdot x^3=x^5,故选项 D正确.故选 B.18.下列各式运算正确的是( )A. a^3times a^2=a^6B. left(a^2right)^4=a^8C. left(-aright)^2+a^2=0D. left(2a^3right)^2=2a^6【答案】B【解析】解: A,a^3\times a^2=a^5 ,该选项错误;B,\left(a^2\right)^4=a^8 ,该选项正确;C,\left(-a\right)^2+a^2=2a^2 ,该选项错误;D,\left(2a^3\right)^2=4a^6,该选项错误.故选 B.19.下列计算正确的是()A. a^2+a^4=a^6B. a^2cdot a^3=a^6C. left( a^2right) ^4=a^8D. left( dfraca2right) ^2=dfraca^22【答案】C【解析】解: A,a^2与a^4不是同类项,不能合并,故 A错误;B,a^2\cdot a^3=a^5,故 B错误;C,(a^2)^4=a^8,故 C正确;D,\left( \dfraca2\right) ^2=\dfraca^24,故 D错误.故选 C.20.计算\left(-x^2y\right)^3=( )A. x^2y^3B. -x^6y^3C. x^6y^3D. -x^5y^3【答案】B【解析】解:(-x^2y)^3=-x^6y^3.故选\textB.21.计算: \left(0.25\right)^2020\times 4^2020=( )A. 0.25B. 4C. 1D. 2020【答案】C【解析】解:\left(0.25\right)^2020\times4^2020=\left(0.25\times4\right)^2020=1^2020=1. 故选\mathrm C.。
北师大版数学七年级下册全部单元测试题_含答案(共10套)
北师大版七年级下册第一章整式的运算单元测试题:一、精心选一选(每小题3分,共21分) 1.多项式892334+-+xy y x xy 的次数是的次数是 ( ) A. 3 B. 4 C. 5 D. 6 2.下列计算正确的是下列计算正确的是 ( ) A. 8421262x x x =× B. ()()m mmy y y =¸34C. ()222y x y x +=+D. 3422=-a a3.计算()()b a b a +-+的结果是的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是下列结果正确的是 ( ) A. 91312-=÷øöçèæ- B. 0590=´ C. ()17530=-. D. 8123-=-6. 若()682b a ba nm =,那么n m 22-的值是的值是( ) A. 10 B. 52 C. 20 D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30± 二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有中,单项式有 个,多项式有个,多项式有 个。
个。
2.单项式z y x 425-的系数是的系数是 ,次数是,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是项,它们分别是 。
最新北师大版七年级数学下册单元测试全套及答案
最新北师大版七年级数学下册单元测试全套及答案北师大版七年级下册 第一章 整式的运算单元测试题一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mmy y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++-4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30± 二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分) 1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x - ,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
七年级数学下册各单元测试试卷含答案
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -, ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
北师大版七年级数学下册单元测试题及答案全套
解: (1)AC ∥BE . 理由如下: 因为 AB ∥ CD ,所以∠ ABC =∠ DCF. 因为 BA 平分∠ EBC, CD 平分∠ ACF ,所以∠ EBC= 2∠ ABC ,∠ ACF = 2∠ DCF. 所以∠ EBC =∠ ACF. 所以 AC ∥ BE. (2)∠ E 与∠ FCD 互余 .理由如下: 因为 AC ∥ BE ,所以∠ E=∠ ACE. 因为 CD 平分∠ ACF ,所以∠ ACD =∠ FCD.
7.如果 (x + 3)2= x2+ ax+ 9,那么 a 的值为 ( C )
A.3
B.± 3
C.6
D.± 6
8.如果 (2x +m)(x - 5)展开后的结果中不含 x 的一次项,那么 m 等于 ( D )
A.5
B.- 10
C.- 5
D.10
9.如图,将完全相同的四个长方形纸片拼成一个正方形,则可得出一个等式为
解: (1)(60 - 2x)(40 - 2x)= 4x2- 200x+2 400. 答:阴影部分的面积为 (4x 2- 200x+ 2 400)cm 2. (2)当 x= 5 时, 4x2- 200x + 2 400= 1 500(cm 2). 这个盒子的体积为 1 500× 5= 7 500(cm 3). 答:这个盒子的体积为 7 500 cm3.
A. ①②③
B. ①②③④
C.①②③④⑤
D.①②④⑤
7.下列说法不正确的是 ( D )
北师大版七年级数学下册单元测试题及答案全套
北师大版七年级数学下册单元测试题及答案全套(含期末试题,共6套)第一章达标测试卷一、选择题(每题3分,共30分)1.生活中的“八宝粥”易拉罐同学们都很熟悉,你认为“八宝粥”易拉罐类似于() A.棱柱B.圆柱C.圆锥D.长方体2.下面的几何图形:①棱柱;②正方形;③圆锥;④圆;⑤长方体;⑥三角形.其中属于立体图形的是()A.①②③B.②④⑥C.①③⑤D.③④⑤3.将半圆绕它的直径所在的直线旋转一周形成的几何体是()A.圆柱B.圆锥C.球D.正方体4.一个无盖的正方体盒子的表面展开图可以是下列图形中的()(第4题)A.①B.①②C.②③D.①③5.下列说法不正确的是()A.圆锥和圆柱的底面都是圆B.棱柱的所有侧棱长都相等C.棱柱的上、下底面形状完全相同D.长方体是四棱柱,四棱柱是长方体6.一个正方体的表面展开图如图所示,六个面上各有一字,连起来是“祝福祖国万岁”,把它折成正方体后,与“万”相对的字是()A.祖B.岁C.国D.福(第6题)7.在一个正方体容器内分别装入不同量的水,再把容器按不同方式倾斜一点,容器内水面的形状不可能是()8.如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是()(第8题)9.由5个大小相同的正方体拼成的几何体如图所示,则下列说法正确的是() A.从正面看到的图形面积最小B.从左面看到的图形面积最小C.从上面看到的图形面积最小D.从三个方向看到的图形面积相等(第9题)10.如图表示一个由相同小立方块搭成的几何体从上面看到的图形,小正方形中的数字表示该位置上小立方块的个数,那么从正面看到的图形为()(第10题)二、填空题(每题3分,共24分)11.一个正方体有________个面,________个顶点.12.快速旋转一枚竖立的硬币一周(假定旋转轴在原地不动),旋转形成的立体图形是__________.13.用数学知识解释下列现象:一只蚂蚁行走的路线可以解释为____________;直升机的螺旋桨转起来形成一个圆形的面,这说明了____________.14.下列几何体(如图),属于柱体的有____________;属于锥体的有__________;属于球体的有__________.(填序号)(第14题)15.下列各图是几何体的平面展开图,请写出对应的几何体的名称.(第15题)16.用一个平面去截一个圆柱(如图),图①中截面的形状是________,图②中截面的形状是__________.(第16题)17.从不同方向观察一个几何体,所得的平面图形如图所示,那么这个几何体的侧面积是__________(结果保留π).(第17题)18.如图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②几何体的体积为__________(结果保留π).14.矩形的对角线相交所成的角中,有一个角是60°,这个角所对的边长为1 cm,则其对角线长为________,矩形的面积为________.(第18题)三、解答题(19,22题每题8分,24题14分,其余每题12分,共66分)19.图②中的几何体分别是由图①中哪个平面图形旋转一周得到的?用线连起来.(第19题)20.如图是从不同方向看一个几何体得到的图形及部分数据.(1)写出这个几何体的名称;(2)求这个几何体的侧面积.(第20题)21.观察如图所示的直六棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为25 cm,侧棱长为8 cm,则它的侧面积为多少?(第21题)22.如图所示的平面图形折叠成正方体后,相对面上的两个数之和为10,求x+y+z的值.(第22题)23.把棱长为1 cm的若干个小正方体摆放成如图所示的几何体,然后将露出的部分都涂上颜色(不涂底面).(1)该几何体中有多少个小正方体?(2)画出从正面观察所得到的平面图形.(3)求涂色部分的总面积.(第23题)24.把如图①所示的正方体切去一块,得到如图②~⑤所示的几何体.(第24题)(1)所得几何体各有多少个面?多少条棱?多少个顶点?(2)举例说明把其他形状的几何体切去一块,得到的几何体的面数、棱数和顶点数各是多少.(3)若面数记为f,棱数记为e,顶点数记为v,则f,v,e应满足什么关系式?答案1.B2.C3.C4.D5.D6.B7.A8.A9.B10.C二、11.6;812.球13.点动成线;线动成面14.①③⑤⑥;④;②15.圆锥;正方体;三棱锥;圆柱16.圆;长方形17.6π18.63π三、19.1—c;2—b;3—d;4—a20.解:(1)这个几何体是三棱柱.(2)这个几何体的侧面积为3×16×9=432 (cm2).21.解:(1)它有8个面,2个底面,底面是六边形,侧面是长方形.(2)侧面的个数与底面多边形的边数相等.(3)它的侧面积为25×8=200(cm2).22.解:由题意知x+5=10,2+y=10,2z+4=10,解得x=5,y=8,z=3.所以x+y+z=5+8+3=16.23.解:(1)该几何体中小正方体的个数为9+4+1=14(个).(2)如图所示.(第23(2)题)(3)由题意知该几何体的上面需涂色的面积为9个小正方形的面积和,前面、后面、左面、右面需涂色的面积和为6个小正方形面积和的4倍,故涂色部分的总面积为(9+6×4)×12=33(cm2).24.解:(1)题图②有7个面、15条棱、10个顶点,题图③有7个面、14条棱、9个顶点,题图④有7个面、13条棱、8个顶点,题图⑤有7个面、12条棱、7个顶点.(2)例如:把三棱锥切去一块,如图所示,得到的几何体有5个面、9条棱、6个顶点.(第24(2)题)(3)所求关系式为f +v -e =2.第二章达标测试卷一、选择题(每题3分,共30分)1.如果“盈利10%”记为+10%,那么“亏损6%”记为( )A .-16%B .-6%C .+6%D .+4%2.-15的相反数是( )A.15B .-15C .5D .-53. 太阳的温度很高,其表面温度大约有6 000 ℃,而太阳中心的温度达到了19 200 000 ℃,用科学记数法可将19 200 000表示为( ) A .1.92×106 B .1.92×107 C .19.2×106D .0.192×1074.在数23,1,-3,0中,最大的数是( )A.23B .1C .-3D .05.下列算式正确的是( )A .-32=9B.⎝ ⎛⎭⎪⎫-14÷(-4)=1 C .(-8)2=-16D .-5-(-2)=-36.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的有( )A .4个B .3个C .2个D .1个7.学校、文具店、书店依次坐落在一条南北走向的大街上,学校在文具店的南边20 m 处,书店在文具店的北边100 m 处,张明同学从文具店出发,向北走了50 m ,接着又向北走了-70 m ,此时张明的位置在( ) A .文具店B .学校C .书店D .以上都不对8.数a ,b ,c 在数轴上对应的点的位置如图所示,表示0的点为原点,则下列各式正确的是( )A .abc <0B .a +c <0C .a +b <0D .a -c <09.学完有理数后,a ,b ,c ,d 四名同学分别聊起来了,a 说:“没有最大的正数,但有最大的负数.”b 说:“有绝对值最小的数,没有绝对值最大的数.”c 说:“有理数包括正有理数和负有理数.”d 说:“相反数是它本身的数是正数.”你认为谁说得对呢?( ) A .aB .bC .cD .d10.探索规律,71=7,72=49,73=343,74=2 401,75=16 807,…,那么72 018+1的个位数字是( )A .8B .4C .2D .0 二、填空题(每题3分,共24分)11.在有理数-3.7,2,213,-34,0,0.02中,正数有______________,负分数有______________. 12.一种食用盐包装袋上标有(500±5)g ,表示这种食用盐的质量不超过________,不少于________.13.比较大小(填“>”“<”或“=”):(1)-45________-34; (2)|-5|________0; (3)-(-0.01)________⎝ ⎛⎭⎪⎫-1102.14.如图,小明写作业时不慎将墨水滴在数轴上,墨迹盖住部分对应的整数共有________个.15.若|a -11|+(b +12)2=0,则(a +b )2 018=________.16.按下面程序计算(如图),输入x =-5,则输出的答案是________ .输入x ―→平方―→-x ―→÷2―→输出答案17.在算式1-⎪⎪⎪⎪-2 3中的 里,填入运算符号________,可使得算式的值最小(在符号+,-,×,÷中选择一个).18.有六张卡片,卡片正面分别写有六个数,背面分别写有六个字母,如下表:将卡片正面的数由大到小排列,然后将卡片翻转使背面朝上,卡片上的字母组成的单词是________.三、解答题(19题16分,20,22题每题8分,24题10分,其余每题12分,共66分) 19.计算:(1)-|3-5|+2×(1-3);(2)-24×⎝ ⎛⎭⎪⎫-56+38-112;(3)(-2)3-(-13)÷⎝ ⎛⎭⎪⎫-12;(4)-12-(1-0.5)÷52×15.20.已知|x -3|与|y -1|互为相反数,求式子⎝ ⎛⎭⎪⎫x y -y x ÷(x +y)的值.21.如图,数轴上有三个点A ,B ,C ,请回答下列问题:(1)将点C 向左移动6个单位长度后,这时点B 所表示的数比点C 所表示的数大多少? (2)怎样移动A ,B ,C 中的两个点,才能使这三个点表示相同的数?有几种移法?22.若“”表示运算a-b+c,“”表示运算x-y+z-w,求-的值.23.“十一”期间,某风景区在7天假期中,每天旅游的人数变化如下表(正数表示比前一天增加的人数,负数表示比前一天减少的人数)所示(单位:万人):若9月30日的游客人数为1万人.(1)这7天内哪天游客的人数最多?哪天游客的人数最少?(2)这7天内该风景区平均每天有游客多少万人?24.如图,数轴上的点A,B,C分别表示数-3,-1,2.(1)A,B两点间的距离AB=________,A,C两点间的距离AC=________.(2)若点E表示的数为x,则AE的长等于多少?答案二、1.B 2.A 3.B 4.B 5.D 6.B7.B 8.B 9.B 10.D 二、11.2,213,0.02;-3.7,-3412.505 g ;495 g13.(1)< (2)> (3)= 14.7 15.1 16.15 17.× 18.thanks三、19.解:(1)原式=-2+2×(-2)=-2+(-4)=-6;(2)原式=20-9+2=13; (3)原式=-8-26=-34;(4)原式=-1-12×25×15=-1-125=-1125.20.解:因为|x -3|与|y -1|互为相反数,所以|x -3|+|y -1|=0.所以x =3,y =1.所以原式=⎝ ⎛⎭⎪⎫31-13÷(3+1)=⎝ ⎛⎭⎪⎫3-13÷4=23.21.解:(1)这时点B 所表示的数比点C 所表示的数大1.(2)有3种移法.①点A 右移2个单位长度,点C 左移5个单位长度; ②点A 右移7个单位长度,点B 右移5个单位长度; ③点B 左移2个单位长度,点C 左移7个单位长度.22.解:由题意知,原式=14-12+16-[-2-3+(-6)-3]=-112-(-14)=-112+14=131112.23.解:(1)由题意知,该风景区在7天假期中,每天旅游的人数如下表所示(单位:万人):由此可知,10月3日的游客人数最多,10月7日的游客人数最少.(2)这7天内该风景区平均每天的游客人数为17×(2.6+3.4+3.8+3.4+2.6+2.8+1.6)≈2.89(万人).24.解:(1)2;5(2)|x -(-3)|=|x +3|, 即AE 的长为|x +3|.第三章达标测试卷一、选择题(每题3分,共30分)1.代数式:6x 2y +1x ,5xy +x 2,-15y 2+xy ,2y ,-3中,不是整式的有( ) A .4个B .3个C .2个D .1个2.下列各式中,与2a 是同类项的是( )A .3aB .2abC .-3a 2D .a 2b3.下列代数式中符合书写要求的是( )A.a 2b 4B .213cbaC .a ×b ÷cD .ayz 34.在下列表述中,不能表示代数式“4a ”的意义的是( )A .4的a 倍B .a 的4倍C .4个a 相加D .4个a 相乘5.多项式y -x 2y +25的项数、次数分别是( )A .3,2B .3,5C .3,3D .2,3 6.下列运算正确的是( )A .-()2x +5=-2x +5B .-12()4x -2=-2x +2C.13()2m -3n =23m +nD .-⎝ ⎛⎭⎪⎫23m -2x =-23m +2x7.将有理数m 减小5后,再乘3,最后的结果是( )A .3(m -5)B .m -5×3mC .m -5+3mD .m -5+3(m -5)8.若m +n =-1,则(m +n )2-2m -2n 的值是( )A .3B .0C .1D .29.多项式12x |n |-(n +2)x +7是关于x 的二次三项式,则n 的值是( )A .2B .-2C .2或-2D .310.有一种石棉瓦,每块宽60 cm ,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10 cm ,那么n (n 为正整数)块石棉瓦覆盖的宽度为( )A .60n cmB .50n cmC .(50n +10)cmD .(60n +10)cm二、填空题(每题3分,共24分)11.单项式-x 2y3的系数是________,次数是________.12.-xy 22+3xy -23是________次________项式,最高次项的系数为________. 13.计算:a 2b -2a 2b =________.14.若-x 3y 与x a y b -1是同类项,则(b -a )2 017=________.15.张老师带了100元钱去给学生买笔记本和笔.已知一本笔记本3元,一支笔2元,张老师买了a 本笔记本,b 支笔,她还剩______________元钱(用含a ,b 的代数式表示). 16.定义新运算,规定a b =13a -4b ,则-1)=________.17.一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212,…,请观察它们的构成规律,用你发现的规律写出第9个等式:____________________. 18.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.按照如图所示的规律,摆第n 个图形,需用火柴棒的根数为__________.(第18题)三、解答题(20~22题每题10分,其余每题12分,共66分) 19.计算:(1)(-5a 3)-a 3-(-7a 3); (2)()5a 2+2a -1-2()3-8a +2a 2;(3)(2xy -y )-(-y +yx ); (4)3a 2b -2[ab 2-2(a 2b -2ab 2)].20.(1)先化简,再求值:12x+⎝⎛⎭⎪⎫13y2-x-⎝⎛⎭⎪⎫-32x+43y2,其中x=-12,y=-3.(2)已知A=-a2+2a-1,B=3a2-2a+4,求当a=-2时,2A-3B的值.21.如图是一个长方形广场,四角都有一块边长为x m的正方形草地,若长方形的长为a m,宽为b m.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为350 m,宽为200 m,正方形草地的边长为10 m,求阴影部分的面积.(第21题)22.对于代数式2x2+7xy+3y2+x2-kxy+5y2,老师提出了两个问题,第一个问题:当k 为何值时,代数式中不含xy项?第二个问题:在第一个问题的前提下,如果x=2,y =-1,那么代数式的值是多少?(1)小明同学很快就完成了第一个问题,也请你把你的解答写在下面.(2)在做第二个问题时,马小虎同学把y=-1错看成y=1,他得到的最后结果却是正确的,你知道这是为什么吗?23.某校组织学生到距离学校6 km的科技馆去参观,小华因事没能乘上学校的包车,于是准备在学校门口改乘出租车去科技馆,出租车收费标准有两种类型,如下表:(1)设出租车行驶的里程为x km(x≥3且x取正整数),分别写出两种类型的总收费(用含x的代数式表示);(2)小华身上仅有11元,他乘出租车到科技馆车费够不够?24.一张正方形桌子可坐4人,按如图所示的方式将桌子拼在一起,回答下列问题.(第24题)(1)两张桌子拼在一起可以坐________人,三张桌子拼在一起可以坐________人,n张桌子拼在一起可以坐________人.(2)一家酒楼有60张这样的正方形桌子,按如图所示的方式每4张桌子拼成一张大桌子,则60张桌子可以拼成15张大桌子,共可坐多少人?(3)在(2)中,若每4张桌子拼成一张大的正方形桌子,共可坐多少人?(4)对于这家酒楼,(2)(3)中哪种拼桌子的方式能使坐的人更多?答案一、1.C2.A3.A4.D5.C6.D 7.A8.A点拨:(m+n)2-2m-2n=(m+n)2-2(m+n).当m+n=-1时,(m+n)2-2(m+n)=(-1)2-2×(-1)=1+2=3.9.A点拨:因为多项式12x|n|-(n+2)x+7是关于x的二次三项式,所以|n|=2且n+2≠0,所以n=2.10.C二、11.-13;3 12.三;三;-12 13.-a 2b 14.-1 15.(100-3a -2b ) 16.8 点拨:-1)=13×12-4×(-1)=8.17.92+102+902=912 点拨:规律:n 2+(n +1)2+[n (n +1)]2=[n (n +1)+1]2,故第9个等式为92+102+902=912.18.6n +2 点拨:第1个图形有8根火柴棒,第2个图形有14根火柴棒,第3个图形有20根火柴棒,…,第n 个图形有(6n +2)根火柴棒. 三、19.解:(1)原式=-5a 3-a 3+7a 3=a 3;(2)原式=5a 2+2a -1-6+16a -4a 2=a 2+18a -7; (3)原式=2xy -y +y -xy =xy ;(4)原式=3a 2b -2(ab 2-2a 2b +4ab 2)=3a 2b -2ab 2+4a 2b -8ab 2=7a 2b -10ab 2. 20.解:(1)原式=12x +13y 2-x +32x -43y 2=x -y 2.当x =-12,y =-3时,x -y 2=-12-(-3)2=-192.(2)2A -3B =2(-a 2+2a -1)-3(3a 2-2a +4)=-2a 2+4a -2-9a 2+6a -12=-11a 2+10a -14.当a =-2时,2A -3B =-11a 2+10a -14=-11×(-2)2+10×(-2)-14=-78. 21.解:(1)阴影部分的面积为(ab -4x 2)m 2.(2)将a =350,b =200,x =10代入(1)中得到的式子, 得350×200-4×102=70 000-400=69 600(m 2). 答:阴影部分的面积为69 600 m 2.22.解:(1)因为2x 2+7xy +3y 2+x 2-kxy +5y 2=(2x 2+x 2)+(3y 2+5y 2)+(7xy -kxy )=3x 2+8y 2+(7-k )xy ,所以只要7-k =0,这个代数式中就不含xy 项. 所以当k =7时,代数式中不含xy 项.(2)因为在第一个问题的前提下原代数式可化为3x 2+8y 2,当马小虎同学把y =-1错看成y =1时,y 2的值不变,即8y 2的值不变, 所以马小虎得到的最后结果却是正确的.23.解:(1)甲类总收费为7+(x-3)×1.6=1.6x+2.2(元);乙类总收费为6+(x-3)×1.4=1.4x+1.8(元).(2)当x=6时,甲类总收费为1.6×6+2.2=11.8(元),11.8元>11元,不够;乙类总收费为1.4×6+1.8=10.2(元),10.2元<11元,够.所以他乘出租车到科技馆车费够.24.解:(1)6;8;(2n+2)(2)按题图所示的方式每4张桌子拼成一张大桌子,那么一张大桌子可坐2×4+2=10(人).所以15张大桌子共可坐10×15=150(人).(3)在(2)中,若每4张桌子拼成一张大的正方形桌子,则一张大正方形桌子可坐8人,15张大正方形桌子共可坐8×15=120(人).(4)由(2)(3)可知,按照(2)中拼桌子的方式能使坐的人更多.第四章达标测试卷一、选择题(每题3分,共30分)1.小辉同学画出了下面四个图形,你认为是四边形的是()2.对于直线AB,线段CD,射线EF,下面能相交的是()(第3题)3.如图,表示∠1的其他方法中,不正确的是()A.∠ACB B.∠CC.∠BCA D.∠ACD4.一个多边形从一个顶点最多能引出2 018条对角线,这个多边形的边数是() A.2 018 B.2 019 C.2 020 D.2 0215.下列有关画图的表述中,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MXC.过P,Q,R三点画直线D.延长线段MN到点P,使NP=MN6.∠α=40.4°,∠β=40°4′,则∠α与∠β的大小关系是()A.∠α=∠βB.∠α>∠βC.∠α<∠βD.以上都不对7.如图,观察图形,下列说法或结论中不正确的是()(第7题)A.直线BA和直线AB是同一条直线B.射线AC和射线AD是同一条射线C.AC+CD=ADD.图中有4条线段8.下列说法正确的有()①角的大小与所画角的两边的长短无关;②比较角的大小就是比较它们的度数的大小;③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线;④如果∠AOC=12∠AOB,那么OC是∠AOB的平分线.A.1个B.2个C.3个D.4个9.已知∠AOB=50°,∠BOC=30°,那么∠AOC的度数是()A.20°B.40°C.80°D.20°或80°10.如图,一条流水生产线上L1,L2,L3,L4,L5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P,使五人到供应站P的距离总和最小,这个供应站设置的位置是()(第10题)A.L2处B.L3处C.L4处D.生产线上任何地方都一样11.开学整理教室时,老师总是先把每一列最前面和最后面的课桌摆好,然后依次摆中间的课桌,一会儿一列课桌便摆在一条线上,整整齐齐,这是因为______________________.12.如图,小于平角的角有________个.(第12题)(第14题)(第17题)(第18题)13.把一个直角4等分,每一个角的度数是________度________分.14.如图,阴影部分扇形的圆心角的度数是________.15.一支水笔正好与一把直尺平靠放在一起,小明发现:水笔的笔尖正好对着直尺刻度约为5.6 cm处,另一端正好对着直尺刻度约为20.6 cm处,则水笔的中点位置对着的直尺刻度约为________cm.16.在学习了“线段、射线、直线”后,小李发现:许多汉字就是由这些基本的图形组成的,例如:“一”“二”可以分别看成是一条线段和两条线段组成的,那么汉字“王”中有________条线段.17.如图,某轮船在O处测得灯塔A在北偏东40°的方向上,灯塔B在南偏东60°的方向上,则∠AOB=________.18.如图,艺术节期间某班数学兴趣小组设计了一个长方形时钟作品,其中心为O,数字3,6,9,12标在各边中点处,数字2在长方形顶点处,则数字1应该标在________三、解答题(19~22题每题10分,其余每题13分,共66分)19.计算:(1)48°39′+67°41′-37°12′11″;(2)32°45′20″×4-40°35′50″.20.尺规作图,如图,已知线段a,b,作出线段c,使c=a-b.(要求:不写作法,保留作图痕迹)(第20题)21.如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.(第21题)22.如图,直线AB,CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.(第22题)23.如图,A,B,C是一条笔直的公路上的三个村庄,A,B之间的路程为100 km,A,C 之间的路程为40 km,现在要在A,B之间建一个车站P,设P,C之间的路程为x km.(1)用含x的代数式表示车站P到三个村庄的路程之和.(2)若路程之和为102 km,则车站P应建在何处?(3)若要使车站P到三个村庄的路程之和最小,则车站P应建在何处?此时路程之和是多少?(第23题)24.如图,正方形ABCD的内部有若干个点,利用这些点以及正方形ABCD的顶点A,B,C,D把原正方形分割成一些小三角形(互相不重叠):(第24题)(1)填写下表:(2)原正方形能否被分割成2 018个小三角形?若能,求此时正方形ABCD的内部有多少个点.若不能,请说明理由.答案一、1.B2.B3.B4.D5.C6.B7.D8.B点拨:从角的顶点出发的一条射线把这个角分成两个相等的角,这条射线叫做这个角的平分线,故③错误;如果∠AOC=12∠AOB,当OC在∠AOB的内部时,OC是∠AOB的平分线,但当OC在∠AOB的外部时,OC不是∠AOB的平分线,故④错误.①②正确,所以选B.9.D点拨:①当射线OC在∠AOB的外部时,∠AOC=∠AOB+∠BOC=50°+30°=80°;②当射线OC在∠AOB的内部时,∠AOC=∠AOB-∠BOC=50°-30°=20°.故选D. 10.B二、11.两点确定一条直线12.713.22;3014.36°15.13.116.1217.80°18.②三、19.解:(1)原式=(48°+67°-37°)+(39′+41′-13′)+(60″-11″)=78°67′49″=79°7′49″;(2)原式=131°1′20″-40°35′50″=90°25′30″.20.解:如图所示.(第20题)则线段BC=c=AB-AC=a-b.21.解:由题意可知∠AOB=180°-45°+30°=165°,165°÷2-30°=52.5°.所以渔船C在观测站南偏东52.5°方向.22.解:因为∠FOC=90°,∠1=40°,∠3+∠FOC+∠1=180°,所以∠3=180°-90°-40°=50°.因为∠3+∠AOD=180°,所以∠AOD=180°-∠3=130°.因为OE平分∠AOD,所以∠2=12∠AOD=65°.(2)令100+x =102,解得x =2, 即车站P 建在C 村两侧2 km 处均可.(3)当x =0时,x +100最小,此时x +100=100,即车站P 建在C 村处时,车站P 到三个村庄的路程之和最小,此时路程之和为100 km . 24.解:(1)填表如下:(2)能.当2n +2=2 018,即n =1 008时,原正方形能被分割成2 018个小三角形,此时正方形ABCD 的内部有1 008个点.第五章达标测试卷一、选择题(每题3分,共30分) 1.下列方程是一元一次方程的是( )A .x 2+x =3B .5x +2x =5y +3 C.12x -9=3 D.2x +1=22.下列方程中,解是x =2的方程是( )A .3x +6=0 B.23x =2 C .5-3x =1 D .3(x -1)=x +1 3.若代数式x +4的值是2,则x 等于( )A .2B .-2C .6D .-6 4.下列变形中,正确的是( )A .若ac =bc ,则a =bB .若a c =bc ,则a =b C .若|a |=|b |,则a =b D .若-2x -2=3,则x =12 5.将方程3x -23+1=x2去分母,正确的是( )A .3x -2+1=xB .2(3x -2)+1=3xC .2(3x -2)+6=3xD .2(3x -2)+1=x 6.某公园要修建一个周长为48 m 的长方形花坛,已知该花坛的长比宽多2 m ,设花坛的A .2x =48B .x +2=48C .(x +x +2)×2=48D .x (x +2)=48 7.若12m +1与m -2互为相反数,则m 的值为( )A .-23 B.23 C .-32 D.328.如果x +12 017=-3,那么3x +32 017等于( )A .6B .