图形初步认识复习

合集下载

华东师大版数学七年级上册第4章图形的初步认识复习课件

华东师大版数学七年级上册第4章图形的初步认识复习课件

三、解答题 13.如图所示是一多面体的表面展开图,每个面上都标注了字母,请 回答: (1)如果F面在前面,从左面看是B面,那么哪一面会在上面? (2)折叠成长方体后,俯视图与D面一致,左视图与C面一致,那么 主视图是哪面的视图? 解:(1)C面 (2)A面或F面
14.如图是一个由若干个棱长相等的正方体构成的几何体的从三个方 向看到的形状图.
角的特殊关系
1.∠1与∠2互余,∠1是∠2的余角,∠2是∠1的余角。
∠1+∠2=90°
2.∠1与∠2互补,∠1是∠2的补角,∠2是∠1的补角。
∠1+∠2=180°只考虑数量关系,与位置无关。
结论:同角(等角)的补角相等。
结论:对顶角相等
判断下列各图中的∠1和∠2是不是对顶角。
A.11° B.11.25° C.11.45° D.12.25°
二、填空题 8.(2015秋·南江县期末)已知∠α的余角是35°36′,则∠α的度数是 ___5_4_°__2_4_′ __。. _ 9.如图,水平放置的长方体的底面是长为4,宽为2的长方形,它的
左视图的面积为6,则长方体的体积等于_2_4_。_.。
16.A,B两点在数轴上的位置如图,O为原点,现A,B两点分别以1 个单位/秒,4个单位/秒的速度同时向左运动。
(1)几秒后,原点恰好在两点正中间? (2)几秒后,恰好有OA∶OB=1∶2?
解:(1)设运动时间为x秒,x+3=12-4x,x=1.8,答:1.8秒后,
原点恰好在两点之间。
(2)设运动时间为t秒。①B与A相遇前:12-4t=2(t+3),t=1;②B 与A相遇后:4t-12=2(t+3),t=9。答:1秒或9秒后,恰好有OA∶OB =1∶2。
线段
封闭
每个多边形可以分割 N-2 不重合的三角形。

《图形认识初步》知识点

《图形认识初步》知识点

《图形认识初步》1、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。

几何图形分为平面图形和立体图形。

(1)平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。

(2)立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。

2、常见的立体图形(1)柱体:A 棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。

B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。

(2)椎体:A 棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

B 圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。

(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。

(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。

3、 常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。

多边形中三角形是最基本的图形。

(2)圆:一条线段绕它的端点旋转一周而形成的图形。

(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。

4、 从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。

例题:1、如图是一些小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数,请画出这个几何体的主视图和左视图:主视图 左视图例题:2、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 ( )5、 立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。

