17.4反比例函数总复习
反比例函数中考知识点总结
反比例函数一、基础知识1.定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。
x ky =还可以写成kxy =1-,xy=k(k 为常数,o k ≠)2.反比例函数的图像是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
3.反比例函数的图像即是中心对称图形(对称中心是原点),也是轴对称图形(对称轴是x y =或x y -=)。
4.反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。
5.反比例函数性质如下表:6. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出k ) 7.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数xky =中的两个变量必成反比例关系。
8. 反比例函数的应用反比例函数常考题型一、反比例函数的概念例1下面函数中,哪些是反比例函数? (1)3x y -=(2)x y 8-=(3)54-=x y (4)15-=x y (5).81=xy (6) (7)(8)xy =21 (9)(10)(11) (12)y =x +4 (13) 5x y =x y 2-=25+=x y x y 23-=31+=xy 21y x =变式1:若y 与-2x 成反比例函数关系,x 与成正比例,则y 与z 的关系 ( ) A .成正比例函数 B .成反比例函数 C .成一次函数 D .不能确定 变式2:若梯形的下底长为,上底长为下底长的,高为,面积为60,则与的函数关系是____________.变式3:当m 取什么值时,函数是反比例函数?变式4: 函数y= 3x 的自变量x 的取值范围是___________;当x <0时,y 随x 的增大而().二、反比例函数的图像与性质例1:如图所示正比例函数0(>=k kx y )与反比例函数xy 1=的图像相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC .若ABC ∆的面积为S ,则()A .1=SB .2=SC .3=SD .S 的值不确定变式1:反比例函数xky =的图像上有一点),(n m P ,其坐标是关于t 的一元二次方程032=+-k t t 的两根,且P 到原点的距离为13,则该反比例函数的解析式为______.变式2:如图,A 、C 是函数xy 1=的图象上的任意两点,过A 作x 轴的垂线,垂足为B ;过C 作y 轴的垂线,垂足为D.记AOB Rt ∆的面积为1S ,COD Rt ∆的面积为2S ,则1S 与2S 的关系是( ). (A )1S >2S (B)1S <2S (C )1S =2S (D )1S 与2S 的大小关系不能确定.(武汉市中考题)变式3:(1)一次函数1+-=x y 与反比例函数xy 3=在同一坐标系中的图像大致是如图中的( )3zx 13y y x 23)2(m xm y --=(2)一次函数12--=k kx y 与反比例函数xky =在同一直角坐标系内的图像的大致位置是图中的( )三、反比例函数应用例1、某地上年度电价为0.8元,年用电量为1亿度。
(完整word版)反比例函数知识点总结
反比例函数知识点总结 李苗知识点1 反比例函数的定义 一般地,形如x k y =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x≠的一切实数,函数值的取值范围是0y ≠;⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①x k y =(0k ≠),②1kx y -=(0k ≠),③k y x =⋅(定值)(0k ≠); ⑸函数xk y =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,x k y =,就不是反比例函数了,由于反比例函数xk y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点2用待定系数法求反比例函数的解析式 由于反比例函数x k y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点3反比例函数的图像及画法 反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表: 反比例函数x k y =(0k ≠) k 的符号 0k >0k < 图像性质 ①x 的取值范围是0x ≠,y 的取值范围是①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k <时,函数图像注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。
初三数学反比例函数知识点归纳-复习必备打印背熟
反比例函数是什么?反比例函数相关知识1:反比例函数是什么?反比例函数的定义域和值域因为x在分母上,所以x≠0,即自变量X的取值范围为非零实数。
而且常数k≠0,因此y≠0,即因变量y的`取值范围为非零实数。
反比例函数的图像及其性质形状:反比例函数的图象是两条双曲线,每一条曲线都无限向X轴Y轴延伸但不与坐标轴相交。
增减性:当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内y随x的增大而减小;当k<0时,双曲线的两支分别位于第二、四象限,在每个象限内y随x的增大而增大。
对称性:反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x和y=-x,对称中心是坐标原点。
2:反比例函数知识点1、反比例函数的表达式X是自变量,Y是X的函数y=k/x=k?1/xxy=ky=k?x^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n2、函数式中自变量取值的范围①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。
解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k?1/xxy=ky=k?x^(-1)y=kx(k为常数(k≠0),x不等于0)3、反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
4、反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的.绝对值=(x_y)的绝对值=|k|研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM?PN=|y|?|x|=|xy|=|k|。
反比例函数中考复习(知识点+题型分类练习)
1 / 8反比例函数知识点梳理1、反比例函数的概念:一般地,如果两个变量x ,y 之间的关系 可以表示成y=x k (k 为常数,k 不等于0)的形式,那么称y 是x 的反比例函数。
从y=xk中可知,x 作为分母,所以不能为零。