-9C .3D .-19.如图①,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示,则被移动的玻璃球的质量为( )(第9题)A .10 gB .15 gC .20 gD .25 g10.对于有理数a ,b ,c ,d 规定一种运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,如⎪⎪⎪⎪⎪⎪1 02 -2=1×(-2)-0×2=-2,那么当⎪⎪⎪⎪⎪⎪2 -43-x 5=25时,x 等于( ) A .-34 B.274 C .-234 D .-134 二、填空题(每题3分,共24分)11.如果(a -1)x -13=2是关于x 的一元一次方程,则a __________. 12.写出一个解为x =2的一元一次方程:______________. 13.已知关于x 的方程2x +a -5=0的解是x =2,则a =________. 14.若规定“*”的意义为a *b =a -2b ,则方程3*x =5的解是____________. 15.若方程3x -4=0与关于x 的方程3x +4k =12的解相同,则k =________.16.如图是一个计算程序,当输入某数后,得到的结果为5,则输入的数值x =________.(第16题)17.王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝.如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜________袋. 18.我们知道,无限循环小数都可以转化为分数.例如:将0.3·转化为分数时,可设0.3·=x ,则x =0.3+110x ,解得x =13,即0.3·=13.仿照此方法,将0.4·5·化成分数是________.三、解答题(20~22题每题10分,其余每题12分,共66分) 19.解下列方程:(1)3x -3=x +2; (2)x +14-1=2x -16.(3)4x -3(20-x )=4;(4)3(x +2)4=x +23+5.20.m 为何值时,代数式2m -5m -13的值与代数式7-m2的值的和等于5?21.某月,小江去某地出差,回来时发现日历有好几天没翻了,就一次翻了6张,这6天的日期数之和是123.小江回来的日期应该是多少号?22.某地为了打造风光带,将一段长为360 m的河道整治任务交给甲、乙两个工程队接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m,求甲、乙两个工程队分别整治了多长的河道.23.有一种用来画圆的工具板(如图),工具板长21 cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3 cm,其余圆的直径从左到右依次递减x cm,最大圆的左侧距工具板左侧边缘1.5 cm,最小圆的右侧距工具板右侧边缘1.5 cm,且相邻两圆的间距均为d cm.(1)用含x的代数式表示出其余四个圆的直径;(2)若最小圆与最大圆的直径之比为11∶15,求相邻两圆的间距.(第23题)24.某市居民生活用电基本价格为每千瓦时0.60元,若每月用电量超过a kW·h,超出部分按基本电价的120%收费.(1)某用户6月用电150 kW·h,共交电费93.6元,求a的值;(2)若该用户7月的电费平均每千瓦时为0.66元,则7月用电多少千瓦时?应交电费多少元?答案一、1.C 2.D 3.B4.B 点拨:当c =0,a ≠b 时,ac =bc 也成立,故A 选项不正确;若a c =bc ,则c 不能为0,由等式的基本性质得a =b ,故B 选项正确;若|a |=|b |,则a =b 或a =-b ,故C 选项不正确;若-2x -2=3,则x =-52,故D 选项不正确. 5.C 6.C 7.B 8.B9.A 点拨:设被移动的玻璃球的质量为x g ,根据题意,得2x =20,解得x =10. 10.A二、11.≠1 12.x -2=0(答案不唯一) 13.114.x =-1 点拨:由已知得3*x =3-2x =5,即2x =-2,解得x =-1. 15.216.10 点拨:输入某数后,得到的结果为5,而输入的数值可能是奇数,也可能是偶数.当输入的数值是奇数时,可得x +3=5,解得x =2(不合题意,舍去);当输入的数值是偶数时,可得12x =5,解得x =10.17.33 点拨:设王经理带回孔明菜x 袋,根据题意列方程,得x -35=x +36.解这个方程,得x =33.18.511 点拨:设0.4·5·=y ,则y =0.45+1100y ,解得y =511.所以0.4·5·化成分数是511.三、19.解:(1)移项,得3x -x =2+3.合并同类项,得2x =5. 系数化为1,得x =52.(2)去分母,得3(x +1)-12=2(2x -1). 去括号,得3x +3-12=4x -2. 移项,得3x -4x =-2-3+12. 合并同类项,得-x =7. 系数化为1,得x =-7. (3)去括号,得4x -60+3x =4. 移项、合并同类项,得7x =64.系数化为1,得x=64 7.(4)去分母,得9(x+2)=4(x+2)+60. 移项,得9(x+2)-4(x+2)=60.合并同类项,得5(x+2)=60.所以x+2=12.解得x=10.20.解:由题意知,2m-5m-13+7-m2=5.去分母,得12m-2(5m-1)+3(7-m)=30.去括号,得12m-10m+2+21-3m=30.移项,得12m-10m-3m=30-2-21.合并同类项,得-m=7.系数化为1,得m=-7.21.解:设这6天的日期数分别为x-2,x-1,x,x+1,x+2,x+3.根据题意,可得(x-2)+(x-1)+x+(x+1)+(x+2)+(x+3)=123.解得x=20.20+3+1=24.答:小江回来的日期应该是24号.22.解:设甲工程队整治了x天,则乙工程队整治了(20-x)天.由题意,得24x+16(20-x)=360,解得x=5.所以乙工程队整治了20-5=15(天).甲工程队整治的河道长为24×5=120 (m);乙工程队整治的河道长为16×15=240 (m).答:甲、乙两个工程队分别整治了120 m,240 m的河道.23.解:(1)其余四个圆的直径分别为(3-x)cm,(3-2x)cm,(3-3x)cm,(3-4x)cm.(2)由题易得(3-4x)∶3=11∶15,解得x=0.2.将x=0.2代入2×1.5+[3+(3-x)+(3-2x)+(3-3x)+(3-4x)]+4d=21,解得d=1.25.答:相邻两圆的间距为1.25 cm.24.解:(1)因为0.60×150=90(元)<93.6元,所以a<150.由题意,得0.60a+(150-a)×0.60×120%=93.6,解得a=120.(2)设7月用电x kW·h.由题意,得0.66x=0.60×120+0.60×(x-120)×120%,解得x=240.所以0.66x=0.66×240=158.4.答:7月用电240 kW·h,应交电费158.4元.第一学期期末测试卷一、选择题(每题3分,共30分)1.下列各数中,小于-3的数是()A.-4 B.-3 C.-2 D.-12.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为60 900 t,将60 900用科学记数法表示为()A.6.09×104B.60.9×103C.0.609×103D.6.09×1033.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是()A.点A与点D B.点A与点C C.点B与点D D.点B与点C4.下面调查中,适合采用普查的是()A.对全国中学生心理健康现状的调查B.对某市食品合格情况的调查C.对天水电视台《人文天水》收视率的调查D.对你所在的班级同学的身高情况的调查5.某超市进了一批商品,每件进价为a元,若每件要获利25%,则每件商品的零售价应定为()A.25%a元B.(1-25%)a元C.(1+25%)a元 D.a1+25%元6.线段AB=12 cm,点C在线段AB上,且AC=13BC,M为BC的中点,则AM的长为()A.4.5 cm B.6.5 cm C.7.5 cm D.8 cm7.如果x=1是方程2-13(m-x)=2x的解,那么关于y的方程m(y-3)-2=m(2y-5)的解是()A.y=-10 B.y=0 C.y=43D.y=48.为了解本校九年级学生的体能情况,随机抽查了其中30名学生,测试1 min 仰卧起坐的次数,并将其绘制成如图所示的频数直方图.那么仰卧起坐次数在25~30的人数占抽查总人数的百分比是( ) A .40%B .30%C .20%D .10%9.如图是由一些相同的小正方体构成的立体图形从三个不同方向看得到的图形,这些相同的小正方体的个数是( )A .4B .5C .6D .710.下列说法正确的有( ) ①没有绝对值最小的有理数;②上午10点10分时,时针与分针的小于平角的夹角是115°; ③53πa 3b 的系数是53,次数是4;④要了解一批冰箱的使用寿命,采用普查方式.A .4个B .3个C .2个D .1个 二、填空题(每题3分,共24分)11.-12πab 的系数为________,次数为________. 12.计算:3x 2y +2x 2y =__________.13.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检测.在这个问题中,总体是____________________________,样本是__________________________________.14.如图,在直角三角形ABC 中,∠ACB =90°,以边BC 所在直线为轴旋转一周所得到的几何体是________.15.小明和小丽同时从甲村出发到乙村,小丽的速度为4 km/h ,小明的速度为5 km/h ,小丽比小明晚到15 min ,则甲、乙两村的距离是________.16.校园“mama”超市出售2种中性笔,一种每盒有8支,另一种每盒有12支,由于近段时间某班全体上课状态很不错,班委准备给每人发1支中性笔以示鼓励.若买每盒8支的中性笔x 盒,则有3位同学没有中性笔;若买每盒12支的中性笔,则可以少买2盒,且最后1盒还剩1支.根据题意列方程:________________________________________________________________________. 17.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠BOE =13∠EOC ,∠DOE =60°,则∠EOC 的大小是________.18.高杨同学用木棒和硬币拼成如图所示的“列车”形状,第1个图需要4根木棒、2枚硬币,第2个图需要7根木棒、4枚硬币,照这样的方式摆下去,第n 个图需要__________根木棒、__________枚硬币.三、解答题(23,25题每题12分,24题10分,其余每题8分,共66分) 19.计算:-22+|5-8|+24÷(-3)×13.20.先化简,再求值:(1)(4a 2-3a )+(2+4a -a 2)-(2a 2+a -1),其中a =-2;(2)2(ab 2-a 2b )-(-2a 2b -ab 2+1),其中a =4,b =12.。
最新北师大版七年级数学下册各章经典练习题汇总
北师大版七年级数学下册各章经典练习题汇总第一章 整式的乘除1.下列计算错误的是( B ) A .(-b )3·(-b )5=b 8B .(-a )4·(-a )=a 5C .(a -b )3·(b -a )2=(a -b )5D .(-m )5·(-m 2)=m 72.计算(2a 2)3的结果是( C ) A .2a 6B .6a 6C .8a 6D .8a 53.计算(x -2y )4÷(x -2y )2÷(2y -x )的结果是( D ) A .x -2y B .-x -2y C .x +2yD .-x +2y4.若x m=9,x n=6,x k=4,则x m -2n +2k的值为( C )A .0B .1C .4D .85.将⎝ ⎛⎭⎪⎫16-1,(-2 019)0,(-3)2按从小到大的顺序排列: (-2 019)0<⎝ ⎛⎭⎪⎫16-1<(-3)2.6.已知两个单项式13a m +2n b 与-2a 4b k 是同类项,则2m ×22n ×23k的值是 128 .7.计算:(1)[(x +y )2]6= (x +y )12. (2)a 8+(a 2)4= 2a 8. 8.计算:(1)(-a 3b 6)2-(-a 2b 4)3; (2)2(a n b n )2+(a 2b 2)n.解:(1)原式=a 6b 12-(-a 6b 12)=a 6b 12+a 6b 12=2a 6b 12. (2)原式=2a 2n b 2n+a 2n b 2n=3a 2n b 2n.9.一种微粒的半径是0.000 04米,这个数据用科学记数法表示为( C ) A .4×106B .4×10-6C .4×10-5D .4×10510.将5.18×10-4化为小数是( A ) A .0.000 518 B .0.005 18 C .0.051 8D .0.51811.下列计算中,错误的有( C ) ①(3a +4)(3a -4)=9a 2-4; ②(2a 2-b )(2a 2+b )=4a 4-b 2;③(x +3)(3-x )=x 2-9;④(-x +y )(x +y )=-(x -y )(x +y )=-x 2-y 2. A .1个 B .2个 C .3个 D .4个12.已知a +b =3,则a 2-b 2+6b 的值为( B ) A .6 B .9 C .12 D .1513.方程(4x +5)2-(4x +5)(4x -5)=0的解是( A ) A .x =-54B .x =-45C .x =-1D .x =114.为了运用乘法公式计算(x +3y -z )(x -3y +z ),下列变形正确的是( C ) A .[x -(3y +z )]2B .[(x -3y )+z ][(x -3y )-z ]C .[x -(3y -z )][x +(3y -z )]D .[(x +3y )-z ][(x +3y )+z ]15.若⎝ ⎛⎭⎪⎫x +1x 2=9,则⎝ ⎛⎭⎪⎫x -1x 2的值为 5 . 16.观察下列各式,探索发现规律: 1×3=1=22-1;3×5=15=42-1; 5×7=35=62-1;7×9=63=82-1; 9×11=99=102-1;….用含正整数n 的等式表示你所发现的规律为 (2n -1)(2n +1)=(2n )2-1 . 17.计算:(1)⎝ ⎛⎭⎪⎫-2x 2+14⎝ ⎛⎭⎪⎫-2x 2-14;(2)⎝ ⎛⎭⎪⎫13a -b ⎝⎛⎭⎪⎫-b -13a ;(3)⎝ ⎛⎭⎪⎫-xy 4+y ⎝ ⎛⎭⎪⎫xy4+y ;(4)(2a -b )(2a +b )(4a 2+b 2); (5)(a +3)(a -3)+a (4-a ).解:(1)原式=(-2x 2)2-⎝ ⎛⎭⎪⎫142=4x 4-116.(2)原式=⎝ ⎛⎭⎪⎫-b +13a ⎝ ⎛⎭⎪⎫-b -13a =(-b )-19a 2.(3)原式=⎝ ⎛⎭⎪⎫y +14xy ⎝ ⎛⎭⎪⎫y -14xy =y 2-⎝ ⎛⎭⎪⎫14xy 2=y 2-116x 2y 2.(4)原式=(4a 2-b 2)(4a 2+b 2)=16a 4-b 4. (5)原式=a 2-9+4a -a 2=4a -9.18.如果(2m +3n +1)(2m +3n -1)=48,求2m +3n 的值. 解:因为(2m +3n +1)(2m +3n -1)=48, 所以[(2m +3n )+1][(2m +3n )-1]=48, 所以(2m +3n )2-1=48, 所以(2m +3n )2=49, 所以2m +3n =±7.19.下列计算正确的是( B ) A .3x 3·2x 2y =6x 5 B .2a 2·3a 3=6a 5C .(2x )3·(-5x 2y )=-10x 5y D .(-2xy )·(-3x 2y )=6x 3y20.当m =25时,代数式m 2(m +4)+2m (m 2-1)-3m ·(m 2+m -1)的值为 1425 .21.要使多项式(x 2+px +2)(x -q )不含关于x 的二次项,则p 与q 的关系是 p =q . 22.计算:(1)(-2x 2y )2·⎝ ⎛⎭⎪⎫-12xyz ·35x 3z 3;(2)(-2a 2)(3ab 2-5ab 3); (3)xy (-x 2y +xy 5-x 3y 2). 解:(1)(-2x 2y )2·⎝ ⎛⎭⎪⎫-12xyz ·35x 3z 3=4x 4y 2·⎝ ⎛⎭⎪⎫-12xyz ·35x 3z 3=⎣⎢⎡⎦⎥⎤4×⎝ ⎛⎭⎪⎫-12×35(x 4·x ·x 3)(y 2·y )(z ·z 3) =-65x 8y 3z 4.(2)(-2a 2)(3ab 2-5ab 3)=(-2a 2)·3ab 2+(-2a 2)·(-5ab 3) =-6a 3b 2+10a 3b 3.(3)xy (-x 2y +xy 5-x 3y 2)=xy ·(-x 2y )+xy ·xy 5+xy ·(-x 3y 2) =-x 3y 2+x 2y 6-x 4y 3.23.化简求值:[4(xy -1)2-(xy +2)(2-xy )]÷14xy ,其中x =-2,y =15.解:原式=[4(x 2y 2-2xy +1)-(4-x 2y 2)]÷14xy=(4x 2y 2-8xy +4-4+x 2y 2)÷14xy=(5x 2y 2-8xy )÷14xy =20xy -32.把x =-2,y =15代入上式,得原式=20×(-2)×15-32=-40.24.若a ,b ,k 均为整数且满足等式(x +a )(x +b )=x 2+kx +36,写出符合条件的k 的值. 解:因为(x +a )(x +b )=x 2+kx +36, 所以x 2+(a +b )x +ab =x 2+kx +36,根据等式的对应项的系数相等,得⎩⎪⎨⎪⎧k =a +b ,ab =36.又因为a ,b ,k 均为整数,36=1×36=2×18=3×12=4×9=6×6=(-1)×(-36)=(-2)×(-18)=(-3)×(-12)=(-4)×(-9)=(-6)×(-6),所以a ,b 对应的值共有10对,从而求出a +b 的值,即k 的值有10个,分别为±37,±20,±15,±13,±12.第二章 相交线与平行线1.(2018·湖南益阳中考)如图,直线AB ,CD 相交于点O ,EO ⊥CD .下列说法错误的是( C )A .∠AOD =∠BOCB .∠AOE +∠BOD =90°C .∠AOC =∠AOED .∠AOD +∠BOD =180°2.(2019 ·湖南株洲荷塘区期末)如图,在三角形ABC 中,∠ACB =90°,AB =5 cm ,AC =4 cm ,BC =3 cm ,则点C 到AB 的距离为( C )A .4 cmB .3 cmC .2.4 cmD .2.5 cm3.如图所示,直线AB ,CD ,EF 两两相交,若∠1=30°,∠2=60°,则∠3= 30° ,∠4= 60° ,∠5= 150° ,∠6= 120° . 4.(2019·广东二模)若∠1与∠2是对顶角,∠2的邻补角(有一条公共边且互补的角)是∠3,∠3=45°,则∠1的度数为 135° .5.(2019·江苏泰州月考)若∠A 和∠B 的两边分别垂直,且∠A 比∠B 的两倍少30°,则∠B 的度数是 30°或70° .6.(2019·辽宁大连甘井子区期中)如图,直线AB 与CD 相交于点O ,OP 是∠BOC 的平分线,OF ⊥CD ,∠AOD =50°,求∠DOP 的度数.解:因为∠AOD =∠BOC ,∠AOD =50°,所以∠BOC =50°.因为OP 平分∠BOC ,所以∠POB =∠POC =12∠BOC =12×50°=25°,所以∠DOP =180°-∠POC =180°-25°=155°.7.如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE ,∠AOD ∶∠BOD =2∶1.(1)求∠DOE 的度数; (2)求∠AOF 的度数.解:(1)因为∠AOD ∶∠BOD =2∶1,∠AOD +∠BOD =180°,所以∠BOD =13×180°=60°.因为OE 平分∠BOD ,所以∠DOE =12∠BOD =12×60°=30°.(2)∠COE =180°-∠DOE =180°-30°=150°.因为OF 平分∠COE ,所以∠COF =12∠COE =12×150°=75°.因为∠AOC =∠BOD =60°,所以∠AOF =∠AOC +∠COF =60°+75°=135°.8.如图,直线EF ,CD 相交于点O ,OA ⊥OB ,且OC 平分∠AOF . (1)若∠AOE =40°,求∠BOD 的度数;(2)若∠AOE =α,求∠BOD 的度数;(用含α的式子表示) (3)从(1)(2)的结果中能看出∠AOE 和∠BOD 有何关系?解:(1)因为∠AOE +∠AOF =180°,∠AOE =40°,所以∠AOF =140°. 又因为OC 平分∠AOF , 所以∠FOC =12∠AOF =70°.所以∠EOD =∠FOC =70°(对顶角相等). 又∠BOE =∠AOB -∠AOE =50°, 所以∠BOD =∠EOD -∠BOE =20°.(2)因为∠AOE +∠AOF =180°,∠AOE =α, 所以∠AOF =180°-α.又因为OC 平分∠AOF , 所以∠FOC =12∠AOF =90°-12α.所以∠EOD =∠FOC =90°-12α(对顶角相等).又∠BOE =∠AOB -∠AOE =90°-α, 所以∠BOD =∠EOD -∠BOE =12α.(3)从(1)(2)的结果中能看出∠AOE =2∠BOD .9.(2019·陕西中考)如图,OC 是∠AOB 的平分线,l ∥OB ,若∠1=52°,则∠2的度数为( C )A.52° B.54° C.64° D.69°10.(2019·贵州安顺中考)如图,三角尺的直角顶点落在长方形纸片的一边上.若∠1=35°,则∠2的度数是( C )A.35° B.45° C.55° D.65°11.(2019·山东菏泽中考)如图,AD∥CE,∠ABC=100°,则∠2-∠1的度数是80° .12.(2019·广东惠州惠阳区期末)如图,EF∥AD,EF∥BC,CE平分∠BCF,∠DAC=120°.(1)求∠ACB的度数;(2)若∠ACF=20°,求∠FEC的度数.解:(1)因为EF∥AD,EF∥BC,所以AD∥BC,所以∠ACB+∠DAC=180°.因为∠DAC=120°,所以∠ACB=60°.(2)因为∠ACF=20°,所以∠BCF=∠ACB-∠ACF=40°.因为CE平分∠BCF,所以∠BCE=20°.因为EF∥BC,所以∠FEC=∠BCE=20°.13.(2019 ·广西贵港覃塘区期末)如图,BE平分∠ABC,∠ABC=2∠E,∠ADE+∠BCF=180°.(1)请说明AB∥EF;(2)若AF平分∠BAD,判断AF与BE的位置关系,并说明理由.解:(1)因为BE 平分∠ABC ,所以∠ABE =12∠ABC .又因为∠ABC =2∠E ,所以∠E =12∠ABC ,所以∠E =∠ABE ,所以AB ∥EF .(2)结论:AF ⊥BE .理由如下:因为∠ADE +∠ADF =180°,∠ADE +∠BCF =180°, 所以∠ADF =∠BCF ,所以AD ∥BC , 所以∠DAB +∠CBA =180°. 因为AF 平分∠BAD ,BE 平分∠ABC , 所以∠OAB =12∠DAB ,∠OBA =12∠CBA ,所以∠OAB +∠OBA =90°,所以∠AOB =90°, 所以AF ⊥BE .14.(2019·四川成都郫都区期中)如图,直线a ∥b ,直线c 和直线a ,b 分别交于点C 和D ,在C ,D 之间有一点P .(1)判断图中∠PAC ,∠APB ,∠PBD 之间有什么关系,并说明理由;(2)如果点P 在C ,D 之间运动,∠PAC ,∠APB ,∠PBD 之间的关系是否发生变化?(3)若点P 在直线c 上C ,D 两点的外侧运动(点P 与点C ,D 不重合),试探究∠PAC ,∠APB ,∠PBD 之间的关系又是如何?分别画出图形并说明理由. 解:(1)∠APB =∠PAC +∠PBD .理由如下:如图1,过点P 作PE ∥a .因为a ∥b ,所以PE ∥b ∥a , 所以∠PAC =∠1,∠PBD =∠2, 所以∠APB =∠1+∠2=∠PAC +∠PBD .(2)当点P在C,D之间运动时,仍为∠APB=∠PAC+∠PBD.(3)如图2,当点P在C,D两点的外侧运动,且在直线a的上方时,∠PBD=∠PAC+∠APB.理由如下:因为a∥b,所以∠PEC=∠PBD.因为∠PEC+∠PEA=180°,∠PAC+∠APB+∠PEA=180°,所以∠PEC=∠PAE+∠APB,所以∠PBD=∠PAC+∠APB.如图3,当点P在C,D两点的外侧运动,且在直线b的下方时,∠PAC=∠PBD+∠APB.理由如下:因为a∥b,所以∠PED=∠PAC.因为∠PED+∠BEP=180°,∠EBP+∠BPA+∠BEP=180°,所以∠PED=∠PBD+∠APB,所以∠PAC=∠PBD+∠APB.第三章变量之间的关系1.圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中( B )A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量2.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中销售量是自变量,销售收入是因变量.3.某公司产品的销售收入与销售量的关系如下表:销售量/吨1234…万元时,销售量为 5 吨.4.(2019·四川成都期末)声音在空气中传播的速度简称音速,实验测得音速与气温的一些数据如下表:(1)此表反映的是变量 音速 随 气温 变化的情况;(2)请直接写出y 与x 的关系式: y =0.6x +331 ;(3)当气温为22 ℃时,某人看到烟花燃放5 s 后才听到声响,求此人与烟花燃放所在地的距离.解:(3)因为当x =22时,y =0.6×22+331=344.2, 所以距离为344.2×5=1 721(m), 即此人与烟花燃放所在地的距离为1 721 m.5.设W =当月的500克猪肉价格当月的500克玉米价格.如果W <6,则下个月要采取措施防止“猪贱伤农”.已知2~5月玉米、猪肉价格统计表如下:(1)若33月的猪肉价格m ;(2)若6月及以后月份,玉米价格增长的规律不变,而每月的猪肉价格按照5月的猪肉价格比上月下降的百分数继续下降,请你预测6月是否要采取措施防止“猪贱伤农”. 解:(1)由题意,得7.5-m 7.5=6.25-66.25,解得m =7.2.(2)从2~5月玉米的价格变化知,后一个月总是比前一个月价格每500克增长0.1元,所以6月玉米的价格是1.1元/500克.因为5月猪肉价格的下降率为6.25-66.25=125,所以6月的猪肉价格为6×⎝ ⎛⎭⎪⎫1-125=5.76(元/500克). 所以W =5.761.1≈5.24<6,要采取措施防止“猪贱伤农”.6.变量x 与y 之间的关系式是y =12x 2-1,当自变量x =2时,因变量y 的值是( C )A .-2B .-1C .1D .27.(2019·四川宜宾期末)如图,在长方形ABCD 中,AB =4,BC =2,P 为BC 上的一点,设BP =x (0<x <2),则三角形APC 的面积S 与x 之间的关系式是( D )A .S =12x 2B .S =2xC .S =2(x -2)D .S =2(2-x )8.某厂2019年1月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂2019年3月份新产品的研发资金y (元)关于x 的关系式为y = a (1+x )2 .9.“十一”黄金周期间,欢欢一家随团到某风景区旅游,集体门票的收费标准是20人以内(含20人),每人25元;超过20人的,超过的部分每人10元. (1)写出应收门票费y (元)与游览人数x (人)(x ≥20)之间的关系式;(2)利用(1)中的关系式计算:若欢欢一家所在的旅游团共54人,那么他们为购门票花了多少钱?解:(1)由题意,得y =25×20+10(x -20)=10x +300(x 为整数,且x ≥20). (2)当x =54时,y =10×54+300=840,即他们为购门票花了840元.10.正常人的体温一般在37 ℃左右,但一天中的不同时刻不尽相同.下图反映了一天(24小时)内小明体温的变化情况,下列说法错误的是( D )A .清晨5时体温最低B .下午5时体温最高C .这一天中小明体温的范围是36.5≤T ≤37.5D .从5时至24时,小明体温一直是升高的11.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末学习计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的大致图象是( B )12.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道的长度为750米.其中正确的结论是②③ .(把你认为正确结论的序号都填上)13.2019年夏天,某省由于持续高温和连日无雨,水库蓄水量普遍下降.某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图如图所示,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万米?(2)当水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问:持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?解:(1)当t=0时,V=1 000,所以水库原蓄水量为1 000万立方米;当t=10时,V=800,所以持续干旱10天后蓄水量为800万立方米.(2)当V=400时,t=30,所以持续干旱30天后将发出严重干旱警报.(3)从第10天到第30天,水库蓄水量下降了800-400=400(万立方米),一天下降40030-10=20(万立方米),根据此规律可求出30+40020=50(天),故持续干旱50天水库将干涸.三角形1.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( C )A .120° B.180° C.240° D.300°2.如图,在△ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于点E .F 为AB 上的一点,CF ⊥AD 于点H .下列判断正确的有( A )(1)AD 是△ABE 的角平分线. (2)BE 是△ABD 边AD 上的中线. (3)CH 为△ACD 边AD 上的高. A .1个 B .2个 C .3个 D .0个3.如图,图中有 5 个三角形,把它们用符号分别表示为 △ABD ,△CED ,△BCD ,△ABC ,△EBC .4.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 30° .5.如图,在△ABC 中,∠B =60°,∠C =20°,AD 为△ABC 的高,AE 为△ABC 的角平分线. (1)求∠EAD 的度数;(2)试确定∠DAE 与∠B ,∠C 的关系并说明理由.解:(1)因为AD 为△ABC 的高,所以∠ADB =∠ADC =90°.因为∠B =60°,所以∠BAD =30°.在△ABC 中,∠CAB +∠B +∠C =180°,所以∠CAB =100°.又因为AE 是△ABC 的角平分线,所以∠BAE =∠CAE =12∠CAB =50°,所以∠DAE =∠BAE -∠BAD =20°.(2)由(1)得∠DAE =∠BAE -∠BAD =12∠BAC -(90°-∠B )=12(180°-∠B -∠C )-(90°-∠B )=90°-12∠B -12∠C -90°+∠B =12∠B -12∠C ,所以2∠DAE =∠B -∠C .6.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有( C ) A .1种 B .2种 C .3种D .4种7.△ABC 的边长均为整数,且最大边的边长为7,那么这样的三角形共有 16 个. 8.一个等腰三角形的周长为30 cm ,它有一条边长是另一条边长的一半,它的底边长为 6 cm ,一腰长为 12 cm.9.如图所示,△ABC ≌△CDA ,并且AB =CD ,小胡同学写了四个结论,其中有一个不正确,这个结论是( D )A .∠1=∠2B .AD ∥BC C .∠D =∠BD .AC =BC10.如图,△ADF ≌△BDF ,△BDE ≌△CDE ,AC =10 cm ,那么AD =( D )A.2 cm B.3 cmC.4 cm D.5 cm11.已知△ABC≌△DEF,且△ABC的周长为12,AB=5,BC=4,则DF= 3 .12.△ABC与△A′B′C′是一对全等的三角形,其中△ABC中,AB=6,AB边上的高为5,则△A′B′C′的面积为 15 .13.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC;②△ACE≌△BDE;③点E在∠O的平分线上.其中正确结论的个数是( D )A.0 B.1C.2 D.314.如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件∠BDE=∠BAC(答案不唯一) ,使△ABC≌△DBE.(只需添加一个即可)15.如图所示,赵刚站在楼顶B处看一烟囱,当看到烟囱顶A时,视线与水平方向成的角是45°;当看到烟囱底部D时,视线与水平方向成的角也是45°.如果楼高15米,那么烟囱大约高 30 米.16.要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,O 为卡钳两柄交点,且有OA =OB =OC =OD ,如果圆形工件恰好通过卡钳AB ,则此工件的外径必是CD 的长,你能说明其中的道理吗?