图形的初步认识复习教案

图形的初步认识复习教案

图形的初步认识复习教案一、教学目标:1. 让学生复习和巩固对平面图形的认识,包括三角形、四边形、五边形、六边形等。

2. 培养学生观察、描述和分析图形的能力。

3. 培养学生运用图形知识解决实际问题的能力。

二、教学内容:1. 复习平面图形的名称和特征。

2. 通过观察和操作,让学生掌握图形的分类和归纳方法。

3. 运用图形知识解决实际问题,如面积计算、周长计算等。

三、教学重点与难点:1. 重点:复习各种平面图形的特征和名称,提高学生的观察和描述能力。

2. 难点:运用图形知识解决实际问题。

四、教学方法:1. 采用问题驱动法,引导学生主动观察、思考和描述图形。

2. 运用小组合作学习法,让学生在讨论中共同解决问题。

3. 采用案例分析法,让学生通过实际例子掌握图形知识。

五、教学准备:1. 准备各种平面图形的图片或实物模型。

2. 准备练习题和实际问题案例。

3. 准备黑板和投影仪,用于展示图形和解答问题。

六、教学过程:1. 导入:通过展示一组图形,让学生观察并说出它们的名称和特征。

2. 新课:引导学生复习各种平面图形的特征和名称,如三角形、四边形、五边形、六边形等。

3. 练习:让学生分组讨论,总结各种图形的共同点和不同点,并进行展示。

4. 应用:给出实际问题案例,让学生运用图形知识解决问题。

七、课后作业:1. 绘制一幅含有三角形、四边形、五边形和六边形的图案,并描述它们的特征。

2. 计算一个三角形的面积和周长,并解释计算过程。

八、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况和小组合作表现。

2. 练习题:检查学生完成的练习题,评估其对图形知识的掌握程度。

3. 课后作业:评估学生在作业中的表现,了解其对图形知识的应用能力。

九、教学反思:1. 总结课堂教学的优点和不足,提出改进措施。

2. 针对学生的学习情况,调整教学策略,以提高教学效果。

3. 不断更新教学内容,关注图形知识在实际生活中的应用。

十、教学拓展:1. 引导学生进一步学习立体图形的认识和计算。

几何图形认识初步复习无忧

几何图形认识初步复习无忧

数学·新课标(RJ)
第四章期末复习
数学·新课标(RJ)
第4章 |复习 针对第18题训练 计算(精确到秒): (1)90°-45°32″; (2)36°32′25″×7. 解:(1)44°59′28″. (2)255°46′55″.
数学·新课标(RJ)
第一章期末复习
数学·新课标(RJ)
第一章期末复习
试卷讲练
针对第20题训练 观察下列算式:21=2,22=4,23=8,24=16,…,根据上
[答案] y=43
数学·新课标(RJ)
第三章期末复习
针对第25题训练 方程1-3(8-x)=-2(15-2x)的解为________. [答案] x=7
数学·新课标(RJ)
第三章期末复习
针对第26题训练
解方程: 3x5-2+2=x+5 6.
解:3x-2+10=x+6,3x-x=6+2-10, 2x=-2,x=-1.
针对第32题训练 已知|a|=3,|b|=5,且ab<0,那么a+b的值等于( ) A.8 B.-2 C.8或-8 D.2或-2
[答案] D
数学·新课标(RJ)
第一章期末复习
针对第33题训练 点M在数轴上距原点4个单位长度,若将M向右移动2个单位
长度至N点,点N表达的数是( ) A.6 B.-2 C.-6 D.6或-2 [答案] D
数学·新课标(RJ)
第4章 |复习
解:(1)当点 E 在线段 AC 上,即在点 C 的左边时,如图 FX4-5 所示:
图 FX4-5 DE=DC+CE=12BC+13AC =12×12AB+13×12AB=5.
数学·新课标(RJ)
第4章 |复习
(2)当点 E 不在线段 AC 上,即在点 C 的右边时,如图 FX4-6 所示:

七年级数学第四章图形的初步认识(知识点归纳+达标检测)

七年级数学第四章图形的初步认识(知识点归纳+达标检测)

第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。

我们把这些图形称为几何图形。

1)立体图形长方体、正方体、球、圆柱、圆锥等。

2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。

注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。

现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。

(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。

2025年中考数学一轮复习:图形的初步认识(附答案解析)

2025年中考数学一轮复习:图形的初步认识(附答案解析)

第1页(共22页)2025年中考数学一轮复习:图形的初步认识
一.选择题(共10小题)
1.如图,OA 是北偏东30°方向的一条射线,若∠BOA =90°,则OB 的方位角是(

A .西北方向
B .北偏西30°
C .北偏西60°
D .西偏北60°
2.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是(

A .和
B .谐
C .社
D .会
3.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为(
)A .4B .6C .12D .8
4.计算机层析成像(CT )技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是(
)。

[基础知识]第四章图形认识初步复习资料

[基础知识]第四章图形认识初步复习资料

第四章图形认识初步复习资料[基础知识]一、多姿多彩的图形∵∴°′″∠1.把的各种图形统称为几何图形。

几何图形包括立体图形和平面图形。

各部分不都在同一平面内的图形是图形;如各部分都在同一平面内的图形是图形。

如▲会画出同一个物体从不同方向(正面、上面、侧面)看得的平面图形(视图)[1].▲知道并会画出常见几何体的表面展开图.2.点、线、面、体组成几何图形,点是构成图形的基本元素。