注:反比例函数的其他两种表达式: 或2、画反比例函数图象时要注意以下几点:⑴列表时自变量的取值应取绝对值相等而符号相反的一对数值,这样既可以简化计算,又便于标点; ⑵列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线; ⑶在连线时要用“光滑的曲线”,不能用折线。
3、反比例函数的性质注意:(1)反比例函数是轴对称图形和中心对称图形;(2)双曲线的两个分支都与x 轴、y 轴无限接近,但永远不能与坐标轴相交; (3)在利用图象性质比较函数值的大小时,前提应是“在同一象限”内。
2 / 84、反比例函数系数k 的几何意义如图,过双曲线上任意一点P (x ,y )作x 轴,y 轴的垂线PM ,PN ,所得矩形的面积为PNPM S ⋅=∵xk y =∴y x k ⋅=∴N M S ⋅=,即过双曲线上任一点作x 轴,y 轴的垂线,所得矩形的面积为k 注意:①若已知矩形的面积为k ,应根据双曲线的位置确定k 值的符号。
②在一个反比例函数图象上任取两点P ,Q ,分别过P ,Q 作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为S 1,S 2,则有S 1=S 2。
反比例函数常见题型分类汇总考点一、反比例函数的概念及解析式求解 1.已知反比例函数y =的图象位于第一、第三象限,则k 的取值范围是( ). A.k >2 B.k ≥2 C.k ≤2 D.k <22.(2012黑龙江)在平面直角坐标系中,反比例函数y =22a a x-+的图象的两个分支分别在 ( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 3.若反比例函数22)12(--=mx m y 的图像在第二、四象限,则m 的值是( )A.-1或1B.小于21的任意实数 C.-1 D.不能确定4.若函数是反比例函数,且它的图象在二、四象限内,则n 的值是( )A.0B.1C. 0或1D. 非上述答案 5.()7225---=m mx m y 是y 关于x 的反比例函数,且图象在第二、四象限,则m 的值为 ;6.已知y 与x -1成反比例,当x = 12 时,y = - 13,那么,当x = 2时,y 的值为 ;7.已知y 与x 成正比例,z 与y 成反比例,则z 与x 成__________关系,当1=x 时,2=y ;当2=y 时,z=-2,则当x=-2时,______=z ;8.已知y 与(2x+1)成反比例且当x=0时,y=2,那么当x=-1时,y=________。
反比例函数知识点总结
反比例函数知识点总结 李苗知识点1 反比例函数的定义一般地,形如x k y =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解: ⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠;⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式:①xk y =(0k ≠),②1kx y -=(0k≠),③k y x =⋅(定值)(0k ≠);⑸函数xky =(0k ≠)与y kx =(0k≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k≠)是反比例函数的一部分,当k=0时,x k y =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点2用待定系数法求反比例函数的解析式由于反比例函数xk y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点3反比例函数的图像及画法 反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
知识点4反比例函数的性质 ☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。
中考数学专题复习反比例函数专题基础知识部分复习
中考数学专题复习之反比例函数一、知识点1.反比例函数的概念反比例函数y=k x 中的k x 是一个分式,自变量x ≠0,函数与x 轴、y 轴无交点,y=kx也可写成y=kx -1(k ≠0),注意自变量x 的指数为-1, 在解决有关自变量指数问题时应特别注意系数k ≠0这一限制条件. 2.反比例函数的图象在用描点法画反比例函数y=kx的图象时,应注意自变量x 的取值不能为0,应从1或-1开始对称取点. 3.反比例函数y=kx中k 的意义 注意:反比例函数y=k x (k ≠0)中比例系数k 的几何意义,即过双曲线y=kx(k ≠0)上任意一点引x 轴、y 轴垂线,所得矩形面积为│k │. ◆考点链接1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k ≠0)的形式,则称y 是x 的反比例函数. 2. 反比例函数的图象和性质二、例题讲解例1.(2009年湖南娄底)市一小数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示. 设矩形的宽为x cm ,长为y cm ,则这些同学所制作的矩形长y (cm )与宽k 的符号k >0k <0 图像的大致位置经过象限 第 象限 第 象限 性质在每一象限内y 随x 的增大而在每一象限内y 随x 的增大而oy xy xox (cm )之间的函数关系的图象大致是 ( )例2(2009年新疆)若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系是____________.(不考虑x 的取值范围)例3(2009年内蒙古包头)如图,已知一次函数1y x =+的图象与反比例函数ky x=的图象在第一象限相交于点A ,与x 轴相交于点C AB x ,⊥轴于点B ,AOB △的面积为1,则AC 的长为 (保留根号).三、专项练习(中考真题)一、选择题1.(2010安徽芜湖)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = a x 与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是()A .B .C .D .2.(2010甘肃兰州) 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 12--=的图像上. 下列结论中正确的是 A .321y y y >> B .231y y y >> C .213y y y >> D . 132y y y >>yO x AC B3.(2010山东青岛)函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( )4.(2010山东日照)已知反比例函数y =x2,则下列点中在这个反比例函数图象的上的是 (A )(-2,1) (B )(1,-2) (C )(-2,-2) (D )(1,2) 5.(2010四川凉山)已知函数25(1)m y m x -=+是反比例函数,且图像在第二、四象限内,则m 的值是A .2B .2-C .2±D .12- 6.(2010浙江宁波)已知反比例函数1y x=,下列结论不正确...的是 (A)图象经过点(1,1) (B)图象在第一、三象限(C)当1x >时,01y << (D)当0x <时,y 随着x 的增大而增大 7.