高一数学必修1质量检测试题(卷)
高一数学必修1测试卷(含详细答案)
则 f ( 0 ) f (x ) f ( x )
f ( x)
f ( x)
(0)
,, 3 分
所以 f ( x ) 为 R 上的奇函数
,, 6 分
(3 )令 x y 1
则 f (1 1) f (2) f (1) f (1) 2
,, 8 分
f ( 2 a ) f (a 1 ) 2 f ( a2 ) f a( 1 ) f
( D ) { x x 0}
1 (C ) y
2
x
(D) y
2
( x)
2
x
3. 集合 A {( x, y ) y x} ,集合 B {( x, y )
2x y 1 } 之间的关系是
x 4y 5
( A) A B
(B) B A
(C ) A B
(D ) B A
4. 已知函数 f ( x ) log 2 x 1 , 若 f ( a ) 1, 则 a
取值范围 .
22(本小题分 A,B 类,满分 14 分,任选一类,若两类都选,以 A 类记分) ( A 类) 定义在 R 上的函数 y f ( x ) ,对任意的 a, b R ,满足
f ( a b) f (a ) f (b ) ,当 x 0 时,有 f ( x ) 1,其中 f (1) 2 .
( 1) 求 f ( 0 ) 、 f ( 1) 的值; ( 2) 证明 y f ( x ) 在 (0, ) 上是增函数;
10. 已知 f ( x)
2
1 1
x x2
,则
f
( x ) 不.满.足. 的关系是
( A) f ( x) f ( x )
1 (C ) f ( )
x
f (x)
高中数学必修一单元质量评估卷及答案解析
高中数学必修一单元质量评估(一)(第一章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={0,1,2},B={x|-1<x<2},则A∩B=( )A.{0}B.{1}C.{0,1}D.{0,1,2}【解析】选C.因为A={0,1,2},B={x|-1<x<2},所以A∩B={0,1}.2.(2015·天津高一检测)设集合M={2,0,x},集合N={0,1},若N⊆M,则x的值为( ) A.2 B.0C.1D.不确定【解析】选C.因为N⊆M,所以集合N中元素均在集合M中,所以x=1.3.在下列由M到N的对应中构成映射的是( )【解析】选C.选项A中,集合M中的数3在集合N中没有数与之对应,不满足映射的定义;选项B中,集合M中的数3在集合N中有两个数a,b与之对应;选项D 中,集合M中的数a在集合N中有两个数1,3与之对应,不满足映射的定义.4.已知函数f(x)=ax3+bx(a≠0),满足f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【解析】选 C.方法一:f(-3)=a(-3)3+b(-3)=-33a-3b=-(33a+3b)=3,所以33a+3b=-3.f(3)=33a+3b=-3.方法二:显然函数f(x)=ax3+bx为奇函数,故f(3)=-f(-3)=-3.【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( ) A.5 B.10C.8D.不确定【解析】选B.因为f(x)是偶函数,所以f(-4)=f(4)=5,所以f(4)+f(-4)=10. 5.已知一次函数y=kx+b为减函数,且kb<0,则在直角坐标系内它的大致图象是( )【解析】选A.选项A图象为减函数,k<0,且在y轴上的截距为正,故b>0,满足条件,而B,C,D均不满足条件.6.若f(x)=则f的值为( )A.-B.C.D.【解析】选C.因为<1,所以应代入f(x)=1-x2,即f=1-=.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+1【解析】选B.由f(g(x))=f(2x+1)=6x+3=3(2x+1),知f(x)=3x.8.(2015·西城区高一检测)下列四个图形中,不是以x为自变量的函数的图象是( )【解析】选 C.由函数定义知,定义域内的每一个x都有唯一函数值与之对应,A,B,D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的值与之对应,不符合函数定义.9.已知集合A={x|x2+x+1=0},若A∩R=∅,则实数m的取值范围是( )A.m<4B.m>4C.0<m<4D.0≤m<4【解析】选D.因为A∩R=∅,所以A=∅,即方程x2+x+1=0无解,所以Δ=()2-4<0,所以m<4.又因为m≥0,所以0≤m<4.10.(2015·赣州高一检测)函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( ) A.(-∞,0]和(-∞,1] B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)【解析】选 C.函数f(x)=|x|的单调递增区间为[0,+≦),函数g(x)=x(2-x)=-(x-1)2+1的单调递增区间为(-≦,1].11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个【解析】选B.若a,b同奇偶,有12=1+11=2+10=3+9=4+8=5+7=6+6,前面的每种可以交换位置,最后一种只有1个点(6,6),这时有2〓5+1=11;若a,b一奇一偶,有12=1〓12=3〓4,每种可以交换位置,这时有2〓2=4, 所以共有11+4=15个.12.(2015·西安高一检测)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)【解析】选 D.由f(x)为奇函数,可知=<0.而f(1)=0,则f(-1)=-f(1)=0.又f(x)在(0,+≦)上为增函数,所以当0<x<1时,f(x)<0=f(1),此时<0;又因为f(x)为奇函数,所以f(x)在(-≦,0)上为增函数,所以当-1<x<0时,f(x)>0=f(-1),此时<0,即所求x的取值范围为(-1,0)∪(0,1).二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2015·开封高一检测)已知集合A={x|1≤x<2},B={x|x<a},若A∩B=A,则实数a的取值范围是.【解析】因为A∩B=A,所以A B,所以a≥2.答案:a≥214.已知a是实数,若集合{x|ax=1}是任何集合的子集,则a的值是.【解析】若集合{x|ax=1}是任何集合的子集,则它是空集,即方程ax=1无解,所以a=0.答案:015.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-⎧⎨⎩≤≤≤≤【解析】当x∈[0,1]时,-x∈[-1,0],f(-x)=-x+1,又因为f(x)为偶函数,所以f(x)=f(-x)=1-x.答案:1-x16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).【解析】若a+b≤0,则a≤-b,b≤-a,又因为f(x)为R上递减的奇函数,所以f(a)≥f(-b),f(b)≥f(-a),所以f(a)+f(b)≥f(-a)+ f(-b),④正确;又因为f(-b)=-f(b),所以f(b)f(-b)=-f(b)f(b)≤0,③正确.其余错误.答案:③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2<x<9}.(1)分别求A∩B,(ðB)∪A.R(2)已知C={x|a<x<a+1},若C⊆B,求实数a取值构成的集合.【解析】(1)A∩B={x|3≤x<6}.因为ðB={x|x≤2或x≥9},R所以(ðB)∪A={x|x≤2或3≤x<6或x≥9}.R(2)因为C⊆B,如图所示:所以解得2≤a≤8,所以所求集合为{a|2≤a≤8}.18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.【解析】(1)因为f(x)=,所以f(3)==-,所以点(3,14)不在f(x)的图象上.(2)f(4)==-3.(3)令=2,即x+2=2x-12,解得x=14.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b 的值.【解析】因为函数f(x)的对称轴方程为x=-2,所以函数f(x)在定义域[-2,b](b>-2)上单调递增,所以函数f(x)的最小值为f(-2)=a-4=-2,所以a=2.函数f(x)的最大值为f(b)=b2+4b+2=b.所以b2+3b+2=0,解得b=-1或b=-2(舍去),所以b=-1.20.(12分)(2015·烟台高一检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并用定义证明.【解析】(1)由f(1)=2,f(2)=-1,得a+b=2,2a+b=-1,即a=-3,b=5,故f(x)=-3x+5,f(m+1)=-3(m+1)+5=-3m+2.(2)函数f(x)在R上单调递减,证明如下:任取x1<x2(x1,x2∈R),则f(x2)-f(x1)=(-3x2+5)-(-3x1+5)=3x1-3x2=3(x1-x2),因为x1<x2,所以f(x2)-f(x1)<0,即f(x2)<f(x1),所以函数f(x)在R上单调递减.【拓展延伸】定义法证明函数单调性时常用变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进行因式分解.(2)通分:当原函数是分式函数时,作差后往往进行通分,然后对分子进行因式分解.(3)配方:当原函数是二次函数时,作差后可考虑配方,便于判断符号.21.(12分)(2015·葫芦岛高一检测)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.【解析】(1)取x=y=0,则f(0+0)=2f(0),所以f(0)=0.取y=-x,则f(x-x)=f(x)+f(-x),所以f(-x)=-f(x)对任意x∈R恒成立,所以f(x)为奇函数.(2)任取x1,x2∈(-≦,+≦),且x1<x2,则x2-x1>0,f(x2)+f(-x1)=f(x2-x1)<0,所以f(x2)<-f(-x1),又f(x)为奇函数,所以f(x1)>f(x2),所以f(x)是R上的减函数.(3)由(2)知f(x)在R上为减函数,所以对任意x∈[-3,3],恒有f(3)≤f(x)≤f(-3),因为f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=-2〓3=-6,所以f(-3)=-f(3)=6,所以f(x)在[-3,3]上的值域为[-6,6].22.(12分)定义在(-1,1)上的函数f(x)满足:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.【解题指南】(1)结合已知等式利用赋值法求解.(2)利用赋值法并结合奇偶性定义判断.(3)结合(2)的结论及已知条件得f=1,再利用奇偶性和单调性脱去符号“f”,转化为一次不等式求解.【解析】(1)令x=y=0,得2f(0)=f(0),所以f(0)=0.(2)令y=-x,得f(x)+f(-x)=f(0)=0,即f(x)=-f(-x),所以f(x)为奇函数.(3)因为f=-1,f(x)为奇函数,所以f=1,所以不等式f(2x-1)<1等价于f(2x-1)<f,又因为f(x)在(-1,1)上是减函数,所以2x-1>-,-1<2x-1<1,解得<x<1.所以不等式的解集为.【误区警示】解答本题(3)时易忽视函数定义域而得出解集为的错误.单元质量评估(二)(第二章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.可用分数指数幂表示为( )A. B.a3C. D.都不对【解析】选C.====.故选C.2.(2015·怀柔高一检测)指数函数y=a x的图象经过点,则a的值是( )A. B. C.2 D.4【解析】选B.因为y=a x的图象经过点,所以a3=,解得a=.3.等于( )A.2B.2+C.2+D.1+【解析】选A.=2〓=2.4.若100a=5,10b=2,则2a+b= ( )A.0B.1C.2D.3【解析】选B.因为100a=102a=5,10b=2,所以100a〓10b=102a+b=5〓2=10,即2a+b=1.【一题多解】选B.由100a=5得a=log1005,由10b=2得b=lg2,所以2a+b=2〓lg5+lg2=1.5.(2015·塘沽高一检测)(log29)·(log34)= ( )A. B. C.2 D.4【解析】选D.(log29)·(log34)=·=·=4.【补偿训练】对数式lo(2-)的值是( )A.-1B.0C.1D.不存在【解析】选A.lo(2-)=lo=lo(2+)-1=-1.6.已知-1<a<0,则( )A.(0.2)a<<2aB.2a<<(0.2)aC.2a<(0.2)a<D.<(0.2)a<2a【解析】选 B.由-1<a<0,得0<2a<1,(0.2)a>1,>1,知A,D不正确.当a=-时,=<=0.,知C不正确.所以2a<<(0.2)a.【补偿训练】(2014·邢台高一检测)设a=lo3,b=,c=,则a,b,c的大小顺序为( )A.a<b<cB.c<b<aC.c<a<bD.b<a<c【解析】选A.因为a=lo3<lo1=0,即a<0,0<b=<=1,即0<b<1,而c=>20=1,即c>1,所以a<b<c,选A.7.(2015·重庆高一检测)设函数y=x3与y=的图象的交点为(x0,y0),则x0所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选B.