2020届高考数学一轮复习讲义(提高版) 专题9.5 空间几何体中的垂直(解析版)
2020年高考数学一轮复习专题9.7空间向量在几何体中的运用(一)练习(含解析)
9.7 空间向量在空间几何体的运用(一)一.设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为1n ,2n ,则有如下结论:二.点面距已知AB 为平面α的一条斜线段(A 在平面α内),n 为平面α的法向量,则B 到平面α的距离为|||cos ,|||||||||AB d AB AB AB AB ⋅===<>n n n ||||AB ⋅n n .注:空间中其他距离问题一般都可以转化为点面距问题.考向一 利用空间向量证明平行【例1】在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是CC 1,B 1C 1的中点.求证:MN ∥平面A 1BD . 【答案】见解析【解析】法一 如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,于是DA 1→=(1,0,1),DB →=(1,1,0),MN →=⎝ ⎛⎭⎪⎫12,0,12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥DA 1→,n ⊥DB →,即⎩⎪⎨⎪⎧n ·DA 1→=x +z =0,n ·DB →=x +y =0,取x =1,则y =-1,z =-1,∴平面A 1BD 的一个法向量为n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n .∴MN ∥平面A 1BD .法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,∴MN ∥平面A 1BD .法三 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12DA →-12A 1A →=12()DB →+BA →-12()A 1B →+BA →=12DB →-12A 1B →. 即MN →可用A 1B →与DB →线性表示,故MN →与A 1B →,DB →是共面向量,故MN ∥平面A 1BD . 【拓展】1.(变条件)本例中条件不变,试证明平面A 1BD ∥平面CB 1D 1.[证明] 由例题解析知,C (0,1,0),D 1(0,0,1),B 1(1,1,1), 则CD 1→=(0,-1,1),D 1B 1→=(1,1,0), 设平面CB 1D 1的法向量为m =(x 1,μ1,z 1),则⎩⎪⎨⎪⎧m ⊥CD 1→m ⊥D 1B 1→,即⎩⎪⎨⎪⎧m ·CD 1→=-y 1+z 1=0,m ·D 1B 1→=x 1+y 1=0,令y 1=1,可得平面CB 1D 1的一个法向量为m =(-1,1,1), 又平面A 1BD 的一个法向量为n =(1,-1,-1). 所以m =-n ,所以m ∥n ,故平面A 1BD ∥平面CB 1D 1. 2.(变条件)若本例换为:在如图324所示的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD ∥EF ,EF ∥BC ,BC =2AD =4,EF =3,AE =BE =2,G 是BC 的中点,求证:AB ∥平面DEG .图324[证明] ∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB , ∴EF ⊥AE ,EF ⊥BE .又∵AE ⊥EB ,∴EB ,EF ,EA 两两垂直.以点E 为坐标原点,EB ,EF ,EA 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2),G (2,2,0),∴ED →=(0,2,2),EG →=(2,2,0),AB →=(2,0,-2).设平面DEG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ED →·n =0,EG →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,2x +2y =0,令y =1,得z =-1,x =-1,则n =(-1,1,-1), ∴AB →·n =-2+0+2=0,即AB →⊥n . ∵AB ⊄平面DEG , ∴AB ∥平面DEG .考向二 垂直、【例2】如图1,在四棱锥S ABCD -中,底面ABCD 是正方形,AS ⊥底面ABCD ,且A S A B =,E 是SC 的中点.求证:(1)直线AD ⊥平面SAB ; (2)平面BDE ⊥平面ABCD .图1 图2【答案】见解析【解析】如图2,以A 为原点, AB ,AD ,AS 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Axyz ,设2AS AB ==,则(0,0,0)A ,(0,2,0)D ,(2,2,0)C ,(2,0,0)B ,(0,0,2)S ,(1,1,1)E 易得(0,0,2)AS =,(2,0,0)AB =设平面SAB 的法向量为(,,)x y z =n ,则AS AB ⎧⎪⎨⎪⎩⊥⊥n n ,即2020AS z AB x ⎧⋅==⎪⎨⋅==⎪⎩n n取1y =,可得平面SAB 的一个法向量为(0,1,0)=n又(0,2,0)AD =,所以2AD =n ,所以AD ∥n ,所以直线AD ⊥平面SAB 方法1:如图2,连接AC 交BD 于点O ,连接OE ,则点O 的坐标为(1,1,0) 易得(0,0,1)OE =,(0,0,2)AS =,显然2AS OE =,故AS OE ∥,所以AS OE ∥ 又AS ⊥底面ABCD ,所以OE ⊥底面ABCD 又OE ⊂平面BDE ,所以平面BDE ⊥平面ABCD 方法2:易得(1,1,1)BE =-,(2,2,0)BD =-设平面BDE 的法向量为(,,)x y z =m ,则BE BD ⎧⎪⎨⎪⎩⊥⊥m m ,即0220BE x y z BD x y ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩m m取1x =,得1y =,0z =,所以平面1A BD 的一个法向量为(1,1,0)=mAS ⊥底面ABCD ,可得(0,0,2)AS =是平面ABCD 的一个法向量因为(0,0,2)(1,1,0)0AS ⋅=⋅=m ,所以AS ⊥m ,所以平面BDE ⊥平面ABCD【举一反三】1.如图所示,正三棱柱ABC A 1B 1C 1的所有棱长都为2,D 为CC 1的中点,求证:AB 1⊥平面A 1BD .【答案】见解析【解析】法一:如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以OB →,OO 1→,OA →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系, 则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 所以AB 1→=(1,2,-3),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为AB 1→·BA 1→=1×(-1)+2×2+(-3)×3=0.AB 1→·BD →=1×(-2)+2×1+(-3)×0=0.所以AB 1→⊥BA 1→,AB 1→⊥BD →,即AB 1⊥BA 1,AB 1⊥BD . 又因为BA 1∩BD =B ,所以AB 1⊥平面A 1BD . 法二:建系同方法一.设平面A 1BD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥BA 1→n ⊥BD→,即⎩⎪⎨⎪⎧n ·BA 1→=-x +2y +3z =0,n ·BD →=-2x +y =0,令x =1得平面A 1BD 的一个法向量为n =(1,2,-3), 又AB 1→=(1,2,-3),所以n =AB 1→,即AB 1→∥n . 所以AB 1⊥平面A 1BD .考向三 利用空间向量解决平行与垂直关系中的探索性问题【例3】如图,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,BC ⊥AC ,BC =AC =AA 1=2,D 为AC 的中点.(1)求证:AB 1∥平面BDC 1;(2)设AB 1的中点为G ,问:在矩形BCC 1B 1内是否存在点H ,使得GH ⊥平面BDC 1.若存在,求出点H 的位置,若不存在,说明理由. 【答案】见解析【解析】(1)证明:连接B 1C ,设B 1C ∩BC 1=M ,连接MD ,在△AB 1C 中,M 为B 1C 中点,D 为AC 中点, ∴DM ∥AB 1,又∵AB 1不在平面BDC 1内,DM 在平面BDC 1内, ∴AB 1∥平面BDC 1.(2)以C 1为坐标原点,C 1A 1→为x 轴,C 1C →为y 轴,C 1B 1→为z 轴建立空间直角坐标系. 依题意,得C 1(0,0,0),D (1,2,0),B (0,2,2),G (1,1,1),假设存在H (0,m ,n ), GH →=(-1,m -1,n -1),C 1D →=(1,2,0),DB →=(-1,0,2),由GH ⊥平面BC 1D ,得GH →⊥C 1D →⇒(-1,m -1,n -1)·(1,2,0)=0⇒m =32.同理,由GH →⊥DB →得n =12,即在矩形BCC 1B 1内存在点H ,使得GH ⊥平面BDC 1.此时点H 到B 1C 1的距离为32,到C 1C 的距离为12.【举一反三】1.如图所示,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,E ,F 分别为PA ,BD 中点,PA =PD =AD =2.(1)求证:EF ∥平面PBC ;(2)在棱PC 上是否存在一点G ,使GF ⊥平面EDF ?若存在,指出点G 的位置;若不存在,说明理由.【答案】见解析【解析】(1)证明:如图所示,连接AC .因为底面ABCD 是正方形,AC 与BD 互相平分.F 是BD 中点,所以F 是AC 中点.在△PAC 中,E 是PA 中点,F 是AC 中点,所以EF ∥PC . 又因为EF ⊄平面PBC ,PC ⊂平面PBC ,所以EF ∥平面PBC . (2)取AD 中点O ,连接PO .在△PAD 中,PA =PD ,所以PO ⊥AD .因为平面PAD ⊥底面ABCD ,且平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD . 因为OF ⊂平面ABCD ,所以PO ⊥OF . 又因为F 是AC 中点,所以OF ⊥AD .以O 为原点,OA ,OF ,OP 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.因为PA =PD =AD =2,所以OP =3,则C (-1,2,0),D (-1,0,0),P (0,0,3),E ⎝ ⎛⎭⎪⎫12,0,32,F (0,1,0).于是DE →=⎝ ⎛⎭⎪⎫32,0,32,DF →=(1,1,0).设平面EFD 的法向量n =(x 0,y 0,z 0).因为⎩⎪⎨⎪⎧n ·DF →=0,n ·DE →=0,所以⎩⎪⎨⎪⎧x 0+y 0=0,32x 0+32z 0=0,即⎩⎨⎧y 0=-x 0,z 0=-3x 0.令x 0=1,则n =(1,-1,-3).假设在棱PC 上存在一点G ,使GF ⊥平面EDF . 设G (x 1,y 1,z 1),则FG →=(x 1,y 1-1,z 1). 因为EDF 的一个法向量n =(1,-1,-3). 因为GF ⊥平面EDF ,所以FG →=λn .于是⎩⎨⎧x 1=λ,y 1-1=-λ,z 1=-3λ,即⎩⎨⎧x 1=λ,y 1=1-λ,z 1=-3λ.又因为点G 在棱PC 上,所以GC →与PC →共线.因为PC →=(-1,2,-3),CG →=(x 1+1,y 1-2,z 1), 所以x 1+1-1=y 1-22=z 1-3, 即1+λ-1=-λ-12=-3λ-3,无解.故在棱PC 上不存在一点G ,使GF ⊥平面EDF . 考向四 点面距【例4】如图,已知正方体1111ABCD A B C D -的棱长为3a ,求平面11AB D 与平面1BDC 之间的距离..【解析】由正方体的性质,易得平面11AB D ∥平面1BDC , 则两平面间的距离可转化为点B 到平面11AB D 的距离.如图,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,【举一反三】1.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao ).已知在鳖臑P ABC -中,PA ⊥平面ABC ,2PA AB BC ===,M 为PC 的中点,则点P 到平面MAB 的距离为_____.【解析】以B 为坐标原点,BA,BC 所在直线分别为x 轴,y 轴建立空间直角坐标系,如图,则()()()()0,0,0,2,0,0,2,0,2,0,2,0B A P C ,由M 为PC 的中点可得()1,1,1M ;()()1,1,1,2,0,0BM BA ==, ()2,0,2BP =.设(),,x y z =n 为平面ABM 的一个法向量,则00n BA n BM ⎧⋅=⎨⋅=⎩,即200x x y z =⎧⎨++=⎩,令1z =-,可得()0,1,1=-n ,点P 到平面MAB 的距离为BP d ⋅==n n.1.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点A 关于平面BDC 1对称点为M ,则M 到平面A 1B 1C 1D 1的距离为( )A .32B .54C .43D .53【答案】D【解析】以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系,D (0,0,0),B (1,1,0),C 1(0,1,1),A (1,0,0),A 1(1,0,1),DB =(1,1,0),1DC =(0,1,1), 设平面BDC 1的法向量n =(x ,y ,z ),则100n DB x y n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x=1,得n =(1,-1,1),∴平面BDC 1的方程为x-y+z=0,过点A (1,0,0)且垂直于平面BDC 1的直线方程为: (x-1)=-y=z ,令(x-1)=-y=z=t ,得x=t+1,y=-t ,z=t ,代入平面方程x-y+z=0,得t+1+t+t=0,解得t=13- ,∴过点A (1,0,0)且垂直于平面BDC 1的直线方程与平面BDC 1的交点为211333⎛⎫ ⎪⎝⎭,,-∴点A 关于平面BDC 1对称点M 122333⎛⎫ ⎪⎝⎭,,-, 1225333A M ⎛⎫=- ⎪⎝⎭,,-,平面A 1B 1C 1D 1的法向量m =(0,0,1),∴M 到平面A 1B 1C 1D 1的距离为d=15=3m A M m⋅故选:D . 2.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )AB.2C.3λ D【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED =(﹣2,0,1),EF =(0,2,0)1sin()cos 22C C π+===(0,λ,1), 设平面D 1EF 的法向量n =(x ,y ,z ),则1·20·20n ED x z n EF y ⎧=-+=⎨==⎩,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d=5EM n n==N 为EM 中点,所以N ,选D .3.如图:正三棱柱111ABC A B C -的底面边长为3,D 是CB 延长线上一点,且BD BC =,二面角1B AD B --的大小为60︒;(1)求点1C 到平面1B AD 的距离;(2)若P 是线段AD 上的一点 ,且12DP A A =,在线段1DC 上是否存在一点Q ,使直线//PQ 平面1ABC ?若存在,请指出这一点的位置;若不存在,请说明理由.【答案】(1)4; (2)存在,当113C Q QD =时,1//PQ AC 知//PQ 平面1ABC . 【解析】(1)设E 为AD 的中点,则BE AD ⊥,在正三棱柱111ABC A B C -中,1BB ⊥平面ABC ,而AD ⊂平面ABC ,所以1BB AD ⊥,而1BB EB B =,因此AD ⊥平面1BB E ,而1B E ⊂平面1BB E ,所以有1B E AD ⊥1BEB ∴∠为二面角1B AD B --的平面角,如下图所示:160BEB ∴∠=︒120ABD ∠=︒,32BE =,11tan BB BEB BE ∴∠==侧棱11AA BB ==;111111C ADB A C DB A BB C V V V ---==11273328⎛=⨯= ⎝⎭又AD =11AB B D ==知1112ADB S AD B E ∆=⋅=∴点1C 到平面1ADB 的距离2738d =⨯=(2)由(1)可知AD =1AA =,12DP AA =,13AP PD ∴=,当113C Q QD =时,有1//PQ AC 成立,而 1AC ⊂平面1ABC ,所以 //PQ 平面1ABC ,故存在,当113C Q QD =时,符合题意。
高考数学一轮复习 直线、平面垂直的性质定理课件
故C错误.