(2010 浙江台州市)反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是(▲)A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y << 8.(2010四川眉山)如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .4DBAyxOC9.(2010浙江绍兴)已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A . y 3<y 1<y 2B . y 2<y 1<y 3C . y 1<y 2<y 3D . y 3<y 2<y 110.(2010 嵊州市)如图,直线)0(<=k kx y 与双曲线xy 2-=交于),(),,(2211y x B y x A 两点,则122183y x y x -的值为( )xyBA oA.-5B.-10C.5D.1011.(2010山东聊城)函数y 1=x (x ≥0),y 2=4x(x>0)的图象如图所示,下列结论:①两函数图象的交点坐标为A (2,2); ②当x >2时,y 2>y 1;③直线x =1分别与两函数图象相交于B 、C 两点,则线段BC 的长为3; ④当x 逐渐增大时,y 1的值随x 的增大而增大,y 2的值随x 的增大减少. 其中正确的是( )A .只有①②B .只有①③C .只有②④D .只有①③④12.(2010 四川南充)如图,直线2y x =+与双曲线ky x=相交于点A ,点A 的纵坐标为3,k 的值为( ).(A )1 (B )2 (C )3 (D )4 13.(2010江西)如图,反例函数4y x=图象的对称轴的条数是( ) OxyA3(第9题)yy 1=x y 2=4xx 第11题图A .0B .1C .2D .314.(2010福建福州)已知反比例函数的图象y =kx 过点P (1,3),则该反比例函数图象位于( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 15.(2010江苏无锡)如图,已知梯形ABCO 的底边AO 在x 轴上,BC ∥AO ,AB ⊥AO ,过点C的双曲线ky x= 交OB 于D ,且OD :DB=1:2,若△OBC 的面积等于3,则k 的值( )A . 等于2B .等于34C .等于245D .无法确定16.(2010年上海)在平面直角坐标系中,反比例函数 y = kx ( k <0 ) 图像的量支分别在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限17.(2010山东临沂) 已知反比例函数7y x=-图象上三个点的坐标分别是1(2,)A y -、2(1,)B y -、3(2,)C y ,能正确反映1y 、2y 、3y 的大小关系的是(A )123y y y >>(B )132y y y >>(C )213y y y >>(D )231y y y >> 18.(2010 山东莱芜)已知反比例函数xy 2-=,下列结论不正确...的是(第6题图)A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-219.(2010福建宁德)反比例函数1y x=(x >0)的图象如图所示,随着x 值的增大,y 值( ).A .减小B .增大C .不变D .先减小后不变 20.(2010年贵州毕节)函数1ky x-=的图象与直线y x =没有交点,则k 的取值范围是( )A .1k >B .1k <C .1k >-D .1k <- 22.(2010江苏常州)函数2y x=的图像经过的点是 A.(2,1) B.(2,1)- C.(2,4) D.1(,2)2-23.(2010 山东滨州)如图,P 为反比例函数y=kx的图象上一点,PA ⊥x 轴于点A, △PAO 的面积为6.下面各点中也在这个反比例函数图象上的点是( )A.(2,3)B. (-2,6)C. (2,6)D. (-2,3)24.(2010湖北荆门)在同一直角坐标系中,函数y=kx+1和函数y=xk(k 是常数且k ≠0)的图象只可能是A .B .C .D .25.(2010山东潍坊)若正比例函数y =2kx 与反比例函数y =kx(k ≠0)的图象交于点A (m ,1),则k 的值是( ).xyO第8题图A .2或-2B .22或-22 C .22D .226.(2010湖南怀化)反比例函数)0(1>-=x xy 的图象如图1所示, 随着x 值的增大,y 值( )A .增大B .减小C.不变 D.先增大后减小 28.(2010湖北鄂州)正比例函数y=x 与反比例函数ky x=(k ≠0)的图像在第一象限交于点A,且AO=2,则k 的值为A.22B.1C. 2D.229.(2010山东泰安)函数y=2x+1与函数y=kx的图象相交于点(2,m),则下列各点不在函数y=kx的图象上的是( )A.(-2,-5) B.(52,4) C.(-1,10) D.(5,2)30.(2010云南红河哈尼族彝族自治州)不在函数xy 12=图像上的点是 A .(2,6) B.(-2,-6) C.(3,4) D.(-3,4) 31.(2010黑龙江哈尔滨)反比例函数xk y 3-=的图像,当0>x 时,y 随x 的增大而增大,则k 的数值范围是( ) (A )2<k (B )3≤k (C )3>k(D ).3≥k二、填空题1.(2010安徽蚌埠二中)已知点(1,3)在函数)0(>=x xky 的图像上。
17.4 反比例函数 华东师大版数学八年级下册同步练习(含解析)
17.4反比例函数基础过关全练知识点1反比例函数的概念1.(2022江苏苏州草桥中学期中)下列函数中,变量y是x的反比例函数的是()A.y=x3B.y=3x+1C.y=3xD.y=3x2.【易错题】(2022湖南衡阳弘扬中学期中)已知y=(k-2)x k2−5是反比例函数,那么k的值是.知识点2反比例函数的图象与性质3.(2022云南中考)反比例函数y=6x的图象位于() A.第一、三象限 B.第一、四象限C.第二、三象限D.第二、四象限4.(2021山西期末)关于反比例函数y=-12x,下列说法不正确的是()A.函数图象经过点(3,-4)B.函数图象关于原点成中心对称C.函数图象位于第一、三象限D.当x<0时,y随x的增大而增大5.(2022河南南阳卧龙期中)已知点A(-1,y1),B(2,y2),C(1,y3),D(3,-2)都在双曲线y=kx上,则y1,y2,y3的大小关系是() A.y1>y2>y3 B.y1>y3>y2C.y3>y2>y1D.y2>y1>y36. (2022海南海口十中期中)在同一坐标系中,函数y =kx和y =kx +3(k ≠0)的图象大致是( )ABCD7.【分类讨论思想】(2022河南南阳桐柏思源实验学校第二次月考)已知点A (a ,y 1),B (a +1,y 2)在反比例函数y =m 2+1x(m 是常数)的图象上,且y 1<y 2,则a 的取值范围是( )A.a <0B.a >0C.0<a <1D.-1<a <0 8.【新独家原创】已知m =(−12)−1,则反比例函数y =m+3x的图象分布在第 象限.9.【教材变式·P56T1变式】(2022辽宁大连模拟)某长方体的体积为 1 000 cm 3,长方体的高h (单位:cm)随底面积S (单位:cm 2)的变化而变化,则h 关于S 的函数关系式为 ,它是 函数.10.