作出两个函数在同一坐标系内的图象如图所示,即可观察得出.8.若函数y=f的定义域是[2,4],则y= f lo x的定义域是( )A. B.C.[4,16]D.[2,4]【解析】选B.由于2≤lo x≤4,即lo≤lo x≤lo,所以≤x≤,故选B.【误区警示】本题易误认为函数y= f中的变量x也应在[2,4]上从而造成错选D.9.已知函数y=f(x)的反函数f-1(x)=lo x,则方程f(x)=1的解集是( )A. B. C. D.【解析】选D.f-1(x)=lo x,则f(x)=,f(x)=1可得x=0.【一题多解】选D.f(x)=1根据互为反函数的性质得x=f-1(1)=lo1=0.10.(2015·邢台高一检测)已知f(10x)=x,则f(5)= ( )A.105B.510C.lg 10D.lg 5【解题指南】利用换元法,先求出函数的解析式,再计算f(5)的值.【解析】选D.令10x=t>0,则x=lgt,故f(t)=lgt,所以函数f(x)=lgx(x>0),故f(5)=lg5.11.(2015·汉中高一检测)如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M,N,P,Q, G中,可以是“好点”的个数为( )A.0个B.1个C.2个D.3个【解析】选 C.设此函数为y=a x(a>0,a≠1),显然不过点M、P,若设对数函数为y=log b x(b>0,b≠1),显然不过N点,故选C.12.已知函数g(x)=2x-,若f(x)=则函数f(x)在定义域内( )A.有最小值,但无最大值B.有最大值,但无最小值C.既有最大值,又有最小值D.既无最大值,又无最小值【解析】选A.当x≥0时,函数f(x)=g(x)=2x-在[0,+≦)上单调递增,设x>0,则-x<0,f(x)=g(x),f(-x)=g(x),则f(-x)=f(x),故函数f(x)为偶函数,综上可知函数f(x)在x=0处取最小值f(0)=1-1=0,无最大值.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.函数y=的定义域是.【解析】因为lo(x-1)≥0,所以0<x-1≤1,所以1<x≤2.答案:(1,2]【补偿训练】函数y=的定义域为.【解析】因为log0.5(4x-3)≥0,所以0<4x-3≤1,所以<x≤1.答案:14.(2015·沈阳高一检测)已知函数f(x)=则f的值为.【解析】因为>0,所以f=log3=log33-2=-2,所以f(-2)=2-2=.答案:15.函数f(x)=log5(2x+1)的单调增区间是.【解析】函数f(x)的定义域为,设u=2x+1,f(x)=log5u(u>0)是单调增函数,因此只需求函数u=2x+1的单调增区间,而函数u=2x+1在定义域内单调递增.所以函数f(x)的单调增区间是.答案:16.(2015·通化高一检测)已知函数f(x)=是(-∞,+∞)上的减函数,那么a的取值范围是.【解题指南】由于函数在(-≦,+≦)上是减函数,故此分段函数应在每一段上也为减函数,且当x=1时应有3a-1+4a≥0,以此确定a的值.【解析】由于函数f(x)=是(-≦,+≦)上的减函数,则有,解得≤a<.答案:【延伸探究】若本题将函数改为“f(x)=”且在(-∞,+∞)上是增函数,又如何求解a的取值范围?【解析】由于函数f(x)=是(-≦,+≦)上的增函数,则有:,解得a>1.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算:(1)2log32-log3+log38-5log325.(2)log2.56.25+lg+ln(e)+log2(log216).【解析】(1)原式=log34-log3+log38-2=log3-=log39-9=2-9=-7.(2)原式=2-2++log24=.18.(12分)(2015·咸阳高一检测)已知f(x)=log a(1-x)(a>0,且a≠1)(1)求f(x)的定义域.(2)求使f(x)>0成立的x的取值范围.【解析】(1)依题意得1-x>0,解得x<1,故所求定义域为{x|x<1}.(2)由f(x)>0得log a(1-x)>log a1,当a>1时,1-x>1即x<0,当0<a<1时,0<1-x<1即0<x<1.19.(12分)(2014·十堰高一检测)已知函数f=(m2-m-1)是幂函数,且x∈(0,+∞)时,f(x)是增函数,求f(x)的解析式.【解析】因为f(x)是幂函数,所以m2-m-1=1,解得m=-1或m=2,所以f(x)=x-3或f(x)=x3,又易知f(x)=x-3在(0,+≦)上为减函数,f(x)=x3在(0,+≦)上为增函数.所以f(x)=x3.20.(12分)(2015·临沂高一检测)已知f是偶函数,当x≥0时,f=a x,若不等式f≤4的解集为[-2,2],求a的值.【解题指南】由已知先求出x<0的解析式,根据f≤4,利用分段函数分段求解,结合其解集为[-2,2],确定出a的值.【解析】当x<0时,-x>0,f(-x)=a-x,因为f为偶函数,所以f=a-x,所以f=(a>1),所以f≤4化为或,所以0≤x≤log a4或-log a4≤x<0,由条件知log a4=2,所以a=2.21.(12分)设a>0,f(x)=+是R上的偶函数.(1)求a的值.(2)证明f(x)在(0,+∞)上是增函数.【解题指南】(1)根据题意,利用偶函数的定义对一切x∈R有f(-x)=f成立,确定出a的值.(2)利用函数单调性的定义证明.【解析】(1)依题意,对一切x∈R有f(-x)=f成立,即+=+ae x,所以=0,对一切x∈R成立,由此得到a-=0,所以a2=1,又a>0,所以a=1.(2)设0<x1<x2,f-f=-+-=(-)<0,所以f<f,所以f(x)在(0,+≦)上是增函数.22.(12分)(2015·蚌埠高一检测)已知函数f(x)=log a(x+3)-log a(3-x),a>0且a ≠1.(1)求函数f(x)的定义域.(2)判断并证明函数f(x)的奇偶性.(3)若a>1,指出函数的单调性,并求函数f(x)在区间[0,1]上的最大值.【解析】(1)由题得解得-3<x<3,故函数f(x)的定义域为(-3,3).(2)函数f(x)为奇函数,由(1)知函数f(x)的定义域关于原点对称,f(-x)=log a(-x+3)-log a(3+x)=-f(x),所以函数f(x)为奇函数.(3)当a>1时,函数f(x)为增函数,从而函数f(x)在区间[0,1]上也为增函数,最大值为f(1)=log a4-log a2=log a2.单元质量评估(三)(第三章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·洛阳高一检测)函数f(x)的图象如图所示,函数f(x)零点的个数为( )A.1个B.2个C.3个D.4个【解析】选D.由图象知与x轴有4个交点,则函数f(x)共有4个零点.2.(2015·宜昌高一检测)若函数y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是( )A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=0【解析】选C.f(a)f(b)<0时,存在实数c∈(a,b)使得f(c)=0,f(a)f(b)>0时,可能存在实数c∈(a,b)使得f(c)=0.【补偿训练】下列函数中能用二分法求零点的是( )【解析】选C.在A中,函数无零点,在B和D中,函数有零点,但它们在零点两侧的函数值的符号相同,因此它们都不能用二分法来求零点.而在C中,函数图象是连续不断的,且图象与x轴有交点,并且其零点两侧的函数值异号,所以C中的函数能用二分法求其零点.3.已知方程x=3-lgx,下列说法正确的是( )A.方程x=3-lgx的解在区间(0,1)内B.方程x=3-lgx的解在区间(1,2)内C.方程x=3-lgx的解在区间(2,3)内D.方程x=3-lgx的解在区间(3,4)内【解析】选C.2<3-lg2,3>3-lg3,又f(x)=x+lgx-3在(0,+≦)上是单调递增的,所以方程x=3-lgx的解在区间(2,3)内.4.(2015·长沙高一检测)已知f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,那么下面命题错误的是( )A.函数f(x)在(1,2)或[2,3]内有零点B.函数f(x)在(3,5)内无零点C.函数f(x)在(2,5)内有零点D.函数f(x)在(2,4)内不一定有零点【解析】选C.f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,则区间(1,3)内必有零点,(2,5)内不一定有零点,(3,5)内无零点,所以选C.5.(2015·临川高一检测)设x0是方程lnx+x=4的解,则x0在下列哪个区间内( ) A.(3,4) B.(0,1) C.(1,2) D.(2,3)【解析】选D.令f(x)=lnx+x-4,由于f(2)=ln2+2-4<0,f(3)=ln3+3-4>0,f(2)·f(3)<0,又因为函数f(x)在(2,3)内连续,故函数f(x)在(2,3)内有零点,即方程lnx+x=4在(2,3)内有解.6.(2015·新余高一检测)下列方程在区间(0,1)存在实数解的是( )A.x2+x-3=0B.x+1=0C.x+lnx=0D.x2-lgx=0【解题指南】先从好判断的一次方程、二次方程入手,不好求解的利用函数图象的交点进行判断.【解析】选 C.x2+x-3=0的实数解为x=和x=,不属于区间(0,1);x+1=0的实数解为x=-2,不属于区间(0,1);x2-lgx=0在区间(0,1)内无解,所以选C,图示如下:7.(2015·郑州高一检测)函数f(x)=3x-log2(-x)的零点所在区间是( )A. B.(-2,-1)C.(1,2)D.【解题指南】本题如果注意到定义域可排除C,D选项,用f(a)·f(b)<0去验证B 选项即可得到答案.【解析】选 B.f(x)=3x-log2(-x)的定义域为(-≦,0),所以C,D不能选;又f(-2)·f(-1)<0,且f(x)在定义域内是单调递增函数,故零点在(-2,-1)内. 【补偿训练】在下列区间中,函数f(x)=e x+4x-3的零点所在的区间为( ) A. B.C. D.【解析】选C.将选项代入f(x)=e x+4x-3.检验f f=(-2)(-1)<0,且f(x)=e x+4x-3的图象在上连续不断,故选C.8.某种型号的手机自投放市场以来,经过两次降价,单价由原来的2000元降到1280元,则这种手机的价格平均每次降低的百分率是( )A.10%B.15%C.18%D.20%【解析】选D.设平均每次降低的百分率为x,则2000(1-x)2=1280,解得x=0.2,故平均每次降低的百分率为20%.9.向高为H的圆锥形漏斗注入化学溶液(漏斗下方口暂时关闭),注入溶液量V与溶液深度h的函数图象是( )【解析】选A.注入溶液量V随溶液深度h的增加增长越来越快,故选A.10.若方程a x-x-a=0有两个解,则a的取值范围是( )A.(1,+∞)B.(0,1)C.(0,+∞)D.∅【解析】选A.画出y1=a x,y2=x+a的图象知a>1时成立.【补偿训练】函数f(x)=+k有两个零点,则( )A.k=0B.k>0C.0≤k<1D.k<0【解析】选D.在同一平面直角坐标系中画出y1=和y2=-k的图象:由图象知,-k>0即k<0.11.(2015·福州高一检测)若函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,则f可以是( )A.f=4x-1B.f=(x-1)2C.f=e x-1D.f=ln【解析】选A.f=4x-1的零点为x=,f=(x-1)2的零点为x=1,f=e x-1的零点为x=0,f=ln的零点为x=.现在我们来估算g=4x+2x-2的零点,因为g(0)= -1,g=1,g<0,且g(x)在定义域上是单调递增函数,所以g(x)的零点x∈,又函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,只有f=4x-1的零点适合.12.如图表示一位骑自行车者和一位骑摩托车者在相距80km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发了1.5小时后,追上了骑自行车者.其中正确信息的序号是( ) A.①②③ B.①③ C.②③ D.①②【解析】选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2015·南昌高一检测)用“二分法”求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点为x0=2.5,那么下一个有根的区间是.【解析】令f(x)=x3-2x-5,f(2.5)·f(2)<0所以下一个有根的区间是(2,2.5). 答案:(2,2.5)14.已知函数f(x)=若关于x的方程f(x)-k=0有唯一一个实数根,则实数k的取值范围是. 【解析】关于x的方程f(x)-k=0有唯一一个实数根,等价于函数y=f(x)与y=k 的图象有唯一一个交点,在同一个平面直角坐标系中作出它们的图象.由图象可知实数k的取值范围是[0,1)∪(2,+≦).答案:[0,1)∪(2,+≦)【补偿训练】若函数f(x)=|7x-1|-k有两个零点,则实数k的取值范围是.【解析】函数f(x)=|7x-1|-k有两个零点,等价于方程k=|7x-1|有两个不等实根,即函数y=|7x-1|的图象与y=k的图象有两个公共点,结合图象知0<k<1.答案:(0,1)15.若函数f(x)=lgx+x-3的近似零点在区间(k,k+1)(k ∈Z)内,则k= .