2018年高考数学(理)总复习 双基过关检测:“空间几何体” 含解析
2018大二轮高考总复习理数文档:解答题4 立体几何与空
第一单元高考中档大题突破解答题04:立体几何与空间向量基本考点——利用空间向量证明空间位置关系设直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量分别为u =(a 2,b 2,c 2),v =(a 3,b 3,c 3).(1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 2=ka 3,b 2=kb 3,c 2=kc 3. (4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.1.(2017·深圳模拟)已知直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.求证:(1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .证明:以A 为原点,AB ,AC ,AA 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系A -xyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2), F (2,2,0),B 1(4,0,4),D (2,0,2),A 1(0,0,4).(1)DE →=(-2,4,0),平面ABC 的一个法向量为AA 1→=(0,0,4), ∵DE →·AA →1=0,DE ⊄平面ABC , ∴DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2), B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, ∴B 1F →⊥EF →,∴B 1F ⊥EF .B 1F →·AF →=(-2)×2+2×2+(-4)×0=0,∴B 1F →⊥AF →,∴B 1F ⊥AF .∵AF ∩EF =F ,AF ,EF ⊂平面AEF , ∴B 1F ⊥平面AEF .2.(2017·济南模拟)在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D 、F 、G 分别为CC 1、C 1B 1、C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.则B (0,0,0),D (0,2,2),B 1(0,0,4),C 1(0,2,4),设BA =a ,则A (a,0,0),所以BA →=(a,0,0),BD →=(0,2,2),B 1D →=(0,2,-2),B 1D →·BA →=0, B 1D →·BD →=0+4-4=0, 即B 1D ⊥BA ,B 1D ⊥BD ,又BA ∩BD =B ,BA ,BD ⊂平面ABD , 因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G (a2, 1, 4),F (0,1,4),则EG →=(a 2, 1, 1),EF →=(0,1,1),B 1D →·EG →=0+2-2=0,B 1D →·EF →=0+2-2=0, 即B 1D ⊥EG ,B 1D ⊥EF ,又EG ∩EF =E ,EG ,EF ⊂平面EGF ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD .常考热点——空间角与探索性问题考向01:空间角的求法1.向量法求异面直线所成的角若异面直线a,b的方向向量分别为a,b,异面直线所成的角为θ,则cos θ=|cos〈a,b〉|=|a·b| |a||b|.2.向量法求线面所成的角求出平面的法向量n,直线的方向向量a,设线面所成的角为θ,则sin θ=|cos〈n,a〉|=|n·a||n||a|.3.向量法求二面角求出二面角α-l-β的两个半平面α与β的法向量n1,n2,若二面角α-l-β所成的角θ为锐角,则cos θ=|cos〈n1,n2〉|=|n1·n2||n1||n2|;若二面角α-l-β所成的角θ为钝角,则cos θ=-|cos〈n1,n2〉|=-|n1·n2| |n1||n2|.注意:注意判断二面角的平面角是锐角还是钝角,可结合图形进行,以防结论错误.(2017·郑州二模)如图,在三棱柱ABC-A1B1C1中,四边形AA1C1C是边长为2的菱形,平面ABC⊥平面AA1C1C,∠A1AC=60°,∠BCA=90°.阿凡题1083962(1)求证:A1B⊥AC1;(2)已知点E是AB的中点,BC=AC,求直线EC1与平面ABB1A1所成的角的正弦值.(1)【证明】取AC的中点O,连接A1O,因为四边形AA1C1C是菱形,且∠A1AC=60°,所以△A1AC为等边三角形,所以A1O⊥AC,又平面ABC⊥平面AA1C1C,所以A 1O ⊥平面ABC , 所以A 1O ⊥BC .又BC ⊥AC ,所以BC ⊥平面AA 1C 1C , 所以AC 1⊥BC .在菱形AA 1C 1C 中,AC 1⊥A 1C , 所以AC 1⊥平面A 1BC , 所以A 1B ⊥AC 1.(2)【解】 以点O 为坐标原点,建立如图所示的空间直角坐标系O -xyz ,则A (0,-1,0),B (2,1,0),C (0,1,0),C 1(0,2,3),AB →=(2,2,0),BB 1→=CC 1→(0,1,3),设m =(x ,y ,z )是平面ABB 1A 1的法向量,则⎩⎪⎨⎪⎧m ·AB →=0,m ·BB 1→=0,即⎩⎨⎧2x +2y =0,y +3z =0,取z =-1,可得m =(-3,3,-1). 又E (1,0,0),所以EC 1→=(-1,2,3), 设直线EC 1与平面ABB 1A 1所成的角为θ, 则sin θ=|cos 〈EC 1→,m 〉|=|EC 1→·m ||EC 1|→·|m |=1510.(2017·全国卷Ⅰ)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP=90°.阿凡题1083963(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角A -PB -C 的余弦值. (1)【证明】 由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD . 因为AB ∥CD ,所以AB ⊥PD . 又AP ∩DP =P ,所以AB ⊥平面P AD .因为AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)【解】 在平面P AD 内作PF ⊥AD ,垂足为点F .由(1)可知,AB ⊥平面P AD ,故AB ⊥PF ,可得PF ⊥平面ABCD .以F 为坐标原点,F A →的方向为x 轴正方向,|AB →|为单位长度建立如图所示的空间直角坐标系F -xyz .由(1)及已知可得A22,0,0,P 0,0,22,B 22,1,0,C -22,1,0, 所以PC →=-22,1,-22,CB →=(2,0,0),P A →=22,0,-22,AB →=(0,1,0).设n =(x 1,y 1,z 1)是平面PCB 的一个法向量,则 ⎩⎪⎨⎪⎧n ·PC →=0,n ·CB →=0,即⎩⎪⎨⎪⎧-22x 1+y 1-22z 1=0,2x 1=0.所以可取n =(0,-1,-2).设m =(x 2,y 2,z 2)是平面P AB 的一个法向量,则 ⎩⎪⎨⎪⎧ m ·P A →=0,m ·AB →=0,即⎩⎪⎨⎪⎧22x 2-22z 2=0,y 2=0.所以可取m =(1,0,1),则cos 〈n ,m 〉=n ·m |n ||m |=-23×2=-33.所以二面角A -PB -C 的余弦值为-33.向量法求线面角、二面角的4个突破口(1)破“建系关”,构建恰当的空间直角坐标系; (2)破“求坐标关”,准确求解相关点的坐标; (3)破“求法向量关”,求出平面的法向量; (4)破“应用公式关”.考向02:立体几何中的探索性问题以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.求解此类问题一般是用向量方法来处理,通过待定系数法求解其存在性问题,思路简单、解法固定、操作方便.(2017·兰州一模)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,P A =AB =AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC =4,点M 为PC 的中点,点E 为BC 边上的动点,且BEEC=λ.阿凡题1083964(1)求证:平面ADM ⊥平面PBC ;(2)是否存在实数λ,使得二面角P -DE -B 的余弦值为22.若存在,试求出实数λ的值;若不存在,说明理由.(1)【证明】 取PB 的中点N ,连接MN ,AN , ∵M 是PC 的中点, ∴MN ∥BC ,MN =12BC =2,又BC ∥AD ,∴MN ∥AD ,MN =AD , ∴四边形ADMN 为平行四边形, ∵AP ⊥AD ,AB ⊥AD ,AP ∩AB =A , ∴AD ⊥平面P AB , ∴AD ⊥AN ,∴AN ⊥MN , ∵AP =AB ,∴AN ⊥PB ,∵MN ∩PB =N ,∴AN ⊥平面PBC .∵AN ⊂平面ADM ,∴平面ADM ⊥平面PBC .(2)【解】 存在符合条件的λ.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz .设BE =t ,则E (2,t,0),P (0,0,2),D (0,2,0),B (2,0,0), 从而PD →=(0,2,-2),DE →=(2,t -2,0), 设平面PDE 的法向量为n 1=(x ,y ,z ),即⎩⎪⎨⎪⎧2y -2z =0,2x +(t -2)y =0,令y =z =2,解得x =2-t , ∴n 1=(2-t,2,2),又平面DEB 即为平面xAy ,故其一个法向量为n 2=(0,0,1), 则|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=2(2-t )2+4+4=22,解得t =2,可知λ=1.解决此类问题时,把要成立的结论当作条件, 据此列方程或方程组, 把“是否存在”问题转化为“点的坐标(或参数)是否有解”来解决,但要注意检验此解是否在规定范围内.1.(2017·全国卷Ⅱ)如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值.(1)证明:取P A 的中点F ,连接EF ,BF . 因为E 是PD 的中点,所以EF ∥AD ,EF =12AD .由∠BAD =∠ABC =90°得BC ∥AD , 又BC =12AD ,所以EF 綊BC ,四边形BCEF 是平行四边形,CE ∥BF .又BF ⊂平面P AB ,CE ⊄平面P AB ,故CE ∥平面P AB .(2)解:由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长度,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC →=(1,0,-3),AB →=(1,0,0).设M (x ,y ,z )(0<x <1),则BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3). 因为BM 与底面ABCD 所成的角为45°, 而n =(0,0,1)是底面ABCD 的法向量, 所以|cos 〈BM →,n 〉|=sin 45°,|z |(x -1)2+y 2+z2=22, 即(x -1)2+y 2-z 2=0.①又M 在棱PC 上,设PM →=λPC →,则 x =λ,y =1,z =3-3λ.②由①②解得⎩⎨⎧x =1+22,y =1,z =-62(舍去),或⎩⎨⎧x =1-22,y =1,z =62,所以M 1-22,1,62,从而AM →=1-22,1,62. 设m =(x 0,y 0,z 0)是平面ABM 的法向量,则 ⎩⎪⎨⎪⎧m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0,所以可取m =(0,-6,2). 于是cos 〈m ,n 〉=m ·n |m ||n |=105.因此二面角M -AB -D 的余弦值为105.2.(2017·临沂模拟)如图,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AB =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =12AE =2,点O 、M 分别为CE 、AB 的中点.(1)求证:OD ∥平面ABC ;(2)求直线CD 和平面ODM 所成角的正弦值;(3)能否在EM 上找到一点N ,使得ON ⊥平面ABDE .若能,请指出点N 的位置并加以证明;若不能,请说明理由.(1)证明:以B 为原点,BC 为x 轴,BA 为y 轴,BD 为z 轴,建立空间直角坐标系,则C (4,0,0),A (0,4,0),D (0,0,2),E (0,4,4),O (2,2,2),M (0,2,0).平面ABC 的法向量n 1=(0,0,1),DO →=(2,2,0),DO →·n 1=0,∴OD ∥平面ABC . (2)解:设平面ODM 的法向量为n 2,直线CD 与平面ODM 所成角为θ, ∵DO →=(2,2,0),DM →=(0,2,-2), ∴n 2=(-1,1,1),CD →=(-4,0,2), ∴sin θ=CD →·n 2|CD →||n 2|=155.(3)解:设EM 上一点N 满足BN →=λBM →+(1-λ)BE →=(0,4-2λ,4-4λ),平面ABDE 的法向量n 3=(1,0,0),ON →=BN →-BO →=(-2,2-2λ,2-4λ),不存在λ使n 3∥ON →,∴不存在满足题意的点N .1.(2017·梅州二模)如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中∠BAE =∠GAD =45°,AB =2AD =2,∠BAD =60°.(1)求证:BD ⊥平面ADG ;(2)求平面AEFG 与平面ABCD 所成锐二面角的余弦值. (1)证明:在△BAD 中,∵AB =2AD =2,∠BAD =60°. 由余弦定理得BD =3,满足AB 2=AD 2+DB 2, ∴AD ⊥DB直平行六面体中GD ⊥面ABCD ,DB ⊂面ABCD , ∴GD ⊥DB ,且AD ∩GD =D ∴BD ⊥平面ADG .(2)解:如图以D 为原点建立空间直角坐标系D -xyz ,∵∠BAE =∠GAD =45°,AB =2AD =2,∴A (1,0,0),B (0,3,0),E (0,3,2),C (-1,3,0),G (0,0,1).AE →=(-1,3,2),AG →=(-1,0,1), 设平面AEFG 的法向量n =(x ,y ,z ), ⎩⎪⎨⎪⎧n ·AE →=-x +3y +2z =0n ·AG →=-x +z =0,令x =1,得y =-33,z =1 ∴n =⎝⎛⎭⎫1,-33,1,而平面ABCD 的法向量为DG →=(0,0,1), ∴cos 〈DG →,n 〉=|DG →·n ||DG →||n |=217.∴平面AEFG 与平面ABCD 所成锐二面角的余弦值为217.2.(2017·晋江二模)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 的中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线P A 与平面PEH 所成角的正弦值.(1)证明:以H 为原点,HA ,HB ,HP 分别为x ,y ,z 轴,线段HA 的长为单位长,建立空间直角坐标系如图,则A (1,0,0),B (0,1,0),设C (m,0,0),P (0,0,n ) (m <0,n >0),则D (0,m,0),E ⎝⎛⎭⎫12,m 2,0.可得PE →=⎝⎛⎭⎫12,m 2,-n ,BC →=(m ,-1,0). 因为PE →·BC →=m 2-m2+0=0,所以PE ⊥BC .(2)解:由已知条件可得m =-33,n =1, 故C ⎝⎛⎭⎫-33,0,0,D ⎝⎛⎭⎫0,-33,0,E ⎝⎛⎭⎫12,-36,0,P (0,0,1), 设n =(x ,y ,z )为平面PEH 的法向量, 则⎩⎪⎨⎪⎧ n ·HE →=0,n ·HP →=0,即⎩⎪⎨⎪⎧12x -36y =0,z =0,因此可以取n =(1,3,0),又P A →=(1,0,-1),所以|cos 〈P A →,n 〉|=24,所以直线P A 与平面PEH 所成角的正弦值为24.3. (2017·全国卷Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.(1)证明:由题设可得△ABD ≌△CBD ,从而AD =CD . 又△ACD 是直角三角形, 所以∠ADC =90°.取AC 的中点O ,连接DO ,BO , 则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,故BO ⊥AC , 所以∠DOB 为二面角D -AC -B 的平面角. 在Rt △AOB 中,BO 2+AO 2=AB 2,又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 所以平面ACD ⊥平面ABC .(2)解:由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA →的方向为x 轴正方向,|OA →|为单位长度,建立如图所示的空间直角坐标系O -xyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E 0,32,12, 故AD →=(-1,0,1),AC →=(-2,0,0),AE →=-1,32,12.设n =(x ,y ,z )是平面DAE 的法向量,则⎩⎪⎨⎪⎧ n ·AD →=0,n ·AE →=0,即⎩⎪⎨⎪⎧-x +z =0,-x +32y +12z =0, 可取n =1,33,1. 设m 是平面AEC 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AE →=0,同理可取m =(0,-1,3), 则cos 〈n ,m 〉=n ·m |n ||m |=77.