解:由OA =OD ,OB =OC ,∠AOB =∠DOC ,可知△AOB ≌△DOC ,从而AB =CD .17.(2019·辽宁鞍山月考)在△ABC 中,D 是AB 的中点,E 是CD 的中点.过点C 作CF ∥AB 交AE 的延长线于点F ,连接BF .试说明DB =CF .解:因为E 为 CD 的中点,所以CE =DE .因为∠AED 和∠CEF 是对顶角,所以∠AED =∠CEF . 因为CF ∥AB ,所以∠EDA =∠ECF . 在△EDA 和△ECF 中,⎩⎪⎨⎪⎧∠EDA =∠ECF ,ED =EC ,∠AED =∠CEF ,所以△EDA ≌△ECF (ASA),所以AD =FC . 因为D 为AB 的中点,所以AD =BD .所以DB =CF .18.如图,AB =DC ,∠A =∠D ,点M 和点N 分别是BC ,AD 的中点.试说明∠ABC =∠DCB .解:点M 和点N 分别是BC ,AD 的中点,所以AN =DN ,BM =CM .在△ABN 和△DCN 中,⎩⎪⎨⎪⎧AN =DN ,∠A =∠D ,AB =DC ,所以△ABN ≌△DCN (SAS),所以BN =CN ,∠ABN =∠DCN .在△BMN 和△CMN 中,⎩⎪⎨⎪⎧BN =CN ,MN =MN ,BM =CM ,所以△BMN ≌△CMN (SSS), 所以∠MBN =∠MCN ,所以∠ABN +∠MBN =∠DCN +∠MCN , 即∠ABC =∠DCB .19.如图,在Rt△ABC 中,∠ACB =90°,点D ,F 分别在AB ,AC 上,CF =CB .连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CE ,连接EF . (1)试说明△BCD ≌△FCE ; (2)若EF ∥CD ,求∠BDC 的度数.解:(1)因为CD 绕点C 顺时针方向旋转90°得CE ,所以CD =CE ,∠DCE =90°.因为∠ACB =90°,所以∠BCD =90°-∠ACD =∠FCE .在△BCD 和△FCE 中,⎩⎪⎨⎪⎧CB =CF ,∠BCD =∠FCE ,CD =CE ,所以△BCD ≌△FCE .(2)由△BCD ≌△FCE 得∠BDC =∠E . 因为EF ∥CD ,所以∠E =180°-∠DCE =90°.所以∠BDC =90°.20.在△ABC 中,AB =AC ,点E ,F 分别在AB ,AC 上,AE =AF ,BF 与CE 相交于点P .试说明PB =PC ,并直接写出图中其他相等的线段.解:在△ABF 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAF =∠CAE ,AF =AE ,所以△ABF ≌△ACE (SAS),所以∠ABF =∠ACE (全等三角形的对应角相等), 所以BF =CE (全等三角形的对应边相等). 因为AB =AC ,AE =AF ,所以BE =CF . 在△BEP 和△CFP 中,⎩⎪⎨⎪⎧∠BPE =∠CPF ,∠PBE =∠PCF ,BE =CF ,所以△BEP ≌△CFP (AAS),所以PB =PC . 因为BF =CE ,所以PE =PF .所以图中其他相等的线段为PE =PF ,BE =CF ,BF =CE .21.如图,小勇要测量家门前河中浅滩B 到对岸A 的距离,他先在岸边定出C 点,使C ,A ,B 在同一直线上,再沿AC 的垂直方向在岸边画线段CD ,取它的中点O ,又画DF ⊥CD ,观测到E ,O ,B 在同一直线上,F ,O ,A 也在同一直线上,那么EF 的长就是浅滩B 到对岸A 的距离,你能说出这是为什么吗?解:因为DF ⊥CD ,AC ⊥CD ,所以∠D =∠C =90°. 又因为OC =OD ,∠COA =∠DOF , 所以△AOC ≌△FOD (ASA), 所以∠A =∠F ,OA =OF . 又因为∠AOB =∠FOE , 所以△AOB ≌△FOE (ASA),所以AB =EF ,所以EF 的长就是浅滩B 到对岸A 的距离.22.如图,AB ∥CD ,以点A 为圆心,小于AC 的长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 的长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .(1)若∠ACD =114°,求∠MAB 的度数; (2)若CN ⊥AM ,垂足为N ,试说明△ACN ≌△MCN .解:(1)因为AB ∥CD ,所以∠ACD +∠CAB =180°.又因为∠ACD =114°,所以∠CAB =66°.由作法,知AM 是∠CAB 的平分线,所以∠MAB =12∠CAB =33°.(2)因为AM 平分∠CAB ,所以∠CAM =∠MAB . 因为AB ∥CD ,所以∠MAB =∠CMA , 所以∠CAM =∠CMA .又因为CN ⊥AM ,所以∠ANC =∠MNC .在△ACN 和△MCN 中,因为∠ANC =∠MNC ,∠CAM =∠CMA ,CN =CN ,所以△ACN ≌△MCN . 23.已知线段a ,b ,∠α,如图所示.求作:△ABC ,使其有一个内角等于∠α,且∠α的对边等于a ,另一边等于b .解:作法:(1)作∠MBH =∠α. (2)在边BM 上截取AB =b .(3)以点A 为圆心,a 的长为半径作弧,交BC 于点C (或C ′). (4)连接AC (或AC ′).则△ABC 或△ABC ′就是所求作的三角形,如图所示.生活中的轴对称1.下列四个图形中,是轴对称图形,且对称轴的条数为2的图形的个数是( C )A.1 B.2 C.3 D.42.下列标志中,可以看作是轴对称图形的是( D )3.下列图形中,所有轴对称图形的对称轴条数之和为( B )A.13 B.11 C.10 D.84.图中的六边形ABCDEF是轴对称图形,CF所在的直线是对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小为( B )A.150° B.300° C.210° D.330°5.如图,把长方形中的∠A沿某条直线对折,使点A与BC上的点A′重合,折痕交AB于点E,若∠CDA′=70°,则∠AED的度数为( D )A.70° B.20° C.35° D.80°6.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的点A′处,如果∠A′EC=70°,那么∠A′DE的度数为65° .7.如图,直线l是四边形ABCD的对称轴,且AD∥BC.(1)试写出图中三组相等的线段;(2)试写出图中三组相等的角;(3)欢欢认为从图中还能得到以下结论:AB∥CD,AB=CD,AB⊥BC,OA=OC,你认为这些结论都正确吗?说明你的理由.解:(1)AB=AD,BC=DC,OB=OD.(答案不唯一)(2)∠BAC=∠DAC,∠BCA=∠DCA,∠ABC=∠ADC.(答案不唯一)(3)AB∥CD,AB=CD,OA=OC正确,但AB⊥BC不正确.因为直线l是四边形ABCD的对称轴,所以OB=OD.因为AD∥BC,所以∠BCA=∠DAC,∠ADO =∠CBO,所以△ADO≌△CBO,所以OA=OC.因为∠AOB=∠COD,所以△ABO≌△CDO,所以AB=CD,∠BAC=∠ACD,所以AB∥CD.8.点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,点P1,O,P2正好在同一条直线上,请求出∠AOB的大小.解:因为OA和OB分别是点P和点P1,点P2和点P的对称轴,所以∠1=∠2,∠3=∠4.又因为点P1,O,P2在同一条直线上,所以∠AOB=180°÷2=90°.9.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为( B )A.30° B.40° C.45° D.60°10.如图,在△ABC中,AB=AC,CD平分∠ACB交AB于D点,AE∥DC交BC的延长线于点E,已知∠E=36°,则∠B= 72 度.11.如图,在△ABC中,AB=AC,BC=BD,AD=DE=BE,求∠A的度数.解:因为AB=AC,所以∠ABC=∠C.因为BC=BD,所以∠BDC=∠C.所以∠ABC=∠BDC=∠C.又因为AD=DE=BE,所以∠A=∠DEA,∠EBD=∠EDB.设∠EBD=∠EDB=x,则∠A=∠DEA=2x,∠ABC=∠BDC=∠C=3x.在△ABC中,∠A+∠ABC +∠C=180°,即2x+3x+3x=180°,解得x=22.5°.所以2x =45°,即∠A 的度数是45°.12.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( C )A .AB =AD B .AC 平分∠BCD C .AB =BDD .△BEC ≌△DEC13.在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD ,若CD =AC ,∠B =25°,则∠ACB 的度数为 105° .14.如图,AD ⊥BC 于点D ,D 为BC 的中点,连接AB ,∠ABC 的平分线交AD 于点O ,连接OC ,若∠AOC =125°,则∠ABC = 70 °.15.如图,在△ABC 中,AB =AC ,∠BAC =120°,D ,F 分别为AB ,AC 的中点,DE ⊥AB ,GF ⊥AC ,点E ,G 均在BC 上,BC =15 cm ,求EG 的长.解:如图,连接AE ,AG ,则AE =BE ,AG =CG . 因为AB =AC ,∠BAC =120°,所以∠B =∠C =30°.所以∠AEG =∠AGE =60°.所以△AEG 为等边三角形.所以AE =EG =AG =BE =CG .所以EG =13BC =5 cm.16.如图,在Rt△ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,若CD =m ,AB =n ,则△ABD 的面积是( B )A .mm B.12mm C.13mm D .2mm17.如图,AD ∥BC ,∠ABC 的平分线BP 与∠BAD 的平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为 4 .18.如图,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,DF ⊥BD ,且BD =CD ,那么BE 与CF 相等吗?说明理由.解:相等.理由如下:因为AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC , 所以DE =DF ,∠DEB =∠DFC =90°. 因为DF ⊥BD ,所以∠BDE +∠FDC =90°. 又因为∠BDE +∠DBE =90°, 所以∠FDC =∠DBE .又因为BD =CD ,所以△BED ≌△DFC , 所以BE =CF .19.李老师布置了一道题:在田字格中涂上几个阴影,要求整个图形必须是轴对称图形,下图各种作法中,符合要求的是( C )20.要在一块长方形的空地上修建一个花坛,要求花坛图案为轴对称图形,下图中的设计符合要求的有( A )A.4个 B.3个 C.2个 D.1个21.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有 13 种.22.如图,在2×2的正方形方格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有 5 个.第六章概率初步1.下列事件中,是不可能事件的是( D )A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°2.“368人中一定有2人的生日是相同的”是( B )A.随机事件B.必然事件C.不可能事件D.以上都不对3.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,向上一面的点数是2.其中是随机事件的是 ①③ .(填序号)4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( D ) A .3个 B .不足3个 C .4个D .5个或5个以上5.七年级(6)班共有学生54人,其中男生有30人,女生有24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性 大 (填“大”或“小”).6.给出以下四个事件:①电灯通电时“发热”;②某人射击一次“中靶”;③掷一枚硬币“出现正面”;④在常温下“铁熔化”. 你认为可能性最大的是 ① ,最小的是 ④ .7.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是( C )8.某人在做掷硬币试验时,抛掷m 次,正面朝上有n 次⎝⎛⎭⎪⎫即正面朝上的频率是P =n m ,则下列说法中正确的是( D ) A .P 一定等于12B .P 一定不等于12C .多投一次,P 更接近12D .随着抛掷次数逐渐增加,P 稳定在12附近9.在一个不透明的布袋中有除颜色外其他都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红球和蓝球的频率分别稳定在35%和55%,则口袋中可能有黄球 20 个.10.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题: (1)这种树苗成活的频率稳定在 0.9 ,成活的概率估计值为 0.9 . (2)该地区已经移植这种树苗5万棵. ①估计这种树苗成活 4.5 万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?解:(2)②18÷0.9-5=15(万棵). 答:该地区还需移植这种树苗约15万棵.11.一个不透明的盒子里装有只有颜色不同的黑、白两种颜色的球共40个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,活动进行中的一组统计数据如下所示:摸球的次数n 200 300 400 500 800 1 000 摸到白球的次数m 116 192 232 295 484 601 摸到白球的频率m n0.580.640.580.590.6050.601(1)(2)如果你从盒子中任意摸出一球,那么摸到白球的概率约是多少? (3)试估算盒子中黑、白两种颜色的球各有多少个?(4)请你应用上面频率与概率的关系的思想解决下面的问题:一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计口袋中白球的个数(可以借助其他工具及用品)?请写出解决这个问题的主要步骤及估算方法. 解:(1)0.60. (2)0.60.(3)盒子中白球的个数约为40×0.60=24(个), 则黑球的个数为40-24=16(个).(4)①添加:向口袋中添加一定数目的黑球,并充分搅匀;②试验:进行次数很多的摸球试验(有放回),记录摸到黑球和白球的次数,分别计算频率,由频率估计概率;③估算:黑球个数摸到黑球的概率=球的总个数,球的总个数×摸到白球的概率=白球的个数(答案不唯一).12.小军旅行箱的密码是一个六位数,但他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )A.110B.19C.16D.1513.如图,某农民在A ,B ,C ,D 四块田里插秧时,不慎将手表丢入田里,直到收工时才发现,则手表丢在哪一块田里的可能性大些( D )A .AB .BC .CD .D14.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小正三角形是等可能的,扔沙包一次,击中阴影区域的概率等于( C )A.16B.14C.38D.5815.5张分别写有-1,2,0,-4,5的卡片(除数字不同以外其余都相同),现从中任意取出1张卡片,则该卡片上的数字是负数的概率是 25.16.小兰和小青两人做游戏,有一个质量分布均匀的正六面体骰子,骰子的六面分别标有1,2,3,4,5,6.如果掷出的骰子的点数是质数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢.该游戏规则对 小兰 有利.17.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为偶数; (2)点数大于2且小于5.解:掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种情况,这些点数出现的可能性相等.(1)点数为偶数有3种可能,即点数为2,4,6, 所以P (点数为偶数)=36=12.(2)点数大于2且小于5有2种可能,即点数为3,4, 所以P (点数大于2且小于5)=26=13.18.如图,小明家里的阳台地面铺设着黑、白两种颜色的18块方砖(除颜色不同外其余都相同),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上. (1)求小皮球分别停留在黑色方砖与白色方砖上的概率;(2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖的颜色?怎样改变?解:(1)由图可知,阳台地面共铺有18块方砖,其中白色方砖8块,黑色方砖10块,故小皮球停留在黑色方砖上的概率是59,停留在白色方砖上的概率是49.(2)因为59>49,所以小皮球停留在黑色方砖上的概率大于停留在白色方砖上的概率.要使这两个概率相等,可将任意一块黑色方砖改为白色方砖.。
初中数学北师大版七年级下学期-第一章-单元测试卷及答案
初中数学北师大版七年级下学期第一章单元测试卷一、单选题1.下列运算正确的是()A.3a2÷2a2=1B.(a2)3=a5C.a2·a4=a6D.(2a2)2=2a42.计算(a3)2正确的是()A.a B.a5C.a6D.a83.下列各式能用平方差公式计算的是()A.(3x+2y)(2x−3y)B.(3x+2y)(3x−y)C.(3x+2y)(3x−2y)D.(3x−2y)(2y−3x)4.2020年疫情的影响,人类的健康备注关注。
同时我们生存的环境雾霾天气引发关注,宽空气中漂浮着大量的粉尘颗粒,若某各粉尘颗粒的直径约为0.0000065米,则0.0000065用科学记数法表示为()A.6.5×10-5 B.6.5×10-6 C.6.5×10-7 D.65×10-65.如图,边长为(m+4)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠、无缝隙),若拼成的矩形一边长为4,则另一边长为()A.m+4B.m+8C.2m+4D.2m+86.如图,边长为a的正方形中剪去一个边长为b的小正方形,剩下部分正好拼成一个等腰梯形,利用这两幅图形面积,能验证怎样的数学公式?()A.a2−b2=(a+b)(a−b)B.(a+b)2−(a−b)2=4abC.(a+b)2=a2+2ab+b2D.(a−b)2=a2−2ab+b27.a=5140,b=3210,c=2280,则a、b、c的大小关系是()A.a<b<c B.b<a<c C.c<a<b D.c<b<a8.已知2n+212+1(n<0)是一个有理数的平方,则n的值为()A .﹣16B .﹣14C .﹣12D .﹣10二、填空题9.某种计算机完成一次基本运算的时间约为 0.0000000001s ,把 0.0000000001 用科学记数法可以表示为 .10.计算: −2x(x 2+x −2)= .11.若 y x ⋅y 3⋅y 2⋅y =y 10 ,则 x = .12.当x 时, (x −4)0=1 .13.计算 (−x −y)2= .14.计算: (34)2017×(−113)2018= . 15.一个长方形的面积是(x 2-9)平方米,其长为(x +3)米,用含有x 的整式表示它的宽为 米.16.已知 a 2−3a +1=0 ,求 a 4+1a 4 的值为 . 三、计算题17.计算:(1)(−3a)2⋅(a 2)3+(−a 2)4 (2)(2x +y −2)(2x +y +2) .18.计算:(1)(−13)−1+(−2)3×(π−2)0 (2)(2a 2)2−a 7÷(−a)319.按要求完成下列各小题.(1)计算: (−38)2019×(83)2020 ; (2)已知 3x +5y =4 ,求 8x ⋅25y 的值.20.已知: a x =−2,a y =3 . 求(1)a x+y (2)a 3x−2y .四、解答题21.已知a m=4,a n=4,求a m+n的值.22.已知长方形的面积是3a3b4 -ab2,宽为2b2,那么长方形的长为多少?23.课后,数学老师在如图所示的黑板上给同学们留了一道题,请你帮助同学们解答.24.已知α,β为整数,有如下两个代数式22α,2 4β(1)当α=﹣1,β=0时,求各个代数式的值;(2)问它们能否相等?若能,则给出一组相应的α,β的值;若不能,则说明理由.答案解析部分1.【答案】C 2.【答案】C 3.【答案】C 4.【答案】B 5.【答案】C6.【答案】A 7.【答案】C 8.【答案】B 9.【答案】1×10−10 10.【答案】−2x 3−2x 2+4x11.【答案】4 12.【答案】≠4 13.【答案】x 2+2xy +y 2 14.【答案】43 15.【答案】(x-3)16.【答案】47 17.【答案】(1)解:原式= 9a 2⋅a 6+a 8= 9a 8+a 8= 10a 8 ;(2)解:原式= (2x +y)2−22= 4x 2+4xy +y 2−4 .18.【答案】(1)解: (−13)−1+(−2)3×(π−2)0 =- 3−8×1=-11(2)解: (2a 2)2−a 7÷(−a)3= 4a 4+a 4= 5a 4 .19.【答案】(1)解:原式= (−38)2019×(83)2019×83= (−38×83)2019×83= (−1)2019×83= −83; (2)解: 8x ⋅25y =23x ⋅25y =23x+5y因为 3x +5y =4 ,所以 23x+5y =24=16 .即 8x ⋅25y =16 .20.【答案】(1)解: a x+y =a x ⋅a y =(−2)×3=−6(2)解: a 3x−2y =(a x )3÷(a y )2=(−2)3÷32=−8921.【答案】解: ∵a m =4 , a n =4 ,∴ 原式 =a m ·a n ,=4×4=16 22.【答案】解: (3a3b4 -ab2)÷2b2= 32a3b2−12a 23.【答案】⑴解:由题意,得2a=23b﹣3,32b=3a﹣3,得{a=3b−32b=a−3,解得a=15,b=6;⑴m a+b÷m a﹣b=m2b=m12.24.【答案】解:(1)把α=﹣1代入代数式,得:22α=1 4,把β=0代入代数式,得:24β=2,(2)不能.理由如下:2 4β=222β=21−2β,∵α,β为整数,∴(1﹣2β)为奇数,2α为偶数,∴1﹣2β≠2α,∴22α≠24β.。
北师大版七年级数学下册一至六章综合复习检测卷
北师大版七年级数学下册一至六章综合测试题一.选择题1.下列交通指示标识中,不是轴对称图形的是( )2.下列事例应用了三角形稳定性的有( )①人们通常会在栅栏门上斜着钉上一根木条;①新植的树木,常用一些粗木与之成角度的支撑起来防止倒斜;①四边形模具.A.1个B.2个C.3个D.0个3.下表反映了长途电话的通话时间与话费的几组对应值:下列说法不正确的是( )A.表中的两个变量的通话时间和话费B.自变量是通话时间C.通话时间随话费的变化而变化D.随着通话时间增长,话费增加4.如图,已知AB①CD,①E=28°,①C=52°,则①EAB的度数是( )A.28° B.52° C.70° D.80°5.如果(2x+m)(x-5)展开后的结果中不含x的一次项,那么m等于( )A.5 B.-10 C.-5 D.106.如图,在①ABC中,AD平分①BAC,DE①AB于点E,DF①AC于点F,M为AD上任意一点,则下列结论中错误的是( )A.DE=DF B.ME=MF C.AE=AF D.BD=CD7.如图,在①ABC与①DEF中,给出以下六个条件:①AB=DE;①BC=EF;①AC =DF;①①A=①D;①①B=①E;①①C=①F.以其中三个条件作为已知,不能判定①ABC与①DEF全等的是( )A.①①① B.①①① C.①①① D.①①①8.如图,直角三角形ABC中,点B沿CB所在直线远离C点移动,下列说法错误的是( )A.三角形面积随之增大B.BC边上的高随之增大C.①CAB的度数随之增大D.边AB的长度随之增大9.如图,直线l1①l2,①CAB=125°,①ABD=85°,则①1+①2等于( )A.30° B.35° C.36° D.40°10.已知P=715m-1,Q=m2-815m(m为任意实数),则P,Q的大小关系为( )A.P>Q B.P=Q C.P<Q D.不能确定11.如图,①A=15°,AB=BC=CD=DE=EF,则①DEF的度数为()A.45°B.60°C.75°D.90°12.如图,AD是①ABC的角平分线,DE①AC,垂足为E,BF①AC交ED的延长线于点F,若BC恰好平分①ABF,AE=2BF.给出下列四个结论:①DE=DF;①DB=DC;①AD①BC;①AC=3BF.其中正确的结论为()A.①①①B.①①①C.①①①D.①①①①二.填空题13.已知一个长方形的周长为6a-4b,其中一边长为a-b,则这个长方形的面积为____.14.如图是某地某天的温度随时间变化的图象,通过观察可知这天____点时温度最高,9点时的温度是____.15.如图,在①ABC中,①B=①C=50°,BD=CF,BE=CD,则①EDF的度数是____.16.如图,①ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC 于点E,则①BCE的周长为____.17.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回,通过多次摸球试验后发现,摸到黄色球的频率稳定在15%附近,则袋中黄色球可能有____个.18.当x=-2时,代数式ax3+bx+1的值是2017,那么当x=2时,代数式ax3+bx +1的值是___ .19.如图,在①ABC中,AB=AC,AB的垂直平分线DE交BC的延长线于点E,交AC于点F,连接BF,①A=50°,AB+BC=16 cm,则①BCF的周长和①EFC分别等于__ __.20.如图,①ABC三边的中线AD,BE,CF的公共点为G,若S①ABC=12,则图中阴影部分面积是__ _.三.解答题21.已知x2-5x=14,求(x-1)(2x-1)-(x+1)2+1的值.22.如图,已知①A=①C,①E=①F,试说明:AD①BC.23.如图,AB=AC,AE①BC,DC=CA,AD=DB,求①DAE的度数.24.汽车在山区行驶过程中,要经过上坡、下坡、平路等路段,在自身动力不变的情况下,上坡时速度越来越慢,下坡时速度越来越快,平路上保持匀速行驶,如图表示了一辆汽车在山区行驶过程中,速度随时间变化的情况.(1)汽车在哪些时间段保持匀速行驶?时速分别是多少?(2)汽车遇到了几个上坡路段?几个下坡路段?在哪个下坡路段上所花时间最长?(3)用自己的语言大致描述这辆汽车的行驶情况,包括遇到的山路,在山路上的速度变化情况等.25.如图,①ABC和①ECD都是等腰直角三角形,①ACB=①DCE=90°,D为AB边上一点,连接AE.求证:AE=BD.26.某小商店开展购物摸奖活动,购物时每消费2元可获得一次摸奖机会.每次摸奖时,购物者从标有数字1,2,3,4,5的5个小球(小球之间只有号码不同)中摸出一个球,若号码是2就中奖,奖品为一张精美的图片.(1)摸奖一次时,得到一张精美图片的概率是多少?(2)一次,小聪购买了10元钱的商品,前4次摸奖都没有摸中,他想:“第5次摸奖我一定能摸中.”你同意他的想法吗?说说你的想法.27.如图,①ABC和①DEF都是等边三角形,点E在AC边上,点D在直线BC上,连接CF.(1)如图1,当点D在BC的延长线上时,延长AC到M,使CM=CD,连接MD,①判断①CMD的形状,并说明理由;①求证①ACF=60°;(2)如图2,当点D在BC边上时,(1)①中的结论是否仍然成立?请说明理由;(3)当点D在CB的延长线上,点F在BC下方时,①ACF等于多少度?请在图3中补全图形,做出辅助线,直接写出结论.(不用说明理由)北师大版七年级数学下册一至六章综合测试题答案提示一.选择题1.下列交通指示标识中,不是轴对称图形的是( C )2.下列事例应用了三角形稳定性的有( B )①人们通常会在栅栏门上斜着钉上一根木条;①新植的树木,常用一些粗木与之成角度的支撑起来防止倒斜;①四边形模具.A.1个B.2个C.3个D.0个3.下表反映了长途电话的通话时间与话费的几组对应值:下列说法不正确的是( C )A.表中的两个变量的通话时间和话费B.自变量是通话时间C.通话时间随话费的变化而变化D.随着通话时间增长,话费增加4.如图,已知AB①CD,①E=28°,①C=52°,则①EAB的度数是( D )A.28° B.52° C.70° D.80°5.如果(2x+m)(x-5)展开后的结果中不含x的一次项,那么m等于( D )A.5 B.-10 C.-5 D.106.如图,在①ABC中,AD平分①BAC,DE①AB于点E,DF①AC于点F,M为AD上任意一点,则下列结论中错误的是( D )A.DE=DF B.ME=MF C.AE=AF D.BD=CD7.如图,在①ABC与①DEF中,给出以下六个条件:①AB=DE;①BC=EF;①AC=DF;①①A=①D;①①B=①E;①①C=①F.以其中三个条件作为已知,不能判定①ABC与①DEF全等的是( D )A.①①① B.①①① C.①①① D.①①①8.如图,直角三角形ABC中,点B沿CB所在直线远离C点移动,下列说法错误的是( B )A.三角形面积随之增大B.BC边上的高随之增大C.①CAB的度数随之增大D.边AB的长度随之增大9.如图,直线l1①l2,①CAB=125°,①ABD=85°,则①1+①2等于( A )A.30° B.35° C.36° D.40°10.已知P=715m-1,Q=m2-815m(m为任意实数),则P,Q的大小关系为( C )A.P>Q B.P=Q C.P<Q D.不能确定11.如图,①A=15°,AB=BC=CD=DE=EF,则①DEF的度数为()A.45°B.60°C.75°D.90°解:①AB=BC=CD=DE=EF,①A=15°,①①BCA=①A=15°,①①CBD=①BDC=①BCA+①A=15°+15°=30°,①①ECD=①CED=①A+①CDB=45°①①EDF=①EFD=①A+①CED=60°①①DEF=180°﹣(①EDF+①EFD)=180°﹣120°=60°.12.如图,AD是①ABC的角平分线,DE①AC,垂足为E,BF①AC交ED的延长线于点F,若BC恰好平分①ABF,AE=2BF.给出下列四个结论:①DE=DF;①DB=DC;①AD①BC;①AC=3BF.其中正确的结论为()A.①①①B.①①①C.①①①D.①①①①解:①BF①AC,①①C=①CBF,①BC平分①ABF,①①ABC=①CBF,①①C=①ABC,①AD是①ABC的角平分线,①①BAD=①CAD,又①AD=AD,①①ABD①①ACD(AAS),①BD=CD,故①正确,①ADB=①ADC=90°,①AD①BC,故①正确,在①CDE与①DBF中,,①①CDE①①DBF(ASA),①DE=DF,CE=BF,故①正确,①AE=2BF,①AE=2CE,①AC=AE+CE=3CE=3BF,故①正确;二.填空题13.已知一个长方形的周长为6a-4b,其中一边长为a-b,则这个长方形的面积为__2a2-3ab+b2__.14.如图是某地某天的温度随时间变化的图象,通过观察可知这天__15__点时温度最高,9点时的温度是__28°__.15.如图,在①ABC中,①B=①C=50°,BD=CF,BE=CD,则①EDF的度数是__50°__.16.如图,①ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC 于点E,则①BCE的周长为__13__.17.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回,通过多次摸球试验后发现,摸到黄色球的频率稳定在15%附近,则袋中黄色球可能有__6__个.18.当x=-2时,代数式ax3+bx+1的值是2017,那么当x=2时,代数式ax3+bx +1的值是__-2015__.19.如图,在①ABC中,AB=AC,AB的垂直平分线DE交BC的延长线于点E,交AC于点F,连接BF,①A=50°,AB+BC=16 cm,则①BCF的周长和①EFC分别等于__16_cm,40°__.20.如图,①ABC三边的中线AD,BE,CF的公共点为G,若S①ABC=12,则图中阴影部分面积是__4__.三.解答题21.已知x2-5x=14,求(x-1)(2x-1)-(x+1)2+1的值.解:原式=2x2-2x-x+1-(x2+2x+1)+1=2x2-3x+1-x2-2x-1+1=x2-5x+1,当x2-5x=14时,原式=14+1=1522.如图,已知①A=①C,①E=①F,试说明:AD①BC.解:①①E=①F,①AE①CF,①①C=①CBE,又①①A=①C,①①A=①CBE,①AD①BC23.如图,AB=AC,AE①BC,DC=CA,AD=DB,求①DAE的度数.解:①AD=DB,①①B=①DAB,①①ADC=2①B,①DC=CA,①①ADC=①DAC=2①B,①AB=AC,①①B=①C,①①B+①C+①BAC=180°,①①B+①B+①DAB+①DAC=180°,即2①B+①B+2①B=180°,①①B=36°,①①DAC=72°,①BAC=108°,①AB=AC,AE①BC,①12①BAC=①EAC=54°,①①DAE=①DAC-①EAC=18°24.汽车在山区行驶过程中,要经过上坡、下坡、平路等路段,在自身动力不变的情况下,上坡时速度越来越慢,下坡时速度越来越快,平路上保持匀速行驶,如图表示了一辆汽车在山区行驶过程中,速度随时间变化的情况.(1)汽车在哪些时间段保持匀速行驶?时速分别是多少?(2)汽车遇到了几个上坡路段?几个下坡路段?在哪个下坡路段上所花时间最长?(3)用自己的语言大致描述这辆汽车的行驶情况,包括遇到的山路,在山路上的速度变化情况等.解:(1)汽车在0.2~0.4 h,0.6~0.7 h及0.9~1 h三个时间段保持匀速行驶,速度分别是70 km/h,80 km/h和70 km/h(2)汽车遇到CD,FG两个上坡路段,AB,DE,GH三个下坡路段,AB路段上所花时间最长(3)计时开始,汽车下坡行驶0.2 h后转入平路行驶至0.4 h,转入上坡行驶至0.5 h,接着转入下坡行驶至0.6 h,转入平路行驶至0.7 h后又上坡行驶至0.8 h,紧接着转入下坡行驶至0.9 h,最后平路行驶至1 h结束25.如图,①ABC和①ECD都是等腰直角三角形,①ACB=①DCE=90°,D为AB边上一点,连接AE.求证:AE=BD.证明:①①ABC和①ECD都是等腰直角三角形,①ACB=①DCE=90°,①AC=BC,CE=CD,①DCE﹣①ACD=①ACB﹣①ACD,即①ACE=①BCD,在①ACE和①BCD中,,①①ACE①①BCD(SAS),①AE=BD.26.某小商店开展购物摸奖活动,购物时每消费2元可获得一次摸奖机会.每次摸奖时,购物者从标有数字1,2,3,4,5的5个小球(小球之间只有号码不同)中摸出一个球,若号码是2就中奖,奖品为一张精美的图片.(1)摸奖一次时,得到一张精美图片的概率是多少?(2)一次,小聪购买了10元钱的商品,前4次摸奖都没有摸中,他想:“第5次摸奖我一定能摸中.”你同意他的想法吗?说说你的想法.解:(1)15(2)不同意,因为小聪第5次得到一张精美图片的概率仍为15,所以他第5次也不一定中奖27.如图,①ABC和①DEF都是等边三角形,点E在AC边上,点D在直线BC上,连接CF.(1)如图1,当点D在BC的延长线上时,延长AC到M,使CM=CD,连接MD,①判断①CMD的形状,并说明理由;①求证①ACF=60°;(2)如图2,当点D在BC边上时,(1)①中的结论是否仍然成立?请说明理由;(3)当点D在CB的延长线上,点F在BC下方时,①ACF等于多少度?请在图3中补全图形,做出辅助线,直接写出结论.(不用说明理由)解:(1)①①CMD是等边三角形.①①ABC是等边三角形,①①ACB=①DCM=60°,①CM=CD,①①MDC是等边三角形;①证明:①①DEF和①MDC都是等边三角形,①MD=CD,ED=FD①CDM=①EDF=60°,①①CDE+①CDM=①CDE+①EDF,①①EDM=①FDC,①①EDM①①FDC (SAS),①①M=①FCD=60°,①①ACF=180°﹣60°﹣60°=60°;(2)成立,证明:在CA上,截取点M使CM=CD,连接MD,①①ABC是等边三角形,①①ACB=60°,①CM=CD,①①MDC是等边三角形,①MD=CD,①CDM=60°,①①DEF都是等边三角形,①ED=FD①EDF=60°,①①CDM﹣①MDF=①EDF﹣①MDF,①①EDM=①FDC,①①EDM①①FDC(SAS),①①EMD=①FCD=180°﹣60°=120°,①①ACF=120°﹣60°=60°;(3)①ACF=120°.在图3中补全图形如图所示:理由如下:过D作DG①AB,交CA的延长线于点G,连接CF,同(1)的证明方法,得到①EDG①①FDC,①①FCD=①EGD=60°,①①ACF=60°﹣60°=120°.。
