期中考复习题
2019年重庆市九年级下期中考填空、选择难点题专题复习讲座四:一次函数与行程问题
2019年重庆数学中考填空、选择难点题专题复习讲座四——一次函数与行程问题【例题】在一条笔直的公路上顺次有A、B、C三地,甲车从B地出发往A地匀速行驶,到达A地后停止.在甲车出发的同时,乙车也从B地出发往A地匀速行驶,到达A地停留1小时后,调头按原速向C地行驶.若AB两地相距300千米,在两车行驶的过程中,甲、乙两车之间的距离y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示,则在两车出发后经过_____小时相遇.【答案】【分析】观察函数图像可知A、C两地的间距,由速度=路程÷时间可求出乙车的速度,结合甲、乙两车速度间的关系可求出甲车的速度,再求出乙车从A地返回时两车的间距,依据相遇时间=4+两车的间距÷两车的速度和,即求出甲、乙两车相遇的时间.【详解】解:最总两车相距400km, A、C两地相距400km,乙车的速度为(300+400)÷(8-1)=100km/h,甲车的速度为100-120÷3=60 km/h,乙车从A地返回时,两车的间距为300-60×4=60km,∴两车相遇的时间为4+60÷(100+60)=.故答案为:.巩固练习:1、甲骑自行车从A地到B地,甲出发1分钟后乙骑平衡车从A地沿同一条路线追甲,追,甲继续上甲时,平衡车电量刚好耗尽,乙立即手推平衡车返回A地,速度变为原速度的13向B地骑行,结果甲、乙同时到达各自的目的地并停止行进.整个过程中,两人均保持各自的速度匀速行驶,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的部分关系如图所示,则A,B两地相距的路程为米.1、解:设A、B两地间的路程为x千米,根据题意得: (x-36)/(10-8)=(36+36)/(12-10)解得:x=108.答:A、B两地间的路程为108千米.2、一辆客车和一辆货车沿着同一条线路以各自的速度匀速从甲地行驶到乙地,货车出发3小时后客车再出发,客车行驶一段时间后追上货车并继续向乙地行驶,客车到达乙地休息1小时后以原速按原路匀速返回甲地,途中与货车相遇.客车和货车之间的距离(千米)与客车出发的时间(小时)之间的关系的部分图象如图所示.当客车返回与货车相遇时,客车与甲地相距________千米.2、【答案】【解析】根据图象求出货车和客车的速度,求出客车开始返程至遇见货车用时,进而求出两地的距离.详解:货车3小时行驶270千米,可知货车速度为,客车9小时追上客车,可知客车速度为,客车开始返程至遇见货车用时,客车与甲地相距故答案为:.点睛:考查一次函数的实际应用问题,此类题是今几年中考热点,关键是根据一次函数的性质和图象结合实际问题求解.3、甲从A地到B地,1分钟后乙沿同一条路线也从A地道B地,在A、B之间的C地乙追上甲,甲立即返回A地,乙继续向B地前行,两人到达各自目的地后停止行走,在整个过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟之间的关系如图所示,则乙到达B地时,甲与A地相距的路程是米。
2024年中考 数学总复习 题型训练四 几何最值问题
题型四几何最值问题类型一利用“垂线段最短”解决最值问题1. 如图,在△ABC中,AC=BC=6,AB=8,点D在AC边上,连接BD,以AD,BD为邻边作▱ADBE,连接DE,则DE的最小值为________.第1题图2. 如图,在△ABC中,AC=BC=6,S△ABC=12,点D为AB的中点,点M,N分别是CD 和BC上的动点,则BM+MN的最小值是________.第2题图3. 如图,四边形ABCD是菱形,对角线AC,BD相交于点O,点P是BD上一动点,点E 是BC上一动点,若AC=6,BD=63,则PC+PE的最小值为________.第3题图4. 如图,在△OAB中,已知∠AOB=35°,点P是边AB上一点,点M,N分别是射线OA,OB上异于点O的动点,连接PO,PM,MN,若∠BOP=10°,OP=6,则PM+MN的最小值为________.第4题图类型二 利用“两点之间线段最短”解决最值问题1. 如图,在矩形ABCD 中,AB =6,AD =8,点P 是矩形ABCD 内一点,记a =S △APB +S △CPD ,b =P A +PB +PC +PD ,则a +b 的最小值为________.第1题图2. 如图,在四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,AB =1,AD =2,M ,N 分别为BC ,CD 边上的动点,则△AMN 周长的最小值为________.第2题图3. 如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,BC =43 ,点D 为边BC 上的动点,点E 为边AB 的中点,连接DE ,DA ,则线段DE +DA 的最小值为________.第3题图4. 如图,在等腰Rt △ABC 中,AB =AC =22 ,∠A =90°,点P 是△ABC 内部一点,且满足S △BCP =12S △ABC ,则PB +PC 的最小值为________.第4题图5. 如图,二次函数y =-23 x 2-43x +2的图象与x 轴分别交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,点P 是其对称轴上一点,连接PB ,PC ,BC ,则△PBC 的周长最小为________.第5题图类型三 利用“二次函数性质”解决最值问题(2021.9)1. 我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c, 记p =a +b +c 2,则其面积S =p (p -a )(p -b )(p -c ) .这个公式也被称为海伦-秦九韶公式.若p =5,c =4,则此三角形面积的最大值为( )A. 5B. 4C. 25D. 52. 如图,在矩形ABCD 中,AB =2,AD =3,P 是BC 上的任意一点(P 与B ,C 不重合),过点P 作AP ⊥PE ,垂足为P ,PE 交CD 于点E ,连接AE ,在点P 的运动过程中,线段CE 的最大值为________.第2题图3. 如图,在等腰△ABC 中,AC =BC =4,∠C =120°,点P 是AC 上一动点,PD ∥AB ,交BC 于点D ,连接AD ,则点P 在运动过程中,△APD 的面积的最大值为________.第3题图4. 如图,矩形ABCD中,AB=6,BC=4,点E,F分别为边AB,CD上的动点,且AE=CF,将线段EF绕点F逆时针旋转90°得到线段FG,连接DG.(1)当点E为AB的中点时,线段DG的长是________;(2)当点E在边AB上运动时,线段DG的最小值是________.第4题图类型四利用“辅助圆”解决最值问题(8年3考:2021.10、17,2020.17)1. 如图,在矩形ABCD中,AB=6,AD=25,E是边CD上一点,将△ADE沿直线AE 折叠得到△AFE,BF的延长线交边CD于点G,则DG长的最大值为________.第1题图2. 如图,在正方形ABCD中,E,F分别是AB,BC边上的动点(不与正方形的顶点重合),且AE=BF,CE,DF交于点M,连接BM,若AB=2,则BM的最小值为________.第2题图3.如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,E,F分别是AC,BC边上的动点,且EF=AC,P是EF的中点,连接AP,BP,则△APB面积的最小值为________.第3题图4. 如图,已知△ABC为等边三角形,AB=6,将边AB绕点A顺时针旋转a(0°<a<120°),得到线段AD,连接CD,点E为CD上一点,且DE=2CE.连接BE,则BE的最小值为________.第4题图5. 如图,在△ABC中,∠C=45°,∠B=60°,BC=3+1,P为边AB上一动点,过点P 作PD⊥BC于点D,PE⊥AC于点E,连接DE,则DE的最小值为________.第5题图题型四 几何最值问题类型一 利用“垂线段最短”解决最值问题 1. 853【解析】如解图,设DE 与AB 交于点O ,∵四边形ADBE 是平行四边形,∴OB =OA ,DE =2OD ,∴当OD ⊥AC 时,DO 的值最小,即DE 的值最小,过点B 作BH ⊥AC 于点H ,则∠BHD =∠EDH =90°,易知AD ∥BE ,即AC ∥BE ,∴∠EBH =90°,∴四边形BHDE 是矩形,∴DE =BH ,∵AC =BC =6,AB =8,∴设CH =x ,则AH =6-x ,∵BA 2-AH 2=BH 2=BC 2-CH 2,即82-(6-x )2=62-x 2,解得x =23 ,∴CH =23,∴DE =BH =BC 2-CH 2 =853 .∴DE 的最小值为853.第1题解图2. 4 【解析】如解图,作点N 关于DC 的对称点N ′.∵AC =BC ,点D 为AB 的中点,∴点N ′在AC 上,连接MN ′,BN ′,∴BM +MN =BM +MN ′≥BN ′,∴当B ,M ,N ′三点共线,且BN ′⊥AC 时,BM +MN 取得最小值.∵AC =6,S △ABC =12,∴△ABC 中AC 边上的高为4,∴BM +MN 的最小值是4.第2题解图3. 33 【解析】如解图,作点E 关于BD 的对称点E ′,连接PE ′,∵四边形ABCD 是菱形,∴BA 与BC 关于BD 对称,∴点E ′位于BA 上,由对称的性质可知,PE =PE ′,∴当C ,P ,E ′三点重合,且CE ′⊥BA 时,PC +PE 的值最小,即为CE ′的长,∵四边形ABCD 是菱形,∴AO =CO =12 AC =3,BO =DO =12BD =33 ,AC ⊥BD ,AB =BC ,∴在Rt △BOC 中,BC =BO 2+CO 2 =6,tan ∠BCO =BO CO=3 ,∴∠BCO =60°,∴△ABC 是等边三角形,∴CE ′=BC ·sin 60°=33 ,∴PC +PE 的最小值为33 .第3题解图 4. 33 【解析】如解图,作点P 关于OA 的对称点P ′,连接OP ′,过点P ′作OB 的垂线交OA 于点M ,交OB 于点N ,此时PM +MN 的值最小,最小值为线段P ′N 的长.∵∠AOB =35°,∠BOP =10°,点P ′与点P 关于OA 对称,∴∠POA =∠P ′OA =25°,∴∠BOP ′=60°,OP ′=OP =6,在Rt △P ′ON 中,P ′N =OP ′·sin 60°=6×32=33 ,∴PM +MN 的最小值为33 .第4题解图类型二 利用“两点之间线段最短”解决最值问题1. 44 【解析】如解图,过点P 作EF ⊥AB ,分别交AB ,CD 于点E ,F ,连接AC ,BD ,则EF =AD =8,∵四边形ABCD 是矩形,∴∠ABC =90°,AB =CD =6,AD =BC =8,∴AC=AB 2+BC 2 =62+82 =10,∴BD =AC =10,∵S △APB +S △CPD =12 AB ·PE +12 CD ·PF =12AB ·EF =12×6×8=24,P A +PC ≥AC ,PB +PD ≥BD ,∴当A ,P ,C 三点共线,B ,P ,D 三点也共线时,P A +PB +PC +PD 有最小值,最小值为AC +BD =20,∴a +b 的最小值为24+20=44.第1题解图2. 27 【解析】如解图,分别作A 关于BC 和CD 的对称点A ′,A ″,连接A ′A ″,交BC 于点M ,交CD 于点N ,则A ′A ″即为△AMN 的周长最小值,作A ′H ⊥DA 交DA 的延长线于点H ,∴AA ′=2AB =2,AA ″=2AD =4,∵∠BAD =120°,∴∠HAA ′=60°,∴在Rt △A ′HA 中,AH =12 AA ′=1,∴A ′H =22-12 =3 ,A ″H =AH +AA ″=1+4=5,∴A ′A ″=A ′H 2+A ″H 2 =27 ,∴△AMN 的周长最小值为27 .第2题解图3. 43 【解析】如解图,作点E 关于BC 的对称点E ′,连接EE ′,交BC 于点F ,连接DE ′,AE ′,过点E ′作E ′G ⊥AC 交AC 的延长线于点G ,则DE =DE ′,EF =E ′F ,DE +DA =DE ′+DA ≥AE ′,∴当A ,D ,E ′在同一直线上时,DE +DA 的值最小,最小值为AE ′的长,∵∠ACB =90°,∠ABC =30°,BC =43 ,∴AC =33 BC =33×43 =4,∵点E 为边AB 的中点,∴EF 为△ABC 的中位线,∴EF =12 AC =2,CF =12BC =23 ,∴E ′F =EF =2=CG ,E ′G =CF =23 ,∴AG =AC +CG =4+2=6,∴AE ′=E ′G 2+AG 2 =(23)2+62 =43 ,∴DE +DA 的最小值为43 .第3题解图4. 25 【解析】如解图,过点A 作AD ⊥BC 于点D ,∵AB =AC =22 ,∠BAC =90°,∴AD =2,BC =4,∵S △BCP =12S △ABC ,∴点P 到BC 的距离为1,即点P 在AD 的垂直平分线l 上运动,作点B 关于直线l 的对称点B ′,连接B ′C 交直线l 于点P ′,连接BP ′,B ′P ,则BB ′⊥BC ,BP ′=B ′P ′,BP =B ′P ,∴BP +PC =B ′P +PC ≥B ′C ,当B ′,P ,C 三点共线,即点P 与点P ′重合时,BP +PC 的值最小,为B ′C 的长.在Rt △B ′BC 中,BB ′=2,BC =4,∴B ′C =BB ′2+BC 2 =25 ,∴PB +PC 的最小值为25 .第4题解图5. 13 +5 【解析】如解图,连接AC ,AP ,令y =0,得x =-3或1,∴点A (-3,0),点B (1,0),∴抛物线的对称轴是直线x =-1,OA =3,OB =1,令x =0,得y =2,∴点C (0,2),∴OC =2,∴BC =OB 2+OC 2 =5 ,AC =OA 2+OC 2 =13 ,∵△PBC 的周长为PB +PC +BC ,BC 为定值,∴要使△PBC 的周长最小,则PB +PC 最小即可,∵点A 与点B 关于对称轴对称,∴P A =PB ,∴PB +PC =P A +PC ≥AC ,∴PB +PC 的最小值为AC 的长,∴△PBC 的周长最小值=AC +BC =13 +5 .第5题解图类型三 利用“二次函数性质”解决最值问题1. C 【解析】∵p =5,c =4,∴S =5(5-a )(5-b )(5-4) =5(5-a )(5-b ) ,∵p =a +b +c 2 ,∴a +b =2p -c =6,∴b =6-a ,∴S =5(5-a )[5-(6-a )] =5(5-a )(a -1) =-5(a -3)2+20 ,∵-5<0,∴当a =3时,S 有最大值为20 =25 .2. 98【解析】∵四边形ABCD 是矩形,∴∠B =∠C =90°,∵AP ⊥PE ,∴∠APB +∠CPE =∠CPE +∠PEC =90°,∴∠APB =∠PEC ,∴△ABP ∽△PCE ,∴AB PC =BP CE,设BP =x ,CE =y ,则PC =3-x ,即23-x =x y,∴y =-12 x 2+32 x =-12 (x -32 )2+98 ,∵-12 <0,∴当x =32 时,y 有最大值,最大值是98 ,∴线段CE 的最大值为98 . 3. 3 【解析】如解图,过点C 作CE ⊥AB 于点E ,过点P 作PF ⊥AB 于点F ,设AP =x ,则CP =4-x ,∵AC =BC ,∠C =120°,∴∠BAC =∠B =30°,AE =BE ,∴CE =12AC =2,PF =12 AP =12x ,在Rt △AEC 中,由勾股定理得AE =42-22 =23 ,∴AB =2AE =43 ,∵PD ∥AB ,∴△PCD ∽△ACB ,∴PC AC =PD AB ,∴4-x 4 =PD 43,解得PD =3 (4-x ),∴S △APD =12 PD ·PF =12 ×3 (4-x )×12 x =-34 (x -2)2+3 ,∵-34<0,∴当x =2时,S △APD 有最大值,最大值为3 .第3题解图4. (1)1 【解析】∵点E 为AB 的中点,AE =CF ,∴点F 为CD 的中点,∴EF =FG =4,此时F ,D ,G 三点共线,∴DG =FG -FD =1; (2)255 【解析】如解图,过点F 作FH ⊥AB 于点H ,过点G 作IG ⊥CD 于点I ,则∠EHF =∠GIF =90°,由题意可知∠EFG =90°,EF =GF ,∴∠EFH +∠EFI =∠EFI +∠GFI =90°,∴∠EFH =∠GFI ,∴△EFH ≌△GFI (AAS),∴EH =GI ,设AE =a ,①当0<a <3时,如解图①,GI =EH =6-2a ,ID =FD -FI =FD -FH =6-a -4=2-a ,∴DG 2=ID 2+IG 2=(2-a )2+(6-2a )2=5a 2-28a +40=5(a -145 )2+45 ,∵5>0,∴当a =145 时,DG 2取最小值45,∴DG =255;②当3≤a <6时,如解图②,GI =EH =2a -6,ID =FI -FD =FH -AE +EH =4-a +2a -6=a -2,∴DG 2=ID 2+IG 2=(a -2)2+(2a -6)2=5a 2-28a +40=5(a -145)2+45 ,∵5>0,3≤a <6,∴当a =3时,DG 2取最小值1,∴DG =1,∵1>255,∴DG 的最小值为255.