所以二面角D -AE -C 的余弦值为77. 4.(2017·江门一模)如图,多面体EF -ABCD 中,ABCD 是正方形,AC ,BD 相交于O ,EF ∥AC ,点E 在AC 上的射影恰好是线段AO 的中点.(1)求证:BD ⊥平面ACF ;(2)若直线AE 与平面ABCD 所成的角为60°,求平面DEF 与平面ABCD 所成角的正弦值.(1)证明:取AO 的中点H ,连接EH ,则EH ⊥平面ABCD , ∵BD 在平面ABCD 内,∴EH ⊥BD , 又正方形ABCD 中,AC ⊥BD ,∵EH ∩AC =H ,EH ,AC 在平面EACF 内, ∴BD ⊥平面EACF ,即BD ⊥平面ACF .(2)解:由(1)知EH ⊥平面ABCD ,作HG ∥OB 交AB 于点G .如图,以H 为原点,HA →,HG →,HE →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系H -xyz ,∵EH ⊥平面ABCD ,∴∠EAH 为AE 与平面ABCD 所成的角,即∠EAH =60°,设正方形ABCD 的边长为4a ,则AC =42a ,AH =2a ,EA =22a ,EH =6a ,各点坐标分别为H (0,0,0),A (2a,0,0),B (-2a ,22a ,0),C (-32a,0,0),D (-2a ,-22a,0),E (0,0,6a ).易知HE →为平面ABCD 的一个法向量,记n 1=HE →=(0,0,6a ),AC →=(-42a,0,0),DE →=(2a,22a ,6a ),∵EF ∥AC ,∴EF →=λAC →=(-42aλ,0,0),设平面DEF 的一个法向量为n 2=(x ,y ,z ),则n 2⊥DE →,n 2⊥EF →, 即n 2·DE →=2ax +22ay +6az =0,n 2·EF →=-42aλx =0,令z =-2,则x =0,y =3, ∴n 2=(0,3,-2),且n 2=7,n 1·n 2=-26a , ∴n 1与n 2的夹角θ的余弦值为 cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=27, 即平面DEF 与平面ABCD 所成角α的正弦值为 sin α=1-cos 2θ=217. 5. (2017·北京卷)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,平面P AD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,P A =PD =6,AB =4.(1) 求证:M 为PB 的中点; (2)求二面角B -PD -A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值. (1)证明:设AC ,BD 交于点E ,连接ME ,因为PD ∥平面MAC ,平面MAC ∩平面PDB =ME , 所以PD ∥ME .因为四边形ABCD 是正方形, 所以E 为BD 的中点, 所以M 为PB 的中点.图①(2)解:如图②,取AD 的中点O ,连接OP ,OE . 因为P A =PD ,所以OP ⊥AD .又因为平面P AD ⊥平面ABCD ,且OP ⊂平面P AD , 所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE . 因为四边形ABCD 是正方形,所以OE ⊥AD .如图②,建立空间直角坐标系O -xyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD →=(4,-4,0),PD →=(2,0,-2).图②设平面BDP 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BD →=0,n ·PD →=0,即⎩⎨⎧4x -4y =0,2x -2z =0.令x =1,则y =1,z =2. 于是n =(1,1,2).平面P AD 的法向量为p =(0,1,0), 所以cos 〈n ,p 〉=n ·p |n ||p |=12. 由题意知二面角B -PD -A 为锐角,所以它的大小为π3.(3)解:由题意知M -1,2,22,C (2,4,0),MC →=3,2,-22. 设直线MC 与平面BDP 所成角为α,则 sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269,所以直线MC 与平面BDP 所成角的正弦值为269.6.(2017·吉林实验中学)如图①所示,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成二面角A -DC -B ,如图②所示.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论.解:(1)如图:在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB . 又AB ⊄平面DEF ,EF ⊂平面DEF , ∴AB ∥平面DEF .(2)以D 为原点,建立如图所示的空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),易知平面CDF 的法向量为DA →=(0,0,2), 设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧DE →·n =0,DF →·n =0,即⎩⎨⎧3y +z =0,x +3y =0,取n =(3,-3,3),cos 〈DA →,n 〉=DA →·n |DA →||n |=217,∴二面角E -DF -C 的余弦值为217. (3)设P (x ,y,0),则AP →·DE →=3y -2=0,∴y =233.又BP →=(x -2,y,0),PC →=(-x,23-y,0),∵BP →∥PC →,∴(x -2)(23-y )=-xy ,∴3x +y =23. 把y =233代入上式得x =43,∴BP →=13BC →,∴在线段BC 上存在点P 43,233,0,使AP ⊥DE .。
2018年高考数学专题08立体几何分项试题(含解析)理
专题立体几何一、选择题1.【2018河南洛阳市尖子生联考】已知球与棱长为4的正四面体的各棱相切,则球的体积为()A. B. C. D.【答案】A点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.2.【2018浙江温州一模】某几何体的三视图如图所示,则该几何体的体积(单位:)是()A. B. C. D.【答案】A【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.3.【2018广西三校联考】若某几何体的三视图如图所示,则此几何体的外接球表面积等于()B. 30πC. 43πD. 15π【答案】C【解析】由题意可知该几何体的直观图如下图所示,故选C.4.【2018河南中原名校质检二】某几何体的三视图如图所示(单位:),则该几何体的体积等于().A. B. C. D.【答案】D点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可.5.【2018湖南省两市九月调研】如图,网格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的体积为()D. 4【答案】B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.6.【2018湖南永州市一模】已知某三棱锥的三视图如图所示,则在该三棱锥中,最长的棱长为()【答案】C【解析】【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状. 7.【2018广东珠海市九月摸底】如图,是某几何体的三视图,则该几何体的体积是A. 11B. 7C. 14D. 9 【答案】B【解析】该几何体为两个几何体拼接而成,上方为四棱锥,下方为四棱柱,故其体积为:故选:B点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.8.【2018湖北武汉市调研】设点M 是棱长为2的正方体1111ABCD A BC D -的棱AD 的中点,点P 在面11BCC B 所在的平面内,若平面1D PM 分别与平面ABCD 和平面11BCC B 所成的锐二面角相等,则点P 到点1C 的最短距离是( )【答案】A【方法点晴】本题主要考查的是正方体的性质、二面角的求法、空间直角坐标系和空间向量在立体几何中的应用,属于难题.解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误,求二面角的常见方法有:1、利用定义找到二面角的平面角,根据平面几何知识求解;2,求出二面角的余弦,从而求得二面角的大小;3、利用空间相夹角余弦公式.9.【2018陕西西工大附中七模】在下列命题中,属于真命题的是( ) A. 直线,m n 都平行于平面α,则//m nB. 设l αβ--是直二面角,若直线m α⊥,则//m βC. 若直线,m n 在平面α内的射影依次是一个点和一条直线,(且m n ⊥),则n 在α内或n 与α平行D. 设,m n 是异面直线,若m 与平面α平行,则n 与α相交 【答案】C10.【2018广东茂名市五校联考】在长方体中,,,,点在平面内运动,则线段的最小值为( )A. B. C. D.【答案】C【解析】由题意问题转化为求点到平面的距离,由于,所以边上的高,故三角形的面积为,又三棱锥的体积,所以,应选答案C 。
2018年高考数学(理)总复习双基过关检测:“数列”含解析
“数列”双基过关检测一、选择题1.已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为( ) A .1 B .2 C .3D .4解析:选B 设等差数列{a n }的公差为d ,则d =a 13-a 313-3=33-1310=2,故选B.2.(2017·江西六校联考)在等比数列{a n }中,若a 3a 5a 7=-33,则a 2a 8=( ) A .3 B.17 C .9D .13解析:选A 由a 3a 5a 7=-33,得a 35=-33,故a 2a 8=a 25=3.3.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 015=( ) A .8 B .6 C .4D .2解析:选 D 由题意得a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 015=a 335×6+5=a 5=2.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2),则a 7=( ) A .53 B .54 C .55D .109解析:选C a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.故选C.5.设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44B .45C.13×(46-1) D.14×(45-1)解析:选B 由a n +1=3S n 得a 2=3S 1=3.当n ≥2时,a n =3S n -1,则a n +1-a n =3a n ,n ≥2,即a n +1=4a n ,n ≥2,则数列{a n }从第二项起构成等比数列,所以S 6=a 73=3×453=45,故选B.6.(2017·河南中原名校摸底)已知等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( )A .18B .12C .9D .6解析:选D 设等差数列{a n }的公差为d ,由题意得S 11=a 1+a 112=a 1+10d2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D.7.(2017·哈尔滨模拟)在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( )A.32B.23C .-23D.23或-23解析:选C 由⎩⎪⎨⎪⎧a 1q =18,a 1q 3=8,解得⎩⎪⎨⎪⎧a 1=27,q =23或⎩⎪⎨⎪⎧a 1=-27,q =-23.又a 1<0,因此q =-23.8.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .75B .90C .105D .120解析:选C a 1+a 2+a 3=15⇒3a 2=15⇒a 2=5,a 1a 2a 3=80⇒(a 2-d )a 2(a 2+d )=80,将a 2=5代入,得d =3(d =-3舍去),从而a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+30)=105.二、填空题9.已知数列{a n }的通项公式a n =⎩⎪⎨⎪⎧2·3n -1,n 为偶数,2n -5,n 为奇数,则a 3a 4=________.解析:由题意知,a 3=2×3-5=1,a 4=2×34-1=54,∴a 3a 4=54.答案:5410.(2016·宁夏吴忠联考)等比数列的首项是-1,前n 项和为S n ,如果S 10S 5=3132,则S 4的值是________.解析:由已知得S 10S 5=1-q 101-q 5=1+q 5=3132,故q 5=-132,解得q =-12,S 4=-⎝ ⎛⎭⎪⎫1-1161+12=-58.答案:-5811.(2016·潍坊一模)已知数列{a n }的前n 项和S n =13a n +23,则{a n }的通项公式a n =________.解析:当n =1时,a 1=S 1=13a 1+23,∴a 1=1.当n ≥2时,a n =S n -S n -1=13a n -13a n -1,∴a n a n -1=-12.∴数列{a n }为首项a 1=1,公比q =-12的等比数列,故a n =⎝ ⎛⎭⎪⎫-12n -1.答案:⎝ ⎛⎭⎪⎫-12n -1三、解答题12.(2017·德州检测)已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k=110.(1)求a 及k 的值;(2)设数列{b n }的通项b n =S n n,证明数列{b n }是等差数列,并求其前n 项和T n . 解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k k -2·d =2k +k k -2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)由(1)得S n =n+2n 2=n (n +1),则b n =S n n=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n+n +2=n n +2.13.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. 解:(1)证明:当n =1时,a 1=4a 1-3,解得a 1=1. 当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1,又a 1=1≠0,∴{a n }是首项为1,公比为43的等比数列.(2)由(1)知a n =⎝ ⎛⎭⎪⎫43n -1,∵b n +1=a n +b n (n ∈N *),∴b n +1-b n =⎝ ⎛⎭⎪⎫43n -1.当n ≥2时,可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝ ⎛⎭⎪⎫43n -11-43=3⎝ ⎛⎭⎪⎫43n -1-1,当n =1时,上式也成立,∴数列{b n }的通项公式为b n =3⎝ ⎛⎭⎪⎫43n -1-1.14.设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式. 解:(1)令n =1,T 1=2S 1-1, ∵T 1=S 1=a 1,∴a 1=2a 1-1,∴a 1=1. (2)n ≥2时,T n -1=2S n -1-(n -1)2, 则S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2] =2(S n -S n -1)-2n +1 =2a n -2n +1.因为当n =1时,a 1=S 1=1也满足上式, 所以S n =2a n -2n +1(n ≥1),当n ≥2时,S n -1=2a n -1-2(n -1)+1, 两式相减得a n =2a n -2a n -1-2,所以a n =2a n -1+2(n ≥2),所以a n +2=2(a n -1+2), 因为a 1+2=3≠0,所以数列{a n +2}是以3为首项,公比为2的等比数列. 所以a n +2=3×2n -1,∴a n =3×2n -1-2,当n =1时也成立, 所以a n =3×2n -1-2.。
【全国通用-2018高考推荐】最新高考总复习数学(理)二轮复习精选《空间几何体》试题及答案解析