北师大版七年级数学下册单元测试题全套及参考答案
北师大版七年级数学下册单元测试题全套(含答案)第一章达标检测卷(满分: 120 分 时间: 90 分钟)一、选择题 ( 每小题 3 分,共 30 分 )1 .计算x 3 • X 3的结果是()A . 2x 3B . 2x 6C . x 6D. x 92017 年 6 月 8 日 24 时,个人普通小客车指标的基准中签几率继续创新低,约为 0.00122 ,相当于 817 人抢一个指标,小客车指标中签难度继续加大.将 0.00122用科学记数法表示应为 ()-5-3 A. 1.22 X 10 B 122X 10-3-2C. 1.22 X10 D . 1.22 X10 3.下列计算中,能用平方差公式计算的是( )5.若(y+3)( y —2) = y 2+m 什n,则m, n 的值分别为()A. m= 5, n=6 B . m= 1, n=—6 C. m= 1, n= 6D. m= 5, n=—66 .计算(8 a 2b 3—2a 3b 2+ab) + ab 的结果是()A . 8ab 2-2a 2b +1 B . 8ab 2- 2a 2b C . 8a 2b 2-2a 2b +1D. 8a 2b - 2a 2b + 17 .设(a+2b )2=(a —2b )2+A,则 A 等于( )试猜想:(n+1)( n+2)( n+3)( n+4) + 1 = 三、解答题(共66分)2.根据北京小客车指标办的通报,截至 A . ( x +3)( x - 2)B C . ( a 2+ b )( a 2- b ) D 4.下列各式计算正确的是 (A. a + 2a 2=3a 3Bbb . ( - 1- 3x )(1 +3x ). (3x + 2)(2 x - 3)).(a+ b )2= a 2 + ab+ b 2A.8ab B .-8abC.8b2 D .4ab8.若M= (a+3)(a— 4), N= (a+2)(2 a—5),其中a为有理数,则M N的大小关系是( )A. M> N B . Mk NC. M= N.无法确定2 20163 20179 .若 a= 20180,b = 2016 x 2018— 20172, c= -- x - ,则下列 a,b, c 的大小关系正确的是 ( )3 211 .计算:a 3+ a =.212 .右长方形的面积是 3a+2ab+ 3a,长为3a,则匕的范为 13 .若 x n= 2, y n= 3,贝U(xy )n=. 14 .化简a 4b* 3+ (ab )3的结果为.15 .若 2x +1= 16,则 x =.16 .用一张包装纸包一本长、宽、厚如图所示的书(单位:cm ).若将封面和封底每一边都包进去3cm,则需长方形的包装纸 cm 2.17 .已知(x+ y )2=1, (x-y )2=49,则 x 2+y 2的值为 18 .观察下列运算并填空.21X2X3X4+ 1= 24+1 = 25=5;22X3X4X5+ 1=120+1=121 = 11 ;___, , ._23X4X5X6+ 1= 360+ 1 = 361 = 19; 4X5X6X7+ 1= 840+ 1 = 841 = 292;27X8X9X 10+ 1 = 5040+ 1 = 5041 = 71 ;19. (8分)计算:A. a< b< c Ba< c< b C. bvavc Dc< b< a10.已知x 2+4y 2=13, xy = 3,求x+2y 的值.这个问题我们可以用边长分别为x 与y 的两种正方形组成、填空题(每小题3分,共24分)(第16题图)(1)2 3X 22 - 10- 2 —3—2(2) — 12+(兀一3.14)+ (-2)3.20. (12分)化简:⑴(2 x— 5)(3 x+2);2(2)(2 a+ 3b)(2 a- 3b) — (a-3b);52x3y3+ 4x2y2—3xy + ( - 3xy);(4) ( a+ b — c)( a+ b+ c).21 .(10 分)先化简,再求值:(2)[ x2+y2—(x+ y)2+2x(x—y)] +4x,其中x—2y=2.22.(8 分)若m p= 1, m2q= 7, mr= - 7,求m3p+4q—2r的值.5 523.(8分)对于任意有理数a、b、c、d,我们规定符号(a, b) (c, d) = ad—b c.例如:(1, 3) (2, 4)= 1X4-2X3=- 2.(1)( —2, 3) (4, 5)=;(2)求(3a+1, a-2) (a+2, a—3)的值,其中a2—4a+1 = 0.24.(10分)王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米 x 元,木地板的价格为每平方米3x 元,那么王老师需要花多少钱?25. (10 分)阅读:已知 a+b=-4, ab=3,求 a 2+ b 2的值.解:= a+ b= — 4, ab= 3,.•.a 2+b 2=(a + b )2—2ab=( —4)2 —2X3= 10.请你根据上述解题思路解答下面问题:⑴已知 a — b=—3, ab=—2,求(a+b)( a 2—b 2)的值;(2)已知 a- c —b=—10, (a —b )c=—12,求(a —b ) 2+c 2的值.7-—*卧室卫生问(第24题图)参考答案与解析、1. C 2.C3.C4.C5.B 6 . A 7.A 8.B 9.C10. B 解析:(x+2y )2=x 2+4xy+4y 3 4,故符合的图形为 B.14. a 15.3 16.(2 a 2+19a —10) 17.2518 . (n 2+5n+ 5) 解析:观察几个算式可知结果都是完全平方式, 且5=1X4+ 1, 11=2X5+ 1, 19=3X6+ 1, .. 由此可知,最后一个式子为完全平方式,且底数为 (n+1)( n + 4)+1 = n 2+5n + 5.19 .解:(1)原式=8X4— 1—8= 23.(4 分) (2)原式=—1 + 1 — 9— 8 = — 17.(8 分)20 .解:(1)原式=6x 2+4x —15x —10=6x 2—11x —10.(3 分) (2)原式=4a 2—9b 2—a 2+6ab —9b 2=3a 2+6ab —18b 2.(6 分)⑶原式=-6x 2y 2—3xy+1.(9 分)(4)原式=(a+b )2—c 2= a 2+b 2—c 2+2ab.(12 分)22—1 …一121.解:(1)原式=1 —a +a —4a+ 4=— 4a+ 5.(3 分)当 a =]时,原式=—4x 万+5=3.(5 分)(2)原式=(x 2+y 2_x 2_2xy_ y 2+2x 2—2xy )+4 x= (2x 2—4xy )+4x= gx —y .(8 分).x_2y=2, 1-2x —y=1, • .原式=1.(10 分) 22. 解:m 3p4q 2r = ( m p) 3 • ( m 2q ) 2+(而2.(4 分). mp :;,m 2q = 7,m i= - m 3p4q 2r=553 3 2 7 21 … 5 XL 蓝=5.(8 分) 23.解:(1) —22(2 分)(2)(3 a+1, a — 2) (a+2, a — 3) = (3a+1)( a — 3) — (a — 2)( a+ 2) = 3a — 9a+ a — 3 — (a — 4) = 3a — 9a422_2+ a — 3— a + 4 = 2a — 8a + 1.(5 分)= a — 4a + 1 = 0, • • 2 a — 8a = — 2,,(3a+1, a — 2) (a+2, a — 3) =—2+ 1 = — 1.(8 分)24.解:(1)卧室的面积是2b (4a —2a ) =4ab (平方米),(2分)厨房、卫生间、客厅的面积和是b - (4a-2a11. a 212. a +23b+113.64. 卜列作图能表示点 A 到BC 的距离的是()(2) .. a-c-b=- 10, (a-b )c=- 12, . .( a —b )2+ c 2= [( a —b ) — c ] 2+2( a —b )c=( — 10)2+2x( — 12)= 76.(10 分)第二章达标检测卷 (满分:120分时间:90分钟)、选择题(每小题3分,共30分)1.下列图形中,Z1 与/2互为对顶角的是()(第2题图)(第3题图)A. 154° C. 116°3.如图,已知直线a, b 被直线c 所截,那么/I 的同旁内角是() A. Z 3 B . Z4 C. Z 5D . Z6B 144 D.26° 或 154°2.如图,O 是直线AB 上一点,若/ 1 = 26° ,则/AOC 勺度数为()5.如图,下列条件:①/ 1 = /3;②/2=/3;③/4=/5;(DZ 2+74=180°中,能判断直线 l i// 12的有( )A. 1个 B . 2个 C. 3个D. 4个6.如图,直线 a, b 与直线c, d 相交,已知/ 1 = Z2, 73=110° ,则/4 的度数为(A. 70° B . 80° C. 110°D. 1007.如图,AB// CD CD// EF,则/ BCE?于()A. Z 2-Z 18.如图,将一副三角板叠放在一起,使直角的顶点重合于点 O, AB// OC DC 与OB 交于点E,则/ DEO 勺度数为()A. 85° B . 70° C. 75°D, 60°C. 180° + Z 1-Z 2D . 180° -Z 1 + Z29.如图,E, F 分别是AB, CD 上的点,G 是BC 的延长线上一点,且/ B= / DCG= / D,则下列结论不一定(第5题图)(第6题图)(第7题图)(第8题图)10. 一次数学活动中,检验两条完全相同的纸带①、 ②的边线是否平行, 小明和小丽采用两种不同的方法:小明把纸带①沿 AB 折叠,量得/ 1 = /2=50。
第6章 概率初步 北师大版七年级数学下册单元测试卷(含答案)
北师大新版七年级下册《第6章概率初步》2024年单元测试卷一、选择题1.“任意买一张电影票,座位号是2的倍数”,此事件是( )A.不可能事件B.随机事件C.必然事件D.确定事件2.小军旅行箱的密码是一个三位数,每位上的数字是0至9中的一个,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A.B.C.D.3.下列事件发生的概率为0的是( )A.随意掷一枚硬币两次,有一次正面朝上B.早晨太阳从东方升起C.|a|=2,a=2D.从三个红球中摸出一个黑球4.在一个不透明的口袋中装有2个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在20%附近,则口袋中白球可能有( )A.5个B.6个C.7个D.8个5.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则( )A.P1>P2B.P1<P2C.P1=P2D.以上都有可能6.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是( )A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖7.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )A.1B.C.D.8.小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( )A.B.C.D.9.有一盒水彩笔除了颜色外无其他差别,其中各种颜色的数量统计如图所示.小腾在无法看到盒中水彩笔颜色的情形下随意抽出一支.小腾抽到蓝色水彩笔的概率为( )A.B.C.D.10.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为3的概率是( )A.B.C.D.二、填空题11.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 .12.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出红球的概率是0.2,则n= .13.小明和爸爸进行射击比赛,他们每人都射击10次.小明击中靶心的概率为0.6,则他击不中靶心的次数为 次;爸爸击中靶心8次,则他击不中靶心的概率为 .14.一个圆形转盘的半径为2cm,现将转盘分成若干个扇形,并分别相间涂上红、黄两种颜色.转盘转动10000次,指针指向红色部分有2500次.转盘上黄色部分的面积大约是 .15.已知一包糖共有5种颜色(糖果只有颜色差别),如图所示是这包糖果分布的百分比的统计图在这包糖中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .16.如图所示是一条线段,AB的长为10厘米,MN的长为2厘米,假设可以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为 .17.在世界大学生运动会射击运动员选拔活动中,甲、乙两组各四名选手的射击平均环数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名选手,则这两名选手的射击平均环数为19的概率 .三、解答题18.抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:(1)朝上的点数有哪些结果?他们发生的可能性一样吗?(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?19.如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?20.米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P (在客厅捉到小猫);(2)P (在小卧室捉到小猫);(3)P (在卫生间捉到小猫);(4)P (不在卧室捉到小猫).21.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近 ;(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 ;(精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少只?22.用10个球设计一个摸球游戏,且分别满足下列要求:(1)使摸到红球的概率为;(2)使摸到红球和白球的概率都是.23.将正面分别写有数字1,2,3的三张卡片(卡片的形状、大小、质地、颜色等其他方面完全相同)洗匀后,背面朝上放在桌面上.甲从中随机抽取一张卡片,记该卡片上的数字为a,然后放回洗匀,背面朝上放在桌面上;再由乙从中随机抽取一张卡片,记该卡片上的数字为b,组成数对(a,b).(1)请写出数对(a,b)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽取一次卡片,按照得到的数对计算ab2的值,若ab2的值为奇数则甲赢;ab2的值为偶数则乙赢.你认为这个游戏公平吗?请说明理由.北师大新版七年级下册《第6章概率初步》2024年单元测试卷参考答案与试题解析一、选择题1.【解答】解:“任意买一张电影票,座位号是2的倍数”,此事件是随机事件.故选:B.2.【解答】解:∵末尾数字是0至9这10个数字中的一个,∴小军能一次打开该旅行箱的概率是,故选:A.3.【解答】解:A、随意掷一枚硬币两次,有一次正面朝上,是随机事件,发生的概率大于0并且小于1,不符合题意;B、早晨太阳从东方升起,是必然事件,发生的概率为1,不符合题意;C、|a|=2,a=2,是随机事件,发生的概率大于0并且小于1,不符合题意;D、从三个红球中摸出一个黑球,是不可能事件,发生的概率为0,符合题意;故选:D.4.【解答】解:设袋中白球的个数为x,根据题意,得:=20%,解得x=8,经检验x=8是分式方程的解,所以口袋中白球可能有8个,故选:D.5.【解答】解:由图甲可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴在甲种地板上最终停留在黑色区域的概率为P1是,由图乙可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P2是,∵>,∴P1>P2;故选:A.6.【解答】解:根据概率的意义可得“抽到一等奖的概率为0.1”就是说抽10次可能抽到一等奖,也可能没有抽到一等奖,故选:C.7.【解答】解:能够凑成完全平方公式,则4a前可是“﹣”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:B.8.【解答】解:因为后3位是3,6,7三个数字共6种排列情况,而正确的只有1种,故小明第一次就拨对的概率是.故选:B.9.【解答】解:图中共有水彩笔2+3+4+3+6+2=20支,其中蓝色水彩笔6支,则抽到蓝色水彩笔的概率为=;故选:C.10.【解答】解:列树状图得:共有6种情况,和为3的情况数有3种,所以概率为,故选:A.二、填空题11.【解答】解:P(答对)=.12.【解答】解:根据题意得:=0.2,解得:n=12,经检验:n=12是原分式方程的解.故答案为:12.13.【解答】解:由题意知:小明不中靶心的次数为10×(1﹣0.6)=4次,爸爸击中靶心8次,则他击不中靶心有2次,故其概率为0.2.故本题答案为:4;0.2.14.【解答】解:转盘转动10000次,指针指向红色部分为2500次,指针指向红色的概率2500÷10000=25%,即红色面积占总面积的25%;而黄色面积占75%,其面积为0.75×4π=3π(cm2).故答案为:3πcm2.15.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=,故答案为:.16.【解答】解:AB间距离为10,MN的长为2,故以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为=.17.【解答】解:画树状图如图:∵共有16种等可能结果,两名同学的射击平均环数为19的结果有5种结果,∴这两名同学的射击平均环数为19的概率为,故答案为:.三、解答题18.【解答】解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6,所以它们的可能性相同;(2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是,朝上的点数是偶数的有2,4,6,它们发生的可能性是所以发生的可能性大小相同;(3)因为朝上的点数大于4的数有5,6,发生可能性是=,朝上的点数不大于4的数有1,2,3,4,发生可能性是=,所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大.19.【解答】解:根据几何概率的意义可得:P(红色区域)==,P(白色区域)===,答:指针落在白色区域的概率是,指针落在红色区域的概率是.20.【解答】解:(1)P(在客厅捉到小猫)==.(2)P(在小卧室捉到小猫)==.(3)P(在卫生间捉到小猫)==.(4)P(不在卧室捉到小猫)===.21.【解答】解:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.60,故答案为:0.60;(2)因为当n很大时,摸到白球的频率将会接近0.60;所以摸到白球的概率是0.6;摸到黑球的概率是0.4;故答案为:0.6,0.4;(3)因为摸到白球的概率是0.6,摸到黑球的概率是0.4,所以口袋中黑、白两种颜色的球有白球有30×0.6=18个,黑球有30×0.4=12个.22.【解答】解:(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个其他颜色球.23.【解答】解:(1)如图所示:(2)由树状图知,共有9种等可能结果,其中ab2的值为奇数的有1、9、3、27这4种结果,ab2的值为偶数的有4、2、8、18、12这5种结果,所以甲赢的概率为,乙赢的概率为,∵≠,∴这个游戏不公平.。
北师大版七年级下册数学全册单元测试卷含答案全套
北师大版七年级下册数学全册单元试卷(6套)第一章测试卷一、选择题(每题3分,共30分)1.计算(-a2)3的结果是( )A.a5B.a6C.-a5D.-a62.计算:20·2-3等于( )A.-18B.18C.0 D.83.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.000 000 5 g,将0.000 000 5用科学记数法表示为( )A.5×107B.5×10-7C.0.5×10-6D.5×10-64.下列运算正确的是( )A.x2·x3=x6B.x2y·2xy=2x3y C.(-3xy)2=9x2y2D.x6÷x3=x2 5.计算4m·8-1÷2m的结果为16,则m的值等于( )A.7 B.6 C.5 D.46.下列四个算式:①5x2y4÷15xy=xy3;②16a6b4c÷8a3b2=2a3b2c;③9x8y2÷3x2y=3x4y;④(12m3-6m2-4m)÷(-2m)=-6m2+3m+2. 其中正确的有( )A .0个B .1个C .2个D .3个7.下列运用平方差公式计算,错误的是( )A .(a +b )(a -b )=a 2-b 2B .(x +1)(x -1)=x 2-1C .(2x +1)(2x -1)=2x 2-1D .(-a +b )(-a -b )=a 2-b 28.若(a +2b )2=(a -2b )2+A ,则A 等于( )A .8abB .-8abC .8b 2D .4ab9.若a =-0.32,b =-3-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则a ,b ,c ,d 的大小关系是( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b10.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图①),把余下的部分剪拼成一个长方形(如图②),根据两个图形中阴影部分的面积相等,可以验证( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 2 二、填空题(每题3分,共30分)11.计算:a(a+1)=__________.12.如果x+y=-1,x-y=8,那么代数式x2-y2的值是________.13.某种计算机每秒可做4×108次运算,它工作3×103 s运算的次数为__________.14.如果9x2+k x+25是一个完全平方式,那么k的值是________.15.计算:(-13xy2)2·[xy(2x-y)+xy2]=__________.16.计算:(7x2y3z+8x3y2)÷4x2y2=______________.17.若(x+2m)(x-8)中不含x的一次项,则m的值为________.18.若3x=a,9y=b,则3x-2y的值为________.19.如图,一个长方形花园ABCD,AB=a,AD=b,该花园中建有一条长方形小路LMPQ和一条平行四边形小路RSTK,若LM=R S=c,则该花园中可绿化部分(即除去小路后剩余部分)的面积为________________.20.《数书九章》中的秦九韶算法是我国南宋时期的数学家秦九韶提出的一种多项式简化算法.在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x=8时,多项式3x3-4x2-35x+8的值”,按照秦九韶算法,可先将多项式3x3-4x2-35x+8一步步地进行改写:3x3-4x2-35x+8=x(3x2-4x-35)+8=x[x(3x-4)-35]+8.按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法次数,使计算量减少.计算当x=8时,多项式的值为1 008.请参考上述方法,将多项式x3+2x2+x-1改写为_________________________________;当x=8时,多项式的值为________.三、解答题(21,26题每题12分,22,23题每题8分,其余每题10分,共60分)21.计算:(1)(-12ab)(23ab2-2ab+43b);(2)(a+b)(a-b)+4ab3÷4ab;(3)(2x-y-z)(y-2x-z);(4)(2x+y)(2x-y)+(x+y)2-2(2x2-xy).22.用简便方法计算:(1)102×98;(2)112×92.23.先化简,再求值:(1)(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y=1;(2)(x-1)2-x(x-3)+(x+2)(x-2),其中x2+x-5=0.24.有这样一道题:计算⎣⎢⎡⎦⎥⎤3x (2xy +1)-(26x 2y 2÷2y )+⎝ ⎛⎭⎪⎫72xy 2·47y -1÷3x 的值,其中x =2 018,y =-2 019,甲同学把x =2 018,y =-2 019错抄成x =2 081,y =-2 091,但他的计算结果也是正确的.请你解释一下,这是为什么.25.如图,一块半圆形钢板,从中挖去直径分别为x ,y 的两个半圆. (1)求剩下钢板的面积;(2)当x =2,y =4时,剩下钢板的面积是多少?(π取3.14)26.先计算,再找出规律,然后根据规律填空. (1)计算:①(a -1)(a +1)=________; ②(a -1)(a 2+a +1)=________;③(a-1)(a3+a2+a+1)=________.(2)根据(1)中的计算,用字母表示出你发现的规律.(3)根据(2)中的结论,直接写出结果:①(a-1)(a9+a8+a7+a6+a5+a4+a3+a2+a+1)=__________;②若(a-1)·M=a15-1,则M=____________________;③(a-b)(a5+a4b+a3b2+a2b3+ab4+b5)=__________;④(2x-1)(16x4+8x3+4x2+2x+1)=__________.答案一、1.D 2.B 3.B 4.C 5.A 6.C 7.C 8.A 9.B 10.C二、11.a 2+a 12.-8 13.1.2×1012 14.±30 15.29x 4y 5 16.74yz +2x17.4 18.ab 19.ab -ac -bc +c 220.x [x (x +2)+1]-1;647三、21.解:(1)原式=-12ab ·23ab 2+⎝ ⎛⎭⎪⎫-12ab ·(-2ab )+⎝ ⎛⎭⎪⎫-12ab ·43b =-13a 2b 3+a 2b 2-23ab 2; (2)原式=a 2-b 2+b 2=a 2;(3)原式=[-z +(2x -y )]·[-z -(2x -y )]=(-z )2-(2x -y )2=z 2-(4x 2-4xy +y 2)=z 2-4x 2+4xy -y 2;(4)原式=4x 2-y 2+x 2+y 2+2xy -4x 2+2xy =x 2+4xy .22.解:(1)102×98=(100+2)×(100-2)=1002-22=10 000-4=9 996; (2)112×92=(10+1)2×(10-1)2=[(10+1)×(10-1)]2=(100-1)2=10 000-200+1=9 801.23.解:(1)原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =-1,y =1时,原式=-x 2+3y 2=-(-1)2+3×12=2.(2)原式=x 2-2x +1-x 2+3x +x 2-4=x 2+x -3. 因为x 2+x -5=0, 所以x 2+x =5.所以原式=x 2+x -3=5-3=2.24.解:因为[3x (2xy +1)-(26x 2y 2÷2y )+⎝ ⎛⎭⎪⎫72xy 2·47y -1]÷3x =(6x 2y +3x -13x 2y +494x 2y 2·47y -1)÷3x =(6x 2y +3x -13x 2y +7x 2y )÷3x =1, 所以上式的值与x ,y 的取值无关. 所以错抄成x =2 081,y =-2 091, 结果也是正确的.25.解:(1)S 剩=12·π⎣⎢⎡⎭⎪⎫(x +y 22-⎝ ⎛⎭⎪⎫x 22-⎝ ⎛⎭⎪⎫y 22]=14πxy .答:剩下钢板的面积为π4xy .(2)当x =2,y =4时,S 剩≈14×3.14×2×4=6.28.答:剩下钢板的面积约是6.28. 26.解:(1)①a 2-1 ②a 3-1 ③a 4-1(2)规律:(a -1)(a n +a n -1+a n -2+…+a 3+a 2+a +1)=a n +1-1(n 为正整数). (3)①a 10-1②a 14+a 13+a 12+a 11+…+a 3+a 2+a +1 ③a 6-b 6 ④32x 5-1第二章达标测试卷一、选择题(每题3分,共30分)1.下图中,∠1和∠2是对顶角的是()2.已知∠1=40°,则∠1的补角的度数是()A.100° B.140° C.50° D.60°3.如图是一条公路上人行横道线的示意图,小丽站在A点想穿过公路,如果小丽想尽快穿过,那么小丽前进的方向应该是()A.线段AB的方向B.线段AC的方向C.线段AD的方向D.线段AE的方向4.如图,已知OA⊥OB,OC⊥OD,则图中∠1和∠2的关系是() A.互余B.互补C.相等D.以上都不对5.如图,是∠B的同旁内角的角有()A.1个B.2个C.3个D.4个6.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40° B.∠COE=130°C.∠EOD=40° D.∠BOE=90°7.下图中由∠1=∠2能得到AB∥CD的是()8.在同一平面内有三条不同的直线a,b,c,如果a∥b,a与b的距离是2 cm,并且b上的点P到直线c的距离也是2 cm,那么a与c的位置关系是() A.平行B.相交C.垂直D.不一定9.如图,将四边形纸片ABCD沿PR翻折得到三角形PC′R,恰好C′P∥AB,C′R∥A D.若∠B=120°,∠D=50°,则∠C=()A.85° B.95° C.90° D.80°10.如图,若∠1=∠2,DE∥BC,则下列结论中正确的有()①FG∥DC;②∠AED=∠ACB;③CD平分∠ACB;④∠1+∠B=90°;⑤∠BFG=∠BD C.A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.三条直线a∥b,a∥c,则__________,理由是_________________________ _______________________________________________.12.