【解题指南】由lgx+x-3=0,可得lgx=-x+3,令y 1=lgx,y 2=-x+3,结合两函数的图象,可大体判断零点所在的范围,然后结合零点的存在性定理来进行判断.【解析】由lgx+x-3=0,可得lgx=-x+3,令y 1=lgx,y 2=-x+3,结合两函数的图象,可大体判断零点在(1,3)内,又因为f(2)=lg2-1<0,f(3)=lg3>0,f(x)=lgx+x-3是单调递增函数,所以k=2.答案:216.定义在R 上的偶函数y=f(x),当x ≥0时,y=f(x)是单调递减的,f(1)·f(2)<0,则y=f(x)的图象与x 轴的交点个数是 .【解析】f(1)·f(2)<0,y=f(x)在区间(1,2)内有一个零点,由偶函数的对称性知,在区间(-2,-1)内也有一个零点,所以共有2个零点.答案:2三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2015·杭州高一检测)已知函数f(x)的图象是连续的,有如下表格,判断函数在哪几个区间上有零点.【解析】因为函数的图象是连续不断的,并且由对应值表可知f ·f <0,f ·f(0)<0,f ·f <0,所以函数f 在区间(-2,-1.5),(-0.5,0)以及(0,0.5)内有零点.18.(12分)设f(x)=ax 2+(b-8)x-a-ab 的两个零点分别是-3,2.(1)求f(x).(2)当函数f(x)的定义域为[0,1]时,求其值域.【解析】(1)因为f(x)的两个零点分别是-3,2,所以即解得a=-3,b=5,f(x)=-3x2-3x+18.(2)由(1)知f(x)=-3x2-3x+18的对称轴x=-,函数开口向下,所以f(x)在[0,1]上为减函数,f(x)的最大值f(0)=18,最小值f(1)=12,所以值域为[12,18]. 19.(12分)用二分法求方程2x+x-8=0在区间(2,3)内的近似解.(精确度为0.1,参考数据:22.5≈5.657,22.25≈4.757,22.375≈5.187,22.4375≈5.417,22.75≈6.727) 【解析】设函数f(x)=2x+x-8,则f(2)=22+2-8=-2<0,f(3)=23+3-8=3>0,所以f(2)·f(3)<0,说明这个函数在区间(2,3)内有零点x0,即原方程的解.用二分法逐次计算,列表如下:由表可得x0∈(2,2.5),x0∈(2.25,2.5),x0∈(2.375,2.5),x0∈(2.4375,2.5).因为|2.4375-2.5|=0.0625<0.1,所以方程2x+x-8=0在区间(2,3)内的近似解可取为2.4375.20.(12分)(2015·潍坊高一检测)已知二次函数f(x)的图象过点(0,3),它的图象的对称轴为x=2,且f(x)的两个零点的平方和为10,求f(x)的解析式.【解题指南】设出解析式,利用根与系数的关系求出未知量.【解析】设二次函数为f(x)=ax2+bx+c(a≠0).由题意知:c=3,-=2.设x1,x2是方程ax2+bx+c=0的两根,则+=10,所以(x1+x2)2-2x1x2=10,所以-=10,所以16-=10,所以a=1.代入-=2中,得b=-4.所以f(x)=x2-4x+3.21.(12分)(2015·徐州高一检测)在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)-f(x),某公司每月最多生产100台报警系统装置,生产x台的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润的函数等于收入与成本之差.求出利润函数p(x)及其边际利润函数Mp(x);判断它们是否具有相同的最大值;并写出本题中边际利润函数Mp(x)最大值的实际意义.【解析】p(x)=R(x)-C(x)=-20x2+2500x-4000,x∈[1,100],x∈N,所以Mp(x)=p(x+1)-p(x)=[-20(x+1)2+2500(x+1)-4000]-(-20x2+2500x-4000),=2480-40x,x∈[1,100],x∈N;所以p(x)=-20+74125,x∈[1,100],x∈N,故当x=62或63时,p(x)max=74120(元),因为Mp(x)=2480-40x为减函数,当x=1时有最大值2440.故不具有相等的最大值.边际利润函数取最大值时,说明生产第二台机器与生产第一台的利润差最大. 22.(12分)A地某校准备组织学生及学生家长到B地进行社会实践,为便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2∶1,从A到B的火车票价格(部分)如下表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票至少要花多少钱?最多要花多少钱?【解析】(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座火车票,依题意得:解得则2m=20,答:参加社会实践的老师、家长与学生各有10人、20人与180人.(2)由(1)知所有参与人员总共有210人,其中学生有180人,①当180≤x<210时,最经济的购票方案为:学生都买学生票共180张,(x-180)名成年人买二等座火车票,(210-x)名成年人买一等座火车票.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51〓180+68(x-180)+81(210-x),即y=-13x+13950(180≤x<210).②当0<x<180时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长、老师一起购买一等座火车票共(210-x)张.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51x+81(210-x),即y=-30x+17010(0<x<180).(3)由(2)小题知,当180≤x<210时,y=-13x+13950,由此可见,当x=209时,y的值最小,最小值为11233元,当x=180时,y的值最大,最大值为11610元.当0<x<180时,y=-30x+17010,由此可见,当x=179时,y的值最小,最小值为11640元,当x=1时,y的值最大,最大值为16980元.所以可以判断按(2)小题中的购票方案,购买单程火车票至少要花11233元,最多要花16980元.综合质量评估(第一至第三章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·大庆高一检测)设集合U=,集合M=,N=,则M ∩(ðN)等于( )UA. B.C. D.【解析】选B.因为ðN=,M=,所以M∩(UðN)=.U【补偿训练】设全集U={x|x<6且x∈N*},集合A={1,3},B={3,5},则ð(A∪B)U= ( )A.{1,4}B.{1,5}C.{2,4}D.{2,5}【解析】选C.由题意知U={1,2,3,4,5},又A∪B={1,3,5},所以ð(A∪B)={2,4}.U2.(2015·淮南高一检测)函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【解析】选C.要使函数y=有意义,必须解得,故函数的定义域为(1,2)∪(2,+≦).【补偿训练】函数y=+的定义域是( )A.[-1,2)B.[-1,2)∪(2,+∞)C.(2,+∞)D.[-1,+∞)【解析】选B.要使函数y=+有意义,必须,解得x≥-1且x ≠2,故函数的定义域为[-1,2)∪(2,+≦).3.下列图形中,不是函数图象的是( )【解析】选B.由函数的定义可知:选项B中存在给定某一实数,有两个值与之对应.【补偿训练】下列各组函数是同一函数的是( )A.y=与y=1B.y=|x-1|与y=C.y=|x|+|x-1|与y=2x-1D.y=与y=x【解析】选D.A定义域不同,故不是同一函数.B定义域不同,故不是同一函数.C对应法则不同,故不是同一函数.D定义域与对应法则均相同,所以是同一函数.4.下列函数在其定义域内既是奇函数,又是增函数的是( )A.y=B.y=3xC.y=lg|x|D.y=x3【解析】选D.选项A中函数的定义域为x≥0,故不具备奇偶性;选项B是增函数但不是奇函数;选项C是偶函数;而选项D在R上是奇函数并且单调递增.5.已知函数f(x)=,则有( )A.f(x)是奇函数,且f=-f(x)B.f(x)是奇函数,且f=f(x)C.f(x)是偶函数,且f=-f(x)D.f(x)是偶函数,且f=f(x)【解析】选C.因为f(x)=,{x|x≠〒1},所以f====-=-f(x),又因为f(-x)===f(x),所以f(x)为偶函数.【误区警示】解答本题在推导f与f(x)的关系时容易出现分式变形或符号变换错误.6.(2015·绍兴高一检测)函数f(x)=若f(x)=2,则x的值是( ) A. B.± C.0或1 D.【解析】选A.当x+2=2时,解得x=0,不满足x≤-1;当x2=2时,解得x=〒,只有x=时才符合-1<x<2;当2x=2时,解得x=1,不符合x≥2.故x=.7.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )A.b>c>aB.b>a>cC.a>b>cD.c>b>a【解析】选A.由于a=log20.3<log21=0,0<0.30.2<0.30=1,20.3>20=1,故log20.3<0.30.2<20.3,即a<c<b.【补偿训练】已知函数f(x)=lo|x+2|,若a=f(lo3),b=f,c=f(ln3),则( )A.c<b<aB.b<c<aC.c<a<bD.a<b<c【解题指南】作出函数f(x)=lo|x+2|的图象判断此函数的单调性,利用中间量0,1比较lo3,,ln3的大小,最后利用函数单调性比较a,b,c的大小. 【解析】选A.函数y=lo|x|的图象如图(1),把y=lo|x|的图象向左平移2个单位得到y=lo|x+2|的图象如图(2),由图象可知函数y=lo|x+2|在(-2,+≦)上是减函数,因为lo3=-log23<-log22=-1,0<<=1,ln3>lne=1.所以-2<lo3<<ln3,所以f(lo3)>f>f(ln3),即c<b<a.8.(2015·鹰潭高一检测)函数f(x)=2x-1+x-5的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选C.利用根的存在性定理进行判断,由于f(2)=2+2-5=-1,f(3)=4+3-5=2,所以f(2)·f(3)<0,又f(x)为单调递增函数,所以函数f(x)=2x-1+x-5的零点所在的区间为(2,3).【补偿训练】函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选C.由题意知x>0,且f(x)在其定义域内为增函数,f(1)=ln1+13-9=-8<0,f(2)=ln2+23-9=ln2-1<0,f(3)=ln3+33-9=ln3+18>0,f(4)=ln4+43-9>0,所以f(2)f(3)<0,说明函数在区间(2,3)内有零点.9.某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )A.y=100B.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】选C.对于A中的函数,当x=3或4时,误差较大.对于B中的函数,当x=4时误差也较大.对于C中的函数,当x=1,2,3时,误差为0,x=4时,误差为10,误差很小.对于D中的函数,当x=4时,据函数式得到的结果为300,与实际值790相差很远.综上,只有C中的函数误差最小.10.(2015·临川高一检测)已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的范围是( )A. B.(0,1)C. D.(0,3)【解析】选A.由于x1≠x2,都有<0成立,即函数在定义域内任意两点的连线的斜率都小于零,故函数在定义域内为减函数,所以有解得0<a≤.【补偿训练】若函数f(x)=log m(m-x)在区间[3,5]上的最大值比最小值大1,则实数m=( )A.3-B.3+C.2-D.2+【解析】选 B.由题意知m>5,所以f(x)=log m(m-x)在[3,5]上为减函数,所以log m(m-3)-log m(m-5)=1,log m=1,即=m,m2-6m+3=0,解得m=3+或m=3-(舍去).所以m=3+.11.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=(1+x),则当x<0时,f(x)的表达式是( )A.f(x)=(1-x)B.f(x)=-(1-x)。
高一数学必修一试题(带答案)
高中数学必修1检测题本试卷分第Ⅰ卷(选择题)与第Ⅱ卷(非选择题)两部分、共120分,考试时间90分钟、第Ⅰ卷(选择题,共48分) 一、选择题:本大题共12小题,每小题4分,共48分、 在每小题给出得四个选项中,只有一项就是符合题目要求得、1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确得有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确得有 ( ) (1)A 中得任一元素在B 中必须有像且唯一; (2)A 中得多个元素可以在B 中有相同得像; (3)B 中得多个元素可以在A 中有相同得原像; (4)像得集合就就是集合B 、A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 得取值范围就是 ( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数就是同一函数得就是 ( )①()f x =()g x =()f x x =与()g x =; ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。