点、线、面、体之间有如图所示的联系:▲知道由常见平面图形经过旋转所得的几何体的形状。

[基础练习]画出下列几何体的三视图正面看上面看左面看二、直线、射线、线段1.直线公理:经过两点有一条直线,一条直线。

简述为:.·两条不同的直线有一个时,就称两条直线相交,这个公共点叫它们的。

·射线和线段都是直线的一部分。

2.直线、射线、线段的记法【如下表示】3.线段的中点:把一条线段分成相等的两条线段的点,叫做线段的中点。

·如图,点M 是线段AB 的中点,则有AM=MB=21AB 或 2AM=2MB=AB 用符号语言表示就是: 因为 点M 是线段AB 的中点 所以 AM=MB=21 ( 或 AM=2=AB)类似的,把线段分成相等的三条线段的点,叫线段的三等分点。

把线段分成相等的n 条线段的点,叫线段的n 等分点。

4.线段公理:两点的所有连线中,线段最短。

简述为:之间,最短。

·两点之间的距离的定义:连接两点之间的,叫做这两点的距离。

▲会结合图形比较线段的大小;会画线段的“和”“差”图。

▲会根据几何作图语句画出符合条件的图形,会用几何语句描述一个图形。

[基础练习]1.写出图中所有线段的大小关系,“和”及“差”。

2.根据下列语句画图①延长线段AB与直线L交于点C.②连接MP.③反向延长PM.④在PC的方向上截取PD=PM.3.判断下列说法是否正确(1)直线AB与直线BA不是同一条直线()(2)用刻度尺量出直线AB的长度()(3)直线没有端点,且可以用直线上任意两个字母来表示()(4)线段AB中间的点叫做线段AB的中点()(5)取线段AB的中点M,则AB-AM=BM ()(6)连接两点间的直线的长度,叫做这两点间的距离()(7)一条射线上只有一个点,一条线段上有两个点()4.已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________5.电筒发射出去的光线,给了我们的形象6.如图,四点A 、B 、C 、D 在一直线上,则图中有______条线段,有_______条射线;若AC=12cm ,BD=8cm ,且AD=3BC ,则AB=______,BC=______,CD=____7.已知点A 、B 、C 三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________8.如图,若C 为线段AB 的中点,D 在线段CB 上,6=DA ,4=DB ,则CD=_____9.C 为线段AB 上的一点,点D 为CB 的中点,若AD=4,求AC+AB 的长。

图形认识初步复习资料[基础知识]

图形认识初步复习资料[基础知识]

§一【多姿多彩的图形】★☆▲1、把 的各种图形统称为几何图形。

几何图形包括立体图形和平面图形。

各部分不都在同一平面内的图形是 图形;如 各部分都在同一平面内的图形是 图形。

如 ▲会画出同一个物体从不同方向(正面、上面、侧面)看得的平面图形(视图)[1]. ▲知道并会画出常见几何体的表面展开图.2、点、线、面、体组成几何图形,点是构成图形的 基本元素。

点、线、面、体之间有如图所示的联系:▲知道由常见平面图形经过旋转所得的几何体的形状。

§二【直线、射线、线段】1、直线公理:经过两点有一条直线, 一条直线。

简述为: .·两条不同的直线有一个 时,就称两条直 线相交,这个公共点叫它们的 。

·射线和线段都是直线的一部分。

2、直线、射线、线段的记法【如下表示】3、线段的中点——把一条线段分成相等的两条线段的点,叫做线段的中点。

·如图,点M 是线段AB 的中点,则有AM=MB=21AB 或2AM=2MB=AB 用符号语言表示就是: ∵点M 是线段AB 的中点 ∴AM=MB=21 ( 或 AM=2 =AB)类似的,把线段分成相等的三条线段的点,叫线段的三等分点。

把线段分成相等的n 条线段的点,叫线段的n 等分点。

4、线段公理:两点的所有连线中,线段最短。

简述为: 之间, 最短。

·两点之间的距离的定义:连接两点之间的 , 叫做这两点的距离。

▲会结合图形比较线段的大小;会画线段的“和”名称 表示法 作法叙述 端点 直线直线AB (BA ) (字母无序) 过A 点或B 点作直线AB 无端点 射线射线AB (字母有序)以A 为端点作 射线AB 一个 线段 线段AB (BA )(字母无序) 连接AB两个[3]根据下列语句画图①延长线段AB 与直线L 交于点C.②连接MP. ③反向延长PM.④在PC 的方向上 截取PD=PM.[1]画出下列几何体的三视图正面看上面看左面看第四章 图形认识初步复习资料[基础知识]点线面点体点动 交交交动 动 图形语言[2]写出图中所有线段的大小关系,“和”及“差”。

