第十四章 解三角形

合集下载

解直角三角形定义

解直角三角形定义

THANKS
感谢观看
可以直接利用这个比例关系求出未知边长。
02
45°-45°-90°三角形
当直角三角形中的两个锐角均为45°时,该三角形为等腰直角三角形,
三边之比为1:1:$sqrt{2}$,可以直接利用这个比例关系求出未知边长。
03
已知面积求边长
当已知直角三角形的面积和一条边长时,可以通过面积公式求出另一条
直角边的长度,再利用勾股定理求出斜边的长度。
纠正措施和避免方法
明确角度与弧度的区别
01
在教学过程中,教师应强调角度和弧度的区别,并指导学生正
确使用。
熟练掌握三角函数公式
02
学生应熟练掌握正弦、余弦、正切等三角函数公式,并能够正
确应用。
注意特殊角的三角函数值
03
学生应注意特殊角度的三角函数值,并能够灵活运用这些值进
行简化计算。
提高解题准确性和效率建议
关键知识点总结回顾
直角三角形的定义
有一个角为90度的三角形称为直角 三角形。
勾股定理
在直角三角形中,直角边的平方和等 于斜边的平方,即a² + b² = c²。
锐角三角函数
正弦(sin)、余弦(cos)和正切 (tan)的定义及性质。
解直角三角形的基本方法
利用已知元素和三角函数关系求解未 知元素。
多做练习题
通过大量的练习,学生可 以熟练掌握解直角三角形 的技巧和方法,提高解题 准确性和效率。
建立错题本
学生可以将做错的题目记 录下来,分析错误原因并 纠正,以避免类似错误的 再次发生。
寻求帮助和辅导
如果遇到难以解决的问题, 学生可以寻求老师或同学 的帮助和辅导,以便及时 解决问题。

直角三角形的边角关系(含答案)

直角三角形的边角关系(含答案)

第十四章直角三角形的边角关系基础知识梳理1.锐角三角函数.在Rt△ABC中,∠C是直角,如图所示.(1)正切:∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA=AA∠∠的对边的邻边.(2)正弦:∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=A∠的对边邻边.(3)余弦:∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA=A∠的邻边邻边.(4)锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(5)锐角的正弦和余弦之间的关系.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值.即:如果∠A+∠B=90°,那么sinA=cos(90°-A)=cosB;cosA=sin(•90•°-•A)•=sinB.(6)一些特殊角的三角函数值(如下表).三角函数角sin cos tan30°12323345°2222160°32123(7)已知角度可利用科学计算器求得锐角三角函数值;同样,•已知三角函数值也可利用科学计算器求得角度的大小.(8)三角函数值的变化规律.①当角度在0°~90°间变化时,正弦值(正切值)随着角度的增大(或减小)而增大(或减小).②当角度在0°~90°间变化时,余弦值随着角度的增大(或减小)而减小(•或增大).(9)同角三角函数的关系.①sin2A+cos2A=1;②tanA=sincosAA.2.运用三角函数解直角三角形.由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形.如图所示,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c.(1)三边之间的关系:a2+b2=c2(勾股定理).(2)锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sinA=ac,cosA=bc,tanA=ab.所以,在直角三角形中,只要知道除直角外的两个元素(其中至少有一个是边),•就可以求出其余三个未知元素.解直角三角形的基本类型题解法如下表所示:类型已知条件解法两边两直角边a,bc=22a b+,tanA=ab,B=90°-A一直角边a,斜边cb=22c a-,sinA=ac,B=90°-A一边、一锐角一直角边a,锐角AB=90°-A,b=tanaA,c=sinaA斜边a,锐角A B=90°-A,a=c·sin,b=c·cosA注意:解直角三角形需要注意的问题:(1)尽量使用原始数据,使计算更加准确;(2)不是解直角三角形的问题,添加合适的辅助线转化为解直角三角形的问题;(3)恰当使用方程或方程组的方法解决一些较复杂的解直角三角形的问题;(4)在选用三角函数式时,尽量做乘法,避免做除法,以使运算简便;(5)必要时画出图形,分析已知什么,求什么,它们在哪个三角形中,•应当选用什么关系式进行计算;(6)添加辅助线的过程应书写在解题过程中.3.解直角三角形的实际问题.解直角三角形的实际问题涉及到如下概念和术语.(1)坡度、坡角.如图所示,坡面的垂直高度h和水平宽度L的比叫做坡度(或叫做坡比),用字母i表示,即i=hl.坡面与水平面的夹角记作α(叫做坡角),则i=hl=tanα.(2)仰角、俯角.当从低处观测高处的目标时,视线和水平线所成的锐角称为仰角.当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角.如图所示.(3)方位角和方向角.①方位角:正北方向顺时针旋转与已知射线所成的角叫做方位角.如图所示的∠α(0°<α<360°).②方向角:正北或正南方向与已知射线所成的锐角叫做方向角.如图14-5所示的∠β(0°<β<90°),若∠β=30°,则方向角可记作南偏西30°.(4)燕尾槽的深度、燕尾角.燕尾槽的横断面如图所示,AE是燕尾槽的深度,AD是外口宽,BC是里口宽,∠B是燕尾角.考点与命题趋向分析(一)能力1.通过实例认识锐角三角函数(sinA ,cosA ,tanA ),知道30°,45°,60•°角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.2.运用三角函数解决与直角三角形有关的简单实际问题. (二)命题趋向分析1.三角函数是代数与几何衔接点之一,是三角学的基础,近年来锐角三角函数常与四边形、相似形、坐标系、圆等相结合出题,多涉及实际应用问题,如梯子的倾斜程度、坡度等问题.【例1】(2004年河南省)如图1,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时梯子的倾斜角为75°.如果梯子底端不动,顶端靠在对面墙上,此时梯子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角为45°,则这间房子的宽AB 是________米.(1) (2) 【分析一】AB=AC+CB=tan 75a ︒+tan 45b︒.如图2,在Rt △ACB 中,∠C=90°.∠A=15•°,•∠ABC=75°, 在∠ABC 内部作∠ABD=15°,则∠BDC=30°,∠DBC=60°, 设BC=1,则BD=2,3, ∵∠A=∠ABD=15° ∴AD=BD=2 ∴3 ∴tan75°=AC BC23+3∴∴sin75°=ACAB 如图1所示:NB=CB=b 米∴b 米∴米 在Rt △MAC 中,sin75°=AMMC∴4a=()b解得-1)a∴AB=AC+CB=tan 75a ︒+tan 45b︒+b=(a+)a=a (米)【分析二】在图1中连MN ,可由MC=NC ,∠MCN=60°得等边三角形MCN ,作MH•⊥BN 于H .由∠A=∠MHB=90°,∠MCA=∠MNH=75°,MC=MN .可证△MAC ≌△MHN ,得AM=MH .•再证四边形MABH 为矩形,可得AB=MH=AM=a 米. 【解】此空应填a .2.涉及特殊角的三角函数值的应用题是近年中考中的热点,•对学生的综合能力要求较高,要勤于观察生活中的数学现象,并善于将生活中的实际问题转化为数学问题并加以解决.【例2】(2004年哈尔滨市)如图,在测量塔高AB 时,•选择与塔底在同一水平面的同一直线上的C 、D 两点,用测角仪器测得塔顶A 的仰角分别是30°和60°.•已知测角器高CE=1.5m ,CD=30m .求塔高AB .(答案保留根号) 【分析】由CD=30m ,可求EG=30m ,考虑到∠AGF 是△AEG 的外角,可知EG=AG ,故AG=30m ,在Rt △AGF 中可求AF 长.AB=AF+FB 问题得以解决. 【解】由题意可知:EG=CD=30米 ∵∠AEG=30°,∠AGF=60°∴∠EAG=30°∴EG=AG=30米在Rt△AFG中,sin60°=AF AG∴AF=AG·sin60°=30×32=153(米)∴AB=AF+FB=153+32(米)答:塔高AB为(153+32)米.【规律总结】本题发现EG=AG=30米,以及熟记特殊角三角函数值是关键.3.近10年来含特殊角的三角函数值的应用问题中中考中呈现上升趋势,•这类考题往往给定一些角的三角函数值供考生选用,且这类题多以中档解答题为主,望读者引起注意.【例3】(2004年沈阳市)某地一居民楼,窗户朝南,窗户的高度为h米,•此地一年中的冬至这一天的正午时刻太阳光与地面的夹角最小为α,夏至这一天的正午时刻太阳光与地面的夹角最大为β(如图1).小明想为自己家的窗户设计一个直角形遮阳篷BCD,要求它既能最大限度地遮挡夏天炎热的阳光,•又能最大限度地使冬天温度的阳光射入室内.小明查阅了有关资料,获得了所在地区∠α和∠β的相应数据:∠α=24°36′,∠β=73°30′,小明又量得窗户的高AB=1.65米.若同时满足下面两个条件:(1)•当太阳光与地面夹角为α时,要想使太阳光刚好全部射入室内;(2)•当太阳光与地面夹角为β时,要想使太阳光刚好不射入室内.请你借助图形(如图2),帮助小明算一算,•遮阳篷BCD中,BC和CD的长各是多少?(精确到0.01米)以下数据供计算中选用:sin24°36′=0.416 cos24°36′=0.909tan24°36′=0.458 cot24°36′=2.184sin73°30′=0.959 cos73°30′=0.284tan73°30′=3.376 cot73°30′=0.296【分析】图中有两个直角三角形,即△BCD 和△ACD .•利用这两个直角三角形求解.另外题中所给数据中cot24°36′实际上是tan24°36′的倒数,今后我们会学习到. 【解】∵在Rt △BCD 中,tan ∠CDB=BCCD,∠CDB=∠α ∴BC=CD ·tan ∠CDB=CD ·tan α ∵在Rt △ACD 中,tan ∠CDA=ACCD,∠CDA=∠β ∴AC=CD ·tan ∠CDA=CD ·tan β ∵AB=AC-BC=CD ·tan β-CD ·tan α =CD (tan β-tan α) ∴CD=tan tan AB βα-= 1.653.3760.458-≈0.57(米)∴BC=CD ·tan ∠CDB ≈0.57×0.458≈0.26(米) 答:BC 的长约为0.26米,CD 的长约为0.57米.【规律总结】本题的解决关键是把∠α、∠β置于两个直角三角形中,另外要细心体会把实际问题转化为数学模型的过程和方法.4.运用解直角三角形知识解决实际问题是近年中考的热点题型,•主要涉及测量(特别是底部不可到达的物体的高度的测量)、航空、航海、工程等领域,且说理性题(如船会不会触礁,速度应提高多少,巡逻艇能否追上走私船等)比重有所加大.这类题主要考查学生应用相关知识解决实际问题的能力. 【例4】(2003年青岛)如图14-11所示,•人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O 点的正北方向10海里处的A 点有一涉嫌走私船只,正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26•海里/时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问 (1)需要几小时才能追上?(点B 为追上时的位置) (2)确定巡逻艇追赶方向(精确到0.1°)(参考数据:sin66.8°≈0.9191,cos66.8°≈0.3939,•sin67.•4•°≈0.•9231,cos67.4°≈0.3843,sin68.4°≈0.9298,cos68.4°≈0.3681,•sin70.•6•°≈0.9432,cos70.6°≈0.3322).【分析】由于已知速度,本题第(1)问可利用直角△ABO 的各边长列方程求解,•第(2)问可利用sin ∠AOB=ABOB,求出∠AOB 的度数. 【解】(1)设需要t 小时才能追上,则AB=24t ,OB=26t .在Rt △ABO 中,OB 2=AB 2+OA 2,即(26t )2=(24t )2+102,解得t=±1,t=-1不合题意,舍去,∴t=1,即需要1小时才能追上. (2)在Rt △ABO 中 ∵sin ∠AOB=AB OB =2426t t =1213≈0.9231, ∴∠AOB ≈67.4°即巡逻艇的追赶方向是北偏东67.4°.解题方法与技巧1.数形结合思想.【例1】已知tan α=34,求sin cos sin cos αααα+-的值. 【分析】利用数形结合思想,将已知条件tan α=34用图形表示.【解】如图所示,在Rt △ABC 中,∠C=90°,∠A=α,设BC=3k ,AC=4k ,则AB=22AC BC +=22(4)(3)k k +=5k .∴sin α=BC AB =35k k =35 cos α=4455AC k AB k ==, ∴原式=34553455+-=-7.方法2:转化思想 【例2】已知tan α=34,求sin cos sin cos αααα+-的值. 【分析】可将所求式子的分子、分母都除以cos ,转化为含有sin cos αα的式子,•再利用tan α=sin cos αα进行转化求解. 【解】将式子sin cos sin cos αααα+-的分子、分母都除以cos α,得原式=31tan143tan114αα++=--=-7【规律总结】因为tanα=34所以α不等于90°,所以cosα≠0,因此分子分母可以同时除以cosα.实现转化的目的.方法3:方程思想【例3】去年某省将地处A、B两地的两所大学合并成了一所综合性大学,•为了方便A、B两地师生的交往,学校准备在相距2千米的A、B•两地之间修筑一条笔直的公路(即图中的线段AB),经测量,在A地的北偏东60°方向,B地的西偏北45°的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?【分析】过C作AB的垂线段CM,把AM、BM用含x的代数式3x,x表示,利用AM+MB=2列方程得,3x+x=2,解出CM的长与0.7千米进行比较,本题要体会设出CM的长,列方程解题的思想方法.【解】作CM⊥AB,垂足为M,设CM为x千米,在Rt△MCB中,∠MCB=∠MBC=45°,则MB=CM=x千米.在Rt△AMC中,∠CAM=30°,∠ACM=60°tan∠ACM=AM CM∴AM=CM·tan60°=3x千米∵AM+BM=2千米∴3x+x=2∴x=3-1≈1.732-2=0.732∴CM长约为0.732千米,大于0.7千米∴这条公路不会穿过公园.方法4:建模思想【例4】如图所示,一艘轮船以20里/时的速度由西向东航行,•途中接到台风警报,台风中心正以40里/时的速度由南向北移动,距离台风中心2010•里的圆形区域(包括边界)都属台风区,当轮船到A处时,测得台风中心移到位于点A•正南方向的B处,且AB=100里.(1)若这艘轮船自A处按原速度继续航行,在途中会不会遇到台风?若会,•试求轮船最初遇到台风的时间;若不,请说明理由.(2)现轮船自A处立即提高船速,向位于东偏北30°方向,相距60里的D港驶去,为使台风到来之前到达D港,问船速至少应提高多少?(取整数,13≈3.6)【分析】本题是航海问题,把航海问题抽象成纯数学问题,建立起“解直角三角形”的“数学模型”.【解】(1)设途中会遇到台风,且最初遇到台风的时间为t小时,此时,轮船位于C 处,台风中心移到E处,连结CE,则有AC=20t,AE=AB-EB=100-40t,EC=2010在Rt△ACE中,AE2+AC2=EC2∴(20t)2+(100-40t)2=(2010)2∴t2-4t+3=0△=(-4)2-4×1×3=4>0∴途中会遇到台风解方程①得t1=1,t2=3∴最初遇到台风的时间为1小时.(2)设台风抵达D港的时间为t小时,此时台风中心至M点,过D作DF⊥AB,垂足为F,连结DM.