(2022内蒙古呼和浩特中考)点(2a -1,y 1)、(a ,y 2)在反比例函数y =kx (k >0)的图象上,若0<y 1<y 2,则a 的取值范围是 . 知识点3 确定反比例函数的解析式11.(2022江苏苏州星湾中学期中)若点A (3,-6)在反比例函数y =kx 的图象上,则k 的值为( )A.-18B.18C.-2D.212.(2022海南中考)若反比例函数y =kx (k ≠0)的图象经过点(2,-3),则它的图象也一定经过的点是 ( )A.(-2,-3)B.(-3,-2)C.(1,-6)D.(6,1)13.【跨学科·物理】(2022河南南阳新野期中)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,图象如图所示,当气球内的气压大于120 kPa时,气球将爆炸,为了安全起见,气球的体积应()A.不小于54m3 B.小于54m3C.不小于45m3 D.小于45m314.(2022福建泉州安溪期中)如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=kx(k>0,x>0)的图象上,当m>1时,过点P分别作x轴、y 轴的垂线,垂足为A、B,过点Q分别作x轴、y轴的垂线,垂足为C、D,DQ交PA于点E,随着m的增大,四边形ACQE的面积()A.逐渐增大B.逐渐减小C.先减小后增大D.先增大后减小15.(2022福建中考)已知反比例函数y=kx的图象位于第二、四象限,则实数k的值可以是.(只需写出一个符合条件的实数)16.(2022湖北仙桃中考)在反比例函数y=k−1的图象的每一支上,y都随xx的增大而减小,且整式x2-kx+4是一个完全平方式,则该反比例函数的解析式为.(x>0) 17.【一题多变】(2022四川凉山州中考)如图,点A在反比例函数y=kx的图象上,过点A作AB⊥x轴于点B,若△OAB的面积为3,则k=.[变式一](2022湖南怀化中考)如图,直线AB交x轴于点C,交反比例函数y=a−1(a>1)的图象于A、B两点,过点B作BD⊥y轴,垂足为点D,若xS△BCD=5,则a的值为()A.8B.9C.10D.11[变式二](2022黑龙江齐齐哈尔中考)如图,点A是反比例函数y=k(x<0)x图象上一点,过点A作AB⊥y轴于点D,且D为线段AB的中点.若点C 为x轴上任意一点,且△ABC的面积为4,则k=.18.(2022河南南阳镇平期中)已知:反比例函数y=k的图象经过A(2,-4).x(1)求k的值.(2)这个函数的图象在哪几个象限?y随x的增大怎样变化?(3)画出函数的图象.(4)点B(-2,4),C(-1,5)在这个函数的图象上吗?19.(2022山东聊城实验中学期中)一辆汽车匀速通过某段公路,所需时,其图象为如图所示的一间t(h)与行驶速度v(km/h)满足函数关系:t=kv段曲线,且端点为A(40,1)和B(m,0.5).(1)求k和m的值;(2)若行驶速度不得超过50 km/h,则汽车通过该路段最少需要多少时间?能力提升全练20.【一题多解】(2022湖北武汉中考,6,)已知点A(x1,y1),B(x2,y2)在的图象上,且x1<0<x2,则下列结论一定正确的是() 反比例函数y=6xA.y1+y2<0B.y1+y2>0C.y1<y2D.y1>y221.(2022浙江舟山中考,15,)如图,在直角坐标系中,△ABC的顶点C 与原点O重合,点A在反比例函数y=k(k>0,x>0)的图象上,点B的坐标x为(4,3),AB与y轴平行,若AB=BC,则k=.22.(2022江苏常州中考,23,)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图象分别与x轴、y轴交于点A、B,与反比例函数y=k(x>0)x的图象交于点C,连结OC.已知点B(0,4),△BOC的面积是2.(1)求b、k的值;(2)求△AOC的面积.23.【新考法】(2022河南中考,18,)如图,反比例函数y=k(x>0)的图x象经过点A(2,4)和点B,点B在点A的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式;(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连结CD,求证:CD∥AB.素养探究全练24.【模型观念】(2022内蒙古赤峰中考)阅读下列材料.定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.例如:min|-1,3|=-1;min|-1,-2|=-2.完成下列任务.(1)①min|(-3)0,2|=;②min|√14,-4|=.(2)如图,已知反比例函数y1=k和一次函数y2=-2x+b的图象交于A、Bx,−2x+b|=(x+1)(x-3)-x2,求这两个函数的解析两点.当-2<x<0时,min|kx式.答案全解全析基础过关全练1.C 根据反比例函数的定义,知符合题意的只有C.2.答案 -2解析 由题意得{k 2−5=−1,k −2≠0,解得k =-2.3.A 反比例函数y =6x 中,k =6>0,所以图象位于第一、三象限,故选A.4.C A.把x =3代入y =-12x得,y =-4,所以函数图象经过点(3,-4),故本选项正确;B.反比例函数的图象的两个分支关于原点成中心对称,故本选项正确;C.k =-12<0,所以函数图象位于第二、四象限,故本选项错误;D.k =-12<0,所以图象位于第二、四象限,且在每个象限内,y 随x 增大而增大,所以当x <0时,y 随x 的增大而增大,故本选项正确.故选C. 5.A ∵点D (3,-2)在双曲线y =kx 上,∴k =3×(-2)=-6<0,∴反比例函数的图象在第二、四象限,在每个象限内,y 随x 的增大而增大,∴A (-1,y 1)在第二象限,B (2,y 2),C (1,y 3)在第四象限, ∴y 1>0,0>y 2>y 3,∴y 1>y 2>y 3.故选A. 6.C 分两种情况讨论:①当k >0时,函数y =kx +3的图象在第一、二、三象限,函数y =kx 的图象在第一、三象限;②当k <0时,函数y =kx +3的图象在第一、二、四象限,函数y =kx 的图象在第二、四象限.只有C选项符合,故选C.7.D∵m2+1>0,∴反比例函数y=m 2+1x(m是常数)的图象在第一、三象限,在每个象限内,y随x的增大而减小.①当A(a,y1),B(a+1,y2)在同一象限时,∵y1<y2, ∴a>a+1,此不等式无解;②当点A(a,y1),B(a+1,y2)在不同象限时,∵y1<y2, ∴a<0,a+1>0,解得-1<a<0.故选D.8.答案一、三解析∵m=(−12)−1=-2,∴m+3=-2+3=1>0,∴函数y=m+3x的图象分布在第一、三象限.9.答案h=1 000S;反比例解析根据长方体的体积等于底面积乘高,可知函数关系式为h=1 000S,它是反比例函数.10.答案a>1解析因为k>0,所以反比例函数图象在第一、三象限,且在每个象限内,y随x的增大而减小.由0<y1<y2得,0<a<2a-1,解得a>1.故答案为a>1.11.A将点A(3,-6)代入y=kx得k=3×(-6)=-18,故选A.12.C∵反比例函数y=kx(k≠0)的图象经过点(2,-3),∴k=2×(-3)=-6,∵(-2)×(-3)=6≠-6,(-3)×(-2)=6≠-6,1×(-6)=-6,6×1=6≠-6,∴它的图象一定还经过的点是(1,-6),故选C.13.C设气球内气体的气压p(kPa)与气体体积V(m3)之间的关系式为p=k(k≠0),V,∵图象过点(1.6,60),∴k=96.