一个角与它的余角的比是1∶2,则这个角的度数是________.13.如图,ED∥AB,ED交AF于点C,∠ECF=138°,则∠A=________.14.如图,已知直线AB和CD相交于点O,OE⊥AB,∠AOD=128°,则∠CO E的度数是________.15.已知∠AOB=60°,OC为∠AOB的平分线,以OB为始边,在∠AOB的外部作∠BOD=∠AOC,则∠COD的度数是________.16.如图,请填写一个条件:________________,使得DE∥A B.17.如图,已知AC⊥BC,CD⊥AB,AC=3,BC=4,则点B到直线AC的距离等于________,点C到直线AB的垂线段是线段________.18.如图,A,B之间是一座山,一条铁路要通过A,B两点,为此需要在A,B 之间修一条笔直的隧道,在A地测得铁路走向是北偏东63°,那么在B地按南偏西________的方向施工,才能保证铁路准确接通.19.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数是________.20.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=________.三、解答题(21,22题每题8分,23~25题每题10分,26题14分,共60分) 21.如图,已知∠B+∠BCD=180°,∠B=∠D,那么∠E=∠DFE成立吗?为什么?下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整.解:成立.因为∠B+∠BCD=180°(已知),所以__________(同旁内角互补,两直线平行).所以∠B=∠DCE(________________________).又因为∠B=∠D(已知),所以∠DCE=∠D(等量代换).所以AD∥BE(________________________).所以∠E=∠DFE(________________________).22.一个角的余角比它的补角的23还小55°,求这个角的度数.23.如图,已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF,求∠BEG和∠DEG的度数.24.如图,以点B为顶点,射线BC为一边,利用尺规作图法作∠EBC,使∠EB C=∠A,EB与AD平行吗?请说明理由.25.如图,将一副三角尺的直角顶点重合在一起.(1)若∠DOB与∠DOA的度数比是2∶11,求∠BOC的度数;(2)若叠合所成的∠BOC=n°(0<n<90),则∠AOD的补角的度数与∠BOC的度数之比是多少?26.如图,∠B,∠D的两边分别平行.(1)在图①中,∠B与∠D的数量关系是什么?为什么?(2)在图②中,∠B与∠D的数量关系是什么?为什么?(3)由(1)(2)可得结论:____________________________________________________.(4)应用:若两个角的两边分别平行,其中一个角比另一个角的2倍少30°,求这两个角的度数.答案一、1.C 2.B 3.B 4.C 5.C 6.C 7.D8.D点拨:分为两种情况:(1)如图①,直线a和直线c相交(此时直线a和直线c也可能垂直);(2)如图②,直线c和直线a平行.故不能确定a与c的位置关系.9.B点拨:因为C′P∥AB,所以∠C′PC=∠B=120°.因为C′R∥AD,所以∠C′R C=∠D=50°.由折叠的性质可知∠CP R=12∠C′PC=60°,∠C R P=12∠C′R C=25°.所以∠C=180°-60°-25°=95°.10.C二、11.b∥c;平行于同一条直线的两条直线平行12.30° 13.42°14.38°15.60°16.∠ABD=∠D(答案不唯一)17.4;CD18.63°19.20°20.140°三、21.AB∥CD;两直线平行,同位角相等;内错角相等,两直线平行;两直线平行,内错角相等22.解:设这个角的度数为x°.由题意得90-x=23(180-x)-55,解得x=75.所以这个角的度数为75°.23.解:因为AB∥CD,∠B=100°,所以∠BEC=80°.因为EF平分∠BEC,所以∠BEF=∠CEF=40°.因为EG⊥EF,所以∠GEF=90°.所以∠BEG=90°-∠BEF=90°-40°=50°,∠DEG=180°-∠GEF-∠CEF=180°-90°-40°=50°.24.解:EB与AD不一定平行.理由如下:如图,可以作出两个符合要求的角.故EB与AD不一定平行.25.解:(1)设∠DOB=2x°,则∠DOA=11x°.因为∠AOB=∠COD=90°,所以∠AOC=∠DOB=2x°,∠BOC=7x°.又因为∠DOA=∠AOB+∠COD-∠BOC=180°-∠BOC,所以11x=180-7x,解得x=10.所以∠BOC=70°.(2)因为∠AOD=∠AOB+∠COD-∠BOC=180°-∠BOC,所以∠AOD与∠BOC互补,则∠AOD的补角等于∠BOC.故∠AOD的补角的度数与∠BOC的度数之比是1∶1.26.解:(1)∠B=∠D.理由如下:如图①,因为AB∥CD,所以∠B=∠1.因为BE∥DF,所以∠1=∠D.所以∠B=∠D.(2)∠B+∠D=180°.理由如下:如图②,因为AB∥CD,所以∠B=∠2.因为BE∥DF,所以∠2+∠D=180°.所以∠B+∠D=180°.(3)如果两个角的两边分别平行,那么这两个角相等或互补(4)情况①:设一个角是x°,则另一个角也是x°.所以x=2x-30,解得x=30.情况②:设一个角是x°,则另一个角是(180-x)°.所以x=2(180-x)-30,解得x=110.180-x=70.所以这两个角的度数是30°,30°或70°,110°.第三章达标测试卷一、选择题(每题3分,共30分)1.明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中自变量是()A.明明B.电话费C.时间D.爷爷2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为()A.1B.3C.-1 D.-33.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的售价,x(支)表示圆珠笔的数量,那么y与x之间的关系应该是()A.y=12x B.y=18xC.y=23x D.y=32x4.小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(m)与散步所用时间t(min)之间的关系.根据图象,下列信息错误的是()A.小明看报用时8 minB.公共阅报栏距小明家200 mC.小明离家最远的距离为400 mD.小明从出发到回家共用时16 min5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是()d5080100150b25405075A.b=d2B.b=2dC.b=d2D.b=d+256.一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则这个长方形中y与x的关系式可写为()A.y=x2B.y=(12-x)2C.y=x(12-x)D.y=2(12-x)7.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是()A.861 B.863C.865 D.867输入…12345…输出 (1)225310417526…8.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用s表示路程,t表示时间,则与故事情节相吻合的是()9.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是() A.乙前4 s行驶的路程为48 mB.在0 s到8 s内甲的速度每秒增加4 m/sC.两车到第3 s时行驶的路程相等D.在4 s到8 s内甲的速度都大于乙的速度10.已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的关系图象大致如图所示,则该封闭图形可能是()二、填空题(每题3分,共30分)11.已知圆的半径为r,则圆的面积S与半径r之间有如下关系:S=πr2,在这个关系中,常量是__________,变量是__________.12.如图所示的是春季某地一天气温随时间变化的图象,根据图象判断,在这天中,最高温度与最低温度的差是________℃.13.小虎拿6元钱去邮局买面值为0.8元的邮票,买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)的关系式为________________,最多可以买________枚.14.根据如图所示的程序,当输入x=3时,输出的结果y是________.15.某等腰三角形的周长是50 cm,底边长是x cm,腰长是y cm,则y与x之间的关系式是______________.16.假定甲、乙两人在一次赛跑中,路程s(m)与时间t(s)的关系如图所示,则甲、乙两人中先到达终点的是________,乙在这次赛跑中的速度为__________.17.如图,长方形ABCD的四个顶点在互相平行的两条直线上,AD=10 cm.当点B,C在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量是______________,因变量是________________;(2)如果长方形的边AB长为x(cm),那么长方形的面积y(cm2)与x的关系式为____________.18.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放5 s后才听到响声,则此人与燃放的烟花所在地相距__________.19.某市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费4 5元,则所用水为__________.月用水量不超过12 t的部分超过12 t不超过18t的部分超过18 t的部分收费标准/(元/t) 2.00 2.50 3.00 20.火车匀速通过隧道时,火车在隧道内的长度y(m)与火车行驶时间x(s)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120 m;②火车的速度为30 m/s;③火车整体都在隧道内的时间为25 s;④隧道长度为750 m.其中,正确的结论是________(把你认为正确结论的序号都填上).三、解答题(21~24题每题9分,其余每题12分,共60分)21.下表记录的是某天一昼夜温度变化的数据:时刻/时024681012141618202224温度/℃-3-5-6.5-4047.510851-1-2请根据表格数据回答下列问题:(1)早晨6时和中午12时的温度各是多少?(2)这一天的温差是多少?(3)这一天内温度上升的时段是几时至几时?22.某人沿一条直路行走,此人离出发地的距离s(k m)与行走时间t(min)的关系如图所示,请根据图中提供的信息回答下列问题:(1)此人在这次行走过程中,停留的时间为__________;(2)求此人在0~40 min这段时间内行走的速度是多少千米/时;(3)此人在这次行走过程中共走了多少千米?23.如图,若三角形ABC的底边BC长为6 cm,高AD为x cm.(1)写出三角形的面积y(cm2)与x(cm)之间的关系式;(2)指出关系式中的自变量与因变量;(3)当x=4时,三角形的面积是多少?24.如图,在长方形ABCD中,AB=12 cm,AD=8 cm.点P,Q都从点A同时出发,点P向B点运动,点Q向D点运动,且保持AP=AQ,在这个变化过程中,图中阴影部分的面积也随之变化,当AP由2 cm变到8 cm时,图中阴影部分的面积是增加了,还是减少了?增加或减少了多少平方厘米?25.弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:(1)当所挂物体的质量为3 kg时,弹簧的长度是__________;(2)在弹性限度内如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,那么该弹簧最多能挂质量为多少的物体?26.如图表示甲、乙两人从同一地点出发去B地的情况(图中虚线表示甲,实线表示乙),到10时时,甲大约行驶了13 k m.根据图象回答:(1)甲是几时出发的?(2)乙是几时出发的?到10时时,他大约行驶了多少千米?(3)到10时为止,谁的速度快?(4)两人最终在几时相遇?(5)你能根据图象中的信息编个故事吗?答案一、1.C 2.B 3.D 4.A 5.C 6.C 7.C 8.D9.C 点拨:A.根据图象可得,乙前4 s 的速度不变,为12 m/s ,则行驶的路程为12×4=48(m),故A 正确;B .根据图象得,甲的速度从0 m/s 均匀增加到32 m/s ,则每秒增加328=4(m/s),故B 正确;C .由甲的图象是过原点的线段,可得v =4t (v ,t 分别表示速度、时间,单位分别为m/s ,s),将v =12代入v =4t ,得t =3,则3 s 前,甲的速度小于乙的速度,所以两车到第3秒时行驶的路程不相等,故C 错误;D .在4 s 到8 s 内甲的图象一直在乙的上方,所以甲的速度都大于乙的速度,故D 正确. 10.A二、11.π;r ,S 12.10 13.y =6-0.8x ;7 14.2 15.y =25-12x 16.甲;8 m/s17.(1)AB (或CD )的长度;长方形ABCD 的面积 (2)y =10x 18.(1)340 m/s (2)1 721 m 19.20 t20.②③ 点拨:由折线图可得火车的长度为150 m ,火车的速度是150÷(35-30)=150÷5=30(m/s),火车整体都在隧道内的时间为35-5×2=25(s),隧道的长度是35×30-150=1 050-150=900(m). 三、21.解:(1)早晨6时的温度是-4 ℃,中午12时的温度是7.5 ℃. (2)10-(-6.5)=16.5(℃). 答:这一天的温差是16.5 ℃. (3)温度上升的时段是4时至14时. 22.解:(1)20 min(2)3÷4060=4.5(km/h).答:此人在0~40 min 这段时间内行走的速度是4.5 km/h.(3)4×2=8(k m).答:此人在这次行走过程中共走了8 k m. 23.解:(1)y =12×6x =3x ,即y 与x 之间的关系式为y =3x . (2)在关系式y =3x 中,x 是自变量, y 是因变量.(3)当x =4时,y =3×4=12, 即三角形的面积是12 cm 2. 24.解:图中阴影部分的面积减少了.设AP =x cm(0≤x ≤8),S 阴=y cm 2, 则y =12×8-12x 2,即y =96-12x 2. 当AP =2 cm 时,S 阴=94 cm 2;当AP =8 cm 时,S 阴=64 cm 2,94-64=30(cm 2).所以当AP 由2 cm 变到8 cm 时,图中阴影部分的面积减少了30 cm 2. 25.解:(1)13.5 cm(2)由表格可知,y 与x 之间的关系式为y =12+0.5x .(3)当x =5.5时,y =12+0.5×5.5=14.75,即弹簧的长度为14.75 cm. (4)当y =20时,20=12+0.5x , 解得x =16.故该弹簧最多能挂质量为16 kg 的物体. 26.解:(1)甲是8时出发的.(2)乙是9时出发的,到10时时,他大约行驶了13 km. (3)乙的速度快. (4)最终在12时相遇.(5)能.甲、乙两人从同一个地方出发,约好12时到B 地见面,甲8时出发,以203 km/h 的速度行驶,3 h 后发现按此速度12时无法到达,于是开始加速以20 km/h 的速度行驶,12时准时到达B 地;乙9时出发,以403 km/h 的速度匀速行驶,最后甲、乙两人12时在B 地相遇.(答案不唯一,合理即可)第四章达标测试卷一、选择题(每题3分,共30分)1.若三角形有两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,BC⊥AE于点C,CD∥AB,∠DCB=40°,则∠A的度数是() A.70° B.60°C.50° D.40°3.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1 B.2C.3 D.44.下列说法正确的是()A.面积相等的两个图形是全等图形B.全等三角形的周长相等C.所有正方形都是全等图形D.全等三角形的边相等5.如图,AD是△ABC的角平分线,过点D向AB,AC两边作垂线,垂足分别为E,F,那么下列结论中不一定正确的是()A.BD=CD B.DE=DFC.AE=AF D.∠ADE=∠ADF6.如图,AD∥BC,AB∥CD,AC,BD交于O点,过O点的直线EF交AD于E点,交BC于F点,且BF=DE,则图中的全等三角形共有()A.6对B.5对C.3对D.2对7.将一副三角尺按下列方式进行摆放,∠1,∠2不一定互补的是()8.如图是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,B F=EC,其中△ABC的周长为24 cm,CF=3 cm,则制成整个金属框架所需这种材料的总长度为()A.45 cm B.48 cmC.51 cm D.54 cm9.根据下列已知条件,能画出唯一一个△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=610.如图,在△ABC中,AC⊥CB,CD平分∠ACB,点E在AC上,且CE=C B,则下列结论:①DC平分∠BDE;②BD=DE;③∠B=∠CED;④∠A+∠CED=90°,其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是_________ _______.12.如图,点B,C,E,F在同一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=________.13.已知三角形的两边长分别为2 和7,第三边长为偶数,则三角形的周长为_ _________.14.如图,点C,F在线段BE上,BF=EC,∠1=∠2.请你添加一个条件,使△ABC≌△DEF,这个条件可以是____________(不再添加辅助线和字母).15.如图,在△ABC中,BC=8 cm,AB>BC,BD是AC边上的中线,△ABD 与△BDC的周长的差是2 cm,则AB=__________.16.设a,b,c是△ABC的三边长,化简|a+b-c|+|b-c-a|+|c-a-b|=____ ______.17.如图,D,E,F分别为AB,AC,BC上的点,且DE∥BC,△ABC沿线段DE折叠,使点A落在点F处.若∠B=50°,则∠BDF=________.18.如图,已知边长为1的正方形ABCD,AC,BD交于点O,过点O任作一条直线分别交AD,BC于点E,F,则阴影部分的面积是________.19.如图,AD,AE分别是△ABC的角平分线、高线,且∠B=50°,∠C=70°,则∠EAD=________.20.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=1 2(AB+AD),若∠D=115°,则∠B=________.三、解答题(21~24题每题9分,其余每题12分,共60分)21.如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥F D.试说明:AC=DF.22.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC于E,求∠EDC的度数.23.如图,在正方形ABCD中,点E,F分别在边AB,BC上,AE=BF,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以说明.24.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.试说明:BD=AE.25.如图,小明和小月两家位于A,B两处隔河相望,要测得两家之间的距离,小明设计方案如下:①从点A出发沿河岸画一条射线AM;②在射线AM上截取AF=FE;③过点E作EC∥AB,使B,F,C在一条直线上;④CE的长就是A,B间的距离.(1)请你说明小明设计的原理.(2)如果不借助测量仪,小明的设计中哪一步难以实现?(3)你能设计出更好的方案吗?26.如图①,在Rt△ABC中,AB=AC,∠BAC=90°,过点A的直线l绕点A旋转,BD⊥l于D,CE⊥l于E.(1)试说明:DE=BD+CE.(2)当直线l绕点A旋转到如图②所示的位置时,(1)中结论是否成立?若成立,请说明;若不成立,请探究DE,BD,CE又有怎样的数量关系,并写出探究过程.答案一、1.A 2.C 3.B 4.B 5.A 6.A7.D 8.A 9.C 10.D 二、11.三角形的稳定性12.36° 点拨:因为AB ∥DC ,DE ∥GF ,∠B =∠F =72°,所以∠DCE =∠B =72°,∠DEC =∠F =72°.在△CDE 中,∠D =180°-∠DCE -∠DEC =180°-72°-72°=36°. 13.15或17 14.CA =FD (答案不唯一)15.10 cm 点拨:由题意知(AB +BD +AD )-(BC +BD +CD )=2 cm ,AD =CD ,则AB -BC =2 cm.所以AB =BC +2=8+2=10(cm). 16.3a +b -c 17.80° 18.1419.10° 点拨:由AD 平分∠BAC ,可得∠DAC =12∠BAC =12×(180°-50°-70°)=30°.由AE ⊥BC ,可得∠EAC =90°-∠C =20°,所以∠EAD =30°-20°=10°. 20.65° 点拨:过C 作CF ⊥AD ,交AD 的延长线于F .因为AC 平分∠BAD , 所以∠CAF =∠CAE . 因为CF ⊥AF ,CE ⊥AB , 所以∠AFC =∠AEC =90°. 在△CAF 和△CAE 中,⎩⎨⎧∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,所以△CAF ≌△CAE (AAS ). 所以FC =EC ,AF =AE . 因为AE =12(AB +AD ), 所以AF =12(AE +EB +AD ), 即AF =BE +AD . 所以DF =BE .在△FDC 和△EBC 中,⎩⎨⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,所以△FDC ≌△EBC (SAS ). 所以∠FDC =∠EBC . 又因为∠ADC =115°, 所以∠FDC =180°-115°=65°. 所以∠B =65°.三、 21.解:因为AB ∥ED ,AC ∥FD ,所以∠B =∠E ,∠ACB =∠DFE . 因为FB =CE ,所以BF +FC =CE +FC , 即BC =EF .所以△ABC ≌ △DEF (ASA ). 所以AC =DF .22.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°. 因为AD 平分∠BAC , 所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°,∠ADC =180°-101°=79°. (2)因为DE ⊥AC , 所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.23.解:(1)由题可知∠DAG ,∠AFB ,∠CDE 与∠AED 相等.(2)(答案不唯一)选择∠DAG =∠AED .说明如下: 因为四边形ABCD 是正方形, 所以∠DAB =∠B =90°,AD =AB . 在△DAE 和△ABF 中,⎩⎨⎧AD =BA ,∠DAE =∠B =90°,AE =BF ,所以△DAE ≌△ABF (SAS ). 所以∠ADE =∠BAF .因为∠DAG +∠BAF =90°,∠GDA +∠AED =90°, 所以∠DAG =∠AED .24.解:因为△ABC 和△ECD 都是等腰直角三角形,且∠ACB =∠DCE =90°,所以AC =BC ,CD =CE , ∠ACE +∠ACD =∠BCD +∠ACD . 所以∠ACE =∠BCD . 在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,所以△ACE ≌△BCD (SAS ). 所以BD =AE .25.解:(1)全等三角形的对应边相等.(2)③难以实现.(3)略(答案不唯一,只要设计合理即可). 26.解:(1)因为BD ⊥l ,CE ⊥l ,所以∠ADB =∠AEC =90°. 所以∠DBA +∠BAD =90°. 又因为∠BAC =90°, 所以∠BAD +∠CAE =90°. 所以∠DBA =∠CAE .因为AB =AC ,∠ADB =∠CEA =90°, 所以△ABD ≌△CAE (AAS ). 所以AD =CE ,BD =AE . 则AD +AE =BD +CE ,即DE=BD+CE.(2)(1)中结论不成立.DE=BD-CE.同(1)说明△ABD≌△CAE,所以BD=AE,AD=CE.又因为AE-AD=DE,所以DE=BD-CE.第五章达标测试卷一、选择题(每题3分,共30分)1.下列各选项中左边的图形与右边的图形成轴对称的是()2.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()3.下列轴对称图形中,对称轴最多的是()A.正方形B.等边三角形C.等腰三角形D.线段4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数是()A.30° B.40°C.45° D.60°5.如图,在△ABC中,AB的垂直平分线交AC于点E,若AE=2,则B,E两点间的距离是()A.2 B.3C.4 D.56.能用无刻度直尺,直接准确画出下列轴对称图形的所有对称轴的是()7.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴8.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,E为OP上一点,则下列结论错误的是()A.CE=DE B.∠CPO=∠DEPC.∠CEO=∠DEO D.OC=OD9.如图,有一张直角三角形纸片,两直角边AC=5 cm,BC=10 cm,将△AB C折叠,使点B与点A重合,折痕为DE,则△ACD的周长为()A.10 cm B.12 cmC.15 cm D.20 cm10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下面四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共30分)11.以下图形中,对称轴的条数大于3的有________个.12.△ABC 和△A ′B ′C ′关于直线l 对称,若△ABC 的周长为12 cm ,△A ′B ′C ′的面积为6 cm 2,则△A ′B ′C ′的周长为________,△ABC 的面积为___________. 13.已知等腰三角形的顶角是底角的4倍,则顶角的度数为________. 14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于D ,若CD =12BD ,点D 到边AB 的距离为6,则BC 的长是________.15.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E ,F 是AD 的三等分点,若△ABC 的面积为12 cm 2,则图中阴影部分的面积为__________. 16.如图,AC ,BD 相交于点O ,AB ∥DC ,AB =BC ,∠D =40°,∠ACB =35°,则∠AOD =________.17.如图是一组按照某种规律摆放成的图案,则第2 019个图案________轴对称图形(填“是”或“不是”).18.如图,∠A =15°,AB =BC =CD =DE =EF ,则∠DEF =________. 19.如图,在正方形网格中,阴影部分是涂黑7个小正方形所形成的图案,再将网格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.20.两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD 中,AB =AD ,BC =DC ,AC 与BD 相交于点O ,下列判断正确的有__________(填序号).①AC ⊥BD ;②AC ,BD 互相平分;③AC 平分∠BCD ;④∠ABC =∠ADC =90°; ⑤筝形ABCD 的面积为12AC ·B D.三、解答题(21题8分,22~25题每题10分,26题12分,共60分)21.把图中的图形补成轴对称图形,其中MN,EF为各图形的对称轴.22.如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF 平分∠ACB交AB于点F,试判断CE与CF的位置关系.23.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,∠DAE与∠DAC的度数比为2∶1,求∠B的度数.24.如图,已知△ABC是等腰三角形,且AB=AC,D是△ABC外部的一点,连接AD,B D.已知AB=AD,AD∥BC,∠D=35°,求∠DAC的度数.25.如图,校园有两条路OA,OB,在交叉口附近有两块宣传牌C,D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置点P,并说明理由.26.如图①,△ABC为等腰直角三角形,∠BAC=90°,点D为线段BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADE,连接CE.(1)当点D在线段BC上时(不与点B重合),线段CE和BD的数量关系与位置关系分别是什么?请给予说明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图②中画出相应的图形,并说明理由.答案一、1.C2.D3.A4.B5.A6.A 7.C8.B9.C点拨:△ACD的周长为AC+CD+AD.由折叠可知AD=BD,所以AC+CD+AD=AC+BC=15 cm.10.A二、11.312.12 cm;6 cm213.120°14.1815.6 cm216.75°点拨:因为AB=BC,所以∠BAC=∠ACB=35°.因为AB∥CD,所以∠ABD=∠D=40°.所以∠AOB=180°-35°-40°=105°.所以∠AOD=180°-105°=75°.17.是18.60°点拨:因为AB=BC=CD=DE=EF,所以∠BCA=∠A=15°.所以∠ABC=150°.所以∠CBD=∠CDB=30°.所以∠ACD=135°.所以∠CED=∠ECD=45°.所以∠ADE=120°.所以∠EDF=∠EFD=60°.所以∠DEF=60°.19.320.①③⑤三、21.解:如图所示.22.解:因为CD=CA,E是AD的中点,所以∠ACE=∠DCE.因为CF平分∠ACB,所以∠ACF=∠BCF.因为∠ACE+∠DCE+∠ACF+∠BCF=180°,所以∠ACE+∠ACF=90°,即∠ECF=90°.所以CE⊥CF.23.解:设∠DAC=x,则∠DAE=2x.因为DE是AB的垂直平分线,所以DA=DB.所以∠B=∠DAB=2x.因为∠C=90°,所以2x+(2x+x)=90°,x=18°.所以∠B=36°.24.解:因为AD∥BC,所以∠D=∠DBC,∠DAC=∠ACB.因为AB=AC=AD,所以∠D=∠ABD,∠ACB=∠ABC=∠ABD+∠DBC=2∠D=2×35°=70°.所以∠DAC=70°.25.解:如图,到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C,D的距离相等的点则在线段CD的垂直平分线上,故它们的交点P即为所求.26.解:(1)CE=BD,且CE⊥BD.说明:因为∠EAD=∠BAC=90°,所以∠EAC=∠DAB.在△ACE和△ABD中,⎩⎨⎧AC =AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS ). 所以CE =BD ,∠ECA =∠DBA .所以∠ECD =∠ECA +∠ACD =∠DBA +∠ACD =90°. 所以EC ⊥CB .(2)(1)的结论仍然成立.理由如下: 画出的图形如图所示.因为∠CAB =∠DAE =90°,所以∠CAB +∠CAD =∠DAE +∠CAD ,即∠CAE =∠BAD . 在△ACE 和△ABD 中,⎩⎨⎧AC =AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS ). 所以CE =BD ,∠ACE =∠B . 因为AB =AC ,∠BAC =90°, 所以∠B =∠ACB =45°.所以∠BCE =∠ACE +∠ACB =45°+45°=90°. 所以CE ⊥BD .第六章达标测试卷一、选择题(每题3分,共30分) 1.下列事件中是必然事件的是( )A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为415,买10 000张该种彩票一定会中奖。
(新)北师大版七年级数学下册各章单元测试卷(共6章,121张PPT)
Listen attentively
解答题
(2)∵OE⊥CD, ∴∠COE=90°, ∴∠AOC=∠COE﹣∠AOE=90°﹣26°=64°, ∵∠AOC=∠BOD, ∴∠BOD=64°, 又∵OF平分∠BOD, ∴∠DOF= ∠BOD= ×64°=32°, ∴∠COF=180°﹣∠DOF=180°﹣32°=148°.
