圆锥曲线单元检测题及答案

合集下载

圆锥曲线与方程测试题及参考答案

圆锥曲线与方程测试题及参考答案

高中数学选修2—1第二章《圆锥曲线与方程》单元测试题及参考答案(时间120分钟 总分150分)一、选择题(本大题共8小题,每小题5分,共40分。

每小题只有一个选项符合题目意思)1.设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32a x =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为 ( C ) A.12 B. 23 C.34 D.452.已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为 ( D )A.2833x y =B. 21633x y = C. 28x y = D. 216x y = 3.已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= ( C )A.14B.35C.34D.454.已知椭圆2222:1(0)x y C a b a b +=>>的离心学率为32.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为 ( D )A.22182x y += B.221126x y += C.221164x y += D.221205x y += 5.已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于(A)A.5B.42C.3D.56.方程22ay b x c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有 ( B ) A.28条 B.32条 C.36条 D.48条7.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =; 则AOB ∆的面积为 ( C )A.22B.2C.322D.228.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。

高中试卷-专题15 圆锥曲线的方程(单元测试卷)(含答案)

高中试卷-专题15 圆锥曲线的方程(单元测试卷)(含答案)

专题15 《圆锥曲线的方程》单元测试卷一、单选题1.(2020·辽宁省高三月考(文))若抛物线上的点M 到焦点的距离为10,则M 点到y 轴的距离是( )A .6B .8C .9D .10【答案】C 【解析】抛物线的焦点,准线为,由M 到焦点的距离为10,可知M 到准线的距离也为10,故到M 到的距离是9,故选C .2.(2019·涟水县第一中学高二月考)椭圆的焦距为,则的值等于( )A .B .C .或D .【答案】C 【解析】若椭圆的焦点在轴上时,则有,解得;若椭圆的焦点在轴上时,则有,解得.综上所述,或.故选:C.3.(2018·镇原县第二中学高二期末(文))设抛物线的顶点在原点,准线方程为x=﹣2,则抛物线的方程是( )A .y 2=﹣8x B .y 2=8xC .y 2=﹣4xD .y 2=4x【答案】B 【解析】∵准线方程为x=﹣2∴=2∴p=424y x =24y x =()10F ,1x =-2214x y m +=2m 53538x 2=5m =y 2=3m =5m =3∴抛物线的方程为y 2=8x 故选B4.(2020·天津高三一模)设为抛物线的焦点,过且倾斜角为的直线交于,两点,则( )AB .C .D .【答案】C【解析】由题意,得.又因为AB 的方程为,与抛物线联立,得,设,由抛物线定义得,,选C .5.(2018·镇原县第二中学高二期末(文))已知,,则椭圆的标准方程是( )A .B .C .或D .【答案】C 【解析】由,,,可解得,,则当椭圆的焦点在轴上时,此时椭圆的标准方程为:;当椭圆的焦点在轴上时,椭圆的标准方程为:.故选:C6.(2018·镇原县第二中学高二期末(文))双曲线,则()F 2:3C y x =F 30o C A B AB =6123(,0)4F 0k tan 30==34y x =-2=3y x 21616890x x -+=1122(,),(,)A x y B x y 12AB x x p =++=168312162+=9a b +=3c =221259x y +=2212516x y +=2212516x y +=2251162x y+=221169x y +=9a b +=3c =222a b c =+225a =216b =x 2212516x y +=y 2251162x y +=()2221012x y b b-=>0+=b =A .3B .2CD .【答案】D 【解析】双曲线的焦点在轴,,渐近线方程是,,解得:.故选:7.(2018·民勤县第一中学高二期末(文))已知椭圆的一个焦点为F (0,1),离心率,则椭圆的标准方程为()A .B .C .D .【答案】D 【解析】由题意知,又离心率,所以,,即所求椭圆的标准方程,故选D .8.(2019·涟水县第一中学高二月考)设双曲线(a >0,b >0)的虚轴长为2,焦距为( )A.y =x B .y =±2xC .y =x D .y =±x【答案】C 【解析】由题意知∴,a 2=c 2-b 2x a =by x a=±0+=k ===b =D12e =2212x y +=2212y x +=22143x y +=22134x y +=1c =12e =2a =2223b a c =-=22134x y +=22221x y a b-=12∴渐近线方程为y=±x.故选C.9.(2019·浙江省高二期中)如图,,,是椭圆上的三个点,经过原点,经过右焦点,若且,则该椭圆的离心率为( )A.BCD【答案】B【解析】取左焦点,连接,,根据椭圆的对称性可得:是矩形,设,中,即:解得:,则在中即:,.b a A B C 22221x y a b+=()0a b >>AB O AC F BF AC ^3BF CF =121F 111,,AF CF BF BF AC ^1AFBF 11,2,3,23,22CF m CF a m BF AF m AF a m AC a m ==-===-=-1Rt AF C D 22211AF AC CF +=222(3)(22)(2)m a m a m +-=-3am =1,AF a AF a ==1Rt AF F D 22211AF AF FF +=222(2)a a c +=222212,2c a c a ==故选:B10.(2018·安徽省合肥一中高三一模(文))已知椭圆的左、右焦点分别为,,是椭圆在第一象限上的一个动点,圆与的延长线,的延长线以及线段都相切,且为其中一个切点.则椭圆的离心率为( )ABCD【答案】B 【解析】设圆与的延长线相切于点,与相切于点,由切线长相等,得,,,,,由椭圆的定义可得,,,则,即,又,所以因此椭圆的离心率为.故选:B.二、多选题11.(2019·山东省青岛二中高二月考)(多选题)下列说法正确的是( )2221(1)x y a a+=>1F 2F A C 1F A 12F F 2AF ()3,0M C 1F A N 2AF T AN AT =11F N F M =22F T F M =1(,0)F c -2(,0)F c 122AF AF a +=()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+-222(3)a F M a c =-=--26a =3a =1b =c ==c e a ==A .方程表示两条直线B .椭圆的焦距为4,则C .曲线关于坐标原点对称D .双曲线的渐近线方程为【答案】ACD 【解析】方程即,表示,两条直线,所以A 正确;椭圆的焦距为4,则或,解得或,所以B 选项错误;曲线上任意点,满足,关于坐标原点对称点也满足,即在上,所以曲线关于坐标原点对称,所以C 选项正确;双曲线即,其渐近线方程为正确,所以D 选项正确.故选:ACD12.(2019·山东省高二期中)已知椭圆的中心在原点,焦点,在轴上,且短轴长为2,离心率,过焦点作轴的垂线,交椭圆于,两点,则下列说法正确的是( )A .椭圆方程为B .椭圆方程为C .D .的周长为【答案】ACD 【解析】2x xy x +=221102x y m m +=--4m =22259x y xy +=2222x y a b l -=b y xa=±2x xy x +=()10x x y +-=0x =10x y +-=221102x y m m +=--()1024m m ---=()2104m m ---=4m =8m =22259x y xy +=(),P x y 22259x y xy +=(),P x y (),P x y ¢--()()()()22259x y x y --+=--(),P x y ¢--22259x y xy +=22259x y xy +=2222x y a b l -=0l ¹b y x a=±C 1F 2F y 1F y C P Q 2213y x +=2213x y +=PQ =2PF Q D由已知得,2b =2,b =1,又,解得,∴椭圆方程为,如图:∴,的周长为.故选:ACD.13.(2019·江苏省苏州实验中学高二月考)已知双曲线过点且渐近线为,则下列结论正确的是( )A .的方程为B .C .曲线经过的一个焦点D .直线与有两个公共点【答案】AC 【解析】对于选项A :由已知,可得,从而设所求双曲线方程为,又由双曲线过点,从而,即,从而选项A 正确;对于选项B :由双曲线方程可知,,从而离心率为,所以B 选项错误;c a =222a b c =+23a =2213y x +=22b PQ a ===2PF Q D 4a =C (y x =C 2213x y -=C 21x y e -=-C 10x -=C y =±2213y x =2213x y l -=C (22133l ´-=1l =a =1b =2c =c e a ===对于选项C :双曲线的右焦点坐标为,满足,从而选项C 正确;对于选项D :联立,整理,得,由,知直线与双曲线只有一个交点,选项D 错误.故选AC 三、填空题14.(2019·江苏省高三三模)双曲线的焦距为______.【答案】【解析】双曲线的焦距为.故答案为:.15.(2019·重庆巴蜀中学高二期中(理))若双曲线的左焦点在抛物线的准线上,则的值为________.【答案】6【解析】双曲线的左焦点为,即,故.故答案为:.16.(2020·浙江省高三二模)已知椭圆,F 为其左焦点,过原点O 的直线l 交椭圆于A ,B 两点,点A 在第二象限,且∠FAB =∠BFO ,则直线l 的斜率为_____.【答案】【解析】设,则,,且,()2,021x y e -=-221013x x y ì-=ïí-=ïî220y +=2420D =-´=C 2212x y -=2212x y -=2c ==22154x y -=22y px =p 22154x y -=()3,0-32p -=-6p =622197x y C +=:()00,A x y ()00,B x y --00x <00y >2200197x y +=∵F 为其左焦点,∴,AB 的斜率.经分析直线AF 的斜率必存在,设为则,又,,∴,又,,可解得:,,∴直线l的斜率为.故答案为:17.(2019·乐清市知临中学高二期末)已知抛物线的焦点为,定点.若抛物线上存在一点,使最小,则点的坐标为________,最小值是______.【答案】 【解析】根据题意,作垂直于准线,画出几何关系如下图所示:()F tan BFO Ð=10y k x =2k =1212tan 1k k FAB k k -Ð==+FAB BFO Ð=Ð=220002x y ++=2200197x y +=0(3,0)x Î-0x =0y =00y x =22y x =F ()32A ,M MA MF +M ()22,72MH根据抛物线定义可知,,因而当在同一直线上时,的值最小,此时,的纵坐标为2,代入抛物线解析式可知,所以的横坐标为2,即,故答案为:,;四、解答题18.(2018·镇原县第二中学高二期末(文))已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上.(1)求双曲线的焦点坐标;(2)求双曲线的标准方程.【答案】(1);(2)【解析】因为抛物线的准线方程为,则由题意得,点是双曲线的左焦点.(1)双曲线的焦点坐标.(2)由(1)得,又双曲线的一条渐近线方程是,所以,,所以双曲线的方程为:.19.(2019·湖南省衡阳市八中高二月考)已知抛物线的焦点为,点在抛物线上,且点的横坐标为,.MF MH =,,A M H MA MF +72MA MF AH +==M 42x =M ()2,2M ()2,2M 72()222210,0x y a b a b-=>>y =224y x =()6,0F ±221927x y-=224y x =6x =-()16,0F -()6,0F ±22236a b c +==y =ba=29a =227b =221927x y -=22(0)y px p =>F M M 45MF =(1)求抛物线的方程;(2)设过焦点且倾斜角为的交抛物线于两点,求线段的长.【答案】(1);(2).【解析】(1)由题意得,∴,故抛物线方程为.(2)直线的方程为,即.与抛物线方程联立,得,消,整理得,其两根为,且.由抛物线的定义可知,.所以,线段的长是.20.(2020·陕西省西安市远东一中高二期末(理))已知抛物线C 的顶点为坐标原点O ,对称轴为x 轴,其准线过点.(1)求抛物线C 的方程;(2)过抛物线焦点F 作直线l ,使得抛物线C 上恰有三个点到直线l 的距离都为l 的方程.【答案】(1);(2)【解析】(1)由题意得,抛物线的焦点在轴正半轴上,设抛物线C 的方程为,因为准线过点,所以,即. 所以抛物线C 的方程为.(2)由题意可知,抛物线C 的焦点为.当直线l 的斜率不存在时,C 上仅有两个点到l 的距离为当直线l 的斜率存在时,设直线l 的方程为,F 45°l A B 、AB 24y x =8452p MF +==2p =24y x =l 0tan 45(1)y x -=°⋅-1y x =-214y x y x =-ìí=îy 2610x x -+=12,x x 126x x +=12||628AB x x p =++=+=AB 8()2,1--28y x =20x y ±-=x 22y px =()2,1-22p =4p =28y x =()2,0F ()2y k x =-要满足题意,需使在含坐标原点的弧上有且只有一个点P 到直线l 的距离为,过点P 的直线平行直线且与抛物线C 相切.设该切线方程为,代入,可得.由,得.,整理得,又,解得,即.因此,直线l 方程为.21.(2019·会泽县第一中学校高二月考(理))设抛物线:的焦点为,是上的点.(1)求的方程:(2)若直线:与交于,两点,且,求的值.【答案】(1)(2).【解析】(1)因为是上的点,所以, 因为,解得,抛物线的方程为.(2)设,,由得,则,,():2l y k x =-y kx m =+24y x =()222280k x km x m +-+=()2222840km k m D =--=2km =224m k =2km =21k =1k =±20x y ±-=C 22(0)x py p =>F (,1)M p p -C C l 2y kx =+C A B 13AF BF ⋅=k 24x y =1k =±(),1M p p -C ()221p p p =-0p >2p =C 24x y =()11,A x y ()22,B x y 224y kx x y=+ìí=î2480x kx --=216320k D =+>124x x k +=128x x =-由抛物线的定义知,,,则,,,解得.22.(2018·民勤县第一中学高二期末(文))在直线:上任取一点,过作以,为焦点的椭圆,当在什么位置时,所作椭圆长轴最短?并求此椭圆方程.【答案】,【解析】设关于:的对称点,则,,连交于,点即为所求点.:,即,解方程组,,当点取异于的点时,.满足题意的椭圆的长轴最短时,,所以,,.椭圆的方程为:.11AF y =+21BF y =+()()()()12121133AF BF y y kx kx ⋅=++=++()2121239k x x k x x =+++24913k =+=1k =±l 90x y -+=M M ()13,0F -()23,0F M ()5,4M -2214536x y +=()13,0F -l 90x y -+=(),F x y 3909220613x y x y y x -ì-+=ï=-ìïÞíí-=îï=-ï+î()9,6F -2F F l M M 2F F 1(3)2y x =--230x y +-=2305904x y x x y y ì+-==-ìÞíí-+==îî()5,4M -'M M 22''FM M F FF +>22a FF ===a =3c =22245936b a c =-=-=2214536x y +=23.(2019·安徽省高二期末(理))已知点为坐标原点椭圆的右焦点为,离心率为,点分别是椭圆的左顶点、上顶点,的边.(1)求椭圆的标准方程;(2)过点的直线交椭圆于两点直线分别交直线于两点,求.【答案】(1);(2)0.【解析】(1)如图所示由题意得为直角三角形,且,所以则所以椭圆的标准方程为:.O 2222:1(0)x y C a b a b+=>>F 12,P Q C POQ △PQ C F l A B 、PA PB 、2x a =M N 、FM FN ⋅uuuu r uuu r 22143x y +=POQ △PQ PQ =222a b c =+=ïïî1a b c ìï=íï=î22143x y +=(2)由题意,如图设直线的方程为:,,,则,,联立方程化简得.则.由三点共线易得,化简得,同理可得..l 1x my =+()11,A x y ()22,B x y ()34,M y ()44,N y 221143x my x y =+ìïí+=ïî22(34)690m y my ++-=122122634934m y y m y y m ì+=-ïï+íï⋅=-ï+î,,P A M ()31100422y y x --=--+13163y y my =+24263y y my =+1234341266(3,)(3,)9933y y FM FN y y y y my my ⋅==+=+⋅++uuuu r uuu r g ()122121236939y y m y y m y y =++++2222222936()36934990969189(34)()3()93434m m m m m m m m m --´+=+=+=--++-+-+++。

新人教版高中数学选修一第三单元《圆锥曲线的方程》检测(含答案解析)(4)

新人教版高中数学选修一第三单元《圆锥曲线的方程》检测(含答案解析)(4)