在Rt△ADF中,AD=60,∠FAD=60°∴DF=303,FA=30又FM=FA+AB-BM=130-40tMD=2010∴(303)2+(130-40t)2=(2010)2整理,得4t2-26t+39=0解之得t1=13134-,t2=13134+∴台风抵达D港的时间为13134-小时,到D港的速度为60÷13134-≈25.5(海里/时).因此为使台风抵达D 港之前轮船到D 港,轮船应提高6海里/时.方法5:说理性问题的解法【例5】如图,MN 表示某引水工程的一段设计路线,从M 到N 的走向为南偏东30°,在M 的南偏东60°方向上有一点A ,以A 为圆心,500m 为半径的圆形区域为居民区,•取MN 上另一点B ,测得BA 的方向为南偏东75°,已知MB=400m ,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?【分析】说明输水路线是否穿过居民区,应过A 作MN 的垂线段AH ,计算出AH 的长,然后把AH 与500m 比较大小.【解】过A 作AH ⊥MN ,垂足为H ∵MK ∥BG∴∠GBH=∠KMH=30°又∵∠GBA=75°,∠HBA=45° ∴∠BAH=45° ∴AH=BH设AH 为xm ,则BH=xm ,在Rt △MHA 中,∠HMA=∠KMA-∠KMB=60°-30°=30°. ∵tan ∠HMA=AHMH∴MH=tan 30x =33x =3x∵MB=MH-BH∴3x-x=400 解得x=200(3+1)∴AH ≈546.4m>500m答:输水路线不会穿过居民区.【规律总结】此题是说理性问题,这类题要求学生对基本概念、基本定理、基本思路有清醒的认识,能根据实际问题进行相关的计算,并利用计算所得结果说明问题的原因、依据.方法6:探索性问题【例6】某学校为了改善教职工居住条件,•准备在教学楼(正楼)的正南方向建一座住宅楼(正楼),要求住宅楼与教学楼等高,均为15.6米,已知该地区冬至正午时分太阳高度最低,太阳光线与水平线的夹角为30°,如果住宅楼与教学楼间相距19.2米,如图1所示.(1)此时住宅楼的影子落在教学楼上有多高?(精确到0.1米)(2)要使住宅楼的影子刚好落在教学楼的墙角,则两楼间的距离应是多少?•(精确到0.1米) 【分析】(1)如图所示,设冬至正午太阳最低时,住宅楼顶A•点的影子落在教学楼上的C 处,那么CD 的长就是影子落在教学楼上的高度.(2)如图2所示,BC 的长就是两楼间的距离.(1) (2) 【解】(1)如图1所示,作CE ⊥AB 于E , 在Rt △ACE 中,∠ACE=30°,EC=19.2, ∴AE=EC ·tan30°=19.2319.2 1.7323⨯≈11.1 CD=EB=AB-AE≈15.6-11.1=4.5(米)∴住宅楼的影子落在教学楼上约有4.5米高 (2)如图2所示,在Rt △ABC 中,∠ACB=30° BC=tan 30AB ︒3315.6×1.732≈27.0(米)∴要使冬至正午的太阳能够照到教学楼的墙角,两楼间的距离至少应为27.0米.【规律总结】此题为探索性题,结论没有直接给出,需要通过观察、分析、比较、概括、推理、判断等活动,逐步确定结论.方法7:开放性问题【例7】某处有一天线,高度超过10米,底部四周有铁丝网围墙,•使得不能直接到达天线底部,数学小组的同学们只有测倾器和测量长度用的量绳,请你为他们设计一个能测得天线高度的方案(包括测量方法,并推导计算公式).【分析】本题是一道开放性试题,是近年来有关解直角三角形的中考试题中,开放程度很高的题目,着重考查学生如何借助解直角三角形知识解决这类测量问题.解题中要注意测量工具所能测得的数据,以免审题失误.【解】如图所示,测倾器离地面b 米,在点B 处测得天线顶端仰角为α,从B•点向前走a 米,到达点C ,在点C 处测得天线顶端仰角为β,设AG 为x 米. 在Rt △AGC 中,CG=tan tan AG xββ= 在Rt △AGB 中,BG=tan tan AG xαα=∵BC=BG-CG ∴tan x α-tan x β=a∴x=11()tan tan aαβ-=tan tan tan tan a αββα-∴AM=AG+GM=tan tan tan tan a αββα-+b【规律总结】对于开放性问题,一般都有多种解题方法,首先应对解直角三角形知识有关的基本图形非常熟悉,然后才能给出设计方案,选择适合自己的解题方法,灵活巧妙地解答问题.方法8:综合性问题【例8】如图所示,已知A 为∠POQ 的边OQ 上一点,以A•为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN=∠POQ=α(α为锐角),当∠MAN 以点A 为旋转中心,AM 边从与AO 重合的位置开始,按逆时针方向旋转(∠MAN 保持不变)时,M 、N 两点在射线OP 上同时以不同的速度向右平移,设OM=x ,ON=y (y>x ≥0),△AOM•的面积为S ,且cos α,OA 是方程2z 2-5z+2=0的两个根.(1)当∠MAN 旋转30°(即∠OAM=30°)时,求点N 移动的距离; (2)求证:AN 2=ON ·MN ; (3)试求y 与x 之间的函数关系式及自变量x 的取值范围.(4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.【分析】本题把解直角三角形与一元二次方程、相似三角形、平移、旋转、函数等知识糅合在一起,形成一道综合性很强的考题.本题从解一元二次方程入手,逐步挖掘隐含条件,构造直角三角形,将其转化为解直角三角形问题.【解】(1)解方程2z2-5z+2=0,得z1=12,z2=2∵α为锐角∴O<cosα<1∴OA=2,cosα=1 2∴α=60°,即∠POQ=∠MAN=60°∴ON=OA=2,如图14-20所示.当AM旋转到AM′时,点N移动到N′∴∠M′N′A=30°,∠OAN′=90°,在Rt△OAN′中,ON′=2AO=2×2=4,∴MN′=ON′-ON=4-2=2∴点N移动距离为2(2)如图1所示,在△OAN和△AMN中,∠AON=∠MAN,∠ANO=∠MNA,∴△AON•∽△MAN,∴ANMN=ONAN,∴AN2=ON·MN(1) (2) (3)如图2所示,过A作AH⊥OP于点H.∵MN=ON-OM=x-y,∴AN2=ON·MN=y(y-x)=y2-xy在Rt△AOH中,OH=OA·cos60°=2×12=1∴AH=OA·sin60°3∴HN=ON-OH=y-1在△ANH中,AN2=AH2+HN2=32+(y-1)2=y2-2y+4,∴y2-xy=y2-2y+4,整理得y=42x.∵y>O ∴2-x>O ∴x<2 又∵x ≥O∴x 的取值范围是O ≤x<2(4)如图2所示,在△AOM 中,OM 边上的高AH 为,∴S=12OM ·AH=12·x 2x∵S 是x ∴S 随x 的增大而增大∴O ≤ 【规律总结】本题通过作OM 边上的高AH ,从而将其转化为解直角三角形问题,在解有关综合性问题时,要注意挖掘隐含条件,合理运用相应知识,构造直角三角形,利用直角三角形的边角关系沟通各知识点间的联系.中考试题归类解析(一)锐角三角函数 【例1】(2003,大连)在Rt △ABC 中,∠C=90°,AC=4,BC=3,则B 的值为( ) A .45 B .35 C .43 D .34【思路分析】由勾股定理可知AB=5,根据锐角三角函数的定义可知cosB=35BC AB 解:答案B 【例2】(2003,南京)在△ABC 中,∠C=90°,tanA=1,那么cotB 等于( )A C .1 D .3【思路分析】由互为余角的三角函数关系可知:cotB=tanA=1 解:答案C【规律总结】本题也可由tanA=1得到∠A=45•°,•所以∠B=•45•°,• 故cotB=cot45°=1【例3】(2003,黄冈)已知∠A 为锐角,且cosA ≤12,那么( ) A .0°∠A ≤60° B .60°≤A ∠90° C .0°∠A ≤30° D .30°≤A ∠90°【思路分析】锐角三角函数的余弦值随角度的增大而减小,因为∠A 为锐角,所以O<cosA ≤12,即cos90°<cosA ≤cos60°,所以60°≤A<90° 解:答案B【例4】(2004,山西)计算:sin 248°+sin 242°-tan44•°·•tan45•°·•tan46•°=_______.【思路分析】利用互为余函数的关系化为同角函数,再利用同角三角函数公式就可求出值.【解】sin 248°+sin 242°-tan44°·tna45°tan46°=sin 248°+cos 248°-tan44°·cot44°tan45° =1-1×1 =0 故应填:0【规律总结】解决这样的问题一是要善于互化函数,往公式上靠,二是特殊角的三角函数值要记住.【例5】(2004,宁波)计算:(π-3)°-(12)-2+(-1)3-sin 245° 【思路分析】按运算法则和运算顺序直接计算即可. 【解】(π-3)°-(12)-2+(-1)3-sin 245° =1-211()2+(-1)3-(2)2 =1-4-1-12=-412【规律总结】在中考题中象这样代数值的运算和三角函数值的运算结合在一起的比较多.(二)解直角三角形【例1】已知如图所示,在△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c .【求证】S △ABC =12absinc=12bcsinA=12casinB . 【思路分析】要求面积关键是作高,构造出直角三角形利用锐角三角函数的定义加以理解.【证明】过A 点作AD ⊥BC 垂足为D 在Rt △ABD 中,sinB=ADAB∴AD=AB ·sinB=c ·sinB∴S=12AD ·BC=12ac ·sinB 同理可证,S=12absinc=12bcsinA【例2】如图,若CD 是Rt △ABC 斜边上的高,AD=3,CD=4,则BC=_____.【思路分析】先利用勾股定理求出AC 长再利用相似比就可求出BC 【解】∵AC 2=AD 2+DC 2 而AD=3 CD=4 ∴AC=3234+=5 Rt △CDA ∽Rt △BDCAD CD =ACBCBC=542033AC CD AD ⨯⨯==故应填:203【规律总结】:本题也可以利用射影定理去解.【例3】一艘渔船在A 处观测到东北方向有一小岛C ,周围4.8海里范围内是水产养殖场,渔船沿北偏东30°方向航行10海里到达B 处,在B 处测得小岛C•在北偏东60°方向,这时渔船改变航线向正东(即BD )方向航行,这艘船是否有进入养殖场的危险. 【思路分析】是否有进入养殖场的危险就是看C 点到BD 的距离是多少,•如果大于4.8海里就没有进入养殖场的危险,否则就有危险.【解】过C 点作BD 的垂线与BD 交于E 点 ∠BAC=60°-45°=15° ∠BCA=45°-30°=15° 在Rt △CBE 中, sin ∠CBE=CEBCCE=BC·sin∠CBE=10×1 2=5(海里)∵4.8<5∴没有进入养殖场的危险.【规律总结】这种类型题关键是要构建直角三角形计算距离,再根据距离大小来判断是否有危险.中考试题集萃(一)填空题1.(2004,宁波)sin45°=________.2.(2004,衡阳)∠A为锐角,若cosA=13,则sin(90°-A)=_______.3.(2004,芜湖)在直角三角形ABC中,∠C=90°,已知sinA=35,则cosB=________.4.(2004,常州)若∠α′的余角是30°,则∠α′=_______°,sin∠α′=________. 5.(2004,江西)在△ABC中,若AC=2,BC=7,AB=3,则cosA=________.6.(2004,沈阳)在Rt△ABC中∠C=90°,tanA=23,AC=4,则BC=_______.7.(2004,上海)在△ABC中,∠A=90°,设∠B=θ,AC=b,则AB=______.(用b和θ的三角比表示)8.(2004,深圳)计算:3tan30°+cot45°-2tan45°+2cos60°=________.9.(2004,西宁)某人沿倾斜角为β的斜坡走了100m,则他上升的高度是______m. 10.(2004,潍坊)某落地钟钟摆的摆长为0.5m,来回摆动的最大夹角为20°,已知在钟摆的摆运过程中,摆锤离地面的最低高度为am,最大高度为bm,则b-a=_______m(不取近似值).(二)选择题1.小强和小明去测量一座古塔的高度(如图)他们在离古塔60m•的A处,用测角仪器测得塔顶的仰角为30°,已知测角仪器高AD=1.5m,则古塔BE的高为(• )A.(203-1.5)m B.(203+1.5)mC.31.5m D.28.5m2.在Rt△ABC中,如果各边长度都扩大为原来的2倍,则锐角A的正切值()A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化3.用科学计算器计算锐角α的三角函数值时,•不能直接计算出来的三角函数值是( )A .cot αB .tan αC .cos αD .sin α 4.计算sin30°·cot45°的结果是( )A .12B .2C .6D .45.=( )A .1-3 B -1 C .3-1 D . 6.在Rt △ABC 中,∠C=90°,AC=12,cosA=1213,则tanA 等于( ) A .513 B .1312 C .125 D .5127.已知α为锐角,tan αcos α等于( )A .12B .2C 8.在△ABC 中,∠C=90°,sinA=,则cosB 的值为( )A .12B .2C .2D .39.在△ABC 中,∠C=90°,AB=5,BC=3,CA=4,那么sinA 等于( ) A .34 B .43 C .35 D .45(三)解答题1.(2004,芜湖)在△ABC 中,∠A 、∠B 都是锐角,且sinA=12,,AB=10,•求△ABC 的面积.2.(2004,大连)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,•中柱CD=1m,∠A=72°,求跨度AB的长(精确到0.01m).3.(2004,南京)如图,天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B点测得C点的仰角为60°,已知AB=20m,点C和直线AB在同一铅垂平面上,求气球离地面的高度.(结果保留根号).4.(2004,贵阳)某居民小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高6m的小区超市,超市以上是居民住房,在该楼的前面15m处要盖一栋高20m的新楼,当冬季正午的阳光与水平线的夹角为32°时,问:(1)超市以上的居民住房采光是否有影响?为什么?(2)若要使超市采光不受影响,两楼应相距多少米?(•结果保留整数,•参考数据:sin32°≈53100,cos32°≈106125,tan32°≈58)5.(2004,济南)如图表示一山坡路的横截面,•CM•是一段平路,•它高出水平地面24m,从A到B,从B到C是两段不同坡角的山坡路,山坡路AB的路面长100m,•把山坡路BC的坡角降到与AB的坡角相同,使得∠DBI=5°.(精确到0.01m)(1)求山坡路AB的高度BE.(2)降低坡度后,整个山坡的路面加长了多少米?(sin5°=0.0872,cos5°=0.9962,sin12°=0.2079,cos12°=0.9781)答案:一、填空题1.222.133.354.60°,325.236.837.b·cos或tanb83.100sinβ 10.12(1-cos10°)•二、选择题1.B 2.D 3.A 4.A 5.A 6.D 7.A 8.C 9.C 三、解答题1253 32.3.93m3.解:作CD⊥AB,垂足为D,设气球离地面的高度是xm在Rt△CBD中,∠CAD=45°∴AD=CD=x在Rt△CBD中,∠CBD=60°∴cot60°=BD CD∴BD=3 3∵AB=AD-BD,∴20=x-33x∴x=30+103.答:气球离地面的高度是(30+103)m.4.(1)如图设CE=x米,则AF=(20-x)米,tan32°=AFEF,即20-x=15·tan32°x=11∵11>6,∴居民住房的采光有影响.(2)如图:tan32°=ABBF,BF=20×85=32两楼应相距32米.5.(1)在Rt△ABE中BE=ABsin∠BAE=100sin5°=100×0.0872=8.72(米).(2)在Rt△CBH中CH=CF-HF=15.28BC=sin CH CBH ∠=15.28sin12︒≈73.497在Rt△DBI中DB=sin DIDBI∠=15.28sin5︒≈175.229∴DB-BC≈175.229-73.497=101.732≈101.73(米).。