02
研考点 题型突破
题型一 直线与平面垂直的性质
典例1 如图,PA ⊥ 平面ABD,PC ⊥ 平面BCD,E,F分别为BC,CD上的点,
且EF ⊥
CF
AC.求证:
DC
=
CE
.
BC
证明 ∵ PA ⊥平面ABD,PC ⊥ 平面BCD,
②线(三垂线定理):过二面角的一个面内的一点作另一个平面的垂线,过垂足作棱的
垂线,利用线面垂直可找到二面角的平面角或其补角.
③面(垂面法):过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,
这两条交线所成的角即是二面角的平面角.
(2)求(求二面角的平面角的余弦值或正弦值).
①在三角形中,利用余弦定理求值;
PD ⊥ 平面PBC.
证明 由题设,知BC ⊥ CD,又平面PDC ⊥ 平面ABCD,平面PDC ∩ 平
面ABCD = CD,BC ⊂ 平面ABCD,
所以BC ⊥ 平面PDC,
而PD ⊂ 平面PDC,则BC ⊥ PD.
由∠DPC = 90∘ ,得PC ⊥ PD.
又BC ∩ PC = C,BC,PC ⊂ 平面PBC,则PD ⊥ 平面PBC.
又BC ⊂ 平面PBC,所以AD ⊥ BC.
因为PA ⊥ 平面ABC,BC ⊂ 平面ABC,
所以PA ⊥ BC.
因为AD ∩ PA = A,AD,PA ⊂ 平面PAC,
所以BC ⊥ 平面PAC.
又AC ⊂ 平面PAC,所以BC ⊥ AC.
规律方法
(1)在应用面面垂直的性质定理时,若没有与交线垂直的直线,则一般需作辅助线,基
高考数学一轮总复习 第八单元 立体几何 课时5 空间中的垂直关系课件 文
第六页,共三十八页。
1.若两平行线中的一条垂直于一个平面,则另一条也 垂直于这个平面.
2.若一条直线垂直于一个平面,则它垂直于这个平面 内的任何一条直线(证明线线垂直的一个重要方法).
3.垂直于同一条直线的两个平面平行. 4.一条直线垂直于两个平行平面中的一个,则这一条 直线也与另一个平面也垂直.
第三十二页,共三十八页。
证明:(1)在平面 ABD 内,因为 AB⊥AD,EF⊥AD,
(2)性质定理:垂直于同一平面的两条直线 平行 . (píngxíng) 用符号语言表示为:a⊥α,b⊥α⇒ a∥b .
2021/12/13
第五页,共三十八页。
3.两平面垂直的判定
(1)利用定义:两个平面相交,若所成的二面角为 90°,
则称这两个平面互相垂直.
(2) 判 定 定 理 : 如 果 一 个 平 面 经 过 另 一 个 平 面 的 一
2021/12/13
第二十四页,共三十八页。
因为 FE⊂平面 PCE,所以平面 PAC⊥平面 PCE. 因为 PA⊥平面 ABCD,BD⊂平面 ABCD, 所以 PA⊥BD. 因为四边形 ABCD 是菱形,所以 BD⊥AC. 因为 PA∩AC=A,所以 BD⊥平面 PAC. 因为 BD∥EF,所以 EF⊥平面 PAC.
2021/12/13
第二十页,共三十八页。
【变式探究(tànjiū)】
1.四面体 ABCD 中,AC=BD,E、F 分别是 AD、BC 的中点,且 EF= 22AC,∠BDC=90°,求证:BD⊥平面 ACD.
2021/12/13
第二十一页,共三十八页。
证明:取 CD 的中点 G,连接 EG、FG,
第二十三页,共三十八页。
20届高考数学一轮复习讲义(提高版) 专题9.4 空间几何体中平行(解析版)doc
9.4 空间多少何中平行咨询题一.线面平行的断定定理跟性子定理考向一 线面平行【例1】〔1〕如图1,在四棱锥中,底面是菱形,是线段上的中点,证实 : 立体〔2〕如图2,ABCD 是菱形,AF//DE ,DE =2AF . 求证:AC//立体BEF . 〔3〕如图3,在直角梯形中, ,截面交于点,求证: ;〔4〕如图4,三棱锥中, 是的中点, 是的中点,点在上且,证实 : 立体;〔5〕如图5,菱形ABCD 与正三角形BCE 的边长均为2,且立体ABCD ⊥立体BCE ,立体ABCD ,.求证:立体ABCD ;〔6〕如图6,曾经明白P 是正方形ABCD 地点 立体外一点,M ,N 分不是PA ,BD 上的点,且PM ∶MA =BN ∶ND =5∶8. 求证:直线MN ∥立体PBC .【谜底 】见地析图4图5图6【剖析 】〔1〕衔接交于,衔接,如图A ∵底面是菱形,∴是中点,又∵是的中点, ∴,且立体, 立体,∴立体.〔2〕证实 :设AC ∩BD =O ,取BE 中点G ,贯穿连接 FG,OG ,如图B 因而 ,OG//12DE 且OG =12DE .由于AF//DE ,DE =2AF ,因而 AF//OG 且AF =OG ,从而四边形AFGO 是平行四边形,FG//AO . 由于FG ⊂立体BEF ,AO ⊄立体BEF ,因而 AO//立体BEF ,即AC//立体BEF . 〔3〕 立体又立体 立体〔4〕证实 :如图,取AD 中点G ,衔接GE ,GF ,如图C 那么GE//AC ,GF//AB , 由于GE ∩GF=G ,AC ∩AB=A ,因而 立体GEF//立体ABC ,因而 EF//立体ABC . 〔5〕证实 :如图,过点作于,衔接,∴.如图D ∵立体⊥立体,立体, 立体立体 , ∴⊥立体, 又∵⊥立体,, ∴,.∴四边形为平行四边形. ∴.∵立体,立体, ∴立体.(6)∵MN ⃑⃑⃑⃑⃑⃑⃑ =MP ⃑⃑⃑⃑⃑⃑ +PB ⃑⃑⃑⃑⃑ +BN ⃑⃑⃑⃑⃑⃑ =PM ⃑⃑⃑⃑⃑⃑ +PB ⃑⃑⃑⃑⃑ +BN ⃑⃑⃑⃑⃑⃑ =513PA ⃑⃑⃑⃑⃑ +PB ⃑⃑⃑⃑⃑ +513BD ⃑⃑⃑⃑⃑⃑ =513(BA ⃑⃑⃑⃑⃑ −BP ⃑⃑⃑⃑⃑ )+PB ⃑⃑⃑⃑⃑ +513(BA ⃑⃑⃑⃑⃑ +BC ⃑⃑⃑⃑⃑ )=513BP ⃑⃑⃑⃑⃑ −BP ⃑⃑⃑⃑⃑ +513BC ⃑⃑⃑⃑⃑ =513BC ⃑⃑⃑⃑⃑ −813BP ⃑⃑⃑⃑⃑ ∴MN ⃑⃑⃑⃑⃑⃑⃑ 与BC ⃑⃑⃑⃑⃑ ,BP ⃑⃑⃑⃑⃑ 共面.∴MN⃑⃑⃑⃑⃑⃑⃑ ∥立体PBC .∵MN⊄立体PBC,∴MN∥立体PBC.【触类旁通】1.如图,在直三棱柱ABC—A1B1C1中,,点M,N分不为A1C1,AB1的中点,证实:MN∥立体BB1C1C【谜底】见地析【剖析】证实:衔接A1B,BC1,点M,N分不为A1C1,AB1的中点,因而MN为△A1BC1的一条中位线,MN∥BC1,又由于MN⊄立体BB1C1C,BC1⊂立体BB1C1C,因而MN∥立体BB1C1C.2.如图四边形ABCD是平行四边形CDEF为直角梯形,AD=2DC=DE=2CF.求证:BF//立体ADE;【谜底】见地析【剖析】取DE的中点H,衔接AH,HF.∵四边形CDEF为直角梯形,DE=2CF,H是DE的中点,∴HF=DC,且HF//DC.∵四边形ABCD是平行四边形,∴AB=DC,且A B//DC,∴AB=HF,且AB//HF,∴四边形ABFH是平行四边形,∴BF//AH.∵AH⊂立体ADE,BF⊄立体ADE,∴BF//立体ADE.3.如下列图,,为棱的中点,求证: 立体【谜底】见地析【剖析】证实:如图,取中点,衔接,由于为中点,因而且,,因而且,因而四边形为平行四边形,因而 .立体,立体,∴立体.4.如以下列图,在多少何体中,四边形为正方形,是线段的中点,,是线段上的中点,求证:【谜底】见地析【剖析】解法一:取的中点,衔接,是线段的中点,且,四边形为正方形,是线段上的中点且,∴且,四边形是平行四边形,,,。
考点24 空间几何中的垂直(解析版)
考点24 空间几何中的垂直知识理解一.直线与平面垂直(1)直线和平面垂直的定义:直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直(2)直线与平面垂直的判定定理及性质定理:二.平面与平面垂直的判定定理与性质定理三.证明线线垂直的思路平行四边形:正方形、菱形、矩形图形三角形:等腰(等边)三角形--取中点正余弦定理边关系或边长勾股逆定理线面垂直的定义面面垂直的性质⎧⎧⎪⎪⎨⎪⎩⎪⎪⎧⎪⎪⎨⎨⎪⎩⎪⎪⎪⎪⎩ 考向一 线面垂直【例1】3.(2021·江西吉安市·高三期末节选)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=︒,22AD DC BC ===,PAD △为正三角形,Q 为AD 的中点,求证:AD ⊥平面PBQ【答案】证明见解析【解析】∵PAD △为正三角形,Q 为AD 的中点,∴PQ AD ⊥.∵//AD BC ,2AD DC BC ==,Q 为AD 的中点.∴四边形BCDQ 为平行四边形,∴//BQ CD . 又90ADC ∠=︒,∴90AQB ∠=︒,即BQ AD ⊥.又PQBQ Q =,∴AD ⊥平面PBQ.考向分析【举一反三】1.(2021·河南信阳市节选)如图所示,四棱锥S ABCD -中,//AB CD ,AD DC ⊥,2224CD AD AB SD ====,SD ⊥平面ABCD ,求证:BC ⊥平面SBD【答案】证明见解析【解析】证明://,,2AB CD AD DC AB AD ⊥==,BD BC ∴==又4CD =,222CD BD BC ∴=+,故BC BD ⊥, 又SD ⊥平面,ABCD BC ⊂平面ABCD ,BC SD ∴⊥, 又SD BD D =,BC ∴⊥平面SBD .2.(2021·江西赣州市节选)如图,已知三棱柱111ABC A B C -的所有棱长均为2,13B BA π∠=,证明:1B C ⊥平面1ABC【答案】证明见解析【解析】证明:如图取AB 中点D ,连接1,B D CD .因为四边形11BCC B 为菱形,所以11B C BC ⊥ 又因为三棱柱的所有棱长均为2,13B BA π∠=,所以ABC 和1ABB △是等边三角形,所以1,B D AB CD AB ⊥⊥因为1,B D CD ⊂平面11,B CD B D CD D ⋂=,所以AB ⊥平面1B CD 所以1B C AB ⊥,而1BC AB B ,所以1B C ⊥平面1ABC3.(2020·山东德州市节选)如图,四棱锥P ABCD -中,四边形ABCD 是边长为2的正方形,PAD ∆为等边三角形,,E F 分别为PC 和BD 的中点,且EF CD ⊥,证明:CD ⊥平面PAD【答案】证明见解析【解析】如图所示,连接AC ,由ABCD 是边长为2的正方形, 因为F 是BD 的中点,可得AC 的中点,在PAC △中,因为,E F 分别是,PC AC 的中点,可得//EF PA , 又因为EF CD ⊥,所以PA CD ⊥,又由AD CD ⊥,且ADAP A =,所以CD ⊥平面PAD .考向二 面面垂直【例2】(2021·河南高三期末节选)如图,直四棱柱1111ABCD A B C D -的底面ABCD 为平行四边形,3AD =,5AB =,3cos 5BAD ∠=,1BD DD =,E 是1CC 的中点,求证:平面DBE ⊥平面1ADD【答案】证明见解析【解析】由题意可得2222cos 16BD AD AB AB AD BAD =+-⨯∠=, 所以222AD BD AB +=,因此AD BD ⊥. 在直四棱柱1111ABCD A B C D -中,1DD ⊥平面ABCD ,BD ⊂平面ABCD ,所以1.DD BD ⊥又因为1ADDD D =,1,AD DD ⊂平面1ADD ,所以BD ⊥平面1ADD ,因为BD ⊂平面DBE ,所以平面DBE ⊥平面1ADD . 【举一反三】1.(2021·河南焦作市节选)如图所示,在四棱锥РABCD -中,底面ABCD 是菱形,PA ⊥平面,ABCD 点Q 为线段PC 的中点,求证:平面BDQ ⊥平面PAC【答案】证明见解析【解析】因为四边形ABCD 是菱形,所以,AC BD ⊥ 因为PA ⊥平面,ABCD BD ⊂平面,ABCD 所以,BD PA ⊥ 又因为,PA AC A ⋂=所以BD ⊥平面,PAC 因为BD ⊂平面,BDQ 所以平面BDQ ⊥平面PAC .2.(2021·山东青岛市·高三期末节选)如图,在直角梯形ABED 中,//BE AD ,DE AD ⊥,BC AD ⊥,4AB =,BE =将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE ,若BC BE =,证明:平面ABD ⊥平面ACE【答案】证明见解析【解析】证明:连接BD ,因BC BE =所以BD CE ⊥ 因为平面ABC ⊥平面BCDE ,平面ABC 平面BCDE BC =,AC BC ⊥所以AC ⊥平面BCDE因为BD ⊂平面BCDE ,所以AC BD ⊥ 因为ACCE C =,所以BD ⊥平面ACE因为BD ⊂平面ABD ,所以平面ABD ⊥平面ACE3.(2021·安徽马鞍山市节选)如图,BE ,CD 为圆柱的母线,ABC 是底面圆的内接正三角形,M 为BC 的中点,证明:平面AEM ⊥平面BCDE【答案】证明见详解【解析】根据题意可得,AM BC ⊥. 又BE 为圆柱的母线,BE ∴⊥平面ABC .BE AM ∴⊥,BC BE B =,AM ∴⊥平面BCDE .又AM ⊂平面AEM ,∴平面AEM ⊥平面BCDE .考向三 线线垂直【例3】(2021·江西宜春市·高安中学节选)如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=,已知2,PB PD PA ===,E 为PA 的中点,求证PC BD ⊥【答案】证明见解析【解析】,AC BD 交点为O ,连接PO ,ABCD 是边长为2的菱形,,AC BD O ∴⊥是,AC BD 的中点,,PD O B BD P P =∴⊥,又PO ⊂平面POC ,AC ⊂平面POC ,POAC O =,BD ∴⊥平面POC ,PC ⊂平面POC ,.C BD P ∴⊥【举一反三】1.