A 、①② B 、①③ C 、③④ D 、①④6.根据表格中得数据,可以断定方程02=--x e x 得一个根所在得区间就是 ( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lg yx a y x 则 ( )A .a 3B .a 23C .aD .2a 8、 若定义运算ba ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕得值域就是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在x a y =上得最大值与最小值得与为3,则=a ( )A .21 B .2 C .4 D .41 10、 下列函数中,在()0,2上为增函数得就是( )A 、12log (1)y x =+ B、2log y =C 、21log y x = D、2log (45)y x x =-+ 11.下表显示出函数值y 随自变量x 变化得一组数据,判断它最可能得函数模型就是( )A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中,与所给3件事吻合最好得顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于就是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只就是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高一数学必修1质量检测试题(卷)2010.11
高一数学必修1质量检测试题(卷)2010.11数 学 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至6页。
考试结束后. 只将第Ⅱ卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
一、选择题:本答题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合}0)2(|{=-=x x x A ,那么 ( ) A. 0∈A B. 2∉A C.-1∈A D. 0∉A2. 已知集合A 到B 的映射12:+=→x y x f ,那么A 中元素2在B 中的象是( ) A. 2 B. 5 C. 6 D. 8 3.下列各组函数中,表示同一函数的是A .1y =与0y x =B .4lg y x =与22lg y x =C .||y x =与2y =D .y x =与ln x y e =4.设集合{(,)|46},{(,)|53}A x y y x B x y y x ==-+==-,则B A = A .{x =1,y =2} B .{(1,2)} C .{1,2} D .(1,2)5. 函数()ln 28f x x x =+-的零点一定位于区间A. (1, 2)B. (2 , 3)C. (3, 4)D. (4, 5)6.二次函数2()23f x x bx =++()b R ∈零点的个数是A .0B .1C .2D .以上都有可能7.设()x a f x =(a>0,a ≠1),对于任意的正实数x ,y ,都有 A.()()()f xy f x f y = B. ()()()f xy f x f y =+C.()()()f x y f x f y +=D. ()()()f x y f x f y +=+8.下表显示出函数值y 随自变量x 变化的一组数据,由此判断它最有可能的函数模型是A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型9.若y =x 2+(2a -1)x +1在(-∞,2]上是减函数,则实数a 的范围是 ( ) (A )),23[+∞- (B )]23,(--∞ (C )),23[+∞ (D )]23,(-∞ 10.如图的曲线是幂函数n y x =在第一象限内的图象。
高一数学必修1质量检测试题卷
高一数学必修1质量检测试题(卷)命题:齐宗锁(石油中学) 审题:马晶(区教研室)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部份,第Ⅰ卷1至2页,第Ⅱ卷3至6页. 考试终止后,只将第Ⅱ卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上.2.每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.一、选择题:本大题共10小题,每题6分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.已知集合{1},{1,}A B m ==,假设A B A =,那么m =A .0.0或3 C .1.1或32.以下几个图形中,能够表示函数关系()y f x =图像的是.3.在同一坐标系中,函数3log y x =与13log y x =的图像之间的关系是A .关于y 轴对称B .关于原点对称C .关于x 轴对称D .关于直线y x =对称4.函数3()ln f x x x=-的零点所在的大致区间是 A .(1,2) B .(2,3)C .(3,4)D .(3,)+∞ 5.已知0.32a -=,0.22b -=,121log 3c =,那么a ,b ,c 的大小关系是 A .c b a >> B .c a b >> C. a b c >> D .b a c >> 6.已知幂函数22(1)()(33)mm f x m m x --=-+的图像不通过原点,那么m = A .3B .1或2C .2D .1 7.已知1)1(+=+x x f ,那么函数的解析式为 A.2)(x x f =B. )1(1)(2≥+=x x x fC. )1(22)(2≥+-=x x x x fD.)1(2)(2≥-=x x x x f8.一种放射性元素,每一年的衰减率是8%,那么a 千克的这种物质的半衰期(剩余 量为原先的一半所需的时刻)t 等于O O O O h v h v h v hv A .0.5lg 0.92 B .0.92lg 0.5 C .lg 0.5lg 0.92 D .lg 0.92lg 0.59.若是一个函数)(x f 知足:(1)概念域为,x x R ∈;(2)任意12,x x R ∈,假设120x x +=,那么12()()0f x f x +=;(3)任意x R ∈,假设0t >,总有)()(x f t x f >+.则)(x f 能够是A .y x =-B .3y x =C .x y 3=D .3log y x =10.一个高为H ,水量为V 的鱼缸的轴截面如图,其底部有一个洞,满缸水从洞中流出,若是水深为h 时水的体积为v ,那么函数()v f h =的大致图像是A. B. C. D.二、填空题:本大题共5小题,每题6分,共30分.把答案填在第Ⅱ卷对应横线上.11. 计算:233128log 27log 4++= .12.已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则 .13.设:f A B →是从集合A 到B 的映射,{}R y R x y x B A ∈∈==,),(,:(,)(,)f x y kx y b →+,假设B 中元素(6,2)在映射f 下的原像是(3,1),那么A 中元素(5,8)在f 下的像为 .14.已知3(10)()(5)(10)x x f x f x x -≥⎧=⎨+<⎩,则(6)f = . 15.已知关于x 的方程3log (1)0x k --=在区间[2,10]上有实数根,那么k 的取值范围是 .高一数学必修1质量检测试题(卷) 题号二 三 总分 总分人 16 17 18 19 得分 复核人第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每题6分,共30分. 把答案填在题中横线上.11. . 12. . 13. . 14. . 15. .三、解答题:本大题共4小题,每题15分,共60分.解许诺写出文字说明、证明进程或演算步骤.16.已知全集U R =,集合{|22}A x x =-<≤,{|1}B x x =>,{|}C x x c =≤.(1)求A B ,()U A B ,()U A B ; (2)假设AC ≠∅,求c 的取值范围.17.函数()22()x x f x x R -=-∈.(1)证明函数()f x 在R 上为单调增函数;(2)判定并证明函数()f x 的奇偶性.18.某市一家庭今年八月份、九月份和十月份天然气用量和支付费用如下表所示:该市天然气收费的方式是:天然气费=大体费+逾额费+保险费.假设每一个月用气量不超过最低额度(8)A A >立方米时,只付大体费16元和每户每一个月定额保险费)50(≤<C C 元;假设用气量超过A 立方米时,超过部份每立方米付B 元.(1)依照上面的表格求C B A ,,的值;(2)记用户十一月份用气量为x 立方米,求他应交的天然气费y (元).19.已知函数2()41f x ax x =--.(1)假设2a =,当[0,3]x ∈时,求函数()f x 的值域;(2)假设2a =,当(0,1)x ∈时,(1)(21)0f m f m ---<恒成立,求m 的取值范围;(3)假设a 为非负数,且函数()f x 是区间[0,3]上的单调函数,求a 的取值范围.。
2024-2025年北师大版数学必修第一册第一章单元质量评估卷(带答案)
第一章 单元质量评估卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x|x 2-1=0},则下列结论错误..的是( ) A .1∈A B .{-1} A C .∅⊇A D .{-1,1}=A2.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”.其名篇“但使龙城飞将在,不教胡马度阴山”(人在阵地在,人不在阵地在不在不知道),由此推断,胡马度过阴山是龙城飞将不在的什么条件?( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件3.已知集合M ={x|x(x -2)<0},N ={x|x -1<0},则下列Venn 图中阴影部分可以表示集合{x|1≤x<2}的是( )4.已知命题p :∃x ,y ∈Z ,2x +4y =3,则( ) A.p 是假命题,p 否定是∀x ,y ∈Z ,2x +4y ≠3 B.p 是假命题,p 否定是∃x ,y ∈Z ,2x +4y ≠3 C.p 是真命题,p 否定是∀x ,y ∈Z ,2x +4y ≠3 D.p 是真命题,p 否定是∃x ,y ∈Z ,2x +4y ≠3 5.已知a <0,-1<b <0,则( ) A.-a <ab <0 B .-a >ab >0C.a >ab >ab 2 D .ab >a >ab 26.已知集合A ={x |x 2+x -2≤0},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x +1x -2≥0 ,则A ∩(∁R B )=( ) A.(-1,2) B .(-1,1) C.(-1,2] D .(-1,1]7.“关于x 的不等式x 2-2ax +a >0的解集为R ”的一个必要不充分条件是( )A.0<a <1 B .0<a <13C.0≤a ≤1 D.a <0或a >138.若正数a ,b 满足2a +1b =1,则2a+b 的最小值为( )A.42 B .82 C.8 D .9二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得2分,有选错的得0分)9.有下列命题中,真命题有( )A.∃x ∈N *,使x 为29的约数B.∀x ∈R ,x 2+x +2>0C.存在锐角α,sin α=1.5D.已知A ={a |a =2n },B ={b |b =3m },则对于任意的n ,m ∈N *,都有A ∩B =∅10.已知1a <1b<0,下列结论中正确的是( )A.a <b B .a +b <ab C.|a |>|b | D .ab <b 211.若对任意x ∈A ,1x∈A ,则称A 为“影子关系”集合,下列集合为“影子关系”集合的是( )A.{-1,1} B .⎩⎨⎧⎭⎬⎫12,2 C.{}x |x 2>1 D .{x |x >0}12.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于C 点,且对称轴为x =1,点B 坐标为(-1,0),则下面结论中正确的是( )A.2a +b =0B.4a -2b +c <0C.b 2-4ac >0D.当y <0时,x <-1或x >4第Ⅱ卷 (非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上)13.不等式-x 2+6x -8>0的解集为________.14.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7 000万元,则x 的最小值为________.15.若1a +1b =12(a >0,b >0),则4a +b +1的最小值为________.16.