∴p=96V当p=120时,V=4.∵图象在第一象限,p随V的增大而减小,故气球内的5m3,即气球的体积应气压小于或等于120 kPa时,体积应大于或等于45不小于4m3.故选C.514.A由题意得AC=m-1,CQ=n,则S四边形ACQE=AC·CQ=(m-1)n=mn-n.(k>0,x>0)的图象上,∴mn=k=4.∵P(1,4)、Q(m,n)在函数y=kx∴S四边形ACQE=AC·CQ=4-n,∵m>1时,n随m的增大而减小,∴S四边形ACQE=4-n随m的增大而增大.故选A.15.答案-3(答案不唯一)的图象位于第二、四象限,∴k<0,∴k的值可解析∵反比例函数y=kx以是-3.(答案不唯一)16.答案y=3x解析∵整式x2-kx+4是一个完全平方式,∴k=±4,的图象的每一支上,y都随x的增大而减小,∵反比例函数y=k−1x∴k-1>0,解得k>1,∴k=4,∴k-1=4-1=3,.∴反比例函数的解析式为y=3x17.答案 6解析∵△OAB的面积为3,点A在反比例函数y=k(x>0)的图象上,xOB·AB=3,即OB·AB=6,∴k=6.∴12),[变式一]D设B的横坐标为m,则B(m,a−1m∵BD ⊥y 轴,∴S △BCD =12m ·a−1m=5,解得a =11,故选D.[变式二]答案 -4 解析 如图,连结OA ,OB ,∵AB ⊥y 轴,∴AB ∥x 轴, ∴S △ABC =S △AOB , ∵△ABC 的面积为4, ∴S △AOB =4.∵D 为线段AB 的中点, ∴S △AOD =S △BOD ,∴S △AOD =2.根据反比例函数的比例系数k 的几何意义可得k =-4.18.解析 (1)∵反比例函数y =kx 的图象经过点A (2,-4),∴k =-4×2=-8.(2)由(1)知k =-8,∴反比例函数的解析式为y =-8x,∵-8<0,∴函数的图象在第二、四象限,在每个象限内,y 随x 的增大而增大. (3)函数图象如图.(4)∵-2×4=-8,-1×5=-5≠-8,∴点B 在函数图象上,点C 不在函数图象上.19.解析 (1)由题意得,函数t =k v的图象经过点(40,1),∴1=k40,解得k =40,∴函数关系式为t =40v,把(m ,0.5)代入t =40v,得0.5=40m,解得m =80.故k 的值为40,m 的值为80.(2)把v =50代入t =40v,得t =4050=0.8,∵t 随v 的增大而减小,∴汽车行驶速度不超过50 km/h 时,通过该路段最少需要0.8小时. 能力提升全练20.C 解法一:∵点A (x 1,y 1),B (x 2,y 2)是反比例函数y =6x 的图象上的两点,∴x 1y 1=x 2y 2=6.∵x 1<0<x 2,∴y 1<0<y 2.故选C.解法二:反比例函数y =6x 的大致图象如图所示.∵x 1<0<x 2,∴点A 在第三象限,点B 在第一象限,∴y 1<y 2.21.答案 32解析 由点B 的坐标为(4,3),可得OB =√42+32=5,∵AB ∥y 轴,AB =BC ,∴A 点的坐标为(4,8),∴k =4×8=32.22.解析 (1)∵一次函数y =2x +b 的图象过点B (0,4),∴b =4,∴一次函数的解析式为y =2x +4,∵OB =4,△BOC 的面积是2,∴12OB ·x C =2,即12×4×x C =2,∴x C =1,把x =1代入y =2x +4,得y =6,∴C (1,6),∵点C 在反比例函数y =k x(x >0)的图象上,∴k =1×6=6.(2)把y =0代入y =2x +4,得2x +4=0,解得x =-2,∴A (-2,0),∴OA =2,∴S△AOC=12×2×6=6.23.解析本题将尺规作图与反比例函数综合起来进行考查.(1)∵反比例函数y=kx(x>0)的图象经过点A(2,4),∴k=2×4=8.故反比例函数的表达式为y=8x.(2)如图,直线EF即为所作.(3)证明:如图,∵AC平分∠OAB,∴∠OAC=∠BAC.∵AC的垂直平分线交OA于点D,∴DA=DC,∴∠DAC=∠DCA.∴∠DCA=∠BAC.∴CD∥AB.素养探究全练24.解析(1)①1.②-4.(2)(x+1)(x-3)-x2=-2x-3,∵当-2<x<0时,min|kx,−2x+b|=-2x+b,∴-2x+b=-2x-3,∴b=-3,∴y2=-2x-3,当x=-2时,y2=1,∴A(-2,1).将A(-2,1)代入y1=kx 中,得k=-2,∴y1=-2x.。
反比例函数整章知识点复习
在生物学中,反比例函数可用于描述种群数量与资 源之间的关系,如食物与捕食者数量等。
03
反比例函数的图像与性质
反比例函数的图像绘制
通过选择适当的x值,计算对应的y值 ,在坐标系上标出对应的点,连接各 点绘制出反比例函数的图像。
100%
经济问题
在经济学中,反比例函数可以用 来描述成本与产量的关系、供需 关系等。
80%
生态问题
在生态学中,反比例函数可以用 来描述种群数量与环境容量的关 系等。
05
反比例函数习题解析
基础题目解析
01
02
03
题目
已知点$P(x, y)$在反比例 函数$y = frac{k}{x}$的图 象上,若$x$与$y$的乘积 为$2k$,则$k$的值为 ____.
竞赛题目解析
01
k、a、b 的值;
02
k、a、b 的值;
03
k、a、b 的值;
04
k、a、b 的值;
THANK YOU
感谢聆听
反比例函数的计算方法
01
对于反比例函数
$f(x)
=
frac{k}{x}$,求值时只需将 $x$ 值
代入函数中即可。
02
若需要求 $f(x)$ 的导数或积分, 则需使用相应的微积分法则进行 计算。
反比例函数在实际问题中的应用
在物理学中,反比例函数可用于描述两个物理量之 间的反比关系,如电荷与电场强度、电流与电阻等 。
反比例函数的图像
图像特点
双曲线,分布在两个象限内,随着k的正负变化而分别分布在第一 、三象限或第二、四象限。
17.4.2反比例函数的图象和性质
2
因为k=4>0,y随x的增大
y 1<y 2; 而减小,又x1 > x2所以 当x2<x1<0时,
y1 <y2”。
小明说:“不对不
A
A
y 1<y 2;
x xx y2 2 1 1 y2 y1
o
x
当x2<0<x1时, 对… …” 你也来说一说, y 1>y 2。 小聪对吗?为什么?
x
… -6 1
-5 -4
1.2 1.5
-3 -2 2 3
-1 1 6
2
3
4
5
6 … …
… y= 6 x
-6 -3
y
-2 -1.5 -1.2 -1
2、 k < 0 图象在第二 和第四象限, 在每个象限 内y 随x的增 大而增大。
6
6 y= x
5 4 3 2 1
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
x
则k_____________; <4
(2)若在每一象限内,y随x增大而增大, >4 则k_____________.
练一练
4
2 x
考察函数y
的图象,当x=-2时,y=
-1 ___
,当x<-2
时,y的取值范围是 -1<y<0 _____ ;当y﹥-1时,x的取值范围 X<-2 或x>0 是 _________ .
17.4.2
反比例函数的图象和性质
复习回顾
1.什么是反比例函数? k 一般地,形如 y = — ( k是常数, k = 0 ) 的函数 x 叫做反比例函数. 2.反比例函数的定义中需要注意什么?