第七章图形的初步认识复习

第七章图形的初步认识复习

3、过直线外一点作这条直线的垂线,这一点到垂足 之间的线段叫垂线段。垂线段的长度,叫做点到直 线的距离。 4、直线外一点与直线上各点连接的所有线段中,垂 线段最短。
一、填空题 1、 2、东北和西北方向所成的角的大小是( )。
3、在植树造林活动中,为了使所栽的小树整齐成 行,小明建议先确定两个树坑的位置,然后就能确 定同一行树坑的位置,其理由是( )。 4、时钟八点整时,时针与分针所夹的较小的角的 大小是( )。
经过两点有一条直线,并且只有一条直线。
线段的中点:
线段的中点把线段分成两条长度 相等的线段。
角的平分线:
角的平分线把角分成两个度数相等的角。
A A
C
B
OCLeabharlann B线段长度的比较:
(1)度量法(先量出长度,再比较长度大小)
(2)重合法(两同条线段放在一条直线上,一个端点
重合,观察另一端点位置。)
初一年级举行拔河比赛,想在两根绳子中选出 一根比较长的绳子,你有什么好的办法吗?
二、判断题 5、两条射线所组成的图形叫做角。 ( ) × 6、互补的两个角中一定有一个是锐。 ( × ) 7、两条直线不平行,必定相交。 ( ) × 8、平角是一条直线。 ( ) × 9、两条射线或线段平行,是指它们所在的直线 平行。 ( ) √ 10、过一点有且只有一条直线与已知直线平行。 × ( ) 11、两条直线相交,有且只有一个交点。 ( √ ) 12、过一点有且只有一条直线与已知直线垂直。 ( ) ×
请同学们回忆一下这一章我们 学习了哪些知识。
1、线段、射线、直线的概念及表示方法,线段 的性质、直线的性质。
2、线段的比较、角的比较 。 3、角的两种定义及表示方法,角的度量。 4、线段的中点、角的平分线。 5、平面内两条直线的位置关系:平行和垂直。

华师版七年级数学上册第3章 图形的初步认识小结与复习

华师版七年级数学上册第3章 图形的初步认识小结与复习
别由四位同学补画,其中正确的是( C )
A.
C.
B.
D.
重难剖析
4.如右图,是一块圆柱体形状的木头,用锯子把这个
木头锯成两部分,锯开的这个面不可能是( A )
A.
B.
C.
D.
重难剖析
5. 下图水杯的杯口与投影面平行,投影线的方向如箭头所示,它
的正投影图是( D )
重难剖析
6.下列叙述正确的是( A
(2)它们之间的关系是六十进制的,即1°=60′,1′=60″.
5.方向角
借助角表示方向,通常以正北或正南为基准,配以偏
西或偏东的角度来描述方向.
知识回顾
十二、角的比较
1.角的比较方法
(1)直接观察法;(2)度量法;(3)叠合法.
2.角的平分线
从一个角的顶点引出的一条射线,把这个角分成
两个相等
__________的角,这条射线叫作这个角的平分线.
形,并求出 CD的长;比较(1)(2)的结果,你发现了什么规律?
解:(1)因为C,D分别是线段OA,OB的中点,
1
2
1
2
所以OC= AO,OD= BO.
1
1
1
所以CD=OC+OD= (OA+OB)= AB= a.
2
2
2
能力提升
A
C
B D O
解:(2)当点O在线段AB的延长线上时,如图所示,
因为C,D分别是线段OA,OB的中点,
8.如图所示,把一副三角板叠放在一起,则∠ACD=
15
________°.
重难剖析
9.如图,∠AOB=∠COD=90° ,∠BOC=42° ,
则∠AOD=( C )

