分离参数法解“定点”问题
2023届高考数学二轮复习导数经典技巧与方法第02讲分离参数法含解析
第2讲分离参数法知识与方法分离参数法解决恒成立求参问题,可以有两个角度:全分离和半分离.1.全分离参数法将含参表达式中的参数从表达式中完全分离出来,使所研究的函数由动态变为定态,进而可得到新函数的图像、性质(最值),将求参数的范围问题转化为求函数的最值或值域问题.在分离参数时,需点睛意:(1)参数系数的正负是否确定;(2)分参后目标函数的最值是否易解,若不易解,极可能需要洛必达法则辅助.2.半分离参数法其一般步骤为:将不等式变形为aa+a≥a(a)或aa+a≤a(a)的形式(其中a为参数,a为常数),然后画出图像,由图像的上下方关系得到不等式,从而求得参数的取值范围.不等号前后两个函数的图像特征为:直线a=aa+a与曲线a=a(a),而直线a=aa+a过定点(0,a).需要说明的是:半分离参数法一般只适用于客观题,解答题则不宜使用.典型例题全分离参数【例1】已知函数a(a)=e a+aa2−a.(1)当a=1时,讨论a(a)的单调性;(2)当a≥0时,a(a)≥12a3+1,求a的取值范围.【解析】(1)当a=1时,a(a)=e a+a2−a,a′(a)=e a+2a−1.当a<0时,a′(a)<0,a(a)单调递减;当a>0时,a′(a)>0,a(a)单调递增.所以,当a=1时,a(a)在(−∞,0)上单调递减,在(0,+∞)上单调递增.(2)解法1:分离参数法当a=0时,a∈a.当a>0时,a(a)≥12a3+1⇔a≥12a3+a+1−e aa2.记a(a)=12a3+a+1−e aa2(a>0),则a ′(a )=12a 3−a −2+(2−a )e a a 3=(2−a )(e a −12a 2−a −1)a 3.记a (a )=e a −12a 2−a −1(a >0),a ′(a )=e a −a −1,a ′′(a )=e a −1. 因为a >0,所以a ′′(a )=e a −1>0,所以a ′(a )在(0,+∞)上单调递增, 从而a ′(a )>a ′(0)=0,所以a (a )在(0,+∞)单调递增,所以a (a )>a (0)=0. 令a ′(a )=0,解得a =2.当a ∈(0,2)时,a ′(a )>0,a (a )单调递增; 当a ∈(2,+∞)时,a ′(a )<0,a (a )单调递减. 所以a (a )在a =2处取得最大值a (2)=7−e 24,从而a ≥7−e 24. 综上,实数a 的取值范围是[7−e 24,+∞). 解法2:指数找朋友a (a )≥12a 3+1等价于12a 3−aa 2+a +1e a≤1.设a (a )=12a 3−aa 2+a +1e a(a ≥0),则a′(a )=−12a [a 2−(2a +3)a +(4a +2)e a=−12a [a −(2a +1)](a −2)e a.(1)当2a +1≤0,即a ≤−12时,则当a ∈(0,2)时,a ′(a )>0,所以a (a )在(0,2)单调递增,而a (0)=1, 故当a ∈(0,2)时,a (a )>1,不合题意; (2)当0<2a +1<2,即−12<a <12时, 则当a ∈(0,2a +1)∪(2,+∞)时,a ′(a )<0.所以a (a )在(0,2a +1),(2,+∞)单调递减,在(2a +1,2)上单调递增. 由于a (0)=1,所以a (a )≤1.当且仅当a (2)=7−4a e 2≤1,即a ≥7−e 24. 所以当7−e 24≤a <12时,a (a )≤1.(3)若2a +1≥2,即a ≥12时,则a (a )≤12a 3+a +1e a.由于0∈[7−e 24,12),故由(2)可得12a 3+a +1e a≤1.故当a ≥12时,a (a )≤1.综上所述,实数a 的取值范围是[7−e 24,+∞).【点睛】解决本题的关键在于求导数a′(a)=12a3−a−2+(2−a)e aa3后的处理.仔细观察导数式中e a前面的系数为2−a,由此可大胆猜测2−a应该为12a3−a−2的一个因式,从而可设1 2a3−a−2=(2−a)(−12a2+aa+a),将右侧展开,得12a3−a−2=12a3−(a+1)a2+(2a−a)a+2a,比较两侧的系数,可得a=a=−1,从而12a3−a−2=(2−a)(−12a2−a−1).【例2】设函数a(a)=e a−1−a−aa2.(1)若a=0,求a(a)的单调区间;(2)若当a≥0时a(a)≥0,求a的取值范围.【解析】(1)因为a=0时,所以a(a)=e a−1−a,a′(a)=e a−1.当a∈(−∞,0)时,a′(a)<0;当a∈(0,+∞)时,a′(a)>0.故a(a)在(−∞,0)上单调递减,在(0,+∞)上单调递增;(2)解法1:由(1)可得,当a=0时,a(a)≥a(0)=0,即e a≥a+1,当且仅当a=0时等号成立.依题意,当a≥0时a(a)≥0恒成立,当a=0时,a(a)≥0,此时a∈a;当a>0时,a(a)≥0等价于a≤e a−1−aa2,令a(a)=e a−1−aa2(a>0),则a′(a)=(a−2)e a+a+2a3,今a(a)=(a−2)e a+a+2(a>0),则a′(a)=(a−1)e a+1,因为a′′(a)=a e a>0,所以a′(a)在(0,+∞)上为增函数,所以a′(a)>a′(0)= 0,于是a(a)在(0,+∞)上为增函数,从而a(a)>a(0)=0,因此a′(a)>0,a(a)在(0,+∞)上为增函数,由洛必达法则知,lima→0+e a−1−aa2=lima→0+e a−12a=lima→0+e a2=12,所以a≤12.当a>12时,e−a>1−a得a′(a)<e a−1+2a(e−a−1)=e−a(e a−1)(e a−2a),故当a∈(0,ln2a)时,a′(a)<0,而a(0)=0,于是当a∈(0,ln2a)时,a(a)<0. 综上得a的取值范围是(−∞,12].解法2:a′(a)=e a−1−2aa,由(1)知e a≥1+a,当且仅当a=0时等号成立,故a′(a)≥a−2aa=(1−2a)a.当1−2a≥0,即a≤12时,a′(a)≥0(a≥0),所以a(a)在[0,+∞)上单调递增,故a(a)≥a(0)=0,即a≤12符合题意;当a>12时,由e a>1+a(a≠0)可得e−a>1−a(a≠0),所以e−a−1>−a(a≠0),所以a′(a)=e a−1−2aa<e a−1+2a(e−a−1)=e−a(e a−1)(e a−2a), 则当a∈(0,ln2a)时,a′(a)<0,a(a)在(0,ln2a)上单调递减,于是当a∈(0,ln2a)时,a(a)<a(0)=0,故a>12不合题意.综上所述,a的取值范围是(−∞,12].【例3】已知函数a(a)=a(e a+1−a)(a∈a).(1)若a=2,判断a(a)在(0,+∞)上的单调性;(2)若a(a)−ln a−1≥0恒成立,求实数a的取值范围.【解析】(1)若a=2,a(a)=a e a−a,a′(a)=e a+a e a−1=(a+1)e a−1. 当a>0时,a+1>1,e a>1,故(a+1)e a>1,a′(a)=(a+1)e a−1>0,故a(a)在(0,+∞)上单调递增.(2)解法1:分离参数+隐零点求最值由题意可知a e a+(1−a)a−ln a−1≥0在区间(0,+∞)上恒成立,整理得a−1≤e a−ln aa −1a.设a(a)=e a−ln aa −1a,a′(a)=a2e a+ln aa2,设a(a)=a2e a+ln a,则a′(a)=(a2+2a)e a+1a>0, 所以a(a)在(0,+∞)上单调递增,又a(1)=e>0,a(12)=√e4−ln2<0.所以函数a(a)有唯一的零点a0,且12<a0<1.当a∈(0,a0)时,a(a)<0,a′(a)<0,a(a)单调递减;当a∈(a0,+∞)时,a(a)>0,a′(a)>0,a(a)单调递增. 即a(a0)为a(a)在定义域内的最小值.所以a−1≤e a0−ln a0a0−1a0.因为a(a0)=0,得a0e a0=−ln a0a0,12<a0<1(∗)令a(a)=a e a(12<a<1),方程(∗)等价于a(a)=a(−ln a)(12<a<1).而a′(a)=(a+1)e a在(0,+∞)上恒大于零,所以a(a)在(0,+∞)单调递增. 故a(a)=a(−ln a)等价于a=−ln a(12<a<1).设函数a(a)=a+ln a(12<a<1),易知a(a)单调递增.又a(12)=12−ln2<0,a(1)=1>0,所以a0为a(a)的唯一零点.即ln a0=−a0,e a0=1a0.故a(a)的最小值为a(a0)=e a0−ln a0a0−1a0=1a0−−a0a0−1a0=1.所以a−1≤1,即a≤2.综上,实数a的取值范围是(−∞,2].解法2:分离参数+放缩法求最值由题意可知a e a+(1−a)a−ln a−1≥0在区间(0,+∞)上恒成立, 即a−1≤a e a−ln a−1a.利用不等式e a≥a+1(当且仅当a=0时,等号成立),可得a e a−ln a−1a =e a+ln a−ln a−1a≥(a+ln a+1)−ln a−1a=1,当且仅当a+ln a=0时,等号成立.所以a e a−ln a−1a的最小值为1.于是a−1≤1,得a≤2,实数a的取值范围是(−∞,2].【例4】已知函数a(a)=a3e aa−1.(1)讨论a(a)的单调性;(2)若a=2,不等式a(a)≥aa+3ln a对a∈(0,+∞)恒成立,求a的取值范围. 【解析】(1)a′(a)=3a2e aa+aa3e aa=a2e aa(aa+3).①当a=0时,a′(a)≥0恒成立,所以a(a)在R单调递增;②当时,今,得;令,所以a (a )的单调递减区间为(−3a ,+∞),单调递增区间为(−∞,−3a ]. ③当a >0时,今a ′(a )≥0,得a ≥−3a ;令a ′(a )<0,得a <−3a . 所以a (a )的单调递减区间为(−∞,−3a ),单调递增区间为[−3a ,+∞). (2)因为a =2,所以a ≤a 3e 2a −3ln a −1a恒成立. 设a (a )=a −1−ln a (a >0),a ′(a )=a −1a, 令a ′(a )<0,得0<a <1;令a ′(a )>0,得a >1. 所以a (a )min =a (1)=0,所以a −1−ln a ≥0.取a =a 3e 2a ,则a 3e 2a −1−ln (a 3e 2a )≥0,即a 3e 2a −3ln a −1≥2a ,所以a 3e 2a −3ln a −1a≥2aa=2.设a (a )=a 3e 2a ,因为a (0)=0<1,a (1)=e 2>1,所以方程a 3e 2a =1必有解, 所以当且仅当a 3e 2a =1时,函数a =a 3e 2a −3ln a −1a取得最小值2,所以a ≤2,即a 的取值范围为(−∞,2].【点睛】本题在进行分参后,首先证明了一个常用的不等式:当a >0时,有ln a ≤a −1,接下来利用该不等式直接得到a 3e a −3ln a −1≥2a , 从而得出a =a 3e a −3ln a −1a的最小值2.最后证明能够取到最小值.从而得出实数a 的取值范围. 本题也可用同构法解决:a ≤a 3e 2a −3ln a −1a, a 3e 2a −3ln a −1a=e 3ln a +2a −3ln a −1a≥2a +3ln a +1−3ln a −1a=2,故a ≤2,即a 的取值范围为(−∞,2]. 换元后分离参数【例5】已知函数a (a )=a (e a a−2a −2)+a . (1)若a =−1,求a (a )的单调区间和极值点;(2)若a >0时,a (a )>−1(a >0)恒成立,求实数a 的取值范围.【解析】(1)a =−1时a (a )=a e −a −1,a ′(a )=e −a −a e −a =0,所以当a <1,a ′(a )>0,a >1,a ′(a )<0.所以a (a )的单调递减区间为(1,+∞),单调递增区间为(−∞,1),极大值点为a =1,无极小值点.(2)解法1:a (a )>−1⇔a (e aa −2a −2)+a >−1, 即a (e aa −2a −2)+a +1>0, 令aa =a ,则a =aa ,aa e a −(2a +2)a +a +1>0对于a >0恒成立, 即a (a e a −2a +1)>2a −1(∗)易证e a ≥a +1(过程略),则a e a −2a +1≥a (a +1)−2a +1>(a −1)2≥0, 即a e a −2a +1>0. 于是,由(∗)可得a >2a −1a e a −2a +1. 令a (a )=2a −1a e a −2a +1(a>0),则a ′(a )=−(2a +1)(a −1)(a e a −2a +1)2e a(a >0).当a ∈(0,1)时a ′(a )>0,当a ∈(1,+∞)时a ′(a )<0.所以a (a )在(0,1)上单调递增,在(1,+∞)上单调递减,[a (a )]max =a (1)=1e −1, 所以a >1e −1,实数a 的取值范围是(1e −1,+∞). 解法2:a (a )>−1⇔a (e aa −2a−2)+a >−1, 即a (e aa −2a−2)+a +1>0,令aa=a ,则a =aa ,aa e a −(2a +2)a +a +1>0对于a >0恒成立, 即aa +1>2a −1a e a对于a >0恒成立,设a (a )=2a −1a ea ,a ′(a )=−(2a +1)(a −1)a 2e a当a ∈(0,1)时a ′(a )>0,当a ∈(1,+∞)时a ′(a )<0 可得a (a )在(0,1)上递增,在(1,+∞)上递减, 所以a (a )max =a (1)=1e ,则aa +1>1e ,解得a >1e −1. 故实数a 的取值范围是(1e −1,+∞).【点睛】本题第(2)问显然不能直接分离参数,如果利用a ′(a )处理也是十分复杂,于是着眼于简化指数进行换元:令a a =a ,则aa e a −(2a +2)a +a +1>0对于a >0恒成立.换元之后就可以轻松分离参数了,特别是解法2的处理手法值得回味.半分离参数【例6】已知函数a(a)=e a−aa−1(a∈R,其中e为自然对数的底数).(1)若a(a)在定义域内有唯一零点,求a的取值范围;(2)若a(a)≤a2e a在[0,+∞)上恒成立,求a的取值范围.【解析】(1)a′(a)=e a−a,①当a≤0时,a′(a)>0,所以a(a)在R上单调递增;−1+a<0,a(1)=e−a−1>0,又a(−1)=1e由零点存在定理可知,函数a(a)在R上有唯一零点.故a≤0符合题意;②当a>0时,令a′(a)=0得a=ln a,当a∈(−∞,ln a)时,a′(a)<0,a(a)单调递减;a∈(ln a,+∞),a′(a)>0,a(a)单调递增.所以a(a)min=a(ln a)=e ln a−a ln a−1=a−a ln a−1,设a(a)=a−a ln a−1(a>0),则a′(a)=1−(ln a+1)=−ln a,当0<a<1时,a′(a)>0,a(a)单调递增;当a>1时,a′(a)<0,a(a)单调递减,所以a(a)max=a(1)=0,故a=1.综上:实数a的取值范围为{a∣a≤0或a=1}.(2)解法1:a(a)≤a2e a对a∈[0,+∞)恒成立,即(1−a2)e a≤aa+1对a∈[0,+∞)恒成立,即函数a(a)=(1−a2)e a的图像恒在直线a=aa+1的下方.而a′(a)=(1−a2−2a)e a,a′′(a)=(−a2−4a−1)e a<0(a≥0),所以函数a(a)是上凸函数,且在a=0处的切线斜率a=a′(0)=1;直线a=aa+1过定点(0,1),鈄率为a,故a≥1,即a的取值范围为[1,+∞).