解答题
13.计算:(a+2)2﹣2(a+1)(a﹣1)
解:原式=a2+4a+4﹣2a2+2 =﹣a2+4a+6. 14.已知am=3,an=2,求am+2n的值. 解:原式=am•(an)2=3•22=12. 15.若一多项式除以2x2﹣3,得到的商式为x+4, 余式为3x+2,求此多项式. 解:根据题意得: (2x2﹣3)(x+4)
Listen attentively
选择题
5.(2016春•开江县期末)如图,甲、乙、丙、 丁四位同学给出了四种表示该长方形面积的多项式, 你认为其中正确的有(D ) ①(2a+b)(m+n); ②2a(m+n)+b(m+n); ③m(2a+b)+n(2a+b); ④2am+2an+bm+bn. A.①② B.③④ C.①②③ D.①②③④
Listen attentively
选择题
4.(2016•乐山模拟)已知函数y= ,当 x=2时,函数值y为( A ) A.5 B.6 C.7 D.8 5.(2015•自贡)小刚以400米/分的速度匀速骑 车5分,在原地休息了6分,然后以500米/分的速 度骑回出发地.下列函数图象能表达这一过程的是 C) (
北师大版七年级数学下册全册单元试卷【1-6单元合集,含期中期末试卷,含答案】
北师大版七年级数学下册第1章《整式的乘除》单元测试试卷及答案(1)一、选择题1.PM2.5是指大气中直径小于或等于0.000 002 5 m 的颗粒物,将0.000 002 5用科学记数法表示为( ).A .0.25×10-5B .0.25×10-6C .2.5×10-5D .2.5×10-62.李老师做了个长方形教具,其中一边长为2a +b ,另一边长为a -b ,则该长方形的面积为( ).A .6a +bB .2a 2-ab -b 2C .3aD .10a -b3.计算:3-2的结果是( ).A .-9B .-6C .-19 D.194.计算(-a -b )2等于( ).A .a 2+b 2B .a 2-b 2C .a 2+2ab +b 2D .a 2-2ab +b 25.下列多项式的乘法中可用平方差公式计算的是( ).A .(1+x )(x +1)B .(2-1a +b )(b -2-1a )C .(-a +b )(a -b )D .(x 2-y )(y 2+x )6.一个长方体的长、宽、高分别为3a -4,2a ,a ,则它的体积等于( ).A .3a 3-4a 2B .a 2C .6a 3-8a 2D .6a 3-8a7.计算x 2-(x -5)(x +1)的结果,正确的是( ).A .4x +5B .x 2-4x -5C .-4x -5D .x 2-4x +58.已知x +y =7,xy =-8,下列各式计算结果正确的是( ).A .(x -y )2=91B .x 2+y 2=65C .x 2+y 2=511D .(x -y )2=5679.下列各式的计算中不正确的个数是( ).①100÷10-1=10 ②10-4×(2×7)0=1 000③(-0.1)0÷(-2-1)-3=8 ④(-10)-4÷(-10-1)-4=-1A .4B .3C .2D .1二、填空题10.用小数表示1.21×10-4是________.11.自编一个两个单项式相除的题目,使所得的结果为-6a 3,你所编写的题目为________________________________________________________________________.12.已知(9n )2=38,则n =__________.13.长为3m +2n ,宽为5m -n 的长方形的面积为__________.14.用小数表示3.14×10-4=__________.15.要使(ax 2-3x )(x 2-2x -1)的展开式中不含x 3项,则a =__________.16.100m ·1 000n 的计算结果是__________.三、解答题17.计算:1122-113×111.18.先化简,再求值:(a 2b -2ab 2-b 3)÷b -(a +b )(a -b ),其中a =12,b =-1.19.先化简,再求值:(3x -y )2-(2x +y )2-5x (x -y ),其中x =0.2,y =0.01.20.如图,一块半圆形钢板,从中挖去直径分别为x ,y 的两个半圆:(1)求剩下钢板的面积;(2)若当x=4,y=2时,剩下钢板的面积是多少?(π取3.14)21.在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算:(1)把这个数加上2后平方;(2)然后再减去4;(3)再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗?22.八年级学生小明是一个喜欢思考问题而又乐于助人的好学生,一天邻居家读小学的小李,请他帮忙检查作业:7×9=63;8×8=64;11×13=143;12×12=144;24×26=624;25×25=625.小明仔细检查后,夸小李聪明,作业全对了!小明还从这几题中发现了一个规律,你知道小明发现了什么规律吗?请用字母表示这一规律,并说明它的正确性.参考答案1.D 点拨:0.000 002 5=2.5×10-6,故选D.2.B 点拨:根据长方形的面积=长×宽可列出代数式为:长方形的面积=(2a +b )·(a -b ),然后计算整理化为最简形式即可.3.D 点拨:3-2=132=19. 4.C 点拨:本题主要考查我们对完全平方公式的理解能力,如何确定用哪一个公式,主要看两数的符号是相同还是相反.5.B 点拨:本题主要考查了平方差公式的结构.注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有.6.C 点拨:本题考查了多项式乘单项式的运算法则,要熟练掌握长方体的体积公式.根据长方体的体积=长×宽×高,列出算式,再根据单项式乘多项式的运算法则计算即可.7.A 点拨:x 2-(x -5)(x +1)=x 2-(x 2-4x -5)=4x +5.8.B 点拨:(x -y )2=(x +y )2-4xy =72-4×(-8)=81;x 2+y 2=(x +y )2-2xy =72-2×(-8)=65.9.B 点拨:根据零指数幂、负指数幂和有理数的乘方等知识分别进行计算,然后根据实数的运算法则求得计算结果.10.0.000 121 点拨:根据负指数幂的意义把10的负指数幂转化为小数即可. 1.21×10-4=1.21×0.000 1=0.000 121.11.答案不唯一,如-12a 5÷2a 212.2 点拨:先把9n 化为32n ,再根据幂的乘方的运算法则,底数不变,指数相乘,即可得出4n =8,从而求得n 的值.13.15m 2+7mn -2n 2 点拨:本题考查了整式的乘法运算,涉及长方形的面积公式,正确列出代数式是解答本题的关键.14.0.000 31415.-32点拨:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0,同时要注意各项符号的处理.16.102m +3n 点拨:100m ·1 000n =(102)m ·(103)n =102m ·103n =102m +3n .17.解:原式=1122-(112+1)(112-1)=1122-(1122-1)=1122-1122+1=1.18.解:(a 2b -2ab 2-b 3)÷b -(a +b )(a -b )=a 2-2ab -b 2-(a 2-b 2)=a 2-2ab -b 2-a 2+b 2=-2ab .当a =12,b =-1时, 原式=-2×12×(-1)=1. 点拨:本题考查多项式除单项式,平方差公式,运算时要注意符号.19.解:原式=9x 2-6xy +y 2-(4x 2+4xy +y 2)-5x 2+5xy =-5xy .当x =0.2,y =0.01时,原式=-5×0.2×0.01=-0.01.20.解:(1)S 剩=12·π·⎣⎡⎦⎤(x +y )24-x 2+y 24=14πxy . 答:剩下钢板的面积为π4xy . (2)当x =4,y =2时,S 剩=14×3.14×4×2=6.28. 点拨:本题考查了完全平方公式,(1)中注意大圆的半径需从图上得出,注意这里都是半圆.21.解:设这个数为x,据题意得,[(x+2)2-4]÷x=(x2+4x+4-4)÷x=x+4.如果把这个商告诉主持人,主持人只需减去4就知道你所想的数是多少.点拨:本题考查了完全平方公式,多项式除单项式,读懂题目信息并列出算式是解题的关键.22.解:n(n+2)=(n+1)2-1.点拨:解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.北师大版七年级数学下册第2章《相交线与平行线》单元测试试卷及答案(1)一、选择题1.同一平面内的三条直线a,b,c,若a⊥b,b∥c,则a与c().A.平行B.垂直C.相交D.重合2.尺规作图所用的作图工具是指().A.刻度尺和圆规B.不带刻度的直尺和圆规C.刻度尺D.圆规3.∠α与∠β互为余角,则它们的补角之和为().A.90°B.180°C.270°D.300°4.如图,∠1与∠3互余,∠2与∠3的余角互补,∠4=115°,则∠3为().A.45°B.60°C.65°D.70°5.若∠A与∠B是对顶角且互补,则它们两边所在的直线().A.互相垂直B.互相平行C.既不垂直也不平行D.不能确定6.下列说法中正确的是().A.有公共顶点,且方向相反的两个角是对顶角B.有公共点,且又相等的角是对顶角C.两条直线相交所成的角是对顶角D.角的两边互为反向延长线的两个角是对顶角7.如图,与∠α构成同旁内角的角有().(第7题图)A.1个B.2个C.5个D.4个8.如图,已知AB∥CD,HL∥FG,EF⊥CD,∠1=50°,那么,∠EHL的度数为().(第8题图)A.40°B.45°C.50°D.55°9.如图,直线AB,CD相交于点O,OE⊥AB于O,∠COE=55°,则∠BOD的度数是().(第9题图)A .40°B .45°C .30°D .35°10.如图,如果∠AFE +∠FED =180°,那么( ).(第10题图) A .AC ∥DE B .AB ∥FEC .ED ⊥AB D .EF ⊥AC 二、填空题11.三条相交直线交于一点得6个角,每隔1个角的3个角的和是__________.12.如果∠1和∠2互补,∠2比∠1大10°,则∠1=__________°,∠2=__________°.13.如图,已知AB ∥CD ∥EF ,∠B =60°,∠D =10°,EG 平分∠BED ,则∠GEF =__________°.(第13题图)14.如图,∠BAC =90°,EF ∥BC ,∠1=∠B ,则∠DEC =__________°.(第14题图)15.如图,已知AB ∥CD ,∠ABE 和∠CDE 的平分线相交于F ,∠E =140°,则∠BFD 的度数为__________°.三、解答题 16.如图,已知AE ∥BD ,∠1=3∠2,∠2=28°.求12∠C .(第16题图)17.如图,已知∠1=∠2,∠3=∠4,试说明AB∥CD.(第17题图)18.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系?为什么?(第18题图)19.如图,已知:AB⊥BF,CD⊥BF,∠BAF=∠AFE.试说明∠DCE+∠E=180°的理由.(第19题图)参考答案1.B 点拨:根据平行线的性质,两直线平行,同位角相等可得a 与c 垂直.2.B 点拨:本题考查尺规作图的主要工具.尺规作图所用的作图工具是指不带刻度的直尺和圆规.3.C 点拨:由题意知,∠α+∠β=90°,所以(180°-∠α)+(180°-∠β)=360°-(∠α+∠β)=360°-90°=270°,故选C.4.C 点拨:解决本题的关键是由已知条件能够联想到l 1∥l 2.∠1与∠3互余,∠2与∠3的余角互补,则可以知道∠1+∠3=90°,∠2+(90°-∠3)=180°,即∠2-∠3=90°,所以∠1+∠2=180°,则l 1∥l 2,就可以根据平行线的性质求得∠3的大小.5.A 点拨:本题考查垂线的定义和对顶角的性质,∠A 与∠B 是对顶角且互补,根据对顶角的性质,判断这两个对顶角相等,且都为90°,因此它们两边所在的直线互相垂直.6.D 点拨:本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.由此逐一判断.7.C 点拨:判断是否是同旁内角,必须符合“三线八角”中两个角都在截线的一侧,且在两条直线之间,具有这样位置关系的一对角互为同旁内角.8.A 点拨:利用平行线的性质可得∠LHB =∠1,又因为EF ⊥CD ,所以∠EFD =90°,所以∠EHB =90°,即∠EHL +∠LHB =90°,所以∠EHL =40°.9.D 点拨:此题主要考查了余角和对顶角的关系.由已知OE ⊥AB ,∠COE =55°,利用互余关系求∠AOC ,再利用对顶角相等求∠BOD 的度数.10.A 点拨:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,∠AFE 与∠FED 是直线AC 、直线DE 被直线EF 所截形成的同旁内角,又∠AFE +∠FED =180°,从而得到AC ∥DE .11.180° 点拨:本题考查对顶角的定义以及性质,三条相交直线交于一点得6个角,这6个角是三对对顶角,根据对顶角的性质即对顶角相等可得每隔1个角的3个角的和是:6个角之和÷2=360°÷2=180°.12.85 95 点拨:解此题的关键是能准确的从图中找出角之间的数量关系,从而计算出结果.∠1+∠2=180°,∠2-∠1=10°,所以∠1=85°,∠2=95°.13.25 点拨:本题考查平行线的性质,注意两直线平行内错角相等的运用.根据内错角相等可得出∠B =∠BEF =60°,∠CDE =∠FED =10°,可得出∠BED =70°,再根据EG 平分∠BED 可得出∠GED =35°,继而能得出∠GEF 的度数.14.90 点拨:因为EF ∥BC ,所以∠1=∠EDC .又因为∠1=∠B ,所以∠EDC =∠B .所以DE ∥AB .所以∠DEC =∠A =90°.15.110 点拨:根据平行线的性质可得∠ABE +∠CDE +∠E =360°,由∠E =140°得出∠FBA +∠CDF 的值,再根据平行线的性质得出∠BFD 的度数.16.解:因为AE ∥BD ,所以∠EAB +∠ABD =180°.根据三角形内角和为180°得∠C =180°-∠CAB -∠ABC .因为∠CAB =∠EAB -∠1,∠CBA =∠ABD +∠2,所以∠C =180°-(∠EAB -∠1)-(∠ABD +∠2)=180°-(∠EAB +∠ABD )+(∠1-∠2).因为∠1=3∠2,∠2=28°,所以12∠C =12(180°-180°+2∠2)=∠2=28°. 17.解:因为∠1=∠2,所以CE ∥BF .所以∠3=∠BFD .又因为∠3=∠4,所以∠4=∠BFD .所以AB ∥CD .点拨:欲说明AB ∥CD ,关键是找到一条合适的截线.18.解:平行.理由:因为CD ∥AB ,所以∠ABC =∠DCB =70°.又因为∠CBF =20°,所以∠ABF =50°.所以∠ABF+∠EFB=50°+130°=180°.所以EF∥AB(同旁内角互补,两直线平行).点拨:证明两直线平行的方法就是转化为证明两角相等或互补.19.解:因为AB⊥BF,CD⊥BF,所以AB∥CD又∠BAF=∠AFE,所以AB∥EF.所以CD∥EF.所以∠DCE+∠E=180°.点拨:本题考查了平行线的判定以及平行线的性质.根据图形,要得到∠DCE+∠E=180°,只需证明CD∥EF.根据已知条件易证此结论.北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(1)一、选择题1.以下列各组长度的线段为边,能构成三角形的是().A.6 cm,8 cm,15 cm B.7 cm,5 cm,12 cmC.4 cm,6 cm,5 cm D.8 cm,4 cm,3 cm2.如图,△AOB≌△COD,A和C,B和D是对应顶点,若BO=6,AO=3,AB=5,则CD的长为().A.10 B.8C.5 D.不能确定3.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是().A.∠ADB=∠ADC B.∠B=∠CC.DB=DC D.AB=AC4.要使五边形木架不变形,则至少要钉上()根木条.A.1 B.2 C.3 D.45.下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有().A.4个B.3个C.2个D.1个6.如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是().A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形7.图中全等的三角形是().A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ8.如图,△ABC中,∠ACB=90°,把△ABC沿AC翻折180°,使点B落在B′的位置,则关于线段AC的性质中,正确的说法是().A.是边BB′上的中线B.是边BB′上的高C.是∠BAB′的平分线D.以上三种性质都有二、填空题9.在△ABC中,若∠A∶∠B∶∠C=1∶3∶5,这个三角形为__________三角形.(按角的分类)10.一木工师傅有两根长分别为5 cm,8 cm的木条,他要找第三根木条,将它们钉成一个三角形框架,现有长分别为3 cm,10 cm,20 cm的三根木条,他可以选择长为__________cm 的木条.11.如图,如果AD=BC,∠1=∠2,那么△ABC≌△CDA,根据是__________.12.如图,已知∠ABC=∠DCB,现要说明△ABC≌△DCB,则还要补加一个条件是______.13.如图,△ABC中,AB=AC,AD是∠BAC的平分线,则∠ABD__________∠ACD(填“>”“<”或“=”).14.如图,长方形ABCD中(AD>AB),M为CD上一点,若沿着AM折叠,点N恰落在BC上,则∠ANB+∠MNC=__________度.三、解答题15.如图,在△ABC中,∠BAC是钝角,完成下列画图,并用适当的符号在图中表示AC边上的高.16.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠AEC的度数.17.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.18.请你找一张长方形的纸片,按以下步骤进行动手操作:步骤一:在CD上取一点P,将角D和角C向上翻折,这样将形成折痕PM和PN,如图①所示;步骤二:翻折后,使点D,C落在原长方形所在的平面内,即点D′和C′,细心调整折痕PN,PM的位置,使PD′,PC′重合,如图②,设折角∠MPD′=∠α,∠NPC′=∠β.(1)猜想∠MPN的度数;(2)若重复上面的操作过程,并改变∠α的大小,猜想:随着∠α的大小变化,∠MPN 的度数怎样变化?参考答案1.C点拨:此题考查了三角形的三边关系.A.6+8<15,不能组成三角形;B.7+5=12,不能组成三角形;C.4+5>6,能够组成三角形;D.4+3<8,不能组成三角形.2.C点拨:因为△AOB≌△COD,A和C,B和D是对应顶点,所以AB=CD.因为AB=5,所以CD=5.3.C点拨:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS,ASA,SAS,SSS,而“SSA”无法证明三角形全等.4.B5.B点拨:错误的说法有①②④,共3个.6.C点拨:通过三角形的形状可以判断三角形高线的位置,反之,通过三条高线交点的位置可以判断三角形的形状.7.D点拨:A选项中条件不满足“SAS”,不能判定两三角形全等;B选项中条件对应边不相等,不能判定两三角形全等;C选项中条件不满足“SAS”,不能判定两三角形全等;D选项中条件满足“SAS”,能判定两三角形全等.8.D点拨:本题考查的是图形的翻折变换及全等三角形的性质,熟知图形翻折变换的性质是解答此题的关键.9.钝角点拨:因为∠A∶∠B∶∠C=1∶3∶5,∠A+∠B+∠C=180°,所以∠A=20°,∠B=60°,∠C=100°.因为∠C>90°,所以这个三角形是钝角三角形.10.10点拨:已知三角形的两边长分别是5 cm和8 cm,则第三边长一定大于3 cm 且小于13 cm.故他可以选择其中长为10 cm的木条.11.SAS点拨:因为AD=BC,∠1=∠2,AC=CA,所以△ABC≌△CDA(SAS).12.∠A=∠D或AB=CD或∠ACB=∠DBC13.=点拨:因为△ABC中,AB=AC,AD是∠BAC的平分线,所以∠BAD=∠CAD.又因为AD=AD,所以△ABD≌△ACD(SAS).所以∠ABD=∠ACD.14.90点拨:根据折叠的性质,有∠ANM=∠ADM=90°,故∠ANB+∠MNC=180°-∠ANM=90°.15.解:如图,BE即为AC边上的高.16.解:因为AD⊥BC,∠B=60°,∠BAC=80°,所以∠BAD=30°,∠DAC=50°,∠C=40°.因为AE平分∠DAC,所以∠DAE=∠EAC=25°,所以∠AEC=180°-∠C-∠EAC=180°-25°-40°=115°.17.解:因为AB=AC,BD=CE,所以AD=AE.又因为∠A=∠A,所以△ABE≌△ACD(SAS).18.解:(1)因为∠α=∠MPD,∠β=∠NPC,又因为∠α+∠β+∠MPD+∠NPC=180°,所以∠α+∠β=90°,即∠MPN=90°.(2)∠MPN的度数不变,仍为90°.北师大版七年级数学下册第4章《变量之间的关系》单元测试试卷及答案(1)一、选择题1.如果用总长为60 m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么S,p,a中是变量的是().A.S和p B.S和aC.p和a D.S,p,a2.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg01234 5y/cm1010.51111.51212.5A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm3.雪橇手从斜坡顶部滑了下来,下图中可以大致刻画出雪橇手下滑过程中速度—时间变化情况的是().4.对于关系式y=3x+5,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤y与x的关系还可以用表格和图象表示,其中正确的是().A.①②③B.①②④C.①③⑤D.①②⑤5. 星期天,小王去朋友家借书,如图是他离家的距离y(千米)与时间x(分)的函数图象,根据图象信息,下列说法正确的是().A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路6. 已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,8:20乙从B 地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息知,乙到达A地的时刻为().A.8:30 B.8:35C.8:40 D.8:457. 某市一周平均气温(℃)如图所示,下列说法不正确的是().A.星期二的平均气温最高B.星期四到星期日天气逐渐转暖C.这一周最高气温与最低气温相差4 ℃D.星期四的平均气温最低8.某工厂去年底积压产品a件(a>0),今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,则产品积压量y(件)与今年开工时间t(月)的关系的图象应是().二、填空题9.梯形的上底长是2,下底长是8,则梯形的面积y与高x之间的关系式是______,自变量是______,因变量是______.10.在关系式y=3x-1中,当x由1变化到5时,y由______变化到______.11.某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价为每升______元.12.如图表示某地的气温变化情况.(1)在______时气温最高,为______;(2)在______时到______时这段时间气温是逐渐上升的.13.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为__________.14.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图所示,则慢车比快车早出发__________小时,快车追上慢车行驶了__________千米,快车比慢车早__________小时到达B地.15.河道的剩水量Q(米3)和水泵抽水时间t(时)的关系图象如图,则水泵抽水前,河道内有__________米3的水,水泵最多抽__________小时,水泵抽8小时后,河道剩水量是__________米3.三、解答题16.某天放学后,小敏徒步回家,如图所示,反映了她的速度与时间的变化关系.(1)请你根据图象填写下表:时间/分024810121416182024 速度/(千米/时)17.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:观察:(1)大约几时的光合作用最强?(2)大约几时的光合作用最弱?18.2007年的夏天,湖南省由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米?(2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?19.如图①所示,在△ABC中,AD是三角形的高,且AD=6 cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8 cm.(1)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(2)当E点停止后,求△ABE的面积.参考答案1.B2.B 点拨:观察表中的数据发现,选项A ,C 显然对,而当x =0时,y =10,即弹簧不挂重物时长度为10 cm ,故选项B 错,由选项C 可得y 与x 之间的关系式为y =10+0.5x ,所以当x =7时,y =13.5,所以选项D 是正确的.3.A 点拨:因为雪橇手在下滑过程中,速度将随着时间的增加越来越大,故选A.4.D 点拨:根据因变量的概念可知,因变量是随着自变量的变化而变化的,所以③的说法是错误的;又因为变量之间的关系既可以用关系式表示,也可以用表格和图象表示,所以④错.故选D.5.B 点拨:读图可知小王去朋友家路上用时20分,在朋友家中停留了10分,回家路上用时10分,易知回家时速度大于去时的速度.而D 项无法确定.6.C 点拨:由图象知,甲走完4千米的路程用60分,所以甲走2千米(图中两图象的交点处)的路程用30分,这就说明乙走2千米只用了10分,所以乙走完全程用20分,故乙到达A 地的时刻为8:40.7.C8.C 点拨:由题意可知,产品的积压量y 随时间t 的增大而减小,故选C.9.y =5x x y 点拨: 梯形面积=12×高×(上底+下底). 10.2 14 点拨:将x 的值代入,分别求出对应的y 值即可.11.7.09 点拨:由图可直接计算单价为709100=7.09(元). 12.(1)15 15 ℃ (2)8 1513.y =0.11x -0.03(x >3) 点拨:当通话时间超过3分时,y =0.3+(x -3)×0.11=0.11x -0.03.14.2 276 415.600 12 200 点拨:水泵抽8个小时后,河道剩水量是600-60012×8=200(米3). 16.解:(1)速度:0,2.5,5,5,5,5,2.5,2.5,2.5,2.5,0;(2)由图象知小敏放学后开始加速走动,等速度达5千米/时的时候开始匀速行走,大约过了8分,开始减速,直至2.5千米/时,又开始匀速行走,大约过了6分又开始减速,4分后停止.17.解:观察得到:(1)大约上午10时的光合作用最强;(2)大约早上7时和晚上18时的光合作用最弱.18.解:(1)水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米.(2)持续干旱30天后将发出严重干旱警报.(3)持续干旱50天后水库将干涸.19.解:(1)由速度与时间的关系知点E 从B 向C 运动的过程中是匀速的,其速度为3 cm/s ,所以运动x 秒后BE =3x cm.由题意得y =9x (0≤x ≤2).(2)由图②知其运动了2秒,所以当x =2时,y =9×2=18(cm 2).点拨:求变量之间的关系式时,要注意写出自变量的取值范围.北师大版七年级数学下册第5章《生活中的轴对称》单元测试试卷及答案(1)一、选择题1.如图所示,平放在竖立镜子前的桌面上的数码“21085”在镜子中的像是().A.21085 B.28015C.58012 D.510822.如图,在△ABC中,AB=14厘米,BC=9厘米,E为AC的中点,DE⊥AC,则△BDC的周长是().A.23厘米B.16厘米C.19厘米D.无法确定3.等腰三角形一腰上的高与底边所夹的角为α,则这个等腰三角形的顶角为().A.αB.90°-αC.90°+αD.2α4.如图,在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC上一点,AB=BD,DE⊥BC,交AC于E,则图中的等腰三角形有()个.A.3 B.4 C.5 D.65.下列四个图案中,轴对称图形的个数是().A.1 B.2 C.3 D.46.点A与点A′关于直线l对称,则直线l是().A.线段AA′的垂直平分线B.垂直于线段AA′的直线C.平分线段AA′的直线D.过线段AA′中点的直线7.在数学符号“+,-,×,÷,≈,=,<,>,⊥,≌,△,∥,()”中,轴对称图形的个数是().A.9 B.10 C.11 D.128.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有().A.0个B.1个C.2个D.3个二、填空题9.如图,在△ABC中,∠A=80°,∠B,∠C的平分线相交于点O,则∠BOC的度数等于__________.10.如图,在△ABC中,BE平分∠ABC,DE∥BC,∠ABE=35°,则∠DEB=________度,∠ADE=__________度.11.已知M,N是线段AB的垂直平分线上任意两点,则∠MAN和∠MBN之间的关系是∠MAN__________∠MBN.12.在照镜子时,小丽发现镜子中显示其上衣右上部不知什么时候弄上了一块墨水痕迹,实际上墨水痕迹在上衣的__________.13.已知OC是∠AOB的平分线,直线MN∥OB,分别交OA,OC于M,N,则△MON 是__________三角形.14.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于D,交AB于E,∠CAD∶∠DBA=1∶2,则∠DBA的度数为__________.三、解答题15.如图,以虚线为对称轴,画出下列图案的另一半.16.如图所示,在△ABC中,AB=AC,∠A=60°,BD⊥AC于点D,DG∥AB,DG交BC于点G,点E在BC的延长线上,且CE=CD.(1)求∠ABD和∠BDE的度数;(2)写出图中的等腰三角形(写出3个即可).17.如图,已知点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图①,若点O在边BC上,求证:AB=AC;图①图②(2)如图②,若点O在△ABC的内部,求证:AB=AC.18.如图是由4个大小相等的正方形组成的L形图案.(1)请你改变1个正方形的位置,使它变成轴对称图形;(2)请你再添加一个小正方形,使它变成轴对称图形.19.两个大小不同的圆可以组成如图中的五种图形,它们仍旧是轴对称图形,请找出每个图形的对称轴,并说一说它们的对称轴有什么特点.20.如图,某考古队为进行研究,寻找一座古城遗址.根据资料记载,该城在森林附近,到两条河岸的距离相等,到古塔的距离是3 000 m.根据这些资料,考古队很快找到了这座古城的遗址.你能运用学过的知识在图中合理地标出古城遗址的位置吗?请你试一试.(比例尺为1∶100 000)参考答案1.D2.A点拨:因为E为AC的中点,DE⊥AC,所以AD=CD,所以△BDC的周长=BC+CD+BD=BC+AD+BD=BC+AB=9+14=23(厘米).3.D4.B点拨:首先直角三角形ABC是一个等腰三角形;AB=BD,所以△ABD也是一个等腰三角形;DE⊥BC,∠C=45°,所以CD=DE,所以△CDE也是等腰三角形;AB=BD,∠B=45°,所以∠BAD=67.5°,所以∠EAD=22.5°,∠CED=45°,所以∠AED=135°,所以∠EDA=22.5°,所以AE=DE,所以△ADE也是一个等腰三角形.