已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)若集合A 中只有1个元素,则A =________;(2)若两个集合A 和B 按顺序组成的集合对(A ,B )叫作有序集合对,则有序集合对(A ,B )的个数是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |1<x <2},B ={x |m -2<x <2m }. (1)当m =2时,求A ∩B ;(2)若________,求实数m 的取值范围.请从①∀x ∈A 且x ∉B ;②“x ∈B ”是“x ∈A ”的必要条件;这两个条件中选择一个填入(2)中横线处,并完成第(2)问的解答.(如果选择多个条件分别解答,按第一个解答计分)18.(本小题满分12分)已知p :x 2-3x -4≤0;q :x 2-6x +9-m 2≤0,若p 是q 的充分条件,求m 的取值范围.19.(本小题满分12分)已知函数f (x )=ax 2+bx ,a ∈(0,1).(1)若f (1)=2,求1a +4b的最小值;(2)若f (1)=-1,求关于x 的不等式f (x )+1>0的解集.20.(本小题满分12分)为了保护环境,某工厂在政府部门的鼓励下进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为y =x 2-40x +1 600,x ∈[30,50],已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?21.(本小题满分12分)若集合A ={x |x 2+2x -8<0},B ={x ||x +2|>3},C ={x |x2-2mx +m 2-1<0,m ∈R }.(1)若A ∩C =∅,求实数m 的取值范围. (2)若(A ∩B )⊆C ,求实数m 的取值范围.22.(本小题满分12分)已知x >0,y >0,2xy =x +4y +a . (1)当a =16时,求xy 的最小值;(2)当a =0时,求x +y +2x +12y的最小值.第一章 单元质量评估卷1.答案:C解析:因为A ={x |x 2-1=0}={-1,1},所以选项A ,B ,D 均正确,C 不正确. 2.答案:A解析:因为人在阵地在,所以胡马度过阴山说明龙城飞将不在,因为人不在阵地在不在不知道,所以龙城飞将不在,不能确定胡马是否度过阴山,所以胡马度过阴山是龙城飞将不在的充分条件,结合选项,可得A 正确.3.答案:B解析:x (x -2)<0⇒0<x <2,x -1<0⇒x <1,选项A 中Venn 图中阴影部分表示M ∩N =(0,1),不符合题意;选项B 中Venn 图中阴影部分表示∁M (M ∩N )=[1,2),符合题意;选项C 中Venn 图中阴影部分表示∁N (M ∩N )=(-∞,0],不符合题意;选项D 中Venn 图中阴影部分表示M ∪N =(-∞,2),不符合题意.故选B.4.答案:A解析:由于x ,y 是整数,2x +4y 是偶数,所以p 是假命题.原命题是存在量词命题,其否定是全称量词命题,注意到要否定结论,所以p 的否定是“∀x ,y ∈Z ,2x +4y ≠3”.故选A.5.答案:B解析:∵a <0,-1<b <0,∴ab >0,a <ab 2<0,故A ,C ,D 都不正确,正确答案为B.6.答案:D解析:由x 2+x -2≤0,得-2≤x ≤1,∴A =[-2,1].由x +1x -2≥0,得x ≤-1或x >2,∴B =(-∞,-1]∪(2,+∞).则∁R B =(-1,2],∴A ∩(∁R B )=(-1,1].故选D.7.答案:C解析:因为关于x 的不等式x 2-2ax +a >0的解集为R ,所以函数f (x )=x 2-2ax +a 的图象始终落在x 轴的上方,即Δ=4a 2-4a <0,解得0<a <1,因为要找其必要不充分条件,从而得到(0,1)是对应集合的真子集,故选C.8.答案:D解析:∵a >0,b >0,且2a +1b =1,则2a+b =⎝ ⎛⎭⎪⎫2a +b ⎝ ⎛⎭⎪⎫2a +1b =5+2ab+2ab ≥5+4=9,当且仅当2ab =2ab 即a =13,b =3时取等号,故选D.9.答案:AB解析:A 中命题为真命题.当x =1时,x 为29的约数成立;B 中命题是真命题.x 2+x +2=⎝ ⎛⎭⎪⎫x +12 2+74 >0恒成立;C 中命题为假命题.根据锐角三角函数的定义可知,对于锐角α,总有0<sin α<1;D 中命题为假命题.易知6∈A ,6∈B ,故A ∩B ≠∅.10.答案:BD解析:因为1a <1b<0,所以b <a <0,故A 错误;因为b <a <0,所以a +b <0,ab >0,所以a +b <ab ,故B 正确;因为b <a <0,所以|a |>|b |不成立,故C 错误;ab -b 2=b (a -b ),因为b <a <0,所以a -b >0,即ab -b 2=b (a -b )<0,所以ab <b 2成立,故D正确.故选BD.11.答案:ABD解析:根据“影子关系”集合的定义,可知{-1,1},⎩⎨⎧⎭⎬⎫12,2 ,{x |x >0}为“影子关系”集合,由{x |x 2>1},得{x |x <-1或x >1},当x =2时,12 ∉{x |x 2>1},故不是“影子关系”集合.故选ABD.12.答案:ABC解析:∵二次函数y =ax 2+bx +c (a ≠0)图象的对称轴为x =1,∴-b2a =1,得2a +b=0,故A 正确;当x =-2时,y =4a -2b +c <0,故B 正确;该函数图象与x 轴有两个交点,则b 2-4ac >0,故C 正确;∵二次函数y =ax 2+bx +c (a ≠0)的图象的对称轴为x =1,点B 的坐标为(-1,0),∴点A 的坐标为(3,0),∴当y <0时,x <-1或x >3,故D 错误.故选ABC.13.答案:(2,4)(或写成{x |2<x <4}) 解析:原不等式等价于x 2-6x +8<0, 即(x -2)(x -4)<0,得2<x <4. 14.答案:20解析:把一月份至十月份的销售额相加求和,列出不等式,求解. 七月份:500(1+x %),八月份:500(1+x %)2. 所以一月份至十月份的销售总额为:3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000,解得1+x %≤-2.2(舍)或1+x %≥1.2,所以x min =20. 15.答案:19解析:由1a +1b =12 ,得2a +2b=1,4a +b +1=(4a +b )⎝ ⎛⎭⎪⎫2a +2b +1=8+2+8a b +2b a+1≥11+28a b ·2ba=19.当且仅当8a b =2ba,即a =3,b =6时,4a +b +1取得最小值19.16.答案:(1){6} (2)32解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,所以6∉B ,故A ={6}. (2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个;当集合A 中有2个元素时,5∉B ,2∉A ,此时有序集合对(A ,B )有5个;当集合A中有3个元素时,4∉B ,3∉A ,此时有序集合对(A ,B )有10个;当集合A 中有4个元素时,3∉B ,4∉A ,此时有序集合对(A ,B )有10个;当集合A 中有5个元素时,2∉B ,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个.综上,可知有序集合对(A ,B )的个数是1+5+10+10+5+1=32.17.解析:(1)当m =2时,B ={x |0<x <4}, 所以A ∩B ={x |1<x <2}. (2)若选择条件①,由∀x ∈A 且x ∉B 得:A ∩B =∅, 当B =∅时,m -2≥2m ,即m ≤-2; 当B ≠∅时,m -2<2m ,即m >-2m -2≥2或2m ≤1,即m ≥4或m ≤12 , 所以m ≥4或-2<m ≤12,综上所述:m 的取值范围为:m ≥4或m ≤12.若选择条件②,由“x ∈B ”是“x ∈A ”的必要条件得:A ⊆B,即⎩⎪⎨⎪⎧m -2≤12m ≥2 ,所以1≤m ≤3. 18.解析:由x 2-3x -4≤0,解得-1≤x ≤4, 由x 2-6x +9-m 2≤0,可得[x -(3+m )][x -(3-m )]≤0,① 当m =0时,①式的解集为{x |x =3};当m <0时,①式的解集为{x |3+m ≤x ≤3-m }; 当m >0时,①式的解集为{x |3-m ≤x ≤3+m };若p 是q 的充分条件,则集合{x |-1≤x ≤4}是①式解集的子集.可得⎩⎪⎨⎪⎧m <0,3+m ≤-1,3-m ≥4 或⎩⎪⎨⎪⎧m >0,3-m ≤-1,3+m ≥4,解得m ≤-4或m ≥4.故m 的取值范围是(-∞,-4]∪[4,+∞). 19.解析:(1)由f (1)=2可得:a +b =2, 因为a ∈(0,1),所以2-b ∈(0,1)⇒1<b <2,所以1a +4b =12 ×(a +b )⎝ ⎛⎭⎪⎫1a +4b =12 ×⎝ ⎛⎭⎪⎫1+4+b a +4a b ≥12 ×⎝ ⎛⎭⎪⎫5+2b a ·4a b =92,当且仅当b a =4a b 时取等号,即当且仅当a =23 ,b =43 时取得最小值为92.(2)由f (1)=-1可得:a +b =-1, 则f (x )+1>0化为:ax 2-(a +1)x +1=(ax -1)(x -1)>0,因为0<a <1,所以1a>1,则解不等式可得x >1a或x <1,则不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1a或x <1 .20.解析:(1)当x ∈[30,50]时,设该工厂获利为S 万元,则S =20x -(x 2-40x +1 600)=-(x -30)2-700,所以当x ∈[30,50]时,S 的最大值为-700,因此该工厂不会获利,国家至少需要补贴700万元,该工厂才不会亏损.(2)由题知,二氧化碳的平均处理成本P =y x=x +1 600x-40,x ∈[30,50],当x ∈[30,50]时,P =x +1 600x-40≥2x ·1 600x-40=40,当且仅当x =1 600x,即x =40时等号成立,所以当处理量为40吨时,每吨的平均处理成本最少.21.解析:(1)由已知可得A ={x |-4<x <2},B ={x |x <-5或x >1},C ={x |m -1<x <m +1}.若A ∩C =∅,则m -1≥2或m +1≤-4, 解得m ≥3或m ≤-5.所以实数m 的取值范围为{m |m ≤-5或m ≥3}. (2)结合(1)可得A ∩B ={x |1<x <2}.若(A ∩B )⊆C ,即{x |1<x <2}⊆{x |m -1<x <m +1}, 则⎩⎪⎨⎪⎧m -1≤1m +1≥2,解得1≤m ≤2.所以实数m 的取值范围为{m |1≤m ≤2}.22.解析:(1)当a =16时,2xy =x +4y +16≥2x ·4y +16=4xy +16, 即2xy ≥4xy +16, 即(xy +2)(xy -4)≥0, 所以xy ≥4,即xy ≥16,当且仅当x =4y =8时等号成立, 所以xy 的最小值为16.(2)当a =0时,2xy =x +4y ,即12y +2x=1,所以x+y+2x+12y=x+y+1=(x+y)⎝⎛⎭⎪⎫2x+12y+1=72+2yx+x2y≥72+22yx·x2y=112,当且仅当2yx=x2y,即x=3,y=32时等号成立,所以x+y+2x+12y的最小值为112.。
人教新课标版数学高一-数学必修1练习 第一章质量测评(一)
第一章单元质量测评(一)(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分)1.设集合A={x∈Q|x>-1},则()A.∅∈A B.2∉AC.2∈A D.{2}A解析:注意到集合A的元素是有理数,两者是元素与集合的关系,故应选B.答案:B2.[2014·荆州市中学期中]已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则(∁U M)∩N =()A.{2,3,4} B.{2}C.{3} D.{0,1,2,3,4}解析:本题属基础题,考查学生对集合的补集、交集概念掌握的情况,先由观察全集求出集合M的补集,再求出M的补集与集合N的交集,从而得出答案是C.答案:C3.50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数是()A.35 B.25C.28 D.15解析:全班分4类人:设两项测验成绩都及格的人数为x人;仅跳远及格的人数为(40-x)人;仅铅球及格的人数为(31-x)人;两项都不及格的人数为4人,∴40-x+31-x+x+4=50,∴x=25.答案:B4.[2014·陕西工大附中高一质检]如图所示的韦恩图中A,B是非空集合,定义集合A*B 为阴影部分表示的集合,则A*B=()A.∁U(A∪B) B.A∪(∁U B)C.(∁U A)∪(∁U B) D.(A∪B)∩∁U(A∩B)解析:阴影部分为A ∪B 去掉A ∩B 后的部分,为(A ∪B )∩∁U (A ∩B ).选D. 答案:D5.下列函数中,在区间(0,2)上为增函数的是( ) A .y =3-x B .y =x 2+1 C .y =1xD .y =-|x |解析:y =3-x 在(0,2)上为减函数,y =1x 在(0,2)上为减函数,y =-|x |在(0,2)上亦为减函数.答案:B6.