解法2:a(a)≤a2e a对a∈[0,+∞)恒成立,即(1−a2)e a≤aa+1对a∈[0,+∞)恒成立, 记a(a)=(1−a2)e a=(1+a)(1−a)e a,①当a≥1时,设函数a(a)=(1−a)e a,则a′(a)=−a e a≤0,因此a(a)在[0,+∞)单调递减,又a(0)=1,故a(a)≤1,所以a(a)=(1+a)a(a)≤1+a≤aa+1,故a(a)≤a2e a对a∈[0,+∞)恒成立;②当0<a<1时,设函数a(a)=e a−a−1,则a′(a)=e a−1≥0,所以a(a)在[0,+∞)单调递减,且a(0)=0,故e a≥a+1.当0<a<1时,a(a)>(1−a)(1+a)2,(1−a)(1+a)2−aa−1=a(1−a−a−a2),取a0=−1+√5−4a2,则a0∈(0,1),(1−a0)(1+a0)2−aa0−1=0,所以a(a0)>aa0+1;故0<a<1不合题意.③当a≤0时,取a0=√5−12,则a0∈(0,1),a(a0)>(1−a0)(1+a0)2=1≥aa0+1.故a≤0不合题意.综上,a的取值范围为[1,+∞).【点睛】解法1将不等式进行变形为aa+a≤a(a)(其中a为参数,a为常数),不等号前后两个函数的图像特征为:“一直一曲”,而直线a=aa+a过定点(0,a).半分离参数的方法,通过变形将不等式两边化为一直线与一曲线的形式,再结合图像利用函数凹凸性解决问题,过程简洁快捷.需要指出的是,这种解法只适用于选择题与填空题,不适用于解答题.解法2是不分离参数,直接构造差函数对参数进行讨论,过程更加严谨,理由更加充分,是解答题的一般做法.其中讨论的临界点,可以结合解法1的过程而得到.【例7】已知函数a(a)=a ln a+aa−1,a∈a.(1)求函数a(a)的单调区间;(2)当a=2时,对任意a>1,a(a)>a(a−1)恒成立,求正整数a的最大值.【解析】(1)a(a)的单调递增区间为(e−a−1,+∞),单调递减区间为(0,e−a−1).(2)解法1:全分离a(a)>a(a−1)变形为a<a(a)a−1=a ln a+2a−1a−1,令a(a)=a ln a+2a−1a−1,a′(a)=−ln a+a−2(a−1)2,令a(a)=−ln a+a−2,则a′(a)=−1a +1=a−1a>0,所以a(a)在(1,+∞)单调递增,又a(3)=1−ln3<0,a(4)=2−2ln2>0,所以存在唯一a0∈(3,4),使得a(a0)=0,即ln a0=a0−2.故当a∈(1,a0)时,a(a)<0,a′(a)<0,a(a)单调递减;当a∈(a0,+∞)时,a(a)>0,a′(a)>0,a(a)单调递增.所以a(a)min=a(a0)=a0ln a0+2a0−1a0−1=a02−1a0−1=a0+1,即a<a0+1,又a0∈(3,4),所以a0+1∈(4,5),因为a∈a∗,所以a max=4.解法2:半分离a(a)>a(a−1)恒成立,即a(a)=a ln a+2a−1图像恒在直线a=a(a−1)的上方.因为a′(a)=3+ln a>0,a′′(a)=1a>0,所以a(a)在(1,+∞)单调递增,且下凸; 直线a=a(a−1)过定点(1,0).设过(1,0)的直线与a(a)相切于点(a0,a(a0)),即(a0,a0ln a0+2a0−1).切线斜率为a′(a0),所以a<a′(a0).由a(a0)−0a0−1=a′(a0),得a0ln a0+2a0−1a0−1=3+ln a0,化简整理得ln a0=a0−2,所以a′(a0)=3+ln a0=3+(a0−2)=a0+1.故a<a0+1. 下面估计a0的范围.令a(a)=a−ln a−2,则a′(a)=1−1a =a−1a>0,所以a(a)在(1,+∞)单调递增;又a(3)=1−ln3<0,a(4)=2−2ln2>0,所以a(a)的唯一零点a0∈(3,4).于是a0+1∈(4,5),因为a∈a∗,所以a max=4.【点睛】需要点睛意的是,利用半分离参数求解含参问题,需要结合二阶导数研究函数的凹凸性,在解答题中有“以图代证”的嫌疑,因而这个解法一般只适用于选择题或填空题. 【例8】设函数a(a)=e a(2a−1)−aa+a,其中a<1.若存在在唯一的整数a0使得a(a0)<0.则a的取值范围是()A.[−32e ,1) B.[−32e,34) C.[32e,34) D.[32e,1)【解析】解法1:全分离参数a (a )<0⇔(a −1)a >e a (2a −1)当a >1时,有a >e a (2a −1)a −1>1,这与题设矛盾,舍去; 当a <1时,有a <e a (2a −1)a −1,记a (a )=e a (2a −1)a −1, 则a ′(a )=e a (2a +1)(a −1)−e a (2a −1)(a −1)2=a e a (2a −3)(a −1)2(a <1), 当a <0时,a ′(a )>0;当0<a <1时,a ′(a )<0,故a (a )在(−∞,0)上单调递增,在(0,1)上单调递减,作出其大致图象如图所示.由题意知,存在唯一的整数a 0使得a (a 0)<0,即a <a (a 0),由图易知a 的取值范围是32e =a (−1)≤a <1,选a .解法2:半分离参数设a (a )=e a (2a −1),a (a )=aa −a ,由题意知,存在唯一的整数a 0,使得a (a 0)<a (a 0),a ′(a )=e a (2a +1),当a <−12时,a ′(a )<0,当a >−12时,a ′(a )>0,则a (a )在(−∞,−12)上单调递减,在(−12,+∞)上单调递增.作出a (a )与a (a )的大致图象如图所示.因为a (0)=−1<−a =a (0),故只需a (−1)≥a (−1)即可,解得a ≥32e ,则a 的取值范围是32e ≤a <1,故选a .强化训练1.设函数a (a )=a 2+aa +a ,a (a )=e a (aa +a ).若曲线a =a (a )和曲线a =a (a )都过点a (0,2),且在点a 处有相同的切线a =4a +2.(1)求a ,a ,a ,a 的值;(2)若a ≥−2时,a (a )≤aa (a ),求a 的取值范围.【解析】(1)a =4,a =2,a =2,a =2(过程略).(2)由(1)知,a (a )=a 2+4a +2,a (a )=2e a (a +1),①当a =−1时,a (a )=−1,a (a )=0,此时a (a )≤aa (a )恒成立,则a ∈a ; ②当a ∈[−2,−1)时,a (a )=2e a (a +1)<0,a (a )≤aa (a )可化为:a ≤a 2+4a +22e a (a +1),令a (a )=a 2+4a +22e a (a +1),则a ′(a )=−a (a +2)22e a (a +1)2≥0恒成立,故a (a )在区间[−2,−1)上单调递增,当a =−2时,a (a )取最小值e 2,故a ≤e 2; ③当a ∈(−1,+∞)时,a (a )=2e a (a +1)>0,a (a )≤aa (a )可化为:a ≥a 2+4a +22e a (a +1), 令a (a )=a 2+4a +22e a (a +1),则a ′(a )=−a (a +2)22e a (a +1)2,当a ∈(−1,0)时,a ′(a )>0,当a ∈(0,+∞)时,a ′(a )<0,故当a =0时,a (a )取极大值1,故a ≥1.综上所述:a ∈[1,e 2],即a 的取值范围是[1,e 2].2.设函数a (a )=e a −aa −2.(1)求a (a )的单调区间;(2)若a =1,a 为整数,且当a >0时,(a −a )a ′(a )+a +1>0,求a 的最大值.【解析】(1)当a ≤0时,a (a )在(−∞,+∞)上单调递增,无减区间;当a >0时,a (a )的单调递减区间是(−∞,ln a ),单调递增区间是(ln a ,+∞).(2)(a −a )a ′(a )+a +1>0等价于a <a +1e a −1+a (a >0)(1),令a (a )=a +1e a −1+a ,则a ′(a )=e a (e a −a −2)(e a −1)2, 而函数a (a )=e a −a −2在(0,+∞)上单调递增,a (1)<0,a (2)>0,所以a (a )在(0,+∞)存在唯一的零点.故a ′(a )在(0,+∞)存在唯一的零点.设此零点为a ,则a ∈(1,2).当a∈(0,a)时,a′(a)<0;当a∈(a,+∞)时,a′(a)>0.所以a(a)在(0,+∞)的最小值为a(a).又由a′(a)=0,可得e a=a+2,所以a(a)=a+1∈(2,3).由于(1)式等价于a<a(a),故整数a的最大值为2.3已知函数a(a)=ln2(1+a)−a21+a.(1)求函数a(a)的单调区间;(2)若不等式(1+1a)a+a≤e对任意的a∈N∗都成立(其中e是自然对数的底数).求a的最大值.【解析】(1)函数a(a)的定义域为(−1,+∞),a′(a)=2ln(1+a)1+a−a2+2a(1+a)2=2(1+a)ln(1+a)−a2−2a(1+a)2.设a(a)=2(1+a)ln(1+a)−a2−2a,则a′(a)=2ln(1+a)−2a.令a(a)=2ln(1+a)−2a,则a′(a)=21+a −2=−2a1+a.当−1<a<0时,a′(a)>0,a(a)在(−1,0)上为增函数,当a>0时,a′(a)<0,a(a)在(0,+∞)上为减函数.所以a(a)在a=0处取得极大值,而a(0)=0,所以a′(a)<0(a≠0), 函数a(a)在(−1,+∞)上为减函数.于是当−1<a<0时,a(a)>a(0)=0,当a>0时,a(a)<a(0)=0.所以,当−1<a<0时,a′(a)>0,a(a)在(−1,0)上为增函数.当a>0时,a′(a)<0,a(a)在(0,+∞)上为减函数.故函数a(a)的单调递增区间为(−1,0),单调递减区间为(0,+∞).(2)不等式(1+1a )a+a≤e等价于不等式(a+a)ln(1+1a)≤1.由1+1a >1知,a≤1ln(1+1a)−a.设a(a)=1ln(1+a)−1a,a∈(0,1],则a′(a)=−1(1+a)ln2(1+a)+1a2=(1+a)ln2(1+a)−a2a2(1+a)ln2(1+a).由(1)知,ln2(1+a)−a21+a≤0,即(1+a)ln2(1+a)−a2≤0.所以a′(a)<0,a∈(0,1],于是a(a)在(0,1]上为减函数.−1.故函数a(a)在(0,1]上的最小值为a(1)=1ln2−1.所以a的最大值为1ln2。
解答含参不等式问题常用的几种方法
考点透视含参不等式问题较为复杂,常与导数、函数、方程等知识相结合.这类问题侧重于考查不等式的性质、简单基本函数的图象和性质、导数的性质等,对同学们的运算和分析能力有较高的要求.下面举例说明解答含参不等式问题的几种常用方法.一、判别式法判别式法主要适用于求解含参二次不等式问题.解答这类问题主要有三个步骤:第一步,根据二次不等式构造一元二次方程;第二步,运用二次方程的判别式,建立关于参数的新不等式;第三步,解新不等式,求得问题的答案.例1.若ax2-2ax+1≥0在R上恒成立,则实数a的取值范围为_____.解:当a=0时,1≥0,不等式ax2-2ax+1≥0成立;当a≠0时,{a>0,Δ≤0,解得0<a≤1;综上所述,实数a的取值范围为0≤a≤1.该二次不等式的二次项和一次项中含有参数,需分a=0和a≠0两种情况进行讨论.运用判别式法求解含参一元二次不等式问题,需先根据不等式构造一元二次函数和一元二次方程;然后根据一元二次方程的根的分布情况,建立关于判别式、根与系数、对称轴的不等式,从而求得参数的取值范围.二、分离参数法分离参数法适用于求解变量和参数可分离的不等式问题.解题时,需先判断出参数系数的正负;然后根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;再求出含变量一边的式子的最值;最后求出参数的取值范围.例2.当x∈()1,+∞时,(e x-1-1)ln x≥a(x-1)2恒成立,则实数a的取值范围为_____.解:因为x∈()1,+∞,则x-1>0,由(e x-1-1)ln x≥a(x-1)2,可得e x-1-1x-1⋅ln xx-1≥a,即e x-1-1x-1⋅1x-1ln x≥a,则e x-1-1x-1⋅1e ln x-1ln x≥a,令f()x=e x-1x()x>0,则f′()x=()x-1e x+1x2,令g()x=()x-1e x+1,则g′()x=xe x>0,所以g()x在()0,+∞上单调递增,则g()x>g()0=0,即f′()x>0,所以f()x在()0,+∞上单调递增,则f()x>0,令h()x=ln x-x+1,则h′()x=1-xx<0,则h()x在()1,+∞上单调递减,则h()x<h()1=0,即ln x-x+1<0,则x-1>ln x,所以f()x-1>f()ln x>0,即e x-1-1x-1>eln x-1ln x>0,可得e x-1-1x-1⋅1e ln x-1ln x>1,则a≤1,解答本题,要先将不等式进行整理,使参数和变量分离;再构造出函数f()x=e x-1x()x>0,将问题转化为函数最值问题.对其求导,判断其单调性,即可求得参数的取值范围.三、函数性质法若含参不等式中含有简单基本函数,则可直接将不等式进行变形,将其构造成函数,把问题转化为f(x,a)≥0、f(x,a)<0、f(x,a)≥g(x,a)、f(x,a)<g(x,a)等函数不等式问题.再根据简单基本函数的单调性,以及导数与函数单调性之间的关系,判断出函数的单调性,即可根据函数的单调性,求得函数的最值,顺利求出问题的答案.例3.若不等式sin x-ln()x+1+e x≥1+x+ax2-13x3恒成立,则a的取值范围为_____.解:由x>-1得,sin x-ln(x+1)+e x-x-1-ax2+13x3≥0,设f(x)=sin x-ln(x+1)+e x-x-1-ax2+13x3,则g(x)=f′(x)=cos x-1x+1+e x-1-2ax+x2,则h(x)=g′(x)=-sin x+1(x+1)2+e x-2a+2x,则z(x)=h′(x)=-cos x-2(x+1)3+e x+2,z′(x)=sin x+6(x+1)4+e x,当x>-1时,z′(x)>0,则h(x)单调递增,又当x∈(-1,0)时,z(x)<0,则h(x)单调递减,当x∈(0,+∞)时,z(x)>0,则h(x)单调递增,又h(0)=2-2a,①当2-2a≥0,即1≥a时,h(0)≥0,则当x∈(-1,+∞)孙小芳35考点透视时,h (x )≥0,此时g (x )单调递增,又g (0)=0,故当x ∈(-1,0)时,g (x )<0,则f (x )单调递减,当x ∈(0,+∞)时,g (x )>0时,f (x )单调递增,所以f (x )min =f (0),又f (0)=0,故f (x )≥0恒成立,满足题意;②当2-2a <0,即a >1时,h (0)<0,x →+∞,h (x )→+∞,故存在x 0>0,且h (x 0)=0,则当x ∈(-1,x 0)时,h (x )<0,则g (x )单调递减,当x ∈(x 0,+∞)时,h (x )>0,所以g (x )单调递增,又g (0)=0,故g (x 0)<0,x →+∞,g (x )→+∞,故存在x 1>x 0,且g (x 1)=0,所以当x ∈(-1,x 1)时,g (x )<0,则f (x )单调递减,又因为f (0)=0,所以f (x )<f (0)=0,与f (x )≥0恒成立不相符;综上所述,a ≤1.根据不等式构造函数f (x )=sin x -ln(x +1)+e x -x -1-ax 2+13x 3,通过多次求导,判断出导函数的符号,进而判断出函数的单调性,求得函数最值.求得使f (x )min ≥0成立时a 的取值范围,即可解题.四、主参换位法主参换位法,也叫反客为主法,适用于解答已知参数的范围求自变量取值范围的不等式问题.