一、填空题1.已知椭圆()222210x y a b a b+=>>的焦距等于其过焦点且与长轴垂直的弦长,则该椭圆的离心率为______.2.已知椭圆2222:1(0)x y C a b a b+=>>经过函数31x y x =-图象的对称中心,若椭圆C 的离心率13,23e ⎛⎫∈ ⎪⎪⎝⎭,则C 的长轴长的取值范围是_____________. 3.过椭圆()2222:10x y C a b a b+=>>的右焦点作x 轴的垂线,交椭圆C 于,A B 两点,直线l 过C 的左焦点和上顶点,若以AB 为直径的圆与l 存在公共点,则椭圆C 的离心率的取值范围是__________.4.设点P 为椭圆22:14924x y C +=上一点,1F 、2F 分别是椭圆C 的左、右焦点,且12PF F △的重心为G ,如果1212||,||,||PF PF F F 成等差数列,那么12GF F △的面积为___.5.在平面直角坐标系中,已知抛物线24y x =的准线与双曲线22221x y a b-=(0a >,0b >)的渐近线分别交于P ,Q 两点,若POQ △的内切圆半径为13,则双曲线的离心率为________.6.已知O 为坐标原点,12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左右焦点,A 为椭圆的右顶点,P 为C 上一点,且2PF x ⊥轴,过点A 的直线l 与线段2PF 交于点M ,与y 轴交于点N ,若直线1F M 与y 轴交于点Q ,且3ON OQ =,则C 的离心率为___________.7.设12,F F 分别是椭圆2212516x y +=的左、右焦点,P 为椭圆上任一点,点M 的坐标为()6,4,则1PM PF +的最大值为________.8.在直角坐标平面内的△ABC 中,(2,0)A -、(2,0)C ,若sin sin 2sin A C B +=,则△ABC 面积的最大值为____________.9.已知点P 是椭圆22221(0)x y a b a b+=>>上的一点,12,F F 分别为椭圆的左、右焦点,已知12F PF ∠=120°,且12||3||PF PF =,则椭圆的离心率为___________.10.已知1F 为双曲线()222210,0x y a b a b-=>>的左焦点,P 是双曲线右支上一点,线段1PF 与以该双曲线实轴为直径的圆相交于A ,B 两点,且1F A AB BP ==,则该双曲线的离心率为______.11.M 是抛物线24y x =上一点,F 是抛物线的焦点,以Fx 为始边、FM 为终边的角60xFM ∠=︒,则||FM =______.12.已知直线y kx m =+与双曲线22221(0,0)x y a b a b -=>>的两条渐近线交于A B 、两点,与1yx k交于点N ,若N 为AB 的中点,则双曲线的离心率等于____. 13.设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF 上的点,且||3||PM MF =,则直线OM 的斜率的最大值是________.二、解答题14.已知椭圆()2222:10x y E a b a b+=>>的焦距为23,点()0,2P 关于直线y x =-的对称点在椭圆E 上.(1)求椭圆E 的方程.(2)如图,过点P 的直线l 与椭圆E 交于两个不同的点C ,D (点C 在点D 的上方),试求COD △面积的最大值.15.双曲线221124x y -=,1F 、2F 为其左右焦点,曲线C 是以2F 为圆心且过原点的圆.(1)求曲线C 的方程;(2)动点P 在C 上运动,M 满足1F M MP →→=,求M 的轨迹方程. 16.已知抛物线2:y 2)3(0C px p <<=,其焦点为F ,点3(,2Q m 在抛物线C 上,且|QF |=4,过点(4,0)的直线l 与抛物线C 相交于A ,B 两点,连结OA ,OB . (1)求抛物线C 的方程; (2)证明:OA OB ⊥.17.已知椭圆C :()222210x y a b a b+=>>过点31,2P ⎛⎫ ⎪⎝⎭,离心率12e =.(1)求椭圆C 的方程;(2)设A ,B 是椭圆C 上的两个动点,O 是坐标原点,若OA OB ⊥,证明:直线AB l 与以原点为圆心的某个定圆相切,并求这个定圆.18.已知集合(){}22|4300A x x ax a a =-+<>,集合B ={a 方程221382x y a a+=--表示圆锥曲线C }(1)若圆锥曲线C 表示焦点在x 轴上的椭圆,求实数a 的取值范围;(2)若圆锥曲线C 表示双曲线,且A 是B 的充分不必要条件,求实数a 的取值范围.19.已知椭圆M :22213x y a +=()0a >的一个焦点为()1,0F -,左右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点. (Ⅰ)求椭圆M 方程;(Ⅱ)当直线l 的倾斜角为45时,求线段CD 的长;(Ⅲ)记△ABD 与△ABC 的面积分别为1S 和2S ,求12S S -的最大值.20.已知双曲线1C 的方程为22143x y -=,椭圆2C 与双曲线有相同的焦距,1F ,2F 是椭圆的上、下两个焦点,已知P 为椭圆上一点,且满足12PF PF ⊥,若12PF F △的面积为9. (1)求椭圆2C 的标准方程;(2)点A 为椭圆的上顶点,点B 是双曲线1C 右支上任意一点,点M 是线段AB 的中点,求点M 的轨迹方程. 21.已知P 为抛物线y =14x 2上的动点,点P 在x 轴上的射影为M ,点A 的坐标是(2,0),求|PA |+|PM |的最小值22.已知焦点在x 轴的抛物线C 经过点()2,4-. (1)求抛物线C 的标准方程.(2)过焦点F 作直线l ,交抛物线C 于A ,B 两点,若线段AB 中点的纵坐标为1-,求直线l 的方程.23.已知抛物线C 的准线方程为14x =-.(1)求抛物线C 的标准方程;(2)若过点(,0)P t 的直线l 与抛物线C 相交于,A B 两点,且以AB 为直径的圆过原点O ,求证:t 为常数,并求出此常数.24.已知椭圆()2222:10x y C a b a b +=>>C 过点3,22⎛⎫ ⎪⎝⎭.(1)求椭圆C 的标准方程;(2)已知O 为原点,过椭圆C 的右焦点的直线l 与椭圆C 交于A 、B 两点,求OAB 的面积的最大值.25.已知抛物线2:2(0)C y px p =>的焦点(1,0),F O 为坐标原点,,A B 是抛物线C 上异于O 的两点.(1)求抛物线C 的方程; (2)若直线,OA OB 的斜率之积为12-,求证:直线AB 过定点,并求出定点坐标. 26.已知椭圆M 的焦点与双曲线N :22197x y -=的顶点重合,且椭圆M 短轴的端点到双曲线N 渐近线的距离为3. (1)求椭圆M 的方程;(2)已知直线l 与椭圆M 交于A ,B 两点,若弦AB 中点为()2,1,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、填空题1.【分析】作出图形设过椭圆右焦点且垂直于长轴的弦为计算出再利用椭圆的定义可得出关于的等式进而可求得椭圆的离心率的值【详解】如下图所示设椭圆的左右焦点分别为设过椭圆右焦点且垂直于长轴的弦为则由勾股定理可【分析】作出图形,设过椭圆右焦点2F 且垂直于长轴的弦为AB ,计算出1AF ,再利用椭圆的定义可得出关于a 、c 的等式,进而可求得椭圆的离心率的值. 【详解】如下图所示,设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,设过椭圆右焦点2F 且垂直于长轴的弦为AB ,则2AB c =,212AF AB c ==,由勾股定理可得1AF ==,由椭圆的定义可得122AF AF a +=52c c a +=,所以,该椭圆的离心率为()()251512515151c e a ====++-. 51-. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.2.【分析】用分离常数法求得函数的对称中心代入椭圆方程得的关系变形后得然后由的范围得出的范围【详解】因为可化为所以曲线的对称中心为把代入方程得整理得因为所以从而故答案为:【点睛】关键点点睛:本题考查求椭解析:22110⎝⎭【分析】用分离常数法求得函数的对称中心,代入椭圆方程得,a b 的关系,变形后得221911a e=+-,然后由e 的范围得出2a 的范围. 【详解】因为31x y x =-可化为111393y x =+⎛⎫- ⎪⎝⎭,所以曲线31x y x =-的对称中心为11,33⎛⎫⎪⎝⎭,把11,33⎛⎫ ⎪⎝⎭代入方程22221x y a b +=,得2211199a b +=,整理得22222221911a c a a c e-==+--.因为1,23e ⎛⎫∈ ⎪ ⎪⎝⎭,所以2759,32a ⎛⎫∈ ⎪⎝⎭,从而2,93a ⎛⎫∈ ⎪ ⎪⎝⎭.故答案为:93⎛ ⎝⎭.【点睛】关键点点睛:本题考查求椭圆长轴长的范围.解题关键是建立长半轴长a 与离心率e 的关系式,求出函数对称中心代入椭圆方程,利用222b a c =-进行转化是是解题的基本方法.3.【分析】求出直线的方程利用点到直线的距离与半通径的关系列出不等式求解即可【详解】解:直线的方程为:椭圆的右焦点过椭圆的右焦点作轴的垂线交于两点直线过的左焦点和上顶点若以为直径的圆与存在公共点可得:可解析:0,5⎛ ⎝⎦【分析】求出直线l 的方程,利用点到直线的距离与半通径的关系,列出不等式,求解即可. 【详解】解:直线l 的方程为:1x yc b+=-,椭圆的右焦点(,0)c , 过椭圆2222:1(0)x y C a b a b+=>>的右焦点作x 轴的垂线,交C 于A ,B 两点,直线l 过C 的左焦点和上顶点.若以AB 为直径的圆与l 存在公共点,2b a可得:2b c ,即2224a c c -,即:215e,(0,1)e ∈, 解得:50e<.故答案为:⎛ ⎝⎦. 【点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).4.8【分析】根据条件计算出可以判断△PF1F2是直角三角形即可计算出△PF1F2的面积由△PF1F2的重心为点G 可知△PF1F2的面积是的面积的3倍即可求解【详解】∵P 为椭圆C :上一点且又且又∴易知△解析:8 【分析】根据条件计算出1212,,PF PF F F ,可以判断△PF 1F 2是直角三角形,即可计算出△PF 1F 2的面积,由△PF 1F 2的重心为点G 可知△PF 1F 2的面积是12GF F △的面积的3倍,即可求解. 【详解】∵P 为椭圆C :2214924x y +=上一点,且1212||,||,||PF PF F F1122||||2||PF F F PF ∴+=,又210c ==,12||102||PF PF ∴+=且12214PF PF a +==126,8PF PF ∴==,又1210F F =,∴易知△PF 1F 2是直角三角形,12121242PF F S PF PF =⋅=, ∵△PF 1F 2的重心为点G , ∴12123PF F GF F S S =△△, ∴12GF F △的面积为8. 故答案为:8 【点睛】关键点点睛:该题主要根据条件及椭圆的定义联立方程求出12,PF PF ,证明△PF 1F 2是直角三角形,求出面积后利用重心的性质可求12GF F △的面积,属于中档题.5.【分析】先求出的面积再利用等积法可求的关系从而可求离心率【详解】不妨设在轴的上方在轴的下方抛物线的准线方程为:双曲线的渐近线方程为:故故而故所以故故答案为:【点睛】关键点点睛:圆锥曲线的离心率的计算解析:3【分析】先求出POQ △的面积,再利用等积法可求,,a b c 的关系,从而可求离心率. 【详解】不妨设P 在x 轴的上方,Q 在x 轴的下方.抛物线24y x =的准线方程为:1x =-,双曲线的渐近线方程为:b y x a=±. 故1,b P a ⎛⎫- ⎪⎝⎭,1,b Q a ⎛⎫-- ⎪⎝⎭,故1212POQb b S a a =⨯⨯=△.而c OP OQ a ===,故122123b c b a a a ⎛⎫⨯+⨯=⎪⎝⎭,所以2c b =,故3c e a ===.故答案为:3. 【点睛】关键点点睛:圆锥曲线的离心率的计算,关键是利用已知条件构建关键,,a b c 的等量关系式,遇到三角形的内切圆半径的计算问题时,一般利用等积法来沟通半径与三角形的边的关系.6.【分析】根据椭圆的几何性质由轴设写出的直线方程求出与轴的交点的坐标以及点的坐标根据化简得到即可求解【详解】由题意椭圆的左右焦点分别为且因为轴不妨设则直线的方程为令可得所以直线与轴的交点为又由所以化简解析:13【分析】根据椭圆的几何性质,由2PF x ⊥轴,设(,)M c t ,写出AM 的直线方程,求出AM 与y 轴的交点N 的坐标,以及Q 点的坐标,根据3ON OQ =,化简得到3a c =,即可求解. 【详解】由题意,椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,且(,0)A a ,因为2PF x ⊥轴,不妨设(,)(0)M c t t ≠, 则直线AM 的方程为()ty x a c a=--, 令0x =,可得aty a c=-, 所以直线AM 与y 轴的交点为1(0,),(0,)2at N Q t a c -, 又由3ON OQ =,所以132at t a c =⨯-,化简得3a c =, 所以椭圆的离心率为13c e a ==.故答案为:13. 【点睛】求解椭圆的离心率的三种方法:定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ; 齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;特殊值法:通过取特殊值或特殊位置,求出离心率.7.15【分析】利用椭圆的定义将左焦点问题转化为右焦点问题然后求解最值即可【详解】由椭圆方程可得:由椭圆的定义可得:则的最大值为15故答案为:15【点睛】本题主要考查椭圆的定义与几何性质等价转化的数学思解析:15 【分析】利用椭圆的定义将左焦点问题转化为右焦点问题,然后求解最值即可. 【详解】由椭圆方程可得:5,4,3a b c ===,12(3,0),(3,0)F F ∴-, 由椭圆的定义可得:12210PF PF a +==,()1222||||210||101015PM PF PM a PF PM PF MF ∴+=+-=+-≤+=+=,则1||PM PF +的最大值为15. 故答案为:15. 【点睛】本题主要考查椭圆的定义与几何性质,等价转化的数学思想,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.8.【分析】由正弦定理可得结合椭圆的定义可得点的轨迹方程即可得解【详解】因为所以所以点的轨迹是以为左右焦点长轴长的椭圆(不在x 轴上)该椭圆焦距所以所以点的轨迹方程为当时所以面积的最大值故答案为:【点睛】解析:【分析】由正弦定理可得2BC AB AC +=,结合椭圆的定义可得点B 的轨迹方程,即可得解. 【详解】因为sin sin 2sin A C B +=,4AC =,所以28BC AB AC AC +==>, 所以点B 的轨迹是以A 、C 为左右焦点,长轴长28a =的椭圆(不在x 轴上), 该椭圆焦距24c =,所以22212b a c =-=,所以点B 的轨迹方程为()22101612x y y +=≠,当0x =时,y =±,所以ABC 面积的最大值max 142S =⨯⨯=故答案为: 【点睛】关键点点睛:解决本题的关键是利用正弦定理转化条件为2BC AB AC +=,再结合椭圆的定义即可得解.9.【解析】设由余弦定理知所以故填【解析】设21,3,24PF x PF x a x ===,由余弦定理知22(2)13c x =,所以c a =10.【分析】先取的中点证明是的中点再设得到最后建立方程并求双曲线的离心率即可【详解】设为双曲线的右焦点取的中点则如图因为所以是的中点则设则因为所以则又因为所以即该双曲线的离心率故答案为:【点睛】本题考查【分析】先取AB 的中点M ,证明M 是1PF 的中点,再设AB t =,得到65t a =,1185PF a =,285PF a =,最后建立方程2221212PF PF F F +=并求双曲线的离心率即可.【详解】设2F 为双曲线22221x y a b-=的右焦点,取AB 的中点M ,则1OM PF ⊥,如图.因为1F A AB BP ==,所以M 是1PF 的中点,则2//OM PF ,212OM PF =. 设AB t =,则13PF t =,232PF t a =-,2t AM =. 因为222OM AMOA =+,所以65t a =,则1185PF a =,285PF a =.又因为2221212PF PF F F +=,所以29725e =,即该双曲线的离心率5e =.故答案为:975. 【点睛】本题考查圆的几何性质、求双曲线的离心率,考查数形结合的数学思想,是基础题.11.4【分析】设点为过点作垂直于轴垂足为利用点在抛物线上建立方程即可求得的长【详解】解:由题意得设点为过点作垂直于轴垂足为即即整理得①又是抛物线上一点②由①②可得或(舍去)故答案为:【点睛】本题给出抛物解析:4 【分析】设点M 为(,)a b ,过点M 作MA 垂直于x 轴,垂足为A ,利用60xFM ∠=︒,点M 在抛物线24y x =上,建立方程,即可求得FM 的长. 【详解】解:由题意得(1,0)F设点M 为(,)a b 过点M 作MA 垂直于x 轴,垂足为A 60xFM ∠=︒,||2||MF FA ∴=,即||2(1)FM a =- ||3MF =,即||3MF =,2(1)3a ∴-223(1)b a =-⋯①又M 是抛物线24y x =上一点24b a ∴=⋯②由①②可得3a =或13a =(舍去) ||2(31)4MF ∴=-=故答案为:4.【点睛】本题给出抛物线上的点M 满足60xFM ∠=︒,求焦半径||FM 的长,着重考查了抛物线的定义与简单几何性质等知识,属于中档题.12.【分析】由题意联立方程组可得由中点的性质可得化简后利用即可得解【详解】由题意双曲线的两条渐近线为则同理联立为的中点即整理得故答案为:【点睛】本题考查了双曲线的性质和离心率的求解考查了直线交点的问题和 2【分析】由题意联立方程组可得A am x ka b -=+、B amx b ka=-、21N km x k =-,由中点的性质可得2A B N x x x +=,化简后利用221b e a=+即可得解. 【详解】由题意双曲线22221(0,0)x y a b a b -=>>的两条渐近线为b y x a=±,则A y kx mam x b ka b y x a =+⎧-⎪⇒=⎨+=-⎪⎩,同理B am x b ka =-, 联立211N y kx mkm x k y x k =+⎧⎪⇒=⎨-=⎪⎩,N 为AB 的中点,∴2A B N x x x +=,即221am am mkb ka b ka k -+=+--, 整理得221b a =,∴2212b e a=+= 2. 【点睛】本题考查了双曲线的性质和离心率的求解,考查了直线交点的问题和运算能力,属于中档题.13.【分析】转化条件得点则利用基本不等式即可得解【详解】由题意可知点设由可得则点当且仅当时等号成立故答案为:【点睛】本题考查了抛物线的性质平面向量的应用以及基本不等式的应用属于中档题【分析】转化条件得点2003,884y y p M p ⎛⎫+ ⎪⎝⎭,则001322OM k y p y p=+,利用基本不等式即可得解. 