四年级奥数第专题巧算加减法
四年级奥数巧算
四年级奥数巧算一、加法巧算。
1. 凑整法。
- 原理:把两个或多个数结合在一起,使它们的和为整十、整百、整千等,这样计算起来更加简便。
- 例如:计算23 + 49 + 77。
- 我们可以先把23和77凑整,因为23+77 = 100。
- 然后再加上49,即100+49 = 149。
2. 带符号搬家。
- 原理:在没有括号的加法运算中,数和它前面的符号是一个整体,可以改变数的位置,结果不变。
- 例如:计算34+78 - 34。
- 我们可以把-34搬到前面和34先计算,即34 - 34+78。
- 34 - 34 = 0,0+78 = 78。
二、减法巧算。
1. 凑整法。
- 原理:与加法凑整类似,把被减数或减数凑成整十、整百等方便计算的数。
- 例如:计算182 - 98。
- 把98看作100 - 2。
- 则原式变为182-(100 - 2)=182 - 100+2。
- 182 - 100 = 82,82+2 = 84。
2. 减法的性质。
- 原理:a - b - c=a-(b + c),一个数连续减去两个数等于这个数减去这两个数的和。
- 例如:计算256 - 47 - 53。
- 根据减法的性质,原式可变为256-(47 + 53)。
- 47+53 = 100,256 - 100 = 156。
三、乘法巧算。
1. 乘法交换律和结合律。
- 原理。
- 乘法交换律:a×b = b×a,两个数相乘,交换因数的位置,积不变。
- 乘法结合律:(a×b)×c=a×(b×c),三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,积不变。
- 例如:计算25×3×4。
- 根据乘法交换律,把3和4交换位置,得到25×4×3。
- 25×4 = 100,100×3 = 300。
2. 乘法分配律。
小学奥数四年级巧算
小学奥数讲义四年级目录第一讲、巧算加减法第二讲、巧算乘除法第一讲、巧算加减法在千姿百态的数学计算百花园中,巧算是其最为艳丽的一朵奇葩,要想算得又快又准,关键在于掌握运算技巧,了解题目的特点,善于运用运算定律与性质包括正用、反用、连用等,实际计算时,要敏于观察,善于思考,选用合理、灵活的计算方法,使计算简便易行,即巧算;【例1】计算12014+92-14=2014-14+92=2000+92=20922823-92+177=823+177-92=1000-92=908说明1运用了性质:a+b-c=a-c+b; 2运用了性质:a-b+c=a+c-b;【例2】计算1999+999×99929+99+999+9999分析1题可逆用乘法对加法的分配律;2题可采用“添1凑整”的方法;解1999+999×999=999×1+999×999=999×1+999=999×1000=99900029+99+999+9999=10-1+100-1+1000-1+10000-1=10+100+1000+10000-4=11110-4=11106说明1题运用了性质:axb+axc=axb+c随堂练习11937+115-37+85;2999+99+9+3 第十届“走进美妙数学花园”初赛A卷第一题【例3】计算1528-196+32821308-308-49分析加减法简便运算的基本思路是“凑整”,即将能通过加减运算后得到整十、整百、整千……的数,先运用性质计算它们的结果;解 1528-196+328=528-196-328=528-328-196=200-196=421308-308-49=1308-308+49=1000+49=1049说明1运用了性质:a-b+c=a-b-c=a-c-b2 运用了性质:a-b-c=a-b+c【例4】计算14256+125+875-2562847-578+398-222解14256+125+875-256=4256-256+125+875=4000+1000=5000;2847-578+398-222=847-578+398-222=847+400-2-578+222=1245-800=445说明这两道题综合性很强,运用了加、减法的交换律和结合律,还用整十、整百、整千……来代替很接近的数,从而给计算带来方便;随堂练习2计算下列各题:1354+646-198;23842-.【例5】计算1701+697+703+704+696272+66+75+63+69分析1这几个数都接近700,选择700作为基数,计算的时候,找出每个数与700的差,大于700的部分作为加数,小于700的部分作为减数;用700与项数的积再加、减这些“相差数”就是所求胡结果;2选取这几个数的中间数69为基准数,先用69乘以项数,再口算出各数与69的差,通过加减相抵,就能很快求出和;解 1701+697+703+704+696=700×5+1+3+4-3+4=3500+8-7=3501;272+66+75+63+69=69×5+3-3+6-6+0=69×5=345说明若干个比较接近的数相加,可以从这些数中选择一个数作为计算胡基础,这个数叫做“基准数”;2中的“基准数”若选为70,求和更简便;【例6】计算:100+99-98-97+96+95-94-93+…+8+7-6-5+4+3-2-1分析这是一道多个数进行加、减运算的综合题,加、减项数共有100项;若要简化计算,可通过前后次序的交换,把两个数结合为一组,共可结合成50组,每组值均为2.解原式=100-98+99-97+96-94+95-93+…+8-6+7-5+4-2+3-1=2×50=100说明也可以依次把四个数结合为一组,得到100+99-98-97=96+95-94-93=…=4+3-2-1=4即可将原式组合成25组,每组值均为4,结果等于4x25=100随堂练习3计算下列各题:1+++++2100-99+98-97+96-95+…+4-3+2-1练习题1、69+18+31+822、53、713-513-2294、2356-356+1995、19+299+3999+499996、200-198+196-194+…+8-6+4-27、560-557+554-551 +…+500-4978、2000+7+1996+3+…+8+7-6-5+4+3-2-1第二讲、巧算乘除法四则运算中巧算的方法很多,我们可以根据已学过的知识,通过一些运算定律、性质和一些技巧性方法,达到计算正确而快捷的目的.