(2021·江苏南通市·高三期末节选)如图,在四棱锥A BCDE -中,//BC DE ,22BC DE ==,BC CD ⊥,F 为AB 的中点,BC EF ⊥,求证:AC BC ⊥【答案】证明见解析【解析】取AC 中点M ,连接FM ,DM ,,F M 分别为AB ,AC 中点,12FMBC ∴, 1,2DEBC FM DE ∴, ∴四边形DEFM 是平行四边形,//DM EF ∴,,EF BC DM BC ⊥∴⊥,,,CD DM CD DM ⊥⊂平面ACD ,CD DM D ⋂=,BC ∴⊥平面CDM ,AC ⊂平面CDM ,BC AC ∴⊥;2.(2020·山东德州市节选)如图,已知四棱锥P ABCD -中,底面ABCD 为菱形,60,ABC PA ∠=︒⊥平面,,ABCD E F 分别为,BC PA 的中点.(1)求证:AE PD ⊥; (2)求证://EF 平面PCD .【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)连AC ,60ABC ∠=,底面ABCD 为菱形,ABC ∴是等边三角形, BE EC =,AE BC ∴⊥,又//BC AD ,AE AD ∴⊥,又PA ⊥面,ABCD AE ⊂面ABCD ,PA AE ∴⊥, PA AD A ⋂=,AE ∴⊥面,PAD PD ⊂面PAD ,AE PD ∴⊥.()2取PD 的中点M ,连,FM MC ,PF FA =,所以11//,22FM AD FM AD =, 又11//,22EC AD EC AD =, //,FM EC FM EC ∴=, ∴四边形FECM 是平行四边形,//EF MC ∴,又EF ⊄面,PCD MC ⊂面PCD ,//EF ∴面PCD .3.(2021·山东枣庄市节选)如图,四棱锥P ABCD -的侧面PAD △是正三角形,底面ABCD 是直角梯形,90BAD ADC ∠=∠=,22AD AB CD ===,M 为BC 的中点,求证:PM AD ⊥【答案】(1)证明见解析;(2)7. 【解析】证明:取AD 中点N ,连PN ,NM , 因为PAD △是正三角形,所以PNAD .又M 是BC 中点,所以//NM AB .因为90BAD ∠=,即AB AD ⊥.所以NM AD ⊥,因为NM PN N ⋂=,NM 、PN ⊂平而PMN , 所以AD ⊥平面PMN ,PM ⊂平面PMN ,所以AD PM ⊥.1.(2021·山东泰安市·高三期末节选)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60BAD ∠=︒,PB PD =,F 为PC 上一点,过AF 作与BD 平行的平面AEFG ,分别交PD ,PB 于点E ,G ,证明:EG ⊥平面PAC【答案】证明见解析【解析】证明:连接BD ,交AC 于点O ,连接PO . ∵//BD 平面AEFG ,平面PBD平面AEFG EG =,BD ⊂平面PBD ,∴//EG BD .∵底面ABCD 是菱形,∴AC BD ⊥,且O 为AC ,BD 中点,强化练习又PB PD =,∴PO BD ⊥,又AC PO O =,,AC PO ⊂平面PAC ,∴BD ⊥平面PAC ,∴EG ⊥平面PAC .2.(2021·浙江金华市·高三期末节选)在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA PB AB ====,)证明:PC ⊥平面ABC【答案】证明见解析;【解析】证明:取AB 中点D ,连接PD ,DC∵PA PB =,AC BC =,则AB PD ⊥,AB DC ⊥, 而PD DC D ⋂=,∴AB ⊥平面PDC , 因为PC ⊂平面PDC ,故AB PC ⊥.在ABC 中,AB ==,故222AB AC BC =+,∴BC AC ⊥.又∵平面PAC ⊥平面ABC ,且交线为AC ,BC ⊂平面ABC , ∴BC ⊥平面PAC ,因为PC ⊂平面PAC ,故BC PC ⊥. 因为AB BC B ⋂=,∴PC ⊥平面ABC .3.(2021·河南焦作市节选)如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点,求证:DE ⊥平面PAH【答案】证明见解析【解析】因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBA EAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .4.(2021·浙江温州市节选)如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为形,PB =60PBC ∠=,点F 为线段AP 的中点,证明:PC ⊥平面ABC【答案】证明见解析【解析】在PBC 中,PB =BC =60PBC ∠=,由余弦定理可得2222cos 36PC PB BC PB BC PBC =+-⋅∠=,222PC BC PB ∴+=,PC BC ∴⊥,PC AB ⊥,AB BC B ⋂=,PC ∴⊥平面ABC ;5.(2021·陕西咸阳市·高三一模节选)如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PC AC ⊥,BC AC ⊥,2AC PC ==,4CB =,M 是PA 的中点,求证:PA ⊥平面MBC【答案】证明见解析【解析】平面PAC ⊥平面ABC ,平面PAC 平面ABC =AC ,BC ⊂平面ABC ,BC AC ⊥,∴BC ⊥平面PAC , ∵PA ⊂平面PAC , ∴BC PA ⊥,∵AC PC =,M 是PA 的中点, ∴CM PA ⊥, ∵CMBC C =,,CM BC ⊂平面MBC ,∴PA ⊥平面MBC .6.(2021·浙江金华市节选)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD AB ==,平面PCD ⊥平面ABCD ,若E 为PC 的中点,求证:DE ⊥平面PBC【答案】证明见解析【解析】因为平面PCD ⊥平面ABCD ,且平面PCD平面ABCD CD =,底面ABCD 为矩形,所以BC CD ⊥,又CD ⊂平面PDC ,所以BC ⊥平面PDC ,又DE ⊂平面PDC ,所以BC DE ⊥;因为PD AB DC ==,所以PDC △为等腰三角形,E 为PC 的中点,所以DE CP ⊥,因为CPBC C =,,BC CP ⊂面PBC ,所以DE ⊥面PBC7.(2021·西安市铁一中学节选)如图,在底面为菱形的四棱锥P ABCD -中,60,1,ABC PA AC PB PD ︒∠=====,点E 在PD 上,且2PEED=,求证:PA ⊥平面ABCD【答案】证明见详解【解析】因为底面ABCD 是菱形,60ABC ︒∠=, 所以1AB AC AD ===,在PAB △中,1,PA PB ==由222PA AB PB +=,可得PA AB ⊥.同理,PA AD ⊥,又AB AD A ⋂=所以PA ⊥平面ABCD .8.(2021·河南高三期末节选)如图,直四棱柱1111ABCD A B C D -的底面ABCD 为平行四边形,133,5,cos ,,5AD AB BAD BD DD E ==∠==是1CC 的中点,求证:平面DBE ⊥平面1ADD【答案】证明见解析【解析】由题意可得2222cos 16BD AD AB AB AD BAD =+-⨯∠=, 所以222AD BD AB +=,因此AD BD ⊥,在直四棱柱1111ABCD A B C D -中,1DD ⊥平面ABCD ,所以1DD BD ⊥, 又因为1ADDD D =,所以BD ⊥平面1ADD ,因为BD ⊂平面DBE ,所以平面DBE ⊥平面1ADD .9.(2021·江苏南通市节选)如图,四面体ABCD 中,O 是BD 的中点,点G 、E 分别在线段AO 和BC 上,2BE EC =,2AG GO =,2CA CB CD BD ====,AB AD ==(1)求证://GE 平面ACD ; (2)求证:平面ABD ⊥平面BCD . 【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)连接BG 并延长,交AD 于M ,连接MC ,在ABD △中,O 为BD 中点,G 在AO 上,2AG GO =, ∴G 为ABD △的重心∴21BG GM =, 又21BE EC =∴BG BEGM EC=∴//GE MC , ∵GE ⊄平面ACD ,AC ⊂平面ACD , ∴//GE 平面ACD ;(2)在ABD △中,O 为BD 中点,2BD =,AB AD ==∴AO BD ⊥∴1AO ==,在BCD △中,2BC CD BD ===,O 为BD 中点,连接OC ,则OC =又2CA =,∴222OA OC CA +=,∴AO OC ⊥ 由AO OC ⊥,AO BD ⊥,OC BD O =,,OC BD ⊂平面BCD ,得AO ⊥平面BCD , 又AO ⊂平面ABD , ∴平面ABD ⊥平面BCD .10.(2021·山西吕梁市·高三一模节选)如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SCD为等边三角形, 4AB BC ==,2CD =,SB =BC SD ⊥【答案】证明见解析【解析】由已知4BC =,2SC =,SB =222SB BC SC =+,所以90BCS ∠=︒,所以BC CS ⊥,又,BC CD CDCS C ⊥=,所以BC ⊥平面SCD ,又SD ⊂平面SCD ,所以BC SD ⊥.11.(2021·云南高三期末)如图所示,在正方体ABCD A B C D ''''-中,点M 为线段B D ''的中点.(1)求证:DD AC '⊥; (2)求证://BM平面ACD '.【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)在正方体ABCD A B C D ''''-中, ∵DD AD '⊥,DD CD '⊥,且CDAD D =,∴DD '⊥平面ACD ,AC ⊂平面ACD . ∴DD AC '⊥(2)如图所示,连接BD ,交AC 于N ,连接D N '.由题设得:BN MD '=,//BN MD ', ∴四边形BMD N '为平行四边形. ∴//BM ND '.又∵ND '⊂平面ACD ',BM ⊄平面ACD ', ∴//BM平面ACD '.12.(2021·江西景德镇市节选)如图,已知四棱锥S ABCD -,其中//AD BC ,AB AD ⊥,45BCD ∠=,22BC AD ==,侧面SBC ⊥底面ABCD ,E 是SB 上一点,且ECD 是等边三角形,求证:CE ⊥平面SAB【答案】证明见解析 【解析】//AD BC ,AB AD ⊥,AB BC ∴⊥,侧面SBC ⊥底面ABCD ,侧面SBC底面ABCD BC =,AB平面ABCD ,AB ∴⊥平面SBC ,CE ⊂平面SBC ,CE AB ∴⊥,如下图所示,取BC 的中点F ,连接DF 、EF ,2BC AD =,且F 为BC 的中点,则AD BF =,//BC AD ,则//AD BF ,所以,四边形ABFD 为平行四边形,则//DF AB , DF ⊥∴平面SBC ,EF 、BC ⊂平面SBC ,DF EF ∴⊥,DF BC ⊥,ECD 为等边三角形,则EF CF BF ===,所以,FBE BEF ∠=∠,FCE CEF ∠=∠,由2FBE BEF FCE CEF BEC π∠+∠+∠+∠=∠=,2BEC π∴∠=,即CE SB ⊥,SB AB B =,因此,CE ⊥平面SAB ;13.(2021·江西景德镇市·景德镇一中)如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC ,2,AB BC == 30ACB ∠=,13AA =,11BC A C ,E 为AC 的中点.(1)求证:1//AB 平面1C EB ; (2)求证:1A C ⊥平面1C EB .【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)如下图所示,连接1AB 、1B C ,设11B CBC F =,连接EF ,在三棱柱111ABC A B C -中,四边形11BB C C 为平行四边形, 因为11B CBC F =,在点F 为1B C 的中点,又因为点E 为AC 的中点,1//EF AB ∴,1AB ⊄平面1C EB ,EF ⊂平面1C EB ,所以,1//AB 平面1C EB ;(2)AB BC =,E 为AC 的中点,BE AC ∴⊥,因为平面11A ACC ⊥平面ABC ,平面11A ACC ⋂平面ABC AC =,BE ⊂平面ABC ,BE ∴⊥平面11A ACC ,1A C ⊂平面11A ACC ,1A C BE ∴⊥, 11BC AC ⊥,1BE BC B =,1A C ∴⊥平面1C EB .14.(2021·陕西咸阳市)在三棱锥A BCD -中,E 、F 分别为AD 、DC 的中点,且BA BD =,平面ABD ⊥平面ADC .(1)证明://EF 平面ABC ;(2)证明:BE CD ⊥.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)在ADC 中,E 、F 分别是AD 、DC 的中点,//EF AC ∴.EF ⊄平面ABC ,AC ⊂平面ABC ,//EF ∴平面ABC ;(2)在ABD △中,BA BD =,E 为AD 的中点,BE AD ∴⊥, 又平面ABD ⊥平面ADC ,平面ABD ⋂平面ADC AD =,BE ⊂平面ABD ,BE ∴⊥平面ADC .CD ⊂平面ADC ,BE CD ∴⊥.15.