第4题解图类型四 利用“辅助圆”解决最值问题1. 2 【解析】如解图,以点A 为圆心,AD 长为半径画弧,过点B 作弧的切线交CD 于点G ,切点为F ,此时点E 和点G 重合,DG 的最大值即为DE 的长,∵四边形ABCD 是矩形,∴BC =AD =25 ,AB =CD =6,由折叠的性质可知,DE =EF ,AF =AD =25 ,设DE =EF =x ,则CE =CD -DE =6-x ,在Rt △ABF 中,由勾股定理得BF =AB 2-AF 2 =4,则BE =BF +EF =4+x ,在Rt △BEC 中,由勾股定理得BE 2=CE 2+BC 2,即(4+x )2=(6-x )2+(25 )2 ,解得x =2,即DG 的最大值为2.第1题解图 2. 5 -1 【解析】如解图,取CD 的中点O ,连接BO ,∵四边形ABCD 为正方形,∴AB =BC =CD =AD ,∠EBC =∠FCD =90°,∵AE =BF ,∴AE +BE =BF +CF ,∴BE =CF ,∴△EBC ≌△FCD (SAS),∴∠BCE =∠CDF ,∵∠BCE +∠DCE =∠BCD =90°,∴∠CDF +∠ECD =90°,∴∠CMD =90°,当点E ,F 分别在AB 和BC 上移动时,点M 在以CD 的中点O 为圆心,OC 长为半径的半圆上运动,要使BM 取得最小值,则需点B ,M ,O 在同一条直线上.∵AB =2,∴CO =1,∴BO =5 ,∴此时BM =5 -1,即BM 的最小值为5 -1.第2题解图3. 9 【解析】如解图,过点P 作PH ⊥AB 于点H ,则S △ABP =12AB ·PH =5PH ,∴当PH 最小时,△ABP 的面积最小.∵∠ACB =90°,AB =10,BC =8,∴AC =AB 2-BC 2 =6.∴EF=AC =6.连接CP ,则CP =12EF =3.∴点P 在以点C 为圆心,3为半径的圆弧上,过点C 作CH ′⊥AB 于点H ′,交⊙C 于点P ′,∵P ′H ′=CH ′-CP ′=CH ′-CP ≤CP +PH -CP =PH ,∴当点P 与点P ′重合,点H 与点H ′重合时,PH 最小,最小值为P ′H ′的长.∵S △ABC =12AC ·BC =12 AB ·CH ′,∴CH ′=AC ·BC AB =245 ,∴P ′H ′=CH ′-CP ′=245 -3=95 ,∴PH 的最小值是95 ,此时S △ABP =5PH =9,即△ABP 面积的最小值为9.第3题解图4. 27 -2 【解析】如解图,过点E 作EH ∥AD ,交AC 于点H ,∵△ABC 为等边三角形,∴AB =AC =6,由旋转的性质得AD =AB ,∴AD =AC ,∴∠D =∠ACD ,∵DE =2CE ,∴CE CD =CH CA =13 ,∠CEH =∠D =∠ACD ,∴CH =EH ,∵AC =6,∴CH =EH =2,取AH 的中点P ,连接EP ,则PH =EH ,∴∠EPH =∠PEH ,∵∠EPH +∠CEP +∠ACD =180°,∴2∠PEH +2∠CEH =180°,∴∠CEP =90°,∴点E 在以点H 为圆心,CP 为直径的圆弧上运动,连接BH ,∵EH 为定值2,∴当B ,E ,H 三点共线时,BE 的长最小,过点B 作BQ ⊥AC 于点Q ,则CQ =12AC =3,∴QH =CQ -CH =1,BQ =BC 2-CQ 2 =62-32 =33 ,∴BH =BQ 2+QH 2 =(33)2+12 =27 ,∴BE 的最小值为27 -2.第4题解图5. 32+64【解析】如解图,连接CP ,∵∠PDC =∠PEC =90°,∴∠PDC +∠PEC =180°,∴C ,D ,P ,E 四点共圆,圆心为点O ,且直径为CP ,∵BC =3 +1,∠ACB =45°,∠B =60°是定值,∴直径CP 最小时,∠DCE 所对的弦DE 最小,即CP ⊥AB 时,DE 的值最小,连接OD ,OE ,∵∠B =60°,CP ⊥AB ,BC =3 +1,∴∠BCP =30°,∴BP =12BC =3+12 ,CP =3 BP =3+32 ,∴OD =OE =12 CP =3+34,∵∠ACB =45°,∴∠DOE =2∠ACB =90°,∴△ODE 是等腰直角三角形,∴DE =2 OD =32+64,即DE 的最小值为32+64.第5题解图。
中考语文复习试题 专题四 病句的辨析与修改
专题四病句的辨析与修改知能优化训练中考回顾1.(2018天津)下列句子没有语病的一项是()A.各级医院先后采用了互联网挂号、电话预约等办法,改善医疗服务水平。
B.作为年轻一代,我们要担负起发扬、继承中华民族优秀传统文化的责任。
C.随着新媒体发展和信息化提速,使人们的阅读方式发生了翻天覆地的变化。
D.天津是中国近代工业的发祥地,在我国制造业发展史上占有举足轻重的地位。
项,搭配不当,“改善”可改为“提高”;B项,语序不当,“发扬、继承”应为“继承、发扬”;C项,成分残缺,可删去“使”。
2.(2018青海西宁)下列病句修改不正确的一项是()A.我们认真讨论并学习了《中学生日常行为规范》。
(删去“认真”)B.通过老师和同学的帮助,使我的学习成绩有了很大的提高。
(删去“通过”或“使”)C.能否制订一个合理的复习计划是中考取得满意成绩的前提。
(删去“能否”。
或在“取得”前加“能否”)D.回眸改革开放的发展历程,我们每个中国人无不为其取得的成绩而由衷叹息。
(将“叹息”改为“赞叹”)项,语序不当,“讨论并学习”应改为“学习并讨论”。
3.(2018贵州安顺)下列各句中,没有语病的一项是()A.屠呦呦科研团队研究出了用青蒿素治疗疟疾的方法,使全球数亿人受益。
B.针对近来频频发生的校园暴力事件,几个学校的领导进行了深刻反思。
C.家长要让孩子接受“吃苦教育”,以此提高孩子自食其力的能力和独立自主的精神。
D.一堂堂看似普通的体育课,不仅潜移默化地影响青少年的体育价值观,更直接地关系到他们的身体健康。
项,表意不明,“几个学校的领导”有歧义;C项,搭配不当,“提高”与“精神”不搭配;D项,语序不当,“不仅”与“更”后面的内容应交换位置。
4.(2018内蒙古呼和浩特)下列句子中没有语病的一项是()A.有关部门对极少数不尊重环卫工人劳动、无理取闹甚至殴打侮辱环卫工人的事件,及时进行了批评教育和严肃处理。
B.我们家乡美丽而富饶,这里土地肥沃,特别适宜种植果树、马铃薯和莜麦,此外,还适宜栽种梨树和杏树。
中考政治复习专题训练:依法行使权利
中考专题复习训练依法行使权利一、单项选择题1、佛山市民李某与王某有经济纠纷,王某借了李某一万元没有定时归还,李某多次催款未得,印刷了一百份印有王某照片和王某父母详细地址、姓名和电话号码等信息的“悬赏通告”到处张贴,引起众人围观、李某的行为( )A、是合法的,是正确维权的表现 B。
是不合法的,“悬赏通告"只能针对王某本人,不能涉及父母C、是不合法的,侵犯了王某的名誉权和其父母的隐私权 D。
是不合法的,侵犯了王某的人身自由权2、学校组织学生外出参观,返程的火车内,小张同学和同伴在车厢里打扑克,大喊大叫,好不热闹。
同车厢的乘客提醒他们保持安静,小张辩解道:“我们平常学习那么紧张,好不容易出来一趟,还不让我们放松放松?”小张的说法错在( )①没有认识到公民权利的广泛性ﻫ②没有正确行使权利,损害了集体、他人的利益③没有依法维护自己的权利④没有认识到权利和义务的区别A、①② B。
①③C、②④D、③④3、风筝在空中的自由,靠线的束缚而获得,一旦系着的线断了,风筝就会落地。
这告诉我们( )ﻫ①公民享有的民主自由权利不真实,受到了非法限制ﻫ②离开了法律,公民就不估计享有真正的自由和权利③世界上不存在绝对的、不受任何限制的自由和权利ﻫ④公民在行使民主自由权利的时候,要受到法律约束A、①②③ B。
②③④ C、①③④ D。
①②④4。
中学生小峰自创的歌词在“全国少年儿童歌词征集活动”中获特别奖,但小峰并未收到获奖通知书、经过调查发现,参加复评工作的李某做了手脚,将奖项给了张某、小峰在与李某和张某沟通未果的情况下,将他们告到法院,经法院审结,小峰获得1。
7万元赔偿。
这一事例告诉我们( )A、诉讼是公民维护合法权益的最后屏障 B。
打官司是公民维护合法权益的最佳方式C、沟通协商不利于解决公民之间的权利纠纷 D。
受到非法侵害,就要直截了当请求法院主持公道5、2019年2月22日至3月13日期间,黄某为吸引网民球眼、提高阅读量,在自己运营的两个公众号上散布“厦门房地产市场行情暴涨”“厦门某楼盘96套房源1小时被抢光”“神秘资本大鳄3亿来厦炒房”等不实信息,这些信息被大量转发扩散,在社会上造成严重不良影响、事后,警方对黄某处以行政处罚,并予以教育训诫。
中考化学总复习专题训练奇光异彩的金属(含解析)
奇光异彩的金属一、选择题(每题只有一个正确答案.)1.下列金属中,属于黑色金属的是()A.铝 B.铜 C.汞 D.铁2.从金属的利用历史看,先是青铜器时代后是铁器时代,铝的利用是近100年的事.下列说法与这个先后顺序有关的是()A.金属的导电性B.金属的延展性C.地壳中金属元素的含量D.金属冶炼的难易程度3.我国广泛使用铁锅,最主要是因为()A.铁锅具有良好的导热性B.铁资源丰富,铁制品价格低廉C.使食物中增加人体必需的微量元素铁D.铁在干燥的空气中不易生锈,使用寿命长4.金、银、铜被人们做成货币流通,主要是利用它们性质中的()A.硬度适中B.不活泼性C.产量高D.在自然界中得到它们的单质矿石5.下列关于铝的性质叙述中,属于化学性质的是()A.铝是银白色金属B.铝易传热导电C.铝有良好的延展性D.铝表面易形成氧化膜6.世界卫生组织把铝确定为食物污染源之一.铝的下列用途必须加以控制的是() A.用铝合金制门窗B.用铝合金作飞机材料C.用金属铝制装碳酸饮料的易拉罐D.用金属铝制电线7.下列叙述不属于铁的物理性质的是()A.铁能被磁铁吸引B.铁能抽成细丝C.铁质地较软,能传热导电D.铁丝能在氧气中燃烧8.某新型“防盗玻璃”为多层结构,每层中间嵌有极细的金属线,当玻璃被击碎时,与金属线相连的警报系统就会立刻报警.“防盗玻璃”能报警,这利用了金属的()A.延展性B.导电性C.弹性D.导热性9.下列金属中能跟稀盐酸反应的是()A.Cu B.Ag C.Hg D.Fe10.下列金属的活动性按由弱到强的顺序排列的是()A.Al、Ca、Cu、Zn B.Ag、Hg、Fe、Zn C.Al、Na、Zn、Cu D.Cu、Zn、Fe、Ca11.公元2世纪,我国古代炼丹专家魏伯阳在最早的炼丹专著《周易参同契》一书中记载“金入于猛火,而色不夺精光”,这句话是指在强热的条件下黄金的性质()A.很稳定B.很活泼C.易氧化D.易还原12.垃圾是放错了位置的资源,应该分类回收,生活中废弃的铁锅、铝制易拉罐、铜导线等可以归为一类加以回收,它们属于()A.氧化物B.化合物C.金属或合金D.非金属13.金属钛(Ti)是航空、宇航、军工、电子等方面的必需原料.在生产钛的过程中可用镁在高温的条件下与四氯化钛反应,反应的化学方程式为TiCl4+2Mg Ti+2MgCl2;该反应属于()A.化合反应B.分解反应C.置换反应D.复分解反应14.不可用来盛放硫酸铜溶液的容器是()A.铜制容器B.瓷制容器C.铁制容器D.玻璃容器15.下列各金属中不能和硫酸亚铁溶液反应,置换出铁的是()A.Zn B.Mg C.Al D.Cu16.下列金属(颗粒大小相同)分别放在相同的稀硫酸中,反应最剧烈的是( )A.Zn B.Mg C.Al D.Fe17.将甲、乙、丙三种金属分别放在盐酸中,只有乙不反应.另取丙放入甲的硝酸盐溶液中,丙的表面有甲析出,则甲乙丙的金属活动性顺序由强到弱为()A.丙甲乙B.甲乙丙C.乙甲丙D.甲丙乙18.要除去铜粉中混有的铁粉,应选用的试剂是()A.HCl B.AgNO3溶液C.ZnSO4溶液D.FeSO4溶液19.在下列各种情况下,埋在地下的铸铁输气管道被腐蚀速度最慢的是()A.在潮湿、疏松、透气的土壤中B.在呈酸性的潮湿土壤中C.在干燥、致密、不透气的土壤中D.在含沙粒较多、潮湿透气的土壤中20.有X、Y、Z、W四种金属,分别投入到盐酸中,只有Z没有生成气体.再把X和W两种金属分别放入到Y的盐溶液中,W表面析出Y,而X则没有,则四种金属的活动性由弱到强的顺序是()A.Y、W、X、Z B.Z、Y、X、W C.Z、X、Y、W D.W、Y、X、Z21.社会上一些不法分子用黄铜(铜锌合金)冒充黄金进行诈骗活动.为了辨别真伪,以下方法可行的是( )A.观察颜色B.称质量C.取粉末放入稀盐酸中D.用磁铁吸引22.一个铁制容器,不能盛放的溶液是()①盐酸②氢氧化钠③硫酸亚铁④氯化铜.A.①②④B.①②C.②③④D.①④23.将锌片分别放入下列各溶液中,反应后所得溶液的质量减小的是()A.硫酸铜溶液B.稀硫酸C.硫酸镁溶液D.硝酸银溶液24.往ZnSO4和CuSO4的混合溶液中加入过量的铁粉,充分反应后过滤,滤纸上的物质是()A.Cu B.Cu和Fe C.Cu和Zn D.Fe、Cu和Zn25.把铁棒浸入下列溶液中,一段时间后取出,固体质量减少的是()A.稀硫酸B.硝酸银溶液C.硫酸镁溶液D.硫酸铜溶液26.在天平的左右两盘上,各放一只盛有150克20%的稀硫酸的烧杯,并调至天平平衡,然后分别放入铁和铝各5克(硫酸足量),反应完成后,天平将()A.右低左高B.左低右高C.保持平衡D.无法判断27.在硝酸银、硝酸铜的混合溶液中,加入一定量的锌粉,充分反应后,有少量金属析出,过滤后,往滤液中滴加稀盐酸,有白色沉淀生成,则析出的金属是()A.铜 B.银 C.铜、银D.锌、铜、银28.往硝酸银、硝酸铜和硝酸锌的混合溶液中加入一定量的铁粉,充分反应后,有金属析出,过滤后往滤渣中加入稀盐酸,有无色气体放出,则滤液中一定存在的物质是()A.硝酸铜和硝酸亚铁B.硝酸亚铁和硝酸锌C.硝酸银和硝酸铜D.硝酸银和硝酸锌29.某不纯锌块6。
中考语文基础知识复习题附答案
基础知识训练(一)1.下列各组词语中加点的字的读音,与所给注音全部相同的一组是()???A.间j iàn??黑白相间??亲密无间?居间调停???B.挨āi????挨门逐户??挨打受骂?延挨度日???C.劲jìn g??疾风劲草??强劲有力?刚劲正直D.舍s hě??舍我其谁??不舍昼夜?魂不守舍2.下列词语中加点的字,没有错别字的一项是()???A.舟楫???开门缉盗???无赖???万籁俱寂???B.装潢???梳装打扮???撒谎???谎诞不经???C.杂糅???矫揉造作???回溯???扑朔迷离???D.禁锢???涸泽而渔???溪落???自辟蹊径3.下列句子,加点关联词使用正确的一项是()? ???A.如果没有这样的文艺,那么这个任务就不能完成,或者不能有力地迅速完成。
??? B.高寒缺氧的恶劣环境,单调枯燥的生活,非但没有难住他,却磨炼出了他坚韧不拔的性格。
???? ???C.在白色恐怖弥漫的年代里,虽然环境怎样险恶,鲁迅先生一直把密信和文稿珍藏着。
D.我爱中国的整个,不仅爱她的美德,而且甚至也爱她的贫困和不幸。
4.下列各句中,加点成语使用恰当的一句是()? ???A.昆剧被联合国教科文组织列入首批“代表作”,是实至名归,当之无愧。
???B.破坏公共设施的犯罪行为,使广大干警荡气回肠,下决心打击这伙罪犯。
??? C.登上黄山光明顶,放眼眺望,起伏的群山座座相连,鳞次栉比,延伸到远方,消失在迷茫的天际。
??? D.《水浒传》英译本名为《发生在河边的故事》,《西游记》西方通行本名为《猴》,《红楼梦》的俄译本名为《红色阁楼的故事》,中国读者对此简直不可理喻。
5.选出没有语病的一句()? ??? A.早晨八时,随着一声枪响,参加“迎新春万人环城长跑赛”的同学们在环城公路上飞快地驰骋着。
???B.“两会”期间,人大代表和政协委员们还参加了红桥村研制饲料、科学养猪的经验。
??? C.256次列车运行途中.广播点歌、宣读家书等活动丰富多彩,车厢里一派欢乐、祥和的气氛。
中考化学复习专题训练(二)分子、原子、离子和元素