反比例函数知识点归纳总结
反比例函数知识点归纳总结《反比例函数知识点归纳总结》嘿,大家好呀!今天咱来唠唠反比例函数那些知识点。
首先呢,反比例函数就像是一个有点小脾气的小精灵,你得顺着它的性子来。
它的表达式一般是y=k/x(k 不为0),这里的k 可重要啦,就像小精灵的魔法棒一样。
反比例函数的图象可有意思啦!那是两条弯弯的曲线,有时候看着像两个害羞的小耳朵。
它有个特点,就是无限靠近坐标轴,但就是不挨着,就像跟坐标轴在玩躲猫猫一样。
那反比例函数的性质呢,也是相当有趣。
当k 大于0 的时候,图象在一、三象限,就像是个开心果,y 会随着x 的增大而减小;要是k 小于0 呢,它就在二、四象限了,这时候它就像个小脾气,y 反而会随着x 的增大而增大。
咱再来说说反比例函数的实际应用。
比如说,做个数学题,告诉你一堆条件,让你找个反比例关系。
嘿,这时候你就得动动脑筋了,想想哪些量之间可能是反比例关系。
比如说,路程一定的时候,速度和时间就是成反比例的嘛。
反比例函数还经常在应用题里藏头露尾的。
什么小明和小红做什么事啦,或者工程问题啦。
这时候咱就得把它给揪出来,好好研究研究。
总的来说呢,反比例函数就像是个调皮又有趣的小精灵。
咱要和它好好打交道,熟悉它的脾气和特点。
不要被它那些弯弯的曲线给弄晕了头,要抓住关键,掌握规律。
学习反比例函数呀,就像一场冒险。
有时候会碰到难题,就像遇到小怪兽一样。
但是别怕,咱只要鼓起勇气,拿起知识的宝剑,就能把它们都打败。
最后,我想说,反比例函数并不是那么可怕,只要我们认真学,多练习,肯定能把它拿下。
加油吧,朋友们!让我们一起在反比例函数的世界里畅游,找到属于我们自己的乐趣和成就!好啦,今天关于反比例函数知识点的归纳总结就到这儿啦,希望你们听了我的唠叨能有所收获哟!拜拜啦!。
反比例函数复习讲义
反比例函数复习讲义 知识点一:反比例函数的概念一般地,如果两个变量x 、y 之间的关系可以表示成ky x=(k 为常数,)的形式,那么称y 是x 的反比例函数. 注:(1)反比例函数k y x =中的k x是一个分式,自变量x ≠0, k y x =也可写成1y kx -=或xy k =,其中k ≠0;(2)在反比例函数1y kx -=(k ≠0)中,x 的指数是-1。
如,5y x=也写成:15y x -=; (3)在反比例函数k y x =(k ≠0)中要注意分母x 的指数为1,如21y x=就不是反比例函数。
知识点二:反比例函数的图象 反比例函数(0)ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交. 注:(1)观察反比例函数(0)ky k x=≠的图象可得:x 和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点. (2)用描点法画反比例函数y= kx的图象时,应注意自变量x 的取值不能为0,一般应从1或-1开始对称取点.(3)在一个反比例函数图象上任取两点P ,Q ,过点P ,Q 分别作x 轴,y 轴的平行线,与两坐标轴分别围成的矩形面积为S 1,S 2 则S 1=S 2. 知识点三:反比例函数的性质 1.图象位置与函数性质当k>0时,x 、y 同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当k<0时,x 、y 异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.2.若点(a,b)在反比例函数(0)ky k x=≠的图象上,则点(-a,-b )也在此图象上,故反比例函数的图象关于原点对称;3.正比例函数与反比例函数的性质比较。
正比例函数反比例函数解析式图 像 直线有两个分支组成的曲线(双曲线)位 置k >0,一、三象限; k <0,二、四象限 k >0,一、三象限 k <0,二、四象限增减性k >0,y 随x 的增大而增大 k <0,y 随x 的增大而减小k >0,在每个象限,y 随x 的增大而减小 k <0,在每个象限,y 随x 的增大而增大4.反比例函数y=x 中k 的意义 反比例函数y = k x (k ≠0)中比例系数k 的几何意义,即过双曲线y = kx(k ≠0)上任意一点引x 轴、y 轴垂线,所得矩形面积为│k │.知识点四:反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于在反比例函数关系式(0)ky k x=≠中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入(0)ky k x=≠中即可求出k 的值,从而确定反比例函数的解析式.知识点五:应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题。
反比例函数知识点总结
反比例函数知识点总结反比例函数,又称为倒数函数,是数学中重要的函数类型之一。
它是一种特殊的函数关系,其中一个量的变化与另一个量的变化成反比。
在反比例函数中,当一个变量增加时,另一个变量会以相应的速度减少,反之亦然。
本文将通过定义、性质、图像和应用等方面,对反比例函数进行详细的知识点总结。
1. 定义与表示:反比例函数是指一种函数关系,其中一个变量的值与另一个变量的值成反比。
一般来说,反比例函数可以通过以下形式来表示:y = k/x其中k是常数,称为比例常数,x和y分别是两个变量的值。
2. 性质:(1) 定义域和值域:反比例函数的定义域为除了x=0外的所有实数,值域也为除了y=0外的所有实数。
(2) 对称性:反比例函数在原点(0,0)处具有对称性,即在x轴和y轴上分别关于原点对称。
(3) 单调性:反比例函数在其定义域内是单调递减的,即当x增加时,y会减小。
(4) 渐进线:反比例函数y=k/x在x趋近正无穷大或负无穷大时,都会逼近x轴和y轴,即有两条渐进线x=0和y=0。
(5) 变换:反比例函数可以通过平移、伸缩等变换来得到相应的函数图像。
3. 图像:反比例函数的图像呈现出一条曲线,并且具有特定的形状。
以y=k/x为例,当k为正数时,函数的图像将出现在第一和第三象限,形状类似于右上方向的双曲线;当k为负数时,图像将出现在第二和第四象限,形状类似于左下方向的双曲线。
同时,倒数函数的图像都会与x轴和y轴有两条渐进线,即x=0和y=0。
4. 应用:反比例函数在现实生活中有着广泛的应用。
以下是一些常见的应用场景:(1) 电阻与电流关系:欧姆定律中,电阻与电流的关系就是一个反比例函数关系。
当电流增大时,电阻会相应减小,反之亦然。
(2) 时间与速度关系:在行驶过程中,车辆在相同的距离内,速度与时间呈反比例。
当时间增加时,速度会相应减小,行驶速度与时间的乘积保持一定的常数。
(3) 人均用水量与总用水量关系:一般情况下,社会的总用水量与人口的数量成反比例。
高中数学-反比例函数专题复习
高中数学-反比例函数专题复习1.定义:一般地,如果两个变量x 、y 之间的关系表示成y=(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数,其中x 是自变量,y 是函数。
例如y =50x ;y =-8x ;y =m 2+1x(m 为常数)等。
提示:(1)y =k x 也可以写作y=kx -1的形式或xy=k 的形式(k为常数且k ≠0);(2)反比例函数的自变量x 不能为0;(3)k=xy 是反比例函数的另一种表示形式,即两变量的积是一个常数。