2018届高三数学二轮复习精选专题练(理科,有解析)空间几何体1、已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸,可得这个几何体的体积是 ( )A.8π+B.283π+C.12π+D.2123π+【答案】A2、在直角坐标系xOy 中,设(2,2),(2,3)A B --,沿y 轴把坐标平面折成120的二面角后,AB 的长是( )A. 37B. 6C. 35D. 53【答案】A【解析】做AC 垂直y 轴于点C,BD 垂直y 轴于点D ,BM 平行于y 轴,且NC 垂直Y 轴,则0=120ACM ∠,又AC=MC=2,所以由余弦定理得AM= 23,在ABM ∆,0=9023,537BMA AM BM AB ∠===,,所以.即AB 的长是37.3、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ).可得这个几何体的体积是( )A.133cmB.233cmC.433cmD.833cm【答案】C4、已知某几何体的三视图如图所示,其中正视图中半圆的直径为2,则该几何体的体积为( ) A. 243π- B. 242π- C. 3242π- D. 24π-【答案】C5、如图,某几何体的正视图和俯视图都是矩形,侧视图是等腰直角三角形,则该几何体的体积为( )A.163B.8C.16D. 83【答案】B6、平面四边形ABCD 中,1===CD AD AB ,CD BD BD ⊥=,2,将其沿对角线BD 折成四面体BCD A -',使平面⊥BD A '平面BCD ,若四面体BCD A -'顶点在同一个球面上,则该球的体积为( )A. π23B. π3C. π32 D. π2 【答案】ABD 所在的圆直径就是BD,BDC 所在的圆直径是BC,由题意两个圆面垂直,且ABD 所在的圆面被BDC 所在的圆平分,所以BDC 所在的圆就是大圆;球的直径就是BC =3,所以正确的选项是A.7、设集合P={直四棱柱},Q={正四棱柱},S={长方体},则( )A .()S Q P =B .()P Q S ⊆C .()P S Q ⊆D .()P Q S ⊆【答案】B【解析】底面为正方形的直四棱柱是长方体的一种,所以正确选项为B.8、半径为R的半圆卷成一个圆锥,则它的体积为()A3324RπB .338RπC .3524RπD .358Rπ【答案】A设圆锥底面圆的半径为r,高为h,则2πr=πR,∴r=2R∵R2=r2+h2,∴h=32R,∴V= 213()322RRπ=3324Rπ,故选A。
2018年高考理科数学考前集训空间几何体(解析版)
2018年高考理科数学考前集训:空间几何体(解析版)[考情分析]立体几何问题既是高考的必考点,也是考查的难点,其在高考中的命题形式较为稳定,保持“一小一大”或“两小一大”的格局.多以选择题或者填空题的形式考查空间几何体三视图的识别,空间几何体的体积或表面积的计算.1.(2017·高考全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14 D.16解析:由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.答案:B2.(2017·高考全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π解析:法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π. 法二:依题意,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π,选择B.答案:B3.(2016·高考全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得:l =22+(23)2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π. 答案:C4.(2016·高考全国卷Ⅲ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A .18+36 5B .54+18 5C .90D .81解析:由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×35)×2=54+18 5.故选B.答案:B5.(2016·高考全国卷Ⅲ)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π2 C .6π D.32π3解析:设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B. 答案:B空间几何体与三视图[方法结论]一个物体的三视图的排列规则俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.[题组突破]1.(2017·吉林实验中学模拟)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )解析:侧视图从图形的左面向右面看,看到一个矩形,在矩形上有一条对角线,对角线是由左下角到右上角的线,故选C.答案:C2.(2017·安徽六校素质测试) 如图,网格纸上每个小正方形的边长为1,图中粗线画出的是某多面体的三视图,则该几何体的表面中互相垂直的平面有()A.3对B.4对C.5对D.6对解析:由三视图还原出原几何体的直观图如图所示,因为AB⊥平面BCD,AE⊥平面ABC,CD⊥平面ABC,所以平面ABE⊥平面BCD,平面AEB⊥平面ABC,平面BCD⊥平面ABC,平面AEDC⊥平面ABC,故选B.答案:B[误区警示]要熟悉各种基本几何体的三视图.同时要注意画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线.空间几何体的表面积与体积[方法结论]求解几何体的表面积或体积(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用.[题组突破]1.(2017·长沙模拟)如图是某几何体的三视图,其正视图、侧视图均是直径为2的半圆,俯视图是直径为2的圆,则该几何体的表面积为( )A .3πB .4πC .5πD .12π解析:由三视图可知,该几何体是半径为1的半球,其表面积为2π+π=3π.选A. 答案:A2.(2017·贵阳模拟)一个几何体的三视图如图所示,其中正视图是边长为2的等边三角形,俯视图为正六边形,则该几何体的体积是( )A.12B .1C .2 D.32解析:依题意得,题中的几何体是一个倒立的正六棱锥,其中底面是边长为1的正六边形,高为2×32=3,因此题中的几何体体积等于13×(6×34×12)×3=32,选D. 答案:D3.已知简单组合体的三视图如图所示,则此简单组合体的体积为( )A.103π B .14π C.163π-8 D.163π-4 解析:依题意知,该简单组合体是从一个圆锥(底面半径为2、高为4)中截去一个正四棱柱(底面正方形边长为2、高为2)后剩余的部分,因此该简单组合体的体积为13π×22×4-(2)2×2=16π3-4,选D. 答案:D[误区警示]1.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面;2.在求几何体的表面积和体积时,注意等价转化思想的运用,如用“割补法”把不规则几何体转化为规则几何体、立体几何问题转化为平面几何问题等.空间几何体与球的切、接问题[方法结论]1.解决与球有关的“切”“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把空间问题转化为平面问题,从而寻找几何体各元素之间的关系.2.记住几个常用的结论:(1)正方体的棱长为a ,球的半径为R .①正方体的外接球,则2R =3a ;②正方体的内切球,则2R =a ;③球与正方体的各棱相切,则2R =2a .(2)在长方体的同一顶点的三条棱长分别为a ,b ,c ,球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1.[典例](1)已知S ,A ,B ,C 是球O 表面上的不同点,SA ⊥平面ABC ,AB ⊥BC ,AB =1,BC= 2.若球O 的表面积为4π,则SA =( ) A.22 B .1C. 2D.32 解析:根据已知把S ABC 补成如图所示的长方体.因为球O 的表面积为4π,所以球O 的半径R =1,2R =SA 2+1+2=2,解得SA =1,故选B.答案:B(2)(2017·高考全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2 D.π4解析:设圆柱的底面半径为r ,则r 2=12-⎝⎛⎭⎫122=34,所以,圆柱的体积V =34π×1=3π4,故选B.答案:B(3)(2017·广西三市联考)已知长方体ABCD A 1B 1C 1D 1内接于球O, 底面ABCD 是边长为2的正方形,E 为AA 1的中点,OA ⊥平面BDE ,则球O 的表面积为________.解析:取BD 的中点为O 1,连接OO 1,OE ,O 1E ,O 1A ,则四边形OO 1AE 为矩形,∵OA ⊥平面BDE ,∴OA ⊥EO 1,即四边形OO 1AE 为正方形,则球O 的半径R =OA =2,∴球O 的表面积S =4π×22=16π.答案:16π[类题通法]1.构造法在定几何体外接球球心中的应用 常见的构造条件及构造方法有:(1)正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补形成长方体或正方体;(2)同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补形成长方体或正方体;(3)若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方体;(4)若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正方体.2.性质法在定几何体外接球球心中的应用立体几何问题转化为平面几何问题,体现了等价转化思想与数形结合思想,方法是利用球心O 与截面圆圆心O ′的连线垂直于截面圆及球心O 与弦中点的连线垂直于弦的性质,确定球心.[演练冲关]1.(2017·贵阳模拟)三棱锥P ABC 的四个顶点都在体积为500π3的球的表面上,底面ABC 所在的小圆面积为16π,则该三棱锥的高的最大值为( )A .4B .6C .8D .10解析:依题意,设题中球的球心为O 、半径为R ,△ABC 的外接圆半径为r ,则4πR 33=500π3,解得R =5, 由πr 2=16π,解得r =4,又球心O 到平面ABC 的距离为R 2-r 2=3,因此三棱锥P ABC 的高的最大值为5+3=8,选C.答案:C2.正三棱锥A BCD 内接于球O ,且底面边长为3,侧棱长为2,则球O 的表面积为________. 解析:如图, 设三棱锥A BCD 的外接球的半径为r ,M 为正△BCD 的中心,因为BC =CD =BD =3,AB =AC =AD =2,AM ⊥平面BCD ,所以DM=1,AM =3,又OA =OD =r ,所以(3-r )2+1=r 2,解得r =233,所以球O 的表面积S =16π3. 答案:16π3与球切、接有关的几何体的最值问题[方法结论]与球切、接有关的几何体的最值问题多涉及体积最值问题、截面面积问题.[典例] (2017·洛阳统考)已知点A ,B ,C ,D 均在球O 上,AB =BC =6,AC =2 3.若三棱锥D ABC 体积的最大值为3,则球O 的表面积为________.解析:由题意可得,∠ABC =π2,△ABC 的外接圆半径r =3,当三棱锥的体积最大时,V D ABC=13S △ABC ·h (h 为D 到底面ABC 的距离),即3=13×12×6×6h ⇒h =3,即R +R 2-r 2=3(R 为外接球半径),解得R =2,∴球O 的表面积为4π×22=16π.答案:16π[类题通法]求解此类问题的关键是结合图形分析取得最值的条件转化求解,有时也可建立目标函数转化为函数最值求解.[演练冲关]1.(2016·长春质量监测)正四面体ABCD 的外接球半径为2,过棱AB 作该球的截面,则截面面积的最小值为________.解析:由题意,面积最小的截面是以AB 为直径的圆,在正四面体ABCD 中,如图,设E 为△BCD 的中心,连接AE ,BE ,则球心O 在AE 上,延长AE 交球面于F ,则AF 是球的直径,∠ABF =90°,又AE ⊥BE ,所以在△ABF 中,由射影定理得AB 2=AE ·AF =4AE ,又AE =AB 2-BE 2=63AB ,所以AB =463,故截面面积的最小值为π⎝⎛⎭⎫2632=8π3.答案:8π32.(2017·贵州适应性考试)已知正三棱柱(底面是正三角形,侧棱与底面垂直)的体积为3 3 cm 3,其所有顶点都在球O 的球面上,则球O 的表面积的最小值为________cm 2.解析:球O 的表面积最小⇔球O 的半径R 最小.设正三棱柱的底面边长为a ,高为b ,则正三棱柱的体积V =34a 2b =33, 所以a 2b =12.底面正三角形所在截面圆的半径r =33a ,则R 2=r 2+⎝⎛⎭⎫b 22=a 23+b 24=13×12b +b 24=4b +b 24,令f (b )=4b +b 24,0<b <2R ,则f ′(b )=b 3-82b 2,令f ′(b )=0,解得b =2 ,当0<b <2时,f ′(b )<0,函数f (b )单调递减,当b >2时,f ′(b )>0,函数f (b )单调递增,所以当b =2时,f (b )取得最小值3, 即(R 2)min =3,故球O 的表面积的最小值为12π.答案:12π。
【精品】2018年高考数学(理)总复习双基过关检测:“空间向量”含解析
“空间向量”双基过关检测一、选择题1.在空间直角坐标系中,点P (m,0,0)到点P 1(4,1,2)的距离为30,则m 的值为( ) A .-9或1 B .9或-1 C .5或-5D .2或3解析:选B 由题意|PP 1|=30, 即m -2+-2+-2=30,∴(m -4)2=25,解得m =9或m =-1.故选B.2.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ) A .2,12B .-13,12C .-3,2D .2,2解析:选A ∵a ∥b ,∴b =ka , 即(6,2μ-1,2λ)=k (λ+1,0,2), ∴⎩⎪⎨⎪⎧6=k λ+,2μ-1=0,2λ=2k ,解得⎩⎪⎨⎪⎧λ=2,μ=12或⎩⎪⎨⎪⎧λ=-3,μ=12.3.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=( )A .9B .-9C .-3D .3解析:选B 由题意知c =xa +yb ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3), ∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.4.(2017·揭阳期末)已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x=( )A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)解析:选B 由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).5.在空间四边形ABCD 中,AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→=( ) A .-1 B .0 C .1D .不确定解析:选B 如图,令AB ―→=a ,AC ―→=b ,AD ―→=c , 则AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→ =a ·(c -b )+b ·(a -c )+c ·(b -a ) =a·c -a·b +b·a -b·c +c·b -c·a =0.6.如图所示,在平行六面体ABCD A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB ―→=a ,AD ―→=b ,AA 1―→=c ,则下列向量中与BM ―→相等的向量是( )A .-12a +12b +cB.12a +12b +cC .-12a -12b +cD.12a -12b +c解析:选A BM ―→=BB 1―→+B 1M ―→=AA 1―→+12(AD ―→-AB ―→)=c +12(b -a )=-12a +12b +c .7.如图,在大小为45°的二面角A EF D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A. 3B. 2 C .1D.3- 2解析:选D ∵BD ―→=BF ―→+FE ―→+ED ―→,∴|BD ―→|2=|BF ―→|2+|FE ―→|2+|ED ―→|2+2BF ―→·FE ―→+2FE ―→·ED ―→+2BF ―→·ED ―→=1+1+1-2=3-2,故|BD ―→|=3- 2.8.(2017·东营质检)已知A (1,0,0),B (0,-1,1),OA ―→+λOB ―→与OB ―→的夹角为120°,则λ的值为( )A .±66 B.66C .-66D .± 6解析:选C 因为OA ―→+λOB ―→=(1,-λ,λ),所以cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,∴λ=-66. 二、填空题9.已知点A (1,2,1),B (-1,3,4),D (1,1,1),若AP ―→=2PB ―→,则|PD ―→|的值是________.解析:设P (x ,y ,z ),∴AP ―→=(x -1,y -2,z -1).PB ―→=(-1-x,3-y,4-z ),由AP ―→=2PB ―→得点P 坐标为⎝ ⎛⎭⎪⎫-13,83,3,又D (1,1,1),∴|PD ―→|=773.答案:77310.如图所示,在长方体ABCD A 1B 1C 1D 1中,O 为AC 的中点.用AB ―→,AD ―→,AA 1―→表示OC 1―→,则OC 1―→=________.解析:OC ―→=12AC ―→=12(AB ―→+AD ―→),∴OC 1―→=OC ―→+OC 1―→=12(AB ―→+AD ―→)+AA 1―→=12AB ―→+12AD ―→+AA 1―→.答案:12AB ―→+12AD ―→+AA 1―→11.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA ―→,BC ―→〉的值为________.解析:设OA ―→=a ,OB ―→=b ,OC ―→=c ,由已知条件,得〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA ―→·BC ―→=a ·(c -b )=a ·c -a ·b =12|a ||c |-12|a ||b |=0,∴cos 〈OA ―→,BC ―→〉=0. 答案:012.(2017·北京西城模拟)如图所示,正方体ABCD A 1B 1C 1D 1的棱长为1,若动点P 在线段BD 1上运动,则DC ―→·AP ―→的取值范围是________.解析:由题意,设BP ―→=λBD 1―→,其中λ∈[0,1],DC ―→·AP ―→=AB ―→·()AB ―→+BP ―→=AB ―→·(AB ―→+λBD 1―→)=AB ―→2+λAB ―→·BD 1―→=AB ―→2+λAB ―→·(AD 1―→-AB ―→)= (1-λ)AB ―→2=1-λ∈[0,1].