【详解】 由题意可知点,02p F ⎛⎫⎪⎝⎭,0p >, 设()2000,02y P y y p ⎛⎫> ⎪⎝⎭,由||3||PM MF =可得4PF MF =, 则200,884y y p MF p ⎛⎫=-- ⎪⎝⎭,∴点2003,884y y p M p ⎛⎫+ ⎪⎝⎭,∴02014332288OM y k y p y p y pp==≤=++,当且仅当00322y p y p =时等号成立.故答案为:3. 【点睛】本题考查了抛物线的性质、平面向量的应用以及基本不等式的应用,属于中档题.二、解答题14.(1)2214x y +=;(2)1.【分析】(1)根据椭圆的焦距为c =()0,2P 关于直线y x =-的对称点在椭圆E 上,得到()2,0-在椭圆E 上,进而得到a 即可.(2)设过点()0,2P 的直线方程为2y mx =+,与椭圆方程联立,求得弦长CD 以及点O 到直线CD 的距离,代入面积公式求解. 【详解】(1)因为椭圆()2222:10x y E a b a b +=>>的焦距为2c ∴=c =()0,2P 关于直线y x =-的对称点在椭圆E 上,()2,0∴-在椭圆E 上,2a ∴=, 2221b a c ∴=-=,2214x y ∴+=. (2)设过点()0,2P 的直线方程为2y mx =+,联立方程组可得22214y mx x y =+⎧⎪⎨+=⎪⎩, 消y 可得()221416120mxmx +++=,2430m =->△,设(),C C C x y ,(),y D D D x ,21614C D m x x m ∴+=-+,21214C Dx x m =+,CD ∴== ∴点O 到直线CD 的距离d =142CODS CD d ∴=⋅=△, 设214m t +=,则4t >,CODS ∴===△ 当8t =时,取得最大值,即为1. 【点睛】方法点睛:圆锥曲线中的三角形最值问题的求法:一般由直线与曲线联立求得弦长及相应点的直线的距离,得到含参数的△OMN 的面积的表达式,再应用基本不等式或函数法求最值.15.(1)()22416x y -+=;(2)224x y +=. 【分析】(1)求出圆心和半径即得解;(2)设动点(),M x y ,()00,P x y ,由1F M MP →→=得00242x x y y =+⎧⎨=⎩,代入圆的方程即得解. 【详解】(1)由已知得212a =,24b =,故4c ==, 所以()14,0F -、()24,0F, 因为C 是以2F 为圆心且过原点的圆,故圆心为()4,0,半径为4, 所以C 的轨迹方程为()22416x y -+=;(2)设动点(),M x y ,()00,P x y ,则()14,F M x y →=+,()00,MP x x y y →=--, 由1F M MP →→=,得()()004,,x y x x y y +=--, 即()()004x x x y y y ⎧+=-⎪⎨=-⎪⎩,解得00242x x y y =+⎧⎨=⎩,因为点P 在C 上,所以()2200416x y -+=,代入得()()22244216x y +-+=,化简得224x y +=.所以M 的轨迹方程为224x y +=. 【点睛】方法点睛:求动点的轨迹方程常见的方法有:(1)直接法;(2)定义法;(3)相关点代入法;(4)消参法.要根据数学情景灵活选择方法求动点的轨迹方程. 16.(1)24y x =;(2)证明见解析. 【分析】(1)由点在抛物线上,焦半径的长|QF |=4,列方程求p ,写出抛物线方程;(2)讨论直线l 斜率的存在性,若11(,)A x y ,22(,)B x y ,结合向量数量积的坐标表示有0OA OB ⋅=,则OA OB ⊥即得证.【详解】解:(1)由(,Q m 在抛物线C 上可得,212pm =, 由4QF =可得,42pm +=, ∵03p <<, ∴2p =,3m =. 抛物线的方程为24y x =.(2)当直线l 的斜率不存在时,方程为4x =,易求得()4,4A -,()4,4B(4,4)OA =-,(4,4)OB =,16160OA OB ⋅=-=,此时OA OB ⊥成立.当直线l 的斜率存在时,设直线方程为()4y k x =-,11(,)A x y ,22(,)B x y ,由24(4)y x y k x ⎧=⎨=-⎩,得24160ky y k --=,216640k ∆=+>,124y y k +=,1216y y =-,2121212121()1616016OA OB x x y y y y y y ⋅=+=+=-=此时OA OB ⊥成立, 综上可得,OA OB ⊥. 【点睛】关键点点睛:由抛物线过点,已知焦半径长并结合抛物线定义列方程组求参数,写出抛物线方程;利用向量垂直的坐标表示12120OA OB x x y y ⋅=+=即可证OA OB ⊥.17.(1)22143x y +=;(2)证明见解析;22127x y +=.【分析】(1)根据条件得出221914a b +=且12c a =,解出,a b 即可得出方程; (2)设出直线方程,联立直线与椭圆,由OA OB ⊥得0OAOB ⋅=,由此可得=. 【详解】(1)由椭圆经过点31,2P ⎛⎫⎪⎝⎭,离心率12e =得:221914a b +=且12c a =. 解得2a =,1c =,b =所以椭圆C :22143x y +=.(2)当直线AB l 的斜率不存在时,设直线为x m =,则由OA OB ⊥可得(),A m m ±,代入椭圆得22143m m +=,解得2127m =,则与直线AB l 相切且圆心为原点的圆的半径为m =, 即圆的方程为22127x y +=; 当斜率存在时,设直线AB l 的方程为:y kx b =+,()11,A x y ,()22,B x y ,联立方程22143y kx b x y =+⎧⎪⎨+=⎪⎩,整理得到:()()222348430k x kbx b +++-=.所以122834kbx x k +=-+,()21224334b x x k-=+. 因为OA OB ⊥,所以12120OA OB x x y y ⋅=+=, 又因为11y kx b =+,22y kx b =+,故()()12121212x x y y x x kx b kx b +=+++()()22121210k x x kb x x b =++++=,将122834km x x k +=-+,()21224334b x x k -=+代入上式,得到: ()()2222222413803434k b k b b k k+--+=++, 去掉分母得:()()()2222224138340k b k b b k +--++=,去括号得:22712120b k --=,=又因为与直线AB l相切且圆心为原点的圆的半径r === 所以该圆方程为22127x y +=, 综上,定圆方程为22127x y +=. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解. 18.(1)1143a <<;(2)01a <≤或4a ≥. 【分析】(1)根据椭圆的标准方程,求出a 的范围;(2)再确定集合A ,由双曲线的标准方程得集合B ,然后根据充分必要条件的定义集合包含关系,从而得出a 的不等关系,求得结论. 【详解】(1)由方程221382x y a a+=--表示的曲线是表示焦点在x 轴上的椭圆∴(3)(82)0a a ->->, ∴1143a << 解不等式22430(0)x ax a a -+<>可得3(0)a x a a <<>方程221382x y a a+=--表示的曲线是双曲线∴(3)(82)0a a --<, ∴4a >或3a <因为A 是B 的充分不必要条件所以(,3)a a 是(,3)(4,)-∞⋃+∞的真子集 所以033a <≤或4a ≥ 解得01a <≤或4a ≥所以a 的取值范围是01a <≤或4a ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.19.(Ⅰ)22143x y +=;(Ⅱ)247;(Ⅲ)12||S S -【分析】(Ⅰ)根据椭圆的几何性质求出,a b 可得结果; (Ⅱ)联立直线与椭圆,根据弦长公式可求得结果;(Ⅲ)设直线l :1x ty =-(0)t ≠,11(,)C x y ,22(,)D x y ,联立直线l 与椭圆M 的方程,利用韦达定理求出12y y +,12||S S -=212||34t t +,变形后利用基本不等式可求得最大值. 【详解】(Ⅰ)因为椭圆的焦点为()1,0F -,所以1c =且23b =,所以222314a b c =+=+=,所以椭圆M 方程为22143x y +=.(Ⅱ)因为直线l 的倾斜角为45,所以斜率为1,直线l 的方程为1y x =+,联立221143y x x y =+⎧⎪⎨+=⎪⎩,消去y 并整理得27880x x +-=,设11(,)C x y ,22(,)D x y , 则1287x x +=-,1287x x =-,所以||CD =247=. (Ⅲ)由(Ⅰ)知(2,0),(2,0)A B -,设直线l :1x ty =-(0)t ≠,11(,)C x y ,22(,)D x y ,联立221143x ty x y =-⎧⎪⎨+=⎪⎩,消去x 并整理得22(34)690t y ty +--=,则122634ty y t +=+,123934y y t =-+0<,所以12,y y 异号, 所以121211|||4||4|||22S S y y -=⨯-⨯⨯122||||||y y =-122||y y =+212||34t t =+ 1243||||t t =+≤==当且仅当||t =.所以12||S S -. 【点睛】关键点点睛:第(Ⅲ)问中将三角形面积用,C D 两点的纵坐标表示,并利用韦达定理和基本不等式解决是解题关键.20.(1)221169y x +=;(2)()222413y x --=(1≥x ). 【分析】(1)根据条件先求解出双曲线的半焦距c ,然后结合三角形的面积、勾股定理、椭圆的定义求解出椭圆方程中2a 的值,从而椭圆方程可求;(2)设(),M x y ,()00,B x y ,根据条件用M 点的坐标表示出B 点的坐标,再根据B 在双曲线上求解出,x y 满足的等式即为轨迹方程. 【详解】(1)设双曲线的半焦距为c ,由题2437c =+=,设椭圆方程22221y xa b+=(0a b >>).∴1222212121924282PF PF PF PF c PF PF a⎧=⎪⎪⎪+==⎨⎪+=⎪⎪⎩,∴2221212142+4=64a PF PF PF PF ⎛⎫ ⎪⎝⎭=+∴216a =,∴2221679b a c =-=-=,∴2:C 221169yx +=;(2)由题点()0,4A .设双曲线右支上任意一点B 的坐标为()00,x y ,AB 中点M 的坐标为(),x y ,则00242x x y y ⎧=⎪⎪⎨+⎪=⎪⎩,∴00224x x y y =⎧⎨=-⎩,又点B 在双曲线上,∴2200143x y -=∴()222413y x --=(1≥x ).【点睛】结论点睛:椭圆或双曲线的焦点三角形的顶点为P ,焦点为12,F F ,且12F PF θ∠=,则有:(1)椭圆的焦点三角形的面积为:2tan2b θ(b 为短轴长度一半);(2)双曲线的焦点三角形的面积为:2tan2b θ(b 为虚轴长度一半).21.51-【分析】根据抛物线标准方程有焦点(0,1)F ,准线方程为1y =-,根据抛物线定义||||||||1PA PM PA PF +=+-,结合三角形三边的性质即可求||||PA PM +最小值.【详解】抛物线标准形式为24x y =,则焦点(0,1)F ,准线方程为1y =-,延长PM 交准线于N ,连PF ,由抛物线定义知:||||||||1||||1PA PM PA PN PA PF +=+-=+-,而在△PFA 中,||||||PA PF AF +>,∴仅当F 、P 、A 共线时,||||||PA PF AF +==为最小值,∴此时||||1PA PM +=为最小值.【点睛】关键点点睛:由抛物线的定义将问题转化为求||||||||1PA PM PA PF +=+-最小值,由三角形三边的性质知:三点共线时||||PA PF +有最小值.22.(1)28y x =;(2)480x y +-=.【分析】(1)由题意可设抛物线方程为:22y px =(0p >),再将点()2,4-代入抛物线的方程中得到p 的值,最后写出抛物线的方程即可;(2)设l 的方程为2x my =+,()11,A x y ,()22,B x y ,联立直线与抛物线的方程可得28160y my --=,由韦达定理可得128y y m +=,再由线段AB 中点的纵坐标为1-可得122y y +=-,进而求出m 的值,最后写出直线的方程即可.【详解】(1)由题意可设抛物线方程为:22y px =(0p >),∵抛物线过点()2,4-,∴1644p p =⇒=,∴28y x =;(2)设l 的方程为2x my =+,()11,A x y ,()22,B x y ,则由22881602y x y my x my ⎧=⇒--=⎨=+⎩,264640m ∆=+>, 所以128y y m +=, 由题意1212122y y y y +=-⇒+=-,121824y y m m +==-⇒=-, 故124804x y x y =-+⇒+-=, 即直线l 的方程为480x y +-=. 【点睛】方法点睛:对于第二问,有两种方法:方法一:设点()11,A x y ,()22,B x y ,根据中点纵坐标即可利用点差法求得直线的斜率,再由点斜式写出直线的方程;方法二:设出直线的方程,联立直线与抛物线的方程,根据韦达定理和中点的纵坐标,即可求得直线的方程. 23.(1)2y x =;(2)证明见解析,1,0t t ==.【分析】(1)由准线方程为14x =- 求得12p =,得解抛物线C 的方程 (2)设过P 的直线l 方程为:x my t =+(m R ∈),联解后,利用原点O 落在以AB 为直径的圆上得0OA OB ⋅= 得到12120x x y y +=得解【详解】(1)由准线方程为14x =-可设抛物线C 的方程22(0)y px p => 求得12p = 故所求的抛物线C 的方程为:2y x =(2)依题意可设过P 的直线l 方程为:x my t =+(m R ∈),设1122(,),(,)A x y B x y由2x my t y x=+⎧⎨=⎩得:2y my t =+ 依题意可知0∆>,且12y y t =-原点O 落在以AB 为直径的圆上令0OA OB ⋅=即()22212121212t 0x x y y y y y y t +=+=--= 解得:1,0t t ==即t 为常数,∴ 原题得证【点睛】本题利用0OA OB ⋅=得到12120x x y y +=是解题关键.24.(1)22132x y +=;(2. 【分析】(1)根据离心率3c e a ==,将点坐标代入曲线方程,结合222a b c =+,即可求得a ,b ,c 的值,即可求得答案;(2)由题意得右焦点为()1,0F ,设直线l 的方程为:()10x my m =+≠,与椭圆联立,根据韦达定理,可得12y y +,12y y 的表达式,即可求得12y y -的表达式,根据m 的范围,即可求得12y y -的最大值,代入面积公式,即可求得OAB 的面积的最大值.【详解】(1)由题意得22222392144c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得a =b =1c =.故椭圆方程为:22132x y +=. (2)易知椭圆的右焦点为()1,0F ,设直线l 的方程为:()10x my m =+≠,联立直线l 方程代入椭圆方程221321x y x my ⎧+=⎪⎨⎪=+⎩,整理可得:()2223440m y my ++-=, 设()11,A x y ,()22,B x y ,则222(4)4(23)(4)48(+1)0m m m ∆=-+-=> 122423m y y m -+=+,122423y y m -=+, 所以12y y -===, 因为20m ≥,所以2110,233m ⎛⎤∈ ⎥+⎝⎦, 易知当0m =,即211233m =+时,原式12y y -取得最大值= 此时AOB S的最大值为1211122y F y O ⨯⨯=⨯=-.即三角形OAB . 【点睛】解题的技巧为:设直线l 的方程为:()10x my m =+≠,可联立消去x ,得到关于y 的一元二次方程,进而可直接求得12y y -的表达式,即可得12y y -的最大值,即可求得面积的最大值,考查分析理解,计算求值的能力属中档题.25.(1)24y x =,(2)证明见解析,定点(8,0)【分析】(1)利用抛扔线的焦点坐标,求出p ,然后求抛物线的方程;(2)通过直线的斜率是否存在,设出直线方程,与抛物线方程联立,利用韦达定理以及斜率乘积关系,转化求解即可【详解】解:(1)因为抛物线22(0)y px p =>的焦点坐标为(1,0),所以12p =,得2p =, 所以抛物线的方程为24y x =,(2)①当直线AB 的斜率不存在时,设22(,),(,)44t t A t B t -, 因为直线,OA OB 的斜率之积为12-,所以224412t t t t -⋅=-,化简得232t =, 所以(8,),(8,)A t B t -,此时直线AB 的方程为8x =,②当直线AB 的斜率存在时,设其方程为y kx b =+,1122(,),(,)A x y B x y ,由24y x y kx b⎧=⎨=+⎩,得2440ky y b -+=,则124b y y k =, 因为,OA OB 的斜率之积为12-,所以121212y y x x ⋅=-, 即121220x x y y +=,即可2212122044y y y y ⋅+=, 解得120y y =(舍去),或1232y y =-, 所以432b k=-,即8b k =-,所以8y kx k =-,即(8)y k x =-, 综上所述,直线AB 过x 轴上的一定点(8,0) 【点睛】关键点点睛:此题考查直线与抛物线的位置关系的应用,抛物线的方程的求法,解题的关键是将直线方程y kx b =+与抛物线方程24y x =联立方程组可得2440ky y b -+=,再利用根与系数的关系可得124b y y k =,再结合直线,OA OB 的斜率之积为12-,可得到,k b 的关系,从而可得答案,考查计算能力,属于中档题 26.(1)2212516x y +=;(2)3225890x y +-=. 【分析】(1)由题可得22a b 9-=3=,求出,a b 即得椭圆方程; (2)利用点差法可求直线斜率,即可得出直线方程.【详解】(1)设椭圆M 的方程为22221(0)x y a b a b+=>>,则22a b 9-=, 双曲线N30y ±=,3=,所以4b=,于是5a=,所以椭圆M的方程为2212516x y+=.(2)显然直线l的斜率是存在的,设直线l的斜率为k,设A,B的坐标分别为11(,)x y,22(,)x y,则221122221251612516x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,相减得2222121202516x y yx--+=,整理得121212121625y y x xx x y y-+=-⨯-+,所以162232252125k⨯=-⨯=-⨯,所以直线l的方程为321(2)25y x-=--,即3225890x y+-=.【点睛】方法点睛:点差法解决中点弦问题:设直线与圆锥曲线的交点(弦的端点)坐标为11(,)A x y,22(,)B x y,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.。