实际进行乘法、除法以及混合运算时可利用以下性质进行巧算:①乘法交换律:a×b=b×a②乘法结合律:a×b×c=a×b×c③乘法分配律:a+b×c= a×c+b×c由此可推出:a×b+a×c=a×b+c,a-b×c=a×c-b×c④除法的性质:a÷b÷c=a÷c÷b=a÷b×c利用乘法、除法的这些性质,先凑整得10、100、1000,…会使计算更简便、更快捷、更准确;【1】计算125×5×64×125256×165÷7÷11分析1在计算乘除法时,我们通常可以运用2×5、4×25、8×125来进行巧妙胡计算;2运用除法的性质,带着符号“搬家”;解125×5×64×125=25×5×2×4×8×125=25×4×5×2×8×125=100×10×1000=1000000256×165÷7÷11=56÷7×165÷11=8×15=120随堂练习1计算:125×96×125277777×99999÷11111÷11111【2】计算14000÷125÷829999×2222+3333×3334分析1题运用性质a÷b÷c= a÷b×c,可简化计算:2题将9999分解成3333×3就与3333×3334出现了相同的因数,可逆用乘法分配律简化计算;解14000÷125÷8=4000÷125×8=4000÷1000=429999×2222+3333×3334= 3333×3×2222+3333×3334= 3333×6666+3334=3333×10000随堂练习2计算下列各题:160000÷125÷2÷5÷8299999×7+11111×37【3】计算:218×730+7820×73分析本题可以运用“积不变的规律”,即“一个因数扩大几倍,另一个因数缩小相同的倍数,积不变”的规律求解;解法一218×730+7820×73=218×730+7820×73=218+7820×73=10000×73=730000解法二218×730+7820×73=218×730+7820×73=218+782×730=1000×730=730000说明本题运用乘法中积不变胡规律,就可以为运用乘法分配律进行巧算创造条件;这种解题方法叫做扩缩法;随堂练习3 计算5×480—2750×482102×100+101×99—101×100—102×99【4】不用计算结果,请你指出下面哪道题得数大;452×458 453×457分析注意到453=452+1,458=457+1,可运用乘法分配律加以判别;解452×458=452×457+1=452×457+452453×457=452+1×457=452×457+457显然452×458 < 453×457随堂练习4不用计算结果,比较下面两个积的大小;A=54321×12345 B=54322×123练习题1、75×162、981+5×9810+49×9813、25×77+55×14+15×774、3333×2222÷66665、8÷7+9÷7+11÷76、5445÷557、1440×976÷4888、5÷7÷11÷11÷16÷16÷359、2014×2016-2013×2017。
四年级奥数主题
四年级奥数主题一、速算与巧算。
1. 计算:9999 + 999 + 99+9。
解析:(10000 - 1)+(1000 - 1)+(100 - 1)+(10 - 1) =10000+1000 + 100+10-4 =11110 - 4 =111062. 计算:489 + 487+483 + 485+484+486+488。
解析:这些数都接近486,486×7+(3 + 1- 3 - 1 - 2+0+2) =486×7+(3+1+2 - 3 - 1- 2) =486×7 =3402二、定义新运算。
3. 设a、b都表示数,规定:a△b = 3×a - 2×b。
试计算:(1)5△6;(2)6△5。
解析:(1) 已知a△b = 3×a - 2×b,当a = 5,b = 6时,5△6=3×5 - 2×6 = 15 - 12 = 3。
(2) 当a = 6,b = 5时,6△5 = 3×6-2×5=18 - 10 = 8。
4. 对于两个数a与b,规定a⊕b=a×b + a + b,试计算6⊕2。
解析:根据规定a⊕b=a×b + a + b,当a = 6,b = 2时,6⊕2=6×2+6 + 2=12 + 6+2 = 20。
三、等差数列。
5. 求等差数列2,6,10,14……的第100项。
解析:根据等差数列通项公式a_n=a_1+(n - 1)d,其中a_1=2(首项),d = 4(公差),n = 100。
a_100=2+(100 - 1)×4=2 + 99×4=2+396 = 398。
6. 计算等差数列1 + 3+5+…+99的和。
解析:这是一个首项a_1=1,末项a_n=99,公差d = 2的等差数列。
项数n=(99 - 1)÷2+ 1=50。
四年级奥数加减乘除中的巧妙规律总结与应用
四年级奥数加减乘除中的巧妙规律总结与应用近年来,奥数竞赛在小学生中越来越受欢迎。
对于四年级的学生而言,加减乘除是基础的数学运算,然而,要在奥数中取得好的成绩,仅仅掌握基本的运算是远远不够的。
在本文中,我将总结四年级奥数加减乘除中的巧妙规律,并且探讨如何应用这些规律来解决问题。
一、加法的巧妙规律在四年级奥数中,加法的巧妙规律是一个重要的技巧。
以下是一些常见的加法规律:1. 交换律:加法满足交换律,即a + b = b + a。
这意味着,无论数字的顺序如何,结果都是一样的。
通过利用交换律,我们可以改变计算的顺序,使得计算更简单。
2. 连加:在计算多个数的和时,可以通过数的重新排序,使得计算变得更简单。
例如,对于数字1、2、3、4的求和,我们可以先计算1+4=5,然后再计算2+3=5,最后将两个和相加得到最终结果,即5+5=10。