[2014·四川攀枝花市米易中学月考]已知函数f (x )的定义域为(3-2a ,a +1),且f (x +1)为偶函数,则实数a 的值可以是( )A .2 B.23C .4D .6解析:因为函数f (x )的定义域为(3-2a ,a +1),所以在函数f (x +1)中,3-2a <x +1<a +1,则函数f (x +1)的定义域为(2-2a ,a ),又因为f (x +1)为偶函数,所以2-2a =-a ,a =2,故选A.答案:A7.[2013·衡水高一调研]已知函数y =f (x +1)定义域是[-2,3],则y =f (x -1)的定义域是( )A .[0,5]B .[-1,4]C .[-3,2]D .[-2,3]解析:由题意知,-2≤x ≤3,∴-1≤x +1≤4.∴-1≤x -1≤4,得0≤x ≤5,即y =f (x -1)的定义域为[0,5]. 答案:A8.若函数f (x )为奇函数,且当x >0时,f (x )=x -1,则当x <0时,有( ) A .f (x )>0 B .f (x )<0 C .f (x )f (-x )≤0D .f (x )-f (-x )>0解析:f (x )为奇函数,当x <0,-x >0时, f (x )=-f (-x )=-(-x -1)=x +1, f (x )·f (-x )=-(x +1)2≤0.答案:C9.函数f (x )的定义域为R ,若f (x +y )=f (x )+f (y ),f (8)=3,则f (2)=( ) A.54 B.34 C.12D.14解析:依题意得f (x +y +z +w )=f (x +y )+f (z +w )=f (x )+f (y )+f (z )+f (w ),令x =y =z =w =2可得f (8)=4f (2),因此代入f (8)=3可解得f (2)=34,选B.答案:B10.下图所给4个图象中,与所给3件事吻合最好的顺序为( )(1)小明离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)小明骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)小明出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.A .(1)(2)(4)B .(4)(2)(3)C .(4)(1)(3)D .(4)(1)(2)解析:事件(1)中因为返回,故回家后距离应该为0,应该选图象(4);事件(2)中交通堵塞,就是说离开家的距离停顿下来,故应该选图象(1);事件(3)说明速度先慢后快,故选图象(2).答案:D11.[2014·哈尔滨市第九中学高一期中]已知函数y =f (x )是R 上的偶函数,且在(-∞,0]上是增函数,若f (a )≤f (2),则实数a 的取值范围是( )A .a ≤2B .a ≥-2C .-2≤a ≤2D .a ≤-2或a ≥2解析:由已知可得函数y =f (x )在(0,+∞)上是减函数,因为f (a )≤f (2),所以|a |≥2,解得a ≤-2或a ≥2.故答案选D.答案:D12.已知函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是( ) A. f (1)≥25 B. f (1)=25 C. f (1)≤25D. f (1)>25解析:∵函数f (x )=4x 2-mx +5的图象对称轴为x =m 8,则有m8≤-2,∴m ≤-16,而f (1)=4-m +5=9-m ,∴f (1)≥25.答案:A二、填空题(本大题共4小题,每小题5分,共20分) 13.函数y =x +1+12-x的定义域为________. 解析:由题意知⎩⎪⎨⎪⎧x +1≥0,2-x ≠0,∴x ≥-1且x ≠2.答案:[-1,2)∪(2,+∞)14.[2014·江苏盐城中学月考]设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1x 2+x -2,x >1,则f [f (-1)]的值为________.解析:∵f (-1)=(-1)2+1=2, ∴f [f (-1)]=f (2)=22+2-2=4. 答案:415.[2014·荆州市中学期中]已知A 是有限集合,x ∉A ,B =A ∪{x },若A ,B 的子集个数分别为a ,b ,且b =ka ,则k =________.解析:不妨设集合A 中的元素个数为n ,则集合B 中的元素个数有n +1,所以a =2n ,b =2n +1,因此b =2a ,故所求k 的值为2.答案:216.函数f (x )=2x 2-3|x |的单调减区间是________.解析:f (x )=⎩⎪⎨⎪⎧2x 2-3x (x ≥0)2x 2+3x (x <0),图象如下图所示f (x )减区间为(-∞,-34),(0,34).答案:(-∞,-34),(0,34)三、解答题(本大题共6小题,满分70分)17.(10分)[2013·重庆一中高一定时练习]已知集合A ={x |3≤x <10},集合B ={x |2x -8≥0}.(1)求A ∪B ; (2)求∁R (A ∩B ).解:(1)B ={x |x ≥4},∴A ∪B ={x |x ≥3}.(2)A ∩B ={x |4≤x <10},∁R (A ∩B )={x |x <4或x ≥10}.18.(12分)[2014·云南玉溪一中高一期中]设集合A ={a ,a 2,b +1},B ={0,|a |,b }且A =B .(1)求a ,b 的值;(2)判断函数f (x )=-bx -ax 在[1,+∞)的单调性,并用定义加以证明.解:(1)由集合A =B ,所以有⎩⎪⎨⎪⎧a +a 2+(b +1)=0+|a |+b a ×a 2×(b +1)=0×|a |×b ;求出a 、b 的值,最后把a 、b 的值代入集合A 、B 中,验证是否满足集合的互异性;(2)根据函数单调性的定义即可得到函数f (x )的单调性.(1)∵集合A =B∴⎩⎪⎨⎪⎧a +a 2+(b +1)=0+|a |+b a ×a 2×(b +1)=0×|a |×b 解得a =-1,b =-1此时A ={-1,1,0},B ={0,1,-1},满足集合的互异性, ∴a =-1,b =-1(2)由(1)知f (x )=x +1x ,f (x )=x +1x 在[1,+∞)上单调递增.任取x 1,x 2∈[1,+∞)且x 1<x 2f (x 1)-f (x 2)=(x 1+1x 1)-(x 2+1x 2)=(x 1-x 2)+x 2-x 1x 1·x 2=(x 1-x 2)(1-1x 1·x 2)=(x 1-x 2)x 1·x 2-1x 1·x 2∵x 1,x 2∈[1,+∞)且x 1<x 2,∴x 1-x 2<0,x 1·x 2-1>0,x 1·x 2>0 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2)所以f (x )=x +1x在[1,+∞)上单调递增.19.(12分)已知f (x )=x 2013+ax 3-bx -8,f (-2)=10,求f (2).解:已知g (x )=x 2013+ax 3-bx 为奇函数,即对g (x )=x 2013+ax 3-bx有g (-x )=-g (x ),也即g (-2)=-g (2),f (-2)=g (-2)-8=-g (2)-8=10,得g (2)=-18,f (2)=g (2)-8=-26.20.(12分)已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞).(1)当a =12时,判断并证明f (x )的单调性;(2)当a =-1时,求函数f (x )的最小值.解:(1)当a =12时,f (x )=x 2+2x +a x =x +2+12x =x +12x +2.设x 1,x 2是[1,+∞)上的任意两个实数,且x 1<x 2, 则f (x 1)-f (x 2)=(x 1+12x 1)-(x 2+12x 2)=(x 1-x 2)+(12x 1-12x 2)=(x 1-x 2)+x 2-x 12x 1x 2=(x 1-x 2)(1-12x 1x 2)=(x 1-x 2)·x 1x 2-12x 1x 2.因为1≤x 1<x 2,所以x 1-x 2<0,x 1·x 2>0, x 1x 2-12>0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 所以函数f (x )在[1,+∞)上是增函数. (2)当a =-1时,f (x )=x -1x+2.因为函数y 1=x 和y 2=-1x 在[1,+∞)上都是增函数,所以f (x )=x -1x +2在[1,+∞)上是增函数.当x =1时,f (x )取得最小值f (1)=1-11+2=2,即函数f (x )的最小值为2.21.(12分)定义在实数集R 上的函数y =f (x )是偶函数,当x ≥0时,f (x )=-4x 2+8x -3.(1)求f (x )在R 上的表达式;(2)求y =f (x )的最大值,并写出f (x )在R 上的单调区间(不必证明). 解:(1)设x <0,则-x >0.f (-x )=-4(-x )2+8(-x )-3=-4x 2-8x -3. ∵f (x )是R 上的偶函数, ∴f (-x )=f (x ).∴当x <0时,f (x )=-4x 2-8x -3.∴f (x )=⎩⎪⎨⎪⎧-4x 2+8x -3 (x ≥0),-4x 2-8x -3 (x <0), 即f (x )=⎩⎪⎨⎪⎧-4(x -1)2+1 (x ≥0)-4(x +1)2+1 (x <0).(2)∵y =f (x )开口向下,∴y =f (x )有最大值,f (x )max =f (-1)=f (1)=1. 函数y =f (x )的单调递增区间是(-∞,-1]和[0,1], 单调递减区间是[-1,0]和[1,+∞).22.(12分)[2014·许昌高一五校联考]已知函数f (x )的定义域为R ,对于任意的x ,y ∈R ,都有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,若f (-1)=2.(1)求证:f (x )为奇函数; (2)求证:f (x )是R 上的减函数; (3)求函数f (x )在区间[-2,4]上的值域.解:(1)证明:∵f (x )的定义域为R ,令x =y =0,则f (0+0)=f (0)+f (0)=2f (0), ∴f (0)=0.令y =-x ,则f (x -x )=f (x )+f (-x ), 即f (0)=f (x )+f (-x )=0.∴f (-x )=-f (x ),故f (x )为奇函数. (2)证明:任取x 1,x 2∈R ,且x 1<x 2, 则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1).又∵x 2-x 1>0,∴f (x 2-x 1)<0,∴f (x 2)-f (x 1)<0,即f (x 1)>f (x 2). 故f (x )是R 上的减函数.(3)∵f (-1)=2,∴f (-2)=f (-1)+f (-1)=4. 又f (x )为奇函数,∴f (2)=-f (-2)=-4, ∴f (4)=f (2)+f (2)=-8. 由(2)知f (x )是R 上的减函数,所以当x =-2时,f (x )取得最大值,最大值为f (-2)=4;当x=4时,f(x)取得最小值,最小值为f(4)=-8. 所以函数f(x)在区间[-2,4]上的值域为[-8,4].。
人教版高一数学必修1测试题(含答案)
人教版高一数学必修1测试题(含答案) 人教版数学必修I测试题一、选择题(共10题,每题5分,共50分)1、设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(CU B)=()A、{2}B、{2,3}C、{3}D、{1,3}2、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN ()A、{}B、{0,1}C、{1,2}D、{0,2}3、函数y=1+log2x,(x≥4)的值域是()A、[2,+∞)B、(3,+∞)C、[3,+∞)D、(-∞,+∞)4、在y=1/x2,y=2x,y=x2+x,y=3x5四个函数中,幂函数有()A、1个B、2个C、3个D、4个5、如果a>1,b<-1,那么函数f(x)=ax+b的图象在()A第一、二、三象限 B第一、三、四象限C第二、三、四象限 D第一、二、四象限6、设集合M={x|x2-6x+5=0},N={x|x2-5x=0},则MN等于()A.{}B.{5}C.{1,5}D.{-1,-5}7、若102x=25,10x则等于()A、-15B、5C、11/50D、6258、函数y=ax+2(a且a≠1)图象一定过点()A(0,1)B(0,3)C(1,0)D(3,0)9、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟。
骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则与故事情节相吻合是()10、若f(2x)=x2,则f(3)=()A、9B、49/4C、9/4D、3/2二、填空题(共4题,每题4分,共16分)11、函数y=x+1+1/(2-x)的定义域为(-∞,2)U(2,∞)。
12、f(x)=x2+1,x≤0;f(x)= -2x,x>0.若f(x)=10,则x=-2.13、函数f(x)=2+log5(x+3)在区间[-2,2]上的值域是[2,3]。
高一数学测试卷及答案详解(附答案)
(1)求函数 的定义域;
(2)讨论函数 的单调性.
17.正方体 中,求证:(1) ;
(2) .
18.一个圆锥的底面半径为2cm,高为6cm,在其中有一个高为 cm的内接圆柱.
(1)试用 表示圆柱的侧面积;
(2)当 为何值时,圆柱的侧面积最大?
19.求二次函数 在 上的最小值 的解析式.
