利用导数证明不等式的两种通法

合集下载

导数证明不等式的几个方法

导数证明不等式的几个方法

导数证明不等式的几个方法
1、直接利用题目所给函数证明(高考大题一般没有这么直接)
已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有
如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或
()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可
2、作差构造函数证明 已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。

3、合理换元后构造函数可大大降低运算量以节省时间
(2007年,山东卷)
证明:对任意的正整数n ,不等式321)1ln(n
n n n ->+ 都成立. 4、从特征入手构造函数证明
若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b ,求证:.a )(a f >b )(b f
几个构造函数的类型:
5、隔离函数,左右两边分别考察。

利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法杨玉新(绍兴文理学院 数学系, 浙江 绍兴 312000)摘 要: 通过举例阐述了用导数证明不等式的四种方法,由此说明了导数在不等式证明中的重要作用. 关键词: 导数; 单调性; 中值定理; 泰勒公式; Jensen 不等式在初等数学中证明不等式的常用方法有比较法、分析法、综合法、放缩法、反证法、数学归纳法和构造法.但是当不等式比较复杂时,用初等的方法证明会比较困难,有时还证不出来.如果用函数的观点去认识不等式,利用导数为工具,那么不等式的证明就会化难为易.本文通过举例阐述利用泰勒公式, 中值定理,函数的性质, Jensen 不等式等四种方法证明不等式,说明了导数在证明不等式中的重要作用.一、利用泰勒公式证明不等式若函数)(x f 在含有0x 的某区间有定义,并且有直到)1(-n 阶的各阶导数,又在点0x 处有n 阶的导数)(0)(x fn ,则有公式)()(!)()(!2)()(!1)()()()(00)(200000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+=在上述公式中若0)(≤x R n (或0)(≥x R n ),则可得)(00)(200000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≥或)(00)(200000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≤例1 证明: ).11(,32)1ln(32<<-+-≤+x x x x x 证明 设)11)1ln()(<<-+=x x x f ( 则)(x f 在0=x 处有带有拉格朗日余项三阶泰勒公式)11()1(432)1ln(4432<<-+-+-=+ξξ x x x x x0)1(444≤+-ξx 32)1ln(32x x x x +-≤+∴ 由以上证明可知,用泰勒公式证明不等式,首先构造函数,选取适当的点0x 在0x 处展开,然后判断余项)(x R n 的正负,从而证明不等式.二、利用中值定理证明不等式微分)(Lagrange中值定理: 若)(x f 满足以下条件:(1) )(x f 在闭区间],[b a 内连续 (2) )(x f 在开区间),(b a 上可导则 ab a f b f f b a --='∍∈∃)()()(),(ξξ 例2 若)()(1,011y x py y x y x py p x y p p p p -<-<-><<--则 分析 因为,0x y <<则原不等式等价于11--<--<p p p p px yx y x py)1(>p .令p t x f =)(,则我们容易联想到Lagrange 中值定理yx y f x f y x f --=-)()())(('ξ.证明 设p t t f =)(,显然],[)(x y t f 在满足Lagrange 中值定理的条件则 ,)()()(),(y x y f x f f x y --='∍∈∃ξξ 即yx y x p ppp ---=1ξ111,),(---<<∴<<∴∈p p p px p py x y x y ξξξ )()(11y x py y x y x py p p p p -<-<-∴-- 例3 设)(x f 在],[b a 上连续可导,且,0)()(==b f a f 则dx x f a b x f babx a ⎰-≥≤≤)()(4)(max 2'证明 设)(max 'x f M bx a ≤≤=则由中值公式,当),(b a x ∈时,有))(())(()()(11a x f a x f a f x f -'=-'+=ξξ ))(())(()()(22b x f b x f b f x f -'=-'+=ξξ其中).,(),,(21b x x a ∈∈ξξ由此可得)()()()(x b M x f a x M x f -≤-≤及所以4)()()()()()(22222a b M dx x b M dx a x M dxx f dx x f dx x f b a abb a bab a a bb a -=-+-≤+=⎰⎰⎰⎰⎰++++ 即⎰-≥badx x f a b M )()(42所以 dx x f a b x f babx a ⎰-≥'≤≤)()(4)(max 2积分第二中值定理]1[ 若在区间f ],[b a 上f 为非负的单调递减函数,而g 是可积函数,则存在],[b a ∈ξ,使得⎰⎰=ξabag a f fg )(例4 设⎰+=12sin )(x xdt t x f ,则0>x 时xx f 1)(<特别地:当2003=x 时机为2003年浙江省高等数学竞赛试题(工科、经管类)证明 令u t =,则由积分第二中值定理xudu x udu ux f xx x 1sin 212sin )(2221≤=⎰⎰+ξ =又因为⎰⎰⎰+++-++-⎥⎥⎦⎤⎢⎢⎣⎡++-=222222)1(2322)1(2322)1(cos 41)1cos()1(21cos 21cos 21)1(cos 1212sin )(x x x x x xu udu x x x x u udu x x u u udu ux f = =于是,0>x 时xx x x x duu x x x f x x 1)111(21)1(212141)1(2121)(22)1(23=-+-+++++<⎰+- =由上可见利用中值定理证明不等式,通常是首先构造辅助函数和考虑区间,辅助函数和定义区间的选择要与题设和结论相联系,然后由中值定理写出不等式,从而进行证明.三、利用函数的单调性证明不等式定理1 如果函数)(),(x g x f 满足以下条件:(1) )(),(x g x f 在闭区间],[b a 内连续(2) )(),(x g x f 在开区间),(b a 可导,且有)()(x g x f '>'(或)()(x g x f '<') (3) )()(a g a f =则 在),(b a 内有)()(x g x f >(或)()(x g x f <令)()()(x g x f x F -=由于0)(0)()()()(≤⇔≤-⇔≤x F x g x f x g x f 所以证明)()(x g x f ≤⇔证明0)(≤x F 则相应地有推论1 若)(x f 在],[b a 上连续,在),(b a 内可导,c a f =)(且0)('>x f (或0)('<x f )则在),(b a 内有c x f >)((或c x f <)().例5 证明:当1>x 时,有).2ln(ln )1(ln 2+⋅>+x x x分析 只要把要证的不等式变形为)1ln()2ln(ln )1ln(++>+x x x x ,然后把x 相对固定看作常数,并选取辅助函数xx x f ln )1ln()(+=.则只要证明)(x f 在),0(+∞是单调减函数即可.证明 作辅助函数xx x f ln )1ln()(+=)1(>x 于是有xx x x x x x x x x x x x f 22ln )1()1ln()1(ln ln )1ln(1ln )(+++-=+-+=' 因为 ,11+<<x x 故)1ln(ln 0+<<x x 所以 )1ln()1(ln ++<x x x x因而在),(∞+1内恒有0)('<x f ,所以)(x f 在区间),1(+∞内严格递减.又因为x x +<<11,可知)1()(+>x f x f即)1ln()2ln(ln )1ln(++-+x x x x 所以 ).2ln(ln )1(ln 2+⋅>+x x x例6 证明不等式x x x x <+<-)1ln(22,其中0>x .分析 因为例6中不等式的不等号两边形式不一样,对它作差)2()1ln(2x x x --+,则发现作差以后不容易化简.如果对)1ln(x +求导得x+11,这样就能对它进行比较. 证明 先证 )1ln(22x x x +<-设 )2()1l n ()(2x x x x f --+= )0(>x则 00)01l n ()0(=-+=f xx x x x f +=+-+=1111)(2'0>x 即 0012>>+x x 01)(2>+='∴x x x f ,即在),0(+∞上)(x f 单调递增0)0()(=>∴f x f 2)1ln(2x x x ->+∴ 再证 x x <+)1ln(令 x x x g -+=)1l n ()( 则 0)0(=g 111)(-+='xx g 10<+∴>xx 11x x x g <+∴<'∴)1ln(0)( x x x x <+<-∴)1ln(22定理1将可导函数的不等式)()(x g x f <的证明转化为)()(x g x f '<'的证明,但当)(x f '与)(x g '的大小不容易判定时,则有推论2 设)(x f ,)(x g 在[b a ,]上n 阶可导, (1))()()()(a g a f k k = 1,2,1,0-=n k (2))()()()(x g x f n n > (或)()()()(x g x f n n <)则在(b a ,)内有)()(x g x f > (或)()(x g x f <)例7 证明:331x x tgx +>,)2,0(π∈x .分析 两边函数类型不同,右边多项式次数较高,不易比较,对它求一阶导数得.1)31(,sec )(232x x x x tgx +='+='仍然不易比较,则我们自然就能想到推论2.证明 设tgx x f =)( 331)(x x x g +=则 (1)0)0()0(==g f(2)1)0()0(),1()(),(sec )(22='='+='='g f x x g x x f (3)1)0()0(,2)(,cos sec 2)(2=''=''=''=''g f x x g xxx f(4)2)(),31)(1(2)(22='''++='''x g x tg x tg x f 显然有 )()(x g x f '''>'''由推论2得,231x x tgx+> (20π<<x ).利用函数的单调性证明不等式我们都是先构造函数.然后通过对函数求导,来判定函数的增减性,从而达到证明不等式的目的.四、利用Jensen(琴森)不等式证明不等式定义]1[ 如果),()(b a x f 在内存在二阶导数)("x f 则(1) 若对,.0)(),(>''∈∀x f b a x 有则函数)(x f 在),(b a 内为凸函数.(2) 若对,.0)(),(<''∈∀x f b a x 有则函数)(x f 在),(b a 内为凹函数.若函数),()(b a x f 在内是凸(或凹)函数时,对),(,,,21b a x x x n ∈∀ 及∑==ni i 11λ,有Jensen(琴森)不等式∑∑∑∑====⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛n i ni i i n i i i i i n i i i x f x f x f x f 1111)()( 或 λλλλ 等号当且仅当n x x x === 21时成立.例8 证明下列不等式),2,1,0(111212121n i a na a a a a a a a a ni nn n n=>+++≤⋅≤+++ .分析 上式只要能证明),2,1,0(2121n i a na a a a a a i nnn =>+++≤⋅ ,如果此题用前面所述的几种方法来证明显然不合适,因为对它求导后不等式会更复杂.而这里的i a 可以看作是同一函数的多个不同函数值,设x x f ln )(=那么就可以用Jensen 不等式来证明它.然后只要令xx f 1ln)(=,同理可得n n na a a a a a n 2121111⋅≤+++.证明 令)0(ln )(>=x x x f 因为 01)(2<-=''xx f ,所以),0()(+∞在x f 是凹函数 则对),0(,,,21+∞∈∀na a a 有[])()()(1)(12121n n a f a f a f na a a n f +++≥⎥⎦⎤⎢⎣⎡+++ 即 []n n a a a na a a n ln ln ln 1)(1ln 2121+++≥⎥⎦⎤⎢⎣⎡+++ 又因为[]n n n a a a a a a n2121ln ln ln ln 1⋅=+++ 所以 na a a a a a nnn +++≤⋅ 2121令 xx f 1ln)(=, 则同理可得n n na a a a a a n 2121111⋅≤+++所以),2,1,0(111212121n i a n a a a a a a a a a ni nnn n=>+++≤⋅≤+++ 例9 设)(x f 二次可微,且对一切x ,有0)(≥''x f ,而)(t u 在],0[a 上连续,则⎰⎰≥a adt t u af dt t u f a 00])(1[)]([1 分析 上述不等式在形式上很像Jensen 不等式,且当t 取不同的值时,)]([t u f 就是同一函数的不同函数值,则可以用琴森不等式进行证明.证明 由)(x f 及)(t u 的连续性,保证了可积性.并且∑⎰-=∞→=100)]([1lim )]([1n K n a n Ka u f n dt t u f a ⎰∑-=∞→=a n K n n Ka u n dt t u a 010)(1lim )(1 因0)(≥''x f ,故)(x f 为凸函数,在Jensen 不等式)()()(112211n n n n x f q x f q x q x q x q f ++≤+++ )1,,,(2121=+++n n q q q q q q 均为正,且中,取) ( n i nq a n i u x i i ,3,2,11),1(==-= 即得∑∑-=-=≤1010)]([1])(1[n K n K nKa u f n n Ka u n f 由)(x f 的连续性,在上式取∞→n 即得所要证的结论.由以上证明可知应用Jensen 不等式证明不等式,首先是构造适当的函数并判断它的凹凸性,然后用Jensen 不等式证明之.本文所述四种用导数证明不等式的四种方法充分说明了导数在不等式证明中的独到之处.在证明不等式时,应用导数等知识往往能使复杂问题简单化,从而达到事半功倍的效果.需要指出的是利用导数证明不等式,除上述四种方法外还有不少方法.如用极值、最值等来证明不等式.由于受篇幅之限,这里不再详述.参考文献[1] 华东师范大学数学系,数学分析[M]第三版,北京:高等教育出版社,2001. [2] 裘单明等,研究生入学考试指导,数学分析[M],济南:山东科学技术出版社,1985.[3] 胡雁军,李育生,邓聚成,数学分析中的证题方法与难题选解[M],开封:河南大学出版社,1987.Four Usual Methods to Prove Tthe Inequality by UsingDerivativeYang Yuxin(Department of Mathematics Shaoxing College of Arts and Sciences, Shaoxing Zhejiang,312000) Abstract:Examplisies four methods to prove the Inequality by using Derivative to show the imporpance of using derivative to crove the inequalityKey words:Derivative; Monotonicity; Theorem of mean; Taylor formula; Jensen Inequality。