新人教版高中数学选修一第三单元《圆锥曲线的方程》测试(含答案解析)(1)

新人教版高中数学选修一第三单元《圆锥曲线的方程》测试(含答案解析)(1)

一、填空题1.设点P 为椭圆22:14924x y C +=上一点,1F 、2F 分别是椭圆C 的左、右焦点,且12PF F △的重心为G ,如果1212||,||,||PF PF F F 成等差数列,那么12GF F △的面积为___.2.已知O 为坐标原点,12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左右焦点,A 为椭圆的右顶点,P 为C 上一点,且2PF x ⊥轴,过点A 的直线l 与线段2PF 交于点M ,与y 轴交于点N ,若直线1F M 与y 轴交于点Q ,且3ON OQ =,则C 的离心率为___________.3.已知点P 为抛物线C :24y x =上的动点,抛物线C 的焦点为F ,且点()3,1A ,则PA PF +的最小值为_______.4.已知1F ,2F 是椭圆222:1(1)x C y a a+=>的两个焦点,且椭圆上存在一点P ,使得1223F PF π∠=,若点M ,N 分别是圆D :22(3)3x y +-=和椭圆C 上的动点,则当椭圆C 的离心率取得最小值时,2MN NF +的最大值是___________.5.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为F ,经过原点O 的直线l 与椭圆E 交于P ,Q 两点,若||3||PF QF =,且120PFQ ∠=,则椭圆E 的离心率为__.6.已知M 是抛物线24y x =上一点,F 为其焦点,点A 在圆22:(6)(1)1C x y -++=上,则||||MA MF +的最小值是__________.7.设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过F 作C 的一条渐近线的垂线垂足为A ,且||2||OA AF =,O 为坐标原点,则C 的离心率为_________.8.已知点P 是椭圆22221(0)x y a b a b+=>>上的一点,12,F F 分别为椭圆的左、右焦点,已知12F PF ∠=120°,且12||3||PF PF =,则椭圆的离心率为___________.9.已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F ,2F ,直线l 过点2F 交双曲线右支于P ,Q 两点,若123PF PF =,23PQ PF =,则双曲线 C 的离心率为__________.10.椭圆22221x y a b +=(0a b >>)的左、右焦点分别为1F ,2F ,过2F 的直线交椭圆于P ,Q 两点(P 在x 轴上方),1PF PQ =,若1PQ PF⊥,则椭圆的离心率e =______.11.已知点()1,0A -是抛物线22y px =的准线与x 轴的交点,F 为抛物线的焦点,P 是抛物线上的动点,则PFPA最小值为_____.12.已知双曲线()222210,0x y a b a b-=>>离心率为2,则其渐近线与圆()22214x a y a -+=的位置关系是________. 13.对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的过焦点且垂直于对称轴的弦的长为5; ⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1) 能使抛物线方程为y 2=10x 的条件是_____.二、解答题14.双曲线221124x y -=,1F 、2F 为其左右焦点,曲线C 是以2F 为圆心且过原点的圆.(1)求曲线C 的方程;(2)动点P 在C 上运动,M 满足1F M MP →→=,求M 的轨迹方程. 15.如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,焦距为2,点P 是椭圆上的动点,且12PF F △的面积的最大值为1.(Ⅰ)求椭圆的方程;(Ⅱ)若直线l 与椭圆有且只有一个公共点P ,且l 与直线2x =-相交于Q .点T 是x 轴上一点,若总有0PT QT ⋅=,求T 点坐标.16.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,其左,右焦点分别是12,F F ,椭圆上的4个点,,,A B M N 满足:直线AB 过左焦点1F ,直线AM 过坐标原点O ,直线AN的斜率为32-,且2ABF 的周长为8 (1)求椭圆C 的方程. (2)求AMN 面积的最大值17.已知椭圆C :()222210x y a b a b+=>>过点31,2P ⎛⎫ ⎪⎝⎭,离心率12e =.(1)求椭圆C 的方程;(2)设A ,B 是椭圆C 上的两个动点,O 是坐标原点,若OA OB ⊥,证明:直线AB l 与以原点为圆心的某个定圆相切,并求这个定圆.18.在平面直角坐标系xOy 中,已知圆()22:21F x y -+=,动圆M 与直线:1l x =-相切且与圆F 外切.(1)记圆心M 的轨迹为曲线C ,求曲线C 的方程;(2)已知()2,0A -,曲线C 上一点P 满足PA ,求PAF ∠的大小. 19.已知抛物线22(0)y px p =>,其准线方程为10x +=,直线l 过点(,0)(0)T t t >且与抛物线交于A 、B 两点,O 为坐标原点. (1)求抛物线方程;(2)证明:OA OB ⋅的值与直线l 倾斜角的大小无关;(3)若P 为抛物线上的动点,记||PT 的最小值为函数()d t ,求()d t 的解析式.20.已知椭圆C :()222210x y a b a b+=>>的离心率为12,椭圆C 的中心O 关于直线250x y --= 的对称点落在直线2x a =上;(1)求椭圆C :的方程;(2)设()4,0P ,M 、N 是椭圆C 上关于x 轴对称的任意两点,连接PN 交椭圆C 于另一点E ,求直线PN 斜率的取值范围; (3)证明直线ME 与x 轴相交于定点.21.已知抛物线1C :()220y px p =>的焦点为F ,过点F 的直线l 与曲线1C 交于A ,B 两点,设()11,A x y ,()22,B x y ,则126x x +=且弦AB 的中点到准线的距离为4.(1)求曲线1C 的方程;(24的椭圆2C 的方程为()222210x y a b a b +=>>.又椭圆2C 与过点()1,0Q -且斜率存在的直线l '相交于M ,N 两点,已知45MONS =,O 为坐标原点,求直线l '的方程.22.已知集合(){}22|4300A x x ax a a =-+<>,集合B ={a 方程221382x y a a+=--表示圆锥曲线C }(1)若圆锥曲线C 表示焦点在x 轴上的椭圆,求实数a 的取值范围;(2)若圆锥曲线C 表示双曲线,且A 是B 的充分不必要条件,求实数a 的取值范围. 23.已知点(3,0)M -,点P 在y 轴上,点Q 在x 轴的正半轴上,点N 在直线PQ 上,且满足0MP PN ⋅=,12PN PQ =. (1)当P 点在y 轴上移动时,求动点N 的轨迹C 的方程;(2)过点()2,0T 作一直线交曲线C 于A ,B 两点,O 为坐标原点,若AOT 的面积是BOT 面积的2倍,求弦长AB .24.已知椭圆C :()222210x y a b a b +=>>的离心率为12,点P ⎭在C 上. (1)求椭圆C 的方程;(2)设1F ,2F 分别是椭圆C 的左,右焦点,过2F 的直线l 与椭圆C 交于不同的两点A ,B ,求1F AB 面积的最大值.25.已知椭圆C :22142x y +=.(1)求椭圆的离心率.(2)已知点A 是椭圆C 的左顶点,过点A 作斜率为1的直线m ,求直线m 与椭圆C 的另一个交点B 的坐标.(3)已知点(M ,P 是椭圆C 上的动点,求PM 的最大值及相应点P 的坐标.26.已知椭圆M 的焦点与双曲线N :22197x y -=的顶点重合,且椭圆M 短轴的端点到双曲线N 渐近线的距离为3. (1)求椭圆M 的方程;(2)已知直线l 与椭圆M 交于A ,B 两点,若弦AB 中点为()2,1,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、填空题1.8【分析】根据条件计算出可以判断△PF1F2是直角三角形即可计算出△PF1F2的面积由△PF1F2的重心为点G 可知△PF1F2的面积是的面积的3倍即可求解【详解】∵P 为椭圆C :上一点且又且又∴易知△ 解析:8 【分析】根据条件计算出1212,,PF PF F F ,可以判断△PF 1F 2是直角三角形,即可计算出△PF 1F 2的面积,由△PF 1F 2的重心为点G 可知△PF 1F 2的面积是12GF F △的面积的3倍,即可求解. 【详解】∵P 为椭圆C :2214924x y +=上一点,且1212||,||,||PF PF F F1122||||2||PF F F PF ∴+=,又210c ==,12||102||PF PF ∴+=且12214PF PF a +==126,8PF PF ∴==,又1210F F =,∴易知△PF 1F 2是直角三角形,12121242PF F S PF PF =⋅=, ∵△PF 1F 2的重心为点G , ∴12123PF F GF F S S =△△, ∴12GF F △的面积为8. 故答案为:8 【点睛】关键点点睛:该题主要根据条件及椭圆的定义联立方程求出12,PF PF ,证明△PF 1F 2是直角三角形,求出面积后利用重心的性质可求12GF F △的面积,属于中档题.2.【分析】根据椭圆的几何性质由轴设写出的直线方程求出与轴的交点的坐标以及点的坐标根据化简得到即可求解【详解】由题意椭圆的左右焦点分别为且因为轴不妨设则直线的方程为令可得所以直线与轴的交点为又由所以化简解析:13【分析】根据椭圆的几何性质,由2PF x ⊥轴,设(,)M c t ,写出AM 的直线方程,求出AM 与y 轴的交点N 的坐标,以及Q 点的坐标,根据3ON OQ =,化简得到3a c =,即可求解. 【详解】由题意,椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,且(,0)A a ,因为2PF x ⊥轴,不妨设(,)(0)M c t t ≠, 则直线AM 的方程为()ty x a c a=--,令0x =,可得aty a c=-, 所以直线AM 与y 轴的交点为1(0,),(0,)2at N Q t a c -, 又由3ON OQ =,所以132at t a c =⨯-,化简得3a c =, 所以椭圆的离心率为13c e a ==. 故答案为:13. 【点睛】求解椭圆的离心率的三种方法:定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ; 齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;特殊值法:通过取特殊值或特殊位置,求出离心率.3.4【分析】设点在准线上的射影为则根据抛物线的定义可知进而把问题转化为求取得最小进而可推断出当三点共线时最小答案可得【详解】抛物线的准线为设点在准线上的射影为如图则根据抛物线的定义可知要求取得最小值即解析:4 【分析】设点P 在准线上的射影为D ,则根据抛物线的定义可知||||PF PD =进而把问题转化为求||||PA PD +取得最小,进而可推断出当D ,P ,A 三点共线时||||PA PD +最小,答案可得. 【详解】抛物线2:4C y x =的准线为1x =-. 设点P 在准线上的射影为D ,如图,则根据抛物线的定义可知||||PF PD =,要求||||PA PF +取得最小值,即求||||PA PD +取得最小. 当D ,P ,A 三点共线时,||||PA PD +最小,为3(1)4--=. 故答案为:4.【点睛】关键点点睛:本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D ,P ,A 三点共线时||||PA PD +最小,是解题的关键.4.【分析】根据题中条件得到的最大值不小于即可由余弦定理结合基本不等式得到点为短轴的顶点时最大;不妨设点为短轴的上顶点记得出离心率的最小值连接得到根据椭圆的定义结合三角形的性质求出的最大值即可得出结果【 解析:433+【分析】根据题中条件,得到12F PF ∠的最大值不小于23π即可,由余弦定理,结合基本不等式,得到点P 为短轴的顶点时,12F PF ∠最大;不妨设点P 为短轴的上顶点,记12F PF θ∠=,得出离心率的最小值,连接DN ,得到()()22maxmax3MN NF DN NF +=++,根据椭圆的定义,结合三角形的性质,求出2DN NF +的最大值,即可得出结果. 【详解】若想满足椭圆上存在一点P ,使得1223F PF π∠=,只需12F PF ∠的最大值不小于23π即可,由余弦定理,可得()22222112121221221424cos 22PFPF c PF PF PF PF c F PF PF PF PF PF +--=+-∠=2222221122221112b b b PF PF PF PF a =-≥-=-⎛⎫+ ⎪⎝⎭,当且仅当 12PF PF =,即点P 为短轴的顶点时,12F PF ∠的余弦值最小,即12F PF ∠最大; 如图,不妨设点P 为短轴的上顶点,记12F PF θ∠=,则 23πθ≥,于是离心率3sin ,12c e a θ⎡⎫==∈⎪⎢⎪⎣⎭, 因此当椭圆C 的离心率取得最小值32时,24a =,则椭圆 22:14x C y +=;连接DN ,根据圆的性质可得:()()22maxmax3MN NF DN NF +=++,所以只需研究2DN NF +的最大值即可;连接1NF ,1DF ,21144423DN NF DN NF DF +=+-≤+=+,当且仅当N ,D ,1F 三点共线(N 点在线段1DF 的延长线上)时,不等式取得等号, 所以2DN NF +的最大值为 423+, 因此2MN NF +的最大值是433+. 故答案为:433+. 【点睛】 关键点点睛:求解本题的关键在于根据题中条件,得到椭圆离心率,求出椭圆方程,再由椭圆的定义,以及圆的性质,将动点到两点距离的最值问题,转化为椭圆上一动点到焦点,以及到定点的距离的最值问题,即可求解.5.【分析】取椭圆的右焦点由直线过原点及椭圆的对称性可得四边形为平行四边形由及椭圆的性质可得余弦定理可得离心率的值【详解】取椭圆的右焦点连接由椭圆的对称性可得四边形为平行四边形则而所以所以在中解得:故答 解析:7【分析】取椭圆的右焦点F ',由直线l 过原点及椭圆的对称性可得四边形PFQF '为平行四边形,由||3||PF QF =及椭圆的性质可得2a PF '=,32a PF =,120PFQ ∠=︒余弦定理可得离心率 的值. 【详解】取椭圆的右焦点F ',连接QF ',PF ',由椭圆的对称性,可得四边形PFQF '为平行四边形,则PF QF '=,180********FPF PFQ ∠='=-∠-=,||3||PF QF =3||PF '=,而||||2PF PF a '+=,所以2a PF '=,所以32a PF =, 在PFF '中,2222222914||||58144cos 32332222a a c PF PF FF FPF e a PF PF a +-+-∠===-''''=⨯⨯,解得:4e =,. 【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到关于,,a b c 的等量关系.本题中,由椭圆的对称性以及椭圆的定义得到2a PF '=,所以32a PF =,然后在PFF '中,根据余弦定理得到所要求的等量关系.考查了学生的运算求解能力,逻辑推理能力.属于中档题.6.【分析】根据抛物线方程求得准线方程过点作垂直于准线于根据抛物线的定义判断问题转化为求的最小值根据在圆上判断出当三点共线时有最小值进一步求出结果【详解】解:是抛物线上一点抛物线的准线方程为过点作垂直于 解析:6【分析】根据抛物线方程求得准线方程,过点M 作MN 垂直于准线于N ,根据抛物线的定义判断MN MF =,问题转化为求||||MA MN +的最小值,根据A 在圆C 上,判断出当,,M N C 三点共线时,||||MA MN +有最小值,进一步求出结果【详解】解:M 是抛物线24y x =上一点,抛物线的准线方程为1x =-, 过点M 作MN 垂直于准线于N ,则MN MF =, 所以||||MA MF MA MN +=+,因为点A 在圆C 上,圆22:(6)(1)1C x y -++=的圆心(6,1)C -,半径为1, 所以当,,M N C 三点共线时,||||MA MN +取得最小值6, 故答案为:6【点睛】关键点点睛:此题考查了抛物线的简单性质的应用,解题的关键是利用了抛物线的定义,结合图形将||||MA MF +转化为||||MA MN +进行求解,考查数形结合的思想和转化思想,属于中档题7.【分析】由已知求出渐近线的斜率得结合转化后可求得离心率【详解】由题意可得渐近线方程为∴故故答案为:【点睛】本题考查求双曲线的离心率解题关键是列出关于的一个等式本题中利用直角三角形中正切函数定义可得 5 【分析】由已知求出渐近线的斜率,得ba,结合222c a b -=转化后可求得离心率. 【详解】由题意可得||||1tan ||2||2AF AF AOF OA AF ∠===, 渐近线方程为by x a=, ∴12b a =,222222222544a a c ab e a a a ++====,故5e = 5. 【点睛】本题考查求双曲线的离心率,解题关键是列出关于,,a b c 的一个等式,本题中利用直角三角形中正切函数定义可得.8.【解析】设由余弦定理知所以故填 13【解析】设21,3,24PF x PF x a x ===,由余弦定理知22(2)13c x =,所以c a =9.【分析】设则推出由双曲线的定义得再在和应用余弦定理得进而得答案【详解】解:设则∴由双曲线的定义得此时在和应用余弦定理得:;所以即故所以故答案为:【点睛】本题考查双曲线的简单性质的应用是基本知识的考查【分析】设2||PF m =,则1||3PF m =,3PQ m =,推出22QF m =,由双曲线的定义得14QF a m a⎧=⎨=⎩,再在1PQF △和12QF F 应用余弦定理得2225243a c a -=,进而得答案. 【详解】解:设2||PF m =,则1||3PF m =,3PQ m =,∴22QF m =,由双曲线的定义,得12112122422PF PF m aQF a m a QF QF QF m a ⎧-==⎧=⎪⇒⎨⎨=-=-=⎩⎪⎩, 此时,在1PQF △和12QF F 应用余弦定理得:2222221112116992cos 22433QF PQ PF a a a FQF QF PQa a +-+-∠===⨯⨯2222222212121221216445cos 22424QF QF F F a a c a c FQF QF QF a a a+-+--∠===⨯⨯; 所以2225243a c a -=,即2237c a =,故2273c a =,所以3c e a ==.. 【点睛】本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.10.