中考化学复习专题训练(二)分子、原子、离子和元素类型1微观粒子的共性1.·苏州下列有关分子的说法中,不正确的是()A. 分子的质量和体积都很小B. 温度升高,分子的体积变大C. 分子在不停地运动D. 温度越高,分子运动速率越快2.生活中下列现象的微观解释错误的是()A.二氧化碳B.氢气C.氯化钠晶体D.水银类型2物质的构成和组成4.·邵阳图1中“”和“”分别表示氢原子和氮原子,能保持氨气化学性质的微粒是()图15.下列有关微粒的说法错误的是()A.原子、分子、离子都是构成物质的微粒B.有些原子也可以保持其构成物质的化学性质C.当离子得到或失去电子变成原子后其性质发生了改变D.过氧化氢分子由氢分子和氧分子构成6.·荆门下列事实的结论或解释中,不正确的是()A.氧气和液氧的化学性质相同——都是由氧元素组成B.二氧化碳和一氧化碳的化学性质不同——它们的分子结构不同C.钠原子和钠离子属于同种元素——它们的质子数相等D.原子是化学变化中的最小粒子——在化学变化中原子不能再分7.下列说法正确的是()A.由分子构成的物质在发生化学变化时,分子种类发生改变,原子种类不变B.与元素化学性质关系最紧密的是原子的核外电子数C.离子是带电的原子,所以带电的微粒一定是离子D.原子的质量主要决定于质子和电子8.元素观是化学的重要观念之一。
下列有关元素的说法错误的是()A.物质都是由元素组成的B.元素的种类取决于该元素原子核内的中子数C.不同种元素的根本区别是核内质子数不同D.在化学变化中元素的种类不会发生改变9.·自贡每100 g黑木耳中含铁0.185 g,是常见天然食品中铁含量最高的,这里的“铁”应理解为()A.分子B.原子C.离子D.元素10.图2是某化学反应的微观示意图,其中“”和“”分别表示两种质子数不同的原子,a、b分别表示反应前和反应后的物质。
请回答:图2(1)a、b物质均属于__________(填物质分类),从微观角度说明你的判断依据是______________________________。
2020年九年级中考复习考试试题--声现象
2020年九年级中考复习试题--声现象一、选择题(每小题3分,共21分)1.如图所示,目前声纹锁在门禁系统得到很好的应用,实现了传说中“芝麻开门”的神话。
声纹锁辨别声音主要依据的是( )A .音调B .响度C .音色D .频率2.远古时代,鼓被赋予神秘色彩。
如图是湖北崇阳出土的商代铜鼓史。
关于鼓声,下列说法正确的是( )A.鼓声能在真空中传播B.鼓面振动的幅度越大,响度越大C.鼓声的音色与鼓的材料、结构无关D.区分鼓声和其他乐器声是根据音调不同3.下列关于声现象的描述及其解释正确的是( ) A.“闻其声知其人”的依据是不同人的声音,其音色不同B.“公共场所不要大声喧哗”是要求人们在公共场所说话,音调要放低些C.“不敢高声语,恐惊天上人”中的“高”指声音的频率高D.“余音绕梁,三日不绝”是描述声音的响度大 4.“宫、商、角、徵、羽”起源于春秋时期,是中国古乐的五个基本音阶,亦称五音,相当于现代7个音阶中的do 、re 、mi 、sol 、la .五音实际上是指声音的( ) A .音色 B .音调 C .响度D .速度5.如图所示,监测器测得同一声源发出的甲、乙两声音的特性如下表。
甲乙相比( ) A .乙音调较高 B .甲响度较大 C .声源在发甲声音时振动幅度较大D .声源在发乙声音时每秒内振动次数较少声声音强弱等级频率音 /dB /Hz 甲 70 1100 乙1107006.下列有关声现象的实验中,能用来探究决定音调高低因素的是( )A . 手指蘸水摩擦杯口发声,同时增加杯中的水量B . 响铃时,不断抽出瓶内的空气C . 室内收音机播音时,导致喇叭前方的烛焰摇晃D . 敲鼓时,用大小不同的力7.有关声音的知识,下列说法正确的是( ) A .演奏古筝时按压不同的弦是为了改变其响度B .用大小不同的力击打鼓面是为了改变其音调C .摩托车安装消音器是为了在传播过程中减弱噪声D .能分辨出《二泉映月》是用二胡演奏的,是因为不同乐器发声时音色不同二、填空与作图题(每空1分,共13分)8.人站在北京天坛回音壁圆形围墙内说话,声音经过多次__________,可在围墙的任何位置听到。
中考语文复习专题训练: 名著阅读(含解析)
随 堂
性命。此前在路上林冲受尽董、薛二人虐待,刚刚二人又想取其性命,但此时的林
巩 固
冲仍为二人求情,体现了他软弱的性格特点。据此回答即可。“及时雨会神行太
训 练
保”讲的是宋江发配江州期间,结识了神行太保戴宗,又经戴宗介绍认识了小牢子
李逵,李逵向宋江借了十两银子,戴宗告知其李逵好赌之事,宋江也不在意,这充分
(人名)见了,也自欢喜,心内 这儿是小镇的近郊,又阴郁,
精
选
寻思道:“难得这个都监相公,一力要抬 又冷清,只有松树林轻轻的低
片段
随
举我!自从到这里住了,寸步不离,又没 语和从复苏的大地上散发出来
堂
工夫去快活林与施恩说话……”
的春天新鲜的气味
巩
固 训
人物
①
保尔
练
表现手法 ②
③
因受到礼遇而满心欢喜,感激都监,想
人物内心感受
④
念施恩
中 考
[答案] ①武松 ②心理描写 ③自然环境描写 ④病愈后即将回到基辅,他来到
真
烈士墓前悼念革命战友,内心充满难过和极度的悲愤
题
精 [解析] 从第一片段中的“都监相公、施恩、快活林”便可知语段选自《水浒传》,
选
可知要填写的人物。从语段中的“心内寻思道”可知是心理描写的表现手法。从
专题十
名著阅读
中 考
1. [2019·河南]名著阅读。(任选一题作答)
真
(1)《西游记》塑造人物形象常常把人物性格和某种动物的习性巧妙结合。请
题
精 从下面人物形象中任选一个,结合相关故事情节简要分析。
选
①孙悟空 ②猪八戒
随
堂
巩
固
训
中考数学备考专题复习: 阅读理解问题(含解析)
中考数学备考专题复习:阅读理解问题(含解析)中考备考专题复习:阅读理解问题一、单选题1、对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A、0B、2C、3D、42、对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)= ﹣1的解是()A、x=4B、x=5C、x=6D、x=73、设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A、②③④B、①③④C、①②④D、①②③4、定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A、0≤m≤1B、﹣3≤m≤1C、﹣3≤m≤3D、﹣1≤m≤0二、填空题5、州)阅读材料并解决问题:求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015两式相减:得2S﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+…+32015=________.三、解答题6、自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)<0,则____________ .根据上述规律,求不等式>0的解集.7、阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[()n﹣()n]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.8、先阅读下列材料,然后解答问题:材料1 从3张不同的卡片中选取2张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同元素中选取m个元素的排列数记作A n m,A n m=n(n-1)(n-2)…(n-m+1)(m≤n).例:从5个不同元素中选3个元素排成一列的排列数为:A53=5×4×3=60.材料2 从3张不同的卡片中选取2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为C32==3.一般地,从n个不同元素中选取m个元素的组合数记作C n m,C n m=(m≤n).例:从6个不同元素中选3个元素的组合数为:C63==20.问:(1)从7个人中选取4人排成一排,有多少种不同的排法?(2)从某个学习小组8人中选取3人参加活动,有多少种不同的选法?9、定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.四、综合题10、阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明(2)求乙船每小时航行多少海里?11、阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为________ 万人次(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.12、阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.13、)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.(1)等比数列3,6,12,…的公比q为________ ,第4项是________(2)如果一个数列a1, a2, a3, a4,…是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2, a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:an =________(用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.14、阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组(i)求x2+4y2的值;(ii)求+的值.15、)阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.如图(1):在梯形ABCD中:AD∥BC∵E、F是AB、CD的中点∴EF∥AD∥BCEF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在△ABC中:∵E是AB的中点,EF∥BC∴F是AC的中点如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°请你运用所学知识,结合上述材料,解答下列问题.(1)求证:EF=AC;(2)若OD=,OC=5,求MN的长.16、我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)17、已知点P(x0, y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d= 计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = = .根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.18、定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.19、我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.20、阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约________亿元,你的预估理由________.21、)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan75°=tan(45°+30°)= = =2+根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度.已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为米,请你帮助李三求出纪念碑的高度.22、阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).答案解析部分一、单选题1、【答案】B【考点】分段函数【解析】【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,此题是分段函数题,主要考查了新定义,解本题的关键是分段.2、【答案】B【考点】分式方程的解,定义新运算【解析】【解答】解:根据题意,得= ﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选B.【分析】所求方程利用题中的新定义化简,求出解即可.此题考查了解分式方程,弄清题中的新定义是解本题的关键.3、【答案】C【考点】整式的混合运算,因式分解的应用,二次函数的最值【解析】【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2, a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.本题考查因式分解的应用、整式的混合运算、二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.4、【答案】 B【考点】一元一次不等式组的应用【解析】【解答】解:∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选B.【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.本题考查的是一次函数图象上点的坐标特点,根据题意得出关于m的不等式是解答此题的关键.二、填空题5、【答案】【考点】探索数与式的规律【解析】【解答】解:令s=1+3+32+33+ (32015)等式两边同时乘以3得:3s=3+32+33+ (32016)两式相减得:2s=32016﹣1.所以S= .【分析】令s=1+3+32+33+…+32015,然后再等式的两边同时乘以2,接下来,依据材料中的方程进行计算即可.本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、解答题6、【答案】解:(2)若<0,则或;故答案为:或;由上述规律可知,不等式转化为或,所以,x>2或x<﹣1.【考点】一元一次不等式组的应用【解析】【分析】根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.7、【答案】【解答】解:第1个数,当n=1时,[()n﹣()n]=(﹣)=×=1.第2个数,当n=2时,[()n﹣()n]=[()2﹣()2]=×(+)(﹣)=×1×=1.【考点】二次根式的应用【解析】【分析】分别把1、2代入式子化简求得答案即可.8、【答案】解:(1)A74=7×6×5×4=840(种).(2)C83==56(种)【考点】探索数与式的规律【解析】【分析】探索数与式的规律。
2023年华东师大版备考 中考数学二轮复习 专题14 二次函数