3. 加零律:任何数加上0等于它本身。
这个规律在解决加法问题时非常有用。
无论多复杂的加法题目,只要有0参与运算,都可以利用加零律简化计算。
二、减法的巧妙规律减法是四年级奥数中较为复杂的运算之一,但是通过运用以下巧妙规律,可以极大地简化减法的计算:1. 差的加减律:减法可以转化为加法来解决。
例如,对于算式9 - 3,我们可以转化为求差的加减律,即9 + (-3)。
通过将减法问题转化为加法问题,可以更方便地计算。
2. 迭代减法:迭代减法是指重复使用减法的过程,逐渐逼近最终的差值。
例如,对于22 - 7,我们可以先减去7,得到15。
然后再减去7,得到8。
最后再减去7,得到1。
通过多次迭代减法,我们可以得到准确的差值。
3. 减零律:任何数减去0等于它本身。
这个规律在解决减法问题时非常有用。
无论多复杂的减法题目,只要有0参与运算,都可以利用减零律简化计算。
三、乘法的巧妙规律乘法是四年级奥数中相对较为简单的运算,但是通过以下巧妙规律,可以更快速地解决乘法问题:1. 乘法交换律:乘法满足交换律,即a * b = b * a。
四年级奥数教程第1讲:巧算加减法
四年级奥数教程第1讲:巧算加减法例1计算:(1)2014+92-14;(2)823-92+177解(1)2014+92-14=2014-14+92=2000+92=2092;(2)823-92+177=823+177-92=1000-92=908(1)题运用了性质:a+b-c=a-c+b;(2)(2)题运用了性a-b+c=a+c-b例2计算(1)999+999×999(2)9+99+999+9999分析(1)题可逆用乘法对加法的分配律;(2)题可采取“添1凑整”的方法解(1)999+999×999=999×1+99×999=999×(1+999)=999×1000=999000(2)9+99+999+99910-1+100-1+100-1+10000-1=10+100+1000+10000-4=11110-4=11106 (1)题运用了性质:a×b+a×c=a×(b+c)【例3】计算:(1)528-(196+328)(2)1308-(308-49)解(1)528-(196+328=528-196-328=528-328-196=200-196=4(2)1308-(308-49)=1308-308+49 =1000+49=1049运用了性质:a-(b+c)=a-b-c=a-c-b;性质:a-(b-c)=a-b+c【例4】计算(1)(4256+125+875)-256(2)847-578+398-222解(1)(4256+125+875)-256=(4256-256)+(125+875)=4000+1000=5000;(2)847-578+398-222=847+398-578-222=847+400-2-(578+222)=1245-800=445例5】计算(1)701+697+703+704+696;(2)72+6+75+63+69解(1)701+697+703+704+696=700×5+(1+3+4)-(3+4)=3500+8-7=3501:(2)72+66+75+63+69=69×5+3-3+6-6+0=695×5=345【例6】计算:100+99-98-97+96+95-94-93+…+8+7-6-5+4+3-2-1原式=(100-98)+(99-97)+(96-94)+(95-93) +…:+(8-6)+(7-5)+(4-2)+(3-1)=2×50=100说明也可以依序把四个数结合为一组,得到100+99-98-97=96+95-94-93=…,=4+3-2-1=4即可将原式结合成25组,每组值均为4,结果等于4×25=100计算下列各题:(1)937+115-37+85;(2)999+99+9+3.计算下列各题(1)9.7+9.8+9.9+10.1+10.2+10.3;(2)100-99+98-97+96-95+…+4-3+2-1.找规律计算:1×5+4=9=3×3,2×6+4=4×43×7+4=25=5×54×8+4=36=6×6......10×( )+4=()=()×()(提示:四个算式中的规律是等式左边第二个因数比第一个因数大4得10×14+4=144=12×12)计算:2325+7418+7675-2318解=2325+7675+7418-2318=10000+5100=15100计算:1000+999-998-97+996+995-994-993+..... 108+107-106-105+104+103-102-101提示:=(1000-998)+(999-997)+(996-994)......(103-101)=2×450=900计算:1+2+3+…+99+100+99+…+3+2+1 提示:(1+99)+(2+98)+(3+97)......+(98+2)+(99+1)=100×100=10000某篮球队在今年上半年共进行了10场比赛,每场比赛的得分是128,115,137,109,116,130,126,120,115,12 4那么今年上半年平均每场比赛得多少分?提示:选基准数为120,则累计差=8-5+17-11-4+10+6-5+4=20平均每场比赛得120+20÷2=122分已知:1²+2²+3²+.....9²+10²=385,求1×2+2×3+3×4+4×5+,…+10×11=提示:=1×(1+1)+2×(2+1)+3×(3+1)......10×(10+1)=1²+1+2²+2+3²+3+4²+4.....+10²+10=(1²+2²+3²+4²......10²)+(1+2+3+4+5 (10)=385+11×5=440348-69+652=348+652-69=1000-69=931解:572+159+28=572+28+159=600+59=759827-129-271=827-(129+271)=827-400 =427348+69-48=348-48+69=300+ 69=369例2 计算。
小学奥数:计算专题《加减法的巧算》练习题