解答这类问题一般分三个步骤:第一步,将原不等式转化成关于参数的不等式;第二步,以参数为自变量,构造函数式,将问题转化为函数问题;第三步,根据函数的性质、图象讨论不等式成立的情形,建立关系即可解题.例4.已知函数f ()x =ax 2+bx -6,不等式f ()x ≤0的解集为[]-3,2.若当0≤m ≤4时,不等式mf ()x +6m <x +1恒成立,求实数x 的取值范围.解:由题意知:-3,2是方程ax 2+bx -6=0的根,且a >0,∴ìíîïï-b a=-3+2,-6a=(-3)×2,解得a =1,b =1.∴f ()x =x 2+x -6,∴mf ()x +6m <x +1可变形为()x 2+x m -x -1<0,令g ()m =()x 2+x m -x -1,∴{g (0)<0,g (4)<0,即{-x -1<0,4x 2+3x -1<0,解得ìíîx >-1,-1<x <14,-1<x <14.解答本题主要采用了主参换位法.因为已知参数m 的取值范围,故把m 当成自变量,通过主参换位,将问题转化为g ()m =()x 2+x m -x -1对任意0≤m ≤4恒成立,根据一次函数的性质,列出不等式组,即可解题.五、数形结合法当把不等式两边的式子看成两个函数式时,可根据其几何意义画出两个函数的图象,分析两个曲线间的位置,确保不等式恒成立,即可通过数形结合,求得参数的取值范围.例5.若关于x 的不等式||||kx -4-x 2-3≤3k 2+1恒成立,则k 的取值范围是_____.解:由题意可得4-x 2≥0,得-2≤x ≤2,则||||kx -4-x 2-3≤3k 2+1可转化为:||kx -4-x 23,设直线l :kx -y -3=0,上半圆C :x 2+y 2=4()y >0,即y =4-x 2,半径为r =2,||kx -4-x 2≤3表示圆C 小于或等于3,如图,设圆心(原点O )到直线l 的距离为d ,由于圆C 上半部分上的点到直线l 的最大距离为d +r =d +2,所以d +2≤3,即d ≤1,即||0-0-3k 2+1≤1,解得k ≤-22或k ≥22,所以k 的取值范围为(]-∞,-22⋃[)22,+∞.解答本题,需挖掘代数式的几何意义,采用数形结合法,将原问题转化为使圆C 上半部分上的任意一点到直线l 的距离小于或等于3时参数的取值范围.分析直线与圆的位置关系,便可建立新不等式.由此可见,求解含参不等式问题的方法多样.但由于不等式与函数的关系紧密,且利用函数的单调性和图象容易建立不等关系式,因此函数思想是破解含参不等式问题的主要思想.(作者单位:江苏省南京市大厂高级中学)36。
分离参数法的基本步骤
分离参数法的基本步骤分离参数法的基本步骤:①分离参数法应用于解决偏微分方程初边值问题时首先需确保方程形式适合采用该方法即方程可写为两个变量各自函数乘积形式;②对于典型例子如一维热传导方程∂u/∂t=α²∂²u/∂x²边界条件u(0,t)=u(L,t)=0初始条件u(x,0)=f(x)其中α为常数L为区间长度f(x)为已知函数;③假设解可以表示为时间变量t与空间变量x的乘积形式即u(x,t)=X(x)T(t)将其代入原方程中得到X(x)T'(t)=α²X''(x)T(t);④两边同时除以α²XT得到T'/T=α²X''/X记作λ该式表明左侧仅为t函数右侧仅为x函数因此λ必须为常数;⑤根据λ值不同讨论几种情况λ>0λ=0λ<0分别对应指数函数常数函数三角函数解形式;⑥结合边界条件求解相应常微分方程得到X(x)T(t)具体表达式对于λ<0情形通常假设λ=-μ²μ>0;⑦解得X(x)=Acos(μx)+Bsin(μx)应用边界条件X(0)=0X(L)=0确定系数A=0μ=nπ/Ln为正整数;⑧T(t)部分解为T(t)=Ce^(-α²μ²t)其中C为待定常数综合得到u(x,t)=∑[Bₙsin(nπx/L)e^(-α²(nπ/L)²t)];⑨利用傅里叶级数展开原理将初始条件f(x)表示为正弦级数∑B ₙsin(nπx/L)通过积分计算确定系数Bₙ;⑩最终得到满足所有条件的解形式表明随着时间推移热能在均匀介质中逐渐扩散直至达到稳态;⑪分离参数法不仅适用于热传导问题还可推广至波动方程拉普拉斯方程等其他类型偏微分方程求解中;⑫正确理解和掌握分离参数法基本思想与操作步骤对于深入研究偏微分方程理论解决实际工程问题具有重要意义。
每日一题型7恒成立之分离参数最值法
每日一题型 7 恒成立之分离参数最值法 在数学问题研究中经常碰到在给定条件下某些结论恒成立问题.这类问题涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用.因此也成为历年高考的一个热点.分离参数最值法主要通过两个基本思想解决“恒成立问题”思路1、x D ∈,[](),f x a b ∈()m f x x D m b >∈⇔>在上恒成立 ()m f x x D m a <∈⇔<在上恒成立 ()m f x x D m b ≥∈⇔≥在上恒成立 ()m f x x D m a ≤∈⇔≤在上恒成立思路2、x D ∈,()(),f x a b ∈()m f x x D m b >∈⇔≥在上恒成立 ()m f x x D m a <∈⇔≤在上恒成立 ()m f x x D m b ≥∈⇔≥在上恒成立 ()m f x x D m a ≤∈⇔≤在上恒成立先看看几道例题:1.函数,若对任意,恒成立,求实数的取值范围。
解:若对任意,恒成立, 即对,恒成立,考虑到不等式的分母,只需在时恒成立而得.即22a x x >--而223x x --≤- 所以3a >- 2.已知当x R 时,不等式a+cos2x<5-4sinx+恒成立,求实数a 的取值范围。
分析:在不等式中含有两个变量a 及x ,其中x 的范围已知(x R ),另一变量a 的范围即为所求,故可考虑将a 及x 分离。
解:原不等式即: 要使上式恒成立,只需大于的最大值,故上述问题转化成求f(x)=4sinx+cos2x 的最值问题。
f(x)=4sinx+cos2x=-2sin 2x+4sinx+1=-2(sinx -1)2+33,∴即上式等价于或解得.注:注意到题目中出现了sinx 及cos2x ,而cos2x=1-2sin 2x,故若把sinx 换元成t,则可把原不等式转化成关于t 的二次函数类型。
破解含参不等式恒成立的5种常用方法
破解含参不等式恒成立的5种常用方法含参数不等式恒成立问题越来越受高考命题者的青睐,且由于对导数应用的加强,这些不等式恒成立问题往往与导数问题交织在一起,在近年的高考试题中不难看出这个基本的命题趋势。
对含有参数的不等式 恒成立问题,破解的方法有:分离参数法、数形结合法、单调性分析法、最值定位法、构造函数法等。
一 分离参数法分离参数法是解决含问题的基本思想之一。
对于含参不等式的问题,在能够判断出参数的系数正负的情况下,可以根据不等 式的性质将参数分离出来 ,得到一个一端是参数、另一端是变量表达式的不等式,只要研究变量表达式的性式就可以解决问题。
例1 已知函数a x f x x 421)(++=在(-∞,1]上有意义,试求的取值范围。
分析 :函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,这里参数的系数04>x ,故可以分离参数。
解析:函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,即⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-≥x x a 2141,∈x (-∞,1]恒成立,记)(x g a ≥,∈x (-∞,1],因此问题又等价于)(x g a ≥在)(x g a ≥上恒成立,)(x g 在(-∞,1]上是增函数,因此)(x g 的最大值为)1(g 。
)(x g a ≥在(-∞,1]上恒成等价于43)1()(max -==≥g x g a 。
于是工的取值范围为43-≥a 。
【点评】)(x f a ≥恒成立等价于max )(x f a ≥;)(x f a ≤恒成立等价于min )(x f a ≤。
如果函数)(x f 不存在最值,上面的最大值就替换为函数值域的右端点,最小值就替换为函数值域的左端点。
解这类问题时一定要注意区间的端点值。
二 数形结合法数形到结合法是一种重要的数学思想方法,其要点是“见数想形,以形助数”,从而达到解决问题的目的,数形结合法是破解含参数不等式恒成立问题的又一个主要方案。
(分离常数法与分离参数法)
分离常数法与分离参数法分离常数法是研究分式函数的一种代数变形的常用方法,主要的分式函数有ax by cx d +=+,22ax bx c y mx nx p++=++,x x m a n y p a q⋅+=⋅+,sin sin m x n y p x q ⋅+=⋅+ 等.解题的关键是通过恒等变形从分式函数中分离出常数. 1.用分离常数法求分式函数的值域 例1 求函数31()(1)2x f x x x +=≤-的值域.解 由已知有3[(2)2]1()2x f x x -++=-3(2)77322x x x -+==+--. 由1x ≤,得21x -≤-.∴1102x -≤<-.∴函数()f x 的值域为{|43}y R y ∈-≤<. 2.用分离常数法判断分式函数的单调性 例2 已知函数()()x af x a b x b+=≠+,判断函数()f x 的单调性.解 由已知有()1x b a b a b y x bx b++--==+++,x b ≠-.所以,当0a b ->时,函数()f x 在(,)b -∞-和(,)b -+∞上是减函数;当0a b -<时,函数()f x 在(,)b -∞-和(,)b -+∞上是增函数.3.用分离常数法求分式函数的最值 例3 设1x >-,求函数2710()1x x f x x ++=+的最小值.解 ∵1x >-,∴10x +>.由已知有2[(1)1]7[(1)1]10()1x x f x x +-++-+=+2(1)5(1)41x x x ++++=+4[(1)]51x x =++++59≥=.当且仅当411x x +=+,即1x =时,等号成立.∴当1x =时,()f x 取得最小值9. 分离参数法分离参数法是求参数的取值范围的一种常用方法,通过分离参数,用函数观点讨论主变量的变化情况,由此我们可以确定参数的变化范围.这种方法可以避免分类讨论的麻烦,从而使问题得以顺利解决.分离参数法在解决有关不等式恒成立、不等式有解、函数有零点、函数单调性中参数的取值范围问题时经常用到. 解题的关键是分离出参数之后将原问题转化为求函数的最值或值域问题. 1.用分离参数法解决函数有零点问题例4 已知函数2()4g x x ax =-+在[2,4]上有零点,求a 的取值范围.解 ∵函数2()4g x x ax =-+在[2,4]上有零点,∴方程240x ax -+=在[2,4]上有实根,即方程4a x x=+在[2,4]上有实根. 令4()f x x x=+,则a 的取值范围等于函数()f x 在[2,4]上的值域. 又224(2)(2)()10x x f x x x+-'=-=≥在[2,4]x ∈上恒成立,∴()f x 在[2,4]上是增函数. ∴(2)()(4)f f x f ≤≤,即4()5f x ≤≤.∴45a ≤≤.2.用分离参数法解决函数单调性问题例5 已知x a ax x x f 222)(2-+=在[1,)+∞上是单调递增函数,求a 的取值范围.解 ∵()2a af x x x =-+,∴2()1a f x x '=+.又)(x f 在[1,)+∞上是单调递增函数,∴0)(≥'x f .于是可得不等式2x a -≥对于1x ≥恒成立.∴2max ()a x ≥-.由1x ≥,得21x -≤-.∴1-≥a . 3.用分离参数法解决不等式恒成立问题例6 已知不等式2210mx x m --+<对满足22m -≤≤的所有m 都成立,求x 的取值范围. 解 原不等式可化为2(1)210x m x --+<,此不等式对22m -≤≤恒成立. 构造函数2()(1)21f m x m x =--+,22m -≤≤,其图像是一条线段.根据题意有22(2)2(1)210(2)2(1)210f x x f x x ⎧-=---+<⎪⎨=--+<⎪⎩,即2222302210x x x x ⎧+->⎪⎨--<⎪⎩.x <4.用分离参数法解决不等式有解问题例7 如果关于x 的不等式34210x x a -+--+<的解集不是空集,求参数a 的取值范围. 解 原不等式可化为3421x x a -+-<-.∵原不等式的解集不是空集,∴min (34)21x x a -+-<-.又34(3)(4)1x x x x -+-≥---=,当且仅当(3)(4)0x x --≤时,等号成立,∴211a -≥,即1a ≥. 5.用分离参数法求定点的坐标例8 已知直线l :(21)(1)740m x m y m +++--=,m R ∈,求证:直线l 恒过定点. 解 直线l 的方程可化为4(27)0x y m x y +-++-=.设直线l 恒过定点(,)M x y .由m R ∈,得40270x y x y +-=⎧⎨+-=⎩(3,1)M ⇒. ∴直线l 恒过定点(3,1).巩固练习:1、 设函数()2()log 21x f x =+的反函数为=y 1()-f x ,若关于x 的方程1()()f x m f x -=+在[1,2]上有解,则实数m 的取值范围是 2213log ,log 35⎡⎤⎢⎥⎣⎦.2、 设关于x 的方程0)5(6391=-+-+k k k x x在]2,0[内有解,求k 的取值范围.1,82⎡⎤⎢⎥⎣⎦3、 奇函数f(x)在R 上为减函数,若对任意的],1,0(∈x 不等式0)2()(2>-+-+x x f kx f 恒成立,则实数k的取值范围是 221min =+-<)(xx k4、 函数2()223f x ax x a 在[-1,1]上有零点,求a 的取值范围.显然本题看成03222=--+a x ax 在[-1,1]上有解问题,从而分离变量:]1,1[,23)12(2-∈-=-x x x a 显然0122≠-x ,从而]1,1[,12232-∈--=x x x a 有解,故而a 的范围就是函数]1,1[,12232-∈--=x x xy 的值域,从而利用换元法求出),1[]273,(+∞⋃+--∞∈a .5.若函数2()4f x x x a =--的零点个数为3,则a =_4_____。
分离参数法求解参数问题含详解
1.已知函数 f x ax2 x lnx 1 ax2 x . (a∈R). 2
(1)当 a=0 时,求曲线 y=f(x)在(e,f(e)处的切线方程(e=2.718…) (2)已知 x=e 为函数 f(x)的极值点,求函数 f(x)的单调区间. 【答案】(1)x+y﹣e=0.(2)单调递增区间为(0,1)和(e,+∞),单调递减区间为(1,e). 【解析】(1)∵a=0, ∴f(x)=﹣xlnx+x,f′(x)=﹣lnx, 则直线的斜率 k=f′(e)=﹣lne=﹣1, f(e)=﹣elne+e=﹣e+e=0, 故所求切线方程为 x+y﹣e=0. (2)函数的导数 f′(x)=(2ax﹣1)lnx﹣ax﹣1+ax+1=(2ax﹣1)lnx, ∵x=e 为函数 f(x)的极值点,
2 作出函数 u=1+ x 1 (r<x<a-2)的图象,得 a-2=-1,解得:a=1,矛盾.
9
综上,r=1,a=2+ 3 .
10.已知函数 f (x) mx 1 1 (m, n 是常数 ) ,且 f (1) 2 , f (2) 11 .
nx 2
4
(1)求 m,n 的值;
(2)当 x 1, 时,判断 f (x) 的单调性并证明;
(2)若 a= 1 ,并且对区间[3,4]上的每一个 x 的值,不等式 f(x)>( 1 )x+t 恒成立,求实数 t 的取值
2
2
范围.
(3)当 x∈(r,a-2)时,函数 f(x)的值域是(1,+∞),求实数 a 与 r 的值.