B DB
A C C A C E
A. D、E、F B. E、D、F C. E、F、D D. F、D、E
第二部分非选择题(共100分)
二、填空题:本大题共4小题,每小题5分,满分20分.
11.幂函数 的图象过点 ,则 的解析式为_______________
12.直线过点 ,它在 轴上的截距是在 轴上的截距的2倍,则此直线方程为__________________________.
……14分
18.本小题主要考查空间想象能力,运算能力与函数知识的综合运用.满分12分.
解:(1)如图: 中, ,即 ……2分
, ……4分
圆柱的侧面积
( )……8分
(2)
时,圆柱的侧面积最大,最大侧面积为 ……12分
19.本小题以二次函数在闭区间上的最值为载体,主要考查分类讨论的思想和数形结合的思想.满分14分.
B
D
A
D
A
B
二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.
11. 12. 或 13. 14.2;3
三、解答题:
15.本小题主要考查分段函数的图象,考查函数奇偶性的判断.满分12分.
解: ……2分
函数 的图象如右图……6分
函数 的定义域为 ……8分
高一数学学业评价试卷必修1试题1
高一数学学业评价试卷必修1试题(A)一、选择题(每题5分,共60分)1.a =2,集合A ={x |x ≤2},那么以下表示正确的选项是( ).A .a ∈AB .a /∈ AC .{a }∈AD .a ⊆A 2.集合S ={a ,b },含有元素a 的S 的子集共有〔 〕.A .1个B .2个C .3个D .4个 3.集合M ={x |x <3},N ={x |log 2x >1},那么M ∩N =〔 〕.A .∅B .{x |0<x <3}C .{x |1<x <3}D .{x |2<x <3} 4.函数y =4-x 的定义域是( ).A .[4,+∞)B .(4,+∞)C .(-∞,4]D .(-∞,4) 5如果某人在南京要快递800g 的包裹到距南京1200km 的某地,那么他应付的邮资是( ). A .5.00元 B .6.00元 C .7.00元 D .8.00元 6.幂函数y =x α(α是常数)的图象〔 〕.A .一定经过点(0,0)B .一定经过点(1,-1)C .一定经过点(-1,)1D .一定经过点(1,1) 7.0.44,1与40.4的大小关系是〔 〕.A .0.44<40.4<1B .0.44<1<40.4C .1<0.44<40.4D .l <40.4<0.44 8.在同一坐标系中,函数y =2-x 与y =log 2x 的图象是( ).9.方程x 3=x +1的根所在的区间是( ).A .(0,1)B .(1,2)C .(2,3)D .(3,4) 10.以下函数中,在区间(0,+∞)上是减函数的是〔 〕.A .y =-1xB .y =xC .y =x 2D .y =1-x11.假设函数f (x )=13-x -1+a 是奇函数,那么实数a 的值为 〔 〕.A .12B .-12C .2D .-212.设集合A={0,1},B={2,3},定义集合运算:A ⊙B ={z ︳z = xy (x+y ),x ∈A , y ∈B },那么集合A ⊙B 中的所有元素之和为〔 〕.A .0B .6C .12D .18二、填空题〔每题5分,共30分〕13.集合S ={1,2,3},集合T ={2,3,4,5},那么S ∩T = . 14.集合U ={x |-3≤x ≤3},M ={x |-1<x <1},U M = .15.如果f (x )=⎩⎨⎧x 2+1(x ≤0)-2x (x >0)那么f (f (1))= .16.假设函数f (x )=ax 3+bx +7,且f (5)=3,那么f (-5)=__________.17.2x +2-x =5,那么4x +4-x 的值是 .18.在以下从A 到B 的对应: (1)A =R,B =R,对应法那么f :x →y =x 2 ; (2) A =R ,B =R,对应法那么f :x →y =1x -3; (3)A =(0,+∞),B ={y|y ≠0},对应法那么f :x →y =±x ;(4)A =N *,B ={-1,1},对应法那么f :x →y =(-1)x 其中是函数的有 .〔只填写序号〕 三、解做题〔共70分〕19.〔此题总分值10分〕计算:2log 32-log 3329+log 38-3log 55. 20.〔此题总分值10分〕U =R ,A ={x |-1≤x ≤3},B ={x |x -a >0}. (1)假设A ⊆B ,求实数a 的取值范围;(2) 假设A ∩B ≠∅,求实数a 的取值范围.21.〔此题总分值12分〕二次函数的图象如下图.〔1〕写出该函数的零点;〔2〕写出该函数的解析式.22.〔此题总分值12分〕函数f(x)=lg(2+x),g(x)=lg(2-x),设h(x)=f(x)+g(x).(1)求函数h(x)的定义域;(2)判断函数h(x)的奇偶性,并说明理由.23.〔此题总分值12分〕销售甲、乙两种商品所得利润分别是P(万元)和Q(万元),它们与投入资金t(万元)的关系有经验公式P=35t,Q=15t.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(万元).求:(1)经营甲、乙两种商品的总利润y(万元)关于x的函数表达式;(2)总利润y的最大值.24.〔此题总分值14分〕函数f (x)=1x2.(1)判断f (x)在区间(0,+∞)的单调性,并用定义证实;(2)写出函数f (x)=1x2的单调区间.必修1(A)卷双向细目表说明:A :了解 B :理解与掌握C :综合运用高中数学学业评价试卷答案必修1(A)一、选择题(每题5分,共60分)1.A 2.B 3. D 4.C 5.C 6.D 7.B 8.A 9.B 10.D 11.A 12.D 二、填空题〔每题5分,共30分〕 13.{2,3}14.[-3,-1]∪[1,3] 15.5 16.11 17.23 18.(1)(4) 三、解做题〔共70分〕19.解 原式=log 34-log 3329+log 38-3=log 3(4×932×8)-3=log 39-3=2-3=-1.20.解〔1〕B ={x |x -a >0}={x |x >a }.由A ⊆B ,得a <-1,即a 的取值范围是{a | a <-1};〔2〕由A ∩B ≠∅,那么a <3,即a 的取值范围是{a | a <3}. 21.〔1〕函数的零点是-1,3;〔2〕函数的解析式是y =x 2-2x -3.22.解(1)由⎩⎨⎧2+x >02-x >0得-2<x <2.所以函数h (x )的定义域是{x |-2<x <2}.(2) ∵h (-x )=lg(2-x )+lg(2+x )=h (x ),∴h (x )是偶函数. 23.解(1)根据题意,得y =35x +15(3-x ),x ∈[0,3].(2) y =-15(x -32)2+2120.∵32∈[0,3],∴当x =32时,即x =94时,y 最大值=2120. 答:总利润的最大值是2120万元.24.解(1) f (x )在区间(0,+∞)为单调减函数.证实如下: 设0<x 1<x 2,f (x 1)-f (x 2)=1x 12-1x 22=x 22-x 12x 12x 22=(x 2-x 1)( x 2+x 1)x 12x 22.由于0<x 1<x 2,所以(x 1x 2)2>0,x 2-x 1>0,x 2+x 1>0,即(x 2-x 1)( x 2+x 1)x 12x 22>0.所以f (x 1)-f (x 2) >0,即所以f (x 1) >f (x 2),f (x )在区间(0,+∞)为单调减函数. (2) f (x )=1x 2的单调减区间(0,+∞);f (x )=1x2的单调增区间(—∞,0).。
高一数学必修1第一章试卷
高一年级数学学科必修1第一章质量检测试题参赛试卷【命题意图】 集合章是学生进入高中的第一章。
而集合问题为每年高考的必考题型之一;特别是近几年高考试卷中出现了一些以集合为背景的试题;这些试题涉及的知识面广;灵活性较强.实际上;这方面问题的本质是以集合为载体;将一些数学问题的已知条件“嵌入”集合之中;只不过是在语言形式方面做了些变通罢了;而解决问题的理论依据、方法等仍类似于其他问题的求解.因此;在集合题型及解题数学思想方法上应引起我们的足够重视.本套试题基于此思想;重点考查学生的集合基础内容;所贯穿全卷的典型题型;数学思想、方法。
适应于本章学习后的阶段检测。
【命题结构】一、选择题(本题共10小题;每小题5分;共50分;将答案直接填在下表中)1.下列各组对象中不能..形成集合的是( )(A )高一数学课本中较难的题(B )高二(2)班学生家长全体(C )高三年级开设的所有课程(D )2. 已知全集U ={0;2;4;6;8;10};集合A ={2;4;6};B ={1};则U A ∪B 等于() (A ){0;1;8;10} (B ){1;2;4;6}(C ){0;8;10} (D )Φ3.下列关系中正确的个数为( )①0∈{0};②Φ{0};③{0;1}⊆{(0;1)};④{(a ;b )}={(b ;a )}(A )1 (B )2 (C )3 (D )44.下列集合中表示空集的是( )(A ){x ∈R |x +5=5}(B ){x ∈R |x +5>5}(C ){x ∈R |x 2=0}(D ){x ∈R |x 2+x +1=0}5.方程组⎩⎨⎧=-=+3242y x y x 的解集为( )(A ) {2;1} (B ) {1;2} (C ){(2;1)} (D )(2;1)6.设全集=U {1;2;3;4;5;7};集合=A {1;3;5;7};集合=B {3;5};则() (A )B A U = (B )B A C U U )(= (C ))(B C A U U = (D ))()(B C A C U U7.已知集合=A {2|-x ≤x ≤7};}121|{-<<+=m x m x B ;且∅≠B ;若A B A = ;则()(A )-3≤m ≤4 (B )-3<<m 4 (C )42<<m (D )m <2≤48.设P 、Q 为两个非空实数集合;定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ;则P+Q 中元素的个数是( ) (A )9 (B )8 (C )7 (D )69.若集合1A ;2A 满足A A A =21 ;则称(1A ;2A )为集合A 的一个分拆;并规定:当 且仅当1A =2A 时;(1A ;2A )与(2A ;1A )为集合A 的同一种分拆;则集合=A {1;2;3 }的不同分拆种数是( )(A )27 (B )26 (C )9 (D )810.已知全集=I {∈x x |R};集合=A {x x |≤1或x ≥3};集合=B {1|+≤≤k x k x ;∈k R};且∅=B A C I )(;则实数k 的取值范围是( )(A )0<k 或3>k (B )32<<k (C )30<<k (D )31<<-k二、填空题(本题共5小题;每小题5分;共25分.把答案填在题中横线上 )11.满足条件{1;3}∪M ={1;3;5}的所有集合M 的个数是 .12.设A = (){}6x 4y y ,x +-=;B =(){}3x 5y y ,x -=;则A ∩B =_______.13.若A={0;1;2;4;5;7;8};B={1;3;6;7;9};C={3;4;7;8};那么集合(A ∩B )∪C=____________________.14. 已知=B A {}3; {9)()(<∈=x N x B C A C U U 且}3≠x ;(){}8,6,4=B A C U ;(){}5,1=B C A U ;则A = ;()=B A C U 。
(word完整版)高一数学必修一试题含答案,推荐文档
11. 下表显示出函数值 y 随自变量 x 变化的一组数据,判断它最可能的函数模型是( )
x
4
5
6
7
8
9
10
y
15
17
19
21
23
25
27
A. 一次函数模型
B.二次函数模型
C.指数函数模型
D.对数函数模型
12、下列所给 4 个图象中,与所给 3 件事吻合最好的顺序为 ( )
1 我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;
D、(4)(1)(2)
第Ⅱ卷(非选择题 共 90 分)
二、填空题:本大题 4 小题,每小题 5 分,共 20 分. 把正确答案填在题中横线上.
13.函数 y x 4 的定义域为
.
x 2
14. 若 f (x) 是一次函数, f [ f (x)] 4x 1且,则 f (x) =
.
15. 已知幂函数 y f (x) 的图象过点(2, 2),则f (9)
.