利用导数证明或解决不等式问题

利用导数证明或解决不等式问题

利用导数证明或解决不等式问题导数是微积分中的重要概念,在解决不等式问题中,导数可以发挥很大的作用。

下面我们将以一些具体的例子来说明如何利用导数证明或解决不等式问题。

例子1:证明不等式x^2≥0在实数域中恒成立。

解析:对于任意实数x,在实数域中,不管x取何值,其平方x^2都大于等于0。

我们可以通过导数来证明这个不等式。

对x^2进行求导,得到导函数2x。

我们知道,导数表示函数的变化率,对于x^2来说,导函数2x表示了函数的斜率,也就是说,无论x取何值,函数x^2的斜率总为正数或者0。

因为函数的斜率总是非负的,所以x^2≥0在实数域中恒成立。

例子2:求函数f(x)=x^3-3x^2+2x的极值点。

解析:要求函数f(x)的极值点,我们可以先求出函数的导数f'(x),然后将f'(x)=0进行求解。

导数为0的点即为极值点。

将f'(x)=3x^2-6x+2=0进行求解,可以得到x=1或者x=2。

接下来,我们可以求出函数在x=1和x=2处的函数值,并比较求出极值点。

f(1)=1^3-3*1^2+2*1=0f(2)=2^3-3*2^2+2*2=0对f(x)进行求导,得到导函数f'(x)=3x^2-6。

接下来,我们可以将x轴上的一些点带入函数f'(x)进行判断。

当x<−√2时,f'(x)>0;当−√2<x<√2时,f'(x)<0;当x>√2时,f'(x)>0。

由此可见,函数f(x)=x^3-6x在区间(−∞,−√2),(−√2,√2),(√2,+∞)上是单调的。

导数在证明不等式中的有关应用

导数在证明不等式中的有关应用

导数在证明不等式中的有关应用1.最值的判定导数可以帮助我们判断一个函数在其中一区间的最值。

具体来说,如果在一个区间内,函数的导数恒为零或者导数的正负性在其中一点发生变化,那么在该区间内函数的最值就会出现。

例如,考虑函数$f(x)=x^2-4x+3$。

我们可以通过求取导数$f'(x)=2x-4$,并令其等于零,得到$x=2$。

通过检查导数的符号,可以确认在$x<2$时导数为负,$x>2$时导数为正。

因此,在$x<2$时,函数的导数为负,说明函数在这个区间上是递减的;而在$x>2$时,函数的导数为正,说明函数在这个区间上是递增的。

因此,根据导数的正负性和最值判定原则,我们可以得出结论:函数$f(x)$在区间$(-\infty,2)$上单调递减,在区间$(2,+\infty)$上单调递增。

进一步,我们可以求得函数的最值,即当$x=2$时,函数取得最小值。

因此,我们得到了函数$f(x)$的最值以及最值的取值点。

2.利用导数证明不等式的成立导数可以被用来证明各种类型的不等式。

其中一个常见的方法是使用导数的定义和可微函数的局部性质。

考虑函数$f(x)$在闭区间$[a,b]$上有定义且在开区间$(a,b)$内可微。

如果在$(a,b)$内存在一个点$c$,使得$f'(c)>0$,那么基于导数的定义,我们可以得出结论:对于任意的$x \in (a,b)$,都有$f'(x)>0$。