2.图像:反比例函数的图像属于双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x 和y=-x 。
对称中心是:原点。
3.性质:当k >0时双曲线的两支分别位于第一、第三象限,在每个象限内y 值随x 值的增大而减小;当k <0时双曲线的两支分别位于第二、第四象限,在每个象限内y 值随x 值的增大而增大。
xk4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
知识点:1·一般地,如果两个变量x、y之间的关系可表示成y=k x(K为常数,K≠0)的形式,那么称y是x的反比例函数。
反比例函数的自变量x不能为零。
2·反比例函数的图象及其画法反比例函数图象的画法——描点法:⑴列表——自变量取值应以0(但(x≠0)为中心,向两边取三对(或三对以上)互为相反数的数,再求出对应的y的值;⑵描点——先描出一侧,另一侧可根据中心对称点的性质去找;⑶连线——按照从左到右的顺序连接各点并延伸,注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交。
反比例函数y=kx的图象是由两支曲线组成的。
当k>0时,两支曲线分别位于第一、三象限内,当k<0时,两支曲线分别位于第二、四象限内。
小注:⑴这两支曲线通常称为双曲线。
⑵这两支曲线关于原点对称。
⑶反比例函数的图象与x轴、y轴没有公共点。
反比例函数知识点及复习题
反比例函数的复习一、反比例函数的概念:知识要点:1、一般地,形如 y = ( k是常数, k = 0 ) 的函数叫做反比例函数。
注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:(A)y = (k ≠ 0),(B)xy = k(k ≠ 0)(C)y=kx-1(k≠0)有关反比例函数的解析式(1)下列函数,①②. ③④.⑤⑥;其中是y关于x的反比例函数的有:_________________。
(2)函数是反比例函数,则的值是( ) A.-1 B.-2 C.2 D.2或-2(3)如果是的反比例函数,是的反比例函数,那么是的( )A.反比例函数 B.正比例函数 C.一次函数 D.反比例或正比例函数(4)如果是的正比例函数,是的反比例函数,那么是的( )(5)如果是的正比例函数,是的正比例函数,那么是的( )(6)反比例函数的图象经过(—2,5)和(,),求(1)的值;(2)判断点B(,)是否在这个函数图象上,并说明理由(7)已知函数,其中与成正比例, 与成反比例,且当=1时,=1;=3时,=5.求:(1)求关于的函数解析式; (2)当=2时,的值.二、反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。
2、位置:(1)当k>0时,双曲线分别位于第________象限内;(2)当k<0时, 双曲线分别位于第________象限内。
3、增减性:(1)当k>0时,_________________,y随x的增大而________;(2)当k<0时,_________________,y随x的增大而______。
4、变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点____________;(2)对于k取互为相反数的两个反比例函数(如:y = 和y = )来说,它们是关于x 轴,y轴___________。
17.4.2反比例函数的图象和性质
(1)
(1)
(2)
(4)
(5)(5)
((3)3)
y6 x
(6) (6)
可分为两类,分类标准为双曲线所在象限. 一、三象限
(1) 二、四象限
(2)
(3) (4)
(5)
y6 x
(6)
(2)反比例函数图象所在象限与什么元素有关系? 与k的正负.
(1)
(3)
(5)
k>0
当k>0时,双曲线的两 支分别位于第一、第三 象限;
③ y kx1
4、下列函数中,y是x的反比例函数的是( D )
A. y 1 2x B. y x2 1 C. y 3x D. y 3
x
5、反比例函数
y
k x
的图象经过点P(-2
,
3),
则K的值为__-_6___
分析:k xy 23 6
学习目标
(1)会用描点法画反比例函数的图象
(2)结合图象分析并掌握反比例函数的性质
课前准备
k
1、一般地,形如y=_x __(k是常数,k____0)的函数,叫做
反比例函数,其中x是_自__变__量_,y是_函__数__(_因变量)
2、反比例函数 y k(x k 0 )中,自变量x的取值范围是_x___0_
3、反比例函数有__三__种表达形式,分别是:
①
yk x
② xy k
(2)
(4)
y6 x
(6)
k<0
当k<0时,双曲线的两 支分别位于第二、第四 象限
1、k>0
试着说出两种情况下函数的增减性.来自2、 k<0(1)
(2)
(3)
(5)
y6 x
(6)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y A
C
o
B x
14.(1999年哈尔滨) k 如图能表示y k (1 x)和y (k 0) x 在同一坐标系中的大致图象的是 ____ . D
y
y
O O
y
y x
x B
x
O
x
o
A
C
D
15.(2000年河南) 已知一次函数y kx 2, y随x的增大而减小, 那么 k (D) 反比例函数y ____ . x A.当x 0时, y 0 B.在每个象限内, y随x的增大而减小. C.图象在第一三象限 D.图象在第二四象限.
y
A S1 B
C
o
S2 S3 A1 B1 C1
x
11.(2002 年成都) k 如图 : RtABO的顶点A是双曲线y 与直线y -x (k 1) x 3 在第二象限的交点 AB x轴于点B, 且S ABO , , 2 (1)求这两个函数的解析式 ; (2)求直线与双曲线的两个 交点A、、 的坐标和AOC的面积.
y
A.S = 1 C.S = 2
B.1<S<2 D.S>2
o
A
解:由上述性质(3)可知, S△ABC = 2|k| = 2
x
B
C
8 .(武汉市2000年) 1 如图:A、C是函数 y x 的图象上任意两点, 过A作作 的垂 线, 垂足为B.过C作作 的垂线, 轴 轴 垂足为D.记RtΔAOB 的面积为 S1 ,
(2)求一次函数和反 比例函数的解析式.
y C
B A
O D
x
第二、四象限,那么m的范围为 m> 3 .
由1-3m<0 得-3m<- 1
1 ∴ m> 3
3.下列函数中,图象位于第二、四象限 的有(3)、(4) ;在图象所在象限内,y的 值随x的增大而增大的有 (2)、(3)、(5) .
2 2x (1)y (2)y 3x 3 (5)y 2x 3 2 (3)y 3x 2x (4)y 3
2
7 (- ,0) 2
1 (0, ) 2 1 ( ,0) 2 1 (- ,0) 2 1 (0,- ) 2
7 ( ,0) 2
x
7 (0,- ) 2
22.如图, 已知一次函数y kx b(k 0)的图象与x轴, m y轴分别交于A, B两点, 且与反比例函数y (m 0)的 x 图象交于点C, 过点C作CD垂直于x 垂足为D. 轴, 若OA OB OD 1. (1)求点A, D的坐标; B,
3x
⑧y = 3
2x
填一填
2 1.函数 y 是 反比例 函数,其图象为双曲线 , x
其中k= 2 ,自变量x的取值范围为 x≠ 0
.