因此DC ―→·AP ―→的取值范围是[0,1].答案:[0,1] 三、解答题13.已知平行六面体ABCD A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =120°.(1)求线段AC 1的长;(2)求异面直线AC 1与A 1D 所成角的余弦值; (3)求证:AA 1⊥BD .解:(1)如图,设AB ―→=a ,AD ―→=b , AA 1―→=c ,则|a |=|b |=1,|c |=2,a ·b =0,c ·a =c ·b =2×1×cos 120°=-1.∵AC 1―→=AC ―→+CC 1―→ =AB ―→+AD ―→+AA 1―→ =a +b +c ,∴|AC 1―→|=|a +b +c |=a +b +c2=|a |2+|b |2+|c |2+a ·b +b ·c +c ·a=12+12+22+-1-= 2.∴线段AC 1的长为 2.(2)设异面直线AC 1与A 1D 所成的角为θ.则cos θ=|cos 〈AC 1―→, A 1D ―→〉|=|AC 1―→·A 1D ―→||AC 1―→||A 1D ―→|.∵AC 1―→=a +b +c ,A 1D ―→=b -c ,∴AC 1―→·A 1D ―→=(a +b +c )·(b -c )=a ·b -a ·c +b 2-c 2=0+1+12-22=-2, |A 1D ―→|=b -c2=b 2-2b ·c +c 2=12--+22=7.∴cos θ=|AC 1―→·A 1D ―→||AC 1―→||A 1D ―→|=|-2|2×7=147.故异面直线AC 1与A 1D 所成角的余弦值为147. (3)证明:∵AA 1―→=c ,BD ―→=b -a ,∴AA 1―→·BD ―→=c ·(b -a )=c ·b -c ·a =(-1)-(-1)=0. ∴AA 1―→⊥BD ―→, ∴AA 1⊥BD .14.如图,直三棱柱ABC A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1∥平面A 1CD ; (2)求二面角D A 1C E 的正弦值. 解:(1)证明:连接AC 1交A 1C 于点F , 则F 为AC 1的中点.又D 是AB 的中点,连接DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD . (2)由AC =CB =22AB ,得AC ⊥BC .以C 为坐标原点, CA ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系C xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2),CD ―→=(1,1,0), CE ―→=(0,2,1), CA 1―→=(2,0,2).设n =(x 1,y 1,z 1)是平面A 1CD 的法向量, 则⎩⎪⎨⎪⎧ n ·CD ―→=0,n ·CA 1―→=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m =(x 2,y 2,z 2)是平面A 1CE 的法向量, 则⎩⎪⎨⎪⎧m ·CE ―→=0,m ·CA 1―→=0.即⎩⎪⎨⎪⎧2y 2+z 2=0,2x 2+2z 2=0,可取m =(2,1,-2). 从而cos 〈n ,m 〉=n ·m |n ||m |=2-1+23×3=33,故sin〈n,m〉=63.∴二面角DA1CE的正弦值为6 3.。
2018届高三数学(理)三轮复习高考大题专攻练 立体几何 含解析
高考大题专攻练立体几何(A组)大题集训练,练就慧眼和规范,占领高考制胜点!1.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC.(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D -AE-C的余弦值.【解题导引】(1)若证明平面ACD⊥平面ABC可根据面面垂直的判定在平面ACD内找一条线垂直平面ABC,从而转化为线面垂直,再利用线线垂直确定线面垂直.(2)利用(1)中的垂直关系建立空间直角坐标系,求平面ADE和平面ACE的法向量,求法向量的余弦值得二面角的余弦值.【解析】(1)如图,取AC中点O,连接OD,OB.由∠ABD=∠CBD,AB=BC=BD知△ABD≌△CBD,所以CD=AD.由已知可得△ADC为等腰直角三角形,D为直角顶点,则OD⊥AC,设正△ABC边长为a,则OD=AC=a,OB=a,BD=a,所以OD2+OB2=BD2,即OD⊥OB.又OB∩AC=O,所以OD⊥平面ABC,又OD⊂平面ACD,所以平面ACD⊥平面ABC.(2)如图,以OA,OB,OD所在直线分别为x轴,y轴,z轴建立空间直角坐标系,当E为BD中点时,平面AEC把四面体ABCD分成体积相等的两部分,故可得A,D,C,E,则=,=.设平面ADE的一个法向量为n1=,则即令z1=1,则x1=1,y1=,所以n1=.同理可得平面AEC的一个法向量n2=,所以cos<n1,n2>===.因为二面角D -AE-C的平面角为锐角,所以二面角D -AE-C的余弦值为.2.如图,正方形ADEF与梯形ABCD所在平面互相垂直,已知AB∥CD,AD⊥CD,AB=AD=CD.(1)求证:BF∥平面CDE.(2)求平面BDF与平面CDE所成锐二面角的余弦值.【解析】(1)因为AF∥DE,AF⊄平面CDE,DE⊂平面CDE,所以AF∥平面CDE,同理,AB∥平面CDE,又AF∩AB=A,所以平面ABF∥平面CDE,又BF⊂平面ABF,所以BF∥平面CDE.(2)因为正方形ADEF与梯形ABCD所在平面互相垂直,正方形ADEF 与梯形ABCD交于AD,CD⊥AD,所以CD⊥平面ADEF,因为DE⊂平面ADEF,所以CD⊥ED,因为ADEF为正方形,所以AD⊥DE,因为AD⊥CD,所以以D为原点,DA,DC,DE所在直线分别为x,y,z轴,建立空间直角坐标系,则设AD=1,则D(0,0,0),B(1,1,0),F(1,0,1),A(1,0,0),=(1,1,0),=(1,0,1),取平面CDE的一个法向量=(1,0,0),设平面BDF的一个法向量为n=(x,y,z),则即取n=(1,-1,-1),cos<,n>=,所以平面BDF与平面CDE所成锐二面角的余弦值为.高考大题专攻练立体几何(B组)大题集训练,练就慧眼和规范,占领高考制胜点!1.如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(1)证明:CE∥平面PAB.(2)求直线CE与平面PBC所成角的正弦值.【解题导引】(1)取PA的中点F,连接EF,BF,证明四边形BCEF为平行四边形,证明CE∥BF,从而证明CE∥平面PAB.(2)取BC,AD的中点M,N.连接PN交EF于点Q,连接MQ,证明MQ∥CE,MQ与平面PBC所成的角,就等于CE与平面PBC所成的角.过Q作QH⊥PB,连接MH,证明MH就是MQ在平面PBC 内的射影,这样只要证明平面PBN⊥平面PBC即可.【解析】(1)如图,设PA中点为F,连接EF,FB.因为E,F分别为PD,PA中点,所以EF∥AD且EF=AD,又因为BC∥AD,BC=AD,所以EF∥BC且EF=BC,即四边形BCEF为平行四边形,所以CE∥BF,因此CE∥平面PAB.(2)分别取BC,AD的中点为M,N.连接PN交EF于点Q,连接MQ. 因为E,F,N分别是PD,PA,AD的中点,所以Q为EF中点,在平行四边形BCEF中,MQ∥CE.由△PAD为等腰直角三角形得PN⊥AD.由DC⊥AD,N是AD的中点得BN⊥AD.所以AD⊥平面PBN,由BC∥AD得BC⊥平面PBN,那么,平面PBC⊥平面PBN.过点Q作PB的垂线,垂足为H,连接MH.MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.设CD=1.在△PCD中,由PC=2,CD=1,PD=得CE=,在△PBN中,由PN=BN=1,PB=得QH=,在Rt△MQH中,QH=,MQ=,所以sin∠QMH=,所以直线CE与平面PBC所成角的正弦值是.2.如图几何体是圆柱体的一部分,它是由矩形ABCD(及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G为的中点.(1)设P是上一点,AP⊥BE,求∠CBP的大小.(2)当AD=2,AB=3,求二面角E-AG-C的大小.【解题导引】(1)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°.(2)方法一:取的中点H,连接EH,GH,CH,可得四边形BEHC 为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM ⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E-AG-C的大小.方法二:以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z 轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E-AG-C的大小.【解析】(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°.因此∠CBP=30°.(2)方法一:取的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC==,取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM==2.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.方法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.则∠EBP=90°,由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量.由可得取z2=-2,可得平面AC G的一个法向量n=(3,-,-2).。
2018-2019学年高考数学(理科)一轮复习通用版:“空间几何体”双基过关检测
“空间几何体”双基过关检测一、选择题1.如图所示,若P为正方体ABCD-A1B1C1D1中AC1与BD1的交点,则△PAC在该正方体各个面上的射影可能是()A.①②③④B.①③C.①④D.②④解析:选C由题意,得△PAC在底面ABCD,A1B1C1D1上的射影如图①所示,△PAC 在其余四个侧面上的射影如图④所示,故选C.2.用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为()A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC,AD相等,高为梯形ABCD的高的22倍,所以原平面图形的面积为8 cm2.3.在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC为鳖臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱锥P-ABC的四个顶点都在球O的球面上,则球O的表面积为() A.8π B.12πC.20π D.24π解析:选C如图,由题意得PC为球O的直径,而PC=22+42=25,即球O的半径R=5,所以球O的表面积S=4πR2=20π.选C.4.(2017·北京高考)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A .3 2B .2 3C .2 2D .2解析:选B 在正方体中还原该四棱锥如图所示,从图中易得最长的棱为AC 1=AC 2+CC 21=(22+22)+22=2 3.5.(2017·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .60B .30C .20D .10解析:选D 如图,把三棱锥A -BCD 放到长方体中,长方体的长、宽、高分别为5,3,4,△BCD 为直角三角形,直角边分别为5和3,三棱锥A -BCD 的高为4,故该三棱锥的体积V =13×12×5×3×4=10. 6.已知正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B .16πC .9π D.27π4解析:选A 如图,设球心为O ,半径为r ,则在Rt △AOF 中,(4-r )2+(2)2=r 2,解得r =94,所以该球的表面积为4πr 2=4π×⎝⎛⎭⎫942=81π4.7.(2018·南阳联考)已知一个三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( )解析:选C 由已知条件得直观图如图所示,PC ⊥底面ABC ,正视图是直角三角形,中间的线是看不见的线PA 形成的投影,应为虚线,故选C.8.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为V 1,直径为4的球的体积为V 2,则V 1∶V 2=( )A .1∶2B .2∶1C .1∶1D .1∶4解析:选A 由三视图知,该几何体为圆柱内挖去一个底面相同的圆锥,因此V 1=8π-8π3=16π3,V 2=4π3×23=32π3,V 1∶V 2=1∶2. 二、填空题9.(2017·山东高考)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为________.解析:该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.答案:2+π210.已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为________.解析:由俯视图可知,四棱锥顶点在底面的射影为O (如图),又侧视图为直角三角形,则直角三角形的斜边为BC =2,斜边上的高为SO =1,此高即为四棱锥的高,故V =13×2×2×1=43. 答案:4311.中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(单位:立方寸),则图中的x 的值为________.解析:由三视图可知,该几何体是一个组合体,左侧是一个底面直径为2r =1、高为x 的圆柱,右侧是一个长、宽、高分别为5.4-x,3,1的长方体,则该几何体的体积V =(5.4-x )×3×1+π×14×x =12.6,解得x =1.6. 答案:1.612.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为________.解析:构造长方体,则其体对角线长为7,其在侧视图中为侧面对角线a ,在俯视图中为底面对角线b ,设长方体底面宽为1,则b 2-1+a 2-1=6,则a 2+b 2=8,利用不等式⎝⎛⎭⎫a +b 2≤a 2+b 22=4,则a +b ≤4,当且仅当a =b =2时取等号,即a +b 的最大值为4. 答案:4三、解答题13.已知正三棱锥V -ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.解:(1)直观图如图所示.(2)根据三视图间的关系可得BC =23,∴侧视图中VA =42-⎝⎛⎭⎫23×32×232=23,∴S △VBC =12×23×23=6.14.(2018·大庆质检)如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.解:(1)由题意可知该几何体为正六棱锥.(2)其侧视图如图所示,其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图中的正六边形对边的距离,即BC =3a ,AD 的长是正六棱锥的高,即AD =3a , 故该平面图形的面积S =12×3a ×3a =32a 2. (3)该几何体的体积V =13×6×34a 2×3a =32a 3.。
2018届高考数学(理)热点题型:立体几何(含答案解析)