所以共4个.5.C 6.A7.C点拨:轴对称图形有:+,-,×,÷,=,<,>,⊥,△,∥,(),共11个.8.A9.130°点拨:利用三角形的内角和定理以及角平分线的定义求∠BOC与∠A的关系,再把∠A代入即可求出∠BOC的度数.10.3570点拨:因为在△ABC中,BE平分∠ABC,∠ABE=35°,所以∠ABC=70°,∠EBC=35°;因为DE∥BC,所以∠DEB=∠EBC=35°,∠ADE=∠ABC=70°.11.=12.左上部13.等腰14.36°点拨:因为DE垂直平分AB,所以∠DBA=∠BAD,因为∠CAD∶∠DBA=1∶2,所以设∠DBA=2x,则∠BAD=2x,∠CAD=x,所以x+2x+2x=90°,所以x=18°,所以∠DBA=2x=2×18°=36°.15.解:所作图形如图所示.16.解:(1)因为AB=AC,∠A=60°,所以△ABC是等边三角形,因为BD⊥AC,所以∠ABD=30°,因为CD=CE,∠ACB=60°,所以∠CDE=30°,所以∠BDE=120°.(2)因为AB=AC,所以△ABC是等腰三角形.因为DG∥AB,所以∠DGC=∠ABC=∠ACB,所以△CDG为等腰三角形.因为CD=CE,所以△CDE是等腰三角形.17.证明:(1)如图①,过点O分别作OE⊥AB,OF⊥AC,E,F分别是垂足,由题意知,OE=OF,OB=OC,所以Rt△OEB≌Rt△OFC(HL),所以∠B=∠C(全等三角形的对应角相等),所以AB=AC(等角对等边).(2)如图②,过点O分别作OE⊥AB,OF⊥AC,E,F分别是垂足,由题意知,OE=OF,在Rt△OEB和Rt△OFC中,因为OE=OF,OB=OC,所以Rt△OEB≌Rt△OFC(HL),所以∠OBE=∠OCF.又因为OB=OC,所以∠OBC=∠OCB,所以∠ABC=∠ACB,所以AB=AC.图① 图②18.解:答案不唯一,如(1) (2)19.解:它们的对称轴均为经过两圆圆心的一条直线.图略.点拨:注意确定由两个轴对称图形组合而成的图形的对称轴时,要分析它们的公共对称轴.20.解:如图.作法:(1)以点C 为圆心,以任意长为半径画弧,交两河岸于A ,B 两点,分别以A ,B为圆心,以大于12AB 长为半径画弧,两弧交于点O ,过C ,O 作射线CO . (2)按比例尺计算得古塔与P 的图上距离为3 cm ,以古塔为圆心,以3 cm 长为半径画弧交CO 于点P ,则点P 即为所求.页码题号 错解呈现 错因诊断 重新做题 分析总结北师大版七年级数学下册第6章《概率初步》单元测试试卷及答案(1)一、选择题1.下列说法正确的是( ).A .抛掷硬币试验中,抛掷500次和抛掷1 000次结果没什么区别B .投掷质量分布均匀的六面体骰子600次,骰子六面分别标有1,2,3,4,5,6,那么出现5点的机会大约为100次C .小丽的幸运数是“8”,所以她抛出“8”的机会比她抛出其他数字的机会大D .某彩票的中奖机会是1%,买1张一定不会中奖2.书包里有数学书3本,英语书2本,语文书5本,从中任意抽取一本,则是数学书的概率是( ).A.110B.35C.310D.153.任意一个事件发生的概率P 的范围是( ).A .0<P <1B .0≤P <1C .0<P ≤1D .0≤P ≤14.一个袋中装有3个红球,5个黄球,10个绿球,小强从袋中任意摸出一球是黑球的概率为( ).A .0B .1 C.12 D.135.三人同行,有两人性别相同的概率是( ).A .1 B.23 C.13D .0 6.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为13,那么袋中共有球的个数为( ). A .12 B .9 C .7 D .67.用写有0,1,2的三张卡片排成三位数是偶数的概率为( ).A.34B.23C.12D.138.高速公路上依次有A ,B ,C 三个出口,A ,B 之间的距离为m km ,B ,C 之间的距离为n km ,决定在A ,C 之间的任意一处增设一个生活服务区,则此生活服务区设在A ,B 之间的概率为( ).A.n mB.m nC.n m +nD.m m +n9.在一个暗箱里放有a 个除颜色外其他完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ).A .12B .9C .4D .3二、填空题10.任意抛掷一枚质量均匀的硬币两次,出现两次都为正面朝上的概率为__________,出现两次都为相同的面的概率为__________,出现至少有一面是正面的概率为__________.11.蓝猫走进迷宫,迷宫中的每一个门都相同,第一道关口有三个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,蓝猫一次就能走出迷宫的概率是__________.12.小兰和小青两人做游戏,有一个质量分布均匀的六面体骰子,骰子的六个面分别标有1,2,3,4,5,6,如果掷出的骰子的点数是偶数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢,那么游戏规则对__________有利.13.有朋友约定明天上午8:00~12:00的任一时刻到学校与王老师会面,王老师明天。
最新北师大版七年级下册数学各章节练习题和单元测试题以及答案
1、同底数幂的乘法法则:nm n m aa a +=∙(n m ,都是正整数) 同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+∙+7、x 281=)(,则x 等于 。
(2)=∙52x x 。
(3)92733x2⨯⨯=,则x 等于 。
8、一天计算机可做3×1210次运算,它工作了2102⨯秒可以做 次运算。
三、解答题。
9、计算。
53a a ∙﹣ 232x x x )(﹣)(﹣∙∙234101101101)()()(∙∙15、已知122,62,32c b a===,探求a 、b 、c 之间的关系。
2、幂的乘方法则:mnn m aa =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=- 幂的乘方法则可以逆用:即m n n m mna a a)()(==如:23326)4()4(4==3、积的乘方法则:nnnb a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=∙∙∙-1、下列运算正确的是( )A .22a a a =⋅B .33)(ab ab = C .632)(a a = D .5210a a a =÷12、比较334455543、、的大小。
8、若2×3×9m =2×311,则m =___________. 9、计算题。
3223x x )(﹣)(﹣∙ 32ab 21)(﹣344321044x 5x 2x 2x 2x 2)()(﹣)(﹣∙+∙+10、已知x+y=a ,求3333y x 32y x 2y x )()()(+∙+∙+的值。
11、若1593m nb a b b a =)(,求n m 2+的值。
4、同底数幂的除法法则:nm n m aa a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。
北师大新版七年级下数学单元测试题一
北师大版七年级下数学单元测试题 (一)姓名: ,班级: ,得分:一、选择题(每题2分,共20分)1、下列各式计算正确的是【 】.A 、()()2442a a = B 、6231052x x x=⋅C 、()()268c c c -=-÷- D 、()623ab ab =2、下列各式计算正确的是【 】。
A 、()22242y x y x +=+ B 、()()10252-=-+x x xC 、()()22y x y x -=+- D 、()()22222y x y x y x -=-+3、用科学记数法表示的各数正确的是【 】.A 、34500=3。
45×102B 、0。
000043=4.3×105C 、-0.00048=-4。
8×10-4D 、-340000=3.4×105 4、当31=a 时,代数式()()()()3134-----a a a a 的值为【 】。
A 、334B 、-6C 、0D 、85、已知2=+b a ,3-=ab ,则22b ab a +-的值为【 】.A 、11B 、12C 、13D 、14 6、已知2227428b b a b a n m =÷,那么m 、n 的值为【 】。
A 、4=m ,2=nB 、4=m ,1=nC 、1=m ,2=nD 、2=m ,2=n7、一个正方形边长增加3cm ,它的面积就增加39cm 2,这个正方形边长是【 】.A 、8 cmB 、5 cmC 、6cmD 、10 cm 8、若31=+x x ,则221xx +的值为【 】。
A 、9 B 、7 C 、11 D 、6 9、若229y mxy x +-是一个完全平方式,则m 的值是【 】.A 、8B 、6C 、±8D 、±610、()()20032005200416.185-÷-⨯⎪⎭⎫⎝⎛=【 】。
A 、85B 、85-C 、58D 、58-二、填空题 (每小题2分,共20分) 11、计算:=⋅⋅-532m m m _________;12、化简:)xy 5()xy 10y x 15(22÷-=___________;13、已知A )b 2a ()b 2a (22+-=+,则A=_______________; 14、一种细胞膜的厚度是0。
北师大版七年级数学下册单元测试题含答案全套
北师大版七年级数学下册单元测试题含答案全套(含期末试题,共7套)第一章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分) 1.计算(-x 2y)3的结果是( )A .x 6y 3B .x 5y 3C .-x 6y 3D .-x 2y 3 2.下列运算正确的是( )A .x 2+x 2=x 4B .(a -b)2=a 2-b 2C .(-a 2)3=-a 6D .3a 2·2a 3=6a 6 3.花粉的质量很小,一粒某种植物花粉的质量约为0.000 037 mg ,已知1 g =1 000 mg ,那么0.000 037 mg 用科学记数法表示为( )A .3.7×10-5 gB .3.7×10-6 gC .3.7×10-7 gD .3.7×10-8 g 4.在下列计算中,不能用平方差公式计算的是( ) A .(m -n)(-m +n) B .()x 3-y 3()x 3+y 3 C .(-a -b)(a -b) D .()c 2-d 2()d 2+c 25.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( ) A .6 B .2m -8 C .2m D .-2m6.若3x =4,9y =7,则3x -2y 的值为( )A .47B .74C .-3D .277.如果x +m 与x +3的乘积中不含x 的一次项,则m 的值为( ) A .-3 B .3 C .0 D .1 8.若a =-0.32,b =(-3)-2,c =⎝⎛⎭⎫-13-2,d =⎝⎛⎭⎫-130,则( ) A .a <b <c <d B .a <b <d <c C .a <d <c <b D .c <a <d <b9.如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为(a +1)cm 的正方形(a >0),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的面积为( )(第9题)A .(2a 2+5a)cm 2B .(6a +15)cm 2C .(6a +9)cm 2D .(3a +15)cm 2 10.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( ) A .2 B .4 C .6 D .8二、填空题(每题3分,共24分) 11.计算:(2a)3·(-3a 2)=________.12.若x +y =5,x -y =1,则式子x 2-y 2的值是________. 13.计算:(-2)2 016+(-2)2 017=________.14.若(a 2-1)0=1,则a 的取值范围是________.16.已知x 2-x -1=0,则代数式-x 3+2x 2+2 018的值为__________. 17.如果()2a +2b +1()2a +2b -1=63,那么a +b 的值为________. 18.已知a +1a =5,则a 2+1a2的结果是________.三、解答题(第19题12分,第20题4分,第26题10分,其余每题8分,共66分)19.计算: (1)-23+13(2 018+3)0-⎝⎛⎭⎫-13-2; (2)992-69×71;(3)⎝⎛⎭⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy); (4)(-2+x)(-2-x);(5)(a +b -c)(a -b +c); (6)(3x -2y +1)2.20.先化简,再求值:[(x 2+y 2)-(x +y)2+2x(x -y)]÷4x ,其中x -2y =2.21.(1) 已知a +b =7,ab =12.求下列各式的值: ①a 2-ab +b 2;②(a -b)2.(2)已知a =275,b =450,c =826,d =1615,比较a ,b ,c ,d 的大小.22.先阅读再解答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式:________________;(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.(第22题)23.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.24.王老师家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?(第24题)25.利用我们学过的知识,可以导出下面这个形式优美的等式: a 2+b 2+c 2-ab -bc -ac =12[(a -b)2+(b -c)2+(c -a)2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美. (1)请你检验这个等式的正确性;(2)若a =2 016,b =2 017,c =2 018,你能很快求出a 2+b 2+c 2-ab -bc -ac 的值吗?26.探索:(x -1)(x +1)=x 2-1; (x -1)(x 2+x +1)=x 3-1; (x -1)(x 3+x 2+x +1)=x 4-1; (x -1)(x 4+x 3+x 2+x +1)=x 5-1; …(1)试写出第五个等式;(2)试求26+25+24+23+22+2+1的值;(3)判断22 017+22 016+22 015+…+22+2+1的值的个位数字是几.答案一、1.C2.C 点拨:A .x 2+x 2=2x 2,错误;B .(a -b)2=a 2-2ab +b 2,错误;C .(-a 2)3=-a 6,正确;D .3a 2·2a 3=6a 5,错误;故选C .3.D 点拨:1 mg =10-3 g ,将0.000 037 mg 用科学记数法表示为3.7×10-5×10-3=3.7×10-8 g .故4.A 点拨:A 中m 和-m 符号相反,-n 和n 符号相反,而平方差公式中需要有一项是相同的,另一项互为相反数.5.D 点拨:因为a +b =m ,ab =-4,所以(a -2)(b -2)=ab +4-2(a +b)=-4+4-2m =-2m.故选D .6.A 点拨:3x-2y=3x ÷32y =3x ÷9 y =47.故选A .7.A 点拨:(x +m)(x +3)=x 2 +(3+m)x +3m ,因为乘积中不含x 的一次项.所以m +3=0.所以m =-3.故选A .8.B9.B 点拨:(a +4)2-(a +1)2=a 2+8a +16-(a 2+2a +1)=a 2+8a +16-a 2-2a -1=6a +15(cm 2),故选B .10.C 点拨:(2+1)(22+1)(24+1)(28+1)+1 =(2-1)(2+1)(22+1)(24+1)(28+1)+1 =(22-1)(22+1)(24+1)(28+1)+1 =(24-1)(24+1)(28+1)+1 =(28-1)(28+1)+1 =216-1+1 =216.因为216的末位数字是6,所以原式末位数字是6. 二、11.-24a 5 12.5 13.-22 016 14.a ≠±1 15.25 16. 2 019 点拨:由已知得x 2-x =1,所以-x 3+2x 2+2 018=-x(x 2-x)+x 2+2 018=-x +x 2+2 018=2 019.17.±4 点拨:因为()2a +2b +1()2a +2b -1=()2a +2b 2-1=63,所以2a +2b =±8.所以a +b =±4. 18.23 点拨:由题意知⎝⎛⎭⎫a +1a 2=25,即a 2+1a 2+2=25,所以 a 2+1a2=23.三、19.解 :(1)原式=-8+13-9=-17+13=-1623.(2)原式=(100-1)2-(70-1)×(70+1)=10 000-200+1-4 900+1=4 902. (3)原式=-56x 2y 2-43xy +1.(4)原式=(-2)2-x 2=4-x 2.(5)原式=a 2-()b -c 2=a 2-b 2-c 2+2bc.(6)原式=[(3x -2y)+1]2=(3x -2y)2+2(3x -2y)+1 =9x 2+4y 2-12xy +6x -4y +1.20.解:原式=(x 2+y 2-x 2-2xy -y 2+2x 2-2xy)÷4x =(2x 2-4xy)÷4x =12x -y.因为x -2y =2, 所以12x -y =1.②(a -b)2=(a +b)2-4ab =72-4×12=1.点拨:完全平方公式常见的变形:①(a +b)2-(a -b)2=4ab ;②a 2+b 2=(a +b)2-2ab =(a -b)2+2ab.解答本题关键是不求出a ,b 的值,主要利用完全平方公式的整体变换求式子的值.(2)因为a =275,b =450=(22)50=2100,c =826=(23)26=278,d =1615=(24)15=260,100>78>75>60,所以2100>278>275>260. 所以b >c >a >d.(第22题)22.解:(1)(2a +b)(a +2b)=2a 2+5ab +2b 2 (2)如图.(所画图形不唯一)23.解:(x 2+px +8)(x 2-3x +q)=x 4-3x 3+qx 2+px 3-3px 2+pqx +8x 2-24x +8q =x 4+(p -3)x 3+(q -3p +8)x 2+(pq -24)x +8q. 因为展开式中不含x 2和x 3项, 所以p -3=0,q -3p +8=0. 解得p =3,q =1.24.解:(1)卧室的面积是2b(4a -2a)=4ab(m 2). 厨房、卫生间、客厅的面积和是b·(4a -2a -a)+a·(4b -2b)+2a·4b =ab +2ab +8ab =11ab(m 2),即木地板需要4ab m 2,地砖需要11ab m 2.(2)11ab·x +4ab·3x =11abx +12abx =23abx(元). 即王老师需要花23abx 元.25.解:(1)等式右边=12(a 2-2ab +b 2+b 2-2bc +c 2+a 2-2ac +c 2)=12(2a 2+2b 2+2c 2-2ab -2bc -2ac)=a 2+b 2+c 2-ab -bc -ac =等式左边,所以等式是成立的.(2)原式=12[(2 016-2 017)2+(2 017-2 018)2+(2 018-2 016)2]=3.26.解:(1)(x -1)(x 5+x 4+x 3+x 2+x +1)=x 6-1.(2)26+25+24+23+22+2+1=(2-1)×(26+25+24+23+22+2+1)=27-1=127. (3)22 017+22 016+22 015+…+22+2+1=(2-1)(22 017+22 016+22 015+…+22+2+1) =22 018-1. 2 018÷4=504……2,所以22 018的个位数字是4.所以22 018-1的个位数字是3,即22 017+22 016+22 015+…+22+2+1的值的个位数字是3.(120分,90分钟)题 号 一 二 三 总 分一、选择题(每题3分,共30分)1.下列图形中,∠1与∠2互为对顶角的是()2.下列作图能表示点A到BC的距离的是()3.a,b,c是同一平面内任意三条直线,交点可能有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.都不对4.下列语句叙述正确的有()①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个B.1个C.2个D.3个5.如图,下列条件:①∠1=∠3;②∠2=∠3;③∠4=∠5;④∠2+∠4=180°中,能判断直线l1∥l2的有()A.1个B.2个C.3个D.4个(第5题)(第6题)(第7题)6.如图,AB∥CD,EF⊥CD,FG平分∠EFC,则()A.∠1<∠2 B.∠1>∠2 C.∠1=∠2 D.不能确定7.如图,已知∠B+∠DAB=180°,AC平分∠DAB,如果∠C=50°,那么∠B等于()A.50°B.60°C.70°D.80°8.如图,将一副三角尺叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()(第8题)(第9题)(第10题)9.如图,AB∥CD,CD∥EF,则∠BCE等于()A. ∠2-∠1B. ∠1+∠2 C.180°+∠1-∠2 D.180°-∠1+∠210.如图,已知A1B∥A n C,则∠A1+∠A2+…+∠A n等于()A.180°n B.(n+1)·180°C.(n-1)·180°D.(n-2)·180°二、填空题(每题3分,共24分)11.尺规作图是指用____________________________画图.12.如图,∠1=15°,∠AOC=90°.若点B,O,D在同一条直线上,则∠2=________.(第12题)(第13题)(第14题)13.如图,在铁路旁边有一村庄,现要建一火车站,为了使该村人乘火车方便(即距离最短),请你在铁路旁选一点来建火车站(位置已选好),说明理由:______________________________.14.如图,AB∥CD,EF分别交AB,CD于G,H两点,若∠1=50°,则∠EGB=________.15.同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a________c.若a∥b,b∥c,则a________c.若a∥b,b⊥c,则a________c.16.如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.(第16题)(第17题)(第18题)17.如图,某煤气公司安装煤气管道,他们从点A 处铺设到点B 处时,由于有一个人工湖挡住了去路,需要改变方向经过点C ,再拐到点D ,然后沿与AB 平行的DE 方向继续铺设.已知∠ABC =135°,∠BCD =65°,则∠CDE =________.18.如图,沿虚线剪去长方形纸片相邻的两个角,使∠1=115°,则∠2=________. 三、解答题(19~21题每题8分,25题12分,其余每题10分,共66分)19.已知一个角的余角比它的补角的23还小55°,求这个角的度数.20.如图,已知AD ∥BC ,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:(第20题)解:因为AD ∥BC(已知),所以∠1=∠3( ). 因为∠1=∠2(已知), 所以∠2=∠3.所以BE ∥________( ). 所以∠3+∠4=180°( ).21.如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COB ,∠AOD ∠DOE =4 1.求∠AOF 的度数.(第21题)22.将一副三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)试说明:CF∥AB;(2)求∠DFC的度数.(第22题)23.如图,在四边形ABCD中,AB∥CD,点P为BC上一点(点P与B,C不重合),设∠CDP=∠α,∠CPD=∠β,你能不能说明,不论点P在BC上怎样运动,总有∠α+∠β=∠B.(第23题)24.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.试说明:AD∥BC.(第24题)25.如图,已知BE平分∠ABD,DE平分∠BDC,且∠EBD+∠EDB=90°.(1)试说明:AB∥CD;(2)H是BE的延长线与直线CD的交点,BI平分∠HBD,写出∠EBI与∠BHD的数量关系,并说明理由.(第25题)答案一、1.C 2.B 3.B 4.B 5.C 6.C7.D8.C9.C(第10题)10.C点拨:如图,过点A2向右作A2D∥A1B,过点A3向右作A3E∥A1B,……因为A1B∥A n C,所以A3E∥A2D∥…∥A1B∥A n C.所以∠A1+∠A1A2D=180°,∠DA2A3+∠A2A3E=180°,….所以∠A1+∠A1A2A3+…+∠A n-1A n C =(n-1)·180°.二、11.圆规和没有刻度的直尺12. 105°13.垂线段最短 14.50° 点拨:因为AB ∥CD ,所以∠1=∠AGF.因为∠AGF 与∠EGB 是对顶角,所以∠EGB =∠AGF.故∠EGB =50°.15.∥;∥;⊥ 16.90° 点拨:因为AB ∥CD ,所以∠BAC +∠ACD =180°.因为CE ,AE 分别平分∠ACD ,∠CAB ,所以∠1+∠2=90°.(第17题)17.110° 点拨:如图,过点C 作CF ∥AB ,因为AB ∥DE ,所以DE ∥CF.所以∠CDE =∠FCD.因为AB ∥CF ,∠ABC =135°,所以∠BCF =180°-∠ABC =45°.又因为∠FCD =∠BCD +∠BCF ,∠BCD =65°,所以∠FCD =110°.所以∠CDE =110°.故填110°.(第18题)18.155° 点拨:过E 作EF ∥AB ,如图所示.因为AB ∥CD , 所以EF ∥CD.所以∠1+∠3=∠2+∠4=180°. 所以∠3=180°-115°=65°. 所以∠4=90°-∠3=90°-65°=25°. 所以∠2=180°-∠4=180°-25°=155°.三、19.解:设这个角的度数为x ,依题意有23(180°-x)-55°=90°-x ,解得x =75°.故这个角的度数为75°.20.两直线平行,内错角相等;DF ;同位角相等,两直线平行;两直线平行,同旁内角互补21.解:因为OE 平分∠BOD , 所以∠DOE =∠EOB.又因为∠AOD ∠DOE =41,∠AOD +∠DOE +∠EOB =180°, 所以∠DOE =∠EOB =180°×16=30°,∠AOD =120°.所以∠COB =∠AOD =120°. 因为OF 平分∠COB , 所以∠BOF =60°. 所以∠AOF =180°-60°=120°. 22.解:(1)因为CF 平分∠DCE , 所以∠1=∠2=12∠DCE.因为∠DCE =90°, 所以∠1=45°. 因为∠3=45°, 所以∠1=∠3.所以CF ∥AB(内错角相等,两直线平行). (2)因为∠D =30°,∠1=45°,所以∠DFC=180°-30°-45°=105°.23.解:过点P作PE∥CD交AD于E,则∠DPE=∠α.因为AB∥CD,所以PE∥AB.所以∠CPE=∠B,即∠DPE+∠β=∠α+∠β=∠B.故不论点P在BC上怎样运动,总有∠α+∠β=∠B.24.解:因为AE平分∠BAD,所以∠1=∠2.因为AB∥CD,∠CFE=∠E,所以∠1=∠CFE=∠E.所以∠2=∠E.所以AD∥BC.25.解:(1)因为BE平分∠ABD,DE平分∠BDC,所以∠ABD=2∠EBD,∠BDC=2∠EDB.因为∠EBD+∠EDB=90°,所以∠ABD+∠BDC=2(∠EBD+∠EDB)=180°.所以AB∥CD.(2)∠EBI=12∠BHD.理由如下:因为AB∥CD,所以∠ABH=∠BHD.因为BI平分∠EBD,BH平分∠ABD,所以∠EBI=12∠EBD=12∠ABH=12∠BHD.第三章达标检测卷(120分,90分钟)一、选择题(每题3分,共24分)1.在利用太阳能热水器加热水的过程中,热水器的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.气温y(℃)随高度x(km)的变化而变化的情况如下表,由表可知,气温y随着高度x的增大而()A.升高B.降低C.不变D.以上都不对3.长方形的周长为24 cm,其中一边长为x cm(其中0<x<12),面积为y cm2,则该长方形中y与x 的关系式可以写为()A.y=x2B.y=(12-x)2C.y=(12-x)·x D.y=2(12-x)4.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是()(第5题)5.如图是某市某一天的气温变化图,根据图象,下列说法中错误的是()A.这一天中最高气温是24 ℃B.这一天中最高气温与最低气温的差为16 ℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低6.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程数收费/元3 km以下(含3 km) 8.003 km以上每增加1 km 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为()A.y=8x B.y=1.8x C.y=8+1.8x D.y=2.6+1.8x7.均匀地向如图所示的容器中注满水,能反映在注水过程中水面高度h随时间t变化的图象的是()(第7题)8.A,B两地相距20 km,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系.下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是()A.1 B.2 C.3 D.4(第8题)(第11题)(第12题)(第13题)二、填空题(每题5分,共30分)9.同一温度的华氏度数y()与摄氏度数x(℃)之间的关系是y=95x+32.如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是________.10.小雨画了一个边长为3 cm的正方形,如果将正方形的边长增加x cm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为______________.11.如图是甲、乙两名运动员在自行车比赛中所走路程与时间的关系图象,则甲的速度________乙的速度(用“>”“=”或“<”填空).12.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是________.13.某航空公司行李的托运费按行李的质量收取,30 kg以下免费,30 kg及以上按图中所示的关系来计算,若某人行李的质量为200 kg,则他需要付托运费________.14.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同).一个进水管和一个出水管的进出水速度如图①所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图②所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水,则一定正确的论断是________.(第14题)三、解答题(15~17题每题10分,其余每题12分,共66分)15.下表是佳佳往表妹家打长途电话的收费记录:时间/min 1 2 3 4 5 6 7电话费/元0.6 1.2 1.8 2.4 3.0 3.6 4.2(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)若佳佳的通话时间是10 min,则需要付多少电话费?16.