6 2.函数 y 的图象位于第一、三 象限, x
在每一象限内,y的值随x的增大而 减小 , 当x>0时,y > 0,这部分图象位于第 一 象限.
6 3.函数 y 的图象位于第二、四象限, x
y=
图 象
k x
K>0
K<0
性 质
当k>0时,函数图象 的两个分支分别在第 一、三象限,在每个 象限内,y随x的增大 而减小.
当k<0时,函数图象 的两个分支分别在第 二、四象限,在每个 象限内,y随x的增大 而增大.
3.反比例函数的图象既是轴对称图形又是中心对称图形。 有两条对称轴:直线y=x和 y=-x。对称中心是:原点
y A
D B O
x C
12.(2004 年凉山统考题) k 如图, O是坐标原点 直线OA与双曲线y 在第一象限内交于 , x 1 点A, 过A作AB x轴, 垂足为B, 如果OB 4( AB : OB) . 2
(1)求双曲线的解析式 ; (2)直线AC与y轴交于点C (0,1), 与x轴交于点D.求AOD的面积.
k y=— x y
y=-x
y=x
0
12
x
4.正比例函数和反比例函数的区别
函数 表达式 正比例函数 y=kx(k≠0)( 特殊的一次函数) y 反比例函数
k 或y kx 1或xy k(k 0) x
y
图象 及象限
y
o x o k<0 x
y
0
y
x
0
x
k>0
k>0
k<0
当k>0时,y随x的增大而增大;
y
面积性质(三)
P(m,n)
o
xo A x
若将此题改为过P点 作y轴的垂线段,其结 论成立吗?
y A o P(m,n) x
S OAP
1 1 1 OA AP | m | | n | | k | 2 2 2
y
y
P(m,n)
P(m,n)
o x
P/ P/
解:由性质(2)可得
S矩形APCO | k |, k | 3. |
又图像在二 ,四象限,
P
y
C
k 3
A
3 解析式为 y . x
o x
1 10.如图, 在y ( x 0)的图像上有三点 , B, C , A x 经过三点分别向 轴引垂线, 交x轴于A1 , B1 , C1三点, x 边结OA, OB, OC, 记OAA , OBB1 , OCC1的 1
o x
以上几点揭示了双曲线上的点构成的几 何图形的一类性质.掌握好这些性质,对 解题十分有益.(上面图仅以P点在第一象 限为例).
做一做(一)
1.已知△ABC的面积为12,则△ABC的高h 24 h 与它的底边 a 的函数关系式为 a .
做一做(二)
1 3m 2.如果反比例函数 y 的图象位于 x 1
k4 都在反比例函数 y y x(k<0) 的图象上, x
则y1与y2的大小关系(从大到小)
为
y2> y1
.
5.已知点A(-2,y1),B(-1,y2) 1<0<x2 A(x1,y1),B(x2,y2)且x
k4 都在反比例函数 y y x(k<0) 的图象上, x
则y1与y2的大小关系(从大到小)
A 面积分别为S1 , S 2 , S3 , 则有 __ . A.S1 = S2 = S3 B. S1 < S2 < S3 C. S3 < S1 < S2 D. S1 > S2 >S3
解:由性质(1)得
1 1 1 1 S AOA1 | k | , S BOB1 | k | , 2 2 2 2 1 1 S OOC 1 | k | , 即S1 S 2 S 3 , 故选A. 2 2
面积性质(一)
k 设P(m, n)是双曲线y (k 0)上任意一点 有 : , x (1)过P作x轴的垂线, 垂足为A, 则
SOAP 1 1 1 OA AP | m | | n | | k | 2 2 2
y P(m,n) y P(m,n) o A x
o
A
x
(2)过P分 别 作 轴, y轴 的 垂 线垂 足 分 别 为 , B, x , A 则S矩 形OAPB OA AP | m | | n || k | (如 图 所 示 ).
. .
R2
小明向老师借了一个电流表,通过测量 得出I1=0.4A,I2=0.17A,因此他断言 R2=20Ω.你能说明他是怎样得出结论的吗?
y 20.∠A=900,∠B=600,AB=1,斜边BC在x轴上,点A 在函数 y 3 图象上,且点A在第一象限.求:点C x 的坐标.
1 C( ,0) 2
面积性质(二)
y
y
B
P(m,n)
A
B
P(m,n) A
o
x
o
x
( 3)设P ( m, n)关 于 原 点 的 对 称 点 是( m, n), 过P作x轴 的 垂 线 P 与 过P作y轴 的 垂 线 交 于 点, 则 A
S 1 | AP AP | 1 | 2m | | 2n | 2 | k | (如 图 所 示 ). 2 ΔPAP 2
k 4.已知反比例函数 y (k≠0) x
当x<0时,y随x的增大而减小, k>0
则一次函数y=kx-k的图象不经过第 二 象限. k>0 ,-k<0
y
o
x
5.已知点A(-2,y1),B(-1,y2) 都在反比例函数 为
y1> y2
4 y x
的图象上,
则y1与y2的大小关系(从大到小)
.
5.已知点A(-2,y1),B(-1,y2)
2 6.如图,点P是反比例函数 y 图象上 x 的一点,PD⊥x轴于D.则△POD的面积
为 1 .
y
P (m,n)
o
D
x
1 7.如图, A, B是函数y 的图 像上关于 原点O对称 x 的任意 两点 AC平 C平 行 , B C平 C平 行 ,ΔABC的 轴 轴 C 面积为 S ,则___.
C RtΔOCD 的面积为 S 2 , 则_ _ _ . A.S1>S2 B.S1<S2 C.S1 = S2 D.S1和S2的大小关系不能确定.
由上述性质1可知选C
y
o
S2
S1
A
B
x
C
D
k 9.如图, P是反比例函数 图像上的一点由P分别 y , x 向x轴, y轴引垂线,阴影部分面积为 , 则这个反比例 3 函数的解析式是____.
为
y1 >0>y2
.
A
y
y1
o
x2
x
B
x1
y2
5.已知点A(-2,y11),B(-1,y2),C(4,y3) A(-2,y ),B(-1,y2) 都在反比例函数 为