华师大版备考2023中考数学二轮复习 专题14 二次函数一、综合题1.(2022九上·青田期中)如图,抛物线y =−x 2+2x +3与x 轴交于点A ,点B ,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是抛物线上的一个动点.(1)求直线BD 的解析式;(2)当点P 在第一象限时,求四边形BOCP 面积的最大值,并求出此时P 点的坐标;(3)在点P 的运动过程中,是否存在点P ,使△BDP 是以BD 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.2.(2022九上·莲都期中)已知,点M 为二次函数y =﹣(x ﹣b )2+4b+1图象的顶点,直线y =mx+5分别交x 轴正半轴,y 轴于点A ,B.(1)判断顶点M 是否在直线y =4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A ,B ,且mx+5>﹣(y ﹣b )2+4b+1,根据图象,写出x 的取值范围.(3)如图2,点A 坐标为(5,0),点M 在△AOB 内,若点C (14,y 1),D (34,y 2)都在二次函数图象上,试比较y1与y2的大小.3.(2022九上·定海期中)设抛物线y=(x−m)(x−n)(m、n是实数).(1)若m=2,n=1,求二次函数的对称轴,并求出该函数的最小值;(2)当m=−3,n=1时,已知抛物线y=(x+3)(x−1)与x轴交于A,B两点(点A在点B 的左侧),将这条抛物线向右平移a(a>0)个单位,平移后的抛物线于x轴交于C,D两点(点C 在点D的左侧),若B,C是线段AD的三等分点,求a的值;(3)当0<m<n<1时,已知二次函数的图象经过(0,p),(1,q)两点(p,q是实数),求证:0<pq<1 16 .4.(2022九上·南湖期中)如图,二次函数y1=−x2+bx+c的图象与一次函数y2的图象交于点A(a,1),B(3,4).(1)若y2的解析式为y2=32x−12,求点A的坐标和y1的函数表达式;(2)在(1)的条件下若点P(m,0)是x轴上一点,过点P做直线l垂直x轴于点P,直线l与函数y1,y2交于点M,N,当线段MN=1时,求m的值;(3)若点C(n,1)(n>a)是二次函数y1上的点,且AC=5,请直接写出二次函数y1的对称轴. 5.(2022九上·嘉兴期中)如图1,已知抛物线y=x2+bx+c经过原点O,它的对称轴是直线x=2,动点P从抛物线的顶点A出发,在对称轴上以每秒1个单位的速度向上运动,设动点P运动的时间为t 秒,连接OP并延长交抛物线于点B,连接OA,AB.(1)求抛物线的函数解析式;(2)当△AOB为直角三角形时,求t的值;(3)如图2,⊙M为△AOB的外接圆,在点P的运动过程中,点M也随之运动变化,请你探究:在1≤t≤5时,求点M经过的路径长度.6.(2022九上·津南期中)如图,在平面直角坐标系中,抛物线y=ax2+bx−4(a≠0)与x轴交于点A(−1,0),B(4,0),与y轴交于点C.(1)求该抛物线的解析式及对称轴;(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接PA,PD,求△PAD面积的最大值.7.(2022九上·浦江期中)如图,在平面直角坐标系中,经过点A(4,0)的直线AB与y轴交于点B (0,4).经过原点O的抛物线y=﹣x2+bx+c交直线AB于点A,C,抛物线的顶点为D.(1)求抛物线y=﹣x2+bx+c的表达式;(2)M是线段AB上一点,N是抛物线上一点,当MN△y轴且MN=2时,求点M的坐标;(3)P是抛物线上一动点,Q是平面直角坐标系内一点.是否存在以点A,C,P,Q为顶点的四边形是矩形?若存在,直接写出点Q的坐标;若不存在,请说明理由.8.(2022九上·舟山月考)如图,抛物线y=−x2+mx+n交x轴于点A(−2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标.9.(2022九上·新昌期中)已知菱形OABC的边长为5,且点A(3,4),点E是线段BC的中点,过点A,E的抛物线y=ax2+bx+c与边AB交于点D,(1)求点E 的坐标;(2)连接DE ,将△BDE 沿着DE 翻折.①当点B 的对应点B ′恰好落在线段AC 上时,求点D 的坐标;②连接OB ,BB ′,若△BB ′D 与△BOC 相似,请直接写出此时抛物线二次项系数a = . 10.(2022九上·舟山期中)已知抛物线y =ax 2−3ax −4a 与x 轴交于A 、B 两点(A 左B 右),交y 轴负半轴点C ,P 是第四象限抛物线上一点.(1)若S △ABC =5,求a 的值;(2)若a =1,过点P 作直线垂直于x 轴,交BC 于点Q ,求线段PQ 的最大值,并求此时点P 的坐标;(3)直线AP 交y 轴于点M ,直线BP 交y 轴于点N ,求4OM+ON OC的值. 11.(2022九上·龙港期中)如图,抛物线y =−x 2+bx+c 经过点A (﹣1,0),点B (3,0),与y 轴交于点C ,点D 在射线CO 上运动.(1)求该抛物线的表达式和对称轴.(2)过点D作x轴的平行线交抛物线于点E,F(点E在点F的左侧),若EF=2OC,求点E的坐标.(3)记抛物线的顶点关于直线EF的对称点为点P,当点P到x轴的距离等于1时,求出所有符合条件的线段EF的长.12.(2022·攀枝花)如图,二次函数y=ax2+bx+c的图象与x轴交于O(O为坐标原点),A两点,且二次函数的最小值为−1,点M(1,m)是其对称轴上一点,y轴上一点B(0,1).(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点P,连结PA,PB,设点P的横坐标为t,△PAB的面积为S,求S与t的函数关系式;(3)在二次函数图象上是否存在点N,使得以A、B、M、N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N的坐标,若不存在,请说明理由.答案解析部分1.【答案】(1)解:对于y=−x2+2x+3①,令x=0,则y=3,令y=−x2+2x+3=0,解得x=−1或3,故点A、B、C的坐标分别为(−1,0)、(3,0)、(0,3),∵点D与点C关于x轴对称,故点D(0,−3),设直线BD的表达式为y=kx+b,则{b=−30=3k+b,解得{k=1b=−3,故直线BD的表达式为y=x−3(2)解:连接BC,过点P作y轴的平行线交BC于点H,由点B、C的坐标,同理可得,直线BC的表达式为y=−x+3,设点P(x,−x2+2x+3),则点H(x,−x+3),则四边形BOCP面积=S△OBC+S△PHC+S△PHB=12×OB⋅OC+12×PH×OB=12×3×3+12×3×(−x 2+2x+3+x−3)=−32x2+92x+92,∵−32<0,故四边形BOCP面积存在最大值,当x=32时,四边形BOCP面积最大值为458,此时点P(32,154);(3)解:存在,理由:①当∠PBD为直角时,如上图所示,此时点P与点C重合,过点P的坐标为(0,3);②当∠PDB为直角时,由BD的表达式知,直线BD与x轴的倾斜角为45°,当∠PDB为直角时,即PD⊥BD,则直线PD与x轴负半轴的夹角为45°,故设直线PD的表达式为y=−x+t,将点D的坐标代入上式得,−3=0+t,解得t=−3,故直线PD的表达式为y=−x−3②,联立①②并解得:x=3±√332,故点P的坐标为(3+√332,−9+√332)或(3−√332,−9−√332),综上,点P的坐标为(3+√332,−9+√332)或(3−√332,−9−√332)或(0,3).【知识点】待定系数法求一次函数解析式;二次函数图象上点的坐标特征;直角三角形的性质;二次函数y=ax^2+bx+c的性质【解析】【分析】(1)利用y=−x2+2x+3求出B、C的坐标,由点D与点C关于x轴对称可求出D 坐标,利用待定系数法求出直线BD解析式即可;(2)连接BC,过点P作y轴的平行线交BC于点H,先求出直线BC解析式为y=−x+3,设点P(x,−x2+2x+3),则点H(x,−x+3),则四边形BOCP面积=S△OBC+S△PHC+S△PHB,据此求出关于x关系式,再利用二次函数的性质求解即可;(3)分两种情况:①当∠PBD为直角时,②当∠PDB为直角时,据此分别求解即可.2.【答案】(1)解:点M在直线y=4x+1上,理由:∵点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)解:如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5),又B在抛物线上,∴5=﹣(0﹣b)2+4b+1=5,解得b=2,二次函数的解析是为y=﹣(x﹣2)2+9,当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1,∴A (5,0),由图象,得当mx+5>﹣(x ﹣b )2+4b+1时,x 的取值范围是x <0或x >5;(3)解:把A (5,0)代入y =mx+5得,0=5m+5,解得m =﹣1,∴y =﹣x+5,∵M (b ,4b+1)在△AOB 内部,∴{0<b <50<4b +1<−b +5, 解得0<b <45, 当点C ,D 关于对称轴对称时,b =14+342=12, ∴0<b <12时,y 1>y 2, b =12时,y 1=y 2, 12<b <45,y 1<y 2. 【知识点】一次函数的图象;二次函数与不等式(组)的综合应用;二次函数图象上点的坐标特征;二次函数y=ax^2+bx+c 的性质【解析】【分析】(1)先求出顶点M 的坐标,再代入y =4x+1中检验即可;(2)由y =mx+5求出B (0,5) ,再将其代入y =﹣(x ﹣b )2+4b+1 中求出b 值,即得y =﹣(x ﹣2)2+9, 从而求出A (5,0),由图象可知当x <0或x >5时,直线y =mx+5的图象在y =﹣(x ﹣b )2+4b+1 图象的上方,据此即得结论;(3)由(2)可得y =﹣x+5, 由M (b ,4b+1)在△AOB 内部, 可求出0<b <45, 当点C ,D 关于对称轴对称时可求出b =12, 从而得出当0<b <12时,y 1>y 2,当b =12时,y 1=y 2,当12<b <45,y 1<y 2.3.【答案】(1)解:将m =2,n =1代入y =(x −m)(x −n),得y =(x −2)(x −1)=x 2−3x +2=(x −32)2−14, 则该二次函数的对称轴是x =32,且当x =32时,有最小值为−14; (2)解:分为两种情况:①如图,当C 在B 的左侧时,B ,C 是线段AD 的三等分点,∴AC =BC =BD ,∵抛物线向右平移a 个单位,∴AC =BD =a ,当y =0时,(x +3)(x −1)=0, 解得x 1=−3,x 2=1,∵点A 在点B 的左侧,∴A(−3,0),B(1,0),∴AB =1−(−3)=4,∴AC =BC =2,∴a =2;②同理,当C 在B 的右侧时, ∵AB =1−(−3)=4,∴AB =BC =CD =4,∴a =AB +BC =4+4=8;(3)解:∵y =(x −m)(x −n)图象经过(0,p),(1,q)两点, ∴p =mn ,q =(1−m)(1−n), ∴pq =mn(1−m)(1−n),=(m −m 2)(n −n 2),=[−(m −12)2+14][−(n −12)2+14],∵0<m <n <1,结合y =−(x −12)2+14的函数图象, ∴0<−(m −12)2+14≤14,∴0<−(n−12)2+14≤14,∵m<n,∴m、n不能同时等于14,∴0<pq<116.【知识点】二次函数图象的几何变换;二次函数的最值;二次函数图象上点的坐标特征;二次函数y=ax^2+bx+c的性质【解析】【分析】(1)将m=2与n=1代入y=(x-m)(x-n)可得该函数的解析式,进而将解析式配成顶点式,即可得出答案;(2)分为两种情况:①如图,当C在B的左侧时,B,C是线段AD的三等分点,令解析式中的y=0算出对应的自变量的值可得点A、B的坐标,可得AB的长,据此即可求出答案;②当C在B的右侧时,同理可得AB的长,进而即可根据a=AB+BC算出答案;(3)根据函数图象上的点的坐标特征可得p=mn,q=(1-m)(1-n),进而可表示出pq并配方成顶点式的乘积形式,由0<m<n<1,结合y=−(x−12)2+14的函数图象,可得m、n不能同时等于14,据此即可得出答案.4.【答案】(1)解:将A点坐标代入得:1=32a−12,解得:a=1,∴A(1,1),将A、B点代入二次函数解析式得:{−12+b+c=1−32+3b+c=4,解得:{b=112c=−72,∴二次函数解析式为:y1=−x2+112x−72.(2)解:将x=m代入一次函数和二次函数解析式得:y 1=−m2+112m−72,y2=32m−12,∵线段MN=1,∴|y1−y2|=1,即|−m2+112m−72−32m+12|=1,∴−m2+4m−3=1或−m2+4m−3=−1,解得:m1=2+√2;m2=2−√2;m3=m4=2.(3)对称轴为x=6±√132【知识点】二次函数与一次函数的综合应用【解析】【解答】解:(3)将点B代入二次函数解析式得:4=−9+3b+c,则c=13−3b,∵A(a,1),C(n,1)(n>a),在二次函数图象上,得c=13-3b,∴a、n是方程−x2+bx+c=1的两个根,根据韦达定理得,n+a=b,na=1−c=1−(13−3b)=3b−12,∵AC=5,∴n−a=5,∵(n−a)2=(n+a)2−4an,∴25=b2−4(3b−12)=b2−12b+48,解得:b=6±√13,.∴对称轴为直线x=6±√132【分析】(1)将点A(a,1)代入y2的解析式,求出a的值,从而可得点A的坐标,将A、B两点的坐标分别代入y1=-x2+bx+c得出关于字母b、c的方程组,求解可得b、c的值,从而求出y1的解析式;(2)将x=m分别代入两个函数解析式算出y1与y2,根据MN=1可得|y1−y2|=1,求解得出m 的值;(3)将点B代入二次函数y1=-x2+bx+c得c=13-3b,根据二次函数与一元二次方程的关系,结合A、C两点的纵坐标相同可得A、C两点的横坐标是方程-x2+bx+c=1的解,根据一元二次方程根与系数的关系得n+a=b,na=1-c=3b-12,再结合AC=5可得n-a=5,进而利用完全平方公式变形可得关于字母b的方程,求解得b的值,最后根据抛物线的对称轴直线公式即可得出抛物线的解析式. 5.【答案】(1)解:∵抛物线y=x2+bx+c经过原点O,且对称轴是直线x=2,,∴c=0,−b2=2则b=−4、c=0,∴抛物线解析式为y=x2−4x(2)解:设点B(a,a2−4a),∵y=x2−4x=(x−2)2−4,∴点A(2,−4),则OA2=22+42=20、OB2=a2+(a2−4a)2、AB2=(a−2)2+(a2−4a+4)2,①若OB2=OA2+AB2,则a2+(a2−4a)2=20+(a−2)2+(a2−4a+4)2,解得a=2(舍)或a=5 2,∴B(52,−154),则直线OB解析式为y=−32x,当x=2时,y=−3,即P(2,−3),∴t=(−3+4)÷1=1;②若AB2=OA2+OB2,则(a−2)2+(a2−4a+4)2=20+a2+(a2−4a)2,解得a=0(舍)或a=9 2,∴B(92,94),则直线OB解析式为y=12x,当x=2时,y=1,即P(2,1),∴t=[1−(−4)]÷1=5;③若OA2=AB2+OB2,则20=(a−2)2+(a2−4a+4)2+a2+(a2−4a)2,整理,得:a3−8a2+21a−18=0,a3−3a2−5a2+15a+6a−18=0,a2(a−3)−5a(a−3)+6(a−3)=0,(a−3)(a2−5a+6)=0,(a−3)2(a−2)=0,则a=3或a=2(舍),∴B(3,−3),∴直线OB解析式为y=−x,当x=2时,y=−2,即P(2,−2),∴t=[−2−(−4)]÷1=2;综上,当△AOB为直角三角形时,t的值为1或2或5(3)解:∵⊙M为△AOB的外接圆,∴点M在线段OA的中垂线上,∴当1≤t≤5时,点M的运动路径是在线段OA中垂线上的一条线段,当t=1时,如图1,由(2)知∠OAB=90°,∴此时Rt△OAB的外接圆圆心M是OB的中点,∵B(52,−154),∴M(54,−158);当t=5时,如图2,由(2)知,∠AOB=90°,∴此时Rt△OAB的外接圆圆心M是AB的中点,∵B(92,94)、A(2,−4),∴M(134,−78);当t =2时,如图3,由(2)知,∠OBA =90°,∴此时Rt △OAB 的外接圆圆心M 是OA 的中点,∵A(2,−4),∴M(1,−2);则点M 经过的路径长度为√(54−1)2+(−158+2)2+√(1−134)2+(−2+78)2=√58+9√58=5√54. 【知识点】待定系数法求一次函数解析式;待定系数法求二次函数解析式;勾股定理;三角形的外接圆与外心;直角坐标系内两点的距离公式【解析】【分析】(1)将(0,0)代入y=x 2+bx+c 中可得c=0,根据对称轴为直线x=2可得b=-4,据此可得抛物线的解析式;(2)设B (a ,a 2-4a ),根据抛物线的解析式可得A (2,-4),由两点间距离公式表示出OA 2、OB 2、AB 2,然后结合勾股定理求出a 的值,得到点B 的坐标,利用待定系数法求出直线OB 的解析式,令x=2,求出y 的值,得到点 P 的坐标,进而可得t 的值;(3)由题意可得点M 在线段OA 的中垂线上,故当1≤t≤5时,点M 的运动路径是在线段OS 中垂线上的一条线段,当t=1时,Rt△OAB 的外接圆圆心M 是OB 的中点,据此可得点M 的坐标;当t=5时,Rt△OAB 的外接圆圆心M 是AB 的中点,利用中点坐标公式可得点M 的坐标;当t=2时,Rt△OAB 的外接圆圆心M 是OA 的中点,同理可得点M 的坐标,然后结合两点间距离公式可求出点M 经过的路径长度.6.【答案】(1)解:将A(−1,0),B(4,0)代入y =ax 2+bx −4得{a −b −4=016a +4b −4=0解得{a=1b=−3∴y=x2−3x−4,对称轴为直线x=3 2(2)解:过点P作PH∥y轴交直线AD于H当x=0时,y=−4,∴点C(0,−4),∵点D与点C关于直线l对称,且对称轴为直线,∴D(3,−4),∵A(−1,0),∴直线AD的函数关系式为:y=−x−1,设P(m,m2−3m−4),则H(m,−m−1),∴PH=−m−1−(m2−3m−4)=−m2+2m+3,∴SΔAPD=SΔAPH+SΔDPH=12⋅PH⋅4=2(−m2+2m+3)=−2m2+4m+6,当m=−42×(−2)=1时,SΔAPD最大为8.【知识点】待定系数法求二次函数解析式;二次函数与一次函数的综合应用【解析】【分析】(1)将点A、B的坐标代入y=ax2+bx−4求出a、b的值即可;(2)过点P作PH∥y轴交直线AD于H,先求出直线AD的解析式y=−x−1,设P(m,m2−3m−4),则H(m,−m−1),再求出SΔAPD=SΔAPH+SΔDPH=12⋅PH⋅4=2(−m2+2m+3)=−2m 2+4m +6,最后利用二次函数的性质求解即可。
九年级数学中考复习题