这意味着$f(x)$在$(a,b)$内是单调递增的。

我们可以进一步得出结论:对于任意的$x \in [a,b]$,都有$f'(x) \geq f'(a)$。

因此,我们可以断定$f(x)$在闭区间$[a,b]$上是凸函数。

根据凸函数的性质,我们可以利用函数的凸性证明各种类型的不等式。

例如,我们可以证明对于任意的$x>0$和$y>0$,成立如下的不等式:$\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y}$。

用导数证明函数不等式的四种常用方法

用导数证明函数不等式的四种常用方法

用导数证明函数不等式的四种常用方法本文将介绍用导数证明函数不等式的四种常用方法.例1 证明不等式:)0)1ln(>+>x x x (.证明 设)0)(1ln()(>+-=x x x x f ,可得欲证结论即()(0)(0)f x f x >>,所以只需证明函数()f x 是增函数.而这用导数易证:1()10(0)1f x x x '=->>+ 所以欲证结论成立. 注 欲证函数不等式()()()f x g x x a >>(或()()()f x g x x a ≥≥),只需证明()()0()f x g x x a ->>(或()()0()f x g x x a -≥≥).设()()()()h x f x g x x a =->(或()()()()h x f x g x x a =-≥),即证()0()h x x a >>(或()0()h x x a ≥≥).若()0h a =,则即证()()()h x h a x a >>(或()()()h x h a x a ≥≥).接下来,若能证得函数()h x 是增函数即可,这往往用导数容易解决.例2 证明不等式:)1ln(+≥x x .证明 设()ln(1)(1)f x x x x =-+>-,可得欲证结论即()0(1)f x x >>-.显然,本题不能用例1的单调性法来证,但可以这样证明:即证)1)(1ln()(->+-=x x x x f 的最小值是0,而这用导数易证:1()1(1)11x f x x x x '=-=>-++ 所以函数()f x 在(1,0],[0,)-+∞上分别是减函数、增函数,进而可得min ()(1)0(1)f x f x =-=>-所以欲证结论成立.注 欲证函数不等式()()()(,f x g x x I I >≥∈是区间),只需证明()()()0()f x g x x I ->≥∈.设()()()()h x f x g x x I =-∈,即证()()0()h x x I >≥∈,也即证min ()()0()h x x I >≥∈(若min ()h x 不存在,则须求函数()h x 的下确界),而这用导数往往容易解决.例3 (2014年高考课标全国卷I 理科第21题)设函数1e ()e ln x xb f x a x x -=+,曲线()y f x =在点(1,(1))f 处的切线为e(1)2y x =-+.(1)求,a b ;(2)证明:()1f x >.解 (1)112()e ln e e e x x x x a b b f x a x x x x--'=+-+. 题设即(1)2,(1)e f f '==,可求得1,2a b ==.(2)即证2ln e (0)ex x x x x ->->,而这用导数可证(请注意11e ≠): 设()ln (0)g x x x x =>,得min 11()e e g x g ⎛⎫==- ⎪⎝⎭. 设2()e (0)ex h x x x -=->,得max 1()(1)e h x h ==-. 注 i)欲证函数不等式()()(,f x g x x I I ≥∈是区间),只需证明min max ()()()f x g x x I ≥∈,而这用导数往往可以解决.欲证函数不等式()()(,f x g x x I I >∈是区间),只需证明min max ()()()f x g x x I >∈,或证明min max ()()()f x g x x I ≥∈且两个最值点不相等,而这用导数往往也可以解决.ii)例3第(2)问与《2019年曲靖一中高考冲刺卷理科数学(一)》压轴题第(3)问完全一样,这道压轴题(即第22题)是:已知函数2()ln ,()3f x x x g x x ax ==-+-.(1)求函数()f x 在[,2](0)t t t +>上的最小值;(2)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围;(3)证明:对一切(0,)x ∈+∞,都有12ln e e x x x>-成立.例4 (2018年高考北京卷理科第18题)设L 为曲线C :y =ln x x在点(1,0)处的切线. (1)求L 的方程;(2)证明:除切点(1,0)之外,曲线C 在直线L 的下方.解 (1)(过程略)L 的方程为y =x -1.(2)即证1ln -≤x xx (当且仅当1=x 时取等号). 设x x x x g ln 1)(--=,得g ′(x )=x 2-1+ln x x 2)0(>x . 当0<x <1时,x 2-1<0,ln x <0,所以g ′(x )<0,得g (x )单调递减;当x >1时,x 2-1>0,ln x >0,所以g ′(x )>0,得g (x )单调递增.所以0)1()(min ==g x g ,得欲证结论成立.(2)的另解 即证1ln -≤x x x (当且仅当1=x 时取等号),也即证0ln 2≥--x x x (当且仅当1=x 时取等号).设x x x x g ln )(2--=,可得)0)(1(12)(>-+='x x xx x g . 进而可得0)1()(min ==g x g ,所以欲证结论成立.(2)的再解 即证1ln -≤x xx (当且仅当1=x 时取等号),也即证x x x -≤2ln (当且仅当1=x 时取等号). 如图1所示,可求得曲线x y ln =与)0(2>-=x x x y 在公共点(1,0)处的切线是1-=x y ,所以接下来只需证明)0(1,1ln 2>-≤--≤x x x x x x (均当且仅当1=x 时取等号)前者用导数易证,后者移项配方后显然成立.所以欲证结论成立.图1例5 (2018年高考新课标全国卷II 理21(2)的等价问题)求证:e ln(2)x x >+.分析 用前三种方法都不易解决本问题,下面介绍用导数证明函数不等式的第四种常用方法.设()e (2),()ln(2)(2)xf x xg x x x =>-=+>-,我们想办法寻找出一个函数()h x ,使得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到.当然,函数()h x 越简洁越好.但()h x 不可能是常数(因为函数()ln(2)(2)g x x x =+>-的值域是R ),所以我们可尝试()h x 能否为一次函数,当然应当考虑切线.如图2所示,可求得函数()e (2)x f x x =>-在点(0,1)A 处的切线是1y x =+,进而可得()()(2)f x h x x ≥>-;还可求得函数()ln(2)(2)g x x x =+>-在点(1,0)B -处的切线也是1y x =+,进而可得()()(2)h x g x x ≥>-.图2进而可用导数证得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到,所以欲证结论成立.当然,用例2的方法,也可给出该题的证明(设而不求):设)2ln(e )(+-=x x f x ,得1()e (2)2x f x x x '=->-+. 可得()f x '是增函数(两个增函数之和是增函数),且1e 20,(1)e 102f f ⎛⎫''=<=-> ⎪⎝⎭,所以函数()g x '存在唯一的零点0x (得21e ,e 2,1e )2(000000+==+=+-x x x x x x ),再由均值不等式可得 00min 0000011()()e ln(2)ln e 22022x x f x f x x x x x -⎛⎫==-+=-=++-> ⎪++⎝⎭(因为可证01x ≠-)所以欲证结论成立.例6 求证:e ln 2x x >+.证法1 (例5的证法)用导数可证得1e +≥x x (当且仅当0=x 时取等号),2ln 1+≥+x x (当且仅当1=x 时取等号),所以欲证结论成立.证法2 (例2的证法)设x x f x ln e )(-=,得1()e (0)x f x x x'=->.可得()f x '是增函数且1110,(0)02 1.52g g ⎛⎫''-=-<=> ⎪⎝⎭,所以函数)(x g 存在唯一的零点0x (得00001e ,e x x x x -==),再由均值不等式可得 00min 0000011()()e ln ln e 2x x f x f x x x x x -==-=-=+>(因为可证01x ≠) 所以欲证结论成立.注 欲证函数不等式()()(,f x g x x I I >∈是区间),只需寻找一个函数()h x (可以考虑曲线()y h x =是函数(),()y f x y g x ==的公切线)使得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到,而这用导数往往容易解决.下面再给出例5和例6的联系.对于两个常用不等式e 1,ln 1x x x x ≥+≤-,笔者发现e xy =与ln y x =互为反函数,1y x =+与1y x =-也互为反函数,进而得到了本文的几个结论.定理 已知(),()f x g x 都是单调函数,它们的反函数分别是11(),()fx g x --. (1)若()f x 是增函数,()()f s g s ≥恒成立,则11()()ft g t --≤恒成立; (2)若()f x 是减函数,()()f s g s ≥恒成立,则11()()ft g t --≥恒成立; (3)若()f x 是增函数,()()f s g s ≤恒成立,则11()()ft g t --≥恒成立; (4)若()f x 是减函数,()()f s g s ≤恒成立,则11()()ft g t --≤恒成立. 证明 下面只证明(1),(4);(2),(3)同理可证.(1)设不等式()()f s g s ≥中s 的取值范围是A ,当s A ∈时,(),()f s g s 的取值范围分别是,A A f g ,得不等式11()()f t g t --≤中t 的取值范围是A A f g ⋂,所以1000,,(),()A A t f g x A t g x x g t -∀∈⋂∃∈==.由()()f s g s ≥恒成立,得00()()g x f x ≤.由()f x 是增函数,得1()f x -也是增函数,所以1110000(())(())(())f g x f f x x g g x ---≤==,即11()()f t g t --≤.得11,()()A A t f g f t g t --∀∈⋂≤,即欲证结论成立.(4)设不等式()()f s g s ≤中s 的取值范围是A ,当s A ∈时,(),()f s g s 的取值范围分别是,A A f g ,得不等式11()()f t g t --≥中t 的取值范围是A A f g ⋂,所以1000,,(),()A A t f g x A t g x x g t -∀∈⋂∃∈==.由()()f s g s ≤恒成立,得00()()g x f x ≥.由()f x 是减函数,得1()f x -也是减函数,所以1110000(())(())(())f g x f f x x g g x ---≤==,即11()()f t g t --≤.得11,()()A A t f g f t g t --∀∈⋂≤,即欲证结论成立.推论1 已知(),()f x g x 都是单调函数,它们的反函数分别是11(),()fx g x --. (1)若(),()f x g x 都是增函数,则()()f s g s ≥恒成立11()()ft g t --⇔≤恒成立; (2)若(),()f x g x 都是减函数,则()()f s g s ≥恒成立11()()ft g t --⇔≥恒成立. 证明 (1)由定理(1)知“⇒”成立.下证“⇐”:因为()g x 是增函数,11()()g t f t --≥恒成立,11(),()g x f x --的反函数分别是(),()g x f x ,所以由“⇒”的结论得()()g s f s ≤恒成立,即()()f s g s ≥恒成立.(2)同(1)可证.推论2 把定理和推论1中的“,≥≤”分别改为“,><”后,得到的结论均成立. (证法也是把相应结论中的“,≥≤”分别改为“,><”.)在例5与例6这一对姊妹结论“e ln(2),ln e 2x x x x >+<-”中e x y =与ln y x =互为反函数,ln(2)y x =+与e 2x y =-也互为反函数,所以推论2中的结论“若(),()f x g x 都是增函数,则()()f s g s >恒成立11()()f t g t --⇔<恒成立”给出了它们的联系.。