课题 第四章 图形认识初步复习

课题 第四章  图形认识初步复习

1西北西南东南东北北西南东课题 第四章 图形认识初步复习(两课时)【复习目标】:1.直观认识立体图形,掌握平面图形(线段、射线、直线)的基本知识;2.掌握角的基本概念,能利用角的知识解决一些实际问题。

【复习重点】: 线段、射线、直线、角的性质和运用【复习难点】:角的运算与应用;空间观念建立和发展;几何语言的认识与运用。

复习过程1,角的定义1:有 端点的两条 组成的图形叫角。

其中公共端点叫角的 ,两条射线叫角的 .角的两条边是 线。

角的定义2(如图2)角也可以看作 而形成的图形;2、角的度量中常用的角的度量单位有 、 、 ,分别的符号是 、 、 90°-18°25′37〞= ; 37.26°= ° ′ 〞;3、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的 ,类似的还可以将角分成三等分、四等分。

几何语言表达: ∵如图, OC 是∠AOB 的平分线∴∠α= = ∠AOB 或 =2 =2∠β 4、如图:∠AOC=+ ,∠BOC=∠BOD -∠ =∠AOB -∠5、如果两个角的和等于90°(直角),就说这两个角互为 ,通常记∠α的余角是 ;如果两个角的和等于180°(平角),就收这两个角互为 ,通常记∠α的补角是 (用一个式子表示)。

6,补角性质:同角或等角的补角 ,同理,余角性质:同角或等角的余角 。

3.方位角:(1)认识方位:正东、正南、正西、正北、东南、西南、西北、东北。

(2)找方位角:乙地对甲地的方位角 ; 甲地对乙地的方位角21.下列说法正确的是( )A.射线AB 与射线BA 表示同一条射B.连结两点的线段叫做两点之间的距离。

C.平角是一条直线。

D.若∠1+∠2=900,∠1+∠3=900,则∠2=∠3; 2.下列判断正确的是( )A .平角是一条直线B .凡是直角都相等C .两个锐角的和一定是锐角D .角的大小与两条边的长短有关 3、下列哪个角不能由一副三角板作出( )A .︒105B . ︒15C .︒175D .︒135 4. 5点整时,时钟上时针与分钟 之间的夹角是〔 〕 A.210° B.30° C.150° D.60° 5.如图,射线OA 表示〔 〕A 、南偏东700B 、北偏东300C 、南偏东300D 、北偏东700 6. 38°41′的余角等于_____,123°59′的补角等于_____; 7.互为余角的两个角之差为35°,则较大角的补角是_____; 8. 45°52′48″=_________度,126.31°=____°____′____″; 25°18′x 3=__________;9.已知:如图,∠AOB=75°∠AOC=15°,OD 是∠BOC 的平分线, 求∠BOD 的度数。

图形的初步认识复习课件

图形的初步认识复习课件

ASA全等判定
两角和它们的夹边 分别相等的两个三 角形全等。
HL全等判定
斜边和一条直角边 分别相等的两个直 角三角形全等。
05 多边形及其内角和
多边形定义和分类
多边形的定义
由三条或三条以上的线段首尾顺次连接所组成的平面图形叫做多边形。
多边形的分类
按照边数可以分为三角形、四边形、五边形等;按照形状可以分为凸多边形和凹多边形。
圆的定义
平面上到定点的距离等于定长的所有点 组成的图形。
VS
相关术语
圆心、半径、直径、弦、弧、圆周角等。
圆的基本性质
圆的对称性
圆是中心对称图形,也是 轴对称图形。
圆的旋转不变性
圆绕圆心旋转任意角度, 其形状和大小均不发生变 化。
圆的切线性质
圆的切线垂直于半径,且 切线与半径的交点是切点。
圆心角、弧、弦间关系定理
用两个大写字母表示,如线段AB; 或用一个小写字母表示,如线段a。
线段性质
线段有两个端点,可以度量长度, 是有限长的。
直线、射线和线段间关系
联系
射线、线段都是直线的一部分;任意两点确定一条直线,也 可以确定一条线段;把线段向一方无限延伸可得到射线,向 两方无限延伸可得到直线。
区别
直线没有端点,射线有一个端点,线段有两个端点;直线可 向两方无限延伸,射线可向一方无限延伸,线段不能延伸; 直线没有方向性,射线有方向性。
03 角度与角平分线
角度概念及度量单位
01
பைடு நூலகம்
02
03
角度概念
两条射线或线段在一个平 面上相交,所形成的夹角 的度量。
度量单位
角度的度量单位有度、分、 秒,其中1度等于60分,1 分等于60秒。