九年级数学中考模拟试题一、单选题(共15题;共45分)1.﹣2的相反数是()A. 2B. ﹣2C.D. ﹣2.下列运算正确的是()A. 6ab÷2a=3abB. (2x2)3=6x6C. a2•a5=a7D. a8÷a2=a43.我国是个缺水国家,目前可利用淡水资源总量仅约为899 000乙亿米3,其中数据899 000用科学记数法表示为()A. 8.99×104B. 0.899×106C. 899×103D. 8.99×1054.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形的是()A. B. C. D.5.某班抽取6名同学参加体能测试,成绩如下:85,95,85,80,80,85.下列表述错误的是()A. 众数是85B. 平均数是85C. 中位数是80D. 极差是156、在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是()A. 5B. 7C. 9D. 117.如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A. 90°B. 135°C. 150°D. 270°8.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的大小是()A. 20°B. 35°C. 130°D. 140°9.不等式3(x﹣1)≤5﹣x的非负整数解有()A. 1个B. 2个C. 3个D. 4个 10.已知下列命题:①对顶角相等;②若a >b >0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x 2﹣2x 与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为( ) A. B. C. D. 11.关于 的一元二次方程 有两个不相等的实数根,则 的取值范围是( ) A. B.且C.D.且12.若分式的值为零,则x 的值为( )A. 0B. 1C. -1D. 13.已知点A (a ,2017)与点A′(-2018,b )是关于原点O 的对称点,则 的值为( ) A. 1 B. 5 C. 6 D. 414.二次函数y=ax 2+bx+c (a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c >3b ;③8a+7b+2c >0;④当x >﹣1时,y 的值随x 值的增大而增大. 其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个 15.如图,直线y=x+4与双曲线y=﹣相交于A 、B 两点,点P 是y 轴上的一个动点,当PA+PB 的值最小时,点P 的坐标为( )A.(0,) B.(0,) C.(0,﹣) D.(0,﹣)二、解答题 (本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)计算:︒+tan60|3-1|-1-217.(6分)解不等式组⎪⎩⎪⎨⎧+>-≤+xx x 4)2(312118. (7分)YD 市某大型初中,为了引导学生从“民歌中吸取文化和养料、促进文化传承、丰富学生的生活、提升学生的审美观”,进行为期半年的校园民歌大赛,有甲、乙、丙三位优秀选手进入总决赛:按照“演唱、快答、音乐素质”三项进行评价如下:竞赛项目 竞赛评分 甲 乙 丙 演唱 80 85 90 快答 90 80 70 音乐素质706080根据比赛规则,学校组织100名学生采用“无记名投票”的方式,对三个歌手进行“人气度”测评,三人得票率如扇形统计图所示(备注:没有弃权,每位同学只能推荐1人),每得1票记1分.(1)分别计算三个歌手的“人气度”得分情况;(2)学校组委会按照“人气度、演唱、快答、音乐素质”得分按2:4:1:3的比例确定歌手个人总成绩,你觉得三个歌手中:谁会问鼎总冠军呢?19.(7分) YC 市是“中华鲟”的故乡,也是YC 的一个名片!中华鲟从幼苗开始时:它的生长的速度较快,幼鱼期一般为8年,大约到长到14开始成为成年鱼.中华鲟的成长时间x 年与重量y (kg )如图所示(假定:幼鱼期、成鱼期,每个期的成长速度相对均衡)(1)(1)当80≤<x ,求y 关于x 的函数解析式; (2)求a 的值.20.(8分)如图1,在锐角△ABC 中,∠ABC=45°,高线AD 、BE 相交于点F . (1)判断BF 与AC 的数量关系并说明理由;(2)如图2,将△ACD 沿线段AD 对折,点C 落在BD 上的点M ,AM 与BE 相交于点N ,当DE ∥AM 时,判断NE 与AC 的数量关系并说明理由.21.(8分)△ACE ,△ACD 均为直角三角形,∠ACE=90°,∠ADC=90°,AE 与CD 相交于点P ,以CD 为直径的⊙O 恰好经过点E ,并与AC ,AE 分别交于点B 和点F. (1)求证:∠ADF=∠EAC. (2)若PC=32PA ,PF=1,求AF 的长.22、(10分)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第几天时销售利润最大? 时间x (天) 1≤x <9 9≤x <15 x≥15售价(元/斤) 第1次降价后的价格 第2次降价后的价格销量(斤)80﹣3x120﹣x 储存和损耗费用(元) 40+3x3x 2﹣64x+400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?23.(11分)在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为 :1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD 中,P 为DC 边上一定点,且CP=BC ,如图所示.(1)如图①,求证:BA=BP ;(2)如图②,点Q 在DC 上,且DQ=CP ,若G 为BC 边上一动点,当△AGQ 的周长最小时,求错误!未找到引用源。
2021年九年级中考数学考点复习专题-【实际问题与一元二次方程】 复习专练
2021中考数学复习专题【实际问题与一元二次方程】复习专练1.某社区“百果园”水果店一直销售的是沙漠蜜瓜,1月份新引进一种金美人蜜瓜,其中金美人蜜瓜的销售单价是沙漠蜜瓜的倍,1月份,沙漠蜜瓜和金美人蜜瓜总计销售400kg,金美人蜜瓜的销售额为8640元,沙漠蜜瓜的销售额为4320元.(1)求金美人蜜瓜,沙漠蜜瓜的销售单价各为多少;(2)受疫情影响,水果销量急剧下降,于是百果园在4月推出“心享会员”活动,充值金额后不仅返还现金券,所有水果还可享受降价a%的折扣,非心享会员则需按原价购买,就金美人蜜瓜而言,4月销量比1月销量增加了a%,其中遇过心享会员购买的销量占4月金美人蜜瓜总销量的,不计会员充值费用以及返还的现金券,4月金美人蜜瓜的销售总额比1月金美人蜜瓜的销售总额提高了a%,求a的值.2.水蜜桃,因其鲜嫩多汁,香甜可口深受广大市民喜爱.近期是水蜜桃大量上市的日子,某水果店以12元每千克购进水蜜桃100千克进行销售.若在运输过程中质量损耗10%,其他费用忽略不计.(1)问每千克水蜜桃售价至少定为多少元,才能使销售完后的利润率不低于20%?(2)因水蜜桃销售情况良好,很快一抢而空,水果店本周又购进了第二批水蜜桃400千克,第二批水蜜桃的购进价格比第一批上涨了a%,由于天气原因,第二批水蜜桃在运输过程中质量损耗提高到a%,所以水果商决定提高售价,比第一批的最低售价提高a元,这样,第二批水蜜桃销售完后比第一批水蜜桃多赚1480元,求a的值.3.为了满足师生的阅读需求,某校图书馆藏书总量由2017年5万册增加到2019年7.2万册.(1)求该校图书馆这两年藏书总量的年均增长率;(2)经统计知:在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书总量的年均增长率,2019年中外古典名著册数占藏书总量的10%,而在2017年中外古典名著册数仅占当年藏书总量的m%,请求出m的值.4.某小区物业一直用洗涤剂和消毒水对小区进行清洁消毒,已知1桶洗涤剂和4桶消毒水的价格为150元,2桶洗涤剂和2桶消毒水的价格为140元,该小区原来一周会消耗2桶洗涤剂和4桶消毒水.(1)求1桶洗涤剂和1桶消毒水的售价各是多少元?(2)新冠疫情期间物业加大了小区清洁消毒力度,现在该小区每周消耗洗涤剂的数量在原来一周的基础上增加了2m%,每周消耗的消毒水数量比原来一周消耗的多桶.疫情期间洗涤剂价格上涨了m%,因异地购买每桶还需另付邮费5元;每桶消毒水的价格上涨了50%,也因异地购买每桶还需另付邮费10元,现在该小区疫情期间每周购买洗涤剂和消毒水的费用(含邮费)比原来每周费用的4倍还少m元,求m的值.5.如图,在长为50米,宽为30米的矩形地面上修建三条同样宽的道路,余下部分种植草坪,草坪总面积为1392平方米.(1)求道路宽多少米;(2)现需要A、B两种类型的步道砖,A种类型的步道砖每平方米原价300元,现打八折出售,B种类型的步道板每平方米价格是200元,若铺路费用不高于23600元,(不考虑步道砖损失的情况下)最多选A种类型步道砖多少平方米?6.“过雨荷花满院香,沉李浮瓜冰雪凉”,炎热的夏季正是各种水果大量上市的季节,香果园大型水果超市的江安李子和山东烟台的红富士苹果很受消费者的欢迎,苹果售价24元/千克,李子售价16元/千克.(1)若第一周苹果的平均销量比李子的平均销量多200千克,且这两种水果的总销售额为12800元,则第一周销售苹果多少千克?(2)该水果超市第一周按照(1)中苹果和李子的销量销售这两种水果,并决定第二周继续销售这两种水果,第二周苹果售价降低了a%,销量比第一周增加了a%,李子的售价保持不变,销量比第一周增加了a%,结果这两种水果第二周的总销售额比第一周增加了a%,求a的值.7.为了开展阳光体育运动,坚持让中小学生“每天锻炼一小时”,体育局做了一个随机调查,调查内容是:每天锻炼是否超过1h及锻炼未超过1h的原因.他们随机调查了340名学生,用所得的数据制成了扇形统计图和频数分布直方图(图1、图2).根据图示,请回答以下问题:(1)“没时间”的人数是,并补全频数分布直方图;(2)2015年全市中小学生约18万人,按此调查,可以估计2015年全市中小学生每天锻炼超过1h的约有万人;(3)在(2)的条件下,如果计划2017年全市中小学生每天锻炼未超过1h的人数减少到8.64万人,求2015年至2017年锻炼未超过1h人数的年平均降低的百分率.8.有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.9.某水果超市第一次花费2200元购进甲、乙两种水果共350千克.已知甲种水果进价每千克5元,售价每千克10元;乙种水果进价每千克8元,售价每千克12元.(1)第一次购进的甲、乙两种水果各多少千克?(2)由于第一次购进的水果很快销售完毕,超市决定再次购进甲、乙两种水果,它们的进价不变.若要本次购进的水果销售完毕后获得利润2090元,甲种水果进货量在第一次进货量的基础上增加了2m%,售价比第一次提高了m%;乙种水果的进货量为100千克,售价不变.求m的值.10.“一带一路”为我们打开了交流、合作的大门,也为沿线各国在商贸等领域提供了更多的便捷,2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举办,据哈外贸商会发布消息,博览会期间,哈Paseka公司与重庆某国际贸易公司签订了供应蜂蜜合同:哈Paseka 公司于2019年6月前分期分批向重庆某国际贸易公司供给优质蜂蜜共3000万件,该公司顺应新时代购物流,打算分线上和线下两种方式销售.(1)若计划线上销售量不低于线下销售量的25%,求该公司计划在线下销售量最多为多少万件?(2)该公司在12月上旬销售优质蜂蜜共240万件,且线上线下销售单件均为100元/件.12月中旬决定线上销售单价下调m%,线下销售单价不变,在这种情况下,12月中旬销售总量比上旬增加了m%,且中旬线上销售量占中旬总销量的,结果中旬销售总金额比上旬销售总金额提高了m%.求m的值.参考答案1.解:(1)设沙漠蜜瓜的销售单价为x元,则金美人蜜瓜的销售单价为x元,依题意,得:+=400,解得:x=27,经检验,x=27是原方程的解,且符合题意,∴x=36.答:金美人蜜瓜的销售单价为36元,沙漠蜜瓜的销售单价为27元.(2)1月份金美人蜜瓜的销售数量为8640÷36=240(千克).依题意,得:36(1﹣a%)××240(1+a%)+36×(1﹣)×240(1+a%)=8640(1+a%),整理,得:a2﹣20a=0,解得:a1=20,a2=0(不合题意,舍去).答:a的值为20.2.解:(1)设每千克水蜜桃售价为x元,依题意,得:100×(1﹣10%)x﹣12×100≥12×100×20%,解得:x≥16.答:每千克水蜜桃售价至少定为16元,才能使销售完后的利润率不低于20%.(2)依题意,得:(16+a)×400(1﹣a%)﹣12(1+a%)×400=12×100×20%+1480,整理,得:a2﹣80a+1200=0,解得:a1=20,a2=60,又∵a%>10%,∴a>40,∴a=60.答:a的值为60.3.解:(1)设该校图书馆藏书总量从2017年至2019年的年平均增长率为x,由题意得:5(1+x)2=7.2,解得:x1=0.2,x2=﹣2.2(舍去),∴x=0.2=20%,答:该校图书馆这两年藏书总量的年均增长率为20%.(2)由题意知:(7.2﹣5)×20%+5×m%=7.2×10%,解得:m=5.6.4.解:(1)设1桶洗涤剂的售价为x元,1桶消毒水的售价为y元,依题意,得:,解得:.答:1桶洗涤剂的售价为元,1桶消毒水的售价为元.(2)依题意,得:[(1+m%)+5]×2(1+2m%)+[(1+50%)+10]×(4+)=4×(×2+×4)﹣m,整理,得:13m2+6600﹣357500=0,解得:m1=,m2=(不合题意,舍去).答:m的值为.5.解:(1)设道路宽x米,根据题意得:(50﹣2x)(30﹣x)=1392,整理得:x2﹣55x+54=0,解得:x=1或x=54(不合题意,舍去),故道路宽1米.(2)设选A种类型步道砖y平方米,根据题意得:300×0.8y+200×[50×1+(30﹣1)×1×2﹣y]≤23600,解得:y≤50.故最多选A种类型步道砖50平方米.6.解:(1)设第一周李子销售量为x千克.则苹果的平均销量为y千克,根据题意得:,解得:,答:第一周销售苹果400千克;(2)根据题意得:24(1﹣a%)×400(1+a%)+16×200(1+a%)=12800(1+a%),∴a1=60,a2=0(舍去).答:a的值为60.7.解:(1)∵随机调查了340名学生,∴锻炼未超过1h的中小学生有340×=255人,又∵不喜欢的人数和其他的人数分别是120和20,∴“没时间”的人数为255﹣120﹣20=115人,频数分布直方图如图所示:(2)根据扇形统计图知道:每天锻炼超过1h的百分比为18×=4.5万人.故估计2015年全市中小学生每天锻炼超过1h的约有4.5万人;(3)设2015年至2017年锻炼未超过1h人数的年平均降低的百分率为x.由题意得:18×0.75(1﹣x)2=8.64,解得x=0.2,x=1.8(舍去).答:2015年至2017年锻炼未超过1h人数的年平均降低的百分率为20%.故答案为:115;4.5.8.解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x.(2)当y=63时,﹣3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)不能围成面积为72m2的花圃.理由如下:如果y=72,那么﹣3x2+30x=72,整理,得x2﹣10x+24=0,解此方程得x1=4,x2=6,当x=4时,30﹣3x=18,不合题意舍去;当x=6时,30﹣3x=12,不合题意舍去;故不能围成面积为72m2的花圃.9.解:(1)设第一次购进甲种水果x千克,购进乙种水果y千克,依题意,得:,解得:.答:第一次购进甲种水果200千克,购进乙种水果150千克.(2)依题意,得:[10(1+m%)﹣5]×200(1+2m%)+(12﹣8)×100=2090,整理,得:0.4m2+40m﹣690=0,解得:m1=15,m2=﹣115(不合题意,舍去).答:m的值为15.10.解:(1)设该公司计划在线下销售量为x万件,则3000﹣x≥25%x解得:x≤2400∴该公司计划在线下销售量最多为2400万件;(2)由题意得:×240(1+m%)×100(1﹣m%)+(1﹣)×240(1+m%)×100=240×100(1+m%)化简得:m2﹣25m=0解得:m1=0(不合题意,舍去),m2=25∴m的值为25.。
人教版九年级数学上册中考专题复习题含答案全套