专题14 三角形章末重难点题型(举一反三)(北师大版)(解析版)

专题14  三角形章末重难点题型(举一反三)(北师大版)(解析版)

专题1.4 三角形章末重难点题型【考点1 三角形的边角关系】【方法点拨】解题的关键是了解三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【例1】(2019秋•庐江县期末)已知4条线段的长度分别为2,4,6,8,若三条线段可以组成一个三角形,则这四条线段可以组成三角形的个数是()A.1个B.2个C.3个D.4个【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【答案】解:首先任意的三个数组合可以是2,4,6或2,4,8或2,6,8或4,6,8.根据三角形的三边关系:其中4+6>8,能组成三角形.∴只能组成1个.故选:A.【点睛】考查了三角形的三边关系,解题的关键是了解三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【变式1-1】(2018秋•当涂县期末)若一个三角形的两边长分别为4和7,则周长可能是()A.11B.18C.14D.22【分析】根据第三边的长度应是大于两边的差而小于两边的和,可求出第三边长的范围,从而得出答案.【答案】解:设第三边的长为x,根据三角形的三边关系,得7﹣4<x<7+4,即3<x<11.∴14<周长<22,∴周长可能为18,故选:B.【点睛】此题主要考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.【变式1-2】(2019春•临清市期末)a,b,c为三角形的三边长,化简|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,结果是()A.0B.2a+2b+2c C.4a D.2b﹣2c【分析】根据三角形的三边关系去绝对值,即两边之和大于第三边,两边之差小于第三边,进而再化简即可.【答案】解:|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,=a+b+c+a﹣b﹣c﹣a+b﹣c﹣a﹣b+c,=0.故选:A.【点睛】本题主要考查了简单的三角形的三边关系的运用,能够利用其性质求解一些简单的计算问题.【变式1-3】(2019秋•江东区期末)已知等腰三角形的周长为16,且一边长为3,则腰长为()A.3B.10C.6.5D.3或6.5【分析】因为腰长没有明确,所以分边长3是腰长和底边两种情况讨论.【答案】解:(1)当3是腰长时,底边为16﹣3×2=10,此时3+3=6<10,不能组成三角形;(2)当3是底边时,腰长为×(16﹣3)=6.5,此时3,6.5,6.5三边能够组成三角形.所以腰长为6.5.故选:C.【点睛】本题要分情况讨论,注意利用三角形的三边关系判断能否组成三角形,是学生容易出错的题.【考点2 巧用三角形中线求面积】【方法点拨】解题的关键是掌握三角形的中线把三角形的面积分成了相等的两部分.【例2】(2019秋•长丰县期末)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积是32,则图中阴影部分面积等于()A.16B.8C.4D.2【分析】首先根据D是BC的中点,可得:S△ABD=S△ACD=S△ABC,再根据E是AD的中点,可得:S=S△ABD,S△CDE=S△ACD,所以S△BCE=S△ABC;然后根据F是CE的中点,求出△BEF的面△BDE积是多少即可.【答案】解:∵D是BC的中点,∴S△ABD=S△ACD=S△ABC,∵E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△BCE=S△ABC=×32=16,∵F是CE的中点,∴S△BEF=S△BCE=×16=8.答:图中阴影部分面积等于8.故选:B.【点睛】此题主要考查了三角形的面积的求法,以及线段的中点的特征和应用,要熟练掌握.【变式2-1】(2019秋•宁阳县期末)如图,△ABC的三边的中线AD,BE,CF的公共点为G,且AG:GD =2:1,若S△ABC=12,则图中阴影部分的面积是()A.3B.4C.5D.6【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【答案】解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,∴S阴影=S△CGE+S△BGF=4.故选:B.【点睛】本题考查了三角形的面积,三角形中线的性质,正确的识别图形是解题的关键.【变式2-2】(2019秋•椒江区期末)如图,在△ABC中,AD为BC边上的中线,DE为△ABD中AB边上的中线,△ABC的面积为6,则△ADE的面积是()A.1B.C.2D.【分析】根据三角形的中线的性质,得△ADE的面积是△ABD的面积的一半,△ABD的面积是△ABC 的面积的一半,由此即可解决问题.【答案】解:∵AD是△ABC的中线,∴S△ABD=S△ABC=3.∵DE为△ABD中AB边上的中线,∴S△ADE=S△ABD=.故选:B.【点睛】本题考查三角形的面积,三角形的中线的性质等知识,解题的关键是掌握三角形的中线把三角形的面积分成了相等的两部分.【变式2-3】(2019秋•温州期中)如图,在△ABC中,点D是BC边上的一点,E,F分别是AD,BE的中点,连结CE,CF,若S△CEF=5,则△ABC的面积为()A.15B.20C.25D.30【分析】根据三角形的中线把三角形分成面积相等的两个三角形即可求解.【答案】解:根据等底同高的三角形面积相等,可得∵F是BE的中点,S△CFE=S△CFB=5,∴S△CEB=S△CEF+S△CBF=10,∵E是AD的中点,∴S△AEB=S△DBE,S△AEC=S△DEC,∵S△CEB=S△BDE+S△CDE∴S△BDE+S△CDE=10∴S△AEB+S△AEC=10∴S△ABC=S△BDE+S△CDE+S△AEB+S△AEC=20故选:B.【点睛】本题考查了三角形面积,解决本题的关键是利用三角形的中线把三角形分成面积相等的两个三角形.【考点3 三角形内角和之折叠变换】【方法点拨】解题的关键是掌握折叠的性质.【例3】(2019秋•潮州期末)如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.32°B.45°C.60°D.64°【分析】由折叠的性质得到∠D=∠B=32°,再利用外角性质即可求出所求角的度数.【答案】解:如图所示:由折叠的性质得:∠D=∠B=32°,根据外角性质得:∠1=∠3+∠B,∠3=∠2+∠D,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+64°,∴∠1﹣∠2=64°.故选:D.【点睛】本题考查三角形内角和定理,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式3-1】(2020春•岱岳区期中)如图,将△ABC沿MN折叠,使MN∥BC,点A的对应点为点A',若∠A'=32°,∠B=112°,则∠A'NC的度数是()A.114°B.112°C.110°D.108°【分析】由MN∥BC,可得出∠MNC与∠C互补,由三角形的内角和为180°可求出∠C的度数,从而得出∠MNC的度数,由折叠的性质可知∠A′NM与∠MNC互补,而∠A′NC=∠MNC﹣∠A′NM,套入数据即可得出结论.【答案】解:∵MN∥BC,∴∠MNC+∠C=180°,又∵∠A+∠B+∠C=180°,∠A=∠A′=32°,∠B=112°,∴∠C=36°,∠MNC=144°.由折叠的性质可知:∠A′NM+∠MNC=180°,∴∠A′NM=36°,∴∠A′NC=∠MNC﹣∠A′NM=144°﹣36°=108°.故选:D.【点睛】本题考查平行线的性质、折叠的性质以及三角形的内角和为180°,解题的关键是找出∠MNC 与∠A′NM的度数.本题属于基础题,难度不大,根据平行线的性质找出角的关系,结合图形即可得出结论.【变式3-2】(2020春•江阴市期中)如图,△ABC中,∠A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时∠C′DB=74°,则原三角形的∠C的度数为()A.27°B.59°C.69°D.79°【分析】先根据折叠的性质得∠1=∠2,∠2=∠3,∠CDB=∠C′DB=74°,则∠1=∠2=∠3,即∠ABC=3∠3,根据三角形内角和定理得∠3+∠C=106°,在△ABC中,利用三角形内角和定理得∠A+∠ABC+∠C=180°,则20°+2∠3+106°=180°,可计算出∠3=27°,即可得出结果.【答案】解如图,∵△ABC沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,∴∠1=∠2,∠2=∠3,∠CDB=∠C′DB=74°,∴∠1=∠2=∠3,∴∠ABC=3∠3,在△BCD中,∠3+∠C+∠CDB=180°,∴∠3+∠C=180°﹣74°=106°,在△ABC中,∵∠A+∠ABC+∠C=180°,∴20°+2∠3+(∠3+∠C)=180°,即20°+2∠3+106°=180°,∴∠3=27°,∴∠ABC=3∠3=81°,∠C=106°﹣27°=79°,故选:D.【点睛】此题主要考查了图形的折叠变换及三角形内角和定理的应用等知识;熟练掌握折叠的性质,得出∠ABC和∠CBD的倍数关系是解决问题的关键.【变式3-3】(2019春•繁昌县期中)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)【分析】根据三角形的内角和为180°以及四边形的内角和为360°得到几个角之间的等量关系,整理化简即可得到所求角之间的关系.【答案】解:∵在△ABC中,∠A+∠B+∠C=180°①;在△ADE中∠A+∠ADE+∠AED=180°②;在四边形BCDE中∠B+∠C+∠1+∠2+∠ADE+∠AED=360°③;∴①+②﹣③得2∠A=∠1+∠2.故选:B.【点睛】本题考查了三角形的内角和定理,以及翻折变换,解题的关键是求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.【考点4 三角形内角和之角平分线】【例4】(2019秋•顺义区期末)如图,在△ABC中,AD,AE分别是△ABC的角平分线和高线,用等式表示∠DAE、∠B、∠C的关系正确的是()A.2∠DAE=∠B﹣∠C B.2∠DAE=∠B+∠CC.∠DAE=∠B﹣∠C D.3∠DAE=∠B+∠C【分析】根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,即可得到∠DAE、∠B、∠C之间的数量关系.【答案】解:∵∠BAC=180°﹣∠B﹣∠C,AD是∠BAC的平分线,∴∠BAD=∠BAC=(180°﹣∠B﹣∠C),∵AE是高,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAE﹣∠CAD=(90°﹣∠C)﹣(180°﹣∠B﹣∠C)=(∠B﹣∠C),故选:A.【点睛】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.【变式4-1】(2019秋•璧山区期中)如图,BD是∠ABC的角平分线,CD是∠ACB的角平分线,∠BDC=120°,则∠A的度数为()A.40°B.50°C.60°D.75°【分析】根据角平分线的定义得到∠DBC=∠ABC,∠DCB=∠ACB,根据三角形内角和定理和计算即可.【答案】解:∵BD、CD是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠D=180°﹣(∠DBC+∠DCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=120°,∴∠A=60°;故选:C.【点睛】本题考查的是三角形的内角和,掌握三角形的内角和是解题的关键.【变式4-2】(2020•拱墅区校级期末)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=36°,∠C=44°,则∠EAC的度数为()A.18°B.28°C.36°D.38°【分析】根据∠EAC=∠BAC﹣∠BAF,求出∠BAC,∠BAF即可解决问题.【答案】解:∵∠ABC=36°,∠C=44°,∴∠BAC=180°﹣36°﹣44°=100°,∵BD平分∠ABC,∴∠ABD=∠ABC=18°,∵AE⊥BD,∴∠BF A=90°,∴∠BAF=90°﹣18°=72°,∴∠EAC=∠BAC﹣∠BAF=100°﹣72°=28°,故选:B.【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式4-3】(2019春•巴州区期末)如图,∠ABC和∠ACB的外角平分线相交于点D,设∠BDC=β,那么∠A等于()A.180°﹣B.180°﹣2βC.90°﹣βD.90°﹣【分析】在△BCD中利用三角形内角和定理可求出∠BCD+∠CBD的度数,由角平分线的定理可得出∠CBE+∠BCF的度数,由邻补角互补可求出∠ABC+∠ACB的度数,再在△ABC中利用三角形内角和定理即可求出∠A的度数.【答案】解:∵∠BCD+∠CBD+∠D=180°,∠D=β,∴∠BCD+∠CBD=180°﹣β.∵BD平分∠CBE,CD平分∠BCF,∴∠CBE+∠BCF=2(∠BCD+∠CBD)=360°﹣2β,∴∠ABC+∠ACB=180°﹣∠CBE+180°﹣∠BCF=360°﹣(∠CBE+∠BCF)=2β.又∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣2β.故选:B.【点睛】本题考查了三角形内角和定理、邻补角以及角平分线的性质,利用三角形内角和定理、角平分线的性质及邻补角互补求出∠ABC+∠ACB的度数是解题的关键.【考点5 全等三角形的判定】【方法点拨】全等三角形的判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【例5】(2019秋•九龙坡区校级期末)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍无法判定△ABE≌△ACD的是()A.AD=AE B.∠B=∠C C.CD=BE D.∠ADC=∠AEB【分析】根据全等三角形的判定方法对各选项进行判断.【答案】解:∵AB=AC,∠BAE=∠CAD,∴当添加AE=AD时,可根据“SAS”判断△ABE≌△ACD;当添加∠B=∠C时,可根据“ASA”判断△ABE≌△ACD;当添加∠AEB=∠ADC时,可根据“AAS”判断△ABE≌△ACD.故选:C.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【变式5-1】(2019秋•东阿县期末)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,添加下列条件,不能判定△EAB≌△BCD的是()A.EB=BD B.∠E+∠D=90°C.AC=AE+CD D.∠EBD=60°【分析】由于∠A=∠C=90°,AB=CD,根据直角三角形全等的判定方法对各选项进行判断.【答案】解:∵∠A=∠C=90°,AB=CD,∴当添加EB=BD时,则可根据“HL”判定△EAB≌△BCD;当添加AE=BC,即AC=AE+CD,则可根据“SAS”判定△EAB≌△BCD;当添加∠ABE=∠D时,此时∠D+∠E=90°,∠EBD=90°,则可根据“SAS”判定△EAB≌△BCD,.故选:D.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【变式5-2】(2019秋•正定县期中)一块三角形玻璃被小红碰碎成四块,如图,小红只带其中的两块去玻璃店,买了一块和以前一样的玻璃,你认为她带哪两块去玻璃店了()A.带其中的任意两块B.带1,4或3,4就可以了C.带1,4或2,4就可以了D.带1,4或2,4或3,4均可【分析】要想买一块和以前一样的玻璃,只要确定一个角及两条边的长度或两角及一边即可,即简单的全等三角形在实际生活中的应用.【答案】解:由图可知,带上1,4相当于有一角及两边的大小,即其形状及两边长确定,所以两块玻璃一样;同理,3,4中有两角夹一边,同样也可得全等三角形;2,4中,4确定了上边的角的大小及两边的方向,又由2确定了底边的方向,进而可得全等.故选:D.【点睛】本题考查了全等三角形的判定;熟练掌握全等三角形的判定,能够联系实际,灵活应用所学知识.【变式5-3】(2019•鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是()A.①②B.②③C.①③D.①②③【分析】结合已知条件与全等三角形的判定方法进行思考,要综合运用判定方法求解.注意高的位置的讨论.【答案】解:①正确.可以用AAS或者ASA判定两个三角形全等;②正确.可以用“倍长中线法”,用SAS定理,判断两个三角形全等;如图,分别延长AD,A′D′到E,E′,使得AD=DE,A′D′=D′E′,∴△ADC≌△EDB,∴BE=AC,同理:B′E′=A′C′,∴BE=B′E′,AE=A′E′,∴△ABE≌△A′B′E′,∴∠BAE=∠B′A′E′,∠E=∠E′,∴∠CAD=∠C′A′D′,∴∠BAC=∠B′A′C′,∴△BAC≌△B′A′C′.③不正确.因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等了.故选:A.【点睛】本题考查了全等三角形的判定方法;要根据选项提供的已知条件逐个分析,分析时看是否符合全等三角形的判定方法,注意SSA是不能判得三角形全等的.【考点6 尺规作图】【例6】(2019秋•蜀山区期末)如图,已知∠1与线段a,用直尺和圆规按下列步骤作图(保留作图痕迹,不写作法):(1)作∠A=∠1;(2)在∠A的两边分别作AM=AN=a;(3)连接MN.【分析】先以A为圆心,a为半径画弧,即可作∠A=∠1,则AM=AN=a;最后连接MN即可.【答案】解:如图所示:【点睛】本题考查作图﹣基本作图,解题的关键是熟练掌握五种基本作图的方法.【变式6-1】(2019春•秦都区期中)如图,已知△ABC中,∠ACB>∠ABC,用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹)【分析】根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;【答案】解:如图所示,射线CM即为所求:【点睛】本题主要考查了基本作图,解题的关键是掌握作一个角等于已知角的尺规作图.【变式6-2】(2019春•平川区期末)已知∠α和线段a,求作△ABC,使∠A=∠α,∠B=2∠α,AB=2α.(保留作图痕迹,不写作法)【分析】先作AB=2a,再作∠A=∠α,然后作∠B=2∠α即可.【答案】解:如图,△ABC为所作.【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).【变式6-3】(2019秋•包河区期末)已知平面内有∠α,如图(1).(1)尺规作图:在图(2)∠AOB的内部作∠AOD=∠α(保留作图痕迹,不需要写作法);(2)已知(1)中所作的∠AOD=40°,OE平分∠BOC,∠AOE=2∠BOE,求∠BOD.【分析】(1)依据基本作图,即可得到∠AOD=∠α;(2)依据角平分线的定义,即可得到∠AOD的度数,进而得出∠BOD的度数.【答案】解:(1)如图2所示,∠AOD即为所求;(2)∵OE平分∠BOC,∴∠COE=∠BOE,又∵∠AOE=2∠BOE,∴∠AOB=∠BOE,∴∠AOB=∠AOC=60°,又∵∠AOD=40°,∴∠BOD=∠AOB﹣∠AOD=60°﹣40°=20°.【点睛】本题主要考查了基本作图以及角的计算,掌握作一个角等于已知角是解决问题的关键.【考点7 全等三角形的证明】【例7】(2019秋•东西湖区期中)如图,在△AOB和△DOC中,AO=BO,CO=DO,∠AOB=∠COD,连接AC、BD,求证:△AOC≌△BOD.【分析】根据角的和差得到∠AOC=∠BOD,根据全等三角形的判定定理即可得到结论.【答案】证明:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC与△BOD中,,∴△AOC≌△BOD(SAS).【点睛】本题考查了全等三角形的判定,熟练全等三角形的判定定理是解题的关键.【变式7-1】(2019秋•大观区校级期中)如图,△ABC的两条高AD、BE相交于点H,且AD=BD,试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.【分析】(1)利用,△ABC的两条高AD、BE相交于点H得出,∠ADC=∠BEC=90°,再利用三角形内角和定理得出答案;(2)因为AD⊥BC,所以∠ADB=∠ADC,又因为AD=BD,∠DBH=∠DAC,故可根据ASA判定两三角形全等.【答案】证明:(1)∵AD⊥BC,BE⊥AC,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴∠DBH=∠DAC;(2)∵AD⊥BC∴∠ADB=∠ADC在△BDH与△ADC中,∴△BDH≌△ADC.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式7-2】(2019春•黄岛区期末)如图,点E在AB上,AC=AD,∠CAB=∠DAB,那么△BCE和△BDE 全等吗?请说明理由.【分析】根据全等三角形的判定定理,观察图形上的已知条件,已知告诉的条件是一角一边分别对应相等,加上公共边就可证两对三角形全等.【答案】解:△BCE≌△BDE,理由如下:在△ACB与△ADB中,∴△ACB≌△ADB(SAS),∴BC=BD,∠ABC=∠ABD,在△BCE与△BDE中,∴△BCE≌△BDE(SAS).【点睛】本题考查了全等三角形的判定;关键是根据全等三角形的判定定理证明.【变式7-3】(2019秋•北碚区校级期末)如图,点D在△ABC外部,点C在DE边上,BC与AD交于点O,若∠1=∠2=∠3,AC=AE.求证:(1)∠B=∠D;(2)△ABC≌△ADE.【分析】(1)由三角形内角和定理可知∠E=∠180°﹣∠3﹣∠ACE,∠ACB=180°﹣∠2﹣∠ACE,再根据∠2=∠3,∠ACE=∠ACE,证明△ABC≌△ADE(ASA),即可证明.(2)只要证明△ABC≌△ADE(ASA)即可.【答案】证明:(1)∵∠1=∠3,∴∠1+∠DAC=∠3+∠DAC,即∠BAC=∠DAE,∵∠E=∠180°﹣∠3﹣∠ACE,∠ACB=180°﹣∠2﹣∠ACE,∵∠2=∠3,∠ACE=∠ACE,∴∠ACB=∠E,在△ABC与△ADE中,∴△ABC≌△ADE(ASA),∴∠B=∠D.(2)由(1)可得△ABC≌△ADE.【点睛】本题考查全等三角形的判定和性质、三角形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.【考点8 全等三角形的应用】【例8】(2019春•开江县期末)如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了30步到达一棵树C处,接着再向前走了30步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他共走了140步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.【分析】(1)根据题意所述画出示意图即可.(2)根据AAS可得出△ABC≌△DEC,即求出DE的长度也就得出了AB之间的距离.【答案】解:(1)所画示意图如下:(2)在△ABC和△DEC中,,∴△ABC≌△DEC(ASA),∴AB=DE,又∵小刚共走了140步,其中AD走了60步,∴走完DE用了80步,小刚一步大约50厘米,即DE=80×0.5米=40米.答:小刚在点A处时他与电线塔的距离为40米.【点睛】本题考查全等三角形的应用,像此类应用类得题目,一定要仔细审题,根据题意建立数学模型,难度一般不大,细心求解即可.【变式8-1】(2019春•峄城区期末)如图,点C、E分别在直线AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.小华的想法对吗?为什么?【分析】通过全等三角形得到内错角相等,得到两直线平行,进而得到同旁内角互补.【答案】解:小华的想法对,理由是:∵O是CF的中点,∴CO=FO(中点的定义)在△COB和△FOE中,∴△COB≌△FOE(SAS)∴BC=EF(全等三角形对应边相等)∠BCO=∠F(全等三角形对应角相等)∴AB∥DF(内错角相等,两直线平行)∴∠ACE和∠DEC互补(两直线平行,同旁内角互补),【点睛】本题考查了三角形的全等的判定和性质;做题时用了两直线平行内错角相等,同旁内角互补等知识,要学会综合运用这些知识.【变式8-2】(2019春•槐荫区期末)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.【分析】根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可,利用全等三角形的性质进行解答.【答案】解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.【点睛】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.【变式8-3】(2019秋•临海市期末)如图1,为测量池塘宽度AB,可在池塘外的空地上取任意一点O,连接AO,BO,并分别延长至点C,D,使OC=OA,OD=OB,连接CD.(1)求证:AB=CD;(2)如图2,受地形条件的影响,于是采取以下措施:延长AO至点C,使OC=OA,过点C作AB的平行线CE,延长BO至点F,连接EF,测得∠CEF=140°,∠OFE=110°,CE=11m,EF=10m,请直接写出池塘宽度AB.【分析】(1)根据全等三角形的判定和性质解答即可;(2)根据全等三角形的性质解答.【答案】证明:(1)在△ABO与△CDO中,∴△ABO≌△CDO(SAS),∴AB=CD;(2)如图所示:延长OF、CE交于点G,∵∠CEF=140°,∠OFE=110°,∴∠FEG=40°,∠EFG=70°,∴∠G=180°﹣40°﹣70°=70°,∴EF=EG,∵CE=11m,EF=10m,∴CG=CE+EG=CE+EF=11+10=21m,∵CG∥AB,∴∠A=∠C,在△ABO与△CGO中,∴△ABO≌△CGO(ASA)∴AB=CG=21m.【点睛】此题考查全等三角形的应用,关键是根据全等三角形的判定和性质解答.【考点9 全等三角形中的动点问题】【例9】(2019秋•莱山区期末)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A点出发沿A﹣C路径向终点C运动;点Q从B点出发沿B﹣C﹣A路径向终点A运动.点P和Q分别以每秒1cm 和3cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.则点P运动时间为多少时,△PEC与△QFC全等?【分析】推出CP=CQ,①P在AC上,Q在BC上,推出方程6﹣t=8﹣3t,②P、Q都在AC上,此时P、Q重合,得到方程6﹣t=3t﹣8,Q在AC上,求出即可得出答案.【答案】解:设运动时间为t秒时,△PEC≌△QFC,∵△PEC≌△QFC,∴斜边CP=CQ,有2种情况:①P在AC上,Q在BC上,CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=6﹣t=3t﹣8,∴t=3.5;答:点P运动1或3.5时,△PEC与△QFC全等.【点睛】本题主要考查对全等三角形的性质,解一元一次方程等知识点的理解和掌握,能根据题意得出方程是解此题的关键.【变式9-1】(2019秋•娄底期末)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【答案】解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP 全等.【点睛】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.【变式9-2】(2019秋•内乡县期末)如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.【分析】(1)利用AP=BQ=2,BP=AC,可根据“SAS”证明△ACP≌△BPQ;则∠C=∠BPQ,然后证明∠APC+∠BPQ=90°,从而得到PC⊥PQ;(2)讨论:若△ACP≌△BPQ,则AC=BP,AP=BQ,即5=7﹣2t,2t=xt;②若△ACP≌△BQP,则AC=BQ,AP=BP,即5=xt,2t=7﹣2t,然后分别求出x即可.【答案】解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【变式9-3】(2019秋•梁平区期末)如图1,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B 出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为t秒,且t≤5.(1)PC=cm(用含t的代数式表示).(2)如图2,当点P从点B开始运动的同时,点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得以A、B、P为顶点的三角形与以P、Q、C为顶点的三角形全等?若存在,请求出v的值;若不存在,请说明理由.【分析】(1)利用速度公式,用t表示出BP,从而可用t表示出PC;。