【答案】(1)1;(2)
t
9 8
;(3)
高考满分数学压轴题22 导数中的参数问题(可编辑可打印)
【方法综述】导数中的参数问题主要指的是形如“已知不等式恒成立、存在性、方程的根、零点等条件,求解参数的取值或取值范围”.这类问题在近几年的高考中,或多或少都有在压轴选填题或解答题中出现,属于压轴常见题型。
而要解决这类型的题目的关键,突破口在于如何处理参数,本专题主要介绍分离参数法、分类讨论法及变换主元法等,从而解决常见的导数中的参数问题。
【解答策略】一.分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变量和参数的分离. 1.形如()()af x g x =或()()af x g x <(其中()f x 符号确定)该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题.例1.已知函数432121()ln 432e f x x x ax x x x =-++-在(0,)+∞上单调递增,则实数a 的取值范围是 A .21[,)e e++∞B .(0,]eC .21[2,)e e--+∞ D .[21,)e -+∞【来源】广东省茂名市五校2020-2021学年高三上学期第一次(10月)联考数学(理)试题 【答案】A【解析】32()2ln 0f x x ex ax x '=-+-≥在(0,)+∞上恒成立2ln 2xa ex x x⇔≥+-, 设2ln ()2x p x ex x x =+-,221ln 2()()x e x x p x x-+-'=, 当0x e <<时,()0p x '>;当x e >时,()0p x '<;()p x ∴在(0,)e 单调递增,在(,)e +∞单调递减,21()()p x p e e e∴≤=+,21a e e ∴≥+.故选:A .导数中的参数问题【举一反三】1.(2020·宣威市第五中学高三(理))若函数()f x 与()g x 满足:存在实数t ,使得()()f t g t '=,则称函数()g x 为()f x 的“友导”函数.已知函数21()32g x kx x =-+为函数()2ln f x x x x =+的“友导”函数,则k 的最小值为( ) A .12B .1C .2D .52【答案】C【解析】()1g x kx '=-,由题意,()g x 为函数()f x 的“友导”函数,即方程2ln 1x x x kx +=-有解,故1ln 1k x x x=++, 记1()ln 1p x x x x =++,则22211()1ln ln x p x x x x x-'=+-=+, 当1x >时,2210x x ->,ln 0x >,故()0p x '>,故()p x 递增; 当01x <<时,2210x x-<,ln 0x <,故()0p x '<,故()p x 递减, 故()(1)2p x p ≥=,故由方程1ln 1k x x x=++有解,得2k ≥,所以k 的最小值为2.故选:C. 2.(2020·广东中山纪念中学高三月考)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为( )A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B【解析】由12f a -=-+() ,可得222alnx x a --≤-+ 在0x > 恒成立, 即为a (1-lnx )≥-x 2,当x e = 时,0e -> 2显然成立;当0x e << 时,有10lnx -> ,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==-- 由0x e << 时,223lnx << ,则0g x g x ()<,()'在0e (,)递减,且0g x ()< , 可得0a ≥ ;当x e > 时,有10lnx -< ,可得21x a lnx ≤- , 设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(), 由32 e x e << 时,0g x g x ()<,()' 在32 e e (,)递减, 由32x e >时,0g x g x '()>,() 在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增, 即有)g x ( 在32x e = 处取得极小值,且为最小值32e , 可得32a e ≤ ,综上可得302a e ≤≤ .故选B .3.(2020湖南省永州市高三)若存在,使得成立,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】原不等式等价于:令,则存在,使得成立又 当时,,则单调递增;当时,,则单调递减,,即当且仅当,即时取等号,即,本题正确选项:2.形如()(),f x a g x =或()()af x g x <(其中(),f x a 是关于x 一次函数)该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该类题目了.【例2】已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( )A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭ C .ln 3,92e e ⎡⎫⎪⎢⎣⎭ D .ln 2e 0,4⎛⎫ ⎪⎝⎭【答案】B【解析】由题意2ln 1()0x mx f x x+-==,得2ln 1x m x +=, 设2ln 1()(0)x h x x x +=>,求导4332(ln 1)12(ln 1)(2ln 1)()x x x x x h x x x x-+-+-+'=== 令()0h x '=,解得12x e -=当120x e -<<时,()0h x '>,()h x 单调递增;当12x e ->时,()0h x '<,()h x 单调递减; 故当12x e -=时,函数取得极大值,且12()2e h e -=又1=x e时,()0h x =;当x →+∞时,2ln 10,0x x +>>,故()0h x →; 作出函数大致图像,如图所示:又(1)1h =,ln 21ln 2(2)44eh +== 因为存在唯一的整数0(,)x a b ∈,使得y m =与2ln 1()x h x x+=的图象有两个交点, 由图可知:(2)(1)h m h ≤<,即ln 214em ≤< 故选:B.【方法点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 【举一反三】1.(2020·重庆市第三十七中学校高三(理))已知函数32()32f x x x ax a =-+--,若刚好有两个正整数(1,2)i x i =使得()0i f x >,则实数a 的取值范围是( )A .20,3⎡⎫⎪⎢⎣⎭B .20,3⎛⎤ ⎥⎦⎝C .2,13⎡⎫⎪⎢⎣⎭D .1,13⎡⎫⎪⎢⎣⎭【答案】A【解析】令32()3,()(2)()()()g x x x h x a x f x g x h x =-+=+∴=-,且2'()36g x x x =-+, 因为刚好有两个正整数(1,2)i x i =使得()0i f x >,即()()i i g x h x >, 作出(),()g x h x 的图象,如图所示,其中()h x 过定点(2,0)-,直线斜率为a ,由图可知,203a ≤≤时, 有且仅有两个点()()1,2,2,4满足条件, 即有且仅有121,2x x ==使得()0i f x >. 实数a 的取值范围是20,3⎛⎤ ⎥⎦⎝,故选:A2(2020济宁市高三模拟)已知当时,关于的方程有唯一实数解,则所在的区间是( ) A .(3,4) B .(4,5)C .(5,6)D .(6.7)【答案】C 【解析】由xlnx+(3﹣a )x+a =0,得,令f (x )(x >1),则f′(x ).令g (x )=x ﹣lnx ﹣4,则g′(x )=10,∴g(x )在(1,+∞)上为增函数, ∵g(5)=1﹣ln5<0,g (6)=2﹣ln6>0, ∴存在唯一x 0∈(5,6),使得g (x 0)=0,∴当x∈(1,x 0)时,f′(x )<0,当x∈(x 0,+∞)时,f′(x )>0. 则f (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增.∴f(x)min=f(x0).∵﹣4=0,∴,则∈(5,6).∴a所在的区间是(5,6).故选:C3.(2020蚌埠市高三)定义在上的函数满足,且,不等式有解,则正实数的取值范围是()A.B.C.D.【答案】C【解析】因为,故,因,所以即.不等式有解可化为即在有解.令,则,当时,,在上为增函数;当时,,在上为减函数;故,所以,故选C.二.分类讨论法分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论. 1.二次型根的分布或不等式解集讨论该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程, 可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决.【例3】(2020·全国高三专题)函数()()23xf x x e =-,关于x 的方程()()210fx mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【答案】D 【解析】【分析】利用导函数讨论函数单调性与极值情况,转化为讨论210t mt -+=的根的情况,结合根的分布求解.【详解】()()()()22331x xx x e x f e x x =+-=+-',令()0f x '=,得3x =-或1x =,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >; 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减; 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增. 所以极大值()363f e-=,极小值()12f e =-,作出大致图象:令()f x t =,则方程210t mt -+=有两个不同的实数根,且一个根在360,e ⎛⎫ ⎪⎝⎭内,另一个根在36,e ⎛⎫+∞ ⎪⎝⎭内, 或者两个根都在()2,0e -内.因为两根之和m 为正数,所以两个根不可能在()2,0e -内.令()21g x x mx =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e >+,即m 的取值范围为336,6e e ⎛⎫++∞ ⎪⎝⎭.故选:D【举一反三】1.(2020·湖南衡阳市一中高三月考(理))已知函数()f x kx =,ln ()xg x x=,若关于x 的方程()()f x g x =在区间1[,]e e内有两个实数解,则实数k 的取值范围是( )A .211[,)2e eB .11(,]2e eC .21(0,)e D .1(,)e+∞【答案】A【解析】易知当k ≤0时,方程只有一个解,所以k >0.令2()ln h x kx x =-,2121(21)(21)()2kx k x k x h x kx x x x--+=-==', 令()0h x '=得12x k =,12x k=为函数的极小值点, 又关于x 的方程()f x =()g x 在区间1[,]e e内有两个实数解,所以()01()01()02112h e h e h k e ek ≥⎧⎪⎪≥⎪⎪⎨<⎪⎪⎪<<⎪⎩,解得211[,)2k e e ∈,故选A.2.(2020扬州中学高三模拟)已知函数有两个不同的极值点,,若不等式恒成立,则实数的取值范围是_______.【答案】【解析】∵,∴.∵函数有两个不同的极值点,,∴,是方程的两个实数根,且,∴,且,解得.由题意得.令,则,∴在上单调递增,∴.又不等式恒成立,∴,∴实数的取值范围是.故答案为.2.指数对数型解集或根的讨论该类题型在进行求解过程,关键步骤出现求解含参指对数型不等式或方程, 可以依次考虑依次根据对应指对数方程的根大小(或与固定区间端点的大小)为讨论的依据,进行分类讨论. 即可解决.【例4】(2020•泉州模拟)已知函数f (x )=ae x ﹣x ﹣ae ,若存在a ∈(﹣1,1),使得关于x 的不等式f (x ) ﹣k ≥0恒成立,则k 的取值范围为( ) A .(﹣∞,﹣1] B .(﹣∞,﹣1)C .(﹣∞,0]D .(﹣∞,0)【答案】A【解析】不等式f (x )﹣k ≥0恒成立,即k ≤f (x )恒成立; 则问题化为存在a ∈(﹣1,1),函数f (x )=ae x ﹣x ﹣ae 有最小值,又f ′(x )=ae x ﹣1,当a ∈(﹣1,0]时,f ′(x )≤0,f (x )是单调减函数,不存在最小值; 当a ∈(0,1)时,令f ′(x )=0,得e x =,解得x =﹣lna , 即x =﹣lna 时,f (x )有最小值为f (﹣lna )=1+lna ﹣ae ; 设g (a )=1+lna ﹣ae ,其中a ∈(0,1),则g ′(a )=﹣e ,令g ′(a )=0,解得a =,所以a ∈(0,)时,g ′(a )>0,g (a )单调递增;a ∈(,1)时,g ′(a )<0,g (a )单调递减;所以g (a )的最大值为g ()=1+ln ﹣•e =﹣1; 所以存在a ∈(0,1)时,使得关于x 的不等式f (x )﹣k ≥0恒成立,则k 的取值范围是(﹣∞,﹣1].故选:A . 【举一反三】1.函数()()211,12x f x x e kx k ⎛⎫⎛⎤=--∈⎪⎥⎝⎦⎝⎭,则()f x 在[]0,k 的最大值()h k =( ) A . ()32ln22ln2-- B . 1- C . ()22ln22ln2k -- D . ()31k k e k --【答案】D2.(2020·浙江省杭州第二中学高三期中)已知函数()f x 的图象在点()00,x y 处的切线为():l y g x =,若函数()f x 满足x I ∀∈(其中I 为函数()f x 的定义域,当0x x ≠时,()()()00f x g x x x -->⎡⎤⎣⎦恒成立,则称0x 为函数()f x 的“转折点”,已知函数()2122x f x e ax x =--在区间[]0,1上存在一个“转折点”,则a 的取值范围是 A .[]0,e B .[]1,eC .[]1,+∞D .(],e -∞ 【答案】B【解析】由题可得()2xf x e ax =--',则在()00,x y 点处的切线的斜率()0002xk f x e ax ==--',0200122x y e ax x =--,所以函数()f x 的图象在点()00,x y 处的切线方程为:00200001(2)(2)()2x x y e ax x e ax x x ---=---,即切线()00200001:=(2)()+22x xl y g x e ax x x e ax x =-----,令()()()h x f x g x =-, 则002200011()2(2)()222x x xh x e ax x e ax x x e ax x =-------++,且0()0h x = 0000()2(2)=+x x x x h x e ax e ax e ax e ax =-------',且0()0h x '=,()x h x e a ='-',(1)当0a ≤时,()0xh x e a =-'>',则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(2)当01a <<时, ()0xh x e a =-'>'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=,所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(3)当1a =,()10x h x e =-'≥'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,取00x =,则()10x h x e x =-->',所以()h x 在区间(]0,1上单调递增,0()()0h x h x >=,当00x x ≠=时,0()()0h x x x ->恒成立,故00x =为函数()2122x f x e ax x =--在区间[]0,1上的一个“转折点”,满足题意。
分离参数法解“定点”问题
分离参数法解“定点”问题在分离参数法中,我们假设一些点满足特定条件,然后通过给定的参数值来计算这个点的坐标,从而找到满足条件的点。
下面我们将详细介绍分离参数法的步骤以及其在解决定点问题中的应用。
步骤一:设定参数首先,我们需要设定一个或多个参数。
参数的设定应满足以下条件:(1)参数范围内应存在唯一的解;(2)参数的设定应与问题本身相关。
步骤二:建立条件方程根据问题的要求,我们可以建立一个或多个条件方程。
这些方程中的未知量通常表示我们需要求解的点的坐标。
步骤三:用参数表示未知量将未知量用参数表示出来。
这样做的目的是将求解问题转化为参数的方程求解问题。
步骤四:求解参数方程将步骤三中得到的参数方程代入步骤二中的条件方程,然后解这些方程组,得到参数的值。
步骤五:计算坐标将得到的参数值带入步骤三中得到的参数方程,从而计算出满足条件的点的坐标。
步骤六:检验与讨论用计算得到的点的坐标验证是否满足条件。
如果满足,则问题得到解决;如果不满足,则需要重新设定参数,并重新执行步骤三到步骤五下面我们通过一个具体的例子来说明分离参数法的使用。
例题:设直线L的方程为3x+y+3=0,且直线L与椭圆C的方程平面xoy的面积为10,求直线L与椭圆C的交点的坐标。
解:首先,我们设直线L与椭圆C的交点的横坐标为t,纵坐标为y。
则直线L的参数方程可以表示为:x=ty=-3t-3椭圆C的方程可以表示为:x^2+2y^2=20将直线L的参数方程代入椭圆C的方程,得到:t^2+2(-3t-3)^2=20化简上式得到:t^2+18t^2+36t+18-20=0将上式化简为:19t^2+36t-2=0解这个二次方程,得到t的值。
然后将t的值带入直线L的参数方程,从而计算出直线L与椭圆C的交点的坐标。
最后,我们需要检验计算得到的交点的坐标是否满足直线L和椭圆C的方程。
如果满足,则问题得到解决;如果不满足,则需要重新设定参数,并重新执行计算过程。
通过以上的例子,我们可以看到分离参数法在解决定点问题中的应用。
分离参数法的四种情形
分离参数法的四种情形
分离参数法是高中数学中处理参数的一种常用方法,以下是关于参数分离的四种主要情形:
1.当参数在方程的两边都有时,我们可以将参数分离出来,以便我们更清晰地看到问题的本质。
2.当参数在方程的一边时,我们可以将参数分离出来,以便我们更方便地处理方程。
3.当参数在方程的平方或乘积项中时,我们可以将参数分离出来,以便我们更容易地观察方程的特征和结构。
4.当参数在方程的根号或开方项中时,我们可以将参数分离出来,以便我们更准确地确定方程的解和参数的范围。
分离参数法需要根据不同的情况灵活应用,但在应用过程中需要注意确保参数分离后方程的正确性和完整性。
同时,还需要根据具体问题选择合适的方法和技巧,以获得更好的结果和解决方案。
高考数学常用的解题技巧第05讲分离参数法
第05讲:分离参数法【知识要点】一、参数在数学问题中经常出现,特别是在最值、值域、取值范围、恒成立和存在性等问题中,经常出现,这时可以考虑是否可以利用分离参数法来解答,即整理成的形式,再解答.二、分离参数时,一定要判断清楚参数的系数的符号,再除以其系数,如果不能确定其符号,可以分类讨论,也可以寻找其它方法.【方法讲评】【例1】已知函数(1)求曲线在点处的切线方程;(2)求函数的极值;(3)对恒成立,求实数的取值范围.列表:- 0 +f↘↗(x)函数)y 的极小值为, 无极大值。
(xf(3)依题意对(0,),()2∀∈+∞≥-恒成立等价于在上恒成x f x bx立可得在(0,)+∞上恒成立,令【点评】本题第(2)问是恒成立问题,刚好b的系数x是一个正数,知道参数的系数的符号,分离参数很方便,所以可以分离参数求最值,比较简洁.【反馈检测1】已知函数.(1)若,试判断在定义域内的单调性;(2)若()f x在上的最小值为,求的值;(3)若在上恒成立,求a的取值范围.【反馈检测2】已知函数(R,且)的部分图象如图所示.(1) 求的值;(2) 若方程在内有两个不同的解,求实数的取值范围.高中数学常用解题技巧第05讲:分离参数法参考答案 【反馈检测1答案】(1)在上是单调递增函数;(2);(3).【反馈检测1详细解析】(1)由题意知()f x 的定义域为()0,+∞,且,∴, 故()f x 在()0,+∞上是单调递增函数(2)由(1)可知,.当时,∴()f x 在上为减函数; 当时, ()0f x '>,∴()f x 在上为增函数,∴.综上所述, a=-e(3)∵.又,令.∵时,在()1,x ∈+∞上是减函数.x.kw∴,即在()1,x ∈+∞上也是减函数.,∴当1a ≥-时,在()1,x ∈+∞上恒成立. 【反馈检测2答案】(1),;(2)或. 【反馈检测2详细解析】(1)由图像可知函数周期为,得1ω=解得13,22a b ==内容总结(1)第05讲:分离参数法 【知识要点】一、参数在数学问题中经常出现,特别是在最值、值域、取值范围、恒成立和存在性等问题中,经常出现,这时可以考虑是否可以利用分离参数法来解答,即整理成的形式,再解答.二、分离参数时,一定要判断清楚参数的系数的符号,再除以其系数,如果不能确定其符号,可以分类讨论,也可以寻找其它方法.【方法讲评】【例1】已知函数(1)求曲线在点处的切线方程(2)(2)。
分离常数参数法-高考理科数学解题方法讲义
(2)设,求使对任意恒成立的实数的取值范
围.
【答案】(1);(2).
【解析】
(1)因为,所以
所以当时,,
又,满足上式,
所以数列的通项公式
(2)
由对任意恒成立,即使对恒成立
设,则当或时,取得最小值为,所以.
2.2 求定点的坐标
例7.已知直线:,,求证:直线恒过定点.
【答案】.
【反思提升】综合上面的例题,我们可以看到,分离参(常)数是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知,解决问题的关键是分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据需遵循.
(Ⅱ)由(Ⅰ)可得 ,
∴函数 在 上单调递增,
又 ,
∴ ,
∴ .
∴函数 的值域为 .
(Ⅲ)当 时, .
由题意得 在 时恒成立,
∴ 在 时恒成立.
令 ,
则有 ,
∵范围为 .