小学奥数:计算专题《加减法的巧算》练习题一.填空题(共15小题)1.计算:(1+3+5+…+2019)-(2+4+6+…+2018)=10102.计算:3-5+7-9+11-13+…+1995-1997+1999=-10003.计算200-(16+17+18+…+23+24)=844.a=4,b=25,则a+b=29,a×b=100,a÷b=4/255.计算:1+2+3+4+5+6+7+8+9=456.1+3+5+7+…+97+99-10-12-14…-96-98=507.计算:13+75-37+427+85-23=5608.计算:(2017-1)+(2016-2)+…+(2011-7)=9.计算:-+-+-+-+-=7010.计算1000-257-84-43-16=60011.计算:2+3+5-6+7+1-10=212.193-191+189-187+……+93-91=5113.算式(1+3+5+…+89)-(1+2+3+…+63)的计算结果是72714.计算:1+2+4+5+7+8+10+11+13+14+16+17+19+20=12015.算式1+3+4+6+7+9+10+12的计算结果是52二.计算题(共15小题)16.计算:30-29-28+27+26-25-24+23+22-21-20+19=-217.计算:xxxxxxxx+XXX999+99+9=xxxxxxxx18.计算:1-2+3-4+5-6+7-8+9-10+11-12+…+991-992+993-994+995-996+997-998+999=-49919.直接写出得数。
5.43+1.47=6.94.5×0.4=1.820.计算:(2004-1)+(2003-2)+(2002-3)+…+(1003-1002)=100121.计算:1+2+3+……+50+49+……+2+1=255022.计算:1+2+3+…+1999=xxxxxxx5-3.28=1.72,0.46÷4.6=0.1,4×0.25=19.58×101-9.58=957,85÷(1-0.9)=850,3÷0.3=10,0.63÷0.7=0.9,1.8×0.4=0.7223.计算2+4+6+8+…+1990的和=24.用简便方法计算:略。
四年级奥数——速算与巧算(加减乘除)
四年级剑桥奥数暑假班速算与巧算速算与巧算计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3-11)=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
例1所用的方法叫做加法的基准数法。
这种方法适用于加数较多,而且所有的加数相差不大的情况。
作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。
由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。
在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。
同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。
四年级奥数加减乘除中的巧妙规律总结
四年级奥数加减乘除中的巧妙规律总结奥数是指奥林匹克数学竞赛,是一项旨在培养学生创新思维和解决复杂问题能力的数学竞赛活动。
其中,加减乘除是奥数竞赛的基础,也是日常生活中常见的数学运算。
在四年级奥数中,我们可以发现许多巧妙的规律。
本文将对四年级奥数中加减乘除的一些巧妙规律进行总结和分析。
一、加法中的巧妙规律加法是最基本的数学运算之一。
在四年级奥数中,有一些巧妙的规律可以帮助我们更快地计算结果。
1. 交换律:两个数相加,无论交换顺序,结果不变。
例如,5 + 3 =3 + 5。
利用交换律可以简化计算过程。
2. 结合律:三个数相加,无论加法的顺序如何,结果不变。
例如,(2 + 3) + 4 = 2 + (3 + 4)。
利用结合律可以将多个加法式简化成一起计算。
3. 零的特性:任何数加上0等于它本身。
例如,7 + 0 = 7。
在计算过程中,将一个数加上0可以保持数值不变。
二、减法中的巧妙规律减法也是四年级奥数中的重要内容。
下面是一些减法中的巧妙规律。
1. 相同数相减为零:相同的数相减结果为0。
例如,7 - 7 = 0。
在计算过程中,遇到相同的数相减时,可以直接得出结果。
2. 零减任何数等于负数:0减去一个数等于这个数的相反数。
例如,0 - 5 = -5。
在计算过程中,遇到零减数的情况时,可以将零减法转化为对应的负数。
三、乘法中的巧妙规律乘法是四年级奥数中的重点内容。
下面是一些乘法中的巧妙规律。
1. 乘法交换律:两个数相乘,无论交换顺序,结果不变。
例如,3 ×4 = 4 × 3。
利用交换律可以简化计算过程。
2. 乘法结合律:三个数相乘,无论乘法的顺序如何,结果不变。
例如,(2 × 3) × 4 = 2 × (3 × 4)。
利用结合律可以将多个乘法式简化成一起计算。
3. 乘法分配律:一个数乘以两个数相加,等于这个数分别乘以两个数再相加。
例如,2 × (6 + 3) = (2 × 6) + (2 × 3)。
四年级奥数教程第1讲:巧算加减法