解直角三角形

解直角三角形

解直角三角形直角三角形是一种特殊的三角形,其中一个角度为90度(直角)。

解直角三角形是指根据三角形已知的某些条件,推导出其他未知的角度或边长。

在解直角三角形时,常用到三角比例、勾股定理等概念和公式。

下面将详细介绍解直角三角形的方法和步骤。

一、已知两边长度求角度当已知一个直角三角形的两条直角边的长度时,可以通过求解正弦、余弦、正切等三角比例来确定其他两个角度的大小。

假设已知直角三角形的两条直角边长度分别为a和b。

1. 解正弦比例根据正弦定理,sinA=a/c,sinB=b/c,其中c为斜边的长度。

可根据已知的a和b,解出c,然后利用反正弦函数求解出A和B的大小。

2. 解余弦比例根据余弦定理,cosA=a/c,cosB=b/c,同样可以根据已知的a和b解出c,然后求解出A和B的大小。

3. 解正切比例根据正切定理,tanA=a/b,tanB=b/a,可以通过已知的a和b求解出A和B的大小。

二、已知一边长度求其他边长和角度当已知一个直角三角形的一个直角边和一个锐角边的长度时,可以通过勾股定理求解出另一个直角边的长度,并进一步求解出其他角度和边长。

假设已知直角三角形的一个直角边长度为a,一个锐角边长度为b。

1. 求解斜边的长度根据勾股定理,a²+b²=c²,可以解出斜边c的长度。

2. 求解未知角的大小根据已知的三边长度,利用正弦、余弦、正切等三角函数,可以求解出其他两个角的大小。

3. 求解另一个直角边的长度根据已知的斜边长度和一个直角角度,可以利用正弦、余弦等三角函数,求解出另一个直角边的长度。

三、应用解直角三角形的例子解直角三角形的方法在实际生活中有广泛的应用。

比如在测量、建筑、地理等领域都需要用到解直角三角形的知识。

1. 测量在测量中,我们常常需要通过已知的边长测量出其他未知的边长或角度。

例如在测量高楼建筑的高度时,可以利用解直角三角形的方法。

通过观察建筑物的倾斜角度,可以利用三角函数求解出建筑物的高度。

解直角三角形

解直角三角形
2、一些解直角三角形的问题往往与其他知识联 系,所以在复习时要形成知识结构,要把解直角 三角形作为一种工具,能在解决各种数学问题时 合理运用.
〖归纳小结二〗
• 转化思想贯穿全章。把实际问题转化为数学问题。 • 数形结合思想。画出图形,使已知元素和未知元素更直观。 • 函数思想。锐角的四个三角函数,角度与函数值一一对应。 • 方程思想。若某个元素无法直接求解,往往设未知数,根据三角形
A
BC
E
D
外国船只,除特许外,不得进入我国海洋100海里以内的 区域。如图,设A、B是我们的观察站,A和B之间的距离为 160海里,海岸线是过A、B的一条直线。一外国船只在P点, 在A点测得∠BAP=450,同时在B点测得∠ABP=600,问此时 是否要向外国船只发出警告,令其退出我国海域.
100海里
距离.(精确到1米)
A 2000 B
解:在RtΔABC中,
D 300
∵ ∠CAB = 900 - ∠DAC = 600
∵ tan ∠CAB = BC
AB
C
∴ BC = AB·tan ∠CAB
=2000× tan 600 ≈3464(米)
又∵cos ∠CAB =
AB AC
AC
AB COS 600
2000 400(0 米) 0.5
A
B
C
例1 如图所示,一棵大树在一次强烈的 地震中于离地面10米处折断倒下,树顶落 在离树根24米处.大树在折断之前高多少?
解:设RtΔABC中,∠C=900,
AC =10m,BC=24m.
10m
则 AB= BC 2 AC 2
242 102 = 26(米)
24m A
26+AB,小强从点B沿山坡向上

高三数学 黄金考点汇编14 解三角形 理(含解析)

高三数学 黄金考点汇编14 解三角形 理(含解析)

考点14 解三角形(理)【考点分类】热点一、利用正余弦定理在三角形中求三角函数值、求角、求边长1.【2014高考广东卷理第12题】在ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,已知b B c C b 2cos cos =+,则=ba.2.【2014全国2高考理第4题】钝角三角形ABC 的面积是12,AB=1, ,则AC=( )3.【2014四川高考理第13题】如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67,30,此时气球的高是46m ,则河流的宽度BC 约等于 m .(用四舍五入法将结果精确到个位.参考数据:sin 670.92≈,cos 670.39≈,sin 370.60≈,cos370.80≈,1.73≈)4.【2013年普通高等学校招生全国统一考试(北京卷)】在ABC ∆中,3a =,5b =,1sin 3A =,则sin B =( ) (A )15(B )59(C(D )1【答案】B【解析】由正弦定理,得15sin 53sin 39b AB a⨯===,选B. 5.【2013年普通高等学校统一考试天津卷】在△ABC 中, ,3,4AB BC ABC π∠===则sin BAC ∠6.【2013年普通高等学校招生全国统一考试(辽宁卷)】在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则( ) A .6π B .3π C .23π D .56π7.【2013年普通高等学校招生全国统一考试(湖南卷)】在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于( ) A .12πB .6πC .4πD .3π【答案】D【解析】因为2sin a B =,所以sin B b =sin A =,所以3A π=. 8.【2013年普通高等学校招生全国统一考试福建卷】如图,在ABC ∆中,已知点D 在BC 边上,AC AD ⊥,23,322sin ==∠AB BAC , 3=AD , 则BD 的长为__ ___ . 9.【2013年普通高等学校招生全国统一考试(上海卷)】已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c ,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示). 【答案】1arccos3π- 【解析】2222222323303a ab b c c a b ab ++-=⇒=++,故11cos ,arccos 33C C π=-=-. 10.【2013年普通高等学校招生全国统一考试数学浙江】ABC ∆中,090=∠C ,M 是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________.11.【2013年普通高等学校统一考试试题大纲全国】设ABC ∆的内角A 、B 、C 的对边分别为a b c 、、,()()a b c a b c ac ++-+=. (Ⅰ)求B ;(Ⅱ)若sin sin A C =,求C.12.【2013年普通高等学校招生全国统一考试(北京卷)】在△ABC 中,a =3,b ,∠B =2∠A . (I)求cos A 的值, (II)求c 的值.[答案]⑴由正弦定理,sin sin a bA B=,因为a =3,b ,∠B =2∠A ,所以3sin A ==,解得cos A =.13.【2013年普通高等学校招生全国统一考试(四川卷)】在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且22cos cos sin()sin cos()2A BB A B B AC ---++ 35=-.(Ⅰ)求cos A 的值;(Ⅱ)若a =5b =,求向量BA 在BC 方向上的投影.(Ⅱ)由3cos 5A =-,0A π<<,得4sin 5A =,由正弦定理,有sin sin a bA B=,所以sin sin b A B a == 由题知a b >,则A B >,故4B π=.根据余弦定理,有2223525()5c c =+-⨯⨯-, 解得1c =或7c =-(舍去).故向量BA 在BC 方向上的投影为||cos BA B =……………………12分 14.【2013年普通高等学校统一考试江苏数学试题】如图,旅客从某旅游区的景点A 处下山至C处有两种路径.一种是从A 沿直线步行到C ,另一种从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min ,在甲出发2 min 后,乙从A乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C . 假设缆车匀速直线运动的速度为130 m/min ,山路AC 长1260 m ,经测量,12cos 13A =,3cos 5C =. (1)求索道AB 的长;(2)问乙出发后多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?15.【2013年普通高等学校招生全国统一考试(山东卷)】设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且6,2a c b +==,7cos 9B =. (Ⅰ)求,a c 的值; (Ⅱ)求()sin A B -的值.16.【2013年普通高等学校招生全国统一考试(江西卷)】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos (cos )cos 0.C A A B += (1)求角B 的大小;(2)若1a c +=,求b 的取值范围.ABCP17.【2013年全国高考新课标(I )】如图,在△ABC 中,∠ABC =90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC =90°. (1)若PB=12,求PA ;(2)若∠APB =150°,求tan ∠PBA.【方法规律】(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.(3)已知三边,解三角形,利用余弦定理; (4)已知两边与夹角解三角形,利用余弦定理;【解题技巧】在处理解三角形过程中,要注意“整体思想”的运用,可起到事半功倍的效果。

(完整版)解直角三角形总结

(完整版)解直角三角形总结

解直角三角形总结解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。

1、明确解直角三角形的依据和思路在直角三角形中,我们是用三条边的比来表述锐角三角函数定义的。

因此,锐角三角函数的定义本质揭示了直角三角形中边角之间的关系,是解直角三角形的基础。

如图1,在Rt△ABC中,∠C=90°,设三个内角A、B、C所对的边分别为a、b、c(以下字母同),则解直角三角形的主要依据是(1)边角之间的关系:sinA=cosB=ac, cosA=sinB=bc,tanA=cotB=ab,cotA=tanB=ba。

(2)两锐角之间的关系:A+B=90°。

(3)三条边之间的关系:。

以上每个边角关系式都可看作方程,解直角三角形的思路,就是根据已知条件,正确地选择直角三角形中边角间的关系式,通过解一元方程来求解。

2、解直角三角形的基本类型和方法我们知道,由直角三角形中已知的元素求出未知元素的过程叫作解直角三角形,而在直角三角形中,除直角以外还有三条边及两个锐角共五个元素,那么什么样的直角三角形才可解呢?如果已知两个锐角能否解直角三角形呢?事实上,解直角三角形跟直角三角形的判定与作图有着本质的联系,因为已知两个元素(至少有一个是边)可以判定直角三角形全等,也可以作出直角三角形,即此时直角三角形是确定的,所以这样的直角三角形是可解的。

由于已知两个锐角的直角三角形是不确定的,它们是无数多个相似的直角三角形,因此求不出各边的长。

所以,要解直角三角形,给出的除直角外的两个元素中,必须至少有一个是边。

这样,解直角三角形就分为两大类,即已知一条边及一个锐角或已知两条边解直角三角形。

四种基本类型和解法列表如下:已知条件解法一边及一锐角直角边a及锐角A B=90°-A,b=a·tanA,c=sinaA斜边c及锐角A B=90°-A,a=c·sinA,b=c·cosA两边两条直角边a和b ,B=90°-A,直角边a和斜边c sinA=ac,B=90°-A,例1、如图2,若图中所有的三角形都是直角三角形,且∠A=α,AE=1,求AB的长。

难点详解沪教版七年级数学第二学期第十四章三角形难点解析试题(含解析)

难点详解沪教版七年级数学第二学期第十四章三角形难点解析试题(含解析)