例2.一种作图工具如图1所示. 是滑槽 的中点,短杆 可绕 转动,长杆 通过 处铰链与 连接, 上的栓子 可沿滑槽AB滑动,且 , .当栓子 在滑槽AB内作往复运动时,带动 绕 转动一周( 不动时, 也不动), 处的笔尖画出的曲线记为 .以 为原点, 所在的直线为 轴建立如图2所示的平面直角坐标系.
例1.已知函数 ( 且 )是定义在 上的奇函数.
(Ⅰ)求 的值;
(Ⅱ)求函数 的值域;
(Ⅲ)当 时, 恒成立,求实数 的取值范围.
【答案】(Ⅰ) ;(Ⅱ) ;(Ⅲ) .
巧用参数分离法解曲线系过定点问题
- 2 x = 0, - 2y = 0
]
x = 0, y = 0.
所以该曲线恒过定点 ( 0, 0 ) .
2
)2 + (y -
2
)2 =
1 ( k - 4 ) 2. 2
28
数 学 教 学 研 究 2006 年第 7 期 ∵k ≠4, ∴ ( k - 4 ) 2 > 0, 所以原方程表示一族圆 . 取 k = k1 , k = k2 , 有圆心 O 1 ( 2 2
a ( 2)
,
θ- φ ( 2 ) 表示同一 cos , 而直线 ( 1 ) 、 2
条直线 , 故有 θ- φ = cos , 2 a +b
| c|
2 2
而方程 ( 1 ) 、( 2 ) 表示同一条直线 , 其对应系数
b c
∴
c
2
2 2
a +b
= cos
2
θ- φ . 2
利用单位圆上的坐标或单位圆中的三角函数线
在上面的例子中 , 我们已经把一类曲线系方程 求定点 (值 ) 的问题采用先分离参数 , 再通过解方程 组来获解 . 下面我们把此类问题推广到更一般的情 形 , 并更加明确地指出这种分离参数法的可行性 , 并 为其建立起相应的方程模式 .
n1 n n 模式 1 方程 a1 x1 + a2 x2 2 + … + am xmm = 0 ( n i
d= ( x1 - 3 a cos θ ) 2 + ( y1 - 3 a sin θ )2
若 A = B = C, 则可认为 ③ 式为
f ( x0 , y0 ) = g ( x0 , y0 ) = h ( x0 , y0 ) = 0.
专题12 分离参数法求解参数问题- 2021年高考数学二轮经典专题深度解读(解析版)
专题11 分离参数法求解含参数问题分离参数法是高考数学中比较常见的数学思想方法,求参数的范围常常与分类讨论、方程的根与零点等基本思想方法相联系,其中与二次函数相关的充分体现数形结合及分类思想方法的题目最为常见.与二次函数有关的求解参数的题目, 相当一部分题目都可以避开二次函数,使用分离变量,使得做题的正确率大大提高,随着分离变量的广泛使用,越来越多的压轴题都需要使用该思想方法.一、分离参数,绕开分类讨论 1.已知函数()()221f x 2ax x lnx ax x =--+. (a ∈R ). (1)当a =0时,求曲线y =f (x )在(e ,f (e )处的切线方程(e =2.718…) (2)已知x =e 为函数f (x )的极值点,求函数f (x )的单调区间.【答案】(1)x +y ﹣e =0.(2)单调递增区间为(0,1)和(e ,+∞),单调递减区间为(1,e ). 【解析】(1)∵a =0,∴f (x )=﹣xlnx +x ,f ′(x )=﹣lnx , 则直线的斜率k =f ′(e )=﹣lne =﹣1, f (e )=﹣elne +e =﹣e +e =0, 故所求切线方程为x +y ﹣e =0.(2)函数的导数f ′(x )=(2ax ﹣1)lnx ﹣ax ﹣1+ax +1=(2ax ﹣1)lnx , ∵x =e 为函数f (x )的极值点,∴f ′(e )=2ae ﹣1=0,解得a 12e=(经检验符合题意) 考点剖析例题赏析则f ′(x )=(1x e -)lnx x ee-=lnx , 由f ′(x )=0得x =1或x =e , 列表得2.已知函数()1x f x e-=,()ln g x x =.(1)若曲线()y f x =在1x =处的切线方程为y kx b =+,且存在实数t 使得()y k x t b =++与曲线()y g x =相切,求t 的值;(2)设函数()()()()111x af x g x g a ϕ=+-++-. ①若()0x ϕ>恒成立,求a 的取值范围;②若函数()x ϕ仅有两个不同的零点,求a 的取值范围. 【答案】(1)1t =-;(2)①1a >;②01a <<. 【解析】(1)由题意知()1x f x e -'=,()11f '=,()11f =,因而曲线()y f x =在1x =处的切线方程为y x =,故1k =,0b =, 则()y k x t b x t =++=+.曲线()y g x =在点()00,x y 处的切线方程为()0001ln y x x x x -=-,即001ln 1y x x x =+-.令011x =,0ln 1x t -=,得01x =,1t =-. (2)①由已知得()()ln 1ln 1xx ae x a ϕ=-++-,()1,x ∈-+∞,0a >.()0x ϕ>恒成立,即()()()ln ln 110x x ae ae x x +-+-+>恒成立,即()()()ln ln 11xxae aex x +>+++恒成立.设()ln h t t t =+,则()110h t t'=+>,()h t 单调递增,因而()11xae x x >+>-恒成立,即()11x x a x e+>>-恒成立. 令()()11x x s x x e +=≥-,则()xxs x e '=-, 当()1,0x ∈-时,()0s x '>,()s x 单调递增, 当()0,x ∈+∞时,()0s x '<,()s x 单调递减, 所以()()01s x s ≤=,从而1a >.②函数()x ϕ仅有两个不同的零点,即()0x ϕ=有两个不同的解, 即()()()ln ln 11xxae aex x +=+++有两个不同的解,根据①可知即()11xae x x =+>-有两个不同的解,即()11xx a x e +=>-有两个不同的解. 因为当()1,0x ∈-时,()s x 单调递增,当()0,x ∈+∞时,()s x 单调递减,()10s -=,当0x >时()0s x >,(0)1s =,x →+∞时,()0s x →,所以01a <<.3.已知函数ln 1()2x f x ax b x =--,2()g x ax bx =+.(1)当2a =,3b =-时,求函数()f x 在1x =处的切线方程,并求函数()f x 的最大值;(2)若函数()y f x =的两个零点分别为1x ,2x ,且12x x ≠,求证:12()12x x g +>. 【答案】(1)max ()(1)2f x f ==;(2)见解析【解析】(1)解:当2a =,3b =-时,()ln 3(0)x f x x x x =-+>,()221ln 'x x f x x--=, 则()'1f e =-,切点为1,3e e e ⎛⎫-+ ⎪⎝⎭,故函数()f x 在1x =处的切线方程为130x y e+--=. 令()21ln h x x x =--,则()21ln h x x x =--在()0,+∞是减函数,又()10h =,∴()0,1x ∈,()0h x >,()'0f x >,()1,x ∈+∞,()0h x <,()'0f x <,()f x 在()0,1上是增函数,在()1,+∞是减函数,()()max 12f x f ==.(2)证明:∵1x ,2x 是()f x 的两个零点,不妨设12x x <, ∴()()120f x f x ==,111ln 102x ax b x --=,222ln 102x ax b x --=,∴21111ln 02x ax bx --=,22221ln 02x ax bx --=, 相减得:()()221212121ln ln 02x x a x x b x x -----=()121212ln 102x x a x x b x x ⇒-+-=- ()()()11222121212ln102x x x x a x x b x x x x +⇒-+-+=-,()()12122121212ln0222x x x x x x x x a b x x +++⎛⎫⎛⎫--= ⎪ ⎪-⎝⎭⎝⎭, ∴()()1122121212ln 222x x x x x x x x g g x x +++⎛⎫⎛⎫=⇒ ⎪ ⎪-⎝⎭⎝⎭ ()()1111222212121ln ln 221x x x x x x x x x x x x ⎛⎫++ ⎪⎝⎭==-⎛⎫- ⎪⎝⎭, 令12x t x =,即证01t <<,()()1ln 121t t t +>-, ()()()()1ln 21211ln ln 02111t t t t t t t t t +-->⇔<⇔-<-++,令()()21ln 1t m t t t -=-+,()0,1t ∈,()()()()222114'011t m t t t t t -=-=>++,()()21ln 1t m t t t -=-+在()0,1上是增函数,又∵()10m =,∴()0,1t ∈,()0m t <,命题得证. 二、分离参数与函数单调性综合考查 4.已知函数()34ln f x x x a x=+---1在区间()0,2上至少有一个零点,则实数a 的取值范围是( ) A .[)1,+∞ B .[)2,4ln32-C .12,4ln22⎛⎫-⎪⎝⎭D .[)2,+∞ 【答案】A 【解析】()34ln f x x x a x =+---1则314ln a x x x +=+-,令()34ln g x x x x=+- ()()()22223134431x x x x g x x x x x ----+-='=-+-= 可得()g x 在(0,1)递减,在(1,2)递增,0x →时,()g x ∞→+,()1g =2,所以函数()34ln f x x x ax =+---1在区间()0,2上至少有一个零点转化为y=a+1与()34ln g x x xx =+-在区间()0,2上有交点,即a+1≥2, a ≥1.故选A. 5.若函数f(x)=ax +1在区间(-1,1)上存在一个零点,则实数a 的取值范围是________. 【答案】(-∞,-1)∪(1,+∞)【解析】由题意知,f(-1)·f(1)<0,即(1-a)(1+a)<0,解得a<-1或a>1. 6.设是定义在上的偶函数,对任意,都有,且当时,.若函数在区间恰有3个不同的零点,则的取值范围是 . 【答案】【解析】试题分析:因为函数是对任意,,都有,所以函数的周期T=4,函数是定义在上的偶函数,且当时,.若函数在区间恰有3个不同的零点,即函数与函数在区间的图象恰有3个不同交点,如下图所示,因为,由题意当时函数的值小于3,当,的值大于3,即且解得.三、分离参数证明不等式恒成立问题7.当x>3时,不等式11x a x +≥-恒成立,则实数a 的取值范围是( )A .(] ,3-∞B .[) 3,+∞ C .7,2⎡⎫+∞⎪⎢⎣⎭D .7 ,2⎛⎤-∞ ⎥⎝⎦【答案】D 【解析】11x 1111x x x +=-++--,记t x 12=-> 1y t 1t=++在()2,∞+上单调递增, ∴117y t 12122t =++>++= ∴7a 2≤故选D8.已知f (x )=3ax 2+6x -1,a ∈R .(1)当a =-3时,求证:对任意x ∈R ,都有f (x )≤0;(2)如果对任意x ∈R ,不等式f (x )≤4x 恒成立,求实数a 的取值范围.【答案】(1)见解析;(2)13a ≤-【解析】(1)证明:当a =-3时,f(x)=-9x 2+6x -1, ∵Δ=36-36=0,且函数f(x)图象的开口方向向下, ∴对任意x ∈R 都有f(x)≤0.(2)解:由f(x)≤4x 对任意x ∈R 恒成立,得3ax 2+6x -1≤4x 对任意x ∈R 恒成立, 即3ax 2+2x -1≤0对任意x ∈R 恒成立.①当0a =时,不等式为210x -≤,故对任意x ∈R 不恒成立;②当0a ≠时,由题意得304120a a <⎧⎨=+≤⎩,解得13a ≤-.综上可得13a ≤-.∴实数a 的取值范围为1,3∞⎛⎤-- ⎥⎝⎦.9.已知函数f (x )=log a11mx x +-(a >0且a ≠1)是奇函数, (1)求实数m 的值;(2)若a =12,并且对区间[3,4]上的每一个x 的值,不等式f (x )>(12)x +t 恒成立,求实数t 的取值范围.(3)当x ∈(r ,a -2)时,函数f (x )的值域是(1,+∞),求实数a 与r 的值.【答案】(1)1;(2)98t <-;(3)21a r =+=. 【解析】(1)由f (x )=log a11mx x +-(a >0且a ≠1)是奇函数, 得f (-x )+f (x )=log a11mx x ---+log a 11mx x +-=22211a m x log x --=0对于定义域内的任意x 恒成立, 即222111m x x-=-,得m 2=1,即m =±1. 当m =-1时,原函数化为f (x )=11a xlog x--,定义域为{x |x ≠1}(舍去), ∴m =1;(2)a =12时,f (x )>(12)x +t 等价于f (x )-(12)x >t , 令g (x )=f (x )-(12)x, 则g (x )在区间[3,4]上递增,()9()38min g x g ==-, 故t <98-; (3)设u =1+21x -,则y =log a u , ①当a >1时,∵函数f (x )的值域是(1,+∞),即y >1,∴u =1+21x -(r <x <a -2)的值域为(a ,+∞), 作出函数u =1+21x -(r <x <a -2)的图象,得r =1,且a =1+23a -,解得:a②当0<a <1时,∵函数f (x )的值域是(1,+∞),即y >1,∴u =1+21x -(r <x <a -2)的值域为(0,a ), 作出函数u =1+21x -(r <x <a -2)的图象,得a -2=-1,解得:a =1,矛盾.综上,r =1,a10.已知函数11()2f x mx nx =++(,m n 是常数),且(1)2f =,11(2)4f =. (1)求m,n 的值;(2)当)1,x ⎡∈+∞⎣ 时,判断()f x 的单调性并证明; (3)若不等式()()221246f xf xx +>-+成立,求实数x 的取值范围.【答案】(1)12m n =⎧⎨=⎩;(2)增函数,见详解;(3)5x <-或1x >.【解析】(1)111111(1)2,(2)22224=++==++=f m f m n n 12m n =⎧∴⎨=⎩ (2)证明:设121x x ≤<,则12121212121212121111()()()22221()(1)221()()2-=++-++=---=-f x f x x x x x x x x x x x x x x x121212121,0,1,21x x x x x x x x ≤<∴-<>∴>12()()0f x f x ∴-<,即12()()f x f x <∴()f x 在[1∞,+)上 单调递增.(3)222121,46(2)22+≥-+=-+≥x x x x∴只需221+246>-+x x x2450∴+->x x ,5∴<-x 或1x >.课堂练习1.若不等式x 2+ax +1≥0对一切x ∈20,3⎛⎤ ⎥⎝⎦都成立,则实数a 的取值范围是( ) A .(-∞,0) B .(-∞,-2] C .613[,)-+∞ D .[-2,+∞)【答案】C【解析】因为不等式210x ax ++≥对一切2(0,]3x ∈等价于2112(0)3x a x x x x +-≤=+<≤恒成立, 设12()(0)3f x x x x =+<≤ ,易得()f x 在2(0,]3x ∈为减函数, 所以min 213()()36f x f ==, 即136a -≤,即136a ≥-, 即a 的取值范围是613[,)-+∞. 故选:C.2.若不等式()()2a 2x 2a 2x 40++++>对一切实数x 恒成立,则实数a 的取值范围是______. 【答案】[)2,2-【解析】①当20a +=,即2a =-时,40>恒成立;②当200a +>⎧⎨<⎩时, 不等式()()222240a x a x ++++>对一切实数x 恒成立,由()()220421620a a a +>⎧⎪⎨+-+<⎪⎩解得:22a -<<, 综合①②得,22a -≤<,所以填[)2,2- 3.已知函数()11x a f x a ⎛⎫=-⎪+⎝⎭(0a >且1a ≠)是定义在(),-∞+∞上的奇函数. (Ⅰ)求a 的值; (Ⅱ)求函数()f x 的值域;(Ⅲ)当1,22x ⎡∈⎤⎢⎥⎣⎦时,()22x t f x ⋅-≥恒成立,求实数t 的取值范围. 【答案】(Ⅰ)2a =;(Ⅱ)(1,1)-;(Ⅲ)2t ≥【解析】解:(Ⅰ)()f x 是定义在(),-∞+∞奇函数,()00f ∴=即()00101a f a ⎛⎫=-= ⎪+⎝⎭解得2a =.经检验,函数为奇函数 (Ⅱ)()2121x f x =-+ 又20x >,211x ∴+> ∴20221x <<+,211121x -<-<+ ∴函数()f x 的值域(1,1)-.(Ⅲ)1,22x ⎡⎤∈⎢⎥⎣⎦时,()22x t f x ⋅-≥恒成立,当[]1,2x ∈时,()22x t f x ⋅≥- 即2(1)2221x x t -≥-+ 即212221x x x t -≥-+在[]1,2x ∈恒成立, 1x ,22x ∴,∴(22)(21)21x x x t -+≥-在[]1,2x ∈恒成立, 设(22)(21)2()22121x x x x x u x -+==---,[]1,2x ∈ 下证()u x 在当[]1,2x ∈时是增函数.任取211x x >,则2121211221222()()22(22)(1)02121(21)(21)x x x x x x x x u x u x -=--+=-+>---- ∴当[]1,2x ∈时,()u x 是增函数,()max 10()23u x u ∴== max 10()3t u x ∴≥= ∴实数t 的取值范围为103t ≥. 