四年级奥数教程第1讲:巧算加减法四年级奥数教程第1讲:巧算加减法例1计算:(1)2014+92-14;(2)823-92+177解(1)2014+92-14=2014-14+92=2000+92=2092;(2)823-92+177=823+177-92=1000-92=908(1)题运用了性质:a+b-c=a-c+b;(2)(2)题运用了性a-b+c=a+c-b例2计算(1)999+999×999(2)9+99+999+9999分析(1)题可逆用乘法对加法的分配律;(2)题可采取“添1凑整”的方法解(1)999+999×999 =999×1+99×999=999×(1+999)=999×1000=999000(2)9+99+999+99910-1+100-1+100-1+10000-1=10+100+1000+10000-4=11110-4=11106 (1)题运用了性质:a×b+a×c=a×(b+c)【例3】计算:(1)528-(196+328)(2)1308-(308-49)解(1)528-(196+328=528-196-328=528-328-196=200-196=4(2)1308-(308-49)=1308-308+49 =1000+49=1049运用了性质:a-(b+c)=a-b-c=a-c-b; 性质:a-(b-c)=a-b+c【例4】计算(1)(4256+125+875)-256(2)847-578+398-222解(1)(4256+125+875)-256=(4256-256)+(125+875)=4000+1000=5000;(2)847-578+398-222=847+398-578-222=847+400-2-(578+222)=1245-800=445例5】计算(1)701+697+703+704+696;(2)72+6+75+63+69解(1)701+697+703+704+696=700×5+(1+3+4)-(3+4)=3500+8-7=3501:(2)72+66+75+63+69=69×5+3-3+6-6+0=695×5=345【例6】计算:100+99-98-97+96+95-94-93+…+8+7-6-5+4+3-2-1原式=(100-98)+(99-97)+(96-94)+(95-93) +…:+(8-6)+(7-5)+(4-2)+(3-1)=2×50=100说明也可以依序把四个数结合为一组,得到100+99-98-97=96+95-94-93=…,=4+3-2-1=4即可将原式结合成25组,每组值均为4,结果等于4×25=100计算下列各题:(1)937+115-37+85;(2)999+99+9+3.计算下列各题(1)9.7+9.8+9.9+10.1+10.2+10.3;(2)100-99+98-97+96-95+…+4-3+2-1.找规律计算:1×5+4=9=3×3,2×6+4=4×43×7+4=25=5×54×8+4=36=6×6......10×( )+4=()=()×()(提示:四个算式中的规律是等式左边第二个因数比第一个因数大4得10×14+4=144=12×12)计算:2325+7418+7675-2318解=2325+7675+7418-2318=10000+5100=15100计算:1000+999-998-97+996+995-994-993+..... 108+107-106-105+104+103-102-101提示:=(1000-998)+(999-997)+(996-994) (103)101)=2×450=900计算:1+2+3+…+99+100+99+…+3+2+1 提示:(1+99)+(2+98)+(3+97)......+(98+2)+(99+1)=100×100=10000某篮球队在今年上半年共进行了10场比赛,每场比赛的得分是128,115,137,109,116,130,126,120,115,12 4那么今年上半年平均每场比赛得多少分?提示:选基准数为120,则累计差=8-5+17-11-4+10+6-5+4=20平均每场比赛得120+20÷2=122分已知:12+22+32+.....92+102=385,求1×2+2×3+3×4+4×5+,…+10×11=提示:=1×(1+1)+2×(2+1)+3×(3+1)......10×(10+1)=12+1+22+2+32+3+42+4.....+102+10=(12+22+32+42......102)+(1+2+3+4+5 (10)=385+11×5=440348-69+652=348+652-69=1000-69=931 解:572+159+28=572+28+159=600+59=759827-129-271=827-(129+271)=827-400 =427348+69-48=348-48+69=300+ 69=369例2 计算。
四年级奥数——速算与巧算(加减乘除)
四年级剑桥奥数暑假班速算与巧算速算与巧算计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3-11)=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
例1所用的方法叫做加法的基准数法。
这种方法适用于加数较多,而且所有的加数相差不大的情况。
作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。
由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。
在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。
同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。
四年级奥数——速算与巧算(加减乘除)
四年级奥数春季班速算与巧算计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
例1所用的方法叫做加法的基准数法。
这种方法适用于加数较多,而且所有的加数相差不大的情况。
作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。
由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。
在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。
同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。
求平均每块麦田的产量。
四年级奥数巧算题目经典题