立体几何热点一 空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO⊥平面ABC ,2DA =2AO =PO ,且DA∥PO. (1)求证:平面PBD⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.(1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OCB =π4,∴∠BOC =π2.∴CO ⊥AB. 又PO ⊥平面ABC , OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ⊂平面COD , ∴平面PDB ⊥平面COD.(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z), ∴⎩⎪⎨⎪⎧n·BC →=0,n·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n| =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F. (1)证明:EF∥B 1C.(2)求二面角EA 1D B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B1C∥A1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB→,AD→,AA1→为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B 1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为⎝⎛⎭⎪⎫12,12,1.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E→=⎝⎛⎭⎪⎫12,12,0,A1D→=(0,1,-1),由n1⊥A1E→,n 1⊥A1D→得r1,s1,t1应满足的方程组⎩⎨⎧12r1+12s1=0,s1-t1=0,(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1→=(1,0,0),A1D→=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角EA1DB1的余弦值为|n1·n2||n1|·|n2|=23×2=63.热点二立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB =1,AD=2,AC=CD= 5.(1)求证:PD⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD ,平面PAD∩平面ABCD =AD ,AB ⊥AD , 所以AB⊥平面PAD ,所以AB⊥PD.又PA⊥PD,AB ∩PA =A ,所以PD⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z),则 ⎩⎪⎨⎪⎧n·PD →=0,n·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n·PB →|n||PB→|=-33.所以直线PB 与平面PCD 所成角的正弦值为33. (3)解 设M 是棱PA 上一点,则存在λ∈[0,1],使得AM →=λAP →. 因此点M(0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以要使BM∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14.所以在棱PA 上存在点M ,使得BM∥平面PCD ,此时AM AP =14. 【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数. 【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠PAD =45°,E 为PA 的中点. (1)求证:DE∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF⊥DB?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.(1)证明 取PB 的中点M ,连接EM 和CM ,过点C 作CN⊥AB,垂足为点N.∵CN ⊥AB ,DA ⊥AB ,∴CN ∥DA ,又AB∥CD,∴四边形CDAN 为平行四边形, ∴CN =AD =8,DC =AN =6,在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,∴AB =12,而E ,M 分别为PA ,PB 的中点, ∴EM ∥AB 且EM =6,又DC∥AB,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM.∵CM ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8). 假设AB 上存在一点F 使CF⊥BD, 设点F 坐标为(8,t ,0),则CF →=(8,t -6,0),DB →=(8,12,0), 由CF →·DB →=0得t =23.又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z). 又PC →=(0,6,-8),FC →=⎝⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n·PC →=0,n·FC →=0,得⎩⎨⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n·m |n||m|=81×82+122+92=817.又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817.热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H.将△DEF 沿EF 折到△D′EF 的位置,OD ′=10.(1)证明:D′H⊥平面ABCD ; (2)求二面角B -D′A-C 的正弦值.(1)证明 由已知得AC⊥BD,AD =CD. 又由AE =CF 得AE AD =CFCD,故AC∥EF. 因此EF⊥HD,从而EF⊥D′H.由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D′H 2+OH 2=32+12=10=D′O 2,故D′H⊥OH. 又D′H⊥EF,而OH∩EF=H , 所以D′H⊥平面ABCD.(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz. 则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD′的一个法向量, 则⎩⎪⎨⎪⎧m·AB →=0,m·AD′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD′的一个法向量, 则⎩⎪⎨⎪⎧n·AC →=0,n·AD′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m·n |m||n|=-1450×10=-7525.sin 〈m ,n 〉=29525. 因此二面角B -D′A-C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值. (1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE⊥AC.即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE⊥平面A 1OC.又CD∥BE,所以CD⊥平面A 1OC. (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。
【精品】2018年高考数学(理)总复习双基过关检测:“基本初等函数及应用”含解析
“基本初等函数及应用”双基过关检测一、选择题1.化简[(-2)6] 12-(-1)0的结果是( ) A .-9 B .7 C .-10D .9解析:选B [(-2)6] 12-(-1)0=(26) 12-1=23-1=7.2.函数f (x )=log a (x +2)-2(a >0,且a ≠1)的图象必过定点( ) A .(1,0) B .(1,-2) C .(-1,-2)D .(-1,-1)解析:选C 令x =-1,得log a 1=0,此时f (-1)=-2,故选C.3.(2017·济宁诊断)已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A.12 B .1 C.32D .2解析:选C 由幂函数的定义知k =1,又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.4.(2017·郑州模拟)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D 结合二次函数y =ax 2+bx +c (a ≠0)的图象知: 当a <0,且abc >0时,若-b2a<0,则b <0,c >0,故排除A , 若-b2a >0,则b >0,c <0,故排除B.当a >0,且abc >0时,若-b2a<0,则b >0,c >0,故排除C , 若-b2a>0,则b <0,c <0,故选项D 符合.5.(2017·成都模拟)设a =⎝ ⎛⎭⎪⎫79-14,b =⎝ ⎛⎭⎪⎫9715,c =log 2 79,则a ,b ,c 的大小关系是( ) A .b <a <c B .c <b <a C .c <a <bD .b <c <a解析解析:选B 因为a =⎝ ⎛⎭⎪⎫79-14=⎝ ⎛⎭⎪⎫9714>⎝ ⎛⎭⎪⎫9715>1,c =log 2 79<0,所以a >b >c .故选B.6.(2017·长春模拟)函数y =4x+2x +1+1的值域为( )A .(0,+∞)B .(1,+∞)C .[1,+∞)D .(-∞,+∞)解析:选B 令2x=t ,则函数y =4x+2x +1+1可化为y =t 2+2t +1=(t +1)2(t >0).∵函数y =(t +1)2在(0,+∞)上递增, ∴y >1.∴所求值域为(1,+∞).故选B.7.(2016·大连二模)定义运算:x y =⎩⎪⎨⎪⎧x ,xy ≥0,y ,xy <0,例如:34=3,(-2)4=4,则函数f (x )=x2(2x -x 2)的最大值为( )A .0B .1C .2D .4解析:选D 由题意可得f (x )=x2(2x -x 2)=⎩⎪⎨⎪⎧x 2,0≤x ≤2,2x -x 2,x >2或x <0,当0≤x ≤2时,f (x )∈[0,4];当x >2或x <0时,f (x )∈(-∞,0). 综上可得函数f (x )的最大值为4,故选D.8.已知函数f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,且在x =0处有意义,则该函数为( )A .(-∞,+∞)上的减函数B .(-∞,+∞)上的增函数C .(-1,1)上的减函数D .(-1,1)上的增函数解析:选D 由题意知,f (0)=lg(2+a )=0,∴a =-1,∴f (x )=lg ⎝ ⎛⎭⎪⎫21-x -1=lg x +11-x ,令x +11-x >0,则-1<x <1,排除A 、B ,又y =21-x -1=-1+-2x -1在(-1,1)上是增函数,∴f (x )在(-1,1)上是增函数.选D. 二、填空题9.(2017·连云港调研)当x >0时,函数y =(a -8)x的值恒大于1,则实数a 的取值范围是________.解析:由题意知,a -8>1,解得a >9. 答案:(9,+∞)10.若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝ ⎛⎭⎪⎫12的值等于________. 解析:设f (x )=x a, 又 f (4)=3 f (2), ∴4a=3×2a, 解得a =log 23, ∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12log 23=13. 答案:1311.若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是________.解析:当0<a <1时,log a 34<log a a =1,解得0<a <34;当a >1时,log a 34<log a a =1,解得a >1.答案:⎝ ⎛⎭⎪⎫0,34∪(1,+∞) 12.若函数f (x )=x 2+a |x -2|在(0,+∞)上单调递增,则实数a 的取值范围是________.解析:∵f (x )=x 2+a |x -2|,∴f (x )=⎩⎪⎨⎪⎧x 2+ax -2a ,x ≥2,x 2-ax +2a ,x <2,又f (x )在(0,+∞)上单调递增,∴⎩⎪⎨⎪⎧-a2≤2,a 2≤0,即-4≤a ≤0,即实数a 的取值范围是[-4,0]. 答案:[-4,0] 三、解答题13.设a >0,且a ≠1,函数y =a 2x+2a x-1在[-1,1]上的最大值是14,求实数a 的值.解:令t =a x(a >0,且a ≠1),则原函数化为y =f (t )=(t +1)2-2(t >0).①当0<a <1,x ∈[-1,1]时,t =a x∈⎣⎢⎡⎦⎥⎤a ,1a ,此时f (t )在⎣⎢⎡⎦⎥⎤a ,1a上为增函数.所以f (t )max =f ⎝ ⎛⎭⎪⎫1a =⎝ ⎛⎭⎪⎫1a+12-2=14.所以⎝ ⎛⎭⎪⎫1a +12=16,所以a =-15或a =13.又因为a >0,所以a =13.②当a >1,x ∈[-1,1]时,t =a x∈⎣⎢⎡⎦⎥⎤1a,a ,此时f (t )在⎣⎢⎡⎦⎥⎤1a ,a 上是增函数. 所以f (t )max =f (a )=(a +1)2-2=14, 解得a =3或a =-5(舍去).综上得a =13或3.14.已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集.解:(1)要使函数f (x )有意义,则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1.故所求函数f (x )的定义域为{x |-1<x <1}.(2)由(1)知f (x )的定义域为{x |-1<x <1}, 且f (-x )=log a (-x +1)-log a (1+x ) =-[log a (x +1)-log a (1-x )]=-f (x ), 故f (x )为奇函数.(3)因为当a >1时,f (x )=log a x +11-x 在定义域(-1,1)内是增函数,所以f (x )>0⇔x +11-x>1,解得0<x <1.所以使f (x )>0的x 的解集是{x |0<x <1}.。
2018版高考数学(理)一轮复习文档:第八章8.2 空间几何体的表面积与体积含解析
1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrlS圆台侧=π(r1+r2)l3.柱、锥、台和球的表面积和体积名称几何体表面积体积柱体S表面积=S侧+2S V=Sh【知识拓展】1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=错误!a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=错误!a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=错误!。
(3)正四面体的外接球与内切球的半径之比为3∶1.【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)多面体的表面积等于各个面的面积之和.( √)(2)锥体的体积等于底面积与高之积.( ×)(3)球的体积之比等于半径比的平方.(×)(4)简单组合体的体积等于组成它的简单几何体体积的和或差.(√)(5)长方体既有外接球又有内切球.( ×)(6)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( ×)1.(教材改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为()A.1 cm B.2 cmC.3 cm D。
错误!cm答案B解析S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2 cm.2.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90 cm2B.129 cm2C.132 cm2D.138 cm2答案D解析该几何体如图所示,长方体的长,宽,高分别为6 cm,4 cm,3 cm,直三棱柱的底面是直角三角形,边长分别为3 cm,4 cm,5 cm,所以表面积S=[2×(4×6+4×3)+3×6+3×3]+(5×3+4×3+2×错误!×4×3)=99+39=138(cm2).3.(2016·全国甲卷)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A.12π B.错误!πC.8π D.4π答案A解析由题意可知正方体的棱长为2,其体对角线2错误!即为球的直径,所以球的表面积为4πR2=(2R)2π=12π,故选A。
2018年高考数学(理)总复习双基过关检测:“算法初步、复数、推理与证明”含解析
“算法初步、复数、推理与证明”双基过关检测一、选择题1.(2017·广州模拟)已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则 (a +b i)2=( )A .3+4iB .5+4iC .3-4iD .5-4i解析:选A 由a -i 与2+b i 互为共轭复数,可得a =2,b =1,故(a +b i)2=(2+i)2=3+4i.2.(2017·西安质检)已知复数z =1+2i2-i (i 为虚数单位),则z 的虚部为( ) A .-1 B .0 C .1D .i解析:选C ∵z =1+2i2-i =++-+=5i5=i , 故虚部为1.3.分析法又称执果索因法,若用分析法证明“设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0解析:选Cb 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0.4.利用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1)C.2k +1k +1 D.2k +3k +1解析:选B 当n =k (k ∈N *)时, 左式为(k +1)(k +2) ·…·(k +k );当n =k +1时,左式为(k +1+1)(k +1+2)·…·(k +1+k -1)(k +1+k )(k +1+k +1),则左边应增乘的式子是k +k +k +1=2(2k +1).5.如图所示,程序框图(算法流程图)的输出结果是( )A .-2B .0C .-1D .-3解析:选A 第一次循环:x =2×1=2,y =1-1=0,满足条件继续循环;第二次循环:x =2×2=4,y =0-1=-1,满足条件继续循环;第三次循环:x =2×4=8,y =-1-1=-2,不满足条件,跳出循环体,输出的y =-2,故选A.6.(2017·龙岩质检)若数列{a n }是等差数列,b n =a 1+a 2+…+a nn,则数列{b n }也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n = n c n1+c n 2+…+c n nnD .d n =nc 1·c 2·…·c n解析:选D 因为数列{a n }是等差数列,所以b n =a 1+a 2+…+a n n =a 1+(n -1)·d2(d为等差数列{a n }的公差),{b n }也为等差数列,因为正项数列{c n }是等比数列,设公比为q ,则d n =n c 1·c 2·…·c n =nc 1·c 1q ·…·c 1qn -1=c 1q n -12,所以{d n }也是等比数列.7.按如下程序框图,若输出结果为273,则判断框内应补充的条件为( )A .i >7B .i ≥7C .i >9D .i ≥9解析:选B 由程序框图可知:第一步,S =0+31=3,i =3;第二步,S =3+33=30,i =5;第三步,S =30+35=273,i =7.