人教版九年级数学上册中考专题复习题1.类比归纳专题:配方法的应用2.类比归纳专题:一元二次方程的解法3.易错易混专题:一元二次方程中的易错问题4.考点综合专题:一元二次方程与其他知识的综合5.解题技巧专题:抛物线中与系数a,b,c有关的问题6.易错易混专题:二次函数的最值或函数值的范围7.难点探究专题:抛物线与几何图形的综合(选做)8.抛物线中的压轴题9.易错专题:抛物线的变换10.解题技巧专题:巧用旋转进行计算11.旋转变化中的压轴题12.类比归纳专题:圆中利用转化思想求角度13.类比归纳专题:切线证明的常用方法14.解题技巧专题:圆中辅助线的作法15.解题技巧专题:圆中求阴影部分的面积16.考点综合专题:圆与其他知识的综合17.圆中的最值问题18.抛物线与圆的综合19.易错专题:概率与放回、不放回问题类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1- 2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116 D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=1093.利用配方法解下列方程:(1)(2016·淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二 配方法求最值或证明 4.代数式x 2-4x +5的最小值是( ) A .-1 B .1 C .2 D .55.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值1 6.(2016-2017·夏津县月考)求证:代数式3x 2-6x +9的值恒为正数.7.若M =10a 2+2b 2-7a +6,N =a 2+2b 2+5a +1,试说明无论a ,b 为何值,总有M >N .◆类型三 完全平方式中的配方 8.如果多项式x 2-2mx +1是完全平方式,则m 的值为( )A .-1B .1C .±1D .±29.若方程25x 2-(k -1)x +1=0的左边可以写成一个完全平方式,则k 的值为( )A .-9或11B .-7或8C .-8或9D .-6或7◆类型四 利用配方构成非负数求值 10.已知m 2+n 2+2m -6n +10=0,则m +n 的值为( )A .3B .-1C .2D .-211.已知x 2+y 2-4x +6y +13=0,求(x +y )2016的值.答案:类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法 一、十字相乘法方法点拨:例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确), 第2种拆法:2x -2x =0(错误), 所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1. 2.解一元二次方程x 2+2x -3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程: (1)x 2-5x -6=0; (2)x 2+9x -36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =_______.5.解方程:(x 2+5x +1)(x 2+5x +7)=7.1.解:(1)移项,得⎝⎛⎭⎫x -522=14, 两边开平方,得x -52=±14, 即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2, ∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24; |(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0, ∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3. 4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x =0或x +5=0,∴x 1=0,x 2=-5; 当t =-7时,x 2+5x +1=-7,x 2+5x +8=0,∴b 2-4ac =52-4×1×8<0,此时方程 无实数根.∴原方程的解为x 1=0,x 2=-5.易错易混专题:一元二次方程中的易错问题◆类型一 利用方程或其解的定义求待定系数时,忽略“a ≠0”1.(2016-2017·江都区期中)若关于x的方程(a +3)x |a |-1-3x +2=0是一元二次方程,则a 的值为______.【易错1】2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或0 3.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0.(1)求m 的值; (2)求方程的解.◆类型二 利用判别式求字母取值范围时,忽略“a ≠0”及“a 中的a ≥0”4.(2016-2017·抚州期中)若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有解,那么m 的取值范围是( )A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠25.已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k的取值范围是________.6.若m 是非负整数,且关于x 的方程(m -1)x 2-2x +1=0有两个实数根,求m 的值及其对应方程的根.◆类型三 利用根与系数关系求值时,忽略“Δ≥0”7.(2016·朝阳中考)关于x 的一元二次方程x 2+kx +k +1=0的两根分别为x 1,x 2,且x 21+x 22=1,则k 的值为_______.【易错2】 8.已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.【易错2】◆类型四 与三角形结合时忘记取舍 9.已知三角形两边长分别为2和9,第三边的长为一元二次方程x 2-14x +48=0的根,则这个三角形的周长为( )A .11B .17C .17或19D .1910.在等腰△ABC 中,三边分别为a ,b ,c ,其中a =5,若关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,求△ABC 的周长.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为_________.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与一次函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x -m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是______.◆类型三一元二次方程与二次根式的综合12.(达州中考)方程(m-2)x2-3-mx +14=0有两个实数根,则m的取值范围为()A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠213.(包头中考)已知关于x的一元二次方程x2+k-1x-1=0有两个不相等的实数根,则k的取值范围是______.答案:12.B 13.解题技巧专题:抛物线中与系数a,b,c有关的问题◆类型一由某一函数的图象确定其他函数图象的位置1.二次函数y=-x2+ax-b的图象如图所示,则一次函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限第1题图第2题图2.已知一次函数y=-kx+k的图象如图所示,则二次函数y=-kx2-2x+k的图象大致是()3.已知函数y=(x-a)(x-b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()第3题图第4题图4.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是()◆类型二由抛物线的位置确定代数式的符号或未知数的值5.(2016·新疆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是【方法10】()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小第5题图第7题图6.(2016·黄石中考)以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是【方法10】()A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤27.(2016·孝感中考)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2016·天水中考)如图,二次函数y =ax2+bx+c(a≠0)的图象与x轴交于A,B 两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA·OB =-ca .其中正确结论的序号是____________.答案:易错易混专题:二次函数的最值或函数值的范围——类比各形式,突破给定范围求最值◆类型一 没有限定自变量的范围求最值 1.函数y =-(x +1)2+5的最大值为_______. 2.已知二次函数y =3x 2-12x +13,则函数值y 的最小值是【方法11】( )A .3B .2C .1D .-13.已知函数y =x(2-3x),当x 为何值时,函数有最大值还是最小值?并求出最值.◆类型二 限定自变量的取值范围求最值4.(2016-2017·双台子区校级月考)函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别是( )A .4和-3B .-3和-4C .5和-4D .-1和-45.二次函数y =-12x 2+32x +2的图象如图所示,当-1≤x ≤0时,该函数的最大值是【方法11】( )A .3.125B .4C .2D .06.已知0≤x ≤32,则函数y =x 2+x +1( ) A .有最小值34,但无最大值B .有最小值34,有最大值1C .有最小值1,有最大值194D .无最小值,也无最大值◆类型三 限定自变量的取值范围求函数值的范围7.从y =2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是( )A .-1≤y ≤5B .-5≤y ≤5C .-3≤y ≤5D .-2≤y ≤18.已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <39.二次函数y =x 2-x +m(m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a -1时,函数值CA .y <0B .0<y <mC .y >mD .y =m◆类型四 已知函数的最值,求自变量的取值范围或待定系数的值10.当二次函数y =x 2+4x +9取最小值时,x 的值为( )A .-2B .1C .2D .911.已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A.3 B.-1C.4 D.4或-112.已知y=-x(x+3-a)+1是关于x 的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是()A.a=9 B.a=5 C.a≤9 D.a≤513.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=70°.若二次函数y=(a+b)x2+(a+b)x-(a-b)的最小值为-a2,则∠A=_______度.14.★已知函数y=-4x2+4ax-4a-a2,若函数在0≤x≤1上的最大值是-5,求a的值.答案:难点探究专题:抛物线与几何图形的综合(选做)——代几结合,突破面积及点的存在性问题◆类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.(2016·凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P 的坐标;(3)点M也是直线l上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M的坐标.◆类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P 在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y=12x2+x-32与x轴相交于A,B两点,顶点为P.(1)求点A,B的坐标;(2)在抛物线上是否存在点E,使△ABP 的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A,B,P,F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.◆类型三 二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.第5题图 第6题图6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7. (2016·新疆中考)如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4). (1)求抛物线的解析式及顶点坐标; (2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.8.(2016·百色中考)正方形OABC 的边长为4,对角线相交于点P ,抛物线l 经过O ,P ,A 三点,点E 是正方形内的抛物线l 上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点的坐标; ②求抛物线l 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.答案:拔高专题抛物线中的压轴题一、基本模型构建常见模型思考在边长为1的正方形网格中有A, B, C三点,画出以A,B,C为其三个顶点的平行四边形ABCD。
2020年中考数学复习专题练:《分式方程实际应用 》(含答案)
2020年中考数学复习专题练:《分式方程实际应用》1.在抗击“新冠肺炎”战役中,某公司接到转产生产1440万个医用防护口罩补充防疫一线需要的任务,临时改造了甲、乙两条流水生产线.试产时甲生产线每天的产能(每天的生产的数量)是乙生产线的2倍,各生产80万个,甲比乙少用了2天.(1)求甲、乙两条生产线每天的产能各是多少?(2)若甲、乙两条生产线每天的运行成本分别是1.2万元和0.5万元,要使完成这批任务总运行成本不超过40万元,则至少应安排乙生产线生产多少天?(3)正式开工满负荷生产3天后,通过技术革新,甲生产线的日产能提高了50%,乙生产线的日产能翻了一番.再满负荷生产13天能否完成任务?2.某口罩生产厂在春节期间接到紧急任务,要求几天内生产出70万只口罩,为了战胜疫情,口罩厂工人愿意奉献自己的休息时间来完成这项任务,厂长决定开足全厂口罩生产线进行生产,结果每天比原来多生产3万只,而且提前了3天完成了任务,问原来要求几天完成这项紧急任务?3.在我县创建“生态保护示范县”活动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍.如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天,求甲,乙两工程队每天各能完成多少面积的绿化?4.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?5.某服装加工厂甲、乙两个车间共同加工一款休闲装,且每人每天加工的件数相同,甲车间比乙车间少10人,甲车间每天加工服装400件,乙车间每天加工服装600件.(1)求甲、乙两车间各有多少人;(2)甲车间更新了设备,平均每人每天加工的件数比原来多了10件,乙车间的加工效率不变,在两个车间总人数不变的情况下,加工厂计划从乙车间调出一部分人到甲车间,使每天两个车间加工的总数不少于1314件,求至少要从乙车间调出多少人到甲车间.6.某公司需要采购A、B两种笔记本,A种笔记本的单价高出B种笔记本的单价10元,并且花费300元购买A种笔记本和花费100元购买B种笔记本的数量相等.(1)求A种笔记本和B种笔记本的单价各是多少元;(2)该公司准备采购A、B两种笔记本共80本,若A种笔记本的数量不少于60本,并且采购A、B两种笔记本的总费用不高于1100元,那么该公司有种购买方案.7.哈市红十字预计在2019年儿童节前为郊区某小学发放学习用品,联系某工厂加工学习用品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的倍.