【分析】根据椭圆定义设则进而表示出由得在两个三角形中由勾股定理可得ac 的关系进而求出椭圆的离心率【详解】如图所示设根据椭圆定义得由得由椭圆的定义可得因为在中且得即①在中得即②由①②可得可得③将③代入-【分析】 根据椭圆定义,设2PF m =,则12PF a m =-,进而表示出222QF a m =-,12QF m =,由1PQ PF ⊥,得在两个三角形中由勾股定理可得a ,c 的关系,进而求出椭圆的离心率. 【详解】如图所示,设()20PF m m =>,根据椭圆定义得12PF a m =-, 由1PF PQ =,得2222QFa m m a m =--=-,由椭圆的定义可得()12222QF a a m m =--=,因为1PQ PF ⊥,在1Rt PFQ ∆中,且1PF PQ =,得22112QF PF =,即()22422m a m =-①,在12Rt PF F ∆中,得2221212F F PF PF =+,即()22242c a m m =-+②,由①-②2⨯可得222482m c m -=-,可得23m c =,③, 将③代入②可得22223233423c a c c ⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,整理可得:22330e e +-=,()0,1e ∈,解得63e =-.故答案为:63-.【点睛】本题考查椭圆的性质及直线与椭圆的综合,考查椭圆离心率的求法,属于中档题.11.【分析】利用已知条件求出p 设出P 的坐标然后求解的表达式利用基本不等式即可得出结论【详解】解:由题意可知:设点P 到直线的距离为d 则所以当且仅当x 时的最小值为此时故答案为:【点睛】本题考查抛物线的简单性 解析:22【分析】利用已知条件求出p ,设出P 的坐标,然后求解PFPA的表达式,利用基本不等式即可得出【详解】解:由题意可知:2p =,设点(),P x y ,P 到直线1x =-的距离为d ,则1d x +=,所以2PFd PAPA ====≥, 当且仅当x 1x =时,PF PA,此时1x =,故答案为:2. 【点睛】本题考查抛物线的简单性质的应用,基本不等式的应用,属于中档题.12.相离【分析】由双曲线的离心率可得出然后计算出圆心到双曲线的渐近线的距离并与圆的半径作大小比较由此可得出结论【详解】双曲线的离心率为可得所以双曲线的渐近线方程为圆的圆心坐标为半径为圆心到直线的距离为因解析:相离 【分析】由双曲线的离心率可得出b a =,然后计算出圆心到双曲线的渐近线的距离,并与圆的半径作大小比较,由此可得出结论. 【详解】双曲线()222210,0x y a b a b -=>>的离心率为c e a ====b a =,所以,双曲线的渐近线方程为0x y ±=,圆()22214x a y a -+=的圆心坐标为(),0a ,半径为2ar =, 圆心到直线0x y ±=的距离为122d r a ==>=, 因此,双曲线的渐近线与圆()22214x a y a -+=相离. 故答案为:相离. 【点睛】本题考查直线与圆的位置关系的判断,涉及双曲线的离心率以及渐近线方程的应用,求出b 与a 的等量关系是解答的关键,考查计算能力,属于中等题.13.②⑤【分析】设抛物线方程为根据抛物线的定义焦半径公式直线相互垂直与斜率之间的关系即可判断出结论【详解】设抛物线方程为②③抛物线上横坐标为1的点到焦点的距离等于6可得解得抛物线方程为舍去;②④抛物解析:②⑤ 【分析】设抛物线方程为22y px =.根据抛物线的定义、焦半径公式、直线相互垂直与斜率之间的关系即可判断出结论. 【详解】设抛物线方程为22y px =.②③抛物线上横坐标为1的点到焦点的距离等于6,可得162p+=,解得10p =,抛物线方程为220y x =,舍去;②④抛物线的过焦点且垂直于对称轴的弦的长为5,可得25()222pp =⨯,解得52p =,可得抛物线方程为25y x =.②⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1),可得:111222p ⨯=--,解得5p =,可得抛物线方程为210y x =,因此正确.能使抛物线方程为210y x =的条件是②⑤. 故答案为:②⑤. 【点睛】本题考查了抛物线的定义、焦半径公式、直线相互垂直与斜率之间的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二、解答题14.(1)()22416x y -+=;(2)224x y +=. 【分析】(1)求出圆心和半径即得解;(2)设动点(),M x y ,()00,P x y ,由1F M MP →→=得00242x x y y =+⎧⎨=⎩,代入圆的方程即得解. 【详解】(1)由已知得212a =,24b =,故4c ==, 所以()14,0F -、()24,0F, 因为C 是以2F 为圆心且过原点的圆,故圆心为()4,0,半径为4, 所以C 的轨迹方程为()22416x y -+=;(2)设动点(),M x y ,()00,P x y ,则()14,F M x y →=+,()00,MP x x y y →=--,由1F M MP →→=,得()()004,,x y x x y y +=--, 即()()004x x x y y y ⎧+=-⎪⎨=-⎪⎩,解得00242x x y y =+⎧⎨=⎩,因为点P 在C 上,所以()2200416x y -+=,代入得()()22244216x y +-+=,化简得224x y +=.所以M 的轨迹方程为224x y +=. 【点睛】方法点睛:求动点的轨迹方程常见的方法有:(1)直接法;(2)定义法;(3)相关点代入法;(4)消参法.要根据数学情景灵活选择方法求动点的轨迹方程.15.(Ⅰ)2212x y +=;(Ⅱ)点T 的坐标为(1,0)-.【分析】(Ⅰ)根据题意得出222121222c b c a b c ⎧⋅⋅=⎪⎪=⎨⎪=+⎪⎩,解出,a b 即可得出椭圆方程;(Ⅱ)设出直线方程,联立直线与椭圆,利用0∆=得出2221m k =+,表示出21,k P m m ⎛⎫- ⎪⎝⎭,(2,2)Q m k --,再利用0PT QT ⋅=即可得出. 【详解】解:(Ⅰ)依题意得222121222c b c a b c ⎧⋅⋅=⎪⎪=⎨⎪=+⎪⎩,解得1a b ⎧=⎪⎨=⎪⎩所以椭圆的方程为2212x y +=.(Ⅱ)当直线l 的斜率不存在时,l 与直线2x =-无交点,不符合题意, 故直线l 的斜率一定存在,设其方程为y kx m =+,由2212y kx m x y =+⎧⎪⎨+=⎪⎩,得()222214220k x kmx m +++-=, 因为直线l 与椭圆有且只有一个公共点,所以()()22221681210k m m k ∆=--+=,化简得2221m k =+,所以214242=-=-+P km k k x m ,2-=P k x m ,1P P y kx m m =+=,即21,k P m m ⎛⎫- ⎪⎝⎭, 因为直线l 与直线2x =-相交于Q ,所以(2,2)Q m k --,设(),0T t , 所以22(2)10k k TP TQ t t m m ⎛⎫⋅=----+-= ⎪⎝⎭,即21(1)0k t t m ⎛⎫+++= ⎪⎝⎭对任意的k ,m 恒成立, 所以10t +=,即1t =-,所以点T 的坐标为(1,0)-. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.16.(1)22143x y +=;(2)【分析】(1)根据2ABF 的周长为8,解得2a =,再由离心率为12求解. ()2设直线3:2AN y x t =-+,与椭圆方程联立,由弦长公式求得AN ,点O 到直线AN 的距离,然后根据直线AM 过坐标原点,由2AMNAONSS=求解.【详解】()1由椭圆的定义知48,2a a ==,12c a =, 1c ∴=,从而2223b a c =-=,所以椭圆C 的方程为22143x y +=.()2如图所示:设直线3:2AN y x t =-+, 代入椭圆方程223412x y +=, 化简得:223330x tx t -+-=, 设()()1122,,,A x y N x y , 由()23120t ∆=->,得212t <,且()2312914t AN -=+ 而点O 到直线AN 的距离914t d =+,且直线AM 过坐标原点,()23129214914AMNAONt t SS-∴==++,()()2222121222333t t t t +--=≤=当且仅当2212t t =- , 即26t =时取等号,AMN ∴面积的最大值为3【点睛】思路点睛:解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),弦长公式为;AB==k为直线斜率).17.(1)22143x y+=;(2)证明见解析;22127x y+=.【分析】(1)根据条件得出221914a b+=且12ca=,解出,a b即可得出方程;(2)设出直线方程,联立直线与椭圆,由OA OB⊥得0OA OB⋅=,由此可得=.【详解】(1)由椭圆经过点31,2P⎛⎫⎪⎝⎭,离心率12e=得:221914a b+=且12ca=.解得2a=,1c=,b=所以椭圆C:22143x y+=.(2)当直线ABl的斜率不存在时,设直线为x m=,则由OA OB⊥可得(),A m m±,代入椭圆得22143m m+=,解得2127m=,则与直线ABl相切且圆心为原点的圆的半径为m=,即圆的方程为22127x y+=;当斜率存在时,设直线ABl的方程为:y kx b=+,()11,A x y,()22,B x y,联立方程22143y kx bx y=+⎧⎪⎨+=⎪⎩,整理得到:()()222348430k x kbx b+++-=.所以122834kbx xk+=-+,()21224334bx xk-=+.因为OA OB⊥,所以1212OA OB x x y y⋅=+=,又因为11y kx b=+,22y kx b=+,故()()12121212x x y y x x kx b kx b+=+++()()22121210k x x kb x x b=++++=,将122834km x x k +=-+,()21224334b x x k -=+代入上式,得到: ()()2222222413803434k b k b b k k+--+=++, 去掉分母得:()()()2222224138340k b k b b k +--++=,去括号得:22712120b k --=,=又因为与直线AB l相切且圆心为原点的圆的半径r === 所以该圆方程为22127x y +=, 综上,定圆方程为22127x y +=. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.18.(1)28y x =;(2)π4PAF ∠=. 【分析】(1)方法一,利用直线与圆的位置关系,以及圆与圆的位置关系,转化为抛物线的定义求曲线方程;方法二,利用等量关系,直接建立关于(),x y 的方程;(2)方法一,利用条件求点P 的坐标,再求PA k ;方法二,利用抛物线的定义,转化PF 为点P 到准线的距离,利用几何关系求PAF ∠的大小. 【详解】解:(1)设(),M x y ,圆M 的半径为r . 由题意知,1MF r =+,M 到直线l 的距离为r . 方法一:点M 到点()2,0F 的距离等于M 到定直线2x =-的距离,根据抛物线的定义知,曲线C 是以()2,0F 为焦点,2x =-为准线的抛物线. 故曲线C 的方程为28y x =.方法二:因为1MF r ==+,1x r +=,1x >-,2x =+,化简得28y x =,故曲线C 的方程为28y x =.(2)方法一:设()00,P x y ,由PA ,得()()22220000222x y x y ⎡⎤++=-+⎣⎦,又2008y x =,解得02x =,故()42,P ±,所以1PA k =±,从而π4PAF ∠=. 方法二:过点P 向直线2x =-作垂线,垂足为Q .由抛物线定义知,PQ PF =,所以PA =,在APQ 中,因为π2PQA ∠=,所以sin PQ QAP PA ∠==, 从而π4QAP ∠=,故π4PAF ∠=. 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.19.(1)24y x =;(2)证明见解析;(3)()202t d t t t ⎧>⎪=⎨<≤⎪⎩.【分析】(1)根据准线方程可求p ,从而可求抛物线方程.(2)设直线方程为x my t =+,联立直线方程和抛物线方程,利用韦达定理可证OA OB ⋅为与m 无关的定值.(3)设(),P x y ,则可用x 表示||PT ,利用二次函数的性质可求()d t . 【详解】(1)因为准线方程为10x +=,故12p=,故2p =, 故抛物线方程为:24y x =.(2)设直线l :x my t =+,其中m R ∈,t 为常数,设()()1122,,,A x y B x y ,由24y x x my t⎧=⎨=+⎩可得2440y my t --=,所以124y y t .而()212212124416y y O y y x x A B t t t O +=-⋅=+=-,该值与斜率无关.(3)设(),P x y ,则PT ==0x ≥.令()()2224,0S x x t x t x =--+≥,对称轴为直线2x t =- 若02t <≤,则20t -≤,则()2min 0S S t ==,故()d t t =;若2t >,则20t ->,则()()22min 2244S S t t t t =-=--=-,故()d t =所以()2,02t d t t t ⎧>⎪=⎨<≤⎪⎩. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为关于1212,x x x x +(或1212,y y y y +的形式); (5)代入韦达定理求解.20.(1)22143x y +=(2)1(2-,0)(0⋃,1)2(3)证明见解析.【分析】(1)由题意知12c e a ==,则2a c =,求出椭圆C 的中心O 关于直线250x y --=的对称点,可求a ,即可得出椭圆C 的方程;(2)设直线PN 的方程为(4)y k x =-代入椭圆方程,根据判别式,可求直线PN 的斜率范围;(3)求出直线ME 的方程为212221()y y y y x x x x +-=--,令0y =,得221221()y x x x x y y -=-+,即可得出结论.【详解】 (1)由题意知12c e a ==,则2a c =,设椭圆C 的中心O 关于直线250x y --=的对称点(,)m n ,则·212?5022n mm n ⎧=-⎪⎪⎨⎪--=⎪⎩,4m ∴=,2n =-,椭圆C 的中心O 关于直线250x y --=的对称点落在直线2x a =上.24a ∴=,1c ∴=,b ∴=∴椭圆C 的方程为22143x y +=;(2)由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =-. 代入椭圆方程,可得2222(43)3264120k x k x k +-+-=.① 由2222(32)4(43)(6412)0kk k ∆=--+->,得2410k -<,1122k ∴-<< 又0k =不合题意,∴直线PN 的斜率的取值范围是:1(2-,0)(0⋃,1)2.(3)设点1(N x ,1)y ,2(E x ,2)y ,则1(M x ,1)y -. 直线ME 的方程为212221()y y y y x x x x +-=--. 令0y =,得221221()y x x x x y y -=-+.将11(4)y k x =-,22(4)y k x =-代入整理,得12121224()8x x x x x x x -+=+-.②由①得21223243k x x k +=+,2122641243k x x k -=+代入②整理,得1x =.∴直线ME 与x 轴相交于定点(1,0).【点睛】关键点点睛:本题考查椭圆的方程,设出直线与椭圆方程联立,消元后,利用二次方程的判别式求k 的取值范围,求出与x 轴交点的坐标表达式,化简即可证明交点为定点,考查直线与椭圆的位置关系,考查韦达定理,考查学生分析解决问题的能力,属于中档题. 21.(1)24y x =(2)10x y ±+=. 【分析】(1)由题意联立直线方程与抛物线方程,结合题意和韦达定理求得p 的值即可确定曲线方程;(2)首先确定曲线2C 的方程,设直线l '的方程为1x my =-,然后连线直线和椭圆方程,结合韦达定理得到关于m 的方程,解方程求得m 的值即可确定直线方程. 【详解】 (1)由已知得(,0)2p F ,设直线l 的方程为2p y x =-, ∴22230242p y x p x px y px⎧=-⎪⇒-+=⎨⎪=⎩, 123x x p ∴+=,又因为126x x +=, 所以2p =,∴曲线1C 的方程为24y x =.(2)由已知得2a =,c =1b ∴=,∴曲线2C 的方程为2214x y +=, 设直线l '的方程为1x my =-,则22221(4)23041x y m y my x my ⎧+=⎪⇒+--=⎨⎪=-⎩, 设3(M x ,3)y ,4(N x ,4)y ,34342223,44m y y y y m m +==-⋅++,∴3411||22OMNS y y =⨯⨯-==△, 因为45MONS=所以42471101m m m +-=⇒=±,∴直线l '的方程为10x y ±+=.【点睛】关键点点睛:本题主要考查抛物线方程的求解,椭圆方程的确定,直线与圆锥曲线的位置关系等知识,关键在于联立椭圆方程,由韦达定理及三角形面积公式可得出m ,求出直线方程,意在考查学生的转化能力和计算求解能力. 22.(1)1143a <<;(2)01a <≤或4a ≥. 【分析】(1)根据椭圆的标准方程,求出a 的范围;(2)再确定集合A ,由双曲线的标准方程得集合B ,然后根据充分必要条件的定义集合包含关系,从而得出a 的不等关系,求得结论.【详解】(1)由方程221382x y a a+=--表示的曲线是表示焦点在x 轴上的椭圆∴(3)(82)0a a ->->, ∴1143a << 解不等式22430(0)x ax a a -+<>可得3(0)a x a a <<>方程221382x y a a+=--表示的曲线是双曲线∴(3)(82)0a a --<, ∴4a >或3a <因为A 是B 的充分不必要条件所以(,3)a a 是(,3)(4,)-∞⋃+∞的真子集 所以033a <≤或4a ≥ 解得01a <≤或4a ≥所以a 的取值范围是01a <≤或4a ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 23.(1)()2302y x x =>;(2)2. 【分析】(1)设(),N x y ,由已知向量的数量关系及位置关系得()()3,2,0y x y ⋅-=,即可知N 的轨迹C 的方程;(2)由直线与抛物线相交关系,令直线AB 的方程为:2x my =+,()11,A x y ,()22,B x y ,联立方程,应用根与系数关系有12120323y y m y y ∆>⎧⎪⎪+=⎨⎪=-⎪⎩,结合已知条件、弦长公式即可求AB . 【详解】。