沪教版七年级数学第二学期第十四章三角形难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为()A.40°B.45°C.50°D.60°2、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=()A .30°B .40°C .50°D .60°3、如图:将一张长为40cm 的长方形纸条按如图所示折叠,若AB =3BC ,则纸条的宽为( )A .12B .14C .16D .184、满足下列条件的两个三角形不一定全等的是( ) A .周长相等的两个三角形 B .有一腰和底边对应相等的两个等腰三角形 C .三边都对应相等的两个三角形D .两条直角边对应相等的两个直角三角形5、已知三角形的两边长分别为2cm 和3cm ,则第三边长可能是( ) A .6cmB .5cmC .3cmD .1cm6、如图,钝角ABC 中,2∠为钝角,AD 为BC 边上的高,AE 为BAC ∠的平分线,则DAE ∠与1∠、2∠之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )A .21DAE ∠=∠-∠B .212DAE ∠-∠∠=C .212DAE ∠∠=-∠ D .122DAE ∠+∠∠=7、如图,ABC 和DEF 全等,且A D ∠=∠,AC 对应DE .若6AC =,5BC =,4AB =,则DF 的长为( )A .4B .5C .6D .无法确定8、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD 是△ABC 的外角.求证:∠ACD =∠A +∠B .下列说法正确的是( )A.证法1用特殊到一般法证明了该定理B.证法1只要测量够100个三角形进行验证,就能证明该定理C.证法2还需证明其他形状的三角形,该定理的证明才完整D.证法2用严谨的推理证明了该定理9、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若BC =5,则五边形DECHF的周长为()A.8 B.10 C.11 D.1210、已知等腰三角形有一个角为50°,则这个等腰三角形的底角度数是().A.65°B.65°或80°C.50°或80°D.50°或65°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个立体图形从正面看和从左面看都是等腰三角形,从上面看是带有圆心的圆,则这个立体图形是_____.2、如图,在△ABC中,∠C=62°,△ABC两个外角的角平分线相交于G,则∠G的度数为_____.3、已知:如图,AB = DB .只需添加一个条件即可证明ABC DBC ≌△△.这个条件可以是______.(写出一个即可).4、如图,在ABC 中,90ACB ∠=︒,DE AB ⊥交BC 的延长线于点E ,若AD DE =,点C 是BE 中点,则B ∠=______°.5、如图,在△ABC 中,已知点D E F 、、分别为BC AD CE 、、的中点,若△ABC 的面积为24m ,则阴影部分的面积为 _________ 2cm三、解答题(10小题,每小题5分,共计50分)1、如图,在ABC 中,AB AC =,AD 是角平分线,E 是AB 边上一点,连接ED ,CB 是ACF ∠的平分线,ED 的延长线与CF 交于点F .(1)求证:BE CF =;(2)若46CDF ∠=︒,AD DF =,则ACF ∠=______度.2、如图,在等腰△ABC 和等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE 且C 、E 、D 三点共线,作AM ⊥CD 于M .若BD =5,DE =4,求CM .3、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,∠BAE=∠CAD,AB=AE,AD=AC.(1)求证:∠DEC=∠BAE;(2)如图2,当∠BAE=∠CAD=30°,AD⊥AB时,延长DE、AB交于点G,请直接写出图中除△ABE、△ADC以外的等腰三角形.4、下面是“作一个角的平分线”的尺规作图过程.已知:如图,钝角AOB∠.求作:射线OC,使AOC BOC∠=∠.作法:如图,①在射线OA 上任取一点D ;②以点О为圆心,OD 长为半径作弧,交OB 于点E ;③分别以点D ,E 为圆心,大于12DE 长为半径作弧,在AOB ∠内,两弧相交于点C ; ④作射线OC .则OC 为所求作的射线. 完成下面的证明. 证明:连接CD ,CE由作图步骤②可知OD =______. 由作图步骤③可知CD =______. ∵OC OC =, ∴OCD OCE ≌△△. ∴AOC BOC ∠=∠(________)(填推理的依据).5、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA ,PB 组成,两根棒在P 点相连并可绕点P 旋转,C 点是棒PA 上的一个固定点,点A ,O 可在棒PA ,PB 内的槽中滑动,且始终保持OA =OC =PC .∠AOB 为要三等分的任意角.则利用“三等分角仪”可以得到∠APB =13∠AOB .我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明. 已知:如图2,点O ,C 分别在∠APB 的边PB ,PA 上,且OA =OC =PC .求证:∠APB=13∠AOB.6、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,∠ABU+∠CDV=180°.(1)如图1,求证:AB∥CD;(2)如图2,BE∥DF,∠MEB=∠ABE+5°,∠FDR=35°,求∠MEB的度数;(3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MG∥EN,连接ME,∠GME=∠GEM,∠EBD=2∠NEG,EB平分∠DEN,MH⊥UV于点H,若∠EDC=17∠CDB,求∠GMH的度数.7、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段AB的端点都在格点上.要求以AB为边画一个等腰ABC,且使得点C为格点.请在下面的网格图中画出3种不同的等腰ABC.8、如图,ABC 为等边三角形,D 是BC 中点,60ADE ∠=︒,CE 是ABC 的外角ACF ∠的平分线. 求证:AD DE =.9、如图所示,四边形ABCD 的对角线AC 、BD 相交于点O ,已知OAB OBA ∠=∠,CBA DAB ∠=∠.求证:(1)ABC BAD ≌; (2)OC OD =.10、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,ABC 中,7,9,10===AC BC AB ,P 为AC 上一点,当AP =_______时,ABP △与CBP 是偏等积三角形;(2)如图2,四边形ABED 是一片绿色花园,ACB △、DCE 是等腰直角三角形,()90090∠=∠=︒<∠<︒ACB DCB BCE .①ACD △与BCE 是偏等积三角形吗?请说明理由;②已知60m,=BE ACD 的面积为22100m .如图3,计划修建一条经过点C 的笔直的小路CF ,F 在BE 边上,FC 的延长线经过AD 中点G .若小路每米造价600元,请计算修建小路的总造价.-参考答案-一、单选题1、C【分析】根据三角形内角和定理确定50ABC ∠=︒,然后利用平行线的性质求解即可.【详解】解:∵40BAC ∠=︒,90ACB ∠=︒,∴50ABC ∠=︒,∵a b ∥,∴150ABC ∠=∠=︒,故选:C .【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.2、A【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P 的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.3、B【分析】如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽.【详解】解:如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,∵折叠,∴AB=BM=CO=CD=PO=3x,∴纸条的宽为:MO=NO=3x+3x+x=7x,∴纸条的长为:2PN=2(7x+3x)=20x=40解得:x=2,∴纸条的宽NO=7×2=14.故答案为:B.【点睛】此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解.4、A【分析】根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS,SAS对各选项进行一一判断即可.【详解】解:A、周长相等的两个三角形不一定全等,符合题意;B、有一腰和底边对应相等的两个等腰三角形根据三边对应相等判定定理可判定全等,不符合题意;C、三边都对应相等的两个三角形根据三边对应相等判定定理可判定全等,不符合题意;D、两条直角边对应相等的两个直角三角形根据SAS判定定理可判定全等,不符合题意.故选:A.【点睛】此题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).5、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:设第三边长为x cm,根据三角形的三边关系可得:3-2<x<3+2,解得:1<x<5,只有C选项在范围内.故选:C.【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.6、B【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.【详解】解:由三角形内角和知∠BAC=180°-∠2-∠1,∵AE为∠BAC的平分线,∴∠BAE=12∠BAC=12(180°-∠2-∠1).∵AD为BC边上的高,∴∠ADC=90°=∠DAB+∠ABD.又∵∠ABD=180°-∠2,∴∠DAB=90°-(180°-∠2)=∠2-90°,∴∠EAD=∠DAB+∠BAE=∠2-90°+12(180°-∠2-∠1)=12(∠2-∠1).故选:B 【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.7、A【分析】全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可.【详解】∵ABC和DEF全等,A D∠=∠,AC对应DE≅∴ABC DFE∴AB=DF=4故选:A.【点睛】本题考查了全等三角形的概念及性质,应注意①对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系②可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等③全等三角形有传递性.8、D【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.9、B【分析】证明△AFH ≌△CHG (AAS ),得出AF =CH .由题意可知BE =FH ,则得出五边形DECHF 的周长=AB +BC ,则可得出答案.【详解】解:∵△GFH 为等边三角形,∴FH =GH ,∠FHG =60°,∴∠AHF +∠GHC =120°,∵△ABC 为等边三角形,∴AB =BC =AC =5,∠ACB =∠A =60°,∵∠AHF =180°-∠FHG -∠GHC =120°-∠GHC ,∠HGC =180°-∠C -∠GHC =120°-∠GHC ,∴∠AHF =∠HGC ,在△AFH 和△CHG 中A C AHF HGC FH GH ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFH ≌△CHG (AAS ),∴AF =CH .∵△BDE 和△FGH 是两个全等的等边三角形,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC=10.故选:B.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.10、D【分析】50︒可以是底角,也可以是顶角,分情况讨论即可.【详解】当50︒角为底角时,底角就是50︒,︒-︒÷=︒,当50︒角为等腰三角形的顶角时,底角为(18050)265因此这个等腰三角形的底角为50︒或65︒.故选:D.【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.二、填空题1、圆锥【分析】根据立体图形视图、等腰三角形的性质分析,即可得到答案.根据题意,这个立体图形是圆锥故答案为:圆锥.【点睛】本题考查了等腰三角形、圆锥、立体图形视图的知识;解题的关键是熟练掌握立体图形视图的性质,从而完成求解.2、59°【分析】先利用三角形内角和定理求出∠CAB +∠CBA =180°-∠C =118°,从而利用三角形外角的性质求出∠DAB +∠EBA =2∠C +∠CAB +∠CBA =242°,再由角平分线的定义求出11==12122GAB GBA DAB EBA ++︒∠∠∠∠,由此求解即可. 【详解】解:∵∠C =62°,∴∠CAB +∠CBA =180°-∠C =118°,∵∠DAB =∠C +∠CBA ,∠EBA =∠C +∠CAB ,∴∠DAB +∠EBA =2∠C +∠CAB +∠CBA =242°,∵△ABC 两个外角的角平分线相交于G , ∴1=2GAB DAB ∠∠,12GBA EBA ∠=∠, ∴11==12122GAB GBA DAB EBA ++︒∠∠∠∠, ∴∠G =180°-∠GAB -∠GBA =59°,故答案为:59°.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键.3、AC =DC【分析】由题意可得,BC 为公共边,AB =DB ,即添加一组边对应相等,可证△ABC 与△DBC 全等.【详解】解:∵AB =DB ,BC =BC ,添加AC =DC ,∴在△ABC 与△DBC 中,AB DB BC BC AC DC =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△DBC (SSS ),故答案为:AC =DC .【点睛】本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.4、67.5°【分析】连接AE,先得出∠BAC=12∠BAE,再根据AD DE=,得出∠BAC=22.5°,最后得出结果.【详解】解:连接AE,∵点C是BE中点,∴BC=CE,∵∠ACB=90°,∴AC⊥BE,∴AB=AE,∴∠BAC=12∠BAE,∵DE⊥AB,∴∠ADE=90°,∵AD DE=,∴∠AED=∠DAE=45°,∴∠BAC=12∠BAE=22.5°,∴∠B=90°-∠BAC=67.5°.故答案为:67.5°.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质及直角三角形的性质,正确作出辅助线是解题的关键.5、1【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【详解】解:∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×4=2cm2,∴S△BCE=12S△ABC=12×4=2cm2,∵点F是CE的中点,∴S△BEF=12S△BCE=12×2=1cm2.故答案为:1.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.三、解答题1、(1)见解析,(2)46【分析】(1)根据等腰三角形的性质和角平分线得到∠B=∠ACB=∠BCF,由AD是角平分线,得到BD=CD,证△BDE≌△CDF即可;(2)根据全等三角形的性质得到DE=DF=DA,根据46∠=︒求得∠DAB,进而求出∠B的度数即CDF可.【详解】=,(1)证明:∵AB AC∴∠B=∠ACB,∠的平分线,∵CB是ACF∴∠ACB=∠BCF,∴∠B=∠BCF,∵AD是角平分线,AB=AC,∴BD=CD,∵∠BDE=∠CDF,∴△BDE≌△CDF(AAS);=;∴BE CF(2)∵△BDE≌△CDF;∴ED=FD,∵AD DF=,∵46CDF ADE ∠=∠=︒, ∴180672ADE BAD ︒-∠∠==︒, ∴2134BAC BAD ∠=∠=︒,∴∠B =∠ACB =∠BCF =23°,∴246ACF BCF ∠=∠=︒,故答案为:46.【点睛】本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算.2、CM =7.【分析】根据题意由“SAS ”可证△AEC ≌△ADB ,可得BD =CE ,由等腰三角形的性质可得DM =ME =2进行分析计算即可得出答案.【详解】解:∵∠BAC =∠DAE ,∴∠BAC ﹣∠BAE =∠DAE ﹣∠BAE ,∴∠BAD =∠CAE ,在△AEC 和△ADB 中,AE AD BAD CAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△AEC ≌△ADB (SAS ),∴CE =BD =5,∵AD =AE ,AM ⊥CD ,DE =4, ∴114222ME DE ==⨯=, ∴CM =CE +EM =5+2=7.【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,熟练掌握全等三角形的判定定理是解答本题的关键.3、(1)见解析;(2)△AEF 、△ADG 、△DCF 、△ECD【分析】(1)根据已知条件得到∠BAE =∠CAD ,根据全等三角形的性质得到∠AED =∠ABC ,根据等腰三角形的性质得到∠ABC =∠AEB ,于是得到结论;(2)根据等腰三角形的判定定理即可得到结论.【详解】证明:(1)如图1,∵∠BAE =∠CAD ,∴∠BAE +∠CAE =∠CAD +∠CAE ,即∠BAC =∠EAD ,在△AED 与△ABC 中,AB AE BAC EAD AD AC ⎧⎪∠∠⎨⎪⎩=== ∴△AED ≌△ABC ,∴∠AED =∠ABC ,∵∠BAE+∠ABC+∠AEB=180°,∠CED+∠AED+∠AEB=180°,∵AB=AE,∴∠ABC=∠AEB,∴∠BAE+2∠AEB=180°,∠CED+2∠AEB=180°,∴∠DEC=∠BAE;(2)解:如图2,①∵∠BAE=∠CAD=30°,∴∠ABC=∠AEB=∠ACD=∠ADC=75°,由(1)得:∠AED=∠ABC=75°,∠DEC=∠BAE=30°,∵AD⊥AB,∴∠BAD=90°,∴∠CAE=30°,∴∠AFE=180°−30°−75°=75°,∴∠AEF=∠AFE,∴△AEF是等腰三角形,②∵∠BEG=∠DEC=30°,∠ABC=75°,∴∠G=45°,在Rt△AGD中,∠ADG=45°,∴△ADG是等腰直角三角形,③∠CDF =75°−45°=30°,∴∠DCF =∠DFC =75°,∴△DCF 是等腰直角三角形;④∵∠CED =∠EDC =30°,∴△ECD 是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键.4、OE ; CE ;全等三角形的对应角相等【分析】根据圆的半径相等可得OD =OE ,CD =CE ,再利用SSS 可证明OCD OCE ≌△△,从而根据全等三角形的性质可得结论.【详解】证明:连接CD ,CE由作图步骤②可知OD =___OE ___.由作图步骤③可知CD =__CE ___.∵OC OC =,∴OCD OCE ≌△△. ∴AOC BOC ∠=∠(__全等三角形对应角相等__)故答案为:OE ; CE ;全等三角形的对应角相等【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.5、见解析【分析】由OA OC PC ==,得出,POC AOC 为等腰三角形,由外角的性质及等量代换得2CAO APB ∠=∠,再次利用外角的性质及等量代换得3AOB APB ∠=∠,即可证明.【详解】解:OA OC PC ==,,POC AOC ∴为等腰三角形,,APB COP ACO CAO ∴∠=∠∠=∠,由外角的性质得:2ACO APB COP APB ∠=∠+∠=∠,2CAO APB ∠=∠,再由外角的性质得:AOB APB CAO ∠=∠+∠,3AOB APB ∴∠=∠,13APB AOB ∴∠=∠. 【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解.6、(1)见详解;(2)∠MEB =40°,(3)∠GMH =80°【分析】(1)根据等角的补角性质得出∠ABD =∠CDV ,根据同位角相等两直线平行可得AB ∥CD ;(2)根据AB ∥CD ;利用内错角相等得出∠ABD =∠RDB ,根据BE ∥DF ,得出∠EBD =∠FDB ,利用等量减等量差相等得出∠ABE =∠FDR ,根据∠FDR =35°,可得∠ABE =∠FDR =35°即可;(3)设ME 交AB 于S ,根据MG ∥EN ,得出∠NES =∠GMS =∠GES ,设∠NES =y °,可得∠NEG =∠NES +∠GES=2∠NES =2y °,根据∠EBD =2∠NEG ,得出∠EBD =4∠NES =4y °,根据∠EDC =17∠CDB ,设∠EDC =x °,得出∠CDB =7x °,根据AB ∥CD ,得出∠GBE +∠EBD +∠CDB =180°,可得35+4y +7x =180根据三角形内角和∠BDE =∠BDC -∠EDC =7x -x =6x ,∠BED =180°-∠EBD -∠EDB =180°-4y °-6x °,利用EB 平分∠DEN ,得出y °+40°=180°-4y °-6x °,解方程组7414565140x y x y +=⎧⎨+=⎩,解得1510x y =⎧⎨=⎩,可证ME ∥UV ,根据MH ⊥UV ,可求∠SMH =90°,∠SMG =∠NES =10°即可. 【详解】(1)证明:∵∠ABU +∠ABD =180°,∠ABU +∠CDV =180°.∴∠ABU =180°-∠ABD ,∠CDV =180°-∠ABU ,∴∠ABD =∠CDV ,∴AB ∥CD ;(2)解:∵AB ∥CD ;∴∠ABD =∠RDB ,∴∠ABE +∠EBD =∠FDB +∠FDR ,∵BE ∥DF ,∴∠EBD =∠FDB ,∴∠ABE =∠FDR ,∵∠FDR =35°,∴∠ABE =∠FDR =35°,∴∠MEB =∠ABE +5°=35°+5°=40°,(3)解:设ME 交AB 于S ,∵MG ∥EN ,∴∠NES =∠GMS =∠GES ,设∠NES =y °,∵∠EBD=2∠NEG∴∠NEG=∠NES+∠GES=2∠NES=2y°,∴∠EBD=4∠NES=4y°,∵∠EDC=17∠CDB,设∠EDC=x°∴∠CDB=7x°,∵AB∥CD,∴∠ABD+∠CDB=180°,即∠GBE+∠EBD+∠CDB=180°,∴35+4y+7x=180,∵∠BDE=∠BDC-∠EDC=7x-x=6x,∴∠BED=180°-∠EBD-∠EDB=180°-4y°-6x°,∵EB平分∠DEN,∴∠NEB=∠BED,∵∠NEB=∠NES+∠SEB=y°+40°,∴y°+40°=180°-4y°-6x°,∴74145 65140x yx y+=⎧⎨+=⎩,解得1510xy=⎧⎨=⎩,∴∠EBD=4y°=40°=∠MEB,∴ME∥UV,∵MH⊥UV,∴MH⊥ME,∴∠SMH=90°,,∵∠SMG=∠NES=10°,∴∠GMH=90°-∠SMG=90°-10°=80°.【点睛】本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键.7、答案见解析【分析】AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可【详解】解:如图,……[答案不唯一]【点睛】本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.8、证明见解析.【分析】过D作DG∥AC交AB于G,由等边三角形的性质和平行线的性质得到∠BDG=∠BGD=60°,于是得到△BDG是等边三角形,再证明△AGD≌△DCE即可得到结论.【详解】证明:过D作DG∥AC交AB于G,∵△ABC是等边三角形,∴AB=AC,∠B=∠ACB=∠BAC=60°,又∵DG∥AC,∴∠BDG=∠BGD=60°,∴△BDG是等边三角形,∠AGD=180°−∠BGD=120°,∴DG=BD,∵点D为BC的中点,∴BD=CD,∴DG=CD,∵EC是△ABC外角的平分线,∴∠ACE =12(180°−∠ACB )=60°,∴∠BCE =∠ACB +∠ACE =120°=∠AGD ,∵AB =AC ,点D 为BC 的中点,∴∠ADB =∠ADC =90°,又∵∠BDG =60°,∠ADE =60°,∴∠ADG =∠EDC =30°,在△AGD 和△ECD 中,AGD ECD GD CDADG EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AGD ≌△ECD (ASA ).∴AD =DE .【点睛】本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.9、(1)证明见解析;(2)证明见解析.【分析】(1)根据全等三角形的判定定理可直接证明;(2)根据(1)中结论可得AC BD =,再由等角对等边得出OA OB =,运用等式的性质进行计算即可证明.(1)解:在ABC 与BAD 中,CAB DBA AB BACBA DAB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ABC BAD ≅;(2)由(1)可得:ABC BAD ≅,∴AC BD =,∵OAB OBA ∠=∠,∴OA OB =,∴AC OA BD OB -=-,即OC OD =.【点睛】题目主要考查全等三角形的判定和性质,等角对等边的性质,理解题意,综合运用这些知识点是解题关键.10、(1)72;(2)①ACD △与BCE 是偏等积三角形,理由见详解;②修建小路的总造价为42000元【分析】(1)当AP CP =时,则72AP =,证ABP CBP S S ∆∆=,再证ABP ∆与CBP ∆不全等,即可得出结论;(2)①过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,证()ACM BCN AAS ∆∆≌,得AM BN =,则ACD BCE S S ∆∆=,再证ACD ∆与BCE ∆不全等,即可得出结论;②过点A 作//AN CD ,交CG 的延长线于N ,证得()AGN DGC AAS ∆∆≌,得到AN CD =,再证()ACN CBE SAS ∆∆≌,得ACN CBE ∠=∠,由余角的性质可证CF BE ⊥,然后由三角形面积和偏等积三角形的定义得12BCE S BE CF ∆=⋅,2100BCEACD S S ∆∆==,求出70()CF m =,即可求解. 【详解】解:(1)当72AP CP ==时,ABP ∆与CBP ∆是偏等积三角形,理由如下:设点B 到AC 的距离为h ,则12ABP S AP h ∆=⋅,12CBP S CP h ∆=⋅,ABP CBP S S ∆∆∴=,10AB =,7BC =,AB BC ∴≠,AP CP =、PB PB =,ABP ∴∆与CBP ∆不全等,ABP ∴∆与CBP ∆是偏等积三角形, 故答案为:72;(3)①ACD ∆与BCE ∆是偏等积三角形,理由如下:过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,如图3所示:则90AMC BNC ∠=∠=︒,ACB ∆、DCE ∆是等腰直角三角形,90ACB DCE ∴∠=∠=︒,AC BC =,CD CE =,3603609090180BCN ACD ACB DCE ∴∠+∠=︒-∠-∠=︒-︒-︒=︒,180ACM ACD ∠+∠=︒,ACM BCN ∴∠=∠,在∆ACM 和BCN ∆中,AMC BNC ACM BCN AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ACM BCN AAS ∴∆∆≌,AM BN ∴=,12ACD S CD AM ∆=⋅,12BCE S CE BN ∆=⋅, ACD BCE S S ∆∆∴=,180BCE ACD ∠+∠=︒,090BCE ︒<∠<︒,ACD BCE ∴∠≠∠,CD CE =,AC BC =,ACD ∴∆与BCE ∆不全等,ACD ∴∆与BCE ∆是偏等积三角形;②如图4,过点A 作//AN CD ,交CG 的延长线于N ,则N GCD ∠=∠, G 点为AD 的中点,AG GD ∴=,在AGN ∆和DGC ∆中,N GCD AGN DGC AG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AGN DGC AAS ∴∆∆≌,AN CD ∴=,CD CE =,AN CE ∴=,//AN CD ,180CAN ACD ∴∠+∠=︒,90ACB DCE ∠=∠=︒,3609090180ACD BCE ∴∠+∠=︒-︒-︒=︒,BCE CAN ∴∠=∠,在ACN ∆和CBE ∆中,AN CE CAN BCE AC CB =⎧⎪∠=∠⎨⎪=⎩, ()ACN CBE SAS ∴∆∆≌,ACN CBE ∴∠=∠,1809090ACN BCF ∠+∠=︒-︒=︒,90CBE BCF ∴∠+∠=︒,90BFC ∴∠=︒,CF BE ∴⊥.由①得:ACD ∆与BCE ∆是偏等积三角形,12BCE S BE CF ∆∴=⋅,2100BCE ACD S S ∆∆==, 22210070()60BCE S CF m BE ∆⨯∴===, ∴修建小路CF 的总造价为:6007042000⨯=(元).【点睛】本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明ACM BCN ∆∆≌和ACN CBE ∆∆≌是解题的关键,属于中考常考题型.。

《解直角三角形》-完整版PPT课件

《解直角三角形》-完整版PPT课件

整理,得4t2-26t+39=0
解之,得
t1
13413,t2
13 13 4
∴台风抵达D港的时间为 1 3 1 3 小时.
B
∵轮船从A处用 1 3
≈25.5.
4
13
4
小时到达D港的速度为60÷
1
3413∴为台风抵达D港之前轮船到D港,轮船至少应提速6里/时.
例7 如图,公路MN和公路N上沿PN方向行驶时,学校是否会受 到噪声影响?请说明理由(2)如果受影响,已知拖拉机的速 度为18千米/时,那么学校受影响的时间为多少秒?
(1)切割法:把图形分成一个或几个直角三角形与 其 他特殊图形的组合;
(2)粘补法:此方法大都通过延长线段来实现
例1 要求tan30°的值,可构造如图所示的直角三角形进行
计算:作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,
那么BC= ,
3
∴tan30°= AC 1 3 BC 3 3
A
D
C
B
祝同学们学习进步! 再见!
∴C1D0=201208(02米)
学校受噪声影响的时间t=120米÷18千米/时= 时=1 24秒
150
小结:
1、将实际问题经提炼数学知识,建立数学模 型转化为数学问题 2、设法寻找或构造可解的直角三角形,尤其 是对于一些非直角三角形图形,必须添加 适当的辅助线,才能转化为直角三角形的 问题来解决
C FG
∵ sinB= ,AG AB
D E
AG=AB•sinB=415•sin37°=415 06=
A
37 °B
249 25cm,
即EF 25cm
答:球的直径约为25cm

初三数学利用三角函数解直角三角形

初三数学利用三角函数解直角三角形

解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.【例1】 如图是教学用直角三角板,边33090tan 3AC cm C BAC =∠=︒∠=,,,则边BC 的长为( )A .303cmB .203cmC .103cmD .53cm【巩固】如图,在ABC △中,9060C B D ∠=︒∠=︒,,是AC 上一点,DE AB ⊥于E ,且21CD DE ==,,则BC 的长为( )A .2B .433C .23D .43【巩固】如图,ABC △是等腰三角形,90ACB ∠=︒,过BC 的中点D 作DE AB ⊥,垂足为E ,连接CE ,则sin ACE ∠= .例题精讲CBA3ED CBAEDCBA如图所示,O 的直径点作O 的切线,切点为七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵.(3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .图(3)图(2)图(1)俯角仰角视线视线水平线铅垂线FD CDCB A【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.O CA(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈和平路文化路中山路30°15°45°FEDCBA【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高.图1图2图3βαDCBA课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; ACB ∠= .课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).FE人行道DCB A。

初三数学:《解直角三角形》知识点总结

初三数学:《解直角三角形》知识点总结

初三数学:《解直角三角形》知识点总结知识点在不断更新的同时也需要及时的归纳总结,才能更好的掌握,接下来精品学习网初中频道给大家整理解直角三角形知识点整理,供大家参考阅读。