四年级奥数巧算题目经典题一、加法巧算1. 45 + 137 + 55 + 63解析:运用加法交换律和结合律,将 45 和 55 相加,137 和 63 相加,得到:(45 + 55) + (137 + 63) = 100 + 200 = 3002. 87 + 124 + 13 + 76解析:同样运用加法交换律和结合律,87 和 13 相加,124 和 76 相加,即:(87 + 13) + (124 + 76) = 100 + 200 = 300二、减法巧算1. 325 - 78 - 22解析:根据减法的性质,一个数连续减去两个数,等于这个数减去这两个数的和。
所以:325 - (78 + 22) = 325 - 100 = 2252. 568 - 127 - 73解析:568 - (127 + 73) = 568 - 200 = 368三、乘法巧算1. 25×17×4解析:运用乘法交换律,先计算 25×4,得到:25×4×17 = 100×17 = 17002. 125×32×25解析:将 32 拆分成 8×4,然后分别与 125 和 25 相乘,即:125×8×(4×25) = 1000×100 = 100000四、除法巧算1. 2800÷25÷4解析:根据除法的性质,一个数连续除以两个数,等于这个数除以这两个数的积。
所以:2800÷(25×4) = 2800÷100 = 282. 720÷18解析:将 18 拆分成 9×2,然后进行计算,即:720÷(9×2) = 720÷9÷2 = 80÷2 = 40。
四年级奥数第一讲速算与巧算整理版
• 799998+79997+7996+797+18
• 1234567+2345671+3456712+4567123+5671234+6712345+7123456 (提示:每个数位上的数字和都是1+2+3+4+5+6+7)
利用组合法巧算可以达到简化算式的效果有时候是两个数为一组有时候是三个数为一组同步巩固练习98979695949392919089
一、速算与巧算
记住它们的特色 2×5=10 25×4=100 125×8=1000 625×8=5000 625×16=10000
简便计算加减篇
例1、 8+98+998+9998+99998+999998
=(8+2)+(98+2)+(998+2)+(9998+2)+(99998+2)+(999998+2)-2×6 = 10+100+1000+10000+100000+1000000 = 1111110-12 = 1111098
总结:利用“补数法”巧算时,要根据“多加的要减去,
少加的再加上。”的原则进行处理。
延伸拓展
用“组合法”巧算
812-593+193-647+247-374+174+200 =812-400-400-200+200 =12 1-2+3-4+5-6+……+1991-1992+1993
= 1+(3-2)+(5-4)+(7-6)+ ……+(1991-1990)+(1993-1992) =1+(1992÷2)×1 =1+996 =997
四年级奥数知识点
3、数值原理法.先把加在一起为整十、整百 、整千……的数相加,然后再与其它的数相加 . 4、“基准数”法,基准当几个数比较接近于 某一整数的数相加时,选这个整数为“基准数 ”(要注意把多加的数减去,把少加的数加上 ) 例题精讲
模块一:分组凑整思想 【例 1】 91.8186.789.6270.490.288.891.5
【练习3】 1.1208-569-208 2.283+69-183 3.132-85+68 4.2318+625-1318+375
【练习2】 1.50+52+53+54+51 2.262+266+270+268+264 3.89+94+92+95+93+94+88+96+87 4.381+378+382+383+379 5.1032+1028+1033+1029+1031+1030 6.2451+2452+2446+2453.
【巩固】 2006+200.6+20.06+2.006+ 994+99.4+9.94+0.994=
【例 3】 计算 56.43+12.96+13.57-4.33 -8.96-5.67
模块二、加补凑整思想 【例 5】 (1) 0.999990.99990.9990.990.9 (2)199.819.971.996 (3)999999999.799.79.7 0.7
【巩固】 199.819.971.996
第四讲 体育比赛中的数学问题
一、知识点总结 1.单循环赛:每两个队之间都要比赛一场,无主客场之分。 (通俗的说就是除了不和自己比赛,其他人都要比)
四年级奥数-速算与巧算
四年级奥数-速算与巧算速算与巧算一、知识要点速算与巧算是计算中的重要组成部分。
掌握巧算方法有助于提高计算和思维能力。
本周研究加减法的巧算方法,根据加减法的定律和性质,通过适当变形简化计算。
巧算方法蕴含解决问题的策略。
转化问题法是根据运算定律和性质,改变运算顺序或减整,使计算变得简便。
二、精讲精练例题1:计算9+99+999+9999思路导航:四个加数接近10、100、1000、.通常使用减整法,例如将99转化为100-1.9+99+999+999910-1)+(100-1)+(1000-1)+(-1)10+100+1000+-4练1:1.计算+9999+999+99+92.计算9+98+996+99973.计算1999+2998+396+4974.计算198+297+396+4955.计算1998+2997+4995+59946.计算+++例题2:计算489+487+483+485+484+486+488思路导航:观察每个加数,发现它们都接近整数490,选490为基准数。
489+487+483+485+484+486+488490×7-1-3-7-5-6-4-23430-283402思考:如果选480为基准数,如何计算?练2:1.50+52+53+54+512.262+266+270+268+2643.89+94+92+95+93+94+88+96+874.381+378+382+383+3795.1032+1028+1033+1029+1031+10306.2451+2452+2446+2453例题3:计算下面各题。