人教版高中数学选择性必修第一册-第3章-圆锥曲线的方程 单元测试卷(含解析)

人教版高中数学选择性必修第一册-第3章-圆锥曲线的方程 单元测试卷(含解析)

第3章 圆锥曲线的方程单元测试卷(原卷版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为( )A .4 B .-4C .-14D.142.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为( )A.x 23+y 2=1B.x 23+y 22=1C.x 29+y 28=1D.y 29+x 28=13.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为( )A .1 B .-1C .1或-1 D .1或-1或04.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为( )A.52 B.5C.52D .55.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是( )6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2 B .4C .6 D .87.如图,已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是( )A .3 B .2C.3 D.28.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3) B .(1,4)C .(2,3) D .(2,4)二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为( )A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=1(0<θ<π2)D.x 2cos 2θ-y 2sin 2θ=1(0<θ<π2)10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为( )A.2-1B.22C.2D.2+111.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是( )A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是( )A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y 24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)15.在椭圆x 2a 2+y 2b2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F 2向∠F 1QF 2的平分线作垂线F 2P ,垂足为P ,求P 点的轨迹方程.18.(12分)已知点P 到F 1(0,3),F 2(0,-3)的距离之和为4,设点P 的轨迹为C ,直线y =kx +1与轨迹C 交于A ,B 两点.(1)求轨迹C 的方程;(2)若|AB |=825,求k .19.(12分)已知直线l :y =x +m 与抛物线y 2=8x 交于A ,B 两点.(1)若|AB |=10,求m 的值;(2)若OA ⊥OB ,求m 的值.20.(12分)如图,已知抛物线C 1:y =14x 2,圆C 2:x 2+(y -1)2=1,过点P (t ,0)(t >0)作不过原点O 的直线PA ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求△PAB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.21.(12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左顶点为M (-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N (1,0)的直线AB 交椭圆Γ于A ,B 两点;当MA → ·MB →取得最大值时,求△MAB 的面积.22.(12分)已知曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)2倍.(1)求曲线C 的方程;(2)设曲线C 与x 轴正半轴交于点A 2,不垂直于x 轴的直线l 与曲线C 交于A ,B 两点(异于点A 2).若以AB 为直径的圆经过点A 2,试问直线l 是否过定点?若是,请求出该定点坐标;若不是,请说明理由.1.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是( )A.(14,94)B.(23,1)C.(12,23)D.(0,12)2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是( )A .m -a B.12(m -a )C .m 2-a 2D.m -a3.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433B.233C .3D .24.已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=15.【多选题】已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为( )A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1 D.x 22-y 24=16.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是( )A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 27.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则( )A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a=________.9.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.10.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.12.已知抛物线y 2=-4x 的焦点为F ,其准线与x 轴交于点M ,过M 作斜率为k 的直线l 与抛物线交于A ,B 两点,弦AB 的中点为P ,AB 的垂直平分线与x 轴交于E (x 0,0).(1)求k 的取值范围;(2)求证:x 0<-3.13.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC → ·DB → +AD → ·CB →=8,求k 的值.14.已知抛物线C 的顶点在原点O ,焦点与椭圆x 225+y 29=1的右焦点重合.(1)求抛物线C 的方程;(2)在抛物线C 的对称轴上是否存在定点M ,使过点M 的动直线与抛物线C 相交于P ,Q 两点时,有∠POQ =π2.若存在,求出M 的坐标;若不存在,请说明理由.15.如图所示,已知椭圆x 2a 2+y 2b2=1(a >b >0),A ,B 分别为其长、短轴的一个端点,F 1,F 2分别是其左、右焦点.从椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且AB → 与OM→是共线向量.(1)求椭圆的离心率e ;(2)设Q 是椭圆上异于左、右顶点的任意一点,求∠F 1QF 2的取值范围.第3章 圆锥曲线的方程单元测试卷(解析版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为( )A .4 B .-4C .-14D.14答案 C2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为( )A.x 23+y 2=1B.x 23+y 22=1C.x 29+y 28=1D.y 29+x 28=1答案 C解析 因为△AF 1B 的周长为12,所以4a =12,所以a =3.又c a =13,所以c =1,b 2=8,所以C 的标准方程为x 29+y 28=1.3.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为( )A .1 B .-1C .1或-1 D .1或-1或0答案 C解析 由题意可知直线l 恒过点(2,0),即双曲线的右焦点,双曲线的渐近线方程为y =±x .要使直线l 与双曲线只有一个公共点,则该直线与渐近线平行,所以k =±1.故选C.4.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为( )A.52 B.5C.52D .5答案 B解析 由已知可设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0).∴±a b =±12,∴b =2a ,∴b 2=4a 2,∴c 2-a 2=4a 2.∴c 2=5a 2,∴c 2a 2=5,∴e =c a=5.5.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是( )答案 B解析 方程ax 2-by 2=ab变形为x 2b -y 2a =1,直线bx -y +a =0,即y =bx +a 的斜率为b ,纵截距为a .当a >0,b >0时,x 2b -y 2a=1表示焦点在x 轴上的双曲线,此时直线的斜率b >0,纵截距a >0,故C 错误;当a <0,b <0时,x 2b -y 2a=1表示焦点在y 轴上的双曲线,此时直线的斜率b <0,纵截距a <0,故D 错误;当a <0,b >0,且-a ≠b 时,x 2b -y 2a=1表示椭圆,此时直线的斜率b >0,纵截距a <0,故A 错误.故选B.6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2 B .4C .6 D .8答案 B解析 由题意,不妨设抛物线方程为y 2=2px (p >0).由|AB |=42,|DE |=25,可取A (4p ,22),D (-p 2,5),设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p 24+5,得p =4.故选B.7.如图,已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是( )A .3 B .2C.3 D.2答案 B解析 如图,记AF1,AF 2与△APF 1的内切圆分别相切于点N ,M ,则|AN |=|AM |,|PM |=|PQ |,|NF 1|=|QF 1|,又因为|AF 1|=|AF 2|,则|NF 1|=|AF 1|-|AN |=|AF 2|-|AM |=|MF 2|,因此|QF 1|=|MF 2|,则|PF 1|-|PF 2|=(|PQ |+|QF 1|)-(|MF 2|-|PM |)=|PQ |+|PM |=2|PQ |=2,即2a =2,则a =1.由|F 1F 2|=4=2c ,得c =2,所以双曲线的离心率e =c a=2.故选B.8.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3) B .(1,4)C .(2,3) D .(2,4)答案 D解析 如图,显然当直线l 的斜率不存在时,必有两条直线满足题意,当直线l 的斜率存在时,设斜率为k ,设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,M (x 0,y 0),则{y 12=4x 1,y 22=4x 2,两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2).由于x 1≠x 2,所以y 1+y 22·y 1-y 2x 1-x2=2⇒ky 0=2.①圆心为C (5,0),由CM ⊥AB ,得k ·y 0-0x 0-5=-1⇒ky 0=5-x 0.②由①②解得x 0=3,即点M 必在直线x =3上,将x 0=3代入y 2=4x ,得y 02=12⇒-23<y 0<23,因为点M 在圆(x -5)2+y 2=r 2(r >0)上,所以(x 0-5)2+y 02=r 2(r >0),r 2=y 02+4<12+4=16.因为斜率存在,所以y 0≠0,所以4<y 02+4<16⇒2<r <4.故选D.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为( )A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=1(0<θ<π2)D.x 2cos 2θ-y 2sin 2θ=1(0<θ<π2)答案 AD解析 对于A ,y 2=4x ,抛物线的焦点为F (1,0),满足;对于B ,x 2=4y ,抛物线的焦点为F (0,1),不满足;对于C ,x 2cos 2θ+y 2sin 2θ=1(0<θ<π2),焦点为(±cos 2θ-sin 2θ,0)或(0,±sin 2θ-cos 2θ)或曲线表示圆不存在焦点,均不满足;对于D ,x 2cos 2θ-y 2sin 2θ=1(0<θ<π2),双曲线的右焦点为F (1,0),满足.10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为( )A.2-1 B.22C.2D.2+1答案 ABD解析 若圆锥曲线E 为椭圆,不妨设椭圆方程为x 2a 2+y 2b2=1(a >b >0),设椭圆的离心率为e .因为△ABC 为等腰直角三角形,所以当AB 为斜边时,可以得到b =c =22a ,则e =c a =22;当AB 为直角边时,不妨令|AC |=|AB |=2c ,所以22c +2c =2a ,所以e =ca=2-1.若圆锥曲线E 为双曲线,不妨设双曲线方程为x 2a ′2-y 2b ′2=1(a ′>0,b ′>0),设双曲线的离心率为e ′.因为△ABC 为等腰直角三角形,所以AB 只能为直角边,不妨令AC ⊥AB ,则|AC |=|AB |=2c ,可以得到22c ′=2a ′+2c ′,则e ′=c ′a ′=2+1.故选ABD.11.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是( )A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)答案 CD解析 设点P 的坐标为(x ,y ),由椭圆E :x 28+y 24=1,可知a 2=8,b 2=4,所以c 2=a 2-b 2=4,所以c =2,F 1(-2,0),F 2(2,0).因为△F 1PF 2的面积为3,所以12×2c ×|y |=12×4×|y |=3,得到y =±32,A 说法错误;将y =±32代入椭圆E 的方程,得到x 28+916=1,解得x =±142,不妨取P (142,32),因为PF 1→ ·PF 2→=(-2-142,-32)·(2-142,-32)=144-4+94>0,所以∠F 1PF 2为锐角,B 说法错误;因为a =22,所以|PF 1|+|PF 2|=42,所以△F 1PF 2的周长为4+42=4(2+1),C 说法正确;设△F 1PF 2的内切圆半径为r ,因为△F 1PF 2的面积为3,所以12×r ×4(2+1)=3,解得r =32(2-1),D 说法正确.故选CD.12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是( )A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)答案 ABD解析 设点P 的坐标为(x ,y )(x ≠±1),则直线AP 的斜率为k AP =y x +1,直线BP 的斜率为k BP=y x -1.因为k AP ·k BP =m ,所以yx +1·yx -1=m (x ≠±1),化简得到点P 的轨迹方程为x 2+y 2-m=1(x ≠±1),所以正确结论有A 、B 、D.故选ABD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.答案 38解析 由题意,得(a ,b )共有8种不同情况,其中满足“曲线ax 2+by 2=1为椭圆”的有(1,2),(3,1),(3,2),共3种情况,由古典概型的概率公式,得所求概率P =38.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y 24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)答案 2 255解析 抛物线y 2=2px (p >0)的准线方程为x =-p2,双曲线x 2-y 24=1的两条渐近线方程分别为y =2x ,y =-2x ,这三条直线构成等腰三角形,其底边长为2p ,三角形的高为p 2,因此12×2p×p2=2,解得p =2.则抛物线焦点坐标为(1,0),且到直线y =2x 和y =-2x 的距离相等,均为|2-0|5=255.15.在椭圆x 2a 2+y 2b2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).答案 0或2或4解析 设该点为P (x ,y ),椭圆的左、右焦点分别为F 1(-c ,0),F 2(c ,0)(c >0),则|PF 1|=(x +c )2+y 2=(x +c )2+b 2(1-x 2a 2)=a +ex ,|PF 2|=a -ex .|PF 1|2+|PF 2|2=4a 2-2|PF 1|·|PF 2|=2a 2+2c 2a2x 2=4c 2.∴x 2=2a 2-a 4c 2=a 2(2c 2-a 2)c 2≥0.∴当a 2>2c 2时,该点不存在;当a 2≤2c 2时,该点存在,且当a 2=2c 2时这样的点有2个,当c 2<a 2<2c 2时有4个.16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.答案 52解析 利用渐近线与直线方程求出交点A ,B 的坐标,进而得出中点C 的坐标;由|PA |=|PB |可知,PC 与直线x -3y +m =0(m ≠0)垂直,利用斜率关系求出a ,b 的关系式.双曲线x 2a2-y 2b 2=1的渐近线方程为y =±b ax .由{y =bax ,x -3y +m =0,得A(am 3b -a ,bm3b -a).由{y =-bax ,x -3y +m =0,得B (-am a +3b ,bma +3b).所以AB 的中点C 的坐标为(a 2m9b 2-a 2,3b 2m 9b 2-a 2).设直线l :x -3y +m =0(m ≠0),因为|PA |=|PB |,所以PC ⊥l .所以k PC =-3,即3b 2m 9b 2-a 2a 2m9b 2-a 2-m=-3,化简得a 2=4b 2.在双曲线中,c 2=a 2+b 2=5b 2,所以e =c a=52.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F 2向∠F 1QF 2的平分线作垂线F 2P ,垂足为P ,求P 点的轨迹方程.解析 如图,延长F 2P 交F 1Q 于点A ,连接OP ,则由角平分线的性质,知|AQ |=|F 2Q |.由三角形中位线性质,知|OP |=12|F 1A |.∴|OP |=12(|QF 1|-|QA |)=12(|QF 1|-|QF 2|).若点Q 在双曲线的左支上时,|OP |=12(|QF 2|-|QF 1|), 即|OP |=12×2a =a ,∴P 点的轨迹方程为x 2+y 2=a 2(y ≠0).18.(12分)已知点P 到F 1(0,3),F 2(0,-3)的距离之和为4,设点P 的轨迹为C ,直线y =kx +1与轨迹C 交于A ,B 两点.(1)求轨迹C 的方程;(2)若|AB |=825,求k .解析 (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆,即a =2,c =3,b =22-(3)2=1,故轨迹C 的方程为x 2+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2).联立{x 2+y 24=1,y =kx +1,得(k 2+4)x 2+2kx -3=0,则Δ=4k 2+12(k 2+4)=16(k 2+3)>0,且x 1+x 2=-2kk 2+4,x 1x 2=-3k 2+4.则(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=16(k 2+3)(k 2+4)2,所以|AB |2=(1+k )2(x 1-x 2)2=(1+k )2·16(k 2+3)(k 2+4)2=12825,整理得(17k 2+53)(k 2-1)=0,解得k 2=1,所以k =±1.19.(12分)已知直线l :y =x +m 与抛物线y 2=8x 交于A ,B 两点.(1)若|AB |=10,求m 的值;(2)若OA ⊥OB ,求m 的值.解析 设A (x 1,y 1),B (x 2,y 2),(1)由{y =x +m ,y 2=8x ,得x 2+(2m -8)x +m 2=0,∴{Δ=(2m -8)2-4m 2>0,x 1+x 2=8-2m ,x 1x 2=m 2.由|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=10.得m =716(m <2).(2)∵OA ⊥OB ,∴x 1x 2+y 1y 2=0.∴x 1x 2+(x 1+m )(x 2+m )=0.∴2x 1x 2+m (x 1+x 2)+m 2=0.∴2m 2+m (8-2m )+m 2=0.∴m 2+8m =0,m =0或m =-8.经检验得m =-8.20.(12分)如图,已知抛物线C 1:y =14x 2,圆C 2:x 2+(y -1)2=1,过点P (t ,0)(t >0)作不过原点O 的直线PA ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求△PAB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.解析 (1)由题意知直线PA 的斜率存在,故可设直线PA 的方程为y =k (x -t ),由{y =k (x -t ),y =14x 2,消去y ,整理得x 2-4kx +4kt =0,由于直线PA 与抛物线相切,令Δ=0,得k =t .因此,点A 的坐标为(2t ,t 2).设圆C 2的圆心为D (0,1),点B 的坐标为(x 0,y 0),由题意知点B ,O 关于直线PD 对称,故{y 02=-x 02t +1,x 0t -y 0=0,解得{x 0=2t 1+t 2,y 0=2t 21+t 2.因此,点B 的坐标为(2t 1+t 2,2t 21+t 2).(2)由(1)知|AP |=t ·1+t 2,直线PA 的方程为tx -y -t 2=0.点B 到直线PA 的距离是d =t 21+t 2.设△PAB 的面积为S ,所以S =12|AP |·d =t 32.21.(12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左顶点为M (-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N (1,0)的直线AB 交椭圆Γ于A ,B 两点;当MA → ·MB →取得最大值时,求△MAB 的面积.解析 (1)由已知a =2,ca =22,得c =2,∴a 2-b 2=2,即4-b 2=2,∴b 2=2,∴椭圆Γ的方程为x 24+y 22=1.(2)当直线AB 与x 轴重合时,MA → ·MB →=0.当直线AB 与x 轴不重合时,设直线AB 的方程为x =ty +1,A (x 1,y 1),B (x 2,y 2),则MA →=(x 1+2,y 1),MB →=(x 2+2,y 2).由{x =ty +1,x 24+y 22=1,得(t 2+2)y 2+2ty -3=0.显然Δ>0,∴y 1+y 2=-2t t 2+2,y 1y 2=-3t 2+2.∴MA → ·MB →=(x 1+2)(x 2+2)+y 1y 2=(ty 1+3)(ty 2+3)+y 1y 2=(t 2+1)y 1y 2+3t (y 1+y 2)+9=(t 2+1)·-3t 2+2+3t ·-2tt 2+2+9=-3-3t 2-6t 2t 2+2+9=-9t 2-3t 2+2+9=15t 2+2≤152,∴MA → ·MB →的最大值为152.此时t =0,直线AB 的方程为x =1.综上可知MA → ·MB →的最大值为152.联立{x =1,x 24+y 22=1,解得{x =1,y =62或{x =1,y =-62,不妨令A (1,62),B (1,-62),∴|AB |=6,又|MN |=3,∴S △MAB =12|MN |·|AB |=12×3×6=362.22.(12分)已知曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)2倍.(1)求曲线C 的方程;(2)设曲线C 与x 轴正半轴交于点A 2,不垂直于x 轴的直线l 与曲线C 交于A ,B 两点(异于点A 2).若以AB 为直径的圆经过点A 2,试问直线l 是否过定点?若是,请求出该定点坐标;若不是,请说明理由.解析 (1)∵曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)的距离的2倍,∴|x -2|=2·(x -1)2+y 2,化简,得x 22+y 2=1,即曲线C 是椭圆,其方程为x 22+y 2=1.(2)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),由{y =kx +m ,x 22+y 2=1,得(1+2k 2)x 2+4mkx +2m 2-2=0,∴Δ=(4mk )2-4(1+2k 2)(2m 2-2)>0,即2k 2+1>m 2,x 1+x 2=-4mk 1+2k 2,x 1x 2=2m 2-21+2k 2.∵y 1=kx 1+m ,y 2=kx 2+m ,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=k 2·2m 2-21+2k 2+mk ·-4mk1+2k 2+m 2=m 2-2k 21+2k 2.∵点A 2(2,0)在以AB 为直径的圆上,∴AA 2⊥BA 2,即AA 2→ ·B A 2→=0.又AA 2→ =(2-x 1,-y 1),BA 2→=(2-x 2,-y 2),∴(2-x 1,-y 1)·(2-x 2,-y 2)=0,即(2-x 1)(2-x 2)+y 1y 2=2-2(x 1+x 2)+x 1x 2+y 1y 2=0,∴2+2·4mk1+2k 2+2m 2-21+2k 2+m 2-2k 21+2k 2=0,化简得2k 2+42mk +3m 2=0,即(2k +m )(2k +3m )=0,∴2k +m =0或2k +3m =0.当2k +m =0时,直线l :y =k (x -2)过定点(2,0),即过点A 2(2,0),不满足题意;当2k +3m =0时,直线l 的方程可化为y =k (x -23),过定点(23,0).综上,直线l 过定点(23,0).1.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是( )A.(14,94)B.(23,1)C.(12,23)D.(0,12)答案 C解析 由题意知B (c ,b 2a ),∴k =b 2ac +a =a -c a=1-e ,∴13<1-e <12,∴12<e <23.故选C.2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是( )A .m -a B.12(m -a )C .m 2-a 2D.m -a答案 A解析 不妨取P 在双曲线的右支上,则{|PF 1|+|PF 2|=2m ,|PF 1|-|PF 2|=2a ,解得|PF 1|=m +a ,|PF 2|=m -a .∴|PF 1|·|PF 2|=(m +a )(m -a )=m -a .3.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433 B.233C .3 D .2答案 A解析 利用椭圆、双曲线的定义和几何性质求解.设|PF 1|=r 1,|PF 2|=r 2(r 1>r 2),|F 1F 2|=2c ,椭圆长半轴长为a 1,双曲线实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2,由(2c )2=r 12+r 22-2r 1r 2cosπ3,得4c 2=r 12+r 22-r 1r 2.由{r 1+r 2=2a 1,r 1-r 2=2a 2,得{r 1=a 1+a 2,r 2=a 1-a 2.∴1e 1+1e 2=a 1+a 2c=r 1c .令m =r 12c 2=4r 12r 12+r 22-r 1r2=41+(r 2r 1)2-r2r 1=4(r 2r 1-12)2 +34,当r 2r 1=12时,m max =163,∴(r 1c )max =433.即1e 1+1e 2的最大值为433.4.已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1答案 D解析 根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b2x ,x 2+y 2=4得x A =44+b 2,y A =2b 4+b 2,故四边形ABCD 的面积为4x A y A =32b4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1.故选D.5.【多选题】已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为( )A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1D.x 22-y 24=1答案 AB解析 因为A 1(-a ,0),A 2(a ,0),P (0,b ),Q (0,-b ),所以|A 1A 2|=2a ,|PQ |=2b ,所以|A 1P |=|A 2Q |=|A 1Q |=|A 2P |=a 2+b 2=c .又四边形A 1PA 2Q 的面积为22,所以4×12ab =22,即ab=2.记四边形A 1PA 2Q 的内切圆的半径为r ,则2πr =263π,解得r =63,所以2cr =22,所以c =3.又c 2=a 2+b 2=3,所以{a =2,b =1或{a =1,b =2,所以双曲线C 的方程为x 22-y 2=1或x 2-y 22=1.故选AB.6.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是( )A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2答案 BD解析 ∵椭圆C :x 2a 2+y 2b2=1(a >b >0),∴A 1(-a ,0),A 2(a ,0),B 1(0,b ),B 2(0,-b ),F 1(-c ,0),F 2(c ,0).对于A ,若|A 1F 1|·|F 2A 2|=|F 1F 2|2,则(a -c )2=(2c )2,∴a -c =2c ,∴e =13,不符合题意,故A 错误;对于B ,若∠F 1B 1A 2=90°,则|A 2F 1|2=|B 1F 1|2+|B 1A 2|2,∴(a +c )2=a 2+a 2+b 2,∴c 2+ac -a 2=0,∴e 2+e -1=0,解得e =5-12或e =-5-12(舍去),符合题意,故B 正确;对于C ,若PF 1⊥x 轴,且PO ∥A 2B 1,则P (-c ,b 2a),∵k PO =kA 2B 1,∴b 2a-c =b-a ,解得b =c ,又a 2=b 2+c 2,∴e =c a =c 2c =22,不符合题意,故C 错误;对于D ,若四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2,即四边形A 1B 2A 2B 1的内切圆的半径为c ,则由菱形面积公式可得ab =c a 2+b 2,∴c 4-3a 2c 2+a 4=0,∴e 4-3e 2+1=0,解得e 2=3+52(舍去)或e 2=3-52,∴e =5-12,故D 正确.故选BD.7.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则( )A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆答案 BD解析 mx 2+ny 2=1表示椭圆的充要条件是m >0,n >0,A 不正确;mx 2+ny 2=1表示双曲线的充要条件是mn <0,B 正确;当n =0时,mx 2=1不表示抛物线,C 不正确;mx 2+ny 2=1表示焦点在x 轴上的椭圆的充要条件是n >m >0,D 正确.故选BD.8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.答案 2+1思路分析 根据正方形的边长及O 为AD 的中点,求出点C ,F 的坐标,将两点坐标代入抛物线方程列式求解.解析 ∵正方形ABCD 和正方形DEFG 的边长分别为a ,b ,O 为AD 的中点,∴C (a2,-a ),F (a2+b ,b ).又∵点C ,F 在抛物线y 2=2px (p >0)上,∴{a 2=pa ,b 2=2p (a 2+b ),解得ba=2+1.9.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.答案 x 2+32y 2=1思路分析 根据题意,求出点B 的坐标代入椭圆方程求解.解析 设点B 的坐标为(x 0,y 0).∵x 2+y 2b 2=1,∴F 1(-1-b 2,0),F 2(1-b 2,0).∵AF 2⊥x 轴,∴A (1-b 2,b 2).∵|AF 1|=3|F 1B |,∴AF 1→ =3F 1B →.∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0).∴x 0=-51-b 23,y 0=-b 23.∴点B 的坐标为(-51-b 23,-b 23).将B (-51-b 23,-b 23)代入x 2+y 2b 2=1,得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.10.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________.答案 ±1解析 设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2).由{y 2=4x ,y =k (x +1),得k 2x 2+2(k 2-2)x +k 2=0.∴x 1+x 2=-2(k 2-2)k 2.∴x 1+x 22=-k 2-2k 2=-1+2k 2,y 1+y 22=2k ,即Q (-1+2k 2,2k).又|FQ |=2,F (1,0),∴(-1+2k 2-1)2 +(2k)2=4,解得k =±1.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.解析 方法一:根据题图设焦点坐标为F 1(-c ,0),F 2(c ,0),M 是椭圆上一点,依题意设M点坐标为(c ,23b ).在Rt △MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2,即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理,得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a ,所以b 2a 2=49.所以e 2=c 2a 2=a 2-b 2a2=1-b 2a 2=59,所以e =53.方法二:设M (c ,23b ),代入椭圆方程,得c 2a 2+4b 29b 2=1,所以c 2a 2=59,所以c a =53,即e =53.12.已知抛物线y 2=-4x 的焦点为F ,其准线与x 轴交于点M ,过M 作斜率为k 的直线l与抛物线交于A ,B 两点,弦AB 的中点为P ,AB 的垂直平分线与x 轴交于E (x 0,0).(1)求k 的取值范围;(2)求证:x 0<-3.解析 (1)由y 2=-4x ,可得准线x =1,从而M (1,0).设l 的方程为y =k (x -1),联立{y =k (x -1),y 2=-4x ,得k 2x 2-2(k 2-2)x +k 2=0.∵A ,B 存在,∴Δ=4(k 2-2)2-4k 4>0,∴-1<k <1.又k ≠0,∴k ∈(-1,0)∪(0,1).(2)证明:设P (x 3,y 3),A (x 1,y 1),B (x 2,y 2),可得x 3=x 1+x 22=k 2-2k 2,y 3=k(x 1+x 22-1)=-2kk2=-2k.即直线PE 的方程为y +2k =-1k (x -k 2-2k 2).令y =0,x 0=-2k2-1.∵k 2∈(0,1),∴x 0<-3.13.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC → ·DB → +AD → ·CB →=8,求k 的值.解析 (1)设F (-c ,0),由ca=33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b3.于是26b 3=433,解得b =2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组{y =k (x +1),x 23+y 22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC → ·DB → +AD → ·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1)=6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.14.已知抛物线C 的顶点在原点O ,焦点与椭圆x 225+y 29=1的右焦点重合.(1)求抛物线C 的方程;(2)在抛物线C 的对称轴上是否存在定点M ,使过点M 的动直线与抛物线C 相交于P ,Q 两点时,有∠POQ =π2.若存在,求出M 的坐标;若不存在,请说明理由.解析 (1)椭圆x 225+y 29=1的右焦点为(4,0),所以抛物线C 的方程为y 2=16x .(2)设点M (a ,0)(a ≠0)满足题设,当PQ 的斜率存在时,PQ 的方程为y =k (x -a ),则联立{y 2=16x ,y =k (x -a )⇒k 2x 2-2(ak 2+8)x +a 2k 2=0,则x 1+x 2=2(ak 2+8)k 2,x 1x 2=a 2.设P (x 1,y 1),Q (x 2,y 2),则由∠POQ =π2,得x 1x 2+y 1y 2=0.从而x 1x 2+k 2(x 1-a )(x 2-a )=0⇒a 2-16a =0⇒a =16,若PQ 的方程为x =a ,代入抛物线方程得y =±4a ,当∠POQ =π2时,a =4a ,即a =16,所以存在满足条件的点M (16,0).15.如图所示,已知椭圆x 2a 2+y 2b2=1(a >b >0),A ,B 分别为其长、短轴的一个端点,F 1,F 2分别是其左、右焦点.从椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且AB → 与OM→是共线向量.(1)求椭圆的离心率e ;(2)设Q 是椭圆上异于左、右顶点的任意一点,求∠F 1QF 2的取值范围.解析 (1)设M (x M ,y M ),∵F 1(-c ,0),∴x M =-c ,y M =b 2a ,∴k OM =-b 2ac .由题意知k AB =-b a,∵OM → 与AB →是共线向量,∴-b 2ac =-ba,∴b =c ,∴a =2c ,∴e =22.(2)设|F 1Q |=r 1,|F 2Q |=r 2,∠F 1QF 2=θ,则r 1+r 2=2a .又|F 1F 2|=2c ,∴由余弦定理,得cos θ=r 12+r 22-4c 22r 1r 2=(r 1+r 2)2-2r 1r 2-4c 22r 1r 2=a 2r 1r 2-1≥a 2(r 1+r 22)2-1=0,当且仅当r 1=r 2时等号成立,∴cos θ≥0,∴θ∈(0,π2]..。

(完整版)(最新)圆锥曲线单元测试题(含答案解析)

(完整版)(最新)圆锥曲线单元测试题(含答案解析)

完美WORD 格式.整理圆锥曲线与方程单元测试(高二高三均适用)、选择题A 、25、过抛物线y 4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ()A 、有且仅有一条B 、有且仅有两条C 、有无穷多条D 、不存在6、一个椭圆中心在原点, 焦点R 、F 2在x 轴上,P (2, 3 )是椭圆上一点,且|PF 1|、|F 1F 2|、|PF 2 |成等差数列,则椭圆方程为()7 .设0v k v a 2,那么双曲线 上 - 异 =1与双曲线 % - y 2 = 1有()a — KD +K a b(A )相同的虚轴(B )相同的实轴(C )相同的渐近线(D )相同的焦点8 .若抛物线y 2= 2p x (p > 0)上一点P 到准线及对称轴的距离分别为10和6,则p 的值等于1 •方程x 、.、3y2 1所表示的曲线是 (A )双曲线(B )椭圆(C )双曲线的一部分 (D )椭圆的一部分2 •椭圆2y a21与双曲线—a 2-1有相同的焦点,贝U a 的值是 23.双曲线 2y_ b 2(A ) 2 已知圆x 2(B ) 1 或-2(D ) 11的两条渐近线互相垂直, 那么该双曲线的离心率是 (B ) ..3(C ) 、22y 6x7 0与抛物线y 2 2px(p(D )I0)的准线相切,则()()()()2A 、— 8 2壬162B 、—16 2乞1 62C 、x - 8 2乞1 42x D 、— 16 2上142222(A ) 2 或 18(B ) 2x9、设F 1> F 2是双曲线一 4或18(C ) 2或16 (D ) y 2 1的两个焦点,点P 在双曲线上,且 4或16UULTLUUQPF PFUUU 则 |PF 1 | LULU |PF 2 | 的值等于 A 、2B 、2 210.若点A 的坐标为(3,2) , F 是抛物线y 22x 的焦点,点M 在抛物线上移动时,使MF MA取得最小值的M的坐标为1A . 0,0B .- 1 C . 1,V2 D . 2,22’2 2X y 11、已知椭圆 — F =1 (a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且 BF 丄x 轴,ab直线AB 交y 轴于点P ,若AP 2BP (应为PB),则离心率为 ()A 、二B 、二C 、1D 1223212 .抛物线y22x 上两点A(X 1, yj 、B(X 2, y 2)关于直线1y x m 对称,且x 1 x 2则m 等于()A . 3B. 25C . -D . 322、填空题: 13 .若直线xy2与抛物线y 24x 交于A 、B 两点, 则线段 AB 的中点坐标是。