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数是微积分中的一个重要概念。

它可以描述函数在各个点上的变化率,也可以用来求函数的最大值、最小值以及拐点等重要信息。

而构造函数则是数学中一种非常常见的证明不等式的方法。

本文将介绍一些常用的导数和构造函数证明不等式的技巧。

一、使用导数证明不等式1. 求导数确定函数的单调性对于一个函数$f(x)$,如果它在某个区间上的导数$f'(x)$大于0,说明它在该区间上单调递增;如果导数$f'(x)$小于0,则说明它在该区间上单调递减。

因此,如果要证明一个不等式在某个区间上成立,可以先求出函数在该区间上的导数,确定其单调性,然后再比较函数在两个端点处的取值即可。

例如,对于函数$f(x)=x^2-4x+3$,我们可以求出它的导数为$f'(x)=2x-4$。

由于$f'(x)>0$时$f(x)$单调递增,因此当$x<2$时,$f(x)<f(2)$,当$x>2$时,$f(x)>f(2)$,即$f(x)$在$x<2$和$x>2$的区间上都小于$f(2)$,因此我们可以得到不等式$f(x)<f(2)$,即$x^2-4x+3<1$。

2. 求导数判断函数的最值对于一个函数$f(x)$,如果它在某个点$x_0$处的导数$f'(x_0)=0$,且$f^{''}(x_0)>0$(即$f(x)$的二阶导数大于0)则$f(x)$在$x_0$处取得一个局部最小值;如果$f^{''}(x_0)<0$,则$f(x)$在$x_0$处取得一个局部最大值。

因此,如果要证明一个不等式最值的存在性,可以先求出函数的导数,再找出导数为0的点即可。

3. 构造特殊的函数如果一个不等式的两边都是多项式,可以考虑构造一个较为特殊的函数,来证明不等式的成立性。

例如,对于不等式$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\leq\dfrac{3}{2\sqrt[3]{abc}}$,我们可以考虑构造一个函数$f(x)=\dfrac{1}{a+b+x}+\dfrac{1}{b+c+x}+\dfrac{1}{c+a+x}-\dfrac{3}{2\sqrt[3]{(a+x)(b+x)(c+x)}}$,并证明$f(x)\leq 0$。

利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法方法一:使用函数的单调性如果函数f(x)在区间[a,b]上单调递增(或递减),则对于任意的x1,x2∈[a,b],有f(x1)≤f(x2)(或f(x1)≥f(x2))。

举例说明:证明当x>0时,e^x>1+x。

我们考虑函数f(x)=e^x-(1+x),取f'(x)=e^x-1、如果f'(x)≥0,则f(x)在x>0上单调递增,且f(x)在x=0处取到最小值。

通过计算可得f'(x)≥0,所以f(x)在x>0上单调递增,即e^x-(1+x)≥0。

即e^x>1+x。

方法二:使用函数的极值点如果函数f(x)在一些点x0处取得极小值(或极大值),则该点附近的函数值也有相应的性质。

举例说明:证明(1+x)^n > 1+nx,其中n为自然数。

我们考虑函数f(x) = (1+x)^n - (1+nx),取f'(x) = n(1+x)^(n-1) - n。

令f'(x) = 0,可得x = -1/(n-1)。

我们先考虑x ∈ (-∞, -1/(n-1)),在此区间上f'(x) > 0,所以f(x)在此区间上单调递增。

当x < -1/(n-1)时,有f(x) > f(-1/(n-1)) = 0。

所以在此区间上(1+x)^n > 1+nx。

同理可得,当x ∈ (-1/(n-1), +∞)时,也有(1+x)^n > 1+nx。

方法三:使用函数的凹凸性如果函数f(x)在一些区间上是凹的(或凸的),则函数的函数值也有相应的性质。

举例说明:证明当a>0时,有√a≤(a+1)/2我们考虑函数f(x) = √x,取f''(x) = -x^(-3/2)。

我们知道,当f''(x)≥0时,函数f(x)在该区间上为凹函数。

计算可得f''(x)≥0,所以f(x)在[0, +∞)上为凹函数。

利用导数证明不等式的几种策略

利用导数证明不等式的几种策略

利用导数证明不等式的几种策略导数在数学中起着至关重要的作用,不仅可以用来求函数的极值点和拐点,还可以用来证明不等式。

在证明不等式时,我们可以利用导数的性质来进行推导。

下面将介绍几种利用导数证明不等式的策略。

1.利用单调性证明不等式对于一个给定的函数,在其定义域内,如果函数在一段区间上是单调递增或者单调递减的,则可以利用该函数的导数证明一些不等式。

例如,我们要证明对于任意正实数x,有ln(x+1) < x。

我们可以设函数f(x) = x - ln(x+1),然后计算导数f'(x) = 1 - 1/(x+1)。

观察导数的符号可以发现,当x > 0时,导数f'(x) < 0,即函数f(x)在x > 0上是单调递减的。

因此,我们可以得出结论:ln(x+1) < x 对于任意正实数x成立。

2.利用极值点证明不等式对于一个给定的函数,如果该函数在一些点处取得极大值或者极小值,我们可以通过证明该极值点处的函数值与其他点处的函数值之间的关系,来证明不等式。