1解直角三角形一、锐角三角函数(一)、锐角三角函数定义在直角三角形ABC中,C=900,设BC=a,CA=b,AB=c,锐角A的四个三角函数是:(1)正弦定义:在直角三角形中ABC,锐角A的对边与斜边的比叫做角A的正弦,记作sinA,即sin A=ca,(2)余弦的定义:在直角三角行ABC,锐角A的邻边与斜边的比叫做角A的余弦,记作cosA,即cos A=cb,(3)正切的定义:在直角三角形ABC中,锐角A的对边与邻边的比叫做角A的正切,记作tanA,即tan A=ba,(4)锐角A的邻边与对边的比叫做A的余切,记作cotA即aAAAb的对边的邻边cot锐角A的正弦、余弦,正切、余切都叫做角A的锐角三角函数。

这种对锐角三角函数的定义方法,有两个前提条件:(1)锐角A必须在直角三角形中,且(2)在直角三角形ABC中,每条边均用所对角的相应的小写字母表示。

否则,不存在上述关系2注意:锐角三角函数的定义应明确(1)ca,cb,ba,ab四个比值的大小同△ABC的三边的大小无关,只与锐角的大小有关,即当锐角A取固定值时,它的四个三角函数也是固定的;(2)sinA不是sinA的乘积,它是一个比值,是三角函数记号,是一个整体,其他三个三角函数记号也是一样;(3)利用三角函数定义可推导出三角函数的性质,如同角三角函数关系,互余两角的三角函数关系、特殊角的三角函数值等;(二)、同角三角函数的关系(1)平方关系:122sinCOS(2)倒数关系:tana cota=1(3)商数关系:sincoscot,cossintan注意:(1)这些关系式都是恒等式,正反均可运用,同事还要注意它们的变形公式。

(2)sinsin22是的简写,读作“sin的平方”,不能将22sin 写成sin前者是a的正弦值的平方,后者无意义;(3)这里应充分理解“同角”二字,上述关系式成立的前提是所涉及的角必须相同,如1cottan,1223030cossin22,而1cossin22就不一定成立。

解直角三角形

解直角三角形

解直角三角形【问题探索】问题:已知平顶屋面的宽度L和坡顶的设计高度h(如图)。

你能求出斜面钢条的长度和倾角α吗?变:已知平顶屋面的宽度L和坡顶的设计倾角α(如图)。

你能求出斜面钢条的长度和设计高度h吗?【新课引入】在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫解直角三角形.在三角形中共有几个元素?直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?(1)三边之间关系:a2 +b2 =c2(勾股定理).(2)锐角之间关系∠A+∠B=90°.(3)边角之间关系:正弦函数:sinAA∠=的对边斜边余弦函数:cosAA∠=的邻边斜边正切函数:tanAAA∠=∠的对边的邻边【精选例题】(一)求直角三角形中的边和角解直角三角形,只有下面两种情况:(1)已知两条边;(2)已知一条边和一个锐角(两个已知元素中至少有一条边)例1 在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边。

解下列直角三角形:(1)已知a=3,b=3,(2)已知c=8,b=4,(3)已知c=8,∠A=45°。

解析:(1)已知两直角边的长,根据勾股定理可求斜边c=32,由三角函数公式可求sin A=22,推出∠A=45°,根据“直角三角形两锐角互余”可求∠B=45°;(2)已知斜边和一直角边,由勾股定理求得另一直角边a=43,通过三角函数公式求角度sin A=32,可知∠A=60°,根据“直角三角形两锐角互余”得∠B=30°;(3)已知斜边和一锐角,根据“直角三角形两锐角互余”得∠B=45°,由三角函数公式可知a=c sin45°=42,b=c cos45°=42。

前思后想:①已知一锐角求另一锐角——“直角三角形两锐角互余”; ②已知直角三角形的两边求第三边——勾股定理; ③已知一边和一锐角——三角函数公式三角函数公式可变形为:a =c sin A ,b=c cos A ,a=b tan A , c =sin a A ,c =cos b A ,b =tan a A例 2 在Rt ABC ∆中,90C ∠=︒, 6AC =,D 是AC 上一点,若1tan 2DBC ∠=,10AB =,试求AD 。

初中数学解直角三角形综合讲义

初中数学解直角三角形综合讲义

1 B 初中数学解直角三角形综合讲义一、理解概念1.产生的背景:直角三角形中三边和三角的数量关系2 明确概念:解直角三角形阐述概念:在直角三角形中,除直角外,一共有5个元素,即三条边和2个锐角。

由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形定对象:特殊的求解过程定角度:已知元素新事物:求出未知元素举例:在△举例:在△ABC ABC 中,∠中,∠C C 为直角,∠为直角,∠A A ,∠,∠B B ,∠,∠C C 所对的边分别为a ,b ,c ,且c=287.4c=287.4,,∠B=42B=42°°6′,解这个直角三角形。

解:(1)∠)∠A=90A=90A=90°°- 42- 42°°6′=47=47°°5454′′(2)∵)∵ cosB= cosB=c a, , ∴∴a=c cosB=287.4a=c cosB=287.4××0.74200.7420≈≈213.3 (3)∵)∵ sinB= sinB=cb, , ∴∴b=c sinB=287.4b=c sinB=287.4××0.67040.6704≈≈192.7二、研究概念1.1.条件:条件:直角三角形2.2.构成和本质构成和本质 [ [边边] ] 两条直角边两条直角边 [ [角角] ] 有一个直角有一个直角 [ [角角]] 两锐角互余两锐角互余3.3.特征:特征: [[角角] ] 两锐角互余,∠两锐角互余,∠两锐角互余,∠A+A+A+∠∠B=90B=90°°[边] ] 勾股定理,勾股定理,勾股定理,a a 2+b 2=c2[等式的性质等式的性质] a ] a 2 =c 2—b2b 2=c 2—a2勾股定理逆定理[ [边、角边、角边、角] ] ] 锐角三角函数锐角三角函数 [ [重要线段重要线段重要线段] ] ] 直角三角形斜边上的中线等于斜边的一半直角三角形斜边上的中线等于斜边的一半[圆] ] 直角三角形三顶点共圆,圆心是斜边的中点直角三角形三顶点共圆,圆心是斜边的中点 [ [特殊角特殊角特殊角] 30] 30] 30°角所对的直角边是斜边的一半°角所对的直角边是斜边的一半 45 45°角所对的直角边是斜边的°角所对的直角边是斜边的22倍4.4.下位下位无5.5.应用:应用:三、例题讲解1、在R t R t△△ABC 中,中,AD AD 是斜边BC 上的高,如果BC= a BC= a,∠,∠,∠B=B=α,那么AD 等于等于 (( )) ((A 级)级) A A、、 asin 2α B B、、acos 2α C C、、asin αcos α D D、、asin αtan α 对象:对象:对象:R t R t R t△△ABC 中,中,AD AD AD 角度:角度:角度: 三角函数三角函数三角函数分析:分析:R t R t R t△△ABC cosB=BC AB cos α= aAB AB= a AB= a··cos αR t R t△△ABD sin α=ABADAD= sin α·AB AD= asin αcos α2、 正方形ABCD 中,对角线BD 上一点P ,BP∶PD=1∶2,且P 到边的距离为2,则正方形的边长是,则正方形的边长是 ,BD=对象:正方形ABCD 对角线BD 上的点P P 角度:角度:角度: 直角三角形直角三角形 分析:设P 到边的距离为PE PE。

解直角三角形教学设计

解直角三角形教学设计

解直角三角形教学设计作为一位无私奉献的人民教师,很有必要精心设计一份教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。

教学设计应该怎么写呢?以下是店铺收集整理的解直角三角形教学设计(通用5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

解直角三角形教学设计1教学目标:理解直角三角形中五个元素的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,提高分析问题、解决问题的能力。

教学重点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形。

教学难点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形,提高分析问题、解决问题的能力。

教学过程:一、课前专训根据条件,解下列直角三角形在Rt△ABC中,∠C=90°(1)已知∠A=30°,BC=2;(2)已知∠B=45°,AB=6;(3)已知AB=10,BC=5;(4)已知AC=6,BC=8。

二、复习什么叫解直角三角形?三、实践探究解直角三角形问题分类:1、已知一边一角(锐角和直角边、锐角和斜边)2、已知两边(直角边和斜边、两直角边)四、例题讲解例1、在△ABC中,AC=8,∠B=45°,∠A=30°.求AB.例2、⊙O的半径为10,求⊙O的内接正五边形ABCDE的边长(精确到0.1).五、练一练1.在平行四边形ABCD中,∠A=60°,AB=8,AD=6,求平行四边形的面积.2.求半径为12的圆的内接正八边形的边长(精确到0.1).六、总结通过今天的学习,你学会了什么?你会正确运用吗?通过这节课的学习,你有什么感受呢,说出来告诉大家.七、课堂练习1.等腰三角形的周长为,腰长为1,则底角等于_________.2.Rt△ABC中,∠C=90°,∠A=60°,a+b=+3,解这个直角三角形.3.求半径为20的圆的内接正三角形的边长和面积.八、课后作业1.在菱形钢架ABCD中,AB=2 m,∠BAD=72,焊接这个钢架约需多少钢材(精确到0.1m)2.思考题(选做):CD切⊙O于点D,连接OC,交⊙O于点B,过点B作弦AB⊥OD,点E为垂足,已知⊙O的半径为10,sin ∠COD =,求:(1)弦AB的长;(2)CD的长.解直角三角形教学设计2一、教学目标(一)知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

华东师大版)九年级数学上册《24.4解直角三角形》教学设计

华东师大版)九年级数学上册《24.4解直角三角形》教学设计
1.利用多媒体展示生活中常见的直角三角形实物图,如楼梯、墙壁与地面形成的直角三角形等,引导学生观察并思考这些直角三角形的特点和作用。
2.提问:“我们已经学习了勾股定理,那么如何利用勾股定理来解决直角三角形中的未知问题呢?”通过这个问题,引发学生对解直角三角形方法的思考。
3.引导学生回顾Βιβλιοθήκη 股定理的内容,为新课的学习做好知识铺垫。
c.正切函数:在直角三角形中,对于角A,正切函数定义为对边与邻边的比值,即tanA =对边/邻边。
2.通过具体实例,讲解如何运用三角函数解决直角三角形中的未知问题,如求角度和边长。
3.结合计算器,让学生学会计算三角函数的值,并解决实际问题。
(三)学生小组讨论
1.将学生分成小组,每组讨论以下问题:
a.如何利用三角函数解决实际问题?
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握三角函数的定义和性质,特别是正弦、余弦、正切函数在实际问题中的应用。
2.能够运用勾股定理和三角函数解决直角三角形中的未知角度和边长问题,以及解决一些实际问题。
3.培养学生运用数形结合、分类讨论等数学思想方法分析和解决问题的能力。
(二)教学设想
1.教学导入:通过生活中的实例,如测量旗杆高度、楼间距等,引出解直角三角形的问题,激发学生的学习兴趣,使其认识到数学与现实生活的紧密联系。
4.教学策略:
a.分层教学:针对学生的不同水平,设计不同难度的练习题,使每个学生都能在原有基础上得到提高。
b.适时反馈:在教学过程中,及时关注学生的学习情况,给予针对性的指导和鼓励,提高学生的学习信心。
5.教学评价:
a.过程性评价:关注学生在课堂讨论、实践操作等方面的表现,鼓励学生积极参与,培养其探究精神和创新能力。

4.4解直角三角形的应用课件九年级数学上册

4.4解直角三角形的应用课件九年级数学上册

感悟新知
水平方向飞行 200m 到达点 Q,测得奇楼底端 B 的俯 角为 45° ,求奇楼 AB 的高度.(结果精确到 1m,参 考数据: sin 1 5 ° ≈ 0 . 26,cos 15 ° ≈ 0 . 97, tan15° ≈ 0.27) 解:如图,延长BA交PQ的 延长线于点C,则∠ACQ=90°. 由题意得,BC=225 m,PQ=200 m,
课堂新授
2. 解决实Βιβλιοθήκη 问题时,常见的基本图形及相应的关系式如下 表所示:
图形
关系式
图形
关系式
AC=BC·tanα, AG=AC+BE
BC=DC-BD= AD·(tanα -tanβ )
课堂新授
续表
图形
关系式
AB=DE= AE·tanβ, CD=CE+DE =AE·(tanα+
tanβ)
图形
关系式
感悟新知
(1) 求登山缆车上升的高度 DE; (2)若步行速度为 30m/min,登山缆车的速度为60m/min,
求 从山底 A 处到达山顶 D 处大约需要多少分钟 .(结果 精确到 0.1min,参考数据: sin53° ≈ 0.80, cos53° ≈ 0.60,tan53° ≈ 1.33)
感悟新知
课堂新授
例2
课堂新授
解题秘方:在建立的非直角三角形模型中,用 “化斜为直法”解含公共直角边的 直角三角形.
课堂新授
课堂新授
计算结果必须根据 题目要求进行保留.
课堂新授
方法点拨 解直角三角形的实际应用问题的求解方法: 1. 根据题目中的已知条件,将实际问题抽象为解直角三角
形的数学问题, 画出平面几何图形,弄清已知条件中 各量之间的关系; 2. 若条件中有直角三角形,则直接选择合适的三角函数关 系求解即可;若条件中没有直角三角形,一般需添加辅 助线构造直角三角形,再选用合适的三角函数关系求解.

解直角三角形

解直角三角形

解直角三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;●会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.重点难点:●重点:掌握解直角三角形的一般方法和步骤,在以后的学习和实际生活、生产中经常运用.●难点:把实际生活、生产中存在的和平面图形计算的有关问题转化为解直角三角形问题.学习策略:●本节课的主要内容是解直角三角形的概念及应用解直角三角形的知识去解决实际问题.学习本节知识主要把握好三个关系——边边关系、边角关系、锐角之间的关系,把锐角三角函数、勾股定理同实际问题有机结合起来,核心是找到可解的直角三角形.●解直角三角形的口诀:有斜(斜边)用弦(正弦、余弦),无斜边用切(正切),宁乘勿除,取原(原始数据)避中(中间数据).二、学习与应用“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?(一)锐角三角函数的概念在Rt△ABC中,∠C=90°,∠A所对的直角边称为∠A的对边,另一条直角边称为∠A的邻边.锐角A的与的比叫做∠A的正弦,记作;锐角A的与的比叫做∠A的余弦,记作;锐角A的与的比叫做∠A的正切,记作.(二)特殊角的三角函数值锐角αsinαcosαtanα30°45°60°(三)锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:..........................sin cos(90)cosA=-=o,..........................cos sin(90)sinA=-=o;(2)平方关系:22.............sin cosA A+=;(3)倒数关系:.............tan tan(90)1A-=og或.............1tantanA=;(4)相除关系:..........................sintancosA=.知识点一:解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:(1)边之间的关系: (勾股定理).(2)锐角之间的关系: + =90°.(3)边角之间的关系:知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。

难点解析沪教版七年级数学第二学期第十四章三角形必考点解析试卷(含答案详解)

难点解析沪教版七年级数学第二学期第十四章三角形必考点解析试卷(含答案详解)