故判断框内可填i ≥7,选B.8.(2017·西安五校联考)已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1)解:选B 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n n +2个“整数对”,注意到+2<60<+2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).二、填空题9.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是________.解析:“至少有n 个”的否定是“最多有n -1个”,故应假设a ,b 中没有一个能被5整除.答案:a ,b 中没有一个能被5整除 10.(2017·郑州一中质检)若复数z =a +ii(其中i 为虚数单位)的实部与虚部相等,则实数a =________.解析:因为复数z =a +i i =a i +i 2i2=1-a i ,所以-a =1,即a =-1. 答案:-111.(2016·江西八校联考)执行如图所示的程序框图,输出的s 是________.解析:第一次循环:i =1,s =1;第二次循环:i =2,s =-1;第三次循环:i =3,s =2;第四次循环:i =4,s =-2,此时i =5,执行s =3×(-2)=-6.答案:-612.(2017·河南三市联考)设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为____________.解析:∵f (21)=32,f (22)>2=42,f (23)>52,f (24)>62,∴归纳得f (2n)≥n +22(n ∈N *).答案:f (2n)≥n +22(n ∈N *)三、解答题13.若a >b >c >d >0且a +d =b +c , 求证:d +a <b +c . 证明:要证d +a <b +c , 只需证(d +a )2<(b +c )2, 即证a +d +2ad <b +c +2bc ,因为a +d =b +c ,所以只需证ad <bc ,即证ad <bc , 设a +d =b +c =t ,则ad -bc =(t -d )d -(t -c )c =(c -d )(c +d -t )<0, 故ad <bc 成立,从而d +a <b +c 成立.14.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,所以d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1),得b n =S n n=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列, 则b 2q =b p b r ,即(q +2)2=(p +2)(r +2), 所以(q 2-pr )+2(2q -p -r )=0.因为p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,所以⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0.所以p=r,这与p≠r矛盾,所以数列{b n}中任意不同的三项都不可能成为等比数列.。
2018年高考数学(理)总复习 双基过关检测:“椭圆、双曲线、抛物线”含解析
“椭圆、双曲线、抛物线”双基过关检测一、选择题1.以x 轴为对称轴,原点为顶点的抛物线上的一点P (1,m )到焦点的距离为3,则抛物线的方程是( )A .y =4x 2B .y =8x 2C .y 2=4xD .y 2=8x解析:选D 设抛物线的方程为y 2=2px ,则由抛物线的定义知1+p 2=3,即p =4,所以抛物线方程为y 2=8x .2.(2017·济南第一中学检测)抛物线y =4x 2的焦点坐标是( )A.⎝⎛⎭⎫116,0B .(1,0) C.⎝⎛⎭⎫0,116 D .(0,1)解析:选C 抛物线的标准方程为x 2=14y ,则p =18,所以焦点坐标是⎝⎛⎭⎫0,116. 3.(2017·贵州七校联考)已知双曲线x 2+my 2=1的虚轴长是实轴长的两倍,则实数m 的值是( )A .4B .-14 C.14 D .-4解析:选B 由双曲线的方程知a =1,b = -1m , 又b =2a ,所以 -1m =2,解得m =-14,故选B. 4.已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( ) A .2B .3C .4D .9解析:选B 由左焦点为F 1(-4,0)知c =4.又a =5,∴25-m 2=16,解得m =3或-3.又m >0,故m =3.5.(2016·甘肃张掖一诊)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=( )A .9B .8C .7D .6解析:选B 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.故选B.6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 解析:选A 由椭圆的性质知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,又∵△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=43,∴a = 3.又e =33,∴c =1.∴b 2=a 2-c 2=2, ∴椭圆的方程为x 23+y 22=1,故选A. 7.椭圆ax 2+by 2=1与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则a b =( ) A.32 B.233C.932D.2327 解析:选A 设A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),结合题意,由点差法得,y 2-y 1x 2-x 1=-a b ·x 1+x 2y 1+y 2=-a b ·x 0y 0=-a b ·23=-1,∴a b =32. 8.已知双曲线x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A.⎝⎛⎭⎫-33,33 B.()-3,3 C.⎣⎡⎦⎤-33,33 D.[]-3,3解析:选C 由题意知F (4,0),双曲线的两条渐近线方程为y =±33x .当过点F 的直线与渐近线平行时,满足与右支只有一个交点,画出图象,数形结合可知应选C.二、填空题9.(2016·北京高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________,b =________.解析:因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为2x +y =0,即y =-2x , 所以b a =2.①又双曲线的一个焦点为(5,0),所以a 2+b 2=5.②由①②得a =1,b =2.答案:1 210.(2016·山东高考)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.解析:如图,由题意知|AB |=2b 2a,|BC |=2c . 又2|AB |=3|BC |,∴2×2b 2a =3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2并整理得2e 2-3e -2=0,解得e =2(负值舍去). 答案:211.已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________.解析:设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152, ∴P 点坐标为⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1. 答案:⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1 12.(2017·西安中学模拟)如图,过抛物线y =14x 2的焦点F 的直线l 与抛物线和圆x 2+(y -1)2=1交于A ,B ,C ,D 四点,则AB ―→·DC ―→=________.解析:不妨设直线AB 的方程为y =1,联立⎩⎪⎨⎪⎧y =1,y =14x 2,解得x =±2,则A (-2,1),D (2,1),因为B (-1,1),C (1,1),所以AB ―→=(1,0),DC ―→=(-1,0),所以AB ―→·DC ―→=-1.答案:-1三、解答题13.(2017·揭阳一中期末)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,右焦点为F (1,0).(1)求椭圆E 的标准方程;(2)设点O 为坐标原点,过点F 作直线l 与椭圆E 交于M ,N 两点,若OM ⊥ON ,求直线l 的方程. 解:(1)依题意可得⎩⎪⎨⎪⎧ 1a =22,a 2=b 2+1,解得a =2,b =1,所以椭圆E 的标准方程为x 22+y 2=1. (2)设M (x 1,y 1),N (x 2,y 2),①当MN 垂直于x 轴时,直线l 的方程为x =1,不符合题意;②当MN 不垂直于x 轴时,设直线l 的方程为y =k (x -1).联立得方程组⎩⎪⎨⎪⎧ x 22+y 2=1,y =k (x -1),消去y ,整理得(1+2k 2)x 2-4k 2x +2(k 2-1)=0,所以x 1+x 2=4k 21+2k 2,x 1x 2=2(k 2-1)1+2k 2. 所以y 1y 2=k 2[x 1x 2-(x 1+x 2)+1]=-k 21+2k 2. 因为OM ⊥ON ,所以OM ―→·ON ―→=0,所以x 1x 2+y 1y 2=k 2-21+2k 2=0, 所以k =±2,即直线l 的方程为y =±2(x -1).14.已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解:(1)由抛物线的定义得|AF |=2+p 2. 因为|AF |=3,即2+p 2=3,解得p =2, 所以抛物线E 的方程为y 2=4x .(2)因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±2 2.由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧ y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12, 从而B ⎝⎛⎭⎫12,-2.又G (-1,0),所以k GA =22-02-(-1)=223, k GB =-2-012-(-1)=-223, 所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.。
2018届高考数学(全国通用)二轮复习基础小题精品课件 第13讲 空间几何体
明辨是非
演练模拟
研透考点
核心考点突破练
考点一 三视图与直观图
要点重组 (1)三视图画法的基本原则:长对正,高平齐,宽相 等;画图时看不到的线画成虚线. (2)由三视图还原几何体的步骤
定底面 — 根据俯视图确定 ↓
定棱及侧面 — 虚线对应棱的位置 ↓ 定形状 — 确定几何体的形状 根据正主视图确定几何体的侧棱与侧面特征,调整实线、
1 D.3
解析 根据几何体的三视图,
得该几何体是如图所示的直三棱柱, 且该三棱柱的底面是直角边长为1的等腰直角三角形, 高为1,
1 1 所以该三棱柱的体积为 V=Sh=2×1×1×1=2,故选 C.
6 7 8 9 10
解析
答案
9. 已知某几何体的三视图如图所示,其中
俯视图是正三角形,则该几何体的体积为 2 3 _____. 解析 由题可知,该几何体是由如图所示 的 三 棱 柱 ABC - A1B1C1 截 去 四 棱 锥 A - BEDC得到的,
(3)直观图画法的规则:斜二测画法.
1.将长方体截去一个四棱锥,得到的几何体如图所示,则该几 何体的侧(左)视图为
√
解析 被截去的四棱锥的三条可见棱中,有两条棱为长方体的 两条对角线,它们在右侧面上的投影与右侧面 ( 长方形 ) 的两条
边重合,另一条为体对角线,它在右侧面上的投影与右侧面的
对角线重合,对照各图,只有D项符合.
1 2 3 4 5
解析
答案
2.(2017· 全国Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画 出的是某几何体的三视图,该几何体由一平面将一圆柱截去一 部分后所得,则该几何体的体积为
A.90π
B.63π
C.42π
D.36π
2018年高考数学(理)总复习 双基过关检测:“直线与圆”含解析
“直线与圆”双基过关检测一、选择题1.直线x +3y +m =0(m ∈R)的倾斜角为( )A .30°B .60°C .150°D .120° 解析:选C ∵直线的斜率k =-33,∴tan α=-33. 又0≤α≤180°,∴α=150°.故选C.2.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:选D 由图可知k 1<0,k 2>0,k 3>0,且k 2>k 3,∴k 1<k 3<k 2.3.(2017·湖北七市联考)将直线x +y -1=0绕点(1,0)沿逆时针方向旋转15°得到直线l ,则直线l 与圆(x +3)2+y 2=4的位置关系是( )A .相交B .相切C .相离D .相交或相切解析:选B 依题意得,直线l 的方程是y =tan 150°(x -1)=-33(x -1),即x +3y -1=0,圆心(-3,0)到直线l 的距离d =|-3-1|3+1=2,因此该直线与圆相切. 4.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0解析:选A 由条件知k l =-32,∴l :y -2=-32(x +1),即3x +2y -1=0,选A. 5.(2016·北京顺义区检测)若直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,则实数k 的取值范围是( )A .(-6,-2)B .(-5,-3)C .(-∞,-6)D .(-2,+∞)解析:选A 解方程组⎩⎪⎨⎪⎧ y =-2x +3k +14,x -4y =-3k -2,得⎩⎪⎨⎪⎧x =k +6,y =k +2. 因为直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,所以k +6>0且k +2<0,所以-6<k <-2.故选A.6.直线ax +by -1=0在y 轴上的截距为1,且与直线x -3y +1=0垂直,则a +b 等于( )A.43B .-23C .4D .-2 解析:选C 由题意知⎩⎨⎧1b =1,-a b ×13=-1,解得⎩⎪⎨⎪⎧ a =3,b =1.所以a +b =4. 7.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)解析:选B 直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2).又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2恒过定点(0,2).8.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+()y -12=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1 D.()x -32+(y -1)2=1解析:选A 由于圆心在第一象限且与x 轴相切,故设圆心为(a,1)(a >0),又由圆与直线4x -3y =0相切可得|4a -3|5=1,解得a =2,故圆的标准方程为(x -2)2+(y -1)2=1. 二、填空题9.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =________.解析:∵A ,B ,C 三点共线,∴k AB =k AC ,∴7-54-3=x -5-1-3,∴x =-3. 答案:-310.若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________. 解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB =4-m m +2=-2,解得m =-8. 答案:-811.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12, 所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0. 答案:x +2y -3=012.已知圆C :(x +1)2+(y -1)2=1与x 轴切于A 点,与y 轴切于B 点,设劣弧的中点为M ,则过点M 的圆C 的切线方程是________.解析:因为圆C 与两轴相切,且M 是劣弧的中点,所以直线CM 是第二、四象限的角平分线,所以斜率为-1,所以过M 的切线的斜率为1.因为圆心到原点的距离为2,所以|OM |=2-1,所以M ⎝⎛⎭⎫22-1,1-22,所以切线方程为y -1+22=x -22+1,整理得y =x +2- 2.答案:y =x +2- 2三、解答题13.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求:(1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程;(3)BC 边的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2, 即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ),则x =2-22=0,y =1+32=2. BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y 2=1,即2x -3y +6=0. (3)由(1)知,直线BC 的斜率k 1=-12, 则直线BC 的垂直平分线DE 的斜率k 2=2.由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0.14.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=2 2 时,求直线l 的方程. 解:将圆C 的方程x 2+y 2-8y +12=0配方,得标准方程为x 2+(y -4)2=4, 则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切, 则有|4+2a |a 2+1=2,解得a =-34. (2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎨⎧ |CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |=2,解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.。