例如,我们要证明对于任意非负实数x,有x^3-3x^2+1>=0。

我们可以设函数f(x)=x^3-3x^2+1,然后计算导数f'(x)=3x^2-6x。

观察导数的零点可以发现,f'(x)=0时,x=0或者x=2,即函数f(x)在x=0和x=2处取得极小值或者极大值。

进一步计算f(0)=1和f(2)=-1可以发现,f(0)是函数f(x)在其定义域内的最小值。

因此,我们可以得出结论:x^3-3x^2+1>=0对于任意非负实数x成立。

3.利用泰勒展开证明不等式对于一个给定的函数,在一些点的邻域内,我们可以使用该函数的泰勒展开式来近似表示该函数。

通过比较泰勒展开式的高阶项可以得出一些不等式。

例如,我们要证明对于任意正实数x,有e^x>x^2、我们可以使用泰勒展开式来近似表示函数e^x和函数x^2,在x=0处进行展开。

5用导数证明函数不等式的四种常用方法

5用导数证明函数不等式的四种常用方法

用导数证明函数不等式地四种常用方法本文将介绍用导数证明函数不等式地四种常用方法.例1 证明不等式:)0)1ln(>+>x x x (.证明 设)0)(1ln()(>+-=x x x x f ,可得欲证结论即()(0)(0)f x f x >>,所以只需证明函数()f x 是增函数.而这用导数易证:1()10(0)1f x x x '=->>+ 所以欲证结论成立. 注 欲证函数不等式()()()f x g x x a >>(或()()()f x g x x a ≥≥),只需证明()()0()f x g x x a ->>(或()()0()f x g x x a -≥≥).设()()()()h x f x g x x a =->(或()()()()h x f x g x x a =-≥),即证()0()h x x a >>(或()0()h x x a ≥≥).若()0h a =,则即证()()()h x h a x a >>(或()()()h x h a x a ≥≥).接下来,若能证得函数()h x 是增函数即可,这往往用导数容易解决.例2 证明不等式:)1ln(+≥x x .证明 设()ln(1)(1)f x x x x =-+>-,可得欲证结论即()0(1)f x x >>-.显然,本题不能用例1地单调性法来证,但可以这样证明:即证)1)(1ln()(->+-=x x x x f 地最小值是0,而这用导数易证:1()1(1)11x f x x x x '=-=>-++ 所以函数()f x 在(1,0],[0,)-+∞上分别是减函数、增函数,进而可得min ()(1)0(1)f x f x =-=>-所以欲证结论成立.注 欲证函数不等式()()()(,f x g x x I I >≥∈是区间),只需证明()()()0()f x g x x I ->≥∈.设()()()()h x f x g x x I =-∈,即证()()0()h x x I >≥∈,也即证min ()()0()h x x I >≥∈(若min ()h x 不存在,则须求函数()h x 地下确界),而这用导数往往容易解决.例3 (2014年高考课标全国卷I 理科第21题)设函数1e ()e ln x xb f x a x x -=+,曲线()y f x =在点(1,(1))f 处地切线为e(1)2y x =-+.(1)求,a b ;(2)证明:()1f x >.解 (1)112()e ln e e e x x x x a b b f x a x x x x--'=+-+. 题设即(1)2,(1)e f f '==,可求得1,2a b ==.(2)即证2ln e (0)ex x x x x ->->,而这用导数可证(请注意11e ≠): 设()ln (0)g x x x x =>,得min 11()e e g x g ⎛⎫==- ⎪⎝⎭. 设2()e (0)ex h x x x -=->,得max 1()(1)e h x h ==-. 注 i)欲证函数不等式()()(,f x g x x I I ≥∈是区间),只需证明min max ()()()f x g x x I ≥∈,而这用导数往往可以解决.欲证函数不等式()()(,f x g x x I I >∈是区间),只需证明min max ()()()f x g x x I >∈,或证明min max ()()()f x g x x I ≥∈且两个最值点不相等,而这用导数往往也可以解决.ii)例3第(2)问与《2009年曲靖一中高考冲刺卷理科数学(一)》压轴题第(3)问完全一样,这道压轴题(即第22题)是:已知函数2()ln ,()3f x x x g x x ax ==-+-.(1)求函数()f x 在[,2](0)t t t +>上地最小值;(2)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 地取值范围;(3)证明:对一切(0,)x ∈+∞,都有12ln e e x x x>-成立. 例4 (2013年高考北京卷理科第18题)设L 为曲线C :y =ln x x在点(1,0)处地切线.(1)求L 地方程;(2)证明:除切点(1,0)之外,曲线C 在直线L 地下方.解 (1)(过程略)L 地方程为y =x -1.(2)即证1ln -≤x xx (当且仅当1=x 时取等号). 设x x x x g ln 1)(--=,得g ′(x )=x 2-1+ln x x 2)0(>x . 当0<x <1时,x 2-1<0,ln x <0,所以g ′(x )<0,得g (x )单调递减;当x >1时,x 2-1>0,ln x >0,所以g ′(x )>0,得g (x )单调递增.所以0)1()(min ==g x g ,得欲证结论成立.(2)地另解 即证1ln -≤x x x (当且仅当1=x 时取等号),也即证0ln 2≥--x x x (当且仅当1=x 时取等号).设x x x x g ln )(2--=,可得)0)(1(12)(>-+='x x xx x g . 进而可得0)1()(min ==g x g ,所以欲证结论成立.(2)地再解 即证1ln -≤x xx (当且仅当1=x 时取等号),也即证x x x -≤2ln (当且仅当1=x 时取等号). 如图1所示,可求得曲线x y ln =与)0(2>-=x x x y 在公共点(1,0)处地切线是1-=x y ,所以接下来只需证明)0(1,1ln 2>-≤--≤x x x x x x (均当且仅当1=x 时取等号)前者用导数易证,后者移项配方后显然成立.所以欲证结论成立.图1例5 (2013年高考新课标全国卷II 理21(2)地等价问题)求证:e ln(2)x x >+.分析 用前三种方法都不易解决本问题,下面介绍用导数证明函数不等式地第四种常用方法.设()e (2),()ln(2)(2)xf x xg x x x =>-=+>-,我们想办法寻找出一个函数()h x ,使得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到.当然,函数()h x 越简洁越好.但()h x 不可能是常数(因为函数()ln(2)(2)g x x x =+>-地值域是R ),所以我们可尝试()h x 能否为一次函数,当然应当考虑切线.如图2所示,可求得函数()e (2)x f x x =>-在点(0,1)A 处地切线是1y x =+,进而可得()()(2)f x h x x ≥>-;还可求得函数()ln(2)(2)g x x x =+>-在点(1,0)B -处地切线也是1y x =+,进而可得()()(2)h x g x x ≥>-.图2进而可用导数证得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到,所以欲证结论成立.当然,用例2地方法,也可给出该题地证明(设而不求):设)2ln(e )(+-=x x f x ,得1()e (2)2x f x x x '=->-+. 可得()f x '是增函数(两个增函数之和是增函数),且1e 20,(1)e 102f f ⎛⎫''=<=-> ⎪⎝⎭,所以函数()g x '存在唯一地零点0x (得21e ,e 2,1e )2(000000+==+=+-x x x x x x ),再由均值不等式可得 00min 0000011()()e ln(2)ln e 22022x x f x f x x x x x -⎛⎫==-+=-=++-> ⎪++⎝⎭(因为可证01x ≠-)所以欲证结论成立.例6 求证:e ln 2x x >+.证法1 (例5地证法)用导数可证得1e +≥x x (当且仅当0=x 时取等号),2ln 1+≥+x x (当且仅当1=x 时取等号),所以欲证结论成立.证法2 (例2地证法)设x x f x ln e )(-=,得1()e (0)x f x x x'=->.可得()f x '是增函数且1110,(0)02 1.52g g ⎛⎫''-=-<=> ⎪⎝⎭,所以函数)(x g 存在唯一地零点0x (得00001e ,e x x x x -==),再由均值不等式可得 00min 0000011()()e ln ln e 2x x f x f x x x x x -==-=-=+>(因为可证01x ≠) 所以欲证结论成立.注 欲证函数不等式()()(,f x g x x I I >∈是区间),只需寻找一个函数()h x (可以考虑曲线()y h x =是函数(),()y f x y g x ==地公切线)使得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到,而这用导数往往容易解决.下面再给出例5和例6地联系.对于两个常用不等式e 1,ln 1x x x x ≥+≤-,笔者发现e xy =与ln y x =互为反函数,1y x =+与1y x =-也互为反函数,进而得到了本文地几个结论.定理 已知(),()f x g x 都是单调函数,它们地反函数分别是11(),()fx g x --. (1)若()f x 是增函数,()()f s g s ≥恒成立,则11()()ft g t --≤恒成立; (2)若()f x 是减函数,()()f s g s ≥恒成立,则11()()ft g t --≥恒成立; (3)若()f x 是增函数,()()f s g s ≤恒成立,则11()()ft g t --≥恒成立; (4)若()f x 是减函数,()()f s g s ≤恒成立,则11()()ft g t --≤恒成立. 证明 下面只证明(1),(4);(2),(3)同理可证.(1)设不等式()()f s g s ≥中s 地取值范围是A ,当s A ∈时,(),()f s g s 地取值范围分别是,A A f g ,得不等式11()()f t g t --≤中t 地取值范围是A A f g ⋂,所以1000,,(),()A A t f g x A t g x x g t -∀∈⋂∃∈==.由()()f s g s ≥恒成立,得00()()g x f x ≤.由()f x 是增函数,得1()f x -也是增函数,所以1110000(())(())(())f g x f f x x g g x ---≤==,即11()()f t g t --≤.得11,()()A A t f g f t g t --∀∈⋂≤,即欲证结论成立.(4)设不等式()()f s g s ≤中s 地取值范围是A ,当s A ∈时,(),()f s g s 地取值范围分别是,A A f g ,得不等式11()()f t g t --≥中t 地取值范围是A A f g ⋂,所以1000,,(),()A A t f g x A t g x x g t -∀∈⋂∃∈==.由()()f s g s ≤恒成立,得00()()g x f x ≥.由()f x 是减函数,得1()f x -也是减函数,所以1110000(())(())(())f g x f f x x g g x ---≤==,即11()()f t g t --≤.得11,()()A A t f g f t g t --∀∈⋂≤,即欲证结论成立.推论1 已知(),()f x g x 都是单调函数,它们地反函数分别是11(),()fx g x --. (1)若(),()f x g x 都是增函数,则()()f s g s ≥恒成立11()()ft g t --⇔≤恒成立; (2)若(),()f x g x 都是减函数,则()()f s g s ≥恒成立11()()ft g t --⇔≥恒成立. 证明 (1)由定理(1)知“⇒”成立.下证“⇐”:因为()g x 是增函数,11()()g t f t --≥恒成立,11(),()g x f x --地反函数分别是(),()g x f x ,所以由“⇒”地结论得()()g s f s ≤恒成立,即()()f s g s ≥恒成立.(2)同(1)可证.推论2 把定理和推论1中地“,≥≤”分别改为“,><”后,得到地结论均成立. (证法也是把相应结论中地“,≥≤”分别改为“,><”.)在例5与例6这一对姊妹结论“e ln(2),ln e 2x x x x >+<-”中e x y =与ln y x =互为反函数,ln(2)y x =+与e 2x y =-也互为反函数,所以推论2中地结论“若(),()f x g x 都是增函数,则()()f s g s >恒成立11()()ft g t --⇔<恒成立”给出了它们地联系.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。