当1,12x ⎡⎫∈⎪⎢⎣⎭时,()22x t f x ⋅-≥恒成立, 即()22xt f x ⋅≥- 即()22x t f x ⋅≥-在1,12x ⎡⎫∈⎪⎢⎣⎭恒成立,112x ≤<,22x <, ∴(22)(21)21x x x t -+≥-在1,12x ⎡⎫∈⎪⎢⎣⎭恒成立, 设(22)(21)2()22121x x x x x h x -+==-+--,1,12x ⎡⎫∈⎪⎢⎣⎭可知函数在所给区间上单调递减,max 1()22h x h ⎛⎫∴= ⎪⎝⎭max ()2t h x ∴≥=∴实数t 的取值范围为2t ≥.综上可得2t ≥4.已知函数()22x x f x -=+.(1)求证:函数()f x 是偶函数;(2)设a ∈R ,求关于x 的函数22222()x x y af x -=+-在[0,)x ∈+∞时的值域()g a 的表达式; (3)若关于x 的不等式()21x mf x m -≤+-在(0,)x ∈+∞时恒成立,求实数m 的取值范围.【答案】(1)见解析(2)2[24,),2,()[2,), 2.a a g a a a -+∞≤⎧=⎨--+∞>⎩(3)1,3⎛⎤-∞- ⎥⎝⎦. 【解析】(1)函数()f x 的定义域为R ,对任意x R ∈,()()22x x f x f x --=+=, 所以,函数()f x 是偶函数.(2)()()()22222222222222x x x x x x x x y a a ----=+-+=+-+-, 令22x x t -+=,因为0x ≥,所以21x ≥,故2t ≥,原函数可化为222y t at =--,[)2,t ∈+∞,()222222y t at t a a =--=---图像的对称轴为直线t a =,当2a ≤时,函数222y t at =--在[)2,t ∈+∞时是增函数,值域为[)24,a -+∞; 当2a >时,函数222y t at =--在[]2,t a ∈时是减函数,在[),t a ∈+∞时是增函数,值域为)22,a ⎡--+∞⎣. 综上,()[))224,,2,2,, 2.a a g a a a ⎧-+∞≤⎪=⎨⎡--+∞>⎪⎣⎩ (3)由()21x mf x m -≤+-,得()121x m f x -⎡⎤-≤-⎣⎦, 当0x >时,21x >,所以()222x x f x -=+>,所以()110f x ->>,所以,()22121121221212x x xx x x xm f x ------≤==-+-+-恒成立. 令12x t =-,则0t <,()2221211212111x x x t t t t t t t t-===+--+-++-, 由0t <,得12t t +≤-,所以113t t +-≤-,110131t t-≤<+-. 所以,13m ≤-,即m 的取值范围为1,3⎛⎤-∞- ⎥⎝⎦. 5.设()f x 是奇函数,()g x 是偶函数()()2x f x g x +=,且其中x ∈R .(1)求()f x 和()g x 的表达式,并求函数()()y f x g x =÷的值域(2)若关于x 的方程()()23f x g x λ+⎡⎤⎣⎦=⋅在区间()1,1-内恰有两个不等实根,求常数λ的取值范围 【答案】(1)()()2222,,22x x x x f x g x x R ---+==∈值域为()1,1.-(2)15,8⎛⎫+∞ ⎪⎝⎭【解析】(1)由已知()()2,xf xg x x R +=∈①, 以x -代x ,得()()2xf xg x --+-=, 因为()f x 是奇函数,()g x 是偶函数, 所以()()2xf xg x --+=②, 联立①②可得()()2222,,22x x x xf xg x x R ---+==∈, ()()222222*********x x x x x x x f x y g x ----∴====-+++, 又220x >,2211x ∴+>,220221x <<+,于是2211121x -<-<+, ∴函数()()f x yg x =的值域为()1,1-; (2)题意即方程222222322x xx x λ--⎛⎫-+⋅+= ⎪⎝⎭在区间()1,1-内恰有两个不等实根. 显然0x =不是该方程的根,所以令()22012x xt x --=<< 由2222224x x t -=+-得22222212x x t -+=+,则原方程可变形为()2213t t λ++= 易知函数()t x 为偶函数,且在区间0,1内单调递增,所以30,4t ⎛⎫∈ ⎪⎝⎭且题意转化为方程2321t t λ=--在区间30,4⎛⎫ ⎪⎝⎭内有唯一实根(因为每一个30,4t ⎛⎫∈ ⎪⎝⎭在区间()1,1-内恰有两个x 值与之对应).易知()2321h t t t =--在区间30,4⎛⎫ ⎪⎝⎭内单调递减, 又0t →时,()h t →+∞, 所以24315321348λ⎛⎫>⨯-⨯-= ⎪⎝⎭(此时每一个15 8λ>,在区间30,4⎛⎫ ⎪⎝⎭内有且仅有一个t 值与之对应). 综上所述,所求常数λ的取值范围是15,8⎛⎫+∞ ⎪⎝⎭. 6.已知公差不为0的等差数列{}n a 的前n 项和为n S ,且525S =,2a 是1a 和5a 的等比中项. (1)求数列{}n a 的通项公式;(2)设数列11n n a a ⎧⎫⎨⎬⎩⎭+的前n 项和为n T ,若不等式4n k T <对任意的n *∈N 都成立,求整数k 的最小值. 【答案】(1)21n a n =-(2)最小值为2.【解析】因为53525S a ==,所以35a =;因为2a 是1a 和5a 的等比中项,所以2215a a a =,设公差为()0d d ≠,由题()()12111254a d a d a a d +=⎧⎪⎨+=+⎪⎩, 解得11a =,2d =.所以21n a n =-.(2)证明:()()111111212122121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭,11111111111233521212212n T n n n ⎛⎫⎛⎫∴=-+-+⋯+-=-< ⎪ ⎪-++⎝⎭⎝⎭. 所以142k ≥,2k ≥, 故整数k 的最小值为2.。
参数分离法 数学模型
参数分离法数学模型参数分离法是数学中一种重要的解题方法,它在求解一些复杂问题时十分有效。
本文将介绍参数分离法的基本原理、应用和实例,帮助读者更好地理解和运用这一方法。
一、原理参数分离法是将一个复杂的问题分解为多个简单的子问题,通过对每个子问题进行逐一求解,最终得到整个问题的解。
它的基本思想是将问题中的各个参数分离开来,分别考虑它们的特性和影响,然后将它们重新组合得到整个问题的解。
二、应用参数分离法在数学中有广泛的应用,尤其在微积分、线性代数和概率论等领域。
它可以用于解决函数极值、方程求解、矩阵分解、概率计算等各种问题。
下面将通过一些实例来具体说明其应用。
1. 函数极值问题假设我们要求函数f(x, y) = x^2 + 2xy + y^2 + 2x + 3y + 1的极小值。
通过参数分离法,我们可以将函数分解为f(x, y) = g(x) + h(y),其中g(x) = x^2 + 2x,h(y) = y^2 + 3y + 1。
然后分别对g(x)和h(y)求导,并令导数等于0,求出它们的极值点。
最后将极值点组合起来,就可以得到原函数的极小值点。
2. 方程求解问题考虑方程组x^2 + y^2 = 1和x + y = 1,参数分离法可以将这个问题分解为两个独立的方程。
首先解方程x + y = 1,得到x = 1 - y。
然后将x的值代入第一个方程,得到(1 - y)^2 + y^2 = 1。
最后解这个方程,求出y的值,并带入x = 1 - y,就可以得到方程组的解。
3. 矩阵分解问题考虑矩阵A = B + C,其中B是对角矩阵,C是对称矩阵。
参数分离法可以将这个问题分解为两个独立的矩阵。
首先将A分解为B和C两个矩阵,然后分别求解B和C的特征值和特征向量。
最后将它们重新组合起来,就可以得到矩阵A的特征值和特征向量。
三、实例分析为了更好地理解参数分离法的应用,我们来看一个实际问题的案例。
假设我们要求通过一条直线将平面上的两个点A(1,2)和B(3,5)分成两个等面积的部分。
分离参数在高考中函数零点问题的应用探究--山东省2013年至2015年高考数学理科导数试题的解法探究
g ( x)
且当 x → −1 + 时, g ( x) → +∞ ,当 x → 2 − 时, g ( x) → +∞ ,
1 当 x → 2 + 时, g ( x)
1
→ −∞ ,
所以 g ( x) 在定义域内的图象(如图 7)大致为: 所以当 a < 0 时函数 f ( x) 仅有一个极值点, 当 0 ≤ a ≤ 9 时函数 f ( x) 无极值点, 当 a > 9 时函数 f ( x) 有两个极值点 .
分离参数在高考中函数零点问题的应用探究
——山东省 2013 年至 2015 年高考数学理科导数试题的解法探究
青岛五十八中
2015 年高考结束后,笔者研究了山东省近三年高考数学 理科的导数试题,发现均考查到了函数的零点、极值点及方 程根的问题。研究发现考试院所提供的参考答案不易想到, 对于学生来说在有限的时间内解决这类问题是有困难的。笔 者根据这类问题的共性和特点尝试使用了分离参数的方法, 均得到了比较简捷的解法,现将对这三个问题的解析和思考 与读者进行分享,不当之处请批评指正。 笔者之所以把“函数的零点、极值点及方程根的问题” 归结为一类问题, 即 “函数的零点问题” , 是因为对这类问题, 我们可以给出下述解题思路:
图2
有的读者认为本问题也可以直接研究固定函数 y = ln x
x) + c 的图象的位置关系问题,如 的图象与动态函数 f (= e 图 3,4,5 所示。其难点在于难于精确分析,不容易把控动
2x
x
态曲线的图像,因此容易造成偏差和错误。
图3
图1
图4
图5
分离参数可以研究水平的动态直线和固定曲线的位置关 【例题 1】(2013 年山东理)设函数 2.718 28…是自然对数的底数, c ∈ R ).讨论关于 程 ln x = f ( x) 根的个数. 【解】因为 可得:
分离常数法和分离参数法的应用
分离常数法与分离参数法的应用娄底二中康惠如一):分离常数法:是研究分式函数的一种代数变形的常用方法:主要的分式函数有22s i n ;;;s i n xxa xb a x b xc m a n m x n yy y y p a q c xd p x qm x n x p等。
解题的关键是通过恒等变形从分式函数中分离出常数.1)用分离常数法求分式函数的值域例1:求函数31()2x f x x (1)x 的值域解:由已知有32213277()3.222xx f x x x x 。
由1x ,得21x 。
所以1102x 。
故函数f(x)的值域为:43y x .2)用分离常数法判断分式函数的单调性例2:已知函数f(x)=(),x a a b x b,判断函数f(x)的单调性。
解:由已知有f(x) =()1,x b a b a b xb x b x b.所以,当0a b时,函数f(x)在(,)b 和(,)b 上是减函数;当a-b<0时,函数f(x)在(,)b 和(,)b 上是增函数。
3)用分离常数法求分式函数的最值例3:设x>-1,求函数f(x)=27101xx x的最小值。
解:因为x>-1,所以x+1>0.f(x)=211711101x x x 215141x x x 4(1)51xx4(1)51x x 当且仅当, 411x x ,即x=1时,等号成立。
所以当x=1时,f(x)取得最小值9.二:分离参数法分离参数法是求参数的最值范围的一种方法。
通过分离参数,用函数的观点讨论主变元的变化情况,由此我们可以确定参数的变化范围。
这种方法可以避免分类讨论的麻烦,从而使问题得以顺利解决。
分离参数法在解决不等式恒成立、不等式有解、函数有零点、函数的单调性中参数的取值范围问题时经常用到。
解题的关键是分离出参数后将原问题转化为求函数的最值或值域问题。
1.用分离参数法解决函数有零点的问题例4:已知函数g(x)=24ax x,在2,4上有零点,求a 的取值范围解:因为函数g(x)=24axx 在2,4上有零点,所以方程24axx=0在2,4上有实根,即方程4a xx在2,4上有实根,令4()f x xx,则a 的取值范围等价于函数f(x)在2,4上的值域。
第20讲 圆过定点问题(解析版)
第20讲 圆过定点问题一、解答题1.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,椭圆上的点到右焦点F 的最近距离为2,若椭圆C 与x 轴交于A B 、两点,M 是椭圆C 上异于A B 、的任意一点,直线MA 交直线:9l x =于G 点,直线MB 交直线l 于H 点.(1)求椭圆C 的方程;(2)试探求以GH 为直径的圆是否恒经过x 轴上的定点?若经过,求出定点的坐标;若不经过,请说明理由.【答案】(Ⅰ)由题意得1,{32c a a c =-=1,{3c a =⇒=.椭圆的方程为:221.98x y +=(Ⅰ)记直线、的斜率分别为、,设,,M A B 的坐标分别为00(,)M x y ,,,020,3y k x =-2012209y k k x ∴=-.在椭圆上,所以,2k ⋅,设,则,.,又2k ⋅.1212864729y y y y ∴=-⇒=-. 因为GH 的中点为,12GH y y =-,所以,以GH 为直径的圆的方程为:.令,得,,将两点代入检验恒成立.所以,以为直径的圆恒过轴上的定点(17,0),(1,0).【分析】(1)根据题意,列出方程组1,32c a a c ⎧=⎪⎨⎪-=⎩,求解即可得出结果;(2)先记直线MA 、MB 的斜率分别为1k 、2k ,设,,M A B 的坐标分别为()00,M x y ,() 3,0A -,()3,0B ,表示出12k k ,,根据M 在椭圆上,得到2200819x y ⎛⎫=- ⎪⎝⎭,进而可得1289k k =-,再设()19G y ,,()29H y ,可得1264y y =-,由GH 的中点为12Q 9,2y y +⎛⎫⎪⎝⎭,12GH y y =-,得到以GH 为直径的圆的方程,进而可得出结果.【详解】 (1)由题意得:1,32c a a c ⎧=⎪⎨⎪-=⎩21,83c b a =⎧⇒⇒=⎨=⎩, 椭圆C 的方程为:221.98x y +=(2)记直线MA 、MB 的斜率分别为1k 、2k ,设,,M A B 的坐标分别为()00,M x y ,()3,0A -,()3,0B ,所以0103y k x =+,020,3y k x =- 2012209y k k x ∴=-. 因为M 在椭圆上,所以2200198x y +=,所以2200819x y ⎛⎫=- ⎪⎝⎭,1289k k =-, 设()19G y ,,()29H y , ,则1112AM y k k ==,626BM y k k ==, 所以121272y y k k =,又1289k k =-. 1212864729y y y y ∴=-⇒=-.因为GH 的中点为12Q 9,2y y +⎛⎫⎪⎝⎭,12GH y y =-, 所以,以GH 为直径的圆的方程为:()()2221212924y y y y x y -+⎛⎫-+-= ⎪⎝⎭. 令0y =,得()212964x y y -=-=, 所以117x x ==,将两点()()17,0,1,0代入检验恒成立.所以,以GH 为直径的圆恒过x 轴上的定点()()17,0,1,0. 【点睛】本题主要考查椭圆的方程以及椭圆中的定点问题,熟记椭圆的性质等,即可求解,属于常考题型.2.已知椭圆222:1(2x y C a a +=>的右焦点为F ,A 、B 分別为椭圆的左项点和上顶点,ABF 的面积1.(1)求椭圆C 的标准方程;(2)过点F 的直线l 与椭圆C 交于P ,Q 两点,直线AP 、AQ 分别与直线x=M 、N .以MN 为直径的圆是否恒过定点?若是,请求出该定点坐标;若不是,请说明理由.【答案】(1)22142x y +=;(2)MN为直径的圆恒过定点0)和0). 【分析】(1)根据ABF1求出a =2,即得解;(2)设直线PQ的方程为x ty =+()()1122,,,P x y Q x y.求出1M ⎛ ⎝⎭,222)2y N x ⎛⎫ ⎪ ⎪+⎝⎭,设以MN 为直径的圆过定点P (m ,n ),则0PM PN →→⋅=,联立22142x y +=和PQ的方程为x ty =0PM PN →→⋅=即得解. 【详解】 解:(1)由题得ABF的面积(11()122S a c b a=+⋅==,解得a=2,即椭圆C的标准方程为221 42x y+=.(2)已知点A(-2,0),设直线PQ的方程为x ty=+()()1122,,,P x y Q x y.直线AP的方程为11(2) 2yy xx,直线AQ的方程为22(2)2yy xx=++,将x=AP、AQ方程,可得1M⎛⎝⎭,2N⎛⎝⎭.设以MN为直径的圆过定点P(m,n),则0PM PN→→⋅=,即212122)2))22y yPM m n nx xPN→→⎛⎫⎛⎫+⋅=+--⎪⎪⎪⎪++⎝⎭⎝⎭21212)m n n=-+⎝⎭22)m n n⎛⎫=-+()()2121212 222)2)222))y y n y ty ty y m n⎡⎤-+++=++()2121212222)2)22))y y n ty y y ym n⎡⎤-++=+联立椭圆22142x y+=和直线PQ的方程为xty=+可得22(240ty y++-=,化简得()22220t y++-=,即1222y yt-+=+,12222y yt-=+.代入上式化简得222)m n =++22)20m n =-++=,由此可知,若上式与t 无关,则0n =,又2)20,m PM P m N →→⋅=-== 因此MN为直径的圆恒过定点0)和0). 【点睛】方法点睛:证明曲线过定点,一般有两种方法.(1)特殊探求,一般证明:即可以先考虑动直线或曲线的特殊情况,找出定点的位置,然后证明该定点在该直线或该曲线上(定点的坐标直线或曲线的方程后等式恒成立).