2018年高考数学理总复习 双基过关检测:“空间位置关
“空间位置关系”双基过关检测一、选择题1.在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线解析:选A选项A是面面平行的性质定理,是由公理推证出来的.2.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:选A如图所示,直线A1B与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交.3.(2015·北京高考)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥β⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要而不充分条件.4.(2016·南昌一模)已知a,b,c是不同的直线,α,β,γ是不同的平面,则下列命题中正确的是()A.a与b异面,b与c异面⇒a与c异面B.a与b相交,b与c相交⇒a与c相交C.α∥β,β∥γ⇒α∥γD.a⊂α,b⊂β,α与β相交⇒a与b相交解析:选C如图(1),在正方体中,a,b,c是三条棱所在直线,满足a与b异面,b 与c异面,但a∩c=A,故A错误;在图(2)的正方体中,满足a与b相交,b与c相交,但a与c不相交,故B错误;如图(3),α∩β=c,a∥c,则a与b不相交,故D错误.5.如图所示,P 为矩形ABCD 所在平面外一点,矩形对角线交点为O ,M 为PB 的中点,给出下列五个结论:①PD ∥平面AMC ;②OM ∥平面PCD ;③OM ∥平面PDA ;④OM ∥平面PBA ;⑤OM ∥平面PBC .其中正确的个数有( )A .1B .2C .3D .4解析:选C 矩形ABCD 的对角线AC 与BD 交于点O ,所以O 为BD 的中点.在△PBD 中,M 是PB 的中点,所以OM 是△PBD 的中位线,OM ∥PD ,则PD ∥平面AMC ,OM ∥平面PCD ,且OM ∥平面PDA .因为M ∈PB ,所以OM 与平面PBA 、平面PBC 相交.6.(2017·长春模拟)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A.16B.36C.13D.33解析:选B 画出正四面体ABCD 的直观图,如图所示.设其棱长为2,取AD 的中点F ,连接EF ,CF ,设EF 的中点为O ,连接CO ,则EF ∥BD ,则∠FEC 就是异面直线CE 与BD 所成的角,△ABC 为等边三角形,则CE ⊥AB ,易得CE =3,同理可得CF =3,故CE =CF .因为OE =OF ,所以CO ⊥EF .又EO =12EF =14BD =12,所以cos ∠FEC =EO CE =123=36.7.(2016·余姚模拟)如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列说法错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行 解析:选D如图,连接C1D,在△C1DB中,MN∥BD,故C正确;∵CC1⊥平面ABCD,BD⊂平面ABCD,∴CC1⊥BD,∴MN与CC1垂直,故A正确;∵AC⊥BD,MN∥BD,∴MN与AC垂直,故B正确,故选D.8.(2017·福州质检)在三棱柱ABC-A1B1C1中,E,F分别为棱AA1,CC1的中点,则在空间中与直线A1B1,EF,BC都相交的直线()A.不存在B.有且只有两条C.有且只有三条D.有无数条解析:选D在EF上任意取一点M,直线A1B1与M确定一个平面,这个平面与BC有且仅有1个交点N,当M的位置不同时确定不同的平面,从而与BC有不同的交点N,而直线MN与A1B1,EF,BC分别有交点P,M,N,如图,故有无数条直线与直线A1B,EF,BC都相交.二、填空题9.如图所示,平面α,β,γ两两相交,a,b,c为三条交线,且a∥b,则a与b,c 的位置关系是________.解析:∵a∥b,a⊂α,b⊄α,∴b∥α.又∵b⊂β,α∩β=c,∴b∥c.∴a∥b∥c.答案:a∥b∥c10.(2016·天津六校联考)设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:①若a∥α且b∥α,则a∥b;②若a⊥α且a⊥β,则α∥β;③若α⊥β,则一定存在平面γ,使得γ⊥α,γ⊥β;④若α⊥β,则一定存在直线l,使得l⊥α,l∥β.上面命题中,所有真命题的序号是________.解析:①中a与b也可能相交或异面,故不正确.②垂直于同一直线的两平面平行,正确.③中存在γ,使得γ与α,β都垂直. ④中只需直线l ⊥α且l ⊄β就可以. 答案:②③④11.(2015·浙江高考)如图,在三棱锥A -BCD 中,AB =AC =BD =CD=3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.解析:如图所示,连接DN ,取线段DN 的中点K ,连接MK ,CK . ∵M 为AD 的中点,∴MK ∥AN ,∴∠KMC 为异面直线AN ,CM 所成的角.∵AB =AC =BD =CD =3,AD =BC =2,N 为BC 的中点, 由勾股定理易求得AN =DN =CM =22,∴MK = 2. 在Rt △CKN 中,CK =(2)2+12= 3.在△CKM 中,由余弦定理,得 cos ∠KMC =(2)2+(22)2-(3)22×2×22=78.答案:7812.如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD .(只要填写一个你认为是正确的条件即可)解析:连接AC ,BD ,则AC ⊥BD ,∵PA ⊥底面ABCD ,∴PA ⊥BD . 又PA ∩AC =A ,∴BD ⊥平面PAC , ∴BD ⊥PC .∴当DM ⊥PC (或BM ⊥PC )时,即有PC ⊥平面MBD . 而PC ⊂平面PCD , ∴平面MBD ⊥平面PCD . 答案:DM ⊥PC (或BM ⊥PC ) 三、解答题13.如图所示,在三棱锥P -ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,PA =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解:(1)S △ABC =12×2×23=23,故三棱锥P -ABC 的体积为 V =13·S △ABC ·PA =13×23×2=433.(2)如图所示,取PB 的中点E ,连接DE ,AE ,则DE ∥BC , 所以∠ADE (或其补角)是异面直线BC 与AD 所成的角. 在△ADE 中,DE =2,AE =2,AD =2, 则cos ∠ADE =DE 2+AD 2-AE 22DE ·AD =22+22-22×2×2=34.即异面直线BC 与AD 所成角的余弦值为34.14.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1,F 分别是棱AD ,AA 1,AB 的中点.(1)证明:直线EE 1∥平面FCC 1; (2)证明:平面D 1AC ⊥平面BB 1C 1C .证明:(1)∵F 是AB 的中点,AB ∥ CD ,AB =4,BC =CD =2, ∴AF 綊CD ,∴四边形AFCD 为平行四边形, ∴CF ∥AD .又ABCD -A 1B 1C 1D 1为直四棱柱, ∴C 1C ∥ D 1D .而FC ∩C 1C =C ,D 1D ∩DA =D , ∴平面ADD 1A 1∥平面FCC 1. ∵EE 1⊂平面ADD 1A 1, ∴EE 1∥平面FCC 1.(2)在直四棱柱中,CC 1⊥平面ABCD ,AC ⊂平面ABCD , ∴CC 1⊥AC ,∵底面ABCD 为等腰梯形,AB =4,BC =2,F 是棱AB 的中点, ∴CF =AD =BF =2,∴△BCF 为正三角形,∠BCF =∠CFB =60°, ∠FCA =∠FAC =30°,∴AC⊥BC.又BC与CC1都在平面BB1C1C内且交于点C,∴AC⊥平面BB1C1C,而AC⊂平面D1AC,∴平面D1AC⊥平面BB1C1C.。
2018年高考数学总复习空间向量双基过关检测理
A. — 1B . 0“空间向量”双基过关检测、选择题1.在空间直角坐标系中, 点P ( m,0,0)到点P i (4,1,2)的距离为 30,则m 的值为( )A.— 9 或 1B . 9 或—1C. 5 或—5D . 2 或 3A. C.解析:选B 由题意知c = xa + yb ,即(7,6 ,入)=x (2,1 ,— 2x — y =7, I /SjZzL • x + 2y = 6, ^Zi !—3x + 3y =入,4. (2017 •揭阳期末)已知 a = (2,3 , — 4) ,b = ( — 4, — 3, — 2) ,b = :x — 2a,则 x =( ) A. (0,3 , — 6) B . (0,6 , — 20) C. (0,6 , — 6)D . (6,6 , — 6)1 解析:选 B 由 b = 2x — 2a ,得 x = 4a + 2b = (8,12 , — 16) + ( — 8, — 6,— 4)= (0,6 , — 20).解析:选B 由题意| PP | = 30, 即,m-12+— 1 2+ —22= .30, 2••• (n — 4) = 25,解得 m = 9 或 m =— 1.故选 B. 2+ —9 212_12. 已知 a =(入 + 1,0,2) , b = (6,2—1,2 入),若a// b ,贝U 入■、曰、与□的值可以是( cyA. C. —3,2解析:选 A ■/ a / b ,: b = ka ,"6 = k 入 + ], 5= 2 , AT 』2 □ — 1 = 0,解得丿 1 X 或彳 一 —2 入=2k ,□ = 2 {已知 a = (2,1 , — 3), b =(- -1,2,3) , c = (7,6 a , b , c 三向量共面,则3) + y ( — 1,2,3),解得入=—9.即(6,2 卩一1,2 入)=k (入 + 1,0,2) 3.) ,入),若.2,2入=一 3, 1 □ = 2.-- > --- > ---- > --- > --- > --- >5.在空间四边形ABC[中, AB • CD + AC • DB + AD • BC=( )D .不确定解析:选 B 如图,令 AB = a , AC = b, -AD = c ,- > > > > > >贝U AB • CD + AC • DB + AD • BC =a •(c — b ) + b ・(a — c ) + c ・(b — a ) =a -c — a °b + b -a — b ・c + c -b — c -a =0.6.如图所示,在平行六面体 ABCD -A i B C D 中,M为A C 与B D的交点.若 AB = a , AD = b , AA = c ,则下列向量中与"BM 相等的 向量是()1 1A.— §a +q b + cC.— 2a — 2b + c1 1 1 c + 2(b — a )=—歹+-b + c .7.如图,在大小为 45°的二面角 A -EF-D 中,四边形 ABFECDEF 都是边长为1的正方形,则 B, D 两点间的距离是()A. 3B. .2C. 1一 一一一解析:选 D •/ BD = BF + FE + ED ,--- A 2 ---- A 2 --- A 2 ---- A 2 --- A ---- A ------ A ----- A ----- A ----- A•••I BD |2=| BF |2+|FE |2+ |ED |2+ 2 BF • FE + 2FE • ED + 2 BF • ED谡厂=1 + 1+ 1—、2--- A--- A ----- A& (2017 •东营质检)已知 A (1,0,0) , B (0 , — 1,1) , OA + 入 OB 与 OB 的夹角为 120°, 入的值为()' jT JFA "C. 1 解析:选 A "B M = "B B + "B i M = AA +1( AD — AB)==3-边,故|而=7 3-血B=1 1B. q a + 労+ c D. 2a — |b + cw.± 6D .土6-- > ----- >1解析:选C因为0A+入0B=(1,-入,入),所以cos1 2°°=^2¥2・边=-得入二土严.经检验入=严不合题意,舍去,二入=—¥6 6 6、填空题9.已知点A(1,2,1) , B( —1,3,4),耳1,1,1),若瓜P = 2"PB,则| "PD| 的值是____________解析:设P(x, y, z),二AP = (x —1, y—2, z —1).__ 歩__ 歩__ 歩#18 x"PB = ( —1 —x, 3—y,4 —z),由 _P = 2_B得点P坐标为[—-,3,3 ,, 又D(1,1,1) | _5|=』.答案:¥-- > -- >10.如图所示,在长方体ABCDABCD中,0为AC的中点.用AB , AD ,-- > ---- > ------- >AA表示OC,贝U OC = ______- > 1 ----- > 1 -------- > -- >解析:OC= 2 AC = 2 AB + AD),-- > > > 1 > > > 1 > 1 > >--0C = 0C+ 0C = 2(AB + AD) + AA = AB + ㊁AD + AA .答案:B+2^AD+^A An11.如图所示,已知空间四边形OABCOB= OC且/ AOB=Z AOC=§,则cos < ~O A , "Be〉的值为__________ .解析:设"O A= a, "O B= b, -A由已知条件,得< a, b> = < a, c> n亍,且|b| = | c| ,_A • ~BC = a •(c —b) = a • c —a- b= *| a|| c| —*| a|| b| = 0,-- > -- A• cos < OA, BC > = 0.答案:012. (2017 •北京西城模拟)如图所示,正方体ABCDA1B1C1D的棱长为-- > --- >1,若动点P在线段BD上运动,则DC - AP的取值范围是 ___________ .解析:由题意,设 "B P =入崩,其中入€ [0,1] , "D e - "A P =----- A------ A A ----- A A 2 ------- A A A 2 ------- A A AB - ( "A B "B P ) = AB •( AB + 入BD) = AB2+ 入AB - BD = AB2+ 入AB •( AD —A ------ A 2 ------- A A—AB) = (1 —入)AB2= 1—入€ [0,1].因此DC - AP的取值范围是[0,1] 答案:[0,1]三、解答题则| a| = | b| = 1, | c| = 2, a • b= 0,13.已知平行六面体ABCDABGD中,底面ABCD是边长为1的正方形,AA= 2,/ AAB =Z AAD= 120°.⑴求线段AC的长;(2)求异面直线AC与A i D所成角的余弦值;⑶求证:AA丄BD解:(1)如图,设AB = a, AD = b, AA = c,c • a= c • b= 2x 1 x cos 120 1.-- > ----- > ----- >AC = AC + CC-- > ----- > ----- >=AB + AD + AA=a+ b+ c,• | ~A G | = | a+ b+ c| = a+ b+ c 2=-.|a|2+ |b|2+ |c|2+ 2 a • b+ b • c + c • a =,12+12+22+? 〔;一 1 - 1 = ,;2.•••线段AC的长为:2.I、⑵AC AD e -- >小—>—> | AC • AD|贝U cos e = |cos 〈AC ,, AD> | = ―——| AC|| AD|c, X D=b-c,AC = a+ b+l 2 2 2 2• AC • A D= (a+ b + c) •( b-c) = a • b- a • c + b - c = 0+ 1 + 1 —2 =- 2,2 j 2 2| AD| = ;' b- c = . b -2b • c+ c=,12——1 + 22= .7.... cos e= 1 屋卫=4^ =凹I -hl -D| 寸2x77 7故异面直线AC与AD所成角的余弦值为呼⑶证明: AA = c, B D = b-a,A A •B D = c ・(b —a) = c • b-c • a= ( - 1) - ( - 1) = 0. --- A ---- A• AA 丄BD, • AA丄BD14.如图,直三棱柱 ABCABC 中,D, E 分别是AB BB 的中点,AA ⑴证明:BC //平面A i CD (2)求二面角D-A i C-E 的正弦值.解:⑴证明:连接AC 交AC 于点F , 则F 为AC 的中点. 又D 是AB 的中点,连接DF,贝U BC / DF 因为DF ?平面ACD BC ?平面A CD 所以BC //平面A i CDAC= CB=-得 ACLBC以C 为坐标原点, CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C-xyz .设 CA= 2,则 D (i,i,0) , E (0,2,i) , A (2,0,2) , "C D = (1,1,0),"C E= (0,2,1) , ^CA = (2,0,2)设n = (X 1, y 1, z"是平面ACD 的法向量,可取 n = (1 , - 1, - 1).同理,设m = (X 2, y 2, Z 2)是平面ACE 的法向量,n • m 2 - 1 + 2 _^3| n || m = .3X3 = 3故 sin 〈 n , m 〉面角DAGE 的正弦值为可取 m = (2,1 , - 2). 】2y 2+ Z 2= 0,即仁 + 2Z 2=0,=AC= CB=#ABn • CD =0,则丫-- Aj • CA = 0,X 1+ y 1= 0, 即{2x 1 + 2z 1= 0.从而 cos 〈 n , m。