导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转专题

导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转专题

导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转专题典例1】已知函数$f(x)=1-\ln(x)e^x,g(x)=\frac{x}{1-bx}$,若曲线$y=f(x)$与曲线$y=g(x)$的一个公共点是$A(1,1)$,且在点$A$处的切线互相垂直。

求$a,b$的值,并证明:当$x\geq1$时,$f(x)+g(x)\geq\frac{2}{x}$。

典例2】已知函数$f(x)=(x+b)(e^x-a)$,在$(-1,f(-1))$处的切线方程为$(e-1)x+ey+e-1=0$。

求$a,b$的值,并证明:若$m\leq\frac{f(x)}{x^2+x}$,则$f(x)\geq mx^2+x$。

典例3】已知函数$f(x)=x\ln x+ax+1$,$a\in\mathbb{R}$。

1)当$x>0$时,若关于$x$的不等式$f(x)\geq k$恒成立,求$a$的取值范围;2)当$n\in\mathbb{N^*}$时,证明:$\frac{n^3}{n+1}<\ln2^2+\ln2+\frac{1}{n+1}<\frac{n}{n+1}$。

典例4】已知函数$f(x)=\frac{2\ln x+2}{e^x}$。

1)求函数$f(x)$的单调区间;2)证明:当$x>0$时,$f'(x)\ln(x+1)<\frac{2}{x+2}$。

典例5】已知函数$f(x)=e^x-x^2$。

1)求曲线$f(x)$在$x=1$处的切线方程;2)证明:当$x>0$时,$e^x+(2-e)x-1\geq\ln x+1$。

典例7】已知函数$f(x)=x^2+ax+b\ln x$,曲线$y=f(x)$在点$(1,f(1))$处的切线方程为$y=2x$。

1)求实数$a,b$的值;2)设$F(x)=f(x)-x^2+mx(m\in\mathbb{R})$,$x_1,x_2$$(x_1<x_2)$分别是函数$F(x)$的两个零点,求证:$F'(x)$在$(x_1,x_2)$内至少有一个零点。

利用导数证明不等式的几种方法

利用导数证明不等式的几种方法

利用导数证明不等式的几种方法导数是微积分的一个重要概念,它可以用来研究函数的变化趋势和性质。

在证明不等式时,利用导数是一种常见的方法。

下面将介绍几种常用的利用导数证明不等式的方法。

一、极值点法这种方法的基本思路是通过求函数的导数,并找出函数的极值点,来确定不等式的成立条件。

具体步骤如下:1.求函数的导数。

2.找出导数存在的区间。

3.求出导数的零点即函数的极值点。

4.判断在极值点附近函数的变化情况,从而确定不等式的成立条件。

例如,我们要证明一个函数f(x)在区间[a,b]上是单调递增的。

则可以通过求函数的导数f'(x),找出f'(x)的零点,然后判断f'(x)的符号来确定f(x)的变化趋势。

这种方法的特点是简单直观,容易理解和操作。

但是要求函数的导数存在,在一些特殊情况下可能无法使用。

二、Lagrange中值定理法Lagrange中值定理是微积分中的一个重要定理,它表明:如果一个函数在区间 [a, b] 上连续,并且在 (a, b) 上可导,则在 (a, b) 存在一个点 c,使得函数在 c 处的导数等于函数在 [a, b] 上的平均变化率。

利用这个定理,可以通过求函数在区间两个点处的导数差值,来推导出不等式。

具体步骤如下:1.假设函数在区间[a,b]上连续,并且在(a,b)上可导。

2.设点a和点b为函数的两个不同取值,即f(a)和f(b)。

3. 由Lagrange中值定理,存在点 c 在 (a, b) 上,使得 f'(c) = (f(b) - f(a)) / (b - a)。

4.判断f'(c)的符号,从而确定不等式的成立条件。

Lagrange中值定理法的优点是具有普适性,可以应用于各种函数。

但是要求函数在区间上连续,在一些特殊情况下可能无法使用。

三、Cauchy中值定理法Cauchy中值定理是微积分中的另一个重要定理,它是Lagrange中值定理的推广形式。

导数证明不等式的几个方法

导数证明不等式的几个方法

导数证明不等式的几个方法在高等数学中,我们学习了很多种方法来证明不等式。

其中一种常见的方法是使用导数。

导数是用来描述函数变化率的概念,因此可以很好地用来证明不等式。

本文将介绍几种使用导数证明不等式的方法。

一、利用导数的正负性来证明不等式这种方法是最直接的方法之一、假设我们要证明一个函数f(x)在一个区间上大于等于0,我们可以先求出函数f(x)的导数f'(x),然后根据f'(x)的正负性来判断f(x)的增减情况。