1)632-156-2322)128+186+72-86在一个没有括号的算式中,如果只有第一级运算,可以根据运算定律和性质调换加数或减数的位置来计算。
例如:632-156-232=632-232-156=400-156=244.练题为:计算1.1208-569-2082.283+69-1833.132-85+684,2318+625-1318+375.在计算有括号的加减混合运算时,有时可以去括号来使计算简便。
四年级奥数加减乘除中的巧妙规律应用
四年级奥数加减乘除中的巧妙规律应用奥数是指奥林匹克数学竞赛,是一项能够培养学生逻辑思维和解决问题能力的数学竞赛。
在四年级的奥数中,加减乘除是基础的运算内容。
本文将探讨在四年级奥数加减乘除中的巧妙规律应用。
一、加法中的规律应用在四年级奥数中,加法是最基础的运算之一。
除了熟练掌握加法的计算方法外,还可以应用一些巧妙的规律来简化计算过程。
1. 同位数相加的规律当两个数的个位、十位等位数相同,只有个位数不同时,可以利用同位数相加的规律简化计算。
例如,计算487+473时,可将个位的7与3相加得到10,这个10与十位数的8相加得到18,最终结果为960。
2. 逆序数相加的规律逆序数相加的规律是指将两个逆序排列的数相加,结果的个位数与十位数也是逆序排列。
这个规律可以帮助我们更快地计算出结果。
例如,计算346+643时,个位的6与3相加得到9,十位的4与4相加等于8,最终结果为989。
二、减法中的规律应用减法是四年级奥数中另一个重要的运算内容。
在减法中,也有一些规律可以帮助我们简化计算。
1. 借位减法的规律当两位数相减时,如果个位数小于被减数的个位数,就需要向十位借位。
这是一种常见的减法规律。
例如,计算325-98时,可以先将个位的5减去8,得到7,再将十位的2减1,得到1,最终结果为227。
2. 末位相等的规律当减数与被减数的个位数相等时,我们可以利用这个规律进行计算。
例如,计算976-276时,由于减数与被减数的个位数都是6,所以只需要将百位数的9减去2,得到7,最终结果为700。
三、乘法中的规律应用乘法是四年级奥数中较难的一个运算内容。
在乘法中,也有一些规律可以帮助我们简化计算。
1. 乘法交换律的应用乘法交换律是指数的顺序与乘积的顺序无关。
例如,计算7×8时,可以换算成8×7,这样计算起来更加简便。
这个规律在计算大数的乘法时尤为重要。
2. 同因数相乘的规律当两个数的因数相同时,可以利用同因数相乘的规律简化计算。
四年级奥数1加减巧算
志存高远务实求索课题:加减巧算授课日期:2011-9-3 教师:教师电话:班级:四年级数学(1)班学生姓名:励志名言:在我们人生的大道上,肯定会遇到许许多多的困难。
但我们是不是都知道,在前进的道路上,搬开别人脚下的绊脚石,有时恰恰是为自己铺路?第一讲加减巧算在进行加减巧算时,为了达到运算迅速又准确的目的,出了要熟练的掌握计算法则,还需要掌握一些巧算的方法。
加、减法的巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看做整十、整百、整千的数进行计算,最后将多加的减去,少加的加上,多减的加上,少减的减去。
难题点拨1★下列两题,看谁算得又对又快。
1. 726+4952. 986+797★拓展:迅速计算出下面两道题得结果。
1. 1267-6982. 3454-1896★想一想、做一做。
1.用简便方法计算下面各题。
2104+1898 3295+2162 1527+796495+899 8+98+998+398 1995+6371563-795 3211-2093 864-5972312-1494 1106-698 821-399★难题点拨2你能很快算出下面两道题得结果吗?1. 1865+5072. 753+908★拓展:1. 914-607 2. 2105-1808★想一想、做一做。
1. 用简便方法计算下面各题。
1579+606 1185+ 1209 704+929602+1399 12+103+1004+7014 11+111+11111240-509 841-369 1005-709705-308 4101-2095 3121-405-1216★难题点拨31. 486+327+514+2232. 722-364+1783. 936+487-736★想一想、做一做。
计算下面各题。
59+173+284+227+41+16 193+261+439+17184+306+176+116+24 38+192+72+128 754-309+156 1182-793+118 572-291+128 815+326-415 796+519-696 907+2156-707★难题点拨41. 462+(338-179)2. 829-(76+229)3. 753-(315-247)★拓展:1. 725-623+523 2. 416-182-218★想一想、做一做。
奥数加减法巧算
竖式运算中互补数先加
2021/10/10
3
把几个互为“补数”的减数先加起来,再从被
减数中减去
300-73-27 =300-(73+ 27)=300-100=200
先减去那些与被减数有相同尾数的减数
4723-(723+189)=4723-723-189=4000-189=3811
的运算符号都要改变,“+”变“-”,“-”变 “+”,即:
a+(b+c+d)=a+b+c+d
a-(b+a+d)=a-b-c-d
2021a/1-0(/10b-c)=a-b+c
5
找“基准数”法
几个比较接近于某一整数的 数相加时,选这个整数为 “基准数”
78+76+83+82+77+80+79+85 =80*8-2-4+3+2-3-1+5=640
利用“补数”把接近整十、整百、;3 =109
2021/10/10
4
加减混合式的巧算
去括号和添括号的法则
在只有加减运算的算式里,如果括号前面是
“+”号,则不论去掉括号或添上括号,括
号里面的运算符号都不变;如果括号前面是 “-”号,则不论去掉括号或添上括号,括号 里面
第一讲 加减法的巧算
什么叫“补数”?