【精品】2018年高考数学(理)总复习达标检测(二十九)求解空间几何体问题的2环节——识图与计算含答案
高考达标检测(二十九)求解空间几何体问题的2环节——识图与计算一、选择题1.(2017·大连调研)如图,在长方体ABCD A 1B 1C 1D 1中点P 是棱CD 上一点,则三棱锥P A 1B 1A 的侧视图是( )解析:选D 在长方体ABCD A 1B 1C 1D 1中,从左侧看三棱锥P A 1B 1A ,B 1,A 1,A 的射影分别是C 1,D 1,D ;AB 1的射影为C 1D ,且为实线,PA 1的射影为PD 1,且为虚线.故选D.2.(2017·永州一模)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为( )A .1 B.52C. 6D .2 3解析:选D 由题意得,该几何体的直观图为三棱锥A BCD , 如图,其最大面的表面是边长为22的等边三角形,故其面积为 34×(22)2=2 3.3.(2016·太原一模)一个正三棱柱的正(主)视图和俯视图如图所示,则这个三棱柱的侧(左)视图的面积为( )A .6 3B .8C .8 3D .12解析:选A 该三棱柱的侧(左)视图为一个矩形,由“长对正,高平齐,宽相等”的原理知,其侧(左)视图的底边长为俯视图中正三角形的高,即为23,侧(左)视图的高为3,故其侧(左)视图的面积为S =23×3=63,故选A.4.如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则该四面体的体积为( )A. 23B. 43C. 83D .2解析:选A 由三视图可知,此四面体如图所示,其高为2,底面三角形的一边长为1,对应的高为2,所以其体积V =13×12×2×1×2=23,故选A.5.(2016·全国甲卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A .12π B.323π C .8πD .4π解析:选A 设正方体棱长为a ,则a 3=8,所以a =2.所以正方体的体对角线长为23,所以正方体外接球的半径为3, 所以球的表面积为4π·(3)2=12π,故选A.6.(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1解析:选 A 通过三视图可还原几何体为如图所示的三棱锥P ABC ,通过侧视图得高h =1,底面积S =12×1×1=12,所以体积V =13Sh =13×12×1=16.7.如图是某几何体的三视图,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A.16π3B.8π3C .43πD .23π解析:选A 由对称性可知外接球球心在侧视图中直角三角形的高线上,设外接球的半径为R ,则(3-R )2+12=R 2,R =233,其表面积S =4πR 2=4π⎝ ⎛⎭⎪⎫2332=16π3. 8.(2016·全国丙卷)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π B.9π2 C .6πD.32π3解析:选B 设球的半径为R , ∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3, ∴R ≤32,∴V max =43×π×⎝ ⎛⎭⎪⎫323=9π2.故选B.二、填空题9.(2016·四川高考)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.解析:由正视图知三棱锥的形状如图所示,且AB =AD =BC =CD =2,BD =23,设O 为BD 的中点,连接OA ,OC ,则OA ⊥BD ,OC ⊥BD ,结合正视图可知AO ⊥平面BCD .又OC =CD 2-OD 2=1,∴V 三棱锥A BCD =13×⎝ ⎛⎭⎪⎫12×23×1×1=33. 答案:3310.(2016·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm 2,体积是________cm 3.解析:由三视图还原几何体如图所示,下面长方体的长、宽都是4,高为2;上面正方体的棱长为 2.所以该几何体的表面积为(4×4+2×4+2×4)×2+2×2×4=80(cm 2);体积为4×4×2+23=40(cm 3). 答案:80 4011.(2016·天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m 3.解析:由三视图知,四棱锥的高为3 m ,底面平行四边形的一边长为2 m ,对应高为 1 m ,所以其体积V =13Sh =13×2×1×3=2(m 3).答案:212.如图,点O 为正方体ABCD A ′B ′C ′D ′的中心,点E 为面B ′BCC ′的中心,点F 为B ′C ′的中点,则空间四边形D ′OEF 在该正方体的各个面上的正投影可能是________(填出所有可能的序号).解析:空间四边形D′OEF在正方体的面DCC′D′及其对面ABB′A′上的正投影是①;在面BCC′B′及其对面ADD′A′上的正投影是②;在面ABCD及其对面A′B′C′D′上的正投影是③.答案:①②③三、解答题13.如图,在四棱锥PABCD中,底面为正方形,PC与底面ABCD垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD=PC2+CD2=62+62=6 2.由正视图可知AD=6,且AD⊥PD,所以在Rt△APD中,PA =PD2+AD2=22+62=6 3 cm.14.(2015·全国卷Ⅱ)如图,长方体ABCDA1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.解:(1)交线围成的正方形EHGF如图所示.(2)如图,作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为四边形EHGF为正方形,所以EH=EF=BC=10.于是MH=EH2-EM2=6,AH=10,HB=6.故S四边形A1EHA=12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱, 所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确.。
【配套K12】2018年高考数学总复习空间几何体双基过关检测理
“空间几何体”双基过关检测一、选择题1.(2017·南昌调研)某空间几何体的正视图是三角形,则该几何体不可能是( ) A .圆柱 B .圆锥 C .四面体D .三棱柱解析:选A 圆柱的正视图是矩形,则该几何体不可能是圆柱.2.用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2解析:选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.3.(2017·大连双基测试)一个球的表面积是16π,那么这个球的体积为( ) A.163π B.323πC .16πD .24π解析:选B 设球的半径为R ,则表面积是16π,即4πR 2=16π,解得R =2. 所以体积为43πR 3=32π3.4.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的底面边长为6时,其高的值为( )A .3 3 B. 3 C .2 6D .2 3解析:选D 设正六棱柱的高为h ,则可得(6)2+h 24=32,解得h =2 3.5.(2016·长春模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为( )A.323 B .64 C.3233D.643解析:选D 由三视图可知,该多面体是一个四棱锥,且由一个顶点出发的三条棱两两垂直,长度都为4,∴其体积为13×4×4×4=643,故选D.6.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B .16πC .9πD.27π4解析:选A 如图,设球心为O ,半径为r ,则在Rt △AOF 中,(4-r )2+(2)2=r 2,解得r =94,∴该球的表面积为4πr 2=4π×⎝ ⎛⎭⎪⎫942=81π4.7.(2017·南阳联考)已知一个三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( )解析:选C 由已知条件得直观图如图所示,PC ⊥底面ABC ,正视图是直角三角形,中间的线是看不见的线PA 形成的投影,应为虚线,故选C.8.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C.323cm 3D.403cm 3解析:选C 由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为2 cm 的正方体,体积V 1=2×2×2=8(cm 3);上面是底面边长为2 cm ,高为2 cm 的正四棱锥,体积V 2=13×2×2×2=83(cm 3),所以该几何体的体积V =V 1+V 2=323(cm 3).二、填空题9.如图,三棱锥V ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC ,已知其正(主)视图的面积为23,则其侧(左)视图的面积为________.解析:设三棱锥V ABC 的底面边长为a ,侧面VAC 的边AC 上的高为h ,则ah =43,其侧(左)视图是由底面三角形ABC 边AC 上的高与侧面三角形VAC 边AC 上的高组成的直角三角形,其面积为12×32a ×h =12×32×43=33.答案:3310.已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为________.解析:由俯视图可知,四棱锥顶点在底面的射影为O (如图), 又侧视图为直角三角形,则直角三角形的斜边为BC =2,斜边上的高为SO =1,此高即为四棱锥的高, 故V =13×2×2×1=43.答案:4311.(2016·北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,其底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =+2×1=32.答案:3212.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为________.解析:本题构造长方体,体对角线长为7,其在侧视图中为侧面对角线a ,在俯视图中为底面对角线b ,设长方体底面宽为1,则b 2-1+a 2-1=6,则a 2+b 2=8,利用不等式⎝ ⎛⎭⎪⎫a +b 2≤a 2+b 22=4,则a +b ≤4.答案:4 三、解答题13.已知正三棱锥V ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图; (2)求出侧视图的面积.解:(1)直观图如图所示.(2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=23,∴S △VBC =12×23×23=6.14.(2017·大庆质检)如图是一个几何体的正视图和俯视图. (1)试判断该几何体是什么几何体; (2)画出其侧视图,并求该平面图形的面积; (3)求出该几何体的体积.解:(1)由题意可知该几何体为正六棱锥.(2)其侧视图如图所示,其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图中的正六边形对边的距离,即BC =3a ,AD 的长是正六棱锥的高,即AD =3a ,∴该平面图形的面积S =12·3a ·3a =32a 2.(3)V =13×6×34a 2×3a =32a 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“空间几何体”双基过关检测
一、选择题
1.(2017·南昌调研)某空间几何体的正视图是三角形,则该几何体不可能是( )
A .圆柱
B .圆锥
C .四面体
D .三棱柱
解析:选A 圆柱的正视图是矩形,则该几何体不可能是圆柱.
2.用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,
AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为( )
A .4 cm 2
B .4 2 cm 2
C .8 cm 2
D .8 2 cm 2
解析:选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.
3.(2017·大连双基测试)一个球的表面积是16π,那么这个球的体积为( ) A.163
π B.323π C .16π D .24π
解析:选B 设球的半径为R ,则表面积是16π,即4πR 2=16π,解得R =2.
所以体积为43πR 3=32π3
. 4.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的底面边长为6时,其高的值为( )
A .3 3
B. 3 C .2 6 D .2 3
解析:选D 设正六棱柱的高为h ,则可得(6)2+h 24
=32,解得h =2 3. 5.(2016·长春模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为( )
A.323 B .64
C.3233
D.643
解析:选D 由三视图可知,该多面体是一个四棱锥,且由一个顶点出发的三条棱两
两垂直,长度都为4,∴其体积为13×4×4×4=643
,故选D. 6.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )
A.81π4
B .16π
C .9π D.27π4
解析:选A 如图,设球心为O ,半径为r ,则在Rt △AOF 中,
(4-r )2+(2)2=r 2,解得r =94
,∴该球的表面积为4πr 2=4π×⎝⎛⎭⎫942=81π4
. 7.(2017·南阳联考)已知一个三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( )
解析:选C 由已知条件得直观图如图所示,PC ⊥底面ABC ,正视
图是直角三角形,中间的线是看不见的线PA 形成的投影,应为虚线,故
选C.
8.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )
A .8 cm 3
B .12 cm 3 C.323 cm 3 D.403
cm 3
解析:选C 由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为2 cm 的正方体,体积V 1=2×2×2=8(cm 3);上面是底面边长为2 cm ,高为2 cm
的正四棱锥,体积V 2=13×2×2×2=83(cm 3),所以该几何体的体积V =V 1+V 2=323
(cm 3). 二、填空题
9.如图,三棱锥V -ABC 的底面为正三角形,侧面VAC 与底面垂直且
VA =VC ,已知其正(主)视图的面积为23
,则其侧(左)视图的面积为________. 解析:设三棱锥V -ABC 的底面边长为a ,侧面VAC 的边AC 上的高为
h ,则ah =43
,其侧(左)视图是由底面三角形ABC 边AC 上的高与侧面三角形VAC 边AC 上的高组成的直角三角形,其面积为12×32a ×h =12×32×43=33
. 答案:33
10.已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该
四棱锥的侧视图为直角三角形,则它的体积为________.
解析:由俯视图可知,四棱锥顶点在底面的射影为O (如图),
又侧视图为直角三角形,则直角三角形的斜边为BC =2,
斜边上的高为SO =1,此高即为四棱锥的高,
故V =13×2×2×1=43
. 答案:43
11.(2016·北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为________.
解析:由题意知该四棱柱为直四棱柱,其高为1,其底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =
(1+2)×12×1=32
. 答案:32
12.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为________.
解析:本题构造长方体,体对角线长为7,其在侧视图中为侧面对角线a ,在俯视图中为底面对角线b ,设长方体底面宽为1,则b 2-1+a 2-1=6,则a 2+b 2=8,利用不等式⎝⎛⎭
⎫a +b 2≤a 2+b 22=4,则a +b ≤4. 答案:4
三、解答题
13.已知正三棱锥V -ABC 的正视图、侧视图和俯视图如图所示.
(1)画出该三棱锥的直观图;
(2)求出侧视图的面积.
解:(1)直观图如图所示.
(2)根据三视图间的关系可得BC =23,
∴侧视图中VA =
42-⎝⎛⎭⎫23×32×232=23, ∴S △VBC =12
×23×23=6.
14.(2017·大庆质检)如图是一个几何体的正视图和俯视图.
(1)试判断该几何体是什么几何体;
(2)画出其侧视图,并求该平面图形的面积;
(3)求出该几何体的体积.
解:(1)由题意可知该几何体为正六棱锥.
(2)其侧视图如图所示,其中AB =AC ,AD ⊥BC ,且BC 的长是俯视
图中的正六边形对边的距离,即BC =3a ,AD 的长是正六棱锥的高,即
AD =3a , ∴该平面图形的面积S =12·3a ·3a =32
a 2. (3)V =13×6×34a 2×3a =32
a 3.。