如图表示某市2017年6月份某一天的气温随时间变化的情况,请观察此图回答下列问题:(第16题)(1)这天的最高气温是多少摄氏度?(2)这天共有多少个小时的气温在31 ℃以上?(3)这天什么时间范围内气温在上升?(4)请你预测一下,次日凌晨1时的气温大约是多少摄氏度?17.张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?(第17题)18.如图,一个半径为18 cm的圆,从中心挖去一个正方形,当挖去的正方形的边长由小变大时,剩下部分的面积也随之发生变化.(1)若挖去的正方形边长为x(cm),剩下部分的面积为y(cm2),则y与x之间的关系式是什么?(2)当挖去的正方形的边长由1 cm变化到9 cm时,剩下部分的面积由________变化到________.(第18题)19.弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量/kg0 1 2 3 4 5 6 7弹簧的长度/cm12 12.5 13 13.5 14 14.5 15 15.5(1)当所挂物体的质量为3 kg时,弹簧的长度是________;(2)如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,则该弹簧最多能挂质量为多重的物体?20.小明用的练习本可以到甲超市购买,也可以到乙超市购买.已知两超市的标价都是每本1元,但甲超市的优惠条件是购买10本以上,从第11本开始按标价的70%卖.乙超市的优惠条件是从第1本开始就按标价的85%卖.(1)当小明要买20本时,到哪家超市购买较省钱?(2)写出甲超市中,收款y甲(元)与购买本数x(本)(x>10)的关系式.(3)小明现有24元钱,最多可买多少本练习本?答案一、1.B 2.B 3.C 4.D5.D 点拨:由题图可知,这一天中气温在逐渐降低的时段有0时至2时和14时至24时,故选D . 6.D 点拨:由题意知,当出租车行驶里程数x ≥3时,y =8+1.8(x -3)=1.8x +2.6,故选D . 7.A8.C 点拨:①③④正确,②应为乙出发2 h 后追上甲.二、9.77 点拨:将x =25代入关系式可得y =95×25+32=45+32=77,故它的华氏度数是77 .10.y =x 2+6x 点拨:边长为3 cm 的正方形的面积是9 cm 2,边长为(x +3)cm 的正方形的面积为(3+x)2 cm 2,所以面积的增加值y =(3+x)2-9=x 2+6x.11.>12.37.2 min 点拨:由题图可知,上坡速度为3 600÷18=200(m /min ),下坡速度为(9 600-3 600)÷(30-18)=500(m /min ),返回途中,上、下坡的路程刚好相反,所用时间为3 600÷500+(9 600-3 600)÷200=37.2(min ).13.340元14.③ 点拨:①0时至1时开了一个进水管,一个出水管,②1时至4时三管齐开.三、15.解:(1)反映了电话费与通话时间之间的关系;其中通话时间是自变量,电话费是因变量. (2)设电话费为y 元,通话时间为t min .则由题意可知,y 与t 之间的关系式为y =0.6t ,故当t =10时,y =6.所以需付6元电话费.16.解:(1)37 ℃. (2)9 h . (3)3时至15时. (4)25 ℃.(答案不唯一,合理即可) 17.解:(1)体育场离张阳家2.5 km .(2)因为2.5-1.5=1(km ),所以体育场离文具店1 km .因为65-45=20(min ),所以张阳在文具店逗留了20 min .(3)文具店到张阳家的距离为1.5 km ,张阳从文具店到家用的时间为100-65=35(min ),所以张阳从文具店到家的速度为1.5÷3560=187(km /h ).18.解:(1)剩下部分的面积=圆的面积-正方形的面积,所以y 与x 之间的关系式为y =πr 2-x 2=324π-x 2.(2)(324π-1)cm 2 (324π-81)cm 2 19.解:(1)13.5 cm(2)由表格可知,y 与x 之间的关系式为y =12+0.5x.(3)当x =5.5时,y =12+0.5×5.5=14.75,即弹簧的长度为14.75 cm .(4)当y =20时,20=12+0.5x ,解得x =16,故该弹簧最多能挂16 kg 重的物体. 20.解:(1)买20本时,在甲超市购买需用10×1+10×1×70%=17(元), 在乙超市购买需用20×1×85%=17(元), 所以买20本到两家超市买收费一样.(2)y 甲=10×1+(x -10)×1×70%=0.7x +3(x >10).(3)由题知乙超市收款y 乙(元)与购买本数x (本)间的关系式为y 乙=x ×1×85%=1720x .所以当y 甲=24时,24=0.7x 甲+3,x 甲=30; 当y 乙=24时,24=1720x 乙,x 乙≈28.所以拿24元钱最多可以买30本练习本(在甲超市购买).第四章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.下列各图中,作出△ABC的AC边上的高,正确的是()3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于()A.6 B.8 C.10 D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10 B.AB=5,BC=4,∠A=40°C.∠A=90°,AB=10 D.∠A=60°,∠B=50°,AB=55.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充(第3题)(第5题)(第6题)(第8题)6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是() A.14 B.17 C.22 D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB=A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1 B.2 C.3 D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF 的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1 B.2 C.3 D.410.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成7个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成()个互不重叠的小三角形.A.2n B.2n+1 C.2n-1 D.2(n+1)(第9题)(第10题)二、填空题(每题3分,共24分)11.桥梁上的拉杆,电视塔的底座,都是三角形结构,而活动挂架是四边形结构,这是分别利用三角形和四边形的________________________________.12.要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD =CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是____________.(第12题)(第13题)(第14题)13.如图,E 点为△ABC 的边AC 的中点,CN ∥AB ,若MB =6 cm ,CN =4 cm ,则AB =________. 14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB ,需要说明△C′O′D′≌△COD ,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC 的三边长分别为a ,b ,c ,若a =3,b =4,则c 的取值范围是____________;已知四边形ABCD 的四边长分别为a ,b ,c ,d ,若a =3,b =4,d =10,则c 的取值范围是____________.16.如图,在△ABC 中,AD 是BC 边上的高,BE 是AC 边上的高,且AD ,BE 交于点F ,若BF =AC ,CD =3,BD =8,则线段AF 的长度为________.(第16题)(第17题)(第18题)17.如图是由相同的小正方形组成的网格,点A ,B ,C 均在格点上,连接AB ,AC ,则∠1+∠2=________.18.如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD),若∠D =115°,则∠B =________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分) 19.在△ABC 中,AD 是角平分线,∠B =54°,∠C =76°. (1)求∠ADB 和∠ADC 的度数; (2)若DE ⊥AC ,求∠EDC 的度数.(第19题)20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.(第20题)21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD-AB.(第21题)22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.(第22题)23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.(第23题)24.如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.(第24题)25.已知点P是Rt△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(第25题)答案一、1.A2.C点拨:过顶点B向AC边所在的直线作垂线,顶点和垂足之间的线段就是高,只有选项C正确,故选C.3.A点拨:因为△ABC≌△EDF,所以AC=EF.所以AE=CF.因为AF=20,EC=8,所以AE=CF =6.故选A.4.D5.B点拨:由已知条件AB∥ED可得,∠B=∠D,由CD=BF可得,BC=DF,再补充条件AB=ED,可得△ABC≌△EDF,故选B.6.C点拨:因为∠A=60°,所以∠ABC+∠ACB=120°.因为BE,CD分别是∠ABC,∠ACB的平分线,所以∠CBE=12∠ABC,∠BCD=12∠BCA.所以∠CBE+∠BCD=12(∠ABC+∠BCA)=60°.所以∠BFC=180°-60°=120°.故选C.7.C8.B9.B点拨:易得S△ABE=13×12=4,S△ABD=12×12=6,所以S△ADF-S△BEF=S△ABD-S△ABE=2.10.B点拨:△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0,△ABC的三个顶点和它内部的点P1,P2,把△ABC分成的互不重叠的小三角形的个数=3+2×1,所以△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.稳定性和不稳定性12.ASA 点拨:由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两三角形全等.13.10 cm 点拨:由CN ∥AB ,点E 为AC 的中点,可得∠EAM =∠ECN ,AE =CE.又因为∠AEM =∠CEN ,所以△AEM ≌△CEN.所以AM =CN =4 cm .所以AB =AM +MB =4+6=10(cm ).14.SSS15.1<c<7;3<c<1716.5 点拨:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF.又因为AC =BF ,所以△ADC ≌△BDF.所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.(第17题)17.90° 点拨:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE , 所以△ADC ≌△BEA. 所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°. 18.65° 点拨:过点C 作CF ⊥AD ,交AD 的延长线于点F. 因为AC 平分∠BAD , 所以∠CAF =∠CAE.又因为CF ⊥AF ,CE ⊥AB , 所以∠AFC =∠AEC =90°. 在△CAF 和△CAE 中, ⎩⎪⎨⎪⎧∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,所以△CAF ≌△CAE(AAS ). 所以FC =EC ,AF =AE. 又因为AE =12(AB +AD),所以AF =12(AE +EB +AD),即AF =BE +AD.又因为AF =AD +DF ,所以DF =BE. 在△FDC 和△EBC 中,⎩⎪⎨⎪⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,所以△FDC ≌△EBC(SAS ).所以∠FDC =∠EBC. 又因为∠ADC =115°,三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°. 因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°. 20.解:能作出两个等腰三角形,如图所示.(第20题)21.解:因为AB =AC ,所以AD -AB =AD -AC =CD. 因为BD -BC<CD ,所以BD -BC<AD -AB.(第22题)22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离. (3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO , 所以△AOB ≌△AOD. 所以AD =AB.23.解:△AEM ≌△ACN ,△BMF ≌△DNF ,△ABN ≌△ADM.(任写其中两对即可) 选择△AEM ≌△ACN , 因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB =∠EAD. 所以∠EAM =∠CAN.在△AEM 和△ACN 中,⎩⎪⎨⎪⎧∠E =∠C ,AE =AC ,∠EAM =∠CAN ,所以△AEM ≌△ACN(ASA ).选择△ABN ≌△ADM ,因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D.又因为∠BAN =∠DAM ,所以△ABN ≌△ADM(ASA ). 选择△BMF ≌△DNF ,因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D.又因为∠BAN =∠DAM ,所以△ABN ≌△ADM(ASA ).所以AN =AM.所以BM =DN.又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF(AAS ). (任选一对进行说明即可) 24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°. 因为CD ⊥AB ,所以∠BCD +∠B =90°. 所以∠ECF =∠B.在△ABC 和△FCE 中,∠B =∠ECF ,BC =CE ,∠ACB =∠FEC =90°,所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).(第25题)25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第五章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C =∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个(第2题)(第4题)(第6题)3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处5.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A =60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是()A.12:01 B.10:51 C.10:21 D.15:107.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()(第7题)8.如图,等腰三角形ABC的周长为21,底边BC的长为5,腰AB的垂直平分线交AB于点D,交AC于点E,连接BE,则△BEC的周长为()A.11 B.12 C.13 D.14(第8题)(第9题)(第10题)9.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()个.A.4 B.3 C.2 D.1二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.(第12题)(第13题)(第15题)(第16题)(第17题)13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC =6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC=________.了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.(第19题)20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求作、作法,只保留作图痕迹).(第20题)21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.(第21题)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新北师大版七年级数学下册第一章 整式的乘除单项式 整 式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式第1章 整式的乘除 单元测试卷一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来! 1.下列运算正确的是( )A. 954a a a =+ B. 33333a a a a =⋅⋅ C. 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-5.已知,5,3==bax x 则=-ba x23( )A 、2527 B 、109C 、53D 、526. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式: ①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8 10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( )A 、Q P >B 、Q P =C 、Q P <D 、不能确定二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处! 11.设12142++mx x 是一个完全平方式,则m =_______。
12.已知51=+x x ,那么221xx +=_______。
13.方程()()()()41812523=-+--+x x x x 的解是_______。
14.已知2=+n m ,2-=mn ,则=--)1)(1(n m _______。
15.已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系是___________.16.若622=-n m ,且3=-n m ,则=+n m .三、解答题(共8题,共66分)温馨提示:解答题必须将解答过程清楚地表述出来!nm a ba17计算:(本题9分) (1)()()02201214.3211π--⎪⎭⎫ ⎝⎛-+--(2)(2)()()()()233232222x y x xy y x ÷-+-⋅(3)()()222223366m m n m n m -÷--18、(本题9分)(1)先化简,再求值:()()()()221112++++-+--a b a b a b a ,其中21=a ,2-=b 。
(2)已知31=-x ,求代数式4)1(4)1(2++-+x x 的值.(3)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a .D19、(本题8分)如图所示,长方形ABCD 是“阳光小区”内一块空地,已知AB=2a ,BC=3b ,且E 为AB 边的中点,CF=13 BC ,现打算在阴影部分种植一片草坪,求这片草坪的面积。
20、(本题8分)若(x 2+mx-8) (x 2-3x+n)的展开式中不含x 2和x 3项,求m 和n 的值21、(本题8分)若a =2005,b =2006,c =2007,求ac bc ab c b a ---++222的值。
22、(本题8分).说明代数式[]y y y x y x y x +-÷-+--)2())(()(2的值,与y 的值无关。
23、(本题8分)如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形 地块,•规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?•并求出当a=3,b=2时的绿化面积.24、(本题8分)某城市为了鼓励居民节约用水,对自来水用户按如下标准收费: 若每月每户用水不超过a 吨,每吨m 元;若超过a 吨,则超过的部分以每吨2m 元计算.•现有一居民本月用水x 吨,则应交水费多少元?D参考答案一、选择题二、填空题11.44± 12. 23 13.1411-=x 14. -3 15. a+b=c 16. 2 三、解答题17计算:(本题9分)4141)1(=-+=解原式3522642)2(4)2(y x x xy y x -=÷-⋅=解原式 122)3(2++-=n n 解原式13841,2,21244)1()1(44)1.(182222222=++=-==+-=++++-+-=原式时当解原式b a b ab a a b a b ab a(2)由31=-x 得13+=x化简原式=444122+--++x x x=122+-x x=1)13(2)13(2++-+ =12321323+--++ =3(3)原式=a a 62+, 当12-=a 时,原式=324-.ab b a ab ab S 2221621619=⨯-⨯-=阴影解⎩⎨⎧==∴⎩⎨⎧=--=-∴-++--+-+=-+-+-++-=17308303,8)24()83()3(8248332032234223234n m m n m x x n x m n x m n x m x n x x m nx m x m x nx x x 项和不含解原式[]()3411212007,2006,2005,)()()(212122=++====-+-+-=原式时当解原式c b a c a c b b a无关代数式的值与解原式y x y y x y y y x y xy x ∴=+-=+-÷+-+-=)2()2(222222mamx ma mx am a x m am a x mx a x -=-+=-+≤222)(2,;,24时如果元应交水费时解如果 63,2,335)()3)(2(.2322===+=+-++=原式时当解绿化b a aba b a b a b a S整式的乘除一、选择(每题2分,共24分) 1.下列计算正确的是( ).A .2x 2²3x 3=6x 3B .2x 2+3x 3=5x 5C .(-3x 2)²(-3x 2)=9x 5D .54x n ²25x m =12x mn2.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6 C .5y 3+3y 2-2y -1 D .5y 3-3y 2-2y -1 3.下列运算正确的是( ).A .a 2²a 3=a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a 6-a 2=a 4 4.下列运算中正确的是( ). A .12a+13a=15a B .3a 2+2a 3=5a 5 C .3x 2y+4yx 2=7 D .-mn+mn=0 5.下列说法中正确的是( ). A .-13xy 2是单项式 B .xy 2没有系数 C .x -1是单项式 D .0不是单项式 6.若(x -2y )2=(x+2y )2+m ,则m 等于( ). A .4xy B .-4xy C .8xy D .-8xy 7.(a -b+c )(-a+b -c )等于( ).A .-(a -b+c )2B .c 2-(a -b )2C .(a -b )2-c 2D .c 2-a+b 2 8.计算(3x 2y )²(-43x 4y )的结果是( ). A .x 6y 2 B .-4x 6y C .-4x 6y 2 D .x 8y 9.等式(x+4)0=1成立的条件是( ).A .x 为有理数B .x ≠0C .x ≠4D .x ≠-410.下列多项式乘法算式中,可以用平方差公式计算的是().A.(m-n)(n-m)B.(a+b)(-a-b)C.(-a-b)(a-b)D.(a+b)(a+b)11.下列等式恒成立的是().A.(m+n)2=m2+n2B.(2a-b)2=4a2-2ab+b2C.(4x+1)2=16x2+8x+1 D.(x-3)2=x2-912.若A=(2+1)(22+1)(24+1)(28+1),则A-2003的末位数字是().A.0 B.2 C.4 D.6二、填空(每题2分,共28分)13.-xy2的系数是______,次数是_______.14.•一件夹克标价为a•元,•现按标价的7•折出售,则实际售价用代数式表示为______.15.x_______=x n+1;(m+n)(______)=n2-m2;(a2)3²(a3)2=______.16.月球距离地球约为3.84³105千米,一架飞机速度为8³102千米/时,•若坐飞机飞行这么远的距离需_________.17.a2+b2+________=(a+b)2a2+b2+_______=(a-b)2(a-b)2+______=(a+b)218.若x2-3x+a是完全平方式,则a=_______.19.多项式5x2-7x-3是____次_______项式.20.用科学记数法表示-0.000000059=________.21.若-3x m y5与0.4x3y2n+1是同类项,则m+n=______.22.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是________.23.若x2+kx+14=(x-12)2,则k=_______;若x2-kx+1是完全平方式,则k=______.24.(-1615)-2=______;(x-)2=_______.25.22005³(0.125)668=________.26.有三个连续的自然数,中间一个是x,则它们的积是_______.三、计算(每题3分,共24分)27.(2x2y-3xy2)-(6x2y-3xy2)28.(-32ax4y3)÷(-65ax2y2)²8a2y29.(45a3-16a2b+3a)÷(-13a)30.(23x2y-6xy)²(12xy)31.(x-2)(x+2)-(x+1)(x-3)32.(1-3y)(1+3y)(1+9y2)33.(ab+1)2-(ab-1)2四、运用乘法公式简便计算(每题2分,共4分)34.(998)235.197³203五、先化简,再求值(每题4分,共8分)36.(x+4)(x-2)(x-4),其中x=-1.37.[(xy+2)(xy-2)-2x2y2+4],其中x=10,y=-1 25.六、解答题(每题4分,共12分)38.任意给出一个数,按下列程度计算下去,在括号内写出每一步的运算结果.39.已知2x+5y=3,求4x²32y的值.40.已知a2+2a+b2-4b+5=0,求a,b的值.附加题(10分)1.下列每个图形都是由若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n(n≥2)个棋子,每个图案中的棋子总数为S,按下列的排列规律判断,•S与n之间的关系式并求当n=6,10时,S的值.2.设a (a -1)-(a 2-b )=2,求222a b -ab 的值.答案:一、1.C 2.D 3.A 4.D 5.A 6.D7.A 8.C 9.D 10.C 11.C 12.B二、13.-1 3 14.0.7a元15.x n n-m a1216.4.8³102小时17.2ab -•2ab 4ab 18.9419.二三20.-5.9³10-821.5 22.±4 23.-1 ±2 24.225256x2-x+14•25.2 26.x3-x三、27.-4x2y 28.10a2x2y229.-135a2+12ab-930.13x2y2-3x2y 31.2x-1 32.1-81x4•33.4ab四、34.996004 35.39991五、36.x2-2x2-16x+32 45 37.-xy 2 5六、38.略39.8 40.a=-1,b=2附加题:1.S=4n-4,当n=6时,S=20;当n=10时,S=36 2.见疑难解析2.∵a(a-1)-(a2-b)=2,进行整理a2-a-a2+b=2,得b-a=2,再把222a b+-ab变形成2()222a b ab ab-+-=2.新北师大版七年级下册数学第二章 平行线与相交线练习题(带解析)一、单选题(注释)1、如图,直线a 、b 、c 、d ,已知c ⊥a ,c ⊥b ,直线b 、c 、d 交于一点,若∠1=500,则∠2等于【 】A .600B .500C .400 D .3002、如图,AB ⊥BC ,BC ⊥CD ,∠EBC =∠BCF ,那么,∠ABE 与∠DCF 的位置与大小关系是 ( )A .是同位角且相等B .不是同位角但相等;C .是同位角但不等D .不是同位角也不等3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能( )A .相等B .互补C .相等或互补D .相等且互补4、下列说法中,为平行线特征的是( )①两条直线平行,同旁内角互补; ②同位角相等, 两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行.A .①B .②③C .④D .②和④5、如图,AB ∥CD ∥EF ,若∠ABC =50°,∠CEF =150°,则∠BCE =( )A.60°B.50°C.30°D.20°6、如图,如果AB∥CD,则角α、β、γ之间的关系为()A.α+β+γ=360°B.α-β+γ=180°C.α+β-γ=180°D.α+β+γ=180°7、如图,由A到B 的方向是()A.南偏东30°B.南偏东60°C.北偏西30°D.北偏西60°8、如图,由AC∥ED,可知相等的角有()A.6对B.5对C.4对D.3对9、如图,直线AB、CD交于O,EO⊥AB于O,∠1与∠2的关系是( )更多功能介绍/zt/A.互余B.对顶角C.互补D.相等10、若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为( ) A.50°、40°B.60°、30°C.50°、130°D.60°、120°11、下列语句正确的是( )A.一个角小于它的补角B.相等的角是对顶角C.同位角互补,两直线平行D.同旁内角互补,两直线平行12、图中与∠1是内错角的角的个数是( )A.2个B.3个C.4个D.5个13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为( )A.89°B.101°C.79°D.110°14、如图,∠1和∠2是对顶角的图形的个数有( )A.1个B.2个C.3个D.0个15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是( )A.①②B.①③C.①④D.③④分卷II二、填空题(注释)16、如图,∠ACD=∠BCD,DE∥BC交AC于E,若∠ACB=60°,∠B=74°,则∠EDC =___°,∠CDB=____°。