(2)分离参数法:一般可以根据需要选定参数R λ∈,结合已知条件求出直线或曲线的方程,分离参数得到等式2123(,)(,)(,)0f x y f x y f x y λλ++=,(一般地,(,)(1,2,3)i f x y i =为关于,x y 的二元一次关系式)由上述原理可得方程组123(,)0(,)0(,)0f x y f x y f x y =⎧⎪=⎨⎪=⎩,从而求得该定点.3.已知定点(1,0)R ,圆22 S: 2150x y x ++-=,过R 点的直线1L 交圆于M ,N 两点过R 点作直线2L SN ∥交SM 于Q 点.(1)求Q 点的轨迹方程;(2)若A ,B 为Q 的轨迹与x 轴的左右交点,()()000,0P x y y ≠为该轨迹上任一动点,设直线AP ,BP 分别交直线l :6x =于点M ,N ,判断以MN 为直径的圆是否过定点.如圆过定点,则求出该定点;如不是,说明理由.【答案】(1)22143x y += ;(2) 以MN为直径的圆经过定点(6±【分析】(1) 利用SM SN =,//RQ SN ,可以推出RQ QM =,根据42QS QR SM SR +==>=可知: 动点Q 的轨迹是以,S R 为焦点,长轴长为4的椭圆,进而可以写出Q 点的轨迹方程.(2)设00(,)P x y ,求出,M N 的坐标后,再求出MN 的中点坐标,然后求出以MN 为直径的圆的方程,令0y =可求得6x =±为定值,所以圆过定点.【详解】(1)如图:因为SM SN =,//RQ SN , 所以RQ QM =,所以42QS QR QS QM SM SR +=+==>=,根据椭圆的定义知:动点Q 的轨迹是以,S R 为焦点,长轴长为4的椭圆, 这里224,413a b ==-=,所以Q 点的轨迹方程为:22143x y +=.(2)由题可知(2,0),(2,0)A B -,设00(,)P x y , 所以002AP y k x =+,则直线AM l 的方程为:00(2)2y y x x =++, 令6x =,则0082y y x =+,所以008(6,)2y M x + , 因为002BP y k x =-,则直线BP l 的方程为:00(2)2y y x x =--, 令6x =,则0042y y x =- ,所以004(6,)2y N x -, 所以MN 的中点坐标为00202(32)(6,)4y x x --,此时圆的方程为: 222000022002(32)2(6)(6)[][]44y x y x x y x x ---+-=--, 令0y =,得2202032(6)4y x x -=-,又2200143x y +=,所以2(6)24x -= , 解得:6x =± 故以MN为直径的圆经过定点(6±. 【点睛】本题考查了利用椭圆的定义求标准方程,圆过定点问题,属难题. 4.已知圆22:1O x y +=和直线:3l x,在x 轴上有一点(1,0)Q ,在圆O 上有不与Q 重合的两动点,P M ,设直线MP 斜率为1k ,直线MQ 斜率为2k ,直线PQ 斜率为3k ,(l )若121k k =- ①求出P 点坐标;②MP 交l 于'P ,MQ 交l 于'Q ,求证:以''P Q 为直径的圆,总过定点,并求出定点坐标. (2)若232k k =:判断直线PM 是否经过定点,若有,求出来,若没有,请说明理由. 【答案】(1)(1,0)P -,定点为(3±; (2)直线过定点(3,0). 【解析】试题分析:第一问根据两斜率乘积等于1-,从而得到PQ 为直径,从而确定出点P 的坐标,应用直径所对的圆周角为直角,利用垂直关系,建立等量关系式,从而求得圆的方程,利用曲线过定点的原则,求得定点坐标;第二问想办法求得直线PM 的方程,利用直线过定点问题的解决方法,从而求得直线所过的定点坐标. 试题解析:(1)121,k k PM MQ =-∴⊥,又因为P 在圆上,所以PQ 为直径,故(1,0)P -,法一:设1:(1)PM l y k x =+,令3x =得1'(3,4)P k ,2:(1)QM l y k x =-,令3x =得2'(3,2)Q k ,且PM QM l l ⊥,故12k k 1=-,12(3)(3)(4)(2)0x x y k y k --+--=22121269(42)80x x y k k y k k ⇒-++-++=,令0y =,则26980x x -+-=,故3x =±(3±. 法二::(1)1PM u l y x v =++,3x =,得4'(3,)1vP u +, :(1)1QMv l y x u =--,3x =,得2'(3,)1v Q u -,故圆C 方程为:42(3)(3)()()011v v x x y y u u --+--=+-222242869()0111v v v x x y y u u u ⇒-++-++=+--由221u v +=,令0y =,则26980x x -+-=,故3x =±(3±.(2)法一:解:设:(1)QM l y k x =-与圆22:1O x y +=联立得:2222222(1)210k x k x k +-+-=,由韦达定理:22122221k x x k +=+,由11x =得:2222211k x k -=+,22222212(,)11k M k k --++,同理23223312(,)11k P k k --++, 再利用222232222442,(,)44k k k k P k k --=++.222222222222222222424141241PMk k k k k k k k k k k -+++==--+-++,222222222212:()211PM k k k l y x k k k --∴=-++++222232k x k k -=+, ∴直线过定点(3,0).法二:可以先猜后证,2320k k =>,所以23,k k 同号.不妨设21k =,则:1QM l y x =-,与圆联立得(0,1)M -,32k =,则:2(1)QP l y x =-,与圆联立得34(,)55P -,此时1:13MP l x y =+, 同理由圆对称性,当(0,1)M 时,231,2k k =-=-,此时P 点坐标34(,)55,1:13MP l x y -=-, 若直线MP 过定点,则联立上述直线MP 的方程,求出交点(3,0), 下面验证(3,0)是否为定点.设过(3,0)且与圆O 有交点的直线斜率为k ,则直线方程为(3)y k x =-,代入圆方程得:2222(1)6910k x k x k +-+-=两交点1122(,),(,)M x y P x y .由韦达定理:,故2121223121212(3)(3)(1)(1)()1y y k x x k k x x x x x x --==---++212121212[3()9]2()1k x x x x x x x x -++==-++, ∴MP 过定点(3,0).考点:曲线过定点问题.5.已知椭圆T :()222210x y a b a b+=>>的离心率为12,直线l:0x y +=与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切.A 为左顶点,过点()1,0G 的直线交椭圆T 于B ,C 两点,直线AB ,AC 分别交直线4x =于M ,N 两点.(1)求椭圆T 的方程;(2)以线段MN 为直径的圆是否过定点?若是,写出所有定点的坐标;若不是,请说明理由.【答案】(1)22143x y +=;(2)是,定点坐标为()7,0或()1,0 【分析】(1)根据相切得到b =2a =,得到椭圆方程.(2)设直线BC 的方程为1x ty =+,点B 、C 的坐标分别为()11,x y ,()22,x y ,联立方程得到122634t y y t +=-+,122934y y t =-+,计算点M 的坐标为1164,2y x ⎛⎫ ⎪+⎝⎭,点N 的坐标为2264,2y x ⎛⎫ ⎪+⎝⎭,圆的方程可化为()()244690x x y ty --++-=,得到答案.【详解】(1)根据题意:b ==b a ==,所以2a =, 所以椭圆T 的方程为22143x y +=.(2)设直线BC 的方程为1x ty =+,点B 、C 的坐标分别为()11,x y ,()22,x y , 把直线BC 的方程代入椭圆方程化简得到()2234690t y ty ++-=, 所以122634t y y t +=-+,122934y y t =-+, 所以()221212122412134t x x t y y t y y t -=+++=+,1212281134x x ty ty t +=+++=+,因为直线AB 的斜率112AB y k x =+,所以直线AB 的方程()1122y y x x =++, 所以点M 的坐标为1164,2y x ⎛⎫⎪+⎝⎭,同理,点N 的坐标为2264,2y x ⎛⎫ ⎪+⎝⎭,故以MN 为直径的圆的方程为()()12126644022y y x x y y x x ⎛⎫⎛⎫--+--= ⎪⎪++⎝⎭⎝⎭,又因为()()()121212121236363699222436y y y y x x x x x x ⨯==-=-+++++,()()12121212212121212121866666223339ty y y y y y y y t x x ty ty t y y t y y +++=+==-+++++++, 所以圆的方程可化为()()244690x x y ty --++-=,令0y =,则有()249x -=,所以定点坐标为()7,0或()1,0. 【点睛】本题考查了椭圆方程,圆过定点问题,意在考查学生的计算能力和综合应用能力.6.已知圆()44:22=++y x C 与x 轴交于B A 、两点,P 是圆C 上的动点,直线AP 与PB 分别与y 轴交于N M 、两点.(1)若()4,2P -时,求以MN 为直径圆的面积;(2)当点P 在圆C 上运动时,问:以MN 为直径的圆是否过定点?如果过定点,求出定点坐标;如果不过定点,说明理由.x【答案】(1)16π;(2)过定点,定点坐标是()032,和()0,32- 【解析】试题分析:由直线AP 方程6y x =+得()0,6M ,由2y x =--得()0,2N -故所求面积为16π. (2)根据两直线互相垂直设出直线AP ,BP 的方程,写出以MN 为直径的圆的方程222221313⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛--+k k k k y x ,令y=0得定点()032,和()0,32-. 试题解析:(1)解析:当()4,2P -时,直线AP 方程是6y x =+,所以()0,6M ;直线BP 方程是2y x =--,所以()0,2N -,因此8MN =.所以以MN 为直径圆的面积是16π.(2)解法1:设直线()6:+=x k y AP 交y 轴于()k M 6,0;同法可设直线()21:+-=x ky BP 交y 轴于⎪⎭⎫ ⎝⎛-k N 2,0,线段MN 的中点⎪⎪⎭⎫ ⎝⎛-k k D 13,02.所以以MN 为直径的圆的方程为: 222221313⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛--+k k k k y x ,展开后得()012132222=---+y k k y x , 令0=y ,得32±=x ,则过定点()032,和()0,32-.解法2:设()()b N a M ,0,,0,线段线段MN 的中点⎪⎭⎫⎝⎛+2,0b a D .所以以MN 为直径的圆的方程为:22222⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-+b a b a y x ,展开后得()022=++-+ab y b a y x ,考虑到PB PA ⊥,有⇒-=⇒-=⋅12126ab ba ()01222=-+-+yb a y x , 令0=y ,得32±=x ,则过定点()032,和()0,32-.考点:直线与圆的综合应用.7.已知椭圆2222:1(0)x y C a b a b +=>>1F 、2.F 以1F 为圆心、以3为半径的圆与以2F 为圆心、以1为半径的圆相交,交点在椭圆C 上. (1)求椭圆C 的方程;(2)直线()()10y k x k =-≠与椭圆C 交于,A B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点,P Q ,试问以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由.【答案】(1)2214x y +=;(2)(). 【解析】 【分析】(1)由椭圆的定义可得2a =,根据椭圆的离心率求得c ,进而求的b .(2)设1122(,),(,)A x y B x y ,联立直线方程与椭圆方程可得,A B 两点坐标的关系,根据,A B 两点坐标可将直线AM 与直线BM 分别表示出来,进而可求其与y 轴交于点,P Q ,以线段PQ 为直径的圆过x 轴上的定点()0,0N x ,则等价于0PN QN ⋅=恒成立,带点求解即可. 【详解】(1)由题意知24a =,则2a =.又c a =222a c b -=,可得1b =, ∴椭圆C 的方程为2214x y +=. (2)以线段PQ 为直径的圆过x 轴上的定点.由()221,{1,4y k x xy =-+=得()2222148440kxk x k +-+-=.设()11,A x y ,()22,B x y ,则有2122814k x x k +=+,21224414k x x k-=+. 又点M 是椭圆C 的右顶点,∴点()2,0M .由题意可知直线AM 的方程为()1122y y x x =--,故点1120,2y P x ⎛⎫- ⎪-⎝⎭. 直线BM 的方程为()2222y y x x =--,故点2220,2y Q x ⎛⎫- ⎪-⎝⎭.若以线段PQ 为直径的圆过x 轴上的定点()0,0N x ,则等价于0PN QN ⋅=恒成立.又1012,2y PN x x ⎛⎫= ⎪-⎝⎭,2022,2y QN x x ⎛⎫= ⎪-⎝⎭,()()22121200121222401222y y y y PN QN x x x x x x ⋅=+⋅+=----恒成立.又()()()2221212122224484222424141414k k k x x x x x x k k k ---=-++=-+=+++, ()()()222221212121222244831111141414k k k y y k x k x k x x x x k k k k ⎛⎫-⎡⎤=--=-++=-+=- ⎪⎣⎦+++⎝⎭()()22222120002122124143042214k y y k x x x k x x k -+∴+=+=-=--+.解得0x = 故以线段PQ 为直径的圆过x轴上的定点().【点睛】本题考查圆锥曲线中求曲线方程,直线与曲线的关系以及定点问题,综合性较强.设而不求是基本方法,解题处理关键地方在于将圆过定点问题转化为0PN QN ⋅=恒成立问题求解.8.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的两个焦点为F 1(−c,0),F 2(c,0),其短轴长是2√3,原点O 到过点A(a,0)和B(0,−b)两点的直线的距离为2√217. (1)求椭圆C 的方程;(2)若点P,Q 是定直线x =4上的两个动点,且F 1P ⃗⃗⃗⃗⃗⃗⃗ •F 2Q ⃗⃗⃗⃗⃗⃗⃗ =0,证明:以PQ 为直径的圆过定点,并求 定点的坐标. 【答案】(1);(2),.【解析】试题分析:(1)由题意得,运用点到直线的距离公式,解得a =2,进而可求得椭圆的方程;(2)由题意得,写出直线和直线的方程,可得设,写出以PQ 为直径的圆的方程,令,即可求解求定点的坐标.试题解析:(1)由,得再由,得a =2,椭圆的方程.(2) 由(1)知: 设直线斜率为,则直线的方程为:,直线的方程为:,令得:于是以PQ 为直径的圆的方程为:即:令,得或圆过定点,考点:椭圆的标准方程及其简单的几何性质;圆的方程的应用.【方法点晴】本题主要考查了椭圆的标准方程及其简单的几何性质、圆的方程的应用,判定圆过定点,属于中档试题,着重考查了向量的数量积的坐标表示和圆的方程求法,同时考查了转化与化归思想和推理、运算能力,本题的解答中写出直线和直线的方程,得,写出以PQ 为直径的圆的方程是解答的关键.9.已知动圆M 与定圆221:(2)1C x y -+=相外切,又与定直线1: 1l x =-相切.(1)求动圆的圆心M 的轨迹2C 的方程,(2)过点()12,0C 的直线l 交曲线2C 于A ,B 两点,直线2: 2l x =分别交直线OA ,OB 于点E 和点F .求证:以EF 为直径的圆经过x 轴上的两个定点.【答案】(1)22:8C y x =(2)证明见解析【分析】(1)易知M 到点1(2,0)C 的距离与到直线:2l x =-的距离相等,得到轨迹方程.(2),设直线l 方程为:2x my =+,联立方程得到12128,16y y m y y +=⋅=-,EF 为直径的圆方程为:121616(2)(2)()()0x x y y y y --+--=,计算得到答案. 【详解】(1)如图所示:根据题意知M 到点1(2,0)C 的距离与到直线:2l x =-的距离相等,所以M 的轨迹方程为:22:8C y x =.(2)显然直线l 不与x 轴重合,设直线l 方程为:2x my =+, 与2:8C y x =联立消x 得:28160y my --=,设1122(,),(,)A x y B x y ,则12128,16y y m y y +=⋅=-, 直线OA 方程为:11y y x x =,所以112(2,)y E x ,即116(2,)E y , 同理216(2,)F y ,所以以EF 为直径的圆方程为:121616(2)(2)()()0x x y y y y --+--=,令0y =得:212256440x x y y -++=,即24120,26x x x x --==-=或, 以EF 为直径的圆经过x 轴上的两个定点1(2,0)G -和2(6,0)G .