两个数相加,若能恰好凑成整十、整百、整 千、整万…,
就把其中的一个数叫做另一个数的“补数” 1叫9的“补数”;89叫11的“补数”,11
也叫89 的“补数”.也就是说两个数互为“补数”。
2021/10/10
1
对于一个较大的数,如何能很快地算出 它的“补数”来呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲加、减法的计算及巧算
四年级计算是数学的基础,在计算中,我们要巧妙利用数的某些特点进行速算与巧算,在解题的过程中,掌握其中的规律,做到灵活应用运算定律,这一讲,我们学习加、减法的巧算方法,主要根据加、减法的运算定律和运算性质,通过适当的技巧、方法,使计算简便化。
主要运算定律及性质:
1、加法的交换律:A+B=B+A
2、加法结合律:(A+B)+C=A+(B+C)
3、减法运算性质:A-B-C=A-(B+C)
※综合运用加减法混合运算中可交换的性质
巩固练习:
937+115-37+85 1897+689+103
564-(387-136) 2345+911-111+655
※选择“基准数”:
例题1、 701+697+703+704+696
= 700×5+(1-3+3+4-4)
= 3500+1
= 3501
例题2、计算 (1)9+99+999+9999+99999
[例题解析]:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成100 0—1去计算.这是小学数学中常用的一种技巧.
解: 9+99+999+9999+99999
=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)
=10+100+1000+10000+100000-5
=111110-5
=111105.
(2)489+487+483+485+484+486+488
[例题解析]:认真观察这几个加数,发现它们都和整数480接近并大于480,所以选480为基准数,然后用基准数乘以加数的个数,并且将少加的数加上,使和保持不变。
解:489+487+483+485+484+486+488
=480×7+(9+7+3+5+4+6+8)
=3360+42
=3402
想一想:如果选490为基准数,可以怎样计算
当几个加数比较接近时,可以选择一个数作基准数,然后用基准数乘以加数的个数,将“多加了的数减去,少加了的数加上”,使和保持不变。
习题1、98+99+100+101+102
习题2、72+66+75+63+69
习题3、995+996+997+998+999
例题3:用简便方法计算下列各题:
1、248+(152—127)
2、324—(124—97)
3、632—156—232
4、286+879—679
[例题解析]:在计算有括号的加减混合运算时,有时为了使计算简便可以去括号。
但是括号时要注意:如果括号前面是“+”号,去括号时,括号内的符号不变;如果括号前面是“—”号时,括号内的加号要变成减号,减号就要变成加号。
第1题和第2题都可以利用去括号的方法是计算简便。
解:1、248+(152—127) 2、324—(124—97)
=248+152—127 =324—124+97
=400—127 =200+97
=273 =297
我们可以把上面的计算括号里的加减混合运算的方法概括为:
※括号前面是加号,去掉括号不变号
※括号前面是减号,去掉括号要变号
在计算没有括号的加、减混合运算时,可以根据运算定律和性质调换加数或减数的位置。
有时,还可以根据题目的特点,采取添括号的方法使计算简便,与前面去括号的方法类似,我们可以把这种方法概括为:括号前面使加号,添上括号不变号,括号前面使减号,添上括号要变号。
3、632—156—232
=632—232—156
=400—156
=244
4、286+879—679
5、812—593+193
=286+(879—679) =812—(593—193) =286+200 =812—400
=486 =412
例题4:用简便方法计算下列各题:
42+39+50—38—42+48+37
[例题解析]:算式中的几个数都非常接近“40”,可以将“40”作为基准数,但
算式中有加也有减,可以利用“带符号搬家”的方法,将几个加数放在一起,几个减数放在一起,可以看到加了5个40,减了2个40,因此,一共有3个40,再从3个40里面加上少加的和多减的,减去多加的和少减的。
42+39+50—38—42+48+37
=42+39+50+48+37—38—42
=40×3+(2—1+10+8—3+2—2)
=120+16
=136
课堂训练:
1、19998+39996+49995+69996
2、612—375+275+(388+286)
3、301+305+295+298+302+303+297+299+296+304
4、50+52+53+54+51
课后作业:
1、63+294+37+54+6
2、38+112—36+88+62—64
3、19+199+1999+19999+199999
4、19998+39996+49995+69996
5、2318+625—1318+375
6、2356—(356+187)
7、5723—(723—189) 8、59969+13258—(19969+3258)。