(2021·全国)已知四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,PAB △为等边三角形,底面ABCD 为直角梯形,90DAB ∠=︒且2AB CD =,点M 为PB 的中点,求证:PB DM ⊥.【答案】证明见解析.【解析】因为PAB △为等边三角形,M 为PB 的中点,所以AM PB ⊥,因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,DA AB ⊥,DA ⊂平面ABCD , 所以DA ⊥平面PAB ,因为PB ⊂平面PAB ,所以DA PB ⊥,因为DA AM A ⋂=,所以PB ⊥平面ADM ,因为DM ⊂平面ADM ,所以PB DM ⊥.16.(2020·全国)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)若P 点是线段AM 的中点,求证://MC 平面PBD .【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)因为矩形ABCD 所在平面与半圆弦CD 所在平面垂直,面ABCD 面CDM CD =,AD DC ⊥,AD ⊂面ABCD ,所以AD ⊥半圆弦CD 所在平面,且CM ⊂半圆弦CD 所在平面,所以CM AD ⊥;又M 是CD 上异于C ,D 的点,所以CM DM ⊥;又DM AD D =,所以CM ⊥平面AMD ;又CM ⊂平面CMB ,所以平面AMD ⊥平面BMC ;(2)由P 是AM 的中点,连接BD 交AC 于点O ,连接OP ,如图所示:由中位线定理得//MC OP ;又MC ⊂/平面BDP ,OP ⊂平面BDP ,所以//MC 平面PBD .17.(2021·全国高三专题练习)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.证明:平面AMD ⊥平面BMC .【答案】证明见解析【解析】由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .18.(2020·全国高三专题练习)已知四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,PAB △为等边三角形,底面ABCD 为直角梯形,90DAB ∠=︒且2AB CD =,点M 为PB 的中点,求证:DM PB .【答案】证明见解析.【解析】证明:∵PAB ∆为等边三角形,M 为PB 的中点,∴AM PB ⊥, 又∵平面PAB ⊥平面ABCD ,且平面PAB 平面ABCD AB =, DA AB ⊥,DA ⊂平面ABCD ,∴DA ⊥平面PAB ,又PB ⊂平面PAB ,∴DA PB ⊥,∵DA AM A ⋂=,∴PB ⊥平面ADM ,又DM ⊂平面ADM ,∴PB DM ⊥.19.(2020·江苏苏州市·高三三模)如图,在三棱柱111A B C ABC -中,AB AC =,D 为BC 中点,平面ABC ⊥平面11BCC B ,11BC B D ⊥.(1)求证:1//A C 平面1AB D ;(2)求证:11AB BC ⊥.【答案】(1)证明见解析(2)证明见解析【解析】证明:(1)连结1A B 交1AB 于点O ,连结OD .因为111A B C ABC -是三棱柱,所以11ABB A 是平行四边形,所以O 为1A B 中点. 有因为D 为BC 中点,所以1OD AC . 又1AC ⊄平面1AB D ,OD ⊂平面1AB D ,所以1A C 平面1AB D . (2)因为AB AC =,D 为BC 中点,所以AD BC ⊥.又因为平面ABC ⊥平面11BCC B ,平面ABC 平面11BCC B BC =,AD ⊂平面ABC , 所以AD ⊥平面11BCC B . 因为1BC ⊂平面11BCC B ,所以1AD BC ⊥. 又因为11BC B D ⊥,1AD B D D ⋂=,AD ⊂平面1AB D ,1B D ⊂平面1AB D , 所以1BC ⊥平面1AB D . 因为1AB ⊂平面1AB D ,所以11AB BC ⊥.。
2025届高考数学一轮复习教案:立体几何-空间直线、平面的垂直
第四节空间直线、平面的垂直课程标准1.从定义和基本事实出发,借助长方体,通过直观感知,了解空间中直线与直线、直线与平面、平面与平面的垂直关系的定义,归纳出有关垂直的性质定理和判定定理,并加以证明.2.能运用已获得的结论证明空间基本图形位置关系的简单命题.考情分析考点考法:高考题常以空间几何体为载体,考查空间直线、平面的垂直关系.线面垂直是高考的热点,在各种题型中都会有所体现.核心素养:直观想象、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.直线与平面垂直(1)直线和平面垂直的定义一般地,如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直.(2)判定定理与性质定理类型文字语言图形表示符号表示【微点拨】证明线面垂直时,平面内的两条直线必须是相交直线.2.直线和平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,则它们所成的角是90°;一条直线和平面平行或在平面内,则它们所成的角是0°.(2)范围:,3.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角若有①O ∈l ;②OA ⊂α,OB ⊂β;③OA ⊥l ,OB ⊥l ,则二面角α-l -β的平面角是∠AOB .(3)二面角的平面角θ的范围:0°≤θ≤180°.4.平面与平面垂直(1)定义一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理【基础小题·自测】类型辨析改编易错高考题号12341.(多维辨析)(多选题)下列结论错误的是()A .若直线与平面所成的角为0°,那么直线与平面平行B .直线l 与平面α内的无数条直线都垂直,则l ⊥αC .设m ,n 是两条不同的直线,α是一个平面,若m ∥n ,m ⊥α,则n ⊥αD .若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面【解析】选ABD .A 中直线也可能在平面内;B 中若平面α内的与直线l 都垂直的无数条直线都平行,则l 与α不一定垂直;C正确;D 中平面内与交线垂直的直线与另一个平面垂直.2.(必修二P161例10变形式)如图所示,在Rt △ABC 中,∠ABC =90°,P 为△ABC 所在平面外一点,PA ⊥平面ABC ,则四面体P-ABC 中直角三角形的个数为()A .4B .3C .2D .1【解析】选A.在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,所以BC⊥PA,因为BC⊥AB,PA∩AB=A,所以BC⊥平面PAB.所以四面体P-ABC中直角三角形有△PAC,△PAB,△ABC,△PBC,共4个.3.(多选题)(空间垂直关系不清致误)下列命题中不正确的是()A.如果直线a不垂直于平面α,那么平面α内一定不存在直线垂直于直线aB.如果平面α垂直于平面β,那么平面α内一定不存在直线平行于平面βC.如果直线a垂直于平面α,那么平面α内一定不存在直线平行于直线aD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β【解析】选ABD.A中存在无数条在平面α内与a垂直的直线;B中α内与交线平行的直线与β平行.若直线a垂直于平面α,则直线a垂直于平面α内的所有直线,故C 正确,不符合题意,D中α内与交线不垂直的直线与β不垂直.4.(2021·浙江高考)如图,已知正方体ABCD-A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN∥平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN∥平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1【解析】选A.连接AD1(图略),则易得点M在AD1上,且M为AD1的中点,AD1⊥A1D.因为AB⊥平面AA1D1D,A1D⊂平面AA1D1D,所以AB⊥A1D,又AB∩AD1=A,AB,AD1⊂平面ABD1,所以A1D⊥平面ABD1,又BD1⊂平面ABD1,显然A1D与BD1异面,所以A1D与BD1异面且垂直.在△ABD1中,由中位线定理可得MN∥AB,又MN⊄平面ABCD,AB⊂平面ABCD,所以MN∥平面ABCD.易知直线AB与平面BB1D1D成45°角,所以MN与平面BB1D1D不垂直.【巧记结论·速算】1.若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.2.一条直线垂直于两个平行平面中的一个,则这条直线与另一个平面也垂直.3.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.【即时练】已知PD垂直于正方形ABCD所在的平面,连接PB,PC,PA,AC,BD,则一定互相垂直的平面有________对.【解析】如图,由于PD垂直于正方形ABCD,故平面PDA⊥平面ABCD,平面PDB⊥平面ABCD,平面PDC⊥平面ABCD,平面PDA⊥平面PDC,平面PAC⊥平面PDB,平面PAB⊥平面PAD,平面PBC⊥平面PDC,共7对.答案:7【核心考点·分类突破】考点一直线与平面垂直的判定与性质【考情提示】直线与平面垂直作为空间垂直关系的载体因其集中考查直线与平面垂直的判定定理和性质定理而成为高考的热点,涉及直线与平面垂直关系的判断、证明以及线面垂直关系在空间几何体中的实际应用.角度1直线与平面垂直的判定[例1]如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥DC,PD=AD,E是PB的中点,F是DC上的点,且DF=12AB,PH为△PAD中AD边上的高.求证:(1)PH⊥平面ABCD;(2)EF⊥平面PAB.【证明】(1)因为AB⊥平面PAD,AB⊂平面ABCD,所以平面PAD⊥平面ABCD.因为平面PAD∩平面ABCD=AD,PH⊥AD,所以PH⊥平面ABCD.(2)取PA的中点M,连接MD,ME.因为E是PB的中点,所以ME=12AB.又因为DF=12AB,所以ME-DF,所以四边形MEFD是平行四边形,所以EF∥MD.因为PD=AD,所以MD⊥PA.因为AB⊥平面PAD,所以MD⊥AB.因为PA∩AB=A,所以MD⊥平面PAB,所以EF⊥平面PAB.角度2直线与平面垂直的性质[例2]如图,在四棱锥P-ABCD中,四边形ABCD是矩形,AB⊥平面PAD,AD=AP,E 是PD的中点,M,N分别在AB,PC上,且MN⊥AB,MN⊥PC.证明:AE∥MN.【证明】因为AB⊥平面PAD,AE⊂平面PAD,所以AE⊥AB.又AB∥CD,所以AE⊥CD.因为AD=AP,E是PD的中点,所以AE⊥PD.又CD∩PD=D,CD,PD⊂平面PCD,所以AE⊥平面PCD.因为MN⊥AB,AB∥CD,所以MN⊥CD.又因为MN⊥PC,PC∩CD=C,PC,CD⊂平面PCD,所以MN⊥平面PCD,所以AE∥MN.【解题技法】1.证明线面垂直的常用方法(1)判定定理;(2)垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);(3)面面平行的性质(a⊥α,α∥β⇒a⊥β);(4)面面垂直的性质.2.直线与平面垂直性质的解题策略(1)判定定理与性质定理的合理转化是证明线面垂直的基本思想,证明线线垂直则需借助线面垂直的性质.(2)在解题中要重视平面几何的知识,特别是正余弦定理及勾股定理的应用.(3)重要结论要熟记:经过一点与已知直线垂直的直线都在过这点且与已知直线垂直的平面内.此结论可帮助解决动点的轨迹问题.【对点训练】1.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.【证明】(1)在四棱锥P-ABCD中,因为PA⊥底面ABCD,CD⊂平面ABCD,所以PA⊥CD.因为AC⊥CD,PA∩AC=A,所以CD⊥平面PAC.而AE⊂平面PAC,所以CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,所以△ABC是等边三角形,所以AC=PA.因为E是PC的中点,所以AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD⊂平面PCD,所以AE⊥PD.因为PA⊥底面ABCD,所以PA⊥AB.又因为AB⊥AD且PA∩AD=A,所以AB⊥平面PAD,而PD⊂平面PAD,所以AB⊥PD.又因为AB∩AE=A,所以PD⊥平面ABE.2.如图所示,已知正方体ABCD-A1B1C1D1.(1)求证:A1C⊥B1D1;(2)M,N分别为B1D1与C1D上的点,且MN⊥B1D1,MN⊥C1D,求证:MN∥A1C.【证明】(1)连接A1C1(图略).因为CC1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,所以CC1⊥B1D1.因为四边形A1B1C1D1是正方形,所以A1C1⊥B1D1.又CC1∩A1C1=C1,所以B1D1⊥平面A1C1CA.又A1C⊂平面A1C1CA,所以A1C⊥B1D1.(2)连接B1A,AD1(图略).因为B1C1∥AD,所以四边形ADC1B1为平行四边形,所以C1D∥AB1.因为MN⊥C1D,所以MN⊥AB1.又MN⊥B1D1,AB1∩B1D1=B1,所以MN⊥平面AB1D1.