【点睛】本题考查了轨迹方程,定点问题,意在考查学生的计算能力和综合应用能力.10.已知动圆P 过定点1,02F ⎛⎫ ⎪⎝⎭,且和直线12x =-相切,动圆圆心P 形成的轨迹是曲线C ,过点()4,2Q -的直线与曲线C 交于,A B 两个不同的点.(1)求曲线C 的方程;(2)在曲线C 上是否存在定点N ,使得以AB 为直径的圆恒过点N ?若存在,求出N 点坐标;若不存在,说明理由.【答案】(1)22y x =(2)见解析 【分析】(1)由抛物线定义确定P 的轨迹方程,(2)设()()1122,,,A x y B x y ,直线的方程为():24AB l x n y =++,代入抛物线方程,整理得22480,y ny n ---=设存在定点()00,N x y ,由1NA NB K K ⋅=-,代入韦达定理整理得()2002440y n y -+-=,利用020240,40,y y -=⎧⎨-=⎩即可得002,2y x == 【详解】(1)设动圆圆心P 到直线12x =-的距离为d ,根据题意,d PF = ∴动点P 形成的轨迹是以1,02F ⎛⎫⎪⎝⎭为焦点,以直线12x =-为准线的抛物线,∴抛物线方程为22y x =.(2)根据题意,设()()1122,,,A x y B x y ,直线的方程为():24AB l x n y =++,代入抛物线方程,整理得22480,y ny n ---= ()()2241624480,n n n n ∆=++=++>12122,48y y n y y n +==--若设抛物线上存在定点N ,使得以AB 为直径的圆恒过点N ,设()00,N x y ,则2002y x =101022011010222NA y y y y K y y x x y y --===-+-,同理可得202NB K y y =+102022NA NB K K y y y y ⋅=⋅++ ()21212004y y y y y y =+++20041482n ny y ==---++ ()2002440,y n y ∴-+-= 020240,40,y y -=⎧∴⎨-=⎩解得002,2,y x ==∴在曲线C 上存在定点()2,2N ,使得以AB 为直径的圆恒过点N .【点睛】本题考查由定义求轨迹方程,考查直线与抛物线的位置关系,圆的性质的应用,考查计算能力,是中档题 11.已知椭圆C 的短轴的两个端点分别为(0,1),(0,1)A B -. (1)求椭圆C 的方程及焦点的坐标;(2)若点M 为椭圆C 上异于A ,B 的任意一点,过原点且与直线MA 平行的直线与直线3y =交于点P ,直线MB 与直线3y =交于点Q ,试判断以线段PQ 为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.【答案】(1)2213x y +=;(2)()()0,9,0,3-. 【分析】(1)根据题目椭圆过短轴端点,以及离心率3,可以求出椭圆方程为2213x y +=.(2)利用直线MA 的斜率以及直线MB 的斜率,3y =的方程,得出点P ,Q 的坐标,那么就可以设出圆的方程()()00004333011x x x y y y y y ⎛⎫⎛⎫--+--= ⎪⎪+-⎝⎭⎝⎭,再进行转化变形,就可以求出定点的坐标. 【详解】(1)设椭圆方程为22221,(0)x y a b a b+=>>,因为椭圆短轴的两个端点为(0,1),(0,1)A B -,所以b =1,且椭圆的离心率为3,所以3c a =,并且222a b c -=,得出23a =,所以椭圆方程为2213x y +=. (2)设点M 00(,x y ),则001MA y k x -=,所以过原点与MA 平行的直线方程为:001y y x x -=, 令3y =,得0031x x y =-,003P ,31x y ⎛⎫⎪-⎝⎭; 001MB y k x +=, 所以直线MB 方程为:0011y y x x +=-, 令3y =,得0041x x y =+,004Q ,31x y ⎛⎫⎪+⎝⎭; 设过点P ,Q 的圆的方程为()()00004333011x x x y y y y y ⎛⎫⎛⎫--+--= ⎪⎪+-⎝⎭⎝⎭展开后得:220000002033446901x y x x y x x x y y y ++--+-+=-即:2220000220071269011x y x x x x y y y y --++-+=--;22002136270y x y y x x -+--+= 令0x =,y =9或y =-3, 故定点为()()0,9,0,3-. 【点睛】(1)求椭圆的方程就是利用题目的信息求解,,a b c ;(2)要注意过两点()()1122P ,,,x y Q x y 的圆的方程可以设为:()()()()12120x x x x y y y y --+--=,这样求解比较方便,特别要明确圆过定点就是与点M 的位置无关,00213y x x -中,令x=0,即可得解. 12.已知抛物线2:4C y x =与过点(2,0)的直线l 交于,M N 两点. (1)若MN =l 的方程; (2)若12MP MN =,PQ y ⊥轴,垂足为Q ,探究:以PQ 为直径的圆是否过定点?若是,求出该定点的坐标;若不是,请说明理由.【答案】(1)20x --=或20x +-=;(2)过定点,(2,0) 【分析】(1)设出直线l 的方程2()x my m =+∈R ,联立直线与抛物线方程,利用根与系数的关系及弦长公式计算即可;(2)设以PQ 为直径的圆经过点()00,A x y ,()20022,2AP m x m y =+--,()00,2AQ x m y =--,利用0AP AQ ⋅=得()2220000042420x m y m x y x --++-=,令00220004204020x y x y x -=⎧⎪=⎨⎪+-=⎩解方程组即可.【详解】(1)由题可知,直线l 的斜率不为0,设其方程为2()x my m =+∈R , 将2x my =+代入24y x =,消去x 可得2480y my --=,显然216320m ∆=+>,设()11,M x y ,()22,N x y ,则124y y m +=,128y y =-,所以12||MN y y =-==因为||MN =,所以=m =,所以直线l 的方程为20x--=或20x -=. (2)因为12MP MN =,所以P 是线段MN 的中点, 设(),P P P x y ,则由(1)可得()2121242222P m y y x x x m +++===+,1222P y y y m +==,所以()222,2P m m +,又PQ y ⊥轴,垂足为Q ,所以(0,2)Q m ,设以PQ 为直径的圆经过点()00,A x y ,则()20022,2AP m x m y =+--,()00,2AQ x m y =--,所以0AP AQ ⋅=,即()()220002220x m x m y -+-+-=,化简可得()2220000042420x m y m x y x --++-=①,令00220004204020x y x y x -=⎧⎪=⎨⎪+-=⎩,可得0020x y =⎧⎨=⎩,所以当02x =,00y =时,对任意的m ∈R ,①式恒成立, 所以以PQ 为直径的圆过定点,该定点的坐标为(2,0). 【点睛】本题考查直线与抛物线的位置关系,涉及到抛物线中的定点问题,考查学生的计算能力,是一道中档题.13.已知椭圆E :()222210x y a b a b+=>>.左焦点()1,0F -,点()0,2M 在椭圆E 外部,点N 为椭圆E上一动点,且NMF 的周长最大值为4. (1)求椭圆E 的标准方程;(2)点B 、C 为椭圆E 上关于原点对称的两个点,A 为左顶点,若直线AB 、AC 分别与y 轴交于P 、Q 两点,试判断以PQ 为直径的圆是否过定点.如果是请求出定点坐标,如果不过定点,请说明理由.【答案】(1)22143x y +=;(2)是,定点为)和().【分析】(1)NMF 的三边有一边已经确定,问题转化为,何时另外两边之和最大,结合椭圆的定义,以及三角形两边之差小于第三边即可确定思路;(2)分直线BC 斜率存在与不存在分别研究,不存在容易得出定点,存在时,可以设出斜率k ,再联立椭圆方程,求出,P Q 坐标,最后求出以PQ 为直径的圆的方程,方程里面含有k ,再令0y =即可. 【详解】(1)设右焦点为1F,则1F M FM ===max (||||)44MN NF ∴+=+= 1||2x NF a NF =-11||||||22NF MN NF a MF a MN ∴+=-+<+即N 点为1MF 与椭圆的交点时,周长最大1MF =所以242,1a a c +=+⇒==b ∴==所以椭圆E 的标准方程为22143x y +=(2)由(1)知()2,0A -,设()00,B x y ,则()00,C x y -- 当直线BC 斜率存在时,设其方程为y kx =联立22143y kxx y =⎧⎪⎨+=⎪⎩得221234x k =+00:2)x y AB y x ∴===+令0x =,得y P ⎛⎫ ⎪ =∴⎝同理得Q ⎛⎫⎪⎝||PQ ∴== 设PQ 中点为S ,则30,2S k ⎛⎫- ⎪⎝⎭所以以PQ 为直径的圆得方程为22232x y k ⎛⎫++= ⎪⎝⎭ ⎪⎝⎭即2222699344x y y k k k +++=+ 即22630x y y k++-=令0y =,得x =所以过点)和(),且为定点.当直线BC斜率不存在时,容易知道(0,B C此时(0,P Q所以以PQ)和()综上,此圆过定点)和()【点睛】方法点睛:对于过定点的问题,可以先通过特殊情况得到定点,再去证明一般得情况.14.已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,M 为椭圆上一动点,当12MF F ∆的面积最大时,其内切圆半径为3b,椭圆E 的左、右顶点分别为A ,B ,且||4AB =. (1)求椭圆E 的标准方程;(2)过1F 的直线与椭圆相交于点C ,D (不与顶点重合),过右顶点B 分别作直线BC ,BD 与直线4x =-相交于N ,M 两点,以MN 为直径的圆是否恒过某定点?若是,求出该定点坐标;若不是,请说明理由.【答案】(1)22143x y +=;(2)以MN 为直径的圆恒过两定点()7,0-,()1,0-. 【分析】(1)由||4AB =可得a 的值,12MF F 的面积最大时,由椭圆的性质可得当和三角形内切圆的性质可列方程,再结合,,a b c 的关系,从而得出答案.(2)设出直线CD 的方程与椭圆方程联立得出韦达定理,由C 点坐标得出BC 的方程进而得出点N 坐标,同理得出M 坐标,写出以MN 为直径的圆的方程,从而得出圆过定点. 【详解】解:(1)由题意及三角形内切圆的性质可得112(22)223b c b a c ⋅⋅=+⋅,化简得12c a =① 又||24AB a ==,所以2a =,1c =,b ==所以椭圆E 的标准方程为22143x y +=.(2)由(1)知1(1,0)F -,(2,0)B , 由题意,直线CD 的斜率不为0, 设直线CD 的方程为1x my =-,代入椭圆E 的方程22143x y +=,整理得22(34)690m y my +--=. 设11(,)C x y ,()22,D x y , 则12y y +=2634m m + ,122934y y m =-+,② 直线11:(2)3y BC y x my =--.令4x =-,得1164,3y N my ⎛⎫-- ⎪-⎝⎭,同理可得2264,3y M my ⎛⎫-- ⎪-⎝⎭,所以以MN 为直径的圆的方程为121266(4)(4)033y y x x y y my my ⎛⎫⎛⎫+++++= ⎪⎪--⎝⎭⎝⎭,即22121212126636816033(3)(3)y y y y x x y y my my my my ⎛⎫++++++= ⎪----⎝⎭,③ 由②得:()()()121212121212186663333my y y y y y m my my my my -++==----- ()1212212121236369(3)(3)39y y y y my my m y y m y y ==----++代入③得圆的方程为228760x x y my +++-=.若圆过定点,则2870y x x =⎧⎨++=⎩ 解得10x y =-⎧⎨=⎩或7x y =-⎧⎨=⎩ 所以以MN 为直径的圆恒过两定点()7,0-,()1,0-. 【点睛】关键点睛:本题考查求椭圆方程和根据直线与椭圆的为关系求圆过定点问题,解答本题的关键是先求出点N ,M 坐标,进一步得出MN 为直径的圆的方程为121266(4)(4)033y y x x y y my my ⎛⎫⎛⎫+++++= ⎪⎪--⎝⎭⎝⎭,再由韦达定理化简方程,得出答案,属于中档题.15.已知椭圆2222:1(0)x y M a b a b+=>>的左、右顶点分别为,A B ,上、下顶点分别为,C D ,右焦点为F ,离心率为12,其中24||||||FA FB CD =⋅. (1)求椭圆的标准方程;(2)设Q 是椭圆M 上异于,A B 的任意一点,过点Q 且与椭圆M 相切的直线与x a =-,x a =分别交于,S T 两点,以ST 为直径的圆是否过定点?若过定点,求出定点坐标;如果不存在,请说明理由.【答案】(1)22143x y +=;(2)ST 为直径的圆过定点(1,0)±. 【分析】(1)由条件可得24()()(2)a c a c b +=-又因为12c a =,解方程组即可得椭圆的标准方程; (2)依题意求得切线方程00143x x y y+=,分别联立2,2x x =-=,求得交点,S T ,从而求以ST 为直径的圆方程,进而判断是否过定点. 【详解】解:(1)由条件可得()()()242a c a c b +=- 所以2131a c eb ac e++===--, 又12c a =, 所以22134a a -=,解得24a =,所以椭圆的方程为22143x y +=.(2)设()00,Q x y ,()02x ≠±,所以2200143x y +=,①对椭圆22143x y +=求导得,22043x y y +'=,所以0034x k y =-切,所以切线方程为()000034x y y x x y -=--, 将①代入上式,得切线方程00143x x y y+=, 分别联立2,2x x =-=,得000063632,,2,22x x S T y y ⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭, 所以以ST 为直径的圆,圆心为030,y ⎛⎫ ⎪⎝⎭,半径||2ST r =, 所以22222000200063639||4(22)1622x x x ST r y y y ⎛⎫-+==++-=+ ⎪⎝⎭,因为2200143x y +=,所以2200413y x ⎛⎫=- ⎪⎝⎭,所以20222003613364164y r y y ⎛⎫- ⎪⎝⎭=+=+, 所以圆的方程为22200391x y y y ⎛⎫+-=+ ⎪⎝⎭, 令21x =,得220039y y y ⎛⎫-= ⎪⎝⎭, 得1x =±时,0y =,所以ST 为直径的圆是过定点(1,0)±. 【点睛】求定点、定值问题常见的方法有两种:(1)从特殊入手,求出定点或定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定点或定值.16.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,其左、右焦点分别为1F ,2F ,点()00,P x y 是坐标平面内一点,且||OP =1234PF PF ⋅=(O 为坐标原点).(1)求椭圆C 的方程;(2)过点10,3S ⎛⎫- ⎪⎝⎭且斜率为k 的动直线l 交椭圆于A ,B 两点,在y 轴上是否存在定点M ,使以AB 为直径的圆恒过这个点?若存在,求出M 的坐标,若不存在,说明理由. 【答案】(1)2212x y +=;(2)存在()0,1M ,理由见解析.【分析】(1)利用||2OP =,123·4PF PF =列出方程可得1c =,再由离心率即可求出,a b ,得出椭圆方程; (2)设出直线方程,联立直线方程与椭圆方程,借助于韦达定理,即可求出点的坐标. 【详解】(1)2OP =,220074x y ∴+=,又123·4PF PF =,00003(,)(,)4c x y c x y ∴---⋅--=,即2220034x c y -+=,则可得1c =,又2e =,1a b ∴==, 故所求椭圆方程为2212x y +=;(2)设直线1:3l y kx =-,代入2212x y +=,有22416(21)039k x kx +--=. 设1122(,),(,)A x y B x y ,则121222416,3(21)9(21)k x x x x k k -+==++, 若y 轴上存在定点(0,)M m 满足题设,则11(,)MA x y m =-,22(,)MB x y m =-,21212121212·()()()MAMB x x y m y m x x y y m y y m =+--=+-++21212121111()()()3333x x kx kx m kx kx m =+----+-+221212121(1)()()339m k x x k m x x m =+-+++++222218(1)(9615)9(21)m k m m k -++-=+, 由题意知,对任意实数k 都有·0MA MB =恒成立, 即22218(1)(9615)0m k m m -++-=对k ∈R 成立.221096150m m m ⎧-=∴⎨+-=⎩,解得1m =, ∴在y 轴上存在定点()0,1M ,使以AB 为直径的圆恒过这个定点.【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.。