(1)求手工每小时加工产品的数量;(2)经过调查该小学的小学生的总数不超过1332名,每名小学生分发两个学习用品,工厂领导打算在两天内(48小时)完成任务,打算以机器加工为主,同时人工也参与加工(人工与机器加工不能同时进行),为了保证按时完成加工任务,人工至多加工多少小时?8.甲、乙两个筑路队共同承担一段一级路的施工任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用15天.且甲队单独施工60天和乙队单独施工40天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了4天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?9.为维护市区的生态环境,政府决定对市区周边水域的水质进行改善,这项工程由甲、乙两个工程队承包,乙工程队单独施工140天后甲工程队加入,甲、乙两个工程队合作40天后,共完成总工程的,且甲工程队每天的施工量是乙工程队的3倍.(1)求甲工程队单独完成这项工程需要多少天?(2)若要求乙工程队施工工期不超过300天,则甲工程队至少要施工多少天?10.某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.(1)求实际每天挖掘多少米?(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?11.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.比亚迪油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为96元;若完全用电做动力行驶,则费用为36元.已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?12.某商店用1000元人民币购进水果销售,过了一段时间又用2800元购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克?(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的100千克按照标价的半价出售.售完全部水果后,利润不低于1700元,则最初每千克水果的标价至少是多少?13.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?14.某体育用品商场预测某品牌运动服能够畅销,用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场第一次购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=×100%.)15.某周日,珂铭和小雪从新天地小区门口同时出发,沿同一条路线去离该小区1800米的少年宫参加活动,为响应节能环保,绿色出行的号召,两人步行,已知珂铭的速度是小雪的速度的1.2倍,结果珂铭比小雪早6分钟到达.(1)求小雪的速度;(2)活动结東后返回,珂铭与小雪的速度均与原来相同,若小雪计划比珂铭至少提前6分钟回到小区,则小雪至少要比珂铭提前多长时间出发?16.一项工程,甲队单独完成比乙队单独完成少用8天,甲队单独做3天的工作乙队单独做需要5天.(1)甲、乙两队单独完成此项工程各需几天?(2)甲队每施工一天则需付给甲队工程款5.5万元,乙队每施工一天则需付给乙队工程款3万元.该工程先由甲、乙两队合作若干天后,再由乙队完成剩下的工程.若要求完成此项工程的工程款不超过65万元,则甲、乙两队最多合作多少天?17.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?18.国庆70华诞期间,各超市购物市民络绎不绝,呈现浓浓节日气氛.“百姓超市”用320元购进一批葡萄,上市后很快脱销,该超市又用680元购进第二批葡萄,所购数量是第一批购进数量的2倍,但进价每市斤多了0.2元.(1)该超市第一批购进这种葡萄多少市斤?(2)如果这两次购进的葡萄售价相同,且全部售完后总利润不低于20%,那么每市斤葡萄的售价应该至少定为多少元?19.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?20.某学校计划选购A、B两种图书.已知A种图书每本价格是B种图书每本价格的2.5倍,用1200元单独购买A种图书比用1500元单独购买B种图书要少25本.(1)A、B两种图书每本价格分别为多少元?(2)如果该学校计划购买B种图书的本数比购买A种图书本数的2倍多8本,且用于购买A、B两种图书的总经费不超过1164元,那么该学校最多可以购买多少本B种图书?参考答案1.解:(1)设乙条生产线每天的产能是x万个,则甲条生产线每天的产能是2x万个,依题意有﹣=2,解得x=20,经检验,x=20是原方程的解,2x=2×20=40,故甲条生产线每天的产能是40万个,乙条生产线每天的产能是20万个;(2)设安排乙生产线生产y天,依题意有0.5y+1.2×≤40,解得y≥32.故至少应安排乙生产线生产32天;(3)(40+20)×3+[40×(1+50%)+20×2]×13=180+1300=1480(万个),1440万个<1480万个,故再满负荷生产13天能完成任务.2.解:设原来每天生产x万只口罩,则实际每天生产(x+3)万只口罩,依题意,得:﹣=3,解得:x=7,经检验,x=7是原分式方程的解,且符合题意,∴==10.答:原来要求10天完成这项紧急任务.3.解:设乙工程队每天能完成xm2的绿化,则甲工程队每天能完成2xm2的绿化,依题意,得:﹣=6,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天能完成100m2的绿化,乙工程队每天能完成50m2的绿化.4.解:设慢车与快车的速是xkm/h,则快车的速度是1.2xkm/h,根据题意得﹣=,解得:x=50,检验:经检验x=50是原方程的根,答:慢车速度为50千米/小时,快车速度为60千米/小时.5.解:(1)设甲车间有x人,乙车间有(x+10)人,则:,解得:x=20,经检验:x=20是原分式方程的解.答:甲车间有20人,乙车间有30人.(2)设从乙车间调a人到甲车间;则:,解得:a≥11.4.因为a为正整数,所以a的最小值为12.答:从乙车间至少调12人到甲车间.6.解:(1)设A种笔记本的单价是x元,则B种笔记本的单价是(x﹣10)元,根据题意得,=,解得:x=15,经检验:x=15是原方程的根,∴x﹣10=5,答:A种笔记本和B种笔记本的单价各是15元和5元;(2)设该公司准备采购A种笔记本a本,采购B种笔记本(80﹣a)本,根据题意得,15a+5(80﹣a)≤1100,解得:a≤70,∵A种笔记本的数量不少于60本,∴60≤a≤70,(a为正整数),∴该公司有11种购买方案.故答案为:11.7.解:(1)设手工每小时加工产品x件,则机器每小时加工产品(2x+9)件,根据题意,得:×=,解得x=27,经检验:x=27是原分式方程的解,答:手工每小时加工产品27件;(2)设人工要加工a小时,根据题意,得:27a+(2×27+9)(48﹣a)≥2×1332,解得a≤10,答:人工至多加工10小时.8.解:(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+15)天根据题意得经检验x=30是原方程的解,则x+15=45(天)答:甲队单独完成此项任务需45天,乙队单独完成此项任务需30天.(2)解:设甲队再单独施工y天,依题意,得,解得y≥4.答:甲队至少再单独施工4天.9.解:(1)设甲工程队单独完成这项工程需要x天,则甲每天的施工量为,乙每天的施工量为,由题意得140×+40(+)=∴+=∴x=200经检验x=200是原方程的解,且符合问题的实际意义.答:甲工程队单独完成这项工程需要200天.(2)由(1)可知,乙工程队单独完成这项工程需要3×200=600天设甲工程队至少要施工y天,由题意得≤300∴y≥199答:甲工程队至少要施工199天.10.解:(1)设原计划每天挖掘x米,则实际每天挖掘1.5x米,根据题意得:﹣=25,解得x=4.经检验,x=4是原分式方程的解,且符合题意,则1.5x=6答:实际每天挖掘6米.(2)设每天还应多挖掘y米,由题意,得(70﹣)(6+y)≥500﹣300,解得y≥4.答:每天还应多挖掘4米.11.解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:=,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是36÷0.3=120(千米);(2)汽车行驶中每千米用油费用为0.3+0.5=0.8(元),设汽车用电行驶ykm,可得:0.3y+0.8(120﹣y)≤50,解得:y≥92,所以至少需要用电行驶92千米.12.解:(1)设第一次购进水果x千克,依题意可列方程:.解得x=200.经检验:x=200是原方程的解.答:第一次购进水果200千克;(2)由(1)可知,二次共购进水果600千克,设最初水果标价为y元,依题意可列不等式:500y+100×﹣3800≥1700.解得y≥10.答:最初每千克水果标价至少为10元.13.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=25,经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25×2=50(m2),答:甲、乙两工程队每天能完成绿化的面积分别是50m2、25m2;(2)设应安排甲队工作y天,根据题意得:0.35y+×0.25≤8,解得:y≥20,答:至少应安排甲队工作20天.14.解:(1)设该商场第一次购进这种运动服x套,第二次购进2x套,由题意得,﹣=10,解得:x=200,经检验:x=200是原分式方程的解,且符合题意,答:该商场第一次购进200套;(2)设每套售价是y元,两批运动服总数:200+400=600由题意得:600y﹣32000﹣68000≥(32000+68000)×20%,解得:y≥200,答:每套售价至少是200元.15.解:设小雪的速度是x米/分钟,则珂铭速度是1.2x米/分钟,依题意得:,解得:x=50,经检验x=50是原方程的解,答:小雪的速度是50米/分钟.(2)1.2×50=60(米/分钟),1800÷50=36(分钟),1800÷60=30(分钟),设小雪比珂铭提前a分钟出发,根据题意得,a+30﹣36≥6,解得a≥12,答:小雪至少要比珂铭提前出发12分钟.16.解:(1)设甲队单独完成此项工程需x天,乙队单独完成此项工程需(x+8)天根据题意得:=解得x=12经检验x=12是原方程的解当x=12时,x+8=20答:甲队单独完成此项工程需12天,乙队单独完成此项工程需20天.(2)设甲乙两队合作m天,根据题意得:5.5m+×3≤65,解得m≤10;又∵(+)m≤1,∴m≤7.5,∴甲乙两队最多合作7天.答:甲乙两队最多合作7天.17.解:(1)设购买一副羽毛球拍需要x元,则购买一根跳绳需要(x﹣20)元,依题意,得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x﹣20=5.答:购买一副羽毛球拍需要25元,购买一根跳绳需要5元.(2)设八(1)班购买m副羽毛球拍,则购买(2m+10)根跳绳,依题意,得:25m+5(2m+10﹣m)≤350,解得:m≤10.答:八(1)班最多可购买10副羽毛球拍.18.解:(1)设该超市第一批购进这种葡萄x市斤,则第二批购进这种葡萄2x市斤,依题意,得:﹣=0.2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:该超市第一批购进这种葡萄100市斤.(2)设每市斤葡萄的售价应该定为y元,依题意,得:(100+100×2)y﹣320﹣680≥(320+680)×20%,解得:y≥4.答:每市斤葡萄的售价应该至少定为4元.19.解:(1)设甲工程队单独完成这项工程需要2x天,则乙工程队单独完成这项工程需要3x天,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60,3x=90.答:甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天.(2)由题意,得:+=1,∴n=90﹣m.设施工总费用为w万元,则w=15m+8n=15m+8×(90﹣m)=3m+720.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴,∴20≤m≤40.∵15>0,∴w值随m值的增大而增大,∴当m=20时,完成此项工程总费用最少,此时n=90﹣m=60,w=780万元.答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.20.解:(1)设B种图书每本价格为x元,则A种图书每本价格为2.5x元,依题意,得:﹣=25,解得:x=40.8,经检验,x=40.8是原方程的解,且符合题意,∴2.5x=102.答:A种图书每本价格为102元,B种图书每本价格为40.8元.(2)设购买y本A种图书,则购买(2y+8)本B种图书,依题意,得:102y+40.8(2y+8)≤1164,解得:y≤4.∵y为整数,∴y的最大值为4,∴(2y+8)的最大值为16.答:该学校最多可以购买16本B种图书.。
中考数学专题复习试卷(五)(有答案)
第三章限时检测卷(时间:80分钟 分值:100分 得分: )一、选择题(本大题9小题,每小题3分,共27分) 1.函数y =5x -1中,自变量x 的取值范围是( D )A .x ≠0B .x >1C .x <1D .x ≠12.已知点P 位于x 轴上方,到x 轴的距离为2,到y 轴的距离为5,则点P 坐标为( D ) A .(2,5)B .(5,2)C .(2,5)或(-2,5)D .(5,2)或(-5,2)3.下列函数中,函数值y 随自变量x 的值增大而增大的是( A ) A .y =x 3B .y =-x3C .y =3xD .y =-3x4.P ,Q 为反比例函数y =-2x 图象上任意两点,若S △OAP 记为S 1,S △OBQ 记为S 2,则S 1和S 2的大小关系是( A )A .S 1=S 2B .S 1>S 2C .S 1<S 2D .无法判断5.由二次函数y =-2x 2+4x +1的图象得到y =-2x 2的图象的平移方式是( C ) A .向左移动1个单位,向上移动3个单位 B .向右移动1个单位,向上移动3个单位 C .向左移动1个单位,向下移动3个单位 D .向右移动1个单位,向下移动3个单位6.(2020温州)已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线y =-3x 2-12x +m 上的点,则( B )A .y 3<y 2<y 1B .y 3<y 1<y 2C .y 2<y 3<y 1D .y 1<y 3<y 27.如图,假设篱笆(虚线部分)的长度16 m ,则所围成矩形ABCD 的最大面积是( C )A .60 m 2B .63 m 2C .64 m 2D .66 m 28.(2020宁夏)如图,函数y 1=x +1与函数y 2=2x 的图象相交于点M (1,m ),N (-2,n ).若y 1>y 2,则x 的取值范围是( D )A .x <-2或0<x <1B .x <-2或x >1C .-2<x <0或0<x <1D .-2<x <0或x >1第8题图 第9题图9.(2020恩施州)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (-2,0)、B (1,0)两点.则以下结论:①ac >0;②二次函数y =ax 2+bx +c 的图象的对称轴为x =-1;③2a +c =0;④a -b +c >0.其中正确的个数有( C )A .0个B .1个C .2个D .3个二、填空题(本大题6小题,每小题4分,共24分)10.在平面直角坐标系中,点P (2,-3)关于x 轴对称的点的坐标为 (2,3) . 11.已知点(-3,a +2)在x 轴上,则a = -2 .12.若抛物线y =(a -1)x 2开口向上,则a 的取值范围是 a >1 .13.如图,A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移至A 1B 1,点A 1,点B 1的坐标分别为(2,a ),(b ,3),则a +b = 2 .第13题图第15题图14.(2020连云港)加工爆米花时,爆开且不糊的粒数的百分比称为”可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min)满足函数表达式y =-0.2x 2+1.5x -2,则最佳加工时间为 3.75 min.15.