高中数学选修2-1 第二章《圆锥曲线与方程》单元测试题(含答案)

高中数学选修2-1 第二章《圆锥曲线与方程》单元测试题(含答案)

12PF F S =解析:设P (x 0,y 0),PF 的中点为(x ,y ),则y 0=14x 20,又F (0,1),∴⎩⎪⎨⎪⎧x =x 02y =y 0+12,∴⎩⎨⎧x 0=2xy 0=2y -1,代入y 0=14x 20得2y -1=14(2x )2,化简得x 2=2y -1,故选A. 答案:A7.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1 D. 3 解析:由已知解出抛物线的焦点坐标和双曲线的渐近线方程,利用点到直线的距离公式求解.由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为3x -y =0或3x +y =0, 则焦点到渐近线的距离d 1=|3×1-0|32+-12=32或d 2=|3×1+0|32+12=32. 答案:B8.直线y =x +b 与抛物线x 2=2y 交于A 、B 两点,O 为坐标原点,且OA ⊥OB ,则b =( )A .2B .-2C .1D .-1解析:设A (x 1,y 1),B (x 2,y 2), 联立方程组⎩⎨⎧y =x +b ,x 2=2y ,消去y ,得x 2-2x -2b =0,所以x 1+x 2=2,x 1x 2=-2b ,y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2=b 2,∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线, ∴所求轨迹的方程为x 2=4y . (2)由题意易知直线l 2的斜率存在,又抛物线方程为x 2=4y ,当直线AB 斜率为0时|PQ |=4 2.当直线AB 斜率k 不为0时,设中点坐标为(t,2),P (x 1,y 1),Q (x 2,y 2),则有x 21=4y 1,x 22=4y 2,两式作差得x 21-x 22=4(y 1-y 2),即得k =x 1+x 24=t 2,则直线方程为y -2=t2(x -t ),与x 2=4y 联立得x 2-2tx +2t 2-8=0.由根与系数的关系得x 1+x 2=2t ,x 1x 2=2t 2-8, |PQ |=x 1-x 22+y 1-y 22=1+k 2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+t 24[4t 2-42t 2-8]=8-t 24+t 2≤6,即|PQ |的最大值为6.19.(本小题满分12分)已知双曲线的焦点在x 轴上,离心率为2,F 1,F 2为左、右焦点,P 为双曲线上一点,且∠F 1PF 2=60°,12PF F S =123,求双曲线的标准方程.解析:如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∴所求k 的值为2.21.(本小题满分12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),离心率为22,过点B (0,-2)及左焦点F 1的直线交椭圆于C ,D 两点,右焦点设为F 2.(1)求椭圆的方程; (2)求△CDF 2的面积. 解析:(1)由题意知b =1,c a =22,且c 2=a 2+b 2,解得a =2,c =1. 易得椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2,由⎩⎨⎧y =-2x -2x22+y 2=1得9x 2+16x +6=0.∵Δ=162-4×9×6=40>0, 所以直线与椭圆有两个公共点,设为C (x 1,y 1),D (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-169x 1·x 2=23∴|CD |=1+-22|x 1-x 2|=5·x 1+x 22-4x 1x 2=5·⎝ ⎛⎭⎪⎫-1692-4×23=1092,又点F 2到直线BF 1的距离d =455, 故CDF S2=12|CD |·d =4910. 22.(本小题满分12分)过点C (0,1)的椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为。

《圆锥曲线》单元测试题(有答案)

《圆锥曲线》单元测试题(有答案)

《圆锥曲线》单元测试题 答案一、选择题:本大题共10小题,每小题5分,共50分,每小题所给出的四个选项中只有一个是符合题意的,请将正确答案的代号填入下表内。

二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.11、22186x y +=或223412525y x +=. 12、1±=k 或25±=k . 13、、14三、解答题:本大题共6小题,共80分,写出文字说明、证明过程或演算步骤.15、解:由已知条件得椭圆的焦点在x 轴上,其中c=22,a=3,从而b=1,所以其标准方程是:2219x y +=.联立方程组22192x y y x ⎧+=⎪⎨⎪=+⎩,消去y 得, 21036270x x ++=. 设A(11,x y ),B(22,x y ),AB 线段的中点为M(00,x y )那么: 12185x x +=-,0x =12925x x +=所以0y =0x +2=15. 也就是说线段AB 中点坐标为(-95,15).16、解:由于椭圆焦点为F(0,±4),离心率为e=45,所以双曲线的焦点为F(0,±4),离心率为2,从而. 所以求双曲线方程为:221412y x -= 17、解:由于x y 22=,而==其中x 0≥(1)a ≤1时,当且仅当x=0时, )(a f =|PA|min =|a|.(2)a>时, 当且仅当x=a-1时, )(a f =|PA|min .所以)(a f =||,11a a a ≤⎧⎪>18.解:抛物线y a x 12=的焦点为)41,0(a F ,准线方程为ay 41-= 设直线PQ 的斜率为k ,则其方程为akx y 41+=,代入2y ax =,并化简,得0412=--akx ax设P(1x ,1y ),Q(2x ,2y ),则1x 2x =241a -,从而2222222121161)41(aa a ax ax y y =-== ∴2212121)41()(41)41)(41(||||ay y a y y a y a y QN PM pq +++=++== =pq)(41)]41()41[(41)41()(41)41(212212q p a a y a y a a y y a a +=+++=+++ ∴a pq q p =+ 即 a qp 411=+ 19、解:设双曲线方程为x 2-4y 2=λ.联立方程组得: 22x -4y =30x y λ⎧⎨--=⎩,消去y 得,3x 2-24x+(36+λ)=0设直线被双曲线截得的弦为AB ,且A(11,x y ),B(22,x y ),那么1212283632412(36)0x x x x λλ+=⎧⎪+⎪=⎨⎪∆=-+>⎪⎩ ∴===解得: λ=4,所以,所求双曲线方程是:2214x y -= 20.解:(1)联立方程223x -y =11y ax ⎧⎨=+⎩,消去y 得:(3-a 2)x 2-2ax-2=0.设A(11,x y ),B(22,x y ),那么:122122222323(2)8(3)0a x x a x x a a a ⎧+=⎪-⎪⎪=-⎨-⎪∆=+->⎪⎪⎩。

圆锥曲线章末检测(附答案)

圆锥曲线章末检测(附答案)

圆锥曲线的方程考试时间:120分钟 满分:150分一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.抛物线y =4x 2的焦点坐标是( ) A .(1,0) B .(0,1)C .⎝⎛⎭⎫116,0D .⎝⎛⎭⎫0,116 2.过椭圆x 225 +y 29 =1左焦点F 1引直线l 交椭圆于A 、B 两点,F 2是椭圆的右焦点,则△ABF 2的周长是( )A .20B .18C .10D .163.已知焦点在x 轴上的双曲线的一条渐近线方程为y =33x ,则该双曲线的离心率为( )A .12B .32C .2D .2334.已知抛物线C :x 2=4y 的焦点为F ,准线为l ,点P 在抛物线上,直线PF 交x 轴于Q 点,且PF → =4FQ →,则点P 到准线l 的距离为( )A .4B .5C .6D .75.为了更好地研究双曲线,某校高二年级的一位数学老师制作了一个如图所示的双曲线模型.已知该模型左、右两侧的两段曲线(曲线AB 与曲线CD)为某双曲线(离心率为2)的一部分,曲线AB 与曲线CD 中间最窄处间的距离为30 cm ,点A 与点C ,点B 与点D 均关于该双曲线的对称中心对称,且|AB|=36 cm ,则|AD|=( )A .1210 cmB .638 cmC .38 cmD .637 cm6.已知椭圆mx 2+5my 2=5的一个焦点坐标是(-2,0),则m =( ) A .5 B .2 C .1 D .327.已知抛物线y 2=2px(p>0),O 为坐标原点,以O 为圆心的圆交抛物线于A 、B 两点,交准线于M 、N 两点,若|AB|=4 2 ,|MN|=2 5 ,则抛物线方程为( ) A .y 2=2x B .y 2=4x C .y 2=8x D .y 2=10x8.已知F 1,F 2是椭圆C :x 24 +y 23 =1的左、右焦点,点P 在椭圆C 上.当△PF 1F 2的面积最大时,△PF 1F 2的内切圆半径为( )A .12B .33C .1D .233二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.关于双曲线y 29 -x 216 =1,下列说法正确的有( )A .虚轴长为8B .渐近线方程为y =±34 xC .焦点坐标为(±5,0)D .离心率为5410.已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则下列选项正确的是( ) A .当m =n 时,方程表示的曲线是圆B .当mn<0时,方程表示的曲线是双曲线C .当m>n>0时,方程表示的曲线是椭圆D .当m =0且n>0时,方程表示的曲线是抛物线11.椭圆x 2a 2 +y 2b 2 =1(a>b>0)的离心率为12 ,短轴长为23 ,则( )A .椭圆的方程为x 24 +y 23 =1 B .椭圆与双曲线2y 2-2x 2=1的焦点相同C .椭圆过点⎝⎛⎭⎫1,-32 D .直线y =k(x +1)与椭圆恒有两个交点12.如图,已知抛物线y 2=2px(p>0)的焦点为F ,过点F 且斜率为 3 的直线与抛物线交于两点A ,B ,与抛物线的准线交于点D ,|BF|=1,则( )A .|BD|=2B .p =32C .点A 到准线的距离为2D .点F 为线段AD 的中点三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.双曲线mx 2+y 2=1的实轴长是虚轴长的2倍,则m =________. 14.过抛物线x 2=2y 焦点的直线交抛物线于A ,B 两点,若线段AB 中点的纵坐标为4,则线段AB 的长度为________.15.已知线段AB 的长度为3,其两个端点A ,B 分别在x 轴、y 轴上滑动,点M 满足2AM → =MB →.则点M 的轨迹方程为________.16.已知双曲线x 2a 2 -y 2b 2 =1,(a>0,b>0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),过F 1的直线l 与圆C :⎝⎛⎭⎫x -12c 2+y 2=c24相切,与双曲线在第四象限交于一点M ,且有MF 2⊥x 轴,则直线l 的斜率是________,双曲线的渐近线方程为________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知双曲线x 22 -y 27 =1的左、右焦点分别为F 1,F 2,过F 2作斜率为7 的弦AB.求:(1)弦AB 的长; (2)△F 1AB 的周长.18.(本小题满分12分)已知抛物线C 的顶点在坐标原点O ,对称轴为x 轴,焦点为F ,抛物线上一点A 的横坐标为2,且FA → ·OA →=16.(1)求抛物线的方程;(2)过点M(8,0)作直线l 交抛物线于B ,C 两点,设B(x 1,y 1),C(x 2,y 2),判断OB → ·OC →是否为定值?若是,求出该定值;若不是,说明理由.19.(本小题满分12分)已知P 是椭圆C 1:x 22 +y 2=1上的动点,F 1,F 2分别是C 1的左、右焦点,点Q 在F 1P 的延长线上,且∠PQF 2=∠PF 2Q ,记点Q 的轨迹为C 2.(1)求C 2的方程;(2)直线l 与C 1交于A ,B 两点,与C 2交于M ,N 两点,若MN 的中点为T ⎝⎛⎭⎫0,-12 ,求AB 的中点坐标.20.(本小题满分12分)已知直线l :ax -y -1=0与双曲线C :x 2-2y 2=1相交于P 、Q 两点.(1)当a =1时,求|PQ|;(2)是否存在实数a ,使以PQ 为直径的圆经过坐标原点?若存在,求出a 的值;若不存在,说明理由.21.(本小题满分12分)已知抛物线C :x 2=2py(p>0),直线l :y =kx +2与C 交于A ,B 两点且OA ⊥OB(O 为坐标原点).(1)求抛物线C 的方程;(2)设P(2,2),若直线PA ,PB 的倾斜角互补,求k 的值.22.(本小题满分12分)已知椭圆C :x 2a 2 +y 2b 2 =1(a>b>0)的左、右焦点分别为F 1,F 2,离心率为22,且过点(0,1). (1)求椭圆C 的标准方程;(2)若过点F 1的直线l 与椭圆C 相交于A ,B 两点(A 、B 非椭圆顶点),求F 2A ⃗⃗⃗⃗⃗⃗⃗ ·F 2B ⃗⃗⃗⃗⃗⃗⃗ 的最大值.圆锥曲线的方程答案1.解析:抛物线 y =4x 2的方程化为标准方程为:x 2=14 y ,故p =18,则焦点坐标为⎝⎛⎭⎫0,116 . 答案:D2.解析:依题意a =5,根据椭圆的定义可知,三角形ABF 2的周长为4a =20. 答案:A3.解析:由题意b a =33 ,∴a 2=3b 2,∴a 2=3(c 2-a 2),∴4a 2=3c 2,∴c 2a 2 =43 ,∴e 2=43 ,∴e =233. 答案:D4.解析:由题意得:F (0,1),准线方程为y =-1,因为PF → =4FQ → ,所以y P =5y F =5,故点P 到准线l 的距离为y P +1=6. 答案:C5.解析:以双曲线的对称中心为坐标原点,建立平面直角坐标系xOy ,因为双曲线的离心率为2,所以可设双曲线的方程为x 2a 2 -y 23a 2 =1(a >0),依题意可得2a =30,则a =15,即双曲线的方程为x 2152 -y 23×152=1.因为|AB |=36 cm ,所以A 的纵坐标为18.由x 2152 -1823×152=1,得|x |=337 ,故|AD |=637 cm.答案:D6.解析:由焦点坐标是(-2,0),则椭圆焦点在x 轴上,且c =2, 将椭圆mx 2+5my 2=5化为x 25m +y 21m=1,则m >0,由5m >1m ,焦点坐标是(-2,0),则5m -1m =4,解得m =1. 答案:C7.解析:设圆O 的半径为r ,抛物线的准线方程为x =-p2 ,由勾股定理可得r =p 24+5 , 因为|AB |=42 ,将y =±22 代入抛物线方程得2px =8,可得x =4p ,不妨设点A ⎝⎛⎭⎫4p ,22 ,则r =|OA |=16p 2+8 ,所以,⎩⎪⎨⎪⎧p 24+5=16p 2+8p >0,解得p =4, 因此,抛物线的方程为y 2=8x .答案:C8.解析:由已知得a 2=4,b 2=3,∴a =2,c =1, ∴F 1(-1,0),F 2(1,0),∵点P 在椭圆C 上,当△PF 1F 2的面积最大时,∴点P 到x 轴距离最大,即P 为椭圆的短轴的端点,不妨设P (0,3 ), △PF 1F 2周长为l =2c +2a =2+2×2=6,面积为S =3 , 设内切圆半径为r ,则S =12 rl ,∴r =2S l =33 .答案:B9.解析:双曲线y 29 -x 216 =1,则a 2=9,b 2=16,则a =3,b =4,则c 2=a 2+b 2=25,则c =5,所以双曲线的虚轴长2b =8,渐近线方程为y =±a b x =±34 x ,焦点坐标为(0,±5),离心率e =c a =53.答案:AB10.解析:对于A ,当m =n <0时,方程不表示任何图形,故A 错误;对于B ,当m >0,n <0时,方程x 21m -y 2-1n =1表示焦点在x 轴上的双曲线,当m <0,n >0时,方程y 21n -x 2-1m=1表示焦点在y 轴上的双曲线,故B 正确;对于C ,当m >n >0时,1n >1m >0,方程y 21n +x 21m =1表示焦点在y 轴上的椭圆,故C 正确;对于D ,当m =0且n >0时,方程y =n n 或y =-nn表示垂直于y 轴的两条直线,故D 错误.11.解析:因为椭圆的短轴长为23 ,所以有2b =23 ⇒b =3 ⇒a 2-c 2=3, 而椭圆的离心率为12 ,所以c a =12 ⇒a =2c ⇒a 2=4c 2,所以可得:c 2=1,a 2=4,b 2=3.A :因为a 2=4,b 2=3,所以该椭圆的标准方程为:x 24 +y 23=1,因此本选项正确;B :由2y 2-2x 2=1⇒y 212 -x 212=1,该双曲线的焦点在纵轴上,而椭圆x 24 +y 23 =1的焦点在横轴上,所以本选项说法不正确;C :因为124+⎝⎛⎭⎫-3223=1,所以点⎝⎛⎭⎫1,-32 在该椭圆上,因此本选项说法正确; D :直线y =k (x +1)恒过点(-1,0),而(-1)24 +023 <1,所以点(-1,0)在椭圆内部,因此直线y =k (x +1)与椭圆恒有两个交点,所以本选项说法正确.答案:ACD 12.解析:如图所示:作AC ⊥准线l 于点C ,AM ⊥x 轴于M ,BE ⊥准线l 于点E .BH ⊥x 轴于H ,直线的斜率为3 ,∴tan ∠HFB =3 ,∴∠HFB =π3 ,∴∠BDE =π6 ,∴|DB |=2|BE |=2|BF |=2,故A 正确;又∵|BF |=1,∴|HF |=12 ,|HB |=32 ,B ⎝⎛⎭⎫p 2-12,-32 ,代入抛物线,得p =32 (p =-12 舍去),故B 正确;对于C ,由B 选项得,直线AB 方程为:y =3 x -334,与抛物线方程联立得: x 2-52 x +916 =0,即⎝⎛⎭⎫x -94 ⎝⎛⎭⎫x -14 =0,故x A =94 , 故点A 到准线的距离为p2+x A =3,故C 错误;对于D, 由C 选项得,|AF |=3=|FD |, 点F 为线段AD 的中点, 故D 正确.13.解析:由已知条件得m <0, 双曲线mx 2+y 2=1的标准方程为y 2-x 2-1m=1, 则a 2=1,b 2=-1m ,实轴长为2,虚轴长为2-1m, 由题意得2=4 -1m,解得m =-4. 答案:-414.解析:设A (x 1,y 1),B (x 2,y 2),则y 1+y 22 =4,即y 1+y 2=8,∴|AB |=y 1+y 2+p =8+1=9.答案:915.解析:设M (x ,y ),A (a ,0),B (0,b ),由2AM → =MB →,有2(x -a ,y )=(-x ,b -y ),得⎩⎪⎨⎪⎧a =3x 2b =3y ,所以A ⎝⎛⎭⎫3x 2,0 ,B (0,3y ),由|AB |=3得:9x 24 +9y 2=9,所以点M 的轨迹C 的方程是x 24+y 2=1.答案:x 24 +y 2=116.解析:如图所示,不妨设直线l 与圆C 相切于点A , ∴CA ⊥F 1M ,∴|CA ||AF 1| =|F 2M ||F 1F 2| ,由于|CA |=c 2 ,|CF 1|=3c 2 ,|AF 1|= ⎝⎛⎭⎫3c 22-⎝⎛⎭⎫c 22=2 c ,|F 1F 2|=2c ,∴|F 2M |=2c 2 ,∴M ⎝⎛⎭⎫c ,-2c 2 , ∴k l =-tan ∠CF 1A =-c 22c =-24 .把M ⎝⎛⎭⎫c ,-2c 2 代入x 2a 2 -y 2b 2 =1,可得c2a 2 -c 22b2 =1,∴a 2+b 2a 2 -a 2+b 22b 2=1,∴a =b ,渐近线方程为y =±ba x =±x .答案:-24y =±x 17.解析:(1)设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),由题意知双曲线的左、右焦点坐标分别为F 1(-3,0),F 2(3,0), 直线AB 的方程y =7 (x -3),与x 22 -y 27 =1联立得x 2-12x +20=0,解得x 1=2,x 2=10, 代入AB 的方程为y =7 (x -3),分别解得y 1=-7 ,y 2=77 . 所以|AB |=(x 1-x 2)2+(y 1-y 2)2 =(2-10)2+(-7-77)2 =162 . (2)由(1)知|AB |=162 , |AF 1|= (2+3)2+(-7-0)2 =42 , |BF 1|=(10+3)2+(77-0)2 =162 ,所以△F 1AB 的周长为|AF 1|+|BF 1|+|AB |=362 .18.解析:(1)由题意,设抛物线的方程为:y 2=2px (p >0), 所以点F 的坐标为⎝⎛⎭⎫p 2,0 ,点A 的一个坐标为(2,2p ),因为F A → ·OA →=16,所以⎝⎛⎭⎫2-p 2,2p ·(2,2p )=16,即4-p +4p =16,解得p =4. 所以抛物线的方程为:y 2=8x .(2)设直线l 的方程为x =ky +8,则联立方程⎩⎪⎨⎪⎧y 2=8xx =ky +8 得y 2-8ky -64=0,所以y 1+y 2=8k ,y 1·y 2=-64, 因为OB → =(x 1,y 1),OC →=(x 2,y 2),所以OB → ·OC →=x 1x 2+y 1y 2=(ky 1+8)(ky 2+8)+y 1y 2=(k 2+1)y 1y 2+8k (y 1+y 2)+64=-64(k 2+1)+8k ·8k +64=0. 所以OB → ·OC →为定值0.19.解析:(1)因为P 是C 1:x 22 +y 2=1上的点,F 1,F 2是C 1的焦点,所以|PF 1|+|PF 2|=22 ,因为∠PQF 2=∠PF 2Q ,所以|PQ |=|PF 2|,又因为点Q 在F 1P 的延长线上,所以|QF 1|=|PF 1|+|PQ |=|PF 1|+|PF 2|=22 ,即点Q 的轨迹C 2是以F 1为圆心,以22 为半径的圆, 因为F 1(-1,0),所以C 2的方程为(x +1)2+y 2=8.(2)因为MN 的中点为T ⎝⎛⎭⎫0,-12 ,圆C 2的圆心为F 1(-1,0), 且TF 1⊥MN ,所以直线MN 的斜率为k MN =-1kTF 1 =2,方程为y =2x -12.联立⎩⎨⎧y =2x -12,x22+y 2=1,消y 得9x 2-4x -32 =0,设A (x 1,y 1),B (x 2,y 2),AB 的中点为(x 0,y 0),则x 1+x 2=49 ,所以x 0=x 1+x 22 =29 ,y 0=2x 0-12 =2×29 -12 =-118 ,所以AB 的中点坐标为⎝⎛⎭⎫29,-118 . 20.解析:(1)设点P (x 1,y 1)、Q (x 2,y 2),当a =1时,联立⎩⎪⎨⎪⎧x -y -1=0x 2-2y 2=1 ,可得x 2-4x +3=0,Δ=16-12>0,由韦达定理可得x 1+x 2=4,x 1x 2=3,所以,|PQ |=1+12 ·(x 1+x 2)2-4x 1x 2 =22 .(2)假设存在实数a ,使以PQ 为直径的圆经过坐标原点,设P (x 1,y 1)、Q (x 2,y 2),联立⎩⎪⎨⎪⎧ax -y -1=0x 2-2y 2=1 ,得(2a 2-1)x 2-4ax +3=0, 由题意可得⎩⎪⎨⎪⎧2a 2-1≠0Δ=16a 2-12(2a 2-1)>0 ,解得-62 <a <62 且a ≠±22 ,由韦达定理可知⎩⎨⎧x 1+x 2=4a2a 2-1x 1x 2=32a 2-1,因为以PQ 为直径的圆经过坐标原点,则OP ⊥OQ ,所以OP → ·OQ →=x 1x 2+y 1y 2=x 1x 2+(ax 1-1)(ax 2-1)=(a 2+1)x 1x 2-a (x 1+x 2)+1 =3(a 2+1)-4a 22a 2-1+1=0,整理可得a 2+2=0,该方程无实解,故不存在. 21.解析:(1)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2=2py y =kx +2 ,得x 2-2pkx -4p =0, 故x 1x 2=-4p ,由OA ⊥OB ,可得x 1x 2+y 1y 2=0,即x 1x 2+x 21 2p ·x 22 2p=0, ∴p =1,故抛物线C 的方程为:x 2=2y ;(2)设P A 的倾斜角为θ,则PB 的倾斜角为π-θ, ∴k P A +k PB =tan θ-tan (π-θ)=0,由⎩⎪⎨⎪⎧x 2=2y y =kx +2 ,得x 2-2kx -4=0, ∴x 1+x 2=2k ,∴k P A =y 1-2x 1-2 =12x 21 -2x 1-2=x 1+22 ,同理k PB =x 2+22 , 由k P A +k PB =0,得x 1+22 +x 2+22=0, ∴x 1+x 2+4=0,即2k +4=0,故k =-2.22.解析:(1)由椭圆C 过点(0,1),则有 b =1,由e =c a =22,可得a 2=2c 2=2(a 2-b 2), 解得:a =2 ,则椭圆C 的方程为:x 22+y 2=1. (2)由(1)得F 1(-1,0),F 2(1,0),已知直线l 不过椭圆长轴顶点, 则直线l 的斜率不为0,设直线l 的方程为:x =my -1,设A (x 1,y 1),B (x 2,y 2),联立直线方程和椭圆方程⎩⎪⎨⎪⎧x 22+y 2=1x =my -1, 整理可得(m 2+2)y 2-2my -1=0,故Δ>0是恒成立的.根据韦达定理可得y 1+y 2=2m m 2+2 ,y 1y 2=-1m 2+2, 则有F 2A ·F 2B =(x 1-1,y 1)·(x 2-1,y 2)=(x 1-1)·(x 2-1)+y 1y 2 =(m 2+1)y 1y 2-2m (y 1+y 2)+4=(m 2+1)·-1m 2+2 -2m ·2m m 2+2+4 =-m 2+7m 2+2 =-1+9m 2+2. 由m 2≥0,可得-1+9m 2+2 ≤72, 所以F 2A ·F 2B 的最大值为72.。