2024年秋新华师大版7年级上册数学教学课件 第3章 图形的初步认识 章末复习 复习题

2024年秋新华师大版7年级上册数学教学课件 第3章 图形的初步认识 章末复习 复习题
【选自教材P168 复习题 第16题】
n
俯视图如图.
谢谢聆听!
17.请以给定的图形“○ ○ 、 △ △、=”(两个圆,两个三角形、两条平行线段)为构件,尽可能多地构思独特且有意义的图形,并写上一两句贴切、诙谐的解说词. 如图就是符合要求的两个图形.你还能构思出其他的图形吗?比一比,看谁构思得多.
∠AOB
∠BOC
∠BOC
∠AOC
∠BOD
∠AOD
∠BOC
【选自教材P167 复习题 第7题】
8. 如图,∠AOD =80°,∠COD =30°,OB是∠AOC的平分线,求∠AOC、∠AOB的度数.
解:因为∠AOD=80°,∠COD=30°,
所以∠AOC=80°-30°=50°.
又因为OB是∠AOC的平分线,
【选自教材P167 复习题 第8题】
9. 如图,已知∠α ,试用量角器或三角尺画出它的余角、补角及它的角平分线.
【选自教材P167 复习题 第9题】
10. 如图,一只昆虫要从正方体的一个顶点爬到相距它最远的另一个顶点,请你帮它确定一条最短的路线,并说明理由.
【选自教材P167 复习题 第10题】
【选自教材P168 复习题 第13题】
14.(1)一个角与它的余角相等,这个角是怎样的角? (2)一个角与它的补角相等,这个角是怎样的角? (3)互补的两个角能否都是锐角?能否都是直角?能否都是钝角?
(1)45°的角.
(2)90°的角.
(3)不能;能;不能.
【选自教材P168 复习题 第14题】
52
【选自教材P167 复习题 第6题】
49
8
7.根据图形填空: (1)∠AOC=__________+__________; (2)∠AOC-∠AOB=__________; (3)∠COD=∠AOD-__________; (4)∠BOC=__________-∠COD; (5)∠AOB+∠COD=__________-__________.