沪教版七年级数学第二学期第十四章三角形必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若BC =5,则五边形DECHF的周长为()A.8 B.10 C.11 D.122、下列三个说法:①有一个内角是30°,腰长是6的两个等腰三角形全等;②有一个内角是120°,底边长是3的两个等腰三角形全等;③有两条边长分别为5,12的两个直角三角形全等.其中正确的个数有().A.3 B.2 C.1 D.03、有下列说法:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②等腰三角形一腰上的高与底边的夹角与顶角互余;③等腰三角形顶角的平分线是它的对称轴;④等腰三角形两腰上的中线相等.其中正确的说法有( )个.A .1B .2C .3D .44、如图,AB =AC ,点D 、E 分别在AB 、AC 上,补充一个条件后,仍不能判定△ABE ≌△ACD 的是( )A .∠B =∠C B .AD =AE C .BE =CD D .∠AEB =∠ADC5、如图,在ABC 中,40B ∠=︒,60C ∠=°,AD 平分BAC ∠交BC 于点D ,在AB 上截取AE AC =,则EDB ∠的度数为( )A .30°B .20°C .10°D .15°6、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( ).A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7、如图,ABC ≌DEF ,点B 、E 、C 、F 在同一直线上,若BC =7,EC =4,则CF 的长是( )A.2 B.3 C.4 D.78、如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为()A.∠B=∠ADC B.2∠B=∠ADCC.∠B+∠ADC=180°D.∠B+∠ADC=90°9、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是()A.50°B.60°C.40°D.30°10、如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,线段AC 与BD 相交于点O ,∠A =∠D =90°,要证明△ABC ≌△DCB ,还需添加的一个条件是____________.(只需填一个条件即可)2、如图,已知△ABC 中,AB =AC ,将△ABC 沿DF 折叠,点A 落在BC 边上的点E 处,且DE ⊥BC 于E ,若∠A =56°,则∠AFD 的度数为________.3、如图,1AP 为△ABC 的中线,2AP 为△1APC 的中线,3AP 为△2AP C 的中线,……按此规律,n AP 为△1n AP C -的中线.若△ABC 的面积为8,则△n AP C 的面积为_______________.4、如图,在ABC 中,90ACB ∠=︒,DE AB ⊥交BC 的延长线于点E ,若AD DE =,点C 是BE 中点,则B ∠=______°.5、如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为______________.三、解答题(10小题,每小题5分,共计50分)1、如图,△ABC中,AB=AC,D为BC边的中点,AF⊥AD,垂足为A.求证:∠1=∠22、如图,ADC AEB∠=∠,AD AE=,求证:OB OC=.3、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.4、已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.(1)求证:△ADE≌△ABC;(2)求证:AE=CE.5、如图,AD,BC相交于点O,AO=DO.(1)如果只添加一个条件,使得△AOB≌△DOC,那么你添加的条件是(要求:不再添加辅助线,只需填一个答案即可);(2)根据已知及(1)中添加的一个条件,证明AB=DC.6、如图,灯塔B 在灯塔A 的正东方向,且75km AB =.灯塔C 在灯塔A 的北偏东20°方向,灯塔C 在灯塔B 的北偏西50°方向.(1)求ACB ∠的度数;(2)一轮船从B 地出发向北偏西50°方向匀速行驶,5h 后到达C 地,求轮船的速度.7、在ABC 中,AC BC =,90ACB ∠=︒,点D 是直线AC 上一动点,连接BD 并延长至点E ,使ED BD =.过点E 作EF AC ⊥于点F .(1)如图1,当点D 在线段AC 上(点D 不与点A 和点C 重合)时,此时DF 与DC 的数量关系是______.(2)如图2,当点D 在线段AC 的延长线上时,依题意补全图形,并证明:2AD AF EF =+.(3)当点D 在线段CA 的延长线上时,直接用等式表示线段AD ,AF ,EF 之间的数量关系是______.8、如图,ABC 是等边三角形,D 点是BC 上一点,2BD CD =,DE AB ⊥于点E ,CE 交AD 于点P .求APE ∠的度数.9、在等边ABC 中,D 、E 是BC 边上两动点(不与B ,C 重合)(1)如图1,,25AD AE BAD =∠=︒,求AEB ∠的度数;(2)点D 在点E 的左侧,且AD =AE ,点E 关于直线AC 的对称点为F ,连接AF ,DF .①依题意将图2补全;②求证:AD DF =.10、探究与发现:如图①,在△ABC 中,∠B =∠C =45°,点D 在BC 边上,点E 在AC 边上,且∠ADE =∠AED ,连接DE .(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.-参考答案-一、单选题1、B【分析】证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.【详解】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC=5,∠ACB=∠A=60°,∵∠AHF=180°-∠FHG-∠GHC=120°-∠GHC,∠HGC =180°-∠C -∠GHC =120°-∠GHC ,∴∠AHF =∠HGC ,在△AFH 和△CHG 中A C AHF HGC FH GH ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFH ≌△CHG (AAS ),∴AF =CH .∵△BDE 和△FGH 是两个全等的等边三角形,∴BE =FH ,∴五边形DECHF 的周长=DE +CE +CH +FH +DF =BD +CE +AF +BE +DF ,=(BD +DF +AF )+(CE +BE ),=AB +BC =10.故选:B .【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.2、C【分析】根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可.【详解】解:①当一个是底角是30°,一个是顶角是30°时,两三角形就不全等,故本选项错误; ②有一个内角是120°,底边长是3的两个等腰三角形全等,本选项正确;③当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,故选:C.【点睛】本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键.3、B【分析】根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可.【详解】解:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;②等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;③等腰三角形的顶角平分线在它的对称轴上,原说法错误;④等腰三角形两腰上的中线相等,说法正确.综上,正确的有①④,共2个,故选:B.【点睛】本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键.4、C【分析】根据全等三角形的判定定理进行判断即可.【详解】解:根据题意可知:AB =AC ,A A ∠=∠,若B C ∠=∠,则根据()ASA 可以证明△ABE ≌△ACD ,故A 不符合题意;若AD =AE ,则根据(SAS)可以证明△ABE ≌△ACD ,故B 不符合题意;若BE =CD ,则根据()SSA 不可以证明△ABE ≌△ACD ,故C 符合题意;若∠AEB =∠ADC ,则根据()AAS 可以证明△ABE ≌△ACD ,故D 不符合题意;故选:C .【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.5、B【分析】利用已知条件证明△ADE ≌△ADC (SAS ),得到∠DEA =∠C ,根据外角的性质可求EDB ∠的度数.【详解】解:∵AD 是∠BAC 的平分线,∴∠EAD =∠CAD在△ADE 和△ADC 中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△ADC (SAS ),∴∠DEA =∠C 60=︒,∵40B ∠=︒,∠DEA =∠B +EDB ∠,∴604020EDB ∠=︒-︒=︒;故选:B【点睛】本题考查了全等三角形的性质与判定,解决本题的关键是证明△ADE≌△ADC.6、B【分析】根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案.【详解】如图,在△ABC中,CD是边AB上的中线∵AD=CD=BD∴∠A=∠DCA,∠B=∠DCB∵∠A+∠ACB+∠B=180°∴ ∠A+∠DCA+∠DCB+∠B=180即2∠A+2∠B=180°∴∠A+∠B=90°∴∠ACB=90°∴△ABC是直角三角形故选:B【点睛】本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键.7、B【分析】根据全等三角形的性质可得BC EF =,根据CF EF EC =-即可求得答案.【详解】 解:ABC ≌DEF ,∴BC EF =点B 、E 、C 、F 在同一直线上,BC =7,EC =4,∴CF EF EC =-743BC EC -=-=故选B【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.8、C【分析】由题意在射线AD 上截取AE =AB ,连接CE ,根据SAS 不难证得△ABC ≌△AEC ,从而得BC =EC ,∠B =∠AEC ,可求得CD =CE ,得∠CDE =∠CED ,证得∠B =∠CDE ,即可得出结果.【详解】解:在射线AD 上截取AE =AB ,连接CE ,如图所示:∵∠BAD =90°,AC 平分∠BAD ,∴∠BAC =∠EAC ,在△ABC 与△AEC 中,AC AC BAC EAC AB AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△AEC (SAS ),∴BC =EC ,∠B =∠AEC ,∵CB =CD ,∴CD =CE ,∴∠CDE =∠CED ,∴∠B =∠CDE ,∵∠ADC +∠CDE =180°,∴∠ADC +∠B =180°.故选:C .【点睛】本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE ,CE .9、A【分析】根据旋转的性质求解80,BOD AOC 110,C A 再利用三角形的内角和定理求解1801104030,COD 再利用角的和差关系可得答案.【详解】 解: 将△OAB 绕点O 逆时针旋转80°得到△OCD ,80,BOD AOC∠A 的度数为110°,∠D 的度数为40°,110,1801104030,C A CODAOD803050,故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.10、A【分析】根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可.【详解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本选项不符合题意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本选项不符合题意;故选:A.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .二、填空题1、答案不唯一,如:AC =DB ,AB =DC ,∠ABC =∠DCB【分析】根据全等三角形的判定条件求解即可.【详解】解:∵∠A =∠D =90°,BC =CB ,∴只需要添加:AC =DB 或AB =DC ,即可利用HL 证明△ABC ≌△DCB ;添加∠ABC =∠DCB 可以利用AAS 证明△ABC ≌△DCB ,故答案为:答案不唯一,如:AC =DB ,AB =DC ,∠ABC =∠DCB .【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.2、48°48度【分析】先求出∠ABC 和∠ACB 的度数,再利用直角三角形的性质得出∠BDE 的度数,根据由翻折的性质可得:ADF EDF ∠=∠,最后利用三角形的内角和定理得出结论.【详解】解:∵AB =AC ,∠A =56° ∴18056622ABC ACB ︒-︒∠=∠==︒, ∵DE ⊥BC ,∴90906228BDE ABC ∠=︒-∠=︒-︒=︒,由折叠的性质可得:ADF EDF ∠=∠,∵180BDE ADF EDF ∠+∠+∠=︒,∴18028762ADF EDF ︒-︒∠=∠==︒, ∴∠AFD =180°-∠A -∠ADF =180°-56°-76°=48°,故答案为:48°.【点睛】本题考查了等腰三角形的性质,轴对称的性质,直角三角形的性质及三角形的内角和定理,解题的关键是熟练掌握这些性质.3、312n -【分析】根据三角形的中线性质,可得△1APC 的面积=182⨯,△2AP C 的面积=2182⨯,……,进而即可得到答案.【详解】由题意得:△1APC 的面积=182⨯,△2AP C 的面积=2182⨯,……,△n AP C 的面积=182n ⨯=312n -. 故答案是:312n -.【点睛】 本题主要考查三角形的中线的性质,掌握三角形的中线把三角形的面积平分,是解题的关键. 4、67.5°【分析】连接AE ,先得出∠BAC =12∠BAE ,再根据AD DE =,得出∠BAC =22.5°,最后得出结果.【详解】解:连接AE ,∵点C 是BE 中点,∵∠ACB=90°,∴AC⊥BE,∴AB=AE,∠BAE,∴∠BAC=12∵DE⊥AB,∴∠ADE=90°,∵AD DE,∴∠AED=∠DAE=45°,∴∠BAC=1∠BAE=22.5°,2∴∠B=90°-∠BAC=67.5°.故答案为:67.5°.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质及直角三角形的性质,正确作出辅助线是解题的关键.5、3根据题意依据等腰三角形的性质,即可得到BD=12BC,进而分析计算即可得出结论.【详解】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=12BC=12×6=3.故答案为:3.【点睛】本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.三、解答题1、见详解.【分析】根据等腰三角形三合一性质以及等边对等角性质得出AD⊥BC,∠B=∠C,根据AF⊥AD,利用在同一平面内垂直同一直线的两直线平行得出AF∥BC,利用平行线性质得出∠1=∠B,∠2=∠C即可.【详解】证明:∵△ABC中,AB=AC,D为BC边的中点,∴AD⊥BC,∠B=∠C,∵AF⊥AD,∴AF∥BC,∴∠1=∠B,∠2=∠C,∴∠1=∠2.【点睛】本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键.2、证明过程见解析【分析】先证明AEB ADC ≅,得到DB EC =,B C ∠=∠,再证明DOB EOC ≅△△,即可得解;【详解】由题可得,在AEB △和ADC 中,A A AE AD AEB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴AEB ADC ≅,∴AB AC =,B C ∠=∠,又∵AD AE =,∴DB EC =,在DOB 和EOC △中,B C DOB EOC DB EC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴DOB EOC ≅△△,∴OB OC =.【点睛】本题主要考查了全等三角形的判定与性质,准确分析证明是解题的关键.3、25°【分析】直接利用等腰三角形的性质得出∠ABC =∠ACB =65°,进而利用三角形内角和定理得出答案.【详解】∵AB =AC ,∠A =50°,∴∠ABC =∠ACB =65°,∵CD ⊥BC 于点D ,∴∠BCD 的度数为:180°−90°−65°=25°.【点睛】此题主要考查了等腰三角形的性质,正确得出∠B 的度数是解题关键.4、(1)见解析;(2)见解析【分析】(1)根据∠1=∠2可推出∠DAE =∠BAC ,然后结合全等三角形的判定定理进行证明;(2)由全等三角形的性质可得AE =AC ,结合∠2=60°可推出△AEC 为等边三角形,据此证明.【详解】(1)证明:∵∠1=∠2∴∠1+BAE ∠=∠2+BAE ∠即∠DAE =∠BAC在△ADE 和△ABC 中DAE BAC AD ABD B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△ABC (ASA )(2)证明:∵△ADE ≌△ABC∴AE =AC又∵∠2=60°∴△AEC 为等边三角形∴AE =CE【点睛】此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.5、(1)OB =OC (或A D ∠=∠,或B C ∠=∠);(2)见解析【分析】(1)根据SAS 添加OB =OC 即可;(2)由(1)得△AOB ≌△DOC ,由全等三角形的性质可得结论.【详解】解:(1)添加的条件是:OB =OC (或A D ∠=∠,或B C ∠=∠)证明:在AOB ∆和DOC ∆中AO BO AOB COD BO CO =⎧⎪∠=∠⎨⎪=⎩所以,△AOB ≌△DOC(2)由(1)知,△AOB ≌△DOC所以,AB =DC .【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答本题的关键6、(1)70°;(2)15km/h【分析】(1)根据题意得∠BAC =70°,∠ABC =40°,根据三角形的内角和定理即可求得∠ACB ;(2)根据等腰三角形的判定可得BC=AB=75km ,进而由速度=路程÷时间求解即可.【详解】解:(1)根据题意得∠BAC =70°,∠ABC =40°,∴∠ACB =180°-∠BAC -∠ABC =180°-70°-40°=70°;(2)∵∠BAC =∠ACB =70°,∴BC=AB=75km ,∴轮船的速度为75÷5=15(km/h ).【点睛】本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.7、(1)DF DC =(2)见解析(3)2AF EF AD -=【分析】(1)利用边相等和角相等,直接证明EDF BDC ∆∆≌,即可得到结论.(2)利用边相等和角相等,直接证明EDF BDC ∆∆≌,得到DF DC =和EF BC AC ==,最后通过边与边之间的关系,即可证明结论成立.(3)要证明2AF EF AD -=,先利用边相等和角相等,直接证明EDF BDC ∆∆≌,得到DF DC =和EF BC AC ==,最后通过边与边之间的关系,即可证明结论成立.【详解】(1)解:DF DC =90ACD ∠=︒,EF AC ⊥,90ACB EFD ∴∠=∠=︒,在EDF ∆和BDC ∆中,ACB EFD FDE BDC ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()EDF BDC AAS ∴∆∆≌,DF DC ∴=.(2)解:当点D 在线段AC 的延长线上时,如下图所示:90ACD ∠=︒,EF AC ⊥,90ACB EFD ∴∠=∠=︒,在EDF ∆和BDC ∆中,ACB EFD FDE BDC ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()EDF BDC AAS ∴∆∆≌,DF DC ∴=,EF BC AC ==,=2AF EF AD DF AC AD CD AD ∴+=++=+.(3)解:2AF EF AD -=,如下图所示:90ACD ∠=︒,EF AC ⊥,90ACB EFD ∴∠=∠=︒,在EDF ∆和BDC ∆中,ACB EFD FDE BDC ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()EDF BDC AAS ∴∆∆≌,DF DC ∴=,EF BC AC ==,()2AF EF AF AC AF DF AD AF DF AD AD ∴-=-=--=-+=.【点睛】本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.8、60APE ∠=︒【分析】由题意易得60ABC ACB ∠=∠=︒,AB AC BC ==,则有30BDE ∠=︒,然后可得BE CD =,进而可证BEC CDA ≌,则有BCE =∠∠CAD ,最后问题可求解.【详解】解:∵ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,AB AC BC ==,∵DE AB ⊥,∴90DEB ∠=︒,∴30BDE ∠=︒,∴2BD BE =,∵2BD CD =,∴BE CD =,∴BEC CDA ≌(SAS ),∴BCE =∠∠CAD ,∵,60APE PAC ACP ACB DAC ACP ∠=∠+∠∠=∠+∠=︒,∴60APE ACB ∠=∠=︒.【点睛】本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.9、(1)85︒;(2)①作图见解析;②证明见解析【分析】(1)等边三角形ABC 中60BAC B C ∠=∠=∠=︒,由AD AE =知ADC AEB ∠=∠,ADC B BAD ∠=∠+∠,进而求出AEB ∠的值;(2)①作图见详解;②ADE B BAD ∠=∠+∠ ,AED C EAC ∠=∠+∠,BAD EAC ∠=∠,点E ,F 关于直线AC 对称,EAC FAC ∠=∠,AE AF AD ==,60FAC DAC BAD DAC ∠+∠=∠+∠=︒,ADF 为等边三角形,进而可得到AD DF =.【详解】解:(1)ABC 为等边三角形85ADC BAD B ∴∠=∠+∠=︒AD AE =85AEB ADC ∴∠=∠=︒.(2)①补全图形如图所示,②证明:ABC 为等边三角形60B C BAC ∴∠=∠=∠=︒AD AE =ADE AED ∴∠=∠ADE B BAD ∠=∠+∠ ,AED C EAC ∠=∠+∠BAD EAC ∴∠=∠点E ,F 关于直线AC 对称EAC FAC ∠=∠∴,AE AF =60FAC DAC BAD DAC ∴∠+∠=∠+∠=︒即60DAF=∠︒AD AF =ADF ∴为等边三角形AD AF ∴=.【点睛】本题考察了等边三角形的判定与性质,等腰三角形的性质,轴对称的性质.解题的关键在于角度的转化.10、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.【分析】(1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;(2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;(3)设∠BAD=x,仿照(2)的解法计算.【详解】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:设∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=902x︒+,∴∠CDE=45°+x﹣902x︒+=12x,∴∠BAD=2∠CDE;(3)设∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+12x,∴∠CDE=∠B+x﹣(∠C+12x)=12x,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系。

人教版高中数学-解 三 角 形

人教版高中数学-解 三 角 形

解 三 角 形一、课标要求1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能正确应用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.二、重点和难点重点:运用正弦定理、余弦定理探求任意三角形的边角关系,解决与之有关的计算问题;运用这两个定理解决一些与测量以及几何运算有关的实际问题.难点:正弦定理、余弦定理的推导,以及运用这两个定理解决实际问题.三、重点知识追踪1.正弦定理、余弦定理(1)正弦定理:在ABC △中,2sin sin sin a b c R A B C===(R 是ABC △外接圆半径).常用的变形公式:①::sin :sin :sin a b c A B C =;②2sin 2sin 2sin a R A b R B c R C ===,,;③三角形面积公式:111sin sin sin 2224abc S ab C bc A ac B sr R======△ (其中2a b c s ++=,r 为ABC △内切圆半径),12S =△×底×高. (2)余弦定理:在ABC △中,2222cos a b c bc A =+-,2222cos b c a ca B =+-,2222cos c a b ab C =+-.变形:222222222cos cos cos 222b c a c a b a b c A B C bc ca ab+-+-+-===,,. 须知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.A ∠为钝角222a b c ⇔>+,A ∠为直角222a b c ⇔=+,A ∠为锐角222a b c ⇔<+.2.三角形的射影定理,,.cos cos cos cos cos cos=+=+=+a b C c B b c A a C c a B b A四、基本题型1.已知一边两角,解三角形:先由内角和定理求第三角,再用正弦定理,有解时只有一解.2.已知两边和其中一边的对角,解三角形:先由正弦定理求另一边的对角(可能有两解、一解或无解),再由内角和定理与正弦定理求其余的边与角.注意,此类型的题求解三角形内角时,容易丢解或产生增解.3.已知三边,解三角形:由余弦定理和内角和定理求角,在有解时只有一解.4.已知两边及其夹角,解三角形:先由余弦定理求第三边,再由正弦定理与内角和定理求角,必有一解.5.三角形形状的确定:三角形形状的确定是一种常见题型,基本方法是化边为角或化角为边.其基本思路是寻求边与边之间的数量关系,或求出角的大小.常用的方法之一是用正弦定理进行代换,找出三角形的边、角关系,然后作出判断.6.解斜三角形应用题:应用正弦定理、余弦定理解三角形应用题问题,一般是根据题意,从实际问题中抽象出一个或几个三角形,通过解这些三角形,从而使实际问题得到解决.解题时应认真审题,未给图形的,可以先画出示意图,要理解好应用题中有关的名词、术语,如坡角、仰角、视角、方位角等,要注意解的实际意义以及题目中给出的精确度.7.解三角形的内容不仅能考查正、余弦定理的应用,而且能很好地考查三角变换的技巧,它还可与立体几何、解析几何、向量、数列、概率等知识相结合,这其中经常涉及到数形结合、分类讨论及等价转化等思想方法.。

2022-2023学年沪科版八年级数学上册《第14章全等三角形》解答题优生辅导训练(附答案)

2022-2023学年沪科版八年级数学上册《第14章全等三角形》解答题优生辅导训练(附答案)