易得A1C⊥AB1,由(1)知A1C⊥B1D1,又AB1∩B1D1=B1,所以A1C⊥平面AB1D1,所以MN∥A1C.考点二平面与平面垂直的判定与性质【考情提示】平面与平面垂直作为空间垂直关系的载体因其集中考查平面与平面垂直的判定定理,性质定理成为高考的热点,涉及平面与平面垂直关系的判断、证明以及在空间几何体中的实际应用.角度1平面与平面垂直的判定[例3]如图,四棱锥P-ABCD中,底面ABCD是菱形,对角线AC,BD交于点O,M为棱PD的中点,MA=MC.求证:(1)PB∥平面AMC;(2)平面PBD⊥平面AMC.【证明】(1)连接OM(图略),因为O是菱形ABCD对角线AC,BD的交点,所以O 为BD的中点,因为M是棱PD的中点,所以OM∥PB,因为OM⊂平面AMC,PB⊄平面AMC,所以PB∥平面AMC.(2)在菱形ABCD中,AC⊥BD,且O为AC的中点,因为MA=MC,所以AC⊥OM,因为OM∩BD=O,所以AC⊥平面PBD,因为AC⊂平面AMC,所以平面PBD⊥平面AMC.角度2平面与平面垂直的性质[例4]在矩形ABCD中,AB=2AD=4,E是AB的中点,沿DE将△ADE折起,得到如图所示的四棱锥P-BCDE.(1)若平面PDE⊥平面BCDE,求四棱锥P-BCDE的体积;(2)若PB=PC,求证:平面PDE⊥平面BCDE.【解析】(1)如图所示,取DE的中点M,连接PM,由题意知,PD=PE,所以PM⊥DE,又平面PDE⊥平面BCDE,平面PDE∩平面BCDE=DE,PM⊂平面PDE,所以PM⊥平面BCDE,即PM为四棱锥P-BCDE的高.在等腰直角三角形PDE中,PE=PD=AD=2,所以PM=12DE=2,而梯形BCDE的面积S=12(BE+CD)·BC=12×(2+4)×2=6,所以四棱锥P-BCDE的体积V=13PM·S=13×2×6=22.(2)取BC的中点N,连接PN,MN,则BC⊥MN,因为PB=PC,所以BC⊥PN,因为MN∩PN=N,MN,PN⊂平面PMN,所以BC⊥平面PMN,因为PM⊂平面PMN,所以BC⊥PM,由(1)知,PM⊥DE,又BC,DE⊂平面BCDE,且BC与DE延长后是相交的,所以PM⊥平面BCDE,因为PM⊂平面PDE,所以平面PDE⊥平面BCDE.【解题技法】关于面面垂直的判定与性质(1)判定面面垂直的方法①面面垂直的定义.②面面垂直的判定定理.(2)面面垂直性质的应用①面面垂直的性质定理是把面面垂直转化为线面垂直的依据,运用时要注意“平面内的直线”.②若两个相交平面同时垂直于第三个平面,则它们的交线也垂直于第三个平面.【对点训练】1.如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面PAD⊥平面ABCD.【证明】(1)因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC.又因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2)因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,(1)中已证AB∥EF,所以AB⊥AF.又AB⊥AD,由点E在棱PC上(异于点P,C),所以点F异于点D,所以AF∩AD=A,AF,AD⊂平面PAD,所以AB⊥平面PAD.又AB⊂平面ABCD,所以平面PAD⊥平面ABCD.2.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,PA=PD=AD=2,点M 在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD⊥平面PNB;(2)若平面PAD⊥平面ABCD,求三棱锥P-NBM的体积.【解析】(1)连接BD(图略).因为PA=PD,N为AD的中点,所以PN⊥AD.又底面ABCD是菱形,∠BAD=60°,所以△ABD为等边三角形,所以BN⊥AD.又PN∩BN=N,所以AD⊥平面PNB.(2)因为PA=PD=AD=2,所以PN=NB=3.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PN⊥AD,所以PN⊥平面ABCD,又NB⊂平面ABCD,所以PN⊥NB,所以S△PNB=12×3×3=32.因为AD⊥平面PNB,AD∥BC,所以BC⊥平面PNB.又PM=2MC,所以V P-NBM=V M-PNB=23V C-PNB=23×13×32×2=23.考点三直线、平面垂直的综合应用[例5]如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2, A1D∩AD1=O,E为线段AB上一点.(1)当OE∥平面D1BC时,求证:E为AB的中点;(2)在线段AB上是否存在点E,使得平面D1DE⊥平面AD1C?若存在,求出AE的长;若不存在,请说明理由.【解析】(1)因为四边形AA1D1D为正方形,A1D∩AD1=O,所以O为AD1的中点,又因为OE∥平面D1BC,平面ABD1∩平面D1BC=BD1,OE⊂平面ABD1,所以OE∥BD1,又因为O为AD1的中点,所以E为AB的中点;(2)存在,当AE=12时,平面D1DE⊥平面AD1C,理由如下:设AC∩DE=F,因为四边形AA1D1D为正方形,所以D1D⊥AD,又因为AD=平面AA1D1D∩平面ABCD,平面AA1D1D⊥平面ABCD,D1D⊂平面AA1D1D,所以D1D⊥平面ABCD,又因为AC⊂平面ABCD,所以D1D⊥AC,又因为在矩形ABCD中,AB=2,AD=1,当AE=12时,在Rt△ADE中,tan∠ADE=A A=12,在Rt△ABC中,tan∠BAC=B B=12,所以∠ADE=∠BAC,又因为∠BAD=∠BAC+∠DAC=90°,所以∠ADE+∠DAC=90°,则∠AFD=90°,所以AC⊥DE,又因为DE∩DD1=D,DE,DD1⊂平面D1DE,所以AC⊥平面D1DE,又因为AC⊂平面AD1C,所以平面D1DE⊥平面AD1C.【解题技法】关于线、面垂直关系的综合应用(1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.求解时应注意垂直的性质及判定的综合应用;(2)如果有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.【对点训练】如图,在四棱锥P-ABCD中,侧棱PD⊥底面ABCD,底面ABCD是直角梯形,AB ∥DC,AD⊥DC,且AB=AD=1,PD=DC=2,E是PC上一点.过A,B,E的平面交侧面PDC于l.(1)求证:AB∥l;(2)若E为PC的中点,在线段PB上是否存在一点Q,使得平面PDC⊥平面DEQ?若存在,求出B B的值;若不存在,请说明理由.【解析】(1)梯形ABCD中,AB∥DC,AB⊄平面PDC,DC⊂平面PDC,所以AB∥平面PDC,又AB⊂平面ABE,平面ABE∩平面PDC=l,所以AB∥l;(2)存在点Q,使得平面PDC⊥平面DEQ,此时B B=3,证明如下:连接BD(图略),易得BD=2,BC=12+(2-1)2=2,又PD⊥底面ABCD,CD⊂底面ABCD,BD⊂底面ABCD,则PD⊥DC,PD⊥DB,则PC=4+4=22,PB=22+(2)2=6,则PB2+BC2=PC2,PB⊥BC,又PQ=23PB=263,PE=12PC=2,cos∠BPC=B B=32,由余弦定理得,QE2=PQ2+PE2-2PQ·PE·cos∠BPC=23,则QE2+PE2=PQ2,则QE⊥PC,又DE⊥PC,QE⊂平面DEQ,DE⊂平面DEQ,QE∩DE=E,则PC⊥平面DEQ,又PC⊂平面PDC,故存在点Q,使得平面PDC⊥平面DEQ,此时B B=3.【重难突破】球与几何体的切、接问题【解题关键】(1)“接”的处理:把一个多面体的几个顶点放在球面上即球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.(2)“切”的处理:解决与球有关的内切问题主要是指球内切多面体与旋转体,解答时要先找准切点,通过作截面来解决.如果内切的是多面体,则多通过多面体过球心的对角面来作截面.1.常见几何体的内切球和外接球(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等;(2)正多面体的内切球和外接球的球心重合;(3)正棱锥的内切球和外接球的球心都在高线上.【说明】求外接球或内切球的方法:在球内部构造直角三角形,利用勾股定理求解.2.长方体的外接球(1)球心:体对角线的交点;(2)半径:R a,b,c为长方体的长、宽、高).3.正方体的外接球、内切球及与各条棱相切的球球心是正方体的中心,设a为正方体的棱长.(1)外接球:半径R=32a;(2)内切球:半径r=2;(3)与各条棱都相切的球:半径r'=22a.4.正四面体的外接球与内切球球心是正四面体的中心,a为正四面体的棱长.(1)外接球:半径R=64a;(2)内切球:半径r=612a.【推导如下】设正四面体S-ABC的棱长为a,其内切球的半径为r,外接球的半径为R,如图,取AB的中点D,连接SD,CD,SE为正四面体的高,在截面三角形SDC内作一个与边SD和DC相切,且圆心在高SE上的圆.由正四面体的对称性,可知其内切球和外接球的球心同为O.此时,OC=OS=R,OE=r,CE=33a,SE=63a,则有R+r=SE=63a,R2-r2=CE2=23,解得R=64a,r=612a.类型一外接球问题命题点1柱体的外接球[例1](2023·重庆模拟)已知圆柱O1O2的高O1O2=8,球O是圆柱的外接球,且球O 的表面积是圆柱O1O2侧面积的2倍,则球O的半径为()A.4B.32C.42D.42+23【解析】选C.设圆柱O1O2的底面半径为r,球O的半径为R,则R2=r2+16,因为球O的表面积是圆柱O1O2侧面积的2倍,所以4πR2=2πr×8×2,R2=8r,所以r2+16=8r,所以r=4,R=42(负值舍去).命题点2锥体的外接球[例2](2023·保定模拟)已知正三棱锥S-ABC的所有顶点都在球O的球面上,棱锥的底面是边长为23的正三角形,侧棱长为25,则球O的表面积为()A.25πB.20πC.16πD.30π【解析】选A.如图,延长SO交球O于点D,设△ABC的外心为E,连接AE,AD由正弦定理得2AE=23sin60°=4,所以AE=2,易知SE⊥平面ABC,由勾股定理可知,三棱锥S-ABC的高SE=B2-A2=(25)2-22=4,由于点A是以SD为直径的球O上一点,所以∠SAD=90°,由射影定理可知,球O的直径2R=SD=B2A=5,因此,球O的表面积为4πR2=π×(2R)2=25π.命题点3台体的外接球[例3](2022·新高考Ⅱ卷)已知正三棱台的高为1,上、下底面边长分别为33和43,其顶点都在同一球面上,则该球的表面积为()A.100πB.128πC.144πD.192π【解析】选A.如图所示,设该正三棱台上、下底面所在圆面的半径分别为r1,r2.所以2r1=33sin60°,2r2=43sin60°,解得r1=3,r2=4,设该球的球心到上、下底面的距离分别为d1,d2,球的半径为R,所以d1=2-9,d2=2-16,故1-2=1或d1+d2=1,或2-9+2-16=1,解得R2=25,符合题意,所以球的表面积为S=4πR2=100π.命题点4组合体的外接球[例4](2023·安庆模拟)我国有着丰富悠久的“印章文化”,古时候的印章一般用贵重的金属或玉石制成,本是官员或私人签署文件时代表身份的信物,后因其独特的文化内涵,也被作为装饰物来使用.图1是明清时期的一个金属印章摆件,除去顶部的环以后可以看作是一个正四棱柱和一个正四棱锥组成的几何体,如图2.已知正四棱柱和正四棱锥的高相等,且底面边长均为2,若该几何体的所有顶点都在同一个球的表面上,则这个球的表面积为________.【解析】如图,设正四棱柱和正四棱锥的高为h,则其外接球的半径为R +2h+12h=32h,解得h=1,所以R=32,故球的表面积为S=4πR2=9π.答案:9π【解题技法】求解外接球问题的方法(1)解决多面体外接球问题的关键是确定球心的位置,方法是先选择多面体中的一面,确定此面多边形外接圆的圆心,再过此圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点的情况确定球心的准确位置.(2)对于特殊的多面体还可通过补成正方体或长方体的方法找到球心位置.【对点训练】1.在直三棱柱ABC-A1B1C1中,AB=BC=2,∠ABC=π2.若该直三棱柱的外接球的表面积为16π,则该直三棱柱的高为()A.4B.3C.42D.22【解析】选D.因为∠ABC=π2,所以可以将直三棱柱ABC-A1B1C1补成长方体ABCD-A1B1C1D1,则该直三棱柱的外接球就是长方体的外接球,外接球的直径等于长方体的体对角线长.设外接球的半径为R,则4πR2=16π,解得R=2.设该直三棱柱的高为h,则4R2=22+22+h2,即16=8+h2,解得h=22,所以该直三棱柱的高为22.2.如图所示的粮仓可近似看作一个圆锥和圆台的组合体,且圆锥的底面圆与圆台的较大底面圆重合.已知圆台的较小底面圆的半径为1,圆锥与圆台的高分别为5-1和3,则此组合体外接球的表面积是()A.16πB.20πC.24πD.28π【解析】选B.设外接球半径为R,球心为O,圆台较小底面圆的圆心为O1,则O12+12=R2,而OO1=5-1+3-R,故R2=1+(5+2-R)2,解得R=5,此组合体外接球的表面积S=4πR2=20π.3.已知在三棱锥P-ABC中,AB⊥平面APC,AB=42,PA=PC=2,AC=2,则三棱锥P-ABC外接球的表面积为()A.28πB.36πC.48πD.72π【解析】选B.