16. 若一次函数 f (x) ax b 有一个零点 2,那么函数 g(x) bx2 ax 的零点是
.
三、解答题:本大题共 5 小题,共 56 分,解答应写出文字说明,证明过程或演算步骤.
17.(本小题 10 分)
已知集合 A {x | a 1 x 2a 1} , B {x | 0 x 1},若 A B ,求实数 a 的取值范围。
A、1 个
B、2 个
C、3 个
D、4 个
4、如果函数 f (x) x2 2(a 1)x 2 在区间, 4上单调递减,那么实数a 的取值范围是
(
)
A、 a ≤ 3
人教版高一数学必修1测试题(含答案)
人教版数学必修I 测试题(含答案)一、选择题1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U AC B =( )A 、{}2B 、{}2,3C 、{}3D 、{}1,32、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 MN ( )A 、{}0B 、{}0,1C 、{}1,2D 、{}0,23、函数()21log ,4y x x =+≥的值域是 ( )A 、[)2,+∞B 、()3,+∞C 、[)3,+∞D 、(),-∞+∞4、关于A 到B 的一一映射,下列叙述正确的是 ( ) ① 一一映射又叫一一对应 ② A 中不同元素的像不同③ B 中每个元素都有原像 ④ 像的集合就是集合BA 、①②B 、①②③C 、②③④D 、①②③④5、在221,2,,y y x y x x y x===+= ( )A 、1个B 、2个C 、3个D 、4个 6、已知函数()213f x x x +=-+,那么()1f x -的表达式是 ( )A 、259x x -+B 、23x x --C 、259x x +-D 、21x x -+7、若方程0x a x a --=有两个解,则a 的取值范围是 ( )A 、()0,+∞B 、()1,+∞C 、()0,1D 、∅8、若21025x =,则10x -等于 ( )A 、15-B 、15C 、150D 、16259、若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )A 、01a <<B 、112a << C 、102a << D 、1a > 10、设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>11、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是 ( )A 、3a ≤-B 、3a ≥-C 、3a =-D 、以上答案都不对12、若()lg f x x =,则()3f = ( )A 、lg 3B 、3C 、310D 、103 二、填空题13、设{}{}12,0A x x B x x a =<<=-<,若A B Ø,则a 的取值范围是 ; 14、函数y =的定义域为 ; 15、若2x <,则3x -的值是 ; 16、100lg 20log 25+= 。
高一数学必修一第一单元测试题及答案
高一数学必修一第一单元测试题及答案高一年级数学第一单元质量检测试题一、选择题(每小题5分,共50分)1.已知全集$U=\{1,2,3,4,5,6,7\}$,$A=\{2,4,5\}$,则$C\cup A=$()A.$\varnothing$B.$\{2,4,6\}$C.$\{1,3,6,7\}$D.$\{1,3,5,7\} $2.已知集合$A=\{x|-1\leq x<3\}$,$B=\{x|x^2<x\leq 5\}$,则$A\cap B=$()A.$\{x|2<x<3\}$B.$\{x|-1\leq x\leq 5\}$C.$\{x|-1<x<5\}$ D.$\{x|-1<x\leq 5\}$3.图中阴影部分表示的集合是()A.$A\cap C$B.$C\cup A\cap B$C.$C\cup (A\capB)$ D.$(C\cup A)\cap (C\cup B)$4.方程组$\begin{cases}x-2y=3\\2x+y=11\end{cases}$的解集是()A.$\{5,-1\}$B.$\{1,5\}$C.$\{(-1,2)\}$D.$\{(5,-1)\}$5.已知集合$A=\{x|x=3k,k\in Z\}$,$B=\{x|x=6k,k\in Z\}$,则$A$与$B$之间最适合的关系是()XXX6.下列集合中,表示方程组$\begin{cases}x+y=1\\x-y=3\end{cases}$的是()A.$\{(x,y)|x=2,y=-1\}$B.$\{(x,y)|x=2,y=1\}$C.$\{(x,y)|x=-2,y=-1\}$D.$\{(x,y)|x=-2,y=1\}$7.设$\begin{cases}x+y=1\\x-y=2\end{cases}$,$\begin{cases}x-y=1\\2x+y=3\end{cases}$,则实数的取值范围是()A.$\{1\}$B.$\{2\}$C.$\{1,2\}$D.$\varnothing$8.已知全集$U=\{x|x\in R\}$,$A=\{x|x^2-4x+3=0\}$,那么$A=$()A.$\{1,3\}$B.$\{1,-3\}$C.$\{2,3\}$D.$\{2,-1\}$9.已知集合$A=\{x|x^2-2x+1<0\}$,那么$A=$()A.$\{x|02\}$ D.$\{x|1<x<2\}$10.设$\oplus$是$R$上的一个运算,$A$是$R$上的非空子集,若对任意的$a,b\in A$,有$a\oplus b\in A$,则称$A$对运算$\oplus$封闭,下列数集对加法、减法、乘法和除法(除数不等于0)四则运算都封闭的是()A.自然数集B.整数集C.有理数集D.无理数集二、填空题(每小题5分,共25分)11.已知集合$A=\{a,b,c\}$,写出集合$A$的所有真子集。
高一年级数学必修1质量检测试题.DOC.doc
高一年级数学必修1质量检测试题.DOC高一年级数学(必修1)第一章质量检测试题参赛试卷学校石油中学命题人王燕南(时间90分钟总分150分)班级姓名一、选择题(本大题共10小题,每小题5分,共50分)。
1.已知集合中的三个元素可构成某个三角形的三条边长,那么此三角形一定不是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形2.全集UN 集合A{x|x2n,nN},B{x|x4n,nN}则()A、UA∪B B、CUAB C、U A∪CUB D、CUACUB 3.下列六个关系式①②③④⑤⑥,其中正确的个数为A、6个B、5个C、4个 D 少于4个4.若则满足条件的集合M的个数是()A.4 B.3 C.2 D.1 5.已知,,则的关系是()A.B.C.M ∩P D.M P 6.集合A含有10个元素,集合B含有8个元素,集合A∩B含有3个元素,则集合A∪B的元素个数为()A、10个B、8个C、18个D、15个7.下列命题中,1如果集合A是集合B的真子集,则集合B中至少有一个元素。
2如果集合A是集合B的子集,则集合A的元素少于集合的B元素。
3如果集合A是集合B的子集,则集合A的元素不多于集合B的元素。
4如果集合A是集合B的子集,则集合A和B不可能相等。
错误的命题的个数是()A.0 B.1 C、2 D.3 8.已知集合,由集合的所有元素组成集合这样的实数共有()A.1个B.2个C.3个D.4个9.设,集合A.B.C.D.10.如右图所示,I为全集,M、P、S 为I的子集。
则阴影部分所表示的集合为()A.M∩P∪S B.M∩P∩S C.M∩P∩ I S D.M∩P∪IS二、填空题(本大题共4小题,每小题4分,共16分)。
11.已知,∈R,≠0则以可能的取值为元素组成的集合用列举法可表示为12.设集合,满足AB,则实数a 的取值范围是13.定义,若,则N-M 。
14.如右图图(1)中以阴影部分(含边界)的点为元素所组成的集合用描述法表示如下请写出以右图(2)中以阴影部分(不含外边界但包含坐标轴)的点为元素所组成的集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v v v v 高一数学必修1质量检测试题(卷)
命题:齐宗锁(石油中学) 审题:马晶(区教研室) 2013.11
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至6页. 考试结束后,只将第Ⅱ卷和答题卡一并交回.
第Ⅰ卷(选择题 共60分)
注意事项:
1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上.
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.
一、选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1
.已知集合{1},{1,}A B m ==,若A B A = ,则m =
A .0
.0或3 C .1
.1或3
2.下列几个图形中,可以表示函数关系()y f x =图像的是
.
3.在同一坐标系中,函数3log y x =与13
log y x =的图像之间的关系是
A .关于y 轴对称
B .关于原点对称
C .关于x 轴对称
D .关于直线y x =对称
4.函数3()ln f x x x =
-的零点所在的大致区间是 A .(1,2)
B .(2,3)
C .(3,4)
D .(3,)+∞ 5.已知0.32a -=,0.22b -=,121log 3
c =,那么a ,b ,c 的大小关系是
A .c b a >>
B .c a b >> C. a b c >> D .b a c >> 6.已知幂函数22(1)()(33)m
m f x m m x --=-+的图像不经过原点,则m = A .3 B .1或2 C .2
D .1 7.已知
1)1(+=+x x f ,则函数的解析式为 A.2
)(x x f =
B. )1(1)(2≥+=x x x f
C. )1(22)(2≥+-=x x x x f
D.)1(2)(2≥-=x x x x f
8.一种放射性元素,每年的衰减率是8%,那么a 千克的这种物质的半衰期(剩余
量为原来的一半所需的时间)t 等于
A .0.5
lg 0.92 B .0.92lg 0.5 C .lg 0.5lg 0.92 D .lg 0.92lg 0.5
9.如果一个函数)(x f 满足:(1)定义域为,x x R ∈;
(2)任意12,x x R ∈,若120x x +=,则12()()0f x f x +=;(3)任意x R ∈,若0t >,总有)()(x f t x f >+.则)(x f 可以是
A .y x =-
B .3y x =
C .x
y 3= D .3log y x = 10.一个高为H ,水量为V 的鱼缸的轴截面如图,其底部有一个洞,满缸水从洞中流出,如果水深为h 时水的体积为v ,则
函数()v f h =的大致图像是
二、填空题:本大题共5小题,每小题6分,共30分.
把答案填在第Ⅱ卷对应横线上.
11. 计算:23
3128log 27log 4++= .
12.已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则 .
13.设:f A B →是从集合A 到B 的映射,{}R y R x y x B A ∈∈==,),(,:(,)(,)f x y kx y b →+,若B 中元素(6,2)在
映射f 下的原像是(3,1),则A 中元素(5,8)在f 下的像为 .
14.已知3(10)
()(5)(10)x x f x f x x -≥⎧=⎨+<⎩
,则(6)f = .
15.已知关于x 的方程3log (1)0x k --=在区间[2,10]上有实数根,那么k 的取值范围是 .
高一数学必修1质量检测试题(卷) 审题:马晶(区教研室)
2013.11
第Ⅱ卷(非选择题)
二、填空题:本大题共5小题,每小题6分,共30分. 把答案填在题中横线上.
11. . 12. .
13. . 14. .
15. .
三、解答题:本大题共4小题,每小题15分,共60分.解答应写出文字说明、证明过程或演算步骤.
16.已知全集U R =,集合{|22}A x x =-<≤,{|1}B x x =>,{|}C x x c =≤.
(1)求A B ,()U A B ð,()U A B ð;
(2)若A C ≠∅ ,求c 的取值范围.
17.函数()22()x x f x x R -=-∈.
(1)证明函数()f x 在R 上为单调增函数;
(2)判断并证明函数()f x 的奇偶性.
18.某市一家庭今年八月份、九月份和十月份天然气用量和支付费用如下表所示:
该市天然气收费的方法是:天然气费=基本费+超额费+保险费.若
每月用气量不超过最低额度(8)A A >立方米时,只付基本费16元和每户每月定额保险费)50(≤<C C 元;若用气量超过A 立方米时,超过部分每立方米付B 元.
(1)根据上面的表格求C B A ,,的值;
(2)记用户十一月份用气量为x 立方米,求他应交的天然气费y (元).
19.已知函数2()41f x ax x =--.
(1)若2a =,当[0,3]x ∈时,求函数()f x 的值域;
(2)若2a =,当(0,1)x ∈时,(1)(21)0f m f m ---<恒成立,求m 的取值范围;
(3)若a 为非负数,且函数()f x 是区间[0,3]上的单调函数,求a 的取值范围.。