2022-2023学年沪科版八年级数学上册《第14章全等三角形》解答题优生辅导训练(附答案)1.如图,在△ABC中,点D在边BC上,CD=AB,∠CDE=∠B,∠DCE=∠A.求证:DE=BC.2.如图,已知点B,E,C,F在同一直线上,AB∥DE,BE=FC,AB=ED,求证:∠A=∠D.3.如图,已知AB=AD,∠B=∠D,∠BAD=∠CAE,点E在BC上.(1)求证:AE=AC;(2)若∠B=30°,∠C=70°,求∠DF A的度数.4.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)已知AB=8,AC=12,求BE的长.5.如图,过∠AOB平分线OP上一点P作P A⊥OA于点A,PB⊥OB于点B,点C,D在直线AB上,连接PC,PD.若∠1=∠2,请判断PC与PD的大小关系,并说明理由.6.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,AB=DE,BF=CE,AC =DF,求证:△ABC≌△DEF.7.如图,在△ABC中,AD⊥BC,垂足为点D,AD=BD,点E在AD上,DC=DE,F为BC的中点,连接EF并延长至点M,使得FM=EF,连接CM,请判断线段AC与线段MC的关系,并说明理由.8.如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,∠ABC=∠DCB.求证:(1)△ABC≌△DCB;(2)BE=CE.9.如图,在△ABC中,AB=AC,AD和BE分别是BC,AC上的高,它们相交于点H,HE =CE.求证:(1)△AHE≌△BCE;(2)AH=2BD.10.如图,已知∠1=∠3,BC=CE,CA=CD,求证:△ABC≌△DEC.11.如图AE与BD相交于点C,AC=EC,BC=DC,AB=8cm,点P从点出发,沿A→B →A方向以2cm/s速度运动,点Q从点D出发,沿D→E方向以lcm/s速度运动,P、Q 两点同时出发,当点P到达点A时,P、Q两点同时停止运动,设点P运动时间为t(s).(1)求证:AB∥DE.(2)写出线段AP的长(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,求t的值.12.如图,在△ABC中,如果BD,CE分别是∠ABC,∠ACB的平分线且他们相交于点P,设∠A=n度.(1)当n=56时,求∠CPD的度数;(2)求∠BPC的度数;(用含n的代数式表示)(3)当n=60时,求证:BC=CD+BE.13.如图,已知点C是∠MAN的平分线上一点,CE⊥AB于E,B、D分别在AM、AN上,且2AE=AD+AB.问:∠1和∠2有何数量关系?并说明理由.14.如图1,在△ABC中,AB=AC,点D在AB上,点E在AC的延长线上,连接ED交BC于F,DF=EF.(1)求证:BD=CE;(2)如图2,连接CD,若∠DFB=45°,BC=6,求△BCD的面积.15.如图BE⊥CD,AB=AD,AC=AE,过A点作AG⊥DE于G,延长GA交BC于F,(1)求证:F为BC中点;(2)若AF=12.5,AE=15,求△ADE的面积S△ADE.16.如图,已知△ABC中,AB=AC,BD、CD分别平分∠ABE、∠ACE,BD交AC于点F,连接AD.(1)当∠BAC=40°时,求∠BDC的度数.(2)请直接写出∠BAC与∠BDC的数量关系,并给出证明.(3)求证:AD∥BE.17.综合与探究如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,CE的延长线交BD 于点F.(1)求证:△ACE≌△ABD.(2)若∠BAC=∠DAE=50°,请直接写出∠BFC的度数.(3)过点A作AH⊥BD于点H,求证:EF+DH=HF.18.如图,在△ABC中,∠B=∠C,点D是边BC上一点,CD=AB,点E在边AC上.(1)若∠ADE=∠B,求证:①∠BAD=∠CDE;②BD=CE;(2)若BD=CE,∠BAC=70°,求∠ADE的度数.19.如图,在△ABC中,∠ABC、∠ACB的平分线交于点D,延长BD交AC于E,G、F 分别在BD、BC上,连接DF、GF,其中∠A=2∠BDF,GD=DE.(1)当∠A=80°时,求∠EDC的度数;(2)求证:CF=FG+CE.20.已知:如图,在△ABC中,AB=AC,在△ADE中,AD=AE,且∠BAC=∠DAE,连接BD,CE交于点F,连接AF.(1)求证:△ABD≌△ACE;(2)求证:F A平分∠BFE.参考答案1.证明:在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.2.证明:∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.3.(1)证明:∵∠BAD=∠CAE,∴∠BAD+∠BAE=∠CAE+∠BAE,∴∠DAE=∠BAC,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴AE=AC;(2)解:∵AE=AC,∠C=70°,∴∠C=∠AEC=70°,∵△ABC≌△ADE,∴∠C=∠AED=70°,∴∠BEF=180°﹣∠AED﹣∠AEC=180°﹣70°﹣70°=40°,∴∠DF A=∠BFE=180°﹣∠B﹣∠BEF=180°﹣30°﹣40°=110°.4.(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,在Rt△BDE与Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,又∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BDE≌Rt△CDF,∴CF=BE,在Rt△ADE与Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴AC=AF+CE=AE+BE=AB+2BE,∵AB=8,AC=12,∴BE=2.5.解:PC=PD,理由如下:∵OP平分∠AOB,P A⊥OA,PB⊥OB,∴P A=PB,∴∠P AB=∠PBA,∴∠P AC=∠PBD,在△P AC和△PBD中,,∴△P AC≌△PBD(ASA),∴PC=PD.6.证明:∵BF=CE,∴BF+FC=CE+FC,即BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF(SSS).7.解:AC=MC,理由:∵F为BC的中点,∴BF=CF,在△BFE和△CFM中,,∴△BFE≌△CFM(SAS),∴BE=CM,∵AD⊥BC,∴∠BDE=∠ADC=90°,在△BDE和△ADC中,,∴△BDE≌△ADC(SAS),∴BE=AC,∴AC=MC.8.证明:(1)在△ABC和△DCB中,,∴△ABC≌△DCB(AAS);(2)由(1)可知,△ABC≌△DCB,∴∠ACB=∠DBC,∴BE=CE.9.证明:(1)∵AB=AC,AD和BE分别是BC,AC上的高,∴AD⊥BC,BE⊥AC,∴∠ADC=∠AEH=∠BEC=90°,∴∠EAH+∠C=90°,∠EBC+∠C=90°,∴∠EAH=∠EBC,在△AHE和△BCE中,,∴△AHE≌△BCE(ASA),(2)∵△AHE≌△BCE,∴AH=BC,∵AB=AC,AD⊥BC,∴BD=CD,∴BC=2BD,∴AH=2BD.10.证明:∵∠1=∠3,∴∠1+∠2=∠3+∠2,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS).11.(1)证明:在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)解:当0≤t≤4时,AP=2tcm,当4<t≤8时,BP=(2t﹣8)cm,∴AP=8﹣(2t﹣8)=(16﹣2t)cm,∴线段AP的长为2tcm或(16﹣2t)cm;(3)解:根据题意得DQ=tcm,则EQ=(8﹣t)cm,由(1)得:∠A=∠E,ED=AB=8cm,在△ACP和△ECQ中,,∴△ACP≌△ECQ(ASA),∴AP=EQ,当0≤t≤4时,2t=8﹣t,解得:t=;当4<t≤8时,16﹣2t=8﹣t,解得:t=8;综上所述,当线段PQ经过点C时,t的值为或8.12.(1)解:∵BD,CE分别是∠ABC,∠ACB的平分线,∴∠1=ABC,∠2=ACB,∴∠1+∠2=(∠ABC+∠ACB),∴∠CPD=∠1+∠2=(180°﹣∠A),当n=56时,∠CPD=∠1+∠2=(180°﹣∠A)=(180°﹣56°)=62°,即∠CPD=62°;(2)解:∵∠1+∠2=(∠ABC+∠ACB),∴∠CPD=(180°﹣∠A)=(180°﹣n°),∴∠BPC=180°﹣∠CPD=180°﹣(180°﹣n°)=90°n°;(3)证明:如图,在线段BC上截取CG,使得CG=CD,当n=60时,∠CPD=(180°﹣∠A)=(180°﹣60°)=60°,∠BPC=180°﹣∠CPD=90°n°=120°,在△CPD与△CPG中,,∴△CPD≌△CPG(SAS),∴∠CPG=∠CPD=60°,∴∠BPG=∠BPC﹣∠CPG=60°,∵∠BPE=∠CPD=60°,∴∠BPE=∠BPG,在△BEP与△BGP中,,∴△BEP≌△BGP(ASA),∴BE=BG,∴BC=BG+GC=BE+CD,∴BC=BE+CD.13.解:∠1与∠2互补.理由:作CF⊥AN于F(如图),∵∠3=∠4,CE⊥AM,∴CF=CE,∠CF A=∠CEA=90°,在Rt△ACF和Rt△ACE中,,∴Rt△ACF≌Rt△ACE(HL),∴AF=AE.∵AE=(AD+AB)=(AF﹣DF+AE+EB)=AE+(BE﹣DF),∴BE=DF,在△DFC和△BEC中,,∴△DFC≌△BEC(SAS),∴∠5=∠2,∵∠1+∠5=180°,∴∠1+∠2=180°.14.(1)证明:如图1,过点D作DG∥AE,交BC于点G,∴∠FDG=∠E,在△DGF和△ECF中,,∴△DGF≌△ECF(ASA),∴DG=CE,∵AB=AC,∴∠B=∠ACB,∵DG∥AE,∴∠DGB=∠ACB,∴∠DBG=∠DGB,∴DG=BD,∴BD=CE;(2)解:如图2,过点D作DG∥AE,交BC于点G,过点D作DH⊥BC于点H,∵DB=DG,∴BH=GH,由(1)知△DGF≌△ECF,∴GF=CF,∴HF=BC=3,∵DH⊥BC,∠DFB=45°,∴△DHF是等腰直角三角形,∴DH=HF=3,∴S△CDB=BC•DH=6×3=9.15.(1)证明:∵BE⊥CD,∴∠DAE=∠DAB=∠BAC=∠CAE=90°,在△ADE和△ABC中,,∴△ADE≌△ABC(SAS),∴∠DEA=∠BCA,∵AG⊥DE,∴∠AGD=90°,∴∠AED+∠ADE=∠DAG+∠ADE=90°,∴∠AED=∠DAG,∵∠DAG=∠CAF,∴∠CAF=∠FCA,∴FC=F A,∵∠BAC=90°,∴∠F AC+∠BAF=∠FCA+∠FBA=90°,∴∠BAF=∠FBA,∴FB=F A,∴FB=FC,∴F是BC的中点;(2)解:∵F为BC的中点,∠BAC=90°,∴AF=BC,∴BC=2AF=25,由△ABC≌△ADE知:DE=BC=25,∵AE=15,∠DAE=90°,∴AD===20,∴S△ADE=AD•AE=20×15=150.16.(1)解:∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=(180°﹣40°)=70°,∴∠ACE=110°,∵BD,CD分别平分∠EBA,∠ECA,∴∠DBC=∠ABC=35°,∠ECD=∠ACE=55°,∴∠BDC=∠ECD﹣∠DBC=20°;(2)解:∠BDC=∠BAC.∵BD、CD分别平分∠EBA、∠ECA,BD交AC于F,∴∠BDC+∠ABC=∠ACE,∠BAC+∠ABC=∠ACE,∴∠BDC+∠ABC=∠BAC+∠ABC,∴∠BDC=∠BAC;(3)证明:作DM⊥BG于M,DN⊥AC于N,DH⊥BE于H,如图所示,∵BD、CD分别平分∠EBA、∠ECA,∴DM=DH,DN=DH,∴DM=DN,∴AD平分∠CAG,即∠GAD=∠CAD,∵∠GAD+∠CAD+∠BAC=180°,∠BAC+∠ABC+∠ACB=180°,∴∠GAD+∠CAD=∠ABC+∠ACB,∵AB=AC,∴∠ABC=∠ACB,∴∠GAD=∠ABC,∴AD∥BE.17.(1)证明:∵∠BAC=∠DAE.∴∠CAE=∠BAD.在△ACE和△ABD中,,∴△ACE≌△ABD(SAS);(2)解:∵△ACE≌△ABD,∴∠AEC=∠ADB,∴∠AEF+∠AEC=∠AEF+∠ADB=180°.∴∠DAE+∠DFE=180°,∵∠BFC+∠DFE=180°,∴∠BFC=∠DAE=∠BAC=50°;(3)证明:如图,连接AF,过点A作AJ⊥CF于点J.∵△ACE≌△ABD,∴S△ACE=S△ABD,CE=BD,∵AJ⊥CE,AH⊥BD.∴,∴AJ=AH.在Rt△AFJ和Rt△AFH中,,∴Rt△AFJ≌Rt△AFH(HL),∴FJ=FH.在Rt△AJE和Rt△AHD中,,∴Rt△AJE≌Rt△AHD(HL),∴EJ=DH,∴EF+DH=EF+EJ=FJ=FH.18.(1)证明:①∵在△ABC中,∠BAD+∠B+∠ADB=180°,∴∠BAD=180°﹣∠B﹣∠ADB,又∵∠CDE=180°﹣∠ADE﹣∠ADB,且∠ADE=∠B,∴∠BAD=∠CDE;②由①得:∠BAD=∠CDE,在△ABD与△DCE中,,∴BD=CE;(2)解:在△ABD与△DCE中,,∴△ABD≌△DCE(SAS),∴∠BAD=∠CDE,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∴∠ADE=180°﹣∠BAD﹣∠ADB=∠B,在△ABC中,∠BAC=70°,∠B=∠C,∴∠B=∠C=(180°﹣∠BAC)=×110°=55°,∴∠ADE=55°.19.(1)解:方法一:∵∠A=80°,∴∠ABC+∠ACB=100°,∵BE平分∠ABC、CD平分∠ACB,∴∠DBC+∠DCB=50°,∴∠EDC=∠DBC+∠DCB=50°;方法二:如图,在BC上取点M,使CM=CE,∵CD平分∠ACB,∴∠ACD=∠BCD,在△CDE和△CDM中,,∴DE=DM,∠DEC=∠DMC,∠EDC=∠MDC,∵GD=DE,∴GD=MD,∵∠DEC+∠AEB=180°,∠DMC+∠DMF=180°,∴∠AEB=∠DMF,∵BE平分∠ABC,∴∠ABE=∠CBE=ABC,∴∠BDM=180°﹣ABC﹣∠DMB=180°﹣ABC﹣∠AEB=∠A=80°,∴∠EDM=100°,∴∠EDC=50°;(2)证明:∵∠A=2∠BDF,∴∠BDM=2∠BDF,∴∠FDM=∠BDF,在△DGF和△DMF中,,∴△DGF≌△DMF(SAS),∴GF=MF,∴CF=CM+FM=CE+GF.∴CF=FG+CE.20.证明:(1)∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS);(2)如图,作AM⊥BD于M,作AN⊥CE于N.由△BAD≌△CAE,∴BD=CE,S△BAD=S△CAE,∵,∴AM=AN,∴点A在∠BFE平分线上,∴F A平分∠BFE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四章 解三角形
例 在ABC ∆中,已知135cos =
A ,5
4sin =B ,求C cos 。

例 已知在ABC ∆中,3=b ,33=c , 30=B ,求a
题型一:正弦定理适用范围
例1 有 正弦定理的叙述:
①正弦定理只适用于锐角三角形;②正弦定理不适用于锐角三角形;③在某一确定的三角形中,各边与它所对角的正弦的比是一定值;④在ABC ∆中,c b a C B A ::sin :sin :sin =。

其中正确的个数是( )
A .1
B .2
C .3
D .4
题型二:已知两角和其中一角的对边
例2 在ABC ∆中, 60=B , 45=C ,2=c ,求边b 的长。

题型三:三角形的面积
例3 在ABC ∆中,若 30=B ,22=c ,2=b ,求三角形的面积。

例4在ABC ∆中, 60=B ,2310cm S ABC =∆,周长是cm 20,求三角形三边的长。

题型四:已知三角形两角和任一边求其他边与角
例5 已知三角形的两角分别是 60、
45,它们所夹边的长是1,求最小边的长。

题型五:已知三角形的任意两边与其中一边的对角,可以求其它边与角
例6 满足4=a ,3=b 和 45=A 的ABC ∆的个数为( )
A .0个
B .1个
C .2个
D .无数多个
例7 在ABC ∆中,已知 45=A ,2=a ,2=b ,求B 。

题型六:已知三角形三边解三角形
例8 ABC ∆中,3=a ,5=b ,7=c ,解此三角形。

(精确到 1)
例9 ABC ∆中,)13(:6:2::+=c b a ,求ABC ∆的内角的度数。

题型七:已知三角形的两边和夹角解三角形。

例10 ABC ∆中,已知3=b ,33=c , 30=B ,求角A 、角C 和边a 。

题型八:正弦定理与外接圆的半径
例11 在ABC ∆中,若B a b sin 2=,求A
题型九:判断三角形形状
例12在ABC ∆中,B b A a cos cos =,试判断ABC ∆的形状。

例13在ABC ∆中,已知7=a ,10=b ,6=c ,判断ABC ∆的形状
题型十:综合问题
例14 已知方程0cos )cos (2=+-B a x A b x 的两根之积等于两积等于两根之各且a 、b 为ABC ∆的两边,A 、B 为a 、b 的对角,试判断ABC ∆的形状。

例15 在ABC ∆中,已知内角3
π
=A ,边32=BC ,设内角x B =,周长为y , (1)求函数)(x f y =的解析式和定义域;
(2)求y 的最大值。

例16 如图所示,a 是海面上一条南北方向的海防警戒线,在a 上点A 处有一个水声监测点,另两个监测点B ,C 分别在A 的正东方20km 处和54km 处,某时刻,监测点B 收到发自静止目标P 的一个声波,8s 后监测点A ,20s 后监测点C 相继收到这一信号,在当时气象条件下,声波在水中的传播速率是s km /5.1。

(1)设A 到P 的蹁为xkm ,用x 表示B 、C 到P 的距离,并求x 的值;
(2)求静止目标P 到海防警戒线a 的距离(精确到km 01.0)
例1 如图,隔河看两目标A 、B ,但不到达,在岸边选取相距km 3的C 、D 两点,并测得 75=∠ACB , 45=∠BCD , 30=∠ADC , 45=∠ABD (A 、B 、C 、D 在同一平面内),求两目标A 、B 之间的距离。

例2 江岸边有一炮台高m 30,江中有两条船,由炮台顶部测得俯角分别为 45和 30,而且两条船与炮台底部连成 30,求两条船相距多少m ?
题型二:测量高度问题
例3 为了测量上海东方明珠塔的高度,某人站在A 处测得塔尖的仰角为 5.75,前进m 5.38后,到达B 处测得塔尖的仰角为 0.80,试计算东方明珠塔的高度。

(精确到m 1)
例4 如图,地面上有旗杆,为测得它的高度h ,在地面上取一基线AB ,测得m AB 20=,在A 处测得P 点的仰角 30=∠OAP ,在B 处测得P 点的仰角 45=∠OBP ,又测得 60=∠AOB ,求旗杆的高度(精确到m 1.0)
例5 一条船向正南方航行,上午11点时在A 处测得灯塔B 在船北偏东 60,正午船到C 处,测得灯塔B 在北偏东 45,若该船保持速度不变继续航行,问下午几时几分到达灯塔B 的南偏西 30方向处?
题型四:与面积有关问题
例6 已知扇形铁板的半径为R ,圆心角为 60,要从中截取一个面积最大的矩形,应怎样划线?
题型五:综合应用题
例7 已知向量)cos ,(sin A A m =,)sin ,(cos C C n =,若B n m 2s i n 67=∙,且A 、B 、C 分别是为ABC ∆三边a 、b 、c 所成的角。

(1)求B tan 的值;
(2)若A sin 、B sin 、C sin 成等比数列,且14)(=-∙AB AC BA ,求a 、b 、c 的值。

题型六:最值问题
例8 要想在一块圆心角为)2(παπ
α<<,半径为R 的扇形铁板中截取一块矩形铁板,
有如下两种方法:方法一是矩形的一边在半径上(如图14.2-7,);方法二是矩形的两个顶点分别在两条半径上,另两个顶点在圆弧上(如图14.2-8,其中OA=OD )。

试问:两种方法哪种截取的矩形面积大?并求出这个矩形的面积。

相关文档
最新文档