解法1:因为PA=PC=2,AC=2,所以PA⊥PC.因为AB⊥平面APC, AC,PC⊂平面APC,所以AB⊥AC,AB⊥PC.又PA∩AB=A,PA,AB⊂平面PAB,所以PC⊥平面PAB,又PB⊂平面PAB,所以PC⊥PB,则△BCP,△ABC均为直角三角形.如图,取BC的中点为O,连接OA,OP,则OB=OC=OA=OP,即点O为三棱锥P-ABC外接球的球心,在Rt△ABC中,AC=2,AB=42,则BC=6,所以外接球的半径R=3,所以三棱锥P-ABC外接球的表面积S=4πR2=36π.解法2:因为PA=PC=2,AC=2,所以PA⊥PC,△ACP为直角三角形.如图,取AC的中点为M,则M为△PAC外接圆的圆心.过M作直线n垂直于平面PAC,则直线n上任意一点到点P,A,C的距离都相等.因为AB⊥平面PAC,所以AB∥n.设直线n与BC的交点为O,则O为线段BC的中点,所以点O到点B,C的距离相等,则点O即为三棱锥P-ABC外接球的球心.因为AB⊥平面PAC,AC⊂平面PAC,所以AB⊥AC.又AC=2,AB=42,所以BC=6,则外接球的半径R=3,所以三棱锥P-ABC外接球的表面积S=4πR2=36π.解法3:因为PA=PC=2,AC=2,所以PA⊥PC,又AB⊥平面PAC,所以可把三棱锥P-ABC放在如图所示的长方体中,此长方体的长、宽、高分别为2,2,42,则三棱锥P-ABC的外接球即长方体的外接球,长方体的体对角线即长方体外接球的直径,易得长方体的体对角线的长为6,则外接球的半径R=3,所以三棱锥P-ABC外接球的表面积S=4πR2=36π.类型二内切球问题命题点1柱体的内切球[例5]如图,已知球O是棱长为1的正方体ABCD-A1B1C1D1的内切球,则平面ACD1截球O的截面面积为()A.66πB.π3C.π6D.33π【解析】选C.平面ACD1截球O的截面为△ACD1的内切圆,如图.因为正方体的棱长为1,所以AC=CD1=AD1=2,所以内切圆的半径r=66,所以S=πr2=π×636=π6.命题点2锥体的内切球[例6]已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为__________.【解析】易知半径最大的球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中BC=2,AB=AC=3,且点M为BC边的中点,设内切圆的圆心为O,半径为r,由于AM=32-12=22,故S△ABC=12×2×22=22,因为S△ABC=S△AOB+S△BOC+S△AOC=12×AB×r+12×BC×r+12×AC×r=12×(3+2+3)×r=22,解得r=22,故所求体积V=43πr3=23π.答案:23π【解题技法】求解内切球问题的关键点(1)求解多面体的内切球问题的关键是求内切球的半径.(2)求多面体内切球半径,往往可用“等体积法”.V多=S表·R内切·13.(3)正四面体内切球半径是高的14,外接球半径是高的34.【对点训练】1.(2023·本溪模拟)如图所示,直三棱柱ABC-A1B1C1是一块石材,测量得∠ABC= 90°,AB=6,BC=8,AA1=13.若将该石材切削、打磨,加工成几个大小相同的健身手球,则一个加工所得的健身手球的最大体积及此时加工成的健身手球的个数分别为()A.32π3,4B.9π2,3C.6π,4D.32π3,3【解析】选D.依题意知,当健身手球与直三棱柱的三个侧面均相切时,健身手球的体积最大.易知AC=B2+B2=10,设健身手球的最大半径为R,则12×(6+8+10)×R=12×6×8,解得R=2.则健身手球的最大直径为4.因为AA1=13,所以最多可加工3个健身手球.于是一个健身手球的最大体积V=43πR3=43π×23=32π3.2.我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.在封闭的鳖臑P-ABC内有一个体积为V的球,若PA⊥平面ABC,AB⊥BC, PA=AB=BC=1,则V的最大值是()A.52+36πB.5π3C .52-76πD .32π3【解析】选C .球与三棱锥的四个面均相切时球的体积最大,设此时球的半径为R ,则V 三棱锥P-ABC =13·R ·(S △ABC +S △PAB +S △PAC +S PBC ),即13×12×1×1×1=13×R ×(12×1×1+12×1×1+12×1×2+12×1×2),解得R =2-12.所以球的体积V的最大值为43π(2-12)3=52-76π.类型三与外接球有关的最值问题[例7](2023·昆明模拟)四棱锥S -ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥的体积取得最大值时,其表面积等于8+83,则球O 的体积等于()A .32π3B .322π3C .16πD .1623π【解析】选A .设球O 的半径为R ,四棱锥S -ABCD 的高为h ,则有h ≤R ,即h 的最大值是R ,易得AB =2R ,所以四棱锥S -ABCD 的体积V S-ABCD =13×2R 2h ≤23.因此,当h =R时,四棱锥S-ABCD 的体积最大,其表面积等于(2R )2+4×12×2R 8+83,解得R =2,因此球O 的体积为4π33=32π3.【解题技法】与球有关的最值问题的解法(1)从图形的特征入手:观察分析问题的几何特征,充分利用其几何性质解决.(2)从代数关系入手:解题时,通过分析题设中的所有条件,在充分审清题目意思的基础上,从问题的几何特征入手,利用其几何性质,找出问题中的代数关系,建立目标函数,利用函数最值的方法求解.【对点训练】(2023·成都模拟)已知圆柱的两个底面圆周在体积为32π3的球O的球面上,则该圆柱的侧面积的最大值为()A.4πB.8πC.12πD.16π【解析】选B.方法一:设球的半径为R,由球的体积公式得43πR3=32π3,得R=2.设圆柱的底面半径为r,球的半径与上底面夹角为α(0<α<π2),则r=2cosα,所以圆柱的高为4sinα,所以圆柱的侧面积为4πcosα×4sinα=8πsin2α,当且仅当sin2α=1,即α=π4时,圆柱的侧面积最大,所以圆柱的侧面积的最大值为8π.方法二:设球的半径为R,由球的体积公式4πR3=32π3,得R=2.设圆柱的底面半径为r,高为h,则r2+(ℎ2)2=R2=4,所以r2+ℎ24=4≥2hr,即hr≤4,当且仅当r=ℎ2=2时等号成立,所以圆柱的侧面积S=2πrh≤8π,所以圆柱的侧面积的最大值为8π.。
高考数学一轮复习精讲课件 第9单元第50讲 空间中的垂直关系 湘教版
解析: 2过点P作PO AD交AD于O,
由于平面PAD 平面ABCD, 所以PO 平面ABCD. 因此PO为四棱锥 P ABCD的高. 又PAD是边长为4 的等边三角形,
因此PO 3 4 2 3. 2
解析: 在底面四边形ABCD中,AB//DC, AB 2DC,所以四边形ABCD是梯形.
以其中三个论断作为条件, 余下的一个论断作为结论,写出你认为正确的
一个命题:①③④
②或②③④
①
.
5.三棱锥P ABC的顶点P在底面的射影为O,
若PA PB PC, 则点O为ABC的
外心
,
若PA、PB、PC两两垂直,
则O为ABC的
垂心 .
1.直线与平面垂直
1定义:如果直线l与平面内的每一条直线都垂
B1C1 BE,B1C1 平面ABC1, 可得FG B1C1,则结论得证.
解析: 1因为AB BC,BC BC1,
AB BC1 B,所以BC 平面ABC1. 又因为BC 平面ABC,
所以平面ABC 平面ABC1.
2 在AA1C1中,
因为E、F 分别ቤተ መጻሕፍቲ ባይዱAC1、A1C1的中点,
所以EF //AA1,EF
素材3.在斜三棱柱 A1B1C1 ABC中,底面是 等腰三角形,AB AC, 侧面BB1C1C 底面ABC.
1若D是BC的中点,求证:AD CC1; 2 过侧面BB1C1C的对角线BC1的平面交
侧棱AA1于M,若AM MA1, 求证:截面MBC1 侧面BB1C1C.
解析: 1证明:因为AB AC,
在RtADB中,斜边AB边上的高为 48 8 5 , 45 5
此即为梯形ABCD的高,所以四边形ABCD的
高考数学一轮复习讲义(提高版) 专题9.3 空间几何体外接球和内切球(解析版)
9.3 空间几何外接球和内切球一.公式1.球的表面积:S =4πR 22.球的体积:V =43πR 3二.概念1.2.考向一 长(正)方体外接球【例1】若一个长、宽、高分别为4,3,2的长方体的每个顶点都在球O 的表面上,则此球的表面积为__________. 【答案】29π【解析】因为长方体的顶点都在球上,所以长方体为球的内接长方体,其体对角线l ==为球的直径,所以球的表面积为24292l S ππ⎛⎫== ⎪⎝⎭,故填29π.【举一反三】1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.【答案】92π【解析】设正方体棱长为a ,则6a 2=18,∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3,∴R =32.故球的体积V =43πR 3=43π×⎝ ⎛⎭⎪⎫323=92π.2.如图是一个空间几何体的三视图,则该几何体的外接球的表面积是________.【答案】48π【解析】由几何体的三视图可得该几何体是直三棱柱ABC A B C '-'',如图所示:其中,三角形ABC 是腰长为4的直角三角形,侧面ACC A ''是边长为4的正方形,则该几何体的外接球的=∴该几何体的外接球的表面积为(2448ππ⨯=.故答案为48π.考向二 棱柱的外接球【例2】直三棱柱ABC −A ′B ′C ′的所有棱长均为2√3,则此三棱柱的外接球的表面积为( ) A .12π B .16π C .28π D .36π【答案】C【解析】由直三棱柱的底面边长为2√3,得底面所在平面截其外接球所成的圆O 的半径r =2, 又由直三棱柱的侧棱长为2√3,则球心到圆O 的球心距d =√3,根据球心距,截面圆半径,球半径构成直角三角形,满足勾股定理,我们易得球半径R 满足:R 2=r 2+d 2=7,∴外接球的表面积S =4πR 2=28π.故选:C .【举一反三】1. 设直三棱柱ABC-A 1B 1C 1的所有顶点都在一个球面上,且球的表面积是40π,AB=AC=AA 1,∠BAC=120°,则此直三棱柱的高是________.【答案】【解析】设三角形BAC 边长为a ,则三角形BAC外接圆半径为122sin 3a π⋅=,因为2244010R R ππ=∴=所以22210,2a R a a ⎛⎫=+== ⎪⎝⎭即直三棱柱的高是.2.直三棱柱ABC −A 1B 1C 1中,已知AB ⊥BC ,AB =3,BC =4,AA 1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为__________.【答案】50π【解析】ABC −A 1B 1C 1是直三棱柱,∴A 1A ⊥AC ,又三棱柱的所有顶点都在同一球面上,A 1C 是球的直径,∴R =A 1C 2;∵AB ⊥BC ,∴AC =√32+42=5 ,∴A 1C 2=52+52=50 ;故该球的表面积为S =4πR 2=4π(A 1C 2)2=πA 1C 2=50π考向三 棱锥的外接球类型一:正棱锥型【例3-1】已知正四棱锥P ABCD -的各顶点都在同一球面上,体积为2,则此球的体积为 ( )A.1243π B. 62581π C. 50081π D. 2569π【答案】C【解析】如图所示,设底面正方形ABCD 的中心为O ',正四棱锥P ABCD -的外接球的球心为O1O D ∴'=正四棱锥的体积为22123P ABCDV PO -⨯⨯'∴==,解得3PO '=3OO PO PO R ∴-'=='-在 Rt OO D '中,由勾股定理可得: 222OO O D OD '+='即()22231R R -+=,解得53R =2344550033381V R πππ⎛⎫∴==⨯= ⎪⎝⎭球故选C【举一反三】1.已知正四棱锥P ABCD -的各条棱长均为2,则其外接球的表面积为( ) A. 4π B. 6π C. 8π D. 16π 【答案】C【解析】设点P 在底面ABCD 的投影点为O ',则12,2AO AC PA PO ==''=⊥平面ABCD,故PO =='而底面ABCD 所在截面圆的半径AO '=故该截面圆即为过球心的圆,则球的半径,故外接球的表面积为248,S R ππ==故选C.2.如图,正三棱锥D ABC -的四个顶点均在球O 的球面上,底面正三角形的边长为3,侧棱长为则球O 的表面积是( )A .4πB .323πC .16πD .36π【答案】C【解析】如图,设OM x =,OB OD r ==,3AB =,BM ∴=DB =3DM ∴=,在Rt OMB ∆中,22(3)3x x -=+,得:1x =,2r ∴=,16O S π∴=球,故选:C .类型二:侧棱垂直底面型【例3-2】在三棱锥P ABC -中, 2AP =, AB = PA ⊥面ABC ,且在三角形ABC 中,有()cos 2cos c B a b C=-(其中,,a b c 为ABC ∆的内角,,A B C 所对的边),则该三棱锥外接球的表面积为( ) A. 40π B. 20π C. 12π D.203π【答案】A【解析】设该三棱锥外接球的半径为R .在三角形ABC 中, ()cos 2cos c B a b C =-(其中,,a b c 为ABC ∆的内角,,A B C 所对的边). ∴cos cos 2cos c B b C a C +=∴根据正弦定理可得sin cos sin cos 2sin cos C B B C A C +=,即()sin 2sin cos B C A C +=.