如果f'(x)大于等于0,则说明f(x)在整个区间上是递增的;如果f'(x)小于等于0,则说明f(x)在整个区间上是递减的。

根据递增或递减的性质,我们可以得出f(x)大于等于0的结论。

例如,我们要证明函数f(x)=x^2在区间[0,∞)上大于等于0。

首先求出f(x)的导数f'(x)=2x。

然后我们发现在整个区间上,f'(x)大于等于0,说明f(x)是递增的。

由于f(0)=0,因此可以得出f(x)大于等于0的结论。

二、利用导数的单调性来证明不等式这种方法是一种延伸和推广。

与前一种方法类似,我们可以根据导数的单调性来判断函数f(x)的增减情况。

如果f'(x)在一个区间上是递增的,那么f(x)在该区间上是凸的;如果f'(x)在一个区间上是递减的,那么f(x)在该区间上是凹的。

利用这个性质,我们可以得出一些重要的结论。

例如,如果我们要证明一个凸函数在一个区间上大于等于一个常数c,那么只需要证明在这个区间的两个端点上的函数值大于等于c,同时导数在这个区间上是递增的。

三、利用导数的极值来证明不等式这种方法利用了导数的极值特性。

如果一个函数f(x)在一些点x0处的导数为0,并且在这个点的左右两侧的导数符号发生了改变,那么我们可以得出结论,在x0处取得极值。

如果f(x)在x0处取得最大值,那么在这个点的左侧函数值都小于等于f(x0),而在这个点的右侧函数值都大于等于f(x0);反之,如果f(x)在x0处取得最小值,那么在这个点的左侧函数值都大于等于f(x0),而在这个点的右侧函数值都小于等于f(x0)。

利用导数证明不等式的常用方法

利用导数证明不等式的常用方法

利用导数证明不等式的常用方法导数是微积分中的重要理论工具,其应用十分广泛,其中一项应用就是证明不等式。

下面将介绍一些利用导数证明不等式的常用方法。

首先,我们需要明确一些基本概念和定理。

设函数f(x)在区间[a,b]上连续,(a,b)上可导,那么:1.如果f'(x)>0,那么f(x)在[a,b]上单调递增;如果f'(x)<0,那么f(x)在[a,b]上单调递减。

2.如果在(a,b)上f'(x)>g'(x),则f(x)>g(x)。

3.如果在(a,b)上f'(x)≥g'(x),则f(x)≥g(x)。

基于以上定理,我们将介绍三种常用的利用导数证明不等式的方法。

方法一:使用函数性质和导数的单调性这种方法适用于证明比较简单的不等式,主要步骤如下:1.首先,根据题目中给出的不等式,构造一个连续函数f(x)。

2.然后,求出f'(x),根据导数的正负确定f(x)的单调性。

3.最后,根据f(x)的单调性和不等式的要求,得出不等式的成立。

例如,我们来证明当x>0时,有e^x>1+x:1.构造函数f(x)=e^x-1-x。

2.求导得到f'(x)=e^x-1,由于e^x>0,所以f'(x)>0。

3.根据f(x)的单调性,得出e^x-1-x在x>0时为递增函数。

4.由于f(0)=e^0-1-0=0,所以当x>0时,有f(x)>0,即e^x>1+x成立。

方法二:使用导数的比较性质这种方法适用于需要比较多个函数的不等式,主要步骤如下:1.首先,根据题目中给出的不等式,构造多个连续函数。

2.然后,求出这些函数的导数。

3.利用导数的比较性质,确定函数之间的大小关系。

4.最后,根据函数之间的大小关系和不等式的要求,得出不等式的成立。

例如,我们来证明当0 < x < 1时,有x < ln(1 + x):1.构造函数f(x) = ln(1 + x) - x。

高考数学复习:利用导数证明不等式

高考数学复习:利用导数证明不等式

3
f(-1)=e,f(1)=e,f(2)=0,
∴函数 f(x)在区间[-1,2]的最大值为 e,最小值为 0. ....................................... 5 分
(2)证明 令
1 2
x 1 2
g(x)=f(x)-2x +x-2e=(2-x)e -2x +x-2e,则
解得x=2,当x∈(2,+∞)时,g'(x)<0;
当x∈(0,2)时,g'(x)>0,
∴g(x)在(2,+∞)内单调递减,在(0,2)内单调递增,可得g(x)max=f(2)=e2+2.
由于12>e2+2,即f(x)min>g(x)max,所以f(x)>g(x),
故当x>0时,f(x)>-x3+3x2+(3-x)ex.
3(3 -1)

=
3(-1)(2 ++1)
.

令f'(x)=0可得x=1,当x∈(1,+∞)时,f'(x)>0;当x∈(0,1)时,f'(x)<0,
∴f(x)在(1,+∞)内单调递增,在(0,1)内单调递减.
(2)证明 由(1)可得f(x)min=f(1)=12.
令g(x)=-x3+3x2+(3-x)ex,则g'(x)=-3x2+6x-ex+(3-x)ex=(2-x)(ex+3x),由g'(x)=0,
所以g(a)的单调递减区间是(1,+∞),单调递增区间是(0,1),
所以g(a)≤g(1)=0,即ln a≤a-1.

利用导数证明不等式的方法

利用导数证明不等式的方法

利用导数证明不等式的方法导数是微积分中的重要概念,它可以用来研究函数在不同点的变化趋势。

在数学中,不等式是一种比较两个数或两个函数大小关系的方式。

结合导数和不等式的概念,我们可以利用导数来证明不等式。

让我们回顾一下导数的定义。

对于一个函数f(x),在某一点a处的导数f'(a)表示函数在该点处的变化率。

导数可以通过求取函数的极限来计算,也可以通过求取函数的斜率来计算。

导数的正负可以表示函数的增减性,即导数大于0表示函数在该点处递增,导数小于0表示函数在该点处递减。

利用导数证明不等式的方法主要有以下几种:1. 利用导数的正负性:假设我们要证明一个不等式f(x) > g(x),我们可以先求取函数f(x)和g(x)的导数,然后观察导数的正负性。

如果在某一区间上,f'(x) > g'(x),则可以得出在该区间上f(x) > g(x)。

举个例子,我们要证明对于所有的x,函数f(x) = x^2 + 3x + 2大于函数g(x) = 2x + 1。

首先,求取f(x)和g(x)的导数分别为f'(x) = 2x + 3和g'(x) = 2。

然后观察导数的正负性,我们发现在所有的x上,f'(x) > g'(x),因此可以得出对于所有的x,f(x) > g(x)。

2. 利用导数的单调性:如果一个函数在某一区间上是单调递增或单调递减的,那么我们可以根据函数值的大小关系得出不等式的成立。

举个例子,我们要证明对于所有的x大于0,函数f(x) = x^2 + 3x + 2大于函数g(x) = 2x + 1。

首先,求取f(x)和g(x)的导数分别为f'(x) = 2x + 3和g'(x) = 2。

然后观察导数的单调性,我们发现f'(x)是一个递增函数,因此可以得出在x大于0的区间上,f(x)也是一个递增函数。

又因为在x大于0的区间上,f(0) = 2大于g(0) = 1,所以可以得出对于所有的x大于0,f(x) > g(x)。

利用导数证明不等式的两种通法之欧阳音创编

利用导数证明不等式的两种通法之欧阳音创编

利用导数证明不等式的两种通法吉林省长春市东北师范大学附属实验学校金钟植 岳海学利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。

下面就有关的两种通法用列举的方式归纳和总结。

一、函数类不等式证明函数类不等式证明的通法可概括为:证明不等式()()f xg x >(()()f xg x <)的问题转化为证明()()0f x g x ->(()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小值(最大值)大于或等于零(小于或等于零)。

例1 已知(0,)2x π∈,求证:sin tan x x x << 分析:欲证sin tan x x x <<,只需证函数()sin f x x x=-和()tan g x x x =-在(0,)2π上单调递减即可。

证明: 令()sin f x x x =- ,其中(0,)2x π∈则/()cos 1f x x =-,而(0,)cos 1cos 102x x x π∈⇒<⇒-<所以()sin f x x x=-在(0,)2π上单调递减,即()sin (0)0f x x x f =-<=所以sin x x <;令()tan g x x x =- ,其中(0,)2x π∈ 则/221()1tan 0cos g x x x=-=-<,所以()tan g x x x=-在(0,)2π上单调递减,即()tan (0)0g x x x g =-<= 所以tan x x <。

综上所述,sin tan x x x <<评注:证明函数类不等式时,构造辅助函数比较容易,只需将不等式的其中一边变为0,然后另一边的函数作为辅助函数,并利用导数证明其单调性或其最值,进而构造我们所需的不等式的结构即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用导数证明不等式的两种通法吉林省长春市东北师范大学附属实验学校金钟植 岳海学利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。