如图所示,在平面直角坐标系中,点A 在抛物线y =x 2-4x +6上运动,过点A 作AB ⊥x 轴于点B ,以AB 为斜边作Rt △ABC ,则AB 边上的中线CD 的最小值为 1 .三、解答题(一)(本大题3小题,每小题6分,共18分)16.已知函数y =2x +4的图象与x 轴交于点C ,与y 轴交于点D .(1)在如图所示的平面直角坐标系中画出y =-x +2的图象,求当x 为何值时,函数值y >0;(2)若y =-x +2图象与x 轴、y 轴分别交于A 、B 两点,求△ABO 周长;(3)函数y =2x +4的图象与函数y =-x +2的图象交于点P ,求四边形PCOB 的面积.解:(1)当x =0时,y =2;当y =0时,x =2. 函数图象如图所示,由图象可知,当x <2时,y >0. (2)由(1)得,OA =2,OB =2,∵∠AOB =90°,∴AB =22+22=22, ∴△AOB 的周长为OA +OB +AB =4+2 2.(3)依题意,得P 点坐标为⎝⎛⎭⎫-23,83,C 点坐标为(-2,0). ∵S △PCA =12×83×4=163,S △AOB =12×2×2=2,∴四边形PCOB 的面积=S △PCA -S △AOB .即163-2=103. 17.如图,在平面直角坐标系中,已知点B (0,4),等边三角形OAB 的顶点A 在反比例函数y =kx(x >0)的图象上.(1)求反比例函数的解析式;(2)把△OAB 沿y 轴向上平移a 个单位长度,对应得到△O ′A ′B ′.求当反比例函数的图象经过△O ′A ′B ′一边的中点时a 的值.解:(1)如图,过点A 作AC ⊥BO 于点C .∵△OAB 是等边三角形, ∴∠AOB =60°,OC =12OB .∵B (4,0),∴OC =2,AC =2 3.把点A 的坐标(23,2)代入y =kx ,得k =4 3.∴反比例函数的解析式是y =43x. (2)分两种情况讨论:①当反比例函数y =43x 过边A ′B ′的中点时.∵边A ′B ′的中点坐标为(3,3+a ), ∴3+a =433,得a =1.②当反比例函数y =43x 过边O ′A ′的中点时.∵边O ′A ′的中点坐标为(3,1+a ), ∴1+a =433,得a =3.综上所述,a 的值是1或3.18.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx (k ≠0)在第一象限内的图象交于点B ,且点B 的横坐标为1.过点A 作AC ⊥y轴交反比例函数y =kx(k ≠0)的图象于点C ,连接BC .(1)求反比例函数的表达式. (2)求△ABC 的面积.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1, ∴y =3×1+2=5,∴点B 的坐标为(1,5). ∵点B 在反比例函数y =kx 的图象上,∴k =1×5=5.∴反比例函数的表达式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,∴当x =0时,y =2.∴点A 的坐标为(0,2). ∵AC ⊥y 轴,∴点C 的纵坐标是2. ∵点C 在反比例函数y =5x 的图象上,∴当y =2时,2=5x ,解得x =52.∴AC =52.过B 作BD ⊥AC 于D ,则BD =y B -y C =5-2=3. ∴S △ABC =12AC ·BD =12×52×3=154.四、解答题(二)(本大题4小题,共31分)19.(7分)某快递公司的每位”快递小哥”日收入与每日的派送量成一次函数关系,如图所示.(1)求每位”快递小哥”的日收入y (元)与日派送量x (件)之间的函数关系式; (2)已知某”快递小哥”的日收入不少于110元,则他每日至少要派送多少件?解:(1)设每位”快递小哥”的日收入y (元)与日派送量x (件)之间的函数关系式为y =kx +b ,将(0,70)、(30,100)代入y =kx +b ,⎩⎪⎨⎪⎧b =70,30k +b =100,解得⎩⎪⎨⎪⎧k =1,b =70. ∴每位”快递小哥”的日收入y (元)与日派送量x (件)之间的函数关系式为y =x +70. (2)根据题意得x +70≥110,解得x ≥40.答:某”快递小哥”的日收入不少于110元,则他每日至少要派送40件.20.(8分)某商场经营某种品牌的玩具,购进时的单价30元,根据市场调查:在一段时间内,销售单价是40元时,销售是600件,而销售单价每涨1元,就会少售出10件玩具.(1)若设该种品牌玩具上涨x 元(0<x <60)元,销售利润为w 元,请直接写出w 与x 之间的函数关系式;(2)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润. 解:(1)根据题意,得w =(600-10x )(10+x )=-10x 2+500x +6 000. (2)w =-10x 2+500x +6 000=-10(x -25)2+12 250. ∵a =-10<0,∴当销售价格定为40+25=65(元)时,利润最大,最大利润为12 250元.答:商场销售该品牌玩具的销售单价应定为65元才能获得最大利润,最大利润是12 250元.21.(8分)如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P ,Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2 cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1 cm 的速度匀速运动.当Q 到达C 点时,P ,Q 停止运动.设运动时间为x 秒,△PBQ 的面积为y (cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.解:(1)∵S △PBQ =12PB ·BQ ,PB =AB -AP =18-2x ,BQ =x ,∴y =12(18-2x )x ,即y =-x 2+9x (0<x ≤4).(2)由(1)知,y =-x 2+9x ,∴y =-⎝⎛⎭⎫x -922+814. ∵当0<x ≤92时,y 随x 的增大而增大,而0<x ≤4,∴当x =4时,y 最大值=20, 即△PBQ 的最大面积是20 cm 2.22.(8分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在水池中心的装饰物处汇合.如图所示,以水平方向为x 轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y =a (x -3)2+5(a ≠0,且x >0).将(8,0)代入y =a (x -3)2+5,得25a +5=0. 解得a =-15.∴水柱所在抛物线(第一象限部分)的函数表达式为y =-15(x -3)2+5(0<x <8).(2)当y =1.8时,有-15(x -3)2+5=1.8.解得x 1=-1(舍去),x 2=7.∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.。
中考语文基础知识复习题(附答案)
中考语文基础知识复习题(附答案)基础知识训练(四十六)1.C.劲jìng疾风劲草强劲有力刚劲正直改写:劲jìng,指疾风劲草的强劲有力,也指人的刚劲正直。
2.D.禁锢涸泽而渔溪落自辟蹊径改写:禁锢涸泽而渔,是指人们在没有水源的情况下,仍然坚持渔猎,而溪落自辟蹊径则是指人们发现新的道路,开辟新的途径。
3.B.高寒缺氧的恶劣环境,单调枯燥的生活,非但没有难住他,却磨炼出了他坚韧不拔的性格。
改写:高寒缺氧的恶劣环境和单调枯燥的生活并没有难住他,反而磨炼出了他坚韧不拔的性格。
4.A.昆剧被联合国教科文组织列入首批“代表作”,是实至名归,当之无愧。
改写:昆剧被列入首批“代表作”,实至名归,当之无愧。
5.D.人们精神面貌从来没有像今天这样焕发,干劲十足。
改写:今天人们的精神面貌焕发,干劲十足。
6.C.《牛郎织女》发展到南北朝时改写:《牛郎织女》在南北朝时期得到了发展。
基础知识训练(四十七)1.B.困难责难难民难题改写:奢靡风靡靡靡之音和靡费是同音异义词,困难、责难、难民和难题的“难”字读音不同。
1.改写:C。
和面时要一边唱一边揉,直到面团变得柔软。
D。
烹制烤羊肉时需要火候适中。
2.改写:A。
国家发布了权利启示征文启事。
B。
这个问题非常利害,需要长期的关注和努力。
D。
我们需要修养来保持生息。
3.改写:A。
有些人盲目追求西方文艺和哲学思想,却很少分析马克思主义观点的文章,导致在创作和理论上产生不良影响。
B。
天津市科学技术进修学院已经开始招生和开学。
C。
他的论文在大学课程没有全部学完的情况下就已经被发表在全国性的专业学术报刊上了。
D。
蟑螂倾向于栖息在潮湿、阴暗或温暖的环境中。
4.改写:A。
聂卫平是围棋大师,经常出其不意地下出妙着,使对手防患未然。
B。
我国几代科技工作者殚精竭虑、忘我工作,取得了一批批举世瞩目的科研成果。
C。
这些年轻的科学家决心勇敢地克服重重困难,去探索大自然的奥秘。
D。
使用我们工厂生产的涂料来装饰您的居室,让您的生活更加光彩照人。
中考语文复习专题(十):词语的搭配
中考语文复习专题(十):词语的搭配中考语文复习专题(十):词语的搭配一、单选题(共31题;共62分)1.下列句子中,划线的词语使用不正确的一项是()A.青蒿素对鼠疟、猴疟疟原虫的抑制率达到100%,屠呦呦这一重大发现,每年在全世界挽救了数以百万计疟疾患者的生命。
B.最近乐山市有关部门联合行动,迅速取缔黑网吧,为青少年健康成长营造了良好的社会环境。
C.作为一名军人,其职责就是保卫国家安全,保卫及守护国家边境,即使在战场上马革裹尸又有何妨呢?D.200多年来,世界各国数以万计的探险家不畏冰山阻挡,不畏风暴严寒,前仆后继地奔赴南极,进行科学考察。
2.下列句子中划线词语使用最恰当的一项是()A.博物馆凝聚了人类历史和文化的场所,是一个城市乃至一个国家的文化符号,承载了丰富的文化内含。
B.现在有些人很无聊,总喜欢窥测别人的隐私,散布一些流言。
C.在北京首钢队与辽宁队比赛中,首钢队在一度落后20分的情况下,顽强追平比分并将比赛拖入加时,这主要是首钢队的明星球员发挥了妙手回春的作用。
D.《厉害了,我的国》这部大型纪录片全面展现了我国所取得的巨大成就,极大地引发了国人顶礼膜拜的自豪感。
3.依次填入下面句子中横线上的词语恰当的一项是()①我没有摘花的习惯。
我只是伫立______,觉得这一条紫藤萝瀑布不只在我眼前,也在我心上缓缓流过。
②鸭们长大了,它们的羽毛开始变得鲜亮,并且变得______,一滴水也不能泼进去了。
③一到求神拜佛,可就玄虚之至了,有益或是有害,一时就找不出分明的结果来,它可以令人更长久的______着自己。
④一些生物学家们指出,一旦某种“生物入侵者”在新的环境中站稳脚跟并大规模地______,其数量将很难控制。
A.看望稠密麻醉繁殖B.凝望稠密麻醉繁衍C.凝望茂密麻痹繁衍D.看望茂密麻痹繁殖4.在下面语段横线上依次填人关联词语,最准确的一项是()在一定条件下,科学知识之所以正确是因为经过了实践的检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单项选择题
1.注册会计师与政府审计部门如对同一审计事项进行审计,最终形成的审计结论可能存在差异。
下列是导致差异的原因是()
A.审计方式的不同
B.审计的性质不同
C.审计的独立性不同
D.审计的依据不同
2在审计监督体系中,政府审计独立性表现为()
A.独立于审计委托人,但不独立于被审计单位
B.独立于被审计单位,但不独立于委托者
C.与审计委托者和被审计单位均不独立
D.与审计委托者及被审计单位均独立
3注册会计师审计的技术方法随时代不同而不断发展。
下列各阶段中,抽样法作为审计的以一种技术方法开始在注册会计师审计过程中运用的是()
A.18世纪的意大利
B1844年至20世纪初的英国
C20世纪初的美国
D第一次世界大战后
4按照()进行划分,审计的类别包括财务报表审计、经营审计和合规性审计
A.主体不同
B.目的与内容
C.与被审计单位的关系
D.独立性不同
5注册会计师在审计过程中既要遵守审计准则执行审计程序,又要运用会计准则确定被审计单位财务报表是否合法、公允。
所以,注册会计师审计的依据是()
A.企业会计准则
B.中国注册会计师审计准则
C.国际审计标准
D.企业会计制度
6中国第一家会计师事务所是()
A.潘序伦会计师事务所
B.正则会计师事务所
C.立信会计师事务所
D.安永会计师事务所
7.()的颁布标志着我国注册会计师职业开始复苏
A.《中华人民会计法》
B.《中华人民共和国注册会计师条例》
C.《关于成立会计顾问处的暂行规定》
D.《中华人民共和国中外合资经营企业所得税法实施细则》
二、多项选择题
1.下列表述中,正确的有()
A.美国《证券法》的颁布,标志着注册会计师审计的法律地位得到法律确认。
B.英国《公司法》的颁布,标志着注册会计师审计的法律地位得到法律确认。
C.注册会计师审计产生的直接原因是财产所有权与经营权的分离。
D.在财务报表审计阶段,差错防漏已不再是审计的主要目的。
2.关于注册会计师审计与其他审计关系说法中,错误的是()
A.注册会计师审计和政府审计的主要区别在于审计目标、审计标准、审计经费和收入来源、取证权限、发现问题六个方面
B.注册会计师审计和政府审计在取证权限上存在不同,政府审计有权就审计事项的有关问题向被审计单位及其相关单位的配合和协助,没有行政强制力
C.内部审计属于单向独立,注册会计师审计属于双向独立,后者独立性高于前者
D.注册会计师在审计过程中,可以直接相信内部审计的结论,因为两者在工作上存在一定的一致性
3.下列关于注册会计师审计发展历程的说法正确的有()
A.注册会计师审计的产生是具有历史必然性的
B.注册会计师审计随着商品经济发展而产生,也随着商品经济的发展而发展
C.注册会计师审计发展至今其职责仅是对委托人而言,不涉及其他群体
D.注册会计师审计具有独立、客观、公正的特征
4 注册会计师审计发展到资产负债表审计时期时,下列说法正确的是()
A.审计对象由会计项目扩大到资产负债表
B.审计抽样方法得到广泛的应用
C.审计的主要目的是通过资产负债表数据的身缠判断企业信用状况
D审计报告使用人除企业股东外,更突出债权人
5.内部审计与注册会计师审计的一致性主要体现在()
A.审计内容
B.审计作用C审计方式D审计方法
6.在了解内部审计并对其进行评估时,注册会计师应当考虑的重要因素有()
A.内部审计的组织低位及其客观性的影响
B.内部审计的职责范围
C.内部审计人员的专业胜任能力
D.内部审计人员应有的职业关注
7.就审计的独立性进行分析,在各种形式的审计中,说法正确的是()
A.政府审计的独立性低于注册会计师审计
B.内部审计的独立性低于注册会计师审计与政府审计
C.政府审计时单方向审计,它仅仅与被审计单位独立,与审计委托者不独立
D.注册会计师是双向独立,它独立于被审计单位和审计委托单位
8注册会计师提供的审计业务可分为()
A财务报表审计
B经营审计
C制度基础审计
D政府审计
9注册会计师为了实现审计目标,一直随着审计环境的变化调整着审计方法,审计方法包括()
A.财务报表审计
B..账项基础审计
C.制度基础审计
D.风险导向审计
答案
单选
1D 2D 3B 4C 5B 6B 7B 8C
多项选择
1 BCD 2CD 3ABD 4ACD 5AD 6ABCD 7BCD 8ABC 9BCD
备注说明,非正文,实际使用可删除如下部分。
本内容仅给予阅读编辑指点:
1、本文件由微软OFFICE办公软件编辑而成,同时支持WPS。
2、文件可重新编辑整理。
3、建议结合本公司和个人的实际情况进行修正编辑。
4、因编辑原因,部分文件文字有些微错误的,请自行修正,并不影响本文阅读。
Note: it is not the text. The following parts can be deleted for actual use. This content only gives reading and editing instructions:
1. This document is edited by Microsoft office office software and supports WPS.
2. The files can be edited and reorganized.
3. It is suggested to revise and edit according to the actual situation of the company and individuals.
4. Due to editing reasons, some minor errors in the text of some documents should be corrected by yourself, which does not affect the reading of this article.。