∵sin 0A ≠∴1cos 2C =∵()0,C π∈∴3C π= ∴由正弦定理,2sin3r π=,得三角形ABC 的外接圆的半径为3r =.∵PA ⊥面ABC∴()()()22222PA r R +=∴210R =∴该三棱锥外接球的表面积为2440S R ππ==故选A.【举一反三】1.已知几何体的三视图如图所示,则该几何体的外接球的表面积为( )A.214π3B.127π3C.115π3D.124π3【答案】D【解析】根据几何体的三视图可知,该几何体为三棱锥A −BCD 其中AD =DC =2,BD =4且AD ⊥底面ABC ,∠BDC =120° 根据余弦定理可知:BC 2−BD 2+DC 2−2BD ∙DC ∙cos 120°=42+22−2×4×2×(−12)=28可知BC =2√7根据正弦定理可知∆BCD 外接圆直径2r =BC sin ∠BDC=2√7sin 120°=4√7√3∴r =2√213,如图,设三棱锥外接球的半径为R ,球心为O ,过球心O 向AD 作垂线,则垂足H 为AD 的中点 DH =1,在Rt∆ODH 中,R 2=OD 2=(2√213)2+1=313∴外接球的表面积S =4πR 3=4π×313=124π3故选D2.已知三棱锥S ABC -中, SA ⊥平面ABC ,且30ACB ∠=︒, 223.1AC AB SA ===.则该三棱锥的外接球的体积为( )A.13138π B. 13π C. 136π D. 13136π 【答案】D【解析】∵30ACB ∠=︒, 2AC AB ==ABC 是以AC 为斜边的直角三角形其外接圆半径2ACr ==,则三棱锥外接球即为以ABC C 为底面,以SA 为高的三棱柱的外接球∴三棱锥外接球的半径R 满足,2R ==故三棱锥外接球的体积34.3V R π== 故选D. 类型三:侧面垂直与底面型【例3】已知四棱锥P −ABCD 的三视图如图所示,则四棱锥P −ABCD 外接球的表面积是( )A. 20πB. 101π5C. 25πD. 22π【答案】B【解析】由三视图得,几何体是一个四棱锥A-BCDE,底面ABCD 是矩形,侧面ABE ⊥底面BCDE.如图所示,矩形ABCD 的中心为M,球心为O,F 为BE 中点,OG ⊥AF.设OM=x, 由题得ME =√5,在直角△OME 中,x 2+5=R 2(1),又MF=OG=1,AF=√32−22=√5, AG =√R 2−1,GF =x,∴√R 2−1+x =√5(2),解(1)(2)得R 2=10120,∴S =4πR 2=1015π.故选B.【举一反三】1.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,其中有很多对几何体外接球的研究,如下图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积是()A. 81πB. 33πC. 56πD. 41π【答案】D【解析】由三视图可得,该几何体是一个如图所示的四棱锥P −ABCD ,其中ABCD 是边长为4的正方形,平面PAB ⊥平面ABCD .设F 为AB 的中点,E 为正方形ABCD 的中心,O 为四棱锥外接球的球心,O 1为ΔPAB 外接圆的圆心,则球心O 为过点E 且与平面ABCD 垂直的直线与过O 1且与平面PAB 垂直的直线的交点.由于ΔPAB 为钝角三角形,故O 1在ΔPAB 的外部,从而球心O 与点P 在平面ABCD 的两侧.由题意得PF =1,OE =O 1F,OO 1=EF ,设球半径为R ,则R 2=OE 2+OB 2=EF 2+O 1P 2,即OE 2+(2√2)2=22+(1+OE)2,解得OE =32,∴R 2=(32)2+(2√2)2=414,∴S 球表=4πR 2=41π.选D .2.已知如图所示的三棱锥D ABC -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在平面相互垂直,3AB =,AC =BC CD BD ===O 的表面积为( )A .4πB .12πC .16πD .36π 【答案】C【解析】3AB =,AC =BC =222AB AC BC ∴+=,AC AB ∴⊥,ABC ∴∆ABC ∆和DBC ∆所在平面相互垂直,∴球心在BC 边的高上,设球心到平面ABC 的距离为h ,则2223)h R h +==, 1h ∴=,2R =,∴球O 的表面积为2416R ππ=.故选:C .3.三棱锥P ABC -的底面是等腰三角形,120C ∠=︒,侧面是等边三角形且与底面ABC 垂直,2AC =,则该三棱锥的外接球表面积为( )A .12πB .20πC .32πD .100π 【答案】B【解析】 如图, 在等腰三角形ABC 中, 由120C ∠=︒,得30ABC ∠=︒,又2AC =,设G 为三角形ABC 外接圆的圆心, 则22sin sin 30AC CG ABC ==∠︒,2CG ∴=.再设CG 交AB 于D ,可得1CD =,AB =1DG =.在等边三角形PAB 中, 设其外心为H , 则223BH PH PD ===. 过G 作平面ABC 的垂线, 过H 作平面PAB 的垂线, 两垂线相交于O ,则O 为该三棱锥的外接球的球心, 则半径R OB ===∴该三棱锥的外接球的表面积为2420ππ⨯=.故选:B .类型四:棱长即为直径【例3-4】已知底面边长为√2,各侧面均为直角三角形的正三棱锥P−ABC的四个顶点都在同一球面上,则此球的表面积为()π D. 4πA. 3πB. 2πC. 43【答案】A【解析】由题意得正三棱锥侧棱长为1,将三棱锥补成一个正方体(棱长为1),则正方体外接球为正三棱)2=3π.选A.锥外接球,所以球的直径为√1+1+1=√3,故其表面积为S=4×π×(√32【举一反三】1.已知三棱锥P ABC-的所有顶点都在球O的球面上,PC是球O的直径.若平面PCA⊥平面PCB,PA AC =,PB BC =,三棱锥P ABC -的体积为a ,则球O 的体积为( )A .2a πB .4a πC .23a πD .43a π 【答案】B【解析】如下图所示,设球O 的半径为R ,由于PC 是球O 的直径,则PAC ∠和PBC ∠都是直角,由于PA AC =,PB BC =,所以,PAC ∆和PBC ∆是两个公共斜边PC 的等腰直角三角形,且PBC ∆的面积为212PBC S PC OB R ∆==, PA AC =,O 为PC 的中点,则OA PC ⊥,平面PAC ⊥平面PBC ,平面PAC ⋂平面PBC PC =,OA ⊂平面PAC ,所以,OA ⊥平面PBC ,所以,三棱锥P ABC -的体积为23111333PBC OA S R R R a ∆⨯⨯=⨯==, 因此,球O 的体积为33414433R R a πππ=⨯=,故选:B . 考向四 墙角型【例4】某几何体的三视图如图所示,则该几何体的外接球的体积是( )A .3B C .3π D . 【答案】B【解析】根据几何体的三视图,该几何体是由一个正方体切去一个正方体的一角得到的.故:该几何体的外接球为正方体的外接球,所以:球的半径2r ==则:343V π=⋅⋅=⎝⎭.故选:B .【举一反三】1.已知四面体ABCD 的四个面都为直角三角形,且AB ⊥平面BCD ,AB =BD =CD =2,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .3πB .2√3πC .4√3πD .12π【答案】D【解析】∵BD =CD =2且ΔBCD 为直角三角形 ∴BD ⊥CD又AB ⊥平面BCD ,CD ⊂平面BCD ∴CD ⊥AB ∴CD ⊥平面ABD由此可将四面体ABCD 放入边长为2的正方体中,如下图所示:∴正方体的外接球即为该四面体的外接球O正方体外接球半径为体对角线的一半,即R =12⋅√22+22+22=√3 ∴球O 的表面积:S =4πR 2=12π本题正确选项:D2.已知一个棱长为2的正方体被两个平面所截得的几何体的三视图如图所示,则该几何体外接球的表面积是( )A .24πB .20πC .16πD .12π 【答案】D【解析】该几何体是把正方体1AC 截去两个四面体111AA B D 与111CC B D ,其外接球即为正方体1AC 的外接球,由1AC ==∴外接球的半径R =∴该几何体外接球的表面积是2412ππ⨯=.故选:D .3.在三棱锥P 一ABC 中,1PA PB PC ===,PA 、PB 、PC 两两垂直,则三棱锥P ABC -的外接球的表面积为( )A .12πB .6πC .4πD .3π【答案】A 【解析】在三棱锥P 一ABC 中,1PA PB PC ===,PA 、PB 、PC 两两垂直, ∴以PA 、PB 、PC 为棱构造棱长为1的正方体,则这个正方体的外接球就是三棱锥P ABC -的外接球,∴三棱锥P ABC -的外接球的半径r == ∴三棱锥P ABC -的外接球的表面积为:2412S r ππ==.故选:A .考向五 内切球【例5】正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积. 【答案】πππ)625(8)26(4422-=-==R S 球,33)26(3434-==ππR V 球. ∴R R ⨯⨯+⨯⨯⨯=⨯⨯36313233113631得:2633232-=+=R , ∴πππ)625(8)26(4422-=-==R S 球.∴33)26(3434-==ππR V 球.【举一反三】1.球内切于圆柱, 则此圆柱的全面积与球表面积之比是( )A .1:1B .2:1C .3:2D .4:3【答案】C【解析】设球的半径为R ,则圆柱的底面半径为R ,高为2R , 222226S R R R R πππ∴=⨯+⨯=圆柱,24S R π=球.∴此圆柱的全面积与球表面积之比是:226342S R S R ππ==圆柱球.故选:C .2.若三棱锥A BCD -中,6AB CD ==,其余各棱长均为 5 ,则三棱锥内切球的表面积为 .【答案】6316π【解析】由题意可知三棱锥的四个面全等, 且每一个面的面积均为164122⨯⨯=. 设三棱锥的内切球的半径为r ,则三棱锥的体积14163ABC V S r r ∆==, 取CD 的中点O ,连接AO ,BO ,则CD ⊥平面AOB ,4AO BO ∴==,162AOB S ∆=⨯= 12233A BCD C AOB V V --∴==⨯⨯=,16r ∴=,解得8r =. ∴内切球的表面积为263416S r ππ==. 故答案为:6316π.3.一个几何体的三视图如图所示, 三视图都为腰长为 2 的等腰直角三角形, 则该几何体的外接球半径与内切球半径之比为( )A B C D 【答案】A【解析】 由题意可知几何体是三棱锥, 是正方体的一部分, 如图: 正方体的棱长为 2 ,内切球的半径为r ,可得:21111222(322)32324r ⨯⨯⨯⨯=⨯⨯⨯⨯+,解得r =,该几何体的外接球半径与内切球半径之比为:322+=.故选:A.考向六最值问题【例6】已知球O的内接长方体ABCD A B C D-''''中,2AB=,若四棱锥O ABCD-的体积为2,则当球O的表面积最小时,球的半径为()A.B.2 CD.1【答案】B【解析】由题意,球O的内接长方体ABCD A B C D-''''中,球心O在T对角线交点上,可得:四棱锥O ABCD-的高为1(2h h是长方体的高),长方体的边长2AB=,设BC a=,高为h,可得:112223a h⨯⨯⨯⨯=,即6ah=,6ha∴=那么:23614222R==+=,(当且仅当a=故选:B.【举一反三】1.已知A,B是球O的球面上两点,90AOB∠=︒,C为该球面上的动点,若三棱锥O ABC-体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【答案】C【解析】如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O ABC-的体积最大,设球O的半径为R,此时2311136326O ABC C AOBV V R R R--==⨯⨯⨯==,故6R=,则球O的表面积为24144Rππ=,故选:C.1.已知正三棱柱111ABC A B C -的底面边长为3,外接球表面积为16π,则正三棱柱111ABC A B C -的体积为( )A B C D 【答案】D【解析】正三棱柱111ABC A B C -的底面边长为3,故底面的外接圆的半径为:03,2sin 60r r r =⇒=外接球表面积为16π242R R π=⇒=外接球的球心在上下两个底面的外心MN 的连线的中点上,记为O 点,如图所示在三角形1OMB 中,22211112MB r OB R MB OM OB ===+=解得1,2OM MN h ===故棱柱的体积为:13322V Sh ==⨯⨯= 故答案为:D. 2.已知P ,A ,B ,C ,D 是球O 的球面上的五个点,四边形ABCD 为梯形,//AD BC ,2AB DC AD ===,4BC PA ==,PA ⊥面ABCD ,则球O 的体积为( )A B C .D .16π【答案】A【解析】取BC 中点E ,连接,,AE DE BD//AD BC 且12AD BC EC == ∴四边形ADCE 为平行四边形AE DC ∴=,又12DC BC =12DE BC ∴=AE DE BE EC ∴===E ∴为四边形ABCD 的外接圆圆心设O 为外接球的球心,由球的性质可知OE ⊥平面ABCD作OF PA ⊥,垂足为F ∴四边形AEOF 为矩形,2OF AE == 设AF x =,OP OA R ==则()22444x x +-=+,解得:2x = R ∴==∴球O 的体积:343V R π==本题正确选项:A3.