下面就有关的两种通法用列举的方式归纳和总结。

一、函数类不等式证明函数类不等式证明的通法可概括为:证明不等式()()f x g x >(()()f x g x <)的问题转化为证明()()0f x g x ->(()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小值(最大值)大于或等于零(小于或等于零)。

例1 已知(0,)2x π∈,求证:sin tan x x x <<分析:欲证sin tan x x x <<,只需证函数()sin f x x x =-和()tan g x x x =-在(0,)2π上单调递减即可。

证明:令()sin f x x x =- ,其中(0,)2x π∈ 则/()cos 1f x x =-,而(0,)cos 1cos 102x x x π∈⇒<⇒-< 所以()sin f x x x =-在(0,)2π上单调递减,即()sin (0)0f x x x f =-<= 所以sin x x <;令()tan g x x x =- ,其中(0,)2x π∈ 则/221()1tan 0cos g x x x =-=-<,所以()tan g x x x =-在(0,)2π上单调递减, 即()tan (0)0g x x x g =-<=所以tan x x <。

综上所述,sin tan x x x <<评注:证明函数类不等式时,构造辅助函数比较容易,只需将不等式的其中一边变为0,然后另一边的函数作为辅助函数,并利用导数证明其单调性或其最值,进而构造我们所需的不等式的结构即可。

根据不等式的对称性,本例也可以构造辅助函数为在(0,)2π上是单调递增的函数(如:利用()sin h x x x =-在(0,)2π上是单调递增来证明不等式sin x x <),另外不等式证明时,区间端点值也可以不是我们所需要的最恰当的值(比如此例中的(0)f 也可以不是0,而是便于放大的正数也可以)。

因此例可变式为证明如下不等式问题: 已知(0,)2x π∈,求证:sin 1tan 1x x x -<<+证明这个变式题可采用两种方法:第一种证法:运用本例完全相同的方法证明每个不等式以后再放缩或放大,即证明不等式 sin x x <以后,根据sin 1sin x x x -<<来证明不等式sin 1x x -<;第二种证法:直接构造辅助函数()sin 1f x x x =--和()tan 1g x x x =--,其中(0,)2x π∈然后证明各自的单调性后再放缩或放大(如:()sin 1(0)10f x x x f =--<=-<) 例2 求证:ln(1)x x +<分析:令()ln(1)f x x x =+-,经过求导易知,()f x 在其定义域(1,)-+∞上不单调,但可以利用最值证明不等式。

证明:令()ln(1)f x x x =+-函数f(x)的定义域是(1,)-+∞,'f (x)=111-+x .令'f (x)=0,解得x=0, 当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0所以()ln(1)(0)0f x x x f =+-<=即ln(1)x x +<二、常数类不等式证明常数类不等式证明的通法可概括为:证明常数类不等式的问题等价转化为证明不等式 ()()f a f b <的问题,在根据,a b 的不等式关系和函数()f x 的单调性证明不等式。

例3已知0,,(1)(1)0m n a b R a b +>>∈--≠且求证:()()n n m m m n a b a b +>+分析: ()()ln()ln()ln()ln()n n m m m nn n m m m n n n m m a b a b a b a b m a b n a b +>+⇐+>+⇐+>+ln()ln()()()n n m m a b a b n mf n f m ++⇐>⇐>ln()()0x x a b f x x ⎧+=+∞⎪⇐⎨⎪⎩在(,)上是减函数m>n>0 证明: 令ln()()(0)x x a b f x x x +=> 则/22ln ln ln()(ln ln )()ln()()()x x x x x x x x x x x x x x a a b b x a b x a a b b a b a b a b f x x x a b +-++-+++==+ 22ln ln ln ln 0()()x x x x x x xx x x x x x x x x x x x x x x a b a b a b a b a b a b a b a b a b x a b x a b ++++++++=<=++ 所以,ln()()0x x a b f x x+=+∞在(,)上是减函数 又因为0m n >>,所以()()f n f m > 即ln()ln()n n m m a b a b n m++> ln()ln()ln()ln()n n m m n n m m m n m a b n a b a b a b +>+⇒+>+即()()n n m m m n a b a b +>+ 评注:利用导数证明常数类不等式的关键是经过适当的变形,将不等式证明的问题转化为函数单调性证明问题,其中关键是构造辅助函数,如何构造辅助函数也是这种通法运用的难点和关键所在。

通过本例,不难发现,构造辅助函数关键在于不等式转化为左右两边是相同结构的式子(本例经过转化后的不等式ln()ln()n n m m a b a b n m++>的两边都是相同式子ln()x x a b x+的结构,所以可以构造辅助函数ln()()x x a b f x x +=),这样根据“相同结构”可以构造辅助函数。

例4 已知02παβ<<<,求证:tan tan 11tan tan ααβββα-<<+ 分析:欲证tan tan 11tan tan ααβββα-<<+,只需证tan tan tan tan ααβββα<<(不然没法构造辅助函数),即tan tan ,tan tan αβααββαβ<<,则需证函数tan (),()tan x f x g x x x x==都在函数区间(0,)2π上单调递增即可。

证明:设tan ()x f x x =,(0,)2x π∈ 则2/222sec tan sin cos ()cos x x x x x x f x x x x--== 由例1知,(0,)sin sin cos sin cos 02x x x x x x x x π∈⇒>>⇒-> 即/()0f x >,所以tan ()x f x x =在(0,)2π上单调递增,而02παβ<<< 所以tan tan αβαβ<,即tan tan ααββ<,进而得到tan 1tan ααββ-< 设()tan g x x x =,(0,)2x π∈ 则/2()tan sec g x x x x =+,又因为(0,)2x π∈,所以/()0g x >, 进而()tan g x x x =在(0,)2π上单调递增,而02παβ<<<所以tan tan ααββ<,即tan tan αββα<,进而得到tan 1tan αββα<+ 综上所述tan tan 11tan tan ααβββα-<<+ 三、同步练习题 1.当1>x 时,求证:xx 132-> 2.已知a,b 为实数,并且e<a<b ,其中e 是自然对数的底,证明:b a a b >3.已知函数()()ln(1)10xf x e x x =-+-≥ (1)求函数()f x 的最小值;(2)若0y x ≤<,求证:1ln(1)ln(1)x y ex y -->+-+ 4.求证:()()e e ee e πππππ+>+参考答案:1.证明:要证x x 132->,只要证)1()13(423>->x x x , 即证=--23)13(4x x ,0)(169423>=-+-x f x x x则当1>x 时,0)1)(12(6)132(6)('3>--=+-=x x x x x f , ),1()(+∞∴在x f 上递增,0)1()(=>∴f x f 即0)(>x f 成立,原不等式得证2.证明:当e<a<b 时, 要证b aa b >, 只要证ln ln b a a b >, 即只要证bb a a ln ln > 考虑函数)0(ln +∞<<=x xx y 。

因为当e x >时, ,0ln 12<-='xx y 所以函数),(ln +∞=e x x y 在内是减函数 因为e<a<b ,所以b b a a ln ln >,即得b a a b > 3.(1)最小值为0(2)因为00y x x y ≤<⇒->,而由(1)知,对0x >,恒有()0f x >,所以不等式()0f x y ->恒成立 即ln(1)10x y e x y ---+->所以1ln(1)x ye x y -->-+ 又因为ln(1)ln[(1)(1)]ln(1)ln[(1)()]ln(1)ln(1)ln(1)(()0)x y y x y y x y x y y x y y x y -+=+-+-+=++--+>+-+-> 所以1ln(1)ln(1)x y e x y -->+-+ 证明:设ln()()(0)x x e f x x xπ+=>, 则'2ln ln()()x xx x x x e x e e f x xππππ+-++= 2(ln )()ln()()x x x x x x x x x e e e x e πππππ+-++=+22ln ln ln ln 0()()xx x x x x x x x x x x x x x x x x x x x x e e e e e e e e e x e x e πππππππππππ++++++++=<=++ 所以函数ln()()x x e f x xπ+=在其定义域(0,)+∞单调递减 所以()()f f e π<,即ln()ln()e e e e e πππππ++< 根据对数的运算性质得,()()e e e e e πππππ+>+。

相关文档
最新文档