小学三年级数学几何的初步认识知识点

小学三年级数学几何的初步认识知识点

小学三年级数学几何的初步认识知识点
一、点、线、面的认识
- 点是没有长度、宽度和高度的,只有位置的,用一个点表示。

- 线是由无数个点连在一起形成的,线没有宽度,只有长度。

- 面是由无数个线连接成的,有长度和宽度,是平面上的东西。

二、基本图形的认识
1. 正方形
- 正方形是四边相等且都是直角的四边形,有四个顶点和四条边。

- 它的特点是四条边长相等,四个角都是直角。

2. 矩形
- 矩形是四边相等且都是直角的四边形,有四个顶点和四条边。

- 它的特点是对角线相等,相邻的两个角互补(相加为180度)。

3. 三角形
- 三角形是有三条边和三个顶点的图形。

- 三角形按边的长短和角的大小分类有不同的名称,例如等边三角形、等腰三角形、直角三角形等。

4. 圆形
- 圆形是一个没有边的图形,只有一个圆弧和一个圆心。

- 圆的直径是通过圆心并且两端在圆上的一条线段,而圆的半径是从圆心到圆上的一点。

三、位置的认识
- 上、下、左、右是平面上常用的位置词。

- 上面指的是靠近顶部的方向,下面指的是靠近底部的方向,左边指的是靠近左侧的方向,右边指的是靠近右侧的方向。

四、图形的分类
- 图形可以按照有无轴对称和角度多少进行分类。

- 轴对称是指图形可以绕着某条线对折后两边重合,称为轴对称图形。

- 角度多少可以将图形分为直角图形、锐角图形和钝角图形。

以上是小学三年级数学几何的初步认识知识点。

通过学习这些基本知识,可以帮助孩子们更好地理解数学几何的概念,为进一步的学习打下坚实的基础。

图形认识初步

图形认识初步

《图形认识初步》复习资料一、多姿多彩的图形 (一)知识回顾1.立体图形:长方体、正方体、球、圆柱、圆锥、棱柱、棱锥等都是立体图形。

2.平面图形:三角形、四边形、多边形、圆等都是平面图形。

3.三视图:从正面看到的图形称为正视图;从上面看到的图形称为俯视图;4.立体图形的平面展开图,正方体的展开图方式 (二) 、例题与练习: 1. 画出下列几何体的三视图2. 下列几何体的展开图是什么3.(1)以长方形的一边为轴把长方形绕轴一周得到的立体图形是什么?(2)把直角三角形以直角边为轴旋转一周得到的几何体又是什么?以斜边呢? 7、填空题.(1)在立体图形中,面与面相交成 ,线与线相交成 .(2)圆柱体由 个面围成,圆锥是 个面围成,它们的底面都是 ,侧面都是 .(3)三棱柱有 个顶点, 条棱.(4)圆锥的侧面与底面相交成 条线,这条线是线.(填“曲”、“直”) 8.一个三面带有标记的正方体: 如果把它展开,应是下列展开图形中的( )9.下列哪个图形经过折叠不能围成一个立方体是( )10.如图,这是一个由小立方体搭成 的几何体的俯视图,小正方形中的数 字表示在该位置的小立方体的个数, 请你画出它的主视图每与左视图11.一个多边形都可以按图甲的方法分割成若干个三角形。

( 图甲) (图乙) 根据图甲的方法,图乙中的七边形能分割成 个三角形,那么 n 边形能分割成 个三角形. 二、 直线、射线和线段 (一) 、知识回顾2. 点的表示方法:常用英文大写字母表示,一个大写 字母表示一点,不同的点要用不同的字母来表示 3.直线的表示方法:①一条直线可以用在这条直线上的两个点来表示,如"直线AB ”;②一条直线可以用一个小写字母来表示,如"直线a ”4.射线的表示方法:①一条射线可用它的端点和射线 上的另一点来表示,端点必须写在前面,如射线OA ;② 一条射线也可用一个小写字母来表示,如射线b .5.直线的性质:经过过两点有一条直线,并且只有一 条直线。

图形的初步认识复习 公开课精品课件

图形的初步认识复习 公开课精品课件
中点;
1)要在墙上定牢一根木条至少要 几颗钉子?
2)举例说明“两点之间线段最短”
3、如图,AB=8cm,点C是线 段AB的中点,点D是线段CB 的中点,那么AD有多长呢?
A
C DB
如果没有图,结果又如何?
4、用直尺和圆规画一条与AB相 等的线段CD
A
B
(1)点、线段、射线、直线的概 念及表示
图形的初步认识 复习(一)
说说下列立体图形的名称
圆柱

柱体
四棱柱
棱柱 六棱柱


……

圆锥
锥体
三棱锥

棱锥 五棱锥
……
……
多面体
由平面围成的立体图形
是多面体 不是多面体
说说下列物体的三视图各是什么图形?
(1)此处圆柱、圆锥的正视图是多边 形,不要将下面画成弧线;正放 的圆锥俯视图是带圆心的圆;棱 锥的俯视图中不能少了几条线段;
(2)倒放的圆柱、几个小正方体堆成 的物体的三视图画法;
(3)要注意三视图的画法及三视图摆 放的位置
说说下列三视图所表示的立体图形的名称
有的三视图可 表示的立体物 体的形状不止 一种
1、下列图形是何种 2、下列图形哪些 立体图形的展开图 是正方体展开图
1)要多动手,仔细 观察,根据图形亲 自折一折,要善于 总结,提高空间想 象能力;
(2)线段长短比较的方法
(3)有时线段长度计算会出现 几种情况,要注意审题
1、下列图中属多面体的有( )
2、说说如图所示圆台的三 视图各是什么图形
3、下列图形是某些多面体的平面展开 图,说出这些多面体的名称
4、如图,CB在线段AD上,且AB=CD, 则AC与BD的大小关系是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档