圆锥曲线综合测试题(含答案)

圆锥曲线综合测试题(含答案)

圆锥曲线综合测试题一、选择题(每题5分)1、双曲线x 2-5y 2=0的焦距为( ) A.6 B.26 C.23 D.432、顶点在原点,且过点(-4,4)的抛物线的标准方程是( )A.y 2=-4xB.x 2=4yC. y 2=-4x 或x 2=4yD.y 2=4x 或x 2=-4y3、若椭圆19222=+m y x (m>0)的一个焦点坐标为(1,0),则m 的值为( ) A.5 B.3 C.23 D.224、已知方程11122=--+ky k x 表示双曲线,则k 的取值范围是( ) A.-1<k<1 B.k>0 C.k ≥0 D.k>1或k<-15、已知双曲线15222=-y a x 的右焦点为(3,0)则该双曲线的离心率为( ) A.14143 B.423 C.23 D.34 6、如果点P (2,y 0)在以点F 为焦点的抛物线y 2=4x 上,则PF=( )A.1B.2C.3D.47、双曲线12222=-b y a x 与椭圆12222=+by m x (a >0,m>b>0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形8、已知椭圆E 的中心在坐标原点,离心率为21,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则AB=( )A.3B.6C.9D.129、已知双曲线12222=-by a x (a >0,b>0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点,若双曲线的离心率为2,∆AOB 的面积为3,则p=( )A.1B.23 C.2 D.3 10、已知F 1,F 2为椭圆191622=+y x 的两个焦点,过点F 2的直线交椭圆与A ,B 两点,在∆A F 1B 中,若有两边之和等于10,则第三边的长度为( )A.6B.5C.4D.311、已知动圆P 过定点A (-3,0),并且与定圆B :(x -3)2+y 2=64内切,则动圆的圆心P 的轨迹是( )A.线段B.直线C.圆D.椭圆12、若直线mx +ny=4与圆O: x 2+y 2=4没有交点,则过点P(m ,n)的直线与椭圆14922=+y x 的交点个数为( )A.至多一个B.2C.1D.0二、填空题(每题5分)13、抛物线x 2=4y 上一点P 到焦点的距离为3,则点P 到y 轴的距离为 。

圆锥曲线单元测试卷

圆锥曲线单元测试卷

圆锥曲线单元测试卷一、选择题(每题3分,共30分)1. 椭圆的标准方程是:A. \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) (a > b)B. \( \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \) (a > b)C. \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) (a < b)D. \( \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \) (a < b)2. 双曲线的离心率 e 的定义是:A. \( e = \frac{c}{a} \)B. \( e = \frac{a}{c} \)C. \( e = \frac{b}{a} \)D. \( e = \frac{c}{b} \)3. 抛物线的焦点到准线的距离是:A. 焦距B. 准线长度C. 顶点到焦点的距离D. 顶点到准线的距离4. 以下哪个方程不是圆锥曲线的方程?A. \( x^2 + y^2 = r^2 \)B. \( \frac{x^2}{a^2} + y^2 = 1 \)C. \( x^2 - y^2 = 1 \)D. \( x^2 + y^3 = 1 \)5. 椭圆的离心率 e 的取值范围是:A. \( 0 < e < 1 \)B. \( -1 < e < 0 \)C. \( e > 1 \)D. \( e = 0 \)6. 抛物线 \( y^2 = 4ax \) 的准线方程是:A. \( x = -a \)B. \( x = a \)C. \( x = 0 \)D. \( y = -a \)7. 双曲线 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) 的渐近线方程是:A. \( y = \pm a \)B. \( y = \pm \frac{b}{a}x \)C. \( y = \pm \frac{a}{b}x \)D. \( x = \pm \frac{a}{b}y \)8. 椭圆的参数方程可以表示为:A. \( \begin{cases} x = a \sin t \\ y = b \cos t\end{cases} \)B. \( \begin{cases} x = a \cos t \\ y = b \sin t\end{cases} \)C. \( \begin{cases} x = a \tan t \\ y = b \cot t\end{cases} \)D. \( \begin{cases} x = a \sec t \\ y = b \csc t\end{cases} \)9. 以下哪个点不在椭圆 \( \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 \) 上?A. \( (a, 0) \)B. \( (0, b) \)C. \( (-a, 0) \)D. \( (0, -b) \)10. 抛物线 \( x^2 = 4py \) 的焦点坐标是:A. \( (0, p) \)B. \( (0, -p) \)C. \( (p, 0) \)D. \( (-p, 0) \)二、填空题(每空2分,共20分)11. 椭圆的长轴长度是 \( 2a \),其中 \( a \) 是椭圆的________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线单元检测题一、选择题(5分×12)1.椭圆121322y x +=1上一点P 到两个焦点的距离的和为( ) A.26B.24C.2D.2132.在双曲线标准方程中,已知a =6,b =8,则其方程是( )A.643622y x -=1B.366422y x -=1C.643622x y -=1D.643622y x -=1或643622x y -=1 3.已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是( )A.x 2=-12yB.x 2=12yC.y 2=-12xD.y 2=12x4.已知椭圆的方程为22216m y x +=1,焦点在x 轴上,则m 的范围是( ) A.-4≤m ≤4 B.-4<m <4 C.m >4或m <-4 D.0<m <4 5.已知定点F 1(-2,0),F 2(2,0)在满足下列条件的平面内动点P 的轨迹中,为双曲线的是( )A.|PF 1|-|PF 2|=±3B.|PF 1|-|PF 2|=±4C.|PF 1|-|PF 2|=±5D.|PF 1|2-|PF 2|2=±4 6.过点(-3,2)且与4922y x +=1有相同焦点的椭圆的方程是( ) A.101522y x +=1 B.10022522y x +=1 C.151022y x +=1 D.22510022y x +=1 7.经过点P (4,-2)的抛物线标准方程为( )A.y 2=x 或x 2=-8yB.y 2=x 或y 2=8xC.y 2=-8xD.x 2=-8y8.已知点(3,2)在椭圆22ax +22b y =1上,则( )A.点(-3,-2)不在椭圆上B.点(3,-2)不在椭圆上C.点(-3,2)在椭圆上D.无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上9.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.4422y x -=1B.4422x y -=1C.8422x y -=1D.4822y x -=1 10.过抛物线y 2=2px (p >0)的焦点作一条直线交抛物线于A (x 1,y 1),B (x 2,y 2),则2121x x y y 为( ) A.4B.-4C.p 2D.-p 211.如果双曲线366422y x -=1上一点P 到它的右焦点的距离为8,那么P 到它的右准线距离是( ) A.10 B.7732 C.27 D.53212.若AB 为过椭圆错误!未找到引用源。

+错误!未找到引用源。

=1的中心的弦,F 1为椭圆的左焦点,则△F 1AB面积的最大值为( ) A.6B.12C.24D.36二、填空题(5分×4)13.椭圆92522y x +=1上的点P 到左准线的距离是2.5,则P 到右焦点的距离是________. 14.过点P (8,1)的直线与双曲线4422=-y x 相交于A 、B 两点,且P 是线段AB 的中点,则直线AB 的方程为 。

15.双曲线2mx 2-my 2=2的一条准线是y =1,则m 的值为________.16.过椭圆错误!未找到引用源。

+错误!未找到引用源。

=1内的一点P(2,-1)的弦AB,满足错误!未找到引用源。

=错误!未找到引用源。

(错误!未找到引用源。

+错误!未找到引用源。

),则这条弦所在的直线方程是 .三、解答题(14分×5 ,解答应写出文字说明,证明过程或演算步骤)17. AB 是过椭圆4522y x +=1的一个焦点F 的弦,若AB 的倾斜角为3π,求弦AB 的长.18.已知椭圆的一个焦点是F (1,1),与它相对应的准线是x +y -4=0,离心率为22,求椭圆的方程.19.求一条渐近线方程是3x +4y =0,一个焦点是(4,0)的双曲线标准方程,并求双曲线的离心率.20.双曲线4922y x=1与直线y =kx -1只有一个公共点,求k 的值.21.过抛物线y2=4x的准线与对称轴的交点作直线,交抛物线于M、N两点,问直线的斜率为何值时,以线段MN为直径的圆经过抛物线的焦点.22.已知椭圆的两焦点为F1(-错误!未找到引用源。

,0),F2(错误!未找到引用源。

,0),离心率e=错误!未找到引用源。

.(1)求此椭圆的方程.(2)设直线l:y=x+m,若l与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值.圆锥曲线单元检测题答案1.【答案】 D2. 【答案】 D【解析】 ∵双曲线的标准方程是2222b y a x -=1或2222bx a y -=1∴双曲线的方程是1643622=-y x 或643622x y -=1. 3. 【答案】A【解析】∵2p=3,∴p =6.∵抛物线的焦点在y 轴上, ∴抛物线的方程为x 2=-12y . 4. 【答案】 B【解析】 ∵椭圆的焦点在x 轴上,∴m 2<16,∴-4<m <4. 5.【答案】 A 6. 【答案】 A【解析】 ∵c 2=9-4=5,∴设椭圆的方程为52222-+a y a x=1,∵点(-3,2)在椭圆上,∴54922-+a a =1,a 2=15,∴所求椭圆的方程为:101522y x +=1. 7. 【答案】A【解析】设抛物线的方程为y 2=2px 或x 2=2p 1y .∵点P (4,-2)在抛物线上,∴4=2p ×4或16=2p 1(-2),∴p =21或p 1=-4,∴抛物线的方程为y 2=x 或x 2=-8y . 8. 【答案】 C【解析】 ∵点(3,2)在椭圆22ax +22b y =1上,∴223a +222b =1,∴2222)2()3(b a ±+±=1. 即点(±3,±2)在椭圆22ax +22b y =1上.9. 【答案】 B【解析】 由方程组⎪⎩⎪⎨⎧=+⋅=+=22222222c b a c b a a得a =2,b =2.∵双曲线的焦点在y 轴上,∴双曲线的标准方程为4422x y -=1. 10. 【答案】B【解析】特例法.当直线垂直于x 轴时,4),,2(),,2(222121p p x x y y p pB p p A -=- =-4.11. 【答案】 D【解析】 双曲线的离心率e =a c =810=45,设所求距离为d ,则458=d ,∴d =532. 12. 【答案】B【解析】∵点(x ,y )在抛物线y 2=4x 上,∴x ≥0,∵z =x 2+21y 2+3=x 2+2x +3=(x +1)2+2 ∴当x =0时,z 最小,其值为3. 13. 【答案】 8【解析】 ∵P 到左准线的距离为2.5,∴5.21PF =e ,而e =54,∴|PF 1|=2.5×54=2,∴|PF 2|=2×5-2=8. 即P 到右焦点的距离为8.14. 【答案】35 【解析】 椭圆的方程可写成9422y x +=1, ∴a 2=9,b 2=4,∴c =5,∴椭圆的离心率是35. 15. 【答案】 -34 【解析】 可知双曲线的焦点在y 轴上.∴m <0 双曲线方程可化为mx m y 1222---=1, 因此a 2=-m 2,b 2=-m 1,c 2=-m3∵准线是y =1 ∴a 2=c即-m2=m 3- 解得m =-34.16. 【答案】y 2=4x【解析】圆的方程可化为(x -3)2+y 2=16,抛物线的准线为x =-2p ,由题设可知3+2p=4,∴p =2.∴抛物线的方程为y 2=4x .17. 【解】 不妨取F (1,0),∴直线AB 的方程为y =3 (x -1)代入椭圆方程并整理得: 19x 2-30x -5=0设A (x 1,y 1),B(x 2,y 2),则⎪⎪⎩⎪⎪⎨⎧-=⋅=+19519302121x x x x∴|A B|=31+|x 1-x 2|=195324)(221221=-+x x x x18.【解】 设P (x ,y )为椭圆上任意一点,∵椭圆的一个焦点是F (1,1)与它相对应的准线是x +y -4=0,离心率为22, ∴2224)1()1(22=-+-+-y x y x ,∴4(x -1)2+4(y -1)2=(x +y -4)2. 即3x 2+3y 2-2xy -8=0为所求.19.【解】 双曲线的渐近线方程可写成34yx +=0,因此双曲线的方程可写成91622y x -=λ(λ≠0) ∵焦点在x 轴上,∴λ>0把双曲线的方程写成λλ91622y x -=1 ∵c =4∴16λ+9λ=16,∴λ=2516故所求双曲线的标准方程为251442525622y x -=1 ∵a 2=25256,即a =516,∴双曲线的离心率e =455164==a c .20.【解】 直线y =kx -1过(0,-1)点,若使直线与双曲线只有一个公共点,必须直线与双曲线的渐近线平行或直线与双曲线相切.当直线与渐近线平行时,双曲线的渐近线方程是y =±32x .∴k =±32.当直线与双曲线相切时,⇒⎪⎩⎪⎨⎧-==-114922kx y y x (4-9k 2)x 2+18kx -45=0 ∴Δ=0即(18k )2+4·(4-9k 2)·45=0 解之:k =±35综上可知:k =±32或k =±35.21.【解】抛物线y 2=4x 的准线与对称轴的交点为(-1,0).设直线MN 的方程为y =k (x +1)由⎩⎨⎧=+=xy x k y 4)1(2得k 2x 2+2(k 2-2)x +k 2=0 ∵直线与抛物线交于M 、N 两点.∴Δ=4(k 2-2)2-4k 4>0即k 2<|k 2-2|,k 2<1,-1<k <1 设M (x 1,y 1),N (x 2,y 2),抛物线焦点为F (1,0). ∵以线段MN 为直径的圆经过抛物线焦点. ∴MF ⊥NF ∴112211-⋅-x yx y =-1 即y 1y 2+x 1x 2-(x 1+x 2)+1=0又x 1+x 2=-22)2(2kk -,x 1x 2=1 y 12y 22=16x 1x 2=16且y 1、y 2同号∴22)2(2kk -=-6 解得k 2=21,∴k =±22 即直线的斜率k =±22时,以线段MN 为直径的圆经过抛物线的焦点.。

相关文档
最新文档