已知三棱锥S ABC -的各顶点都在一个球面上,球心O 在AB 上,SO ⊥底面ABC ,球的体积与三棱锥体积之比是4π,AC = ( )A .πB .2πC .3πD .4π【答案】D 【解析】由于OA OB OC OS ===,且SO ⊥平面ABC ,所以π2ACB ∠=,设球的半径为R ,根据题目所给体积比有34π114π332R R =⋅⋅,解得1R =,故球的表面积为4π.4.某三棱锥的三视图如图所示,则此三棱锥的外接球表面积是( )A .163π B .283πC .11πD .323π【答案】B【解析】根据几何体得三视图转换为几何体为:该几何体为:下底面为边长为2的等边三角形,有一长为2的侧棱垂直于下底面的三棱锥体,,所以:外接球的半径为:R =故:外接球的表面积为:27284433S R πππ==⋅=.故选:B . 5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,已知其俯视图是正三角形,则该几何体的外接球的体积是( )A .54B .54C .193πD .223π【答案】A的四棱锥,且侧面PAB 垂直底面ABCD ,如图所示:还原长方体的长是2,宽为1设四棱锥的外接球的球心为O ,则过O 作OM 垂直平面PAB ,M 为三角形PAB 的外心,作ON 垂直平面ABCD ,则N 为矩形ABCD 的对角线交点,11,23OM ON ===所以外接球的半径2222219(212R ON AN R =+=+=∴=所以外接球的体积34354V R π== 故选A 6.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的表面积为( )A .√6πB .6πC .9πD .24π【答案】B【解析】如图所示,该几何体为四棱锥P −ABCD .底面ABCD 为矩形,其中PD ⊥底面ABCD .AB =1,AD =2,PD =1.则该阳马的外接球的直径为PB =√1+1+4=√6. ∴该阳马的外接球的表面积为:4π×(√62)2=6π.故选:B .7.如图,边长为2的正方形ABCD 中,点E 、F 分别是AB 、BC 的中点,将ΔADE ,ΔBEF ,ΔCDF 分别沿DE ,EF ,FD 折起,使得A 、B 、C 三点重合于点A ′,若四面体A ′EDF 的四个顶点在同一个球面上,则该球的表面积为( )A .5πB .6πC .8πD .11π【答案】B【解析】由题意可知△A ′EF 是等腰直角三角形,且A ′D ⊥平面A ′EF . 三棱锥的底面A ′EF 扩展为边长为1的正方形,然后扩展为正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球, 正四棱柱的对角线的长度就是外接球的直径,直径为:√1+1+4=√6. ∴球的半径为√62,∴球的表面积为4π·(√62)2=6π.故选:B .8.某简单几何体的三视图如图所示,若该几何体的所有顶点都在球O 的球面上,则球O 的表面积是:( )A .8πB .12√3πC .12πD .48π【答案】C【解析】由三视图还原几何体如图,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2. 把该三棱柱补形为正方体,则正方体对角线长为√22+22+22.∴该三棱柱外接球的半径为:√3.则球O 的表面积是:4π×(√3)2=12π.故选:C .9.已知三棱锥O −ABC 的底面ΔABC 的顶点都在球O 的表面上,且AB =6,BC =2√3,AC =4√3,且三棱锥O −ABC 的体积为4√3,则球O 的体积为( ) A .32π3B .64π3C .128π3D .256π3【答案】D【解析】由O 为球心,OA =OB =OC =R ,可得O 在底面ABC 的射影为△ABC 的外心,AB =6,BC =2√3,AC =4√3,可得△ABC 为AC 斜边的直角三角形,O 在底面ABC 的射影为斜边AC 的中点M ,可得13•OM •12AB •BC =16OM •12√3=4√3,解得OM =2, R 2=OM 2+AM 2=4+12=16,即R =4,球O 的体积为43πR 3=43π•64=2563π.故选:D .10.我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱.现有一如图所示的堑堵,AC BC ⊥,若12A A AB ==,则堑堵111ABC A B C -的外接球的体积为( )A .3B .8πC .3D .43π【答案】C【解析】由题意,在直三棱柱111ABC A B C -中,因为AC BC ⊥,所以ABC ∆为直角三角形,且该三角形的外接圆的直径22r AB ==, 又由12AA =,所以直三棱柱111ABC A B C -的外接球的直径2R ==所以R =,所以外接球的体积为3344333V R ππ==⨯=,故选C. 11.在三棱锥P ABC -中.2PA PB PC ===.1AB AC ==,BC =则该三棱锥的外接球的表面积为( )A .8πB .163π C .43π D【答案】B【解析】因为1,AB AC BC ===,由余弦定理可求得23BAC π∠=, 再由正弦定理可求得ABC ∆的外接圆的半径122sin3BCr π==, 因为2PA PB PC ===,所以P 在底面上的射影为ABC ∆的外心D,且PD =,设其外接球的半径为R,则有2221)R R =+,解得R =24164433S R πππ==⨯=,故选B.12.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为( ) A .6π B .12πC .32πD .48π【答案】B【解析】由题得几何体原图如图所示,其中SA ⊥平面ABC,BC ⊥平面SAB,SA=AB=BC=2,所以SC =设SC 中点为O,则在直角三角形SAC 中,在直角三角形SBC 中,OB=12SC =所以,所以点O所以四面体外接球的表面积为4=12ππ.故选:B13.已知在三棱锥P ABC -中,1PA PB BC ===,AB =,AB BC ⊥,平面PAB ⊥平面ABC ,若三棱锥的顶点在同一个球面上,则该球的表面积为( )A B .3C .2πD .3π【答案】D【解析】根据题意, AC 为截面圆的直径, AC =设球心到平面ABC 的距离为d ,球的半径为R 。
2023届高三数学一轮复习专题 立体几何垂直系统 讲义 (解析版)
高三数学第一轮复习专题 垂直系统专题第一部分 直线与平面垂直的判定及性质一。
线面垂直的定义:l l αα若直线与平面内的任意一条直线都垂直,则称直线与平面垂直.记作:l α⊥。
l 直线叫做α平面的垂线,α平面叫做l 直线的垂面。
(★★★)线面垂直的定义可以作为线面垂直的性质定理使用: 若l 直线与α平面垂直,则l 直线与α平面内任意一条直线都垂直。
,l a l a αα⊥⊂⇒⊥ ⇒线面垂直线线垂直二。
线面垂直的判定定理:1。
判定定理1:若一条直线和一个平面内的两条相交直线都垂直,则该直线与这个平面垂直。
(★★★)⇒线线垂直线面垂直,,,,a b a b P l a l b l ααα⊂⊂⋂=⊥⊥⇒⊥两个核心条件:,l a l b ⊥⊥2。
判定定理2:若两平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面。
(★★)a ∥b ,a α⊥b α⇒⊥三。
线面垂直的性质定理:1。
性质定理1:垂直于同一平面的两直线平行。
a α⊥,b α⊥a ⇒∥bα2。
性质定理2:垂直于同一直线的两平面平行。
l α⊥,l β⊥⇒α∥β题型一:线线垂直与线面垂直的互相证明 ★★★★★判定定义线线垂直线面垂直这两个定理(定义)构成了一个很重要的小循环:⇒⇒⇒⇒⋅⋅⋅⋅⋅⋅线线垂直线面垂直线线垂直线面垂直例1。
P 为ABC 所在平面外一点,PA ABC ⊥平面,090ABC ∠=,AE PB E ⊥于,AF PC F ⊥于。
求证:PC AEF ⊥平面。
(★★)规律:常用线面垂直来证明两直线“异面垂直”。
已知的是相交垂直,要证的是异面垂直。
分析:从后往前分析。
要证()PC AF PC AEF PC AE AE PBC ⎧⊥⎪⊥⇐⎨⊥⇐⊥⎪⎩已知平面平面 α()090AE PB BC AB ABC AE BC BC PAB BC PA PA ABC ⎧⊥⎪⎪⇐⎨⎧⊥⇐∠=⎪⊥⇐⊥⇐⎨⎪⊥⇐⊥⎩⎩已知平面平面 但写证明过程时要从前往后写。
2025届高考数学一轮复习讲义立体几何与空间向量之 空间直线、平面的垂直
⑬
ቋ⇒α⊥β
⊥
⇒l⊥α
二、基础题练习
1. 在空间中,α,β是两个不同的平面, m , n 是两条不同的直线,下列说法错误的
是(
C )
A. 若m⊥α,m∥n,n⊂β,则α⊥β
B. 若α∥β,m⊥α,n⊥β,则m∥n
C. 若α∥β,m⊂α,n⊂β,则m∥n
D. 若α⊥β,m⊂α,α∩β=n,m⊥n,则m⊥β
三、知识点例题讲解及方法技巧总结
命题点1
线面垂直的判定与性质
例1 [2024惠州市二调节选]如图,已知平行六面体 ABCD - A 1 B 1 C 1 D 1中,底面
ABCD 是正方形,侧面 ADD 1 A 1是矩形,点 P 为 D 1 C 1的中点,且 PD = PC .
求证: DD 1⊥平面 ABCD .
因为 AB 1∥ DC 1,所以直线 AB 1与 AD 1所成的角即直线 DC 1与 AD 1所
成的角.
又 AD 1= AB 1= B 1 D 1,所以△ AB 1 D 1为正三角形,
所以∠ D 1 AB 1=60°,所以直线 AD 1与 AB 1所成角的大小为60°,
即直线 AD 1与 DC 1所成角的大小为60°.
D 与正方体的12条棱所成的角都相等.连接 BD 1,与平面 A 1 C 1 D 交于点 O ,连接 A 1
1
3
O ,则 BD 1⊥平面 A 1 C 1 D ,则α=∠ D 1 A 1 O ,且 D 1 O = BD 1=
3
1
=3
1 1
1
=
3
,故选B.
3
3
,所以
3
sin α=
4. [教材改编]在正方体 ABCD - A 1 B 1 C 1 D 1中,直线 AB 与 A 1 D 1所成角的大小
20届高考数学一轮复习讲义(提高版)专题9.5空间几何体中的垂直(原卷版).
9.5空间几何中垂直问题一.直线与平面垂直1.定义:如果直线/与平面a内的任意一条直线都垂直,则直线7与平面a互相垂直,记作ALa,直线/叫做平面。
的垂线,平面a叫做直线,的垂面.2.判定定理与性质定理二.平面与平面垂直1.二面角的有关概念文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直17Error!=>Z± a性质定理垂直于同一个平面的两条直线平行a2b7Error!=&〃b①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角:②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.2.平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角.就说这两个平面互相垂直.3.平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直14Errorin a_L0性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直/Error!=/_L a考向一线面垂直【例1】如图,在正方体ABCD-A}B X C X D X中,氏尸分别为棱AD,AB的中点.(I)求证:EF//平面CBQ】;(II)求证:5,D,±平面CAA.C,.【举一反三】1.如图所示,在直三梭柱ABC-A'&Ci中,AB=AC=AA X=3,BC=2,〃是此'的中点,广是叫上一点.当g2时,证明:曷n平面加呢2.如图所示的多面体中,底面ABCD为正方形,AGAD为等边三角形,BF±平面ABCD,ZGDC=90°,点E是线段GC上除两端点外的一点,若点P为线段GD的中点.(I)求证:AP±平面GCD:(1[)求证:平面ADG//平面FBC.考向二面面垂直【例2】如图.在四校锥中,底面是矩形,点£在棱庞上(异于点只 交于点F.⑴求证:AB//EF-.(2)若4匹_1_&;求证:平面月心1平面4砌,平面与棱R 【举一反三】1.如图,三枝柱如C-44G 中,8C=CG,平面4照_1_平面acc 遥R证明:(1) RC 〃平面M'G :⑵平面"〈上平面时弓.考向三垂直的性质运用【例3】如图,在三棱锥走及刀中,ABLAD,BCLBD,平面彻L平面网9,点氏F(E与A,〃不重合)分别在棱BD匕且欣L4ZZ求证:⑴以〃平面沥T:⑵ADLAC.【举一反三】1.如图,在三棱锥S—48C中,SD_L平面,48C,Z)为AB的中点,E为BC的中点,AC=BC.(1)求证:AC//平面SDE:(2)求证:ABLSC.2、如图所示,在四棱锥—4及刀中,0_1_底面兀必Z ABA.AD,ACX.CD,/板‘=60°/T的中点.证明:(1)〃_L4&⑵RL平面4母:,PA=AB=BC.E是P【举一反三】1.如图所示的空间儿何体物海;中,四边形力及刀是边长为2的正方形,力如平面ABCD,EF//AB,EG〃AD、EF=EG=L(1)求证:平面67若_1_平面ACE-.(2)在4C上是否存在一点爪使得目/〃平而海?若存在,求出制的长,若不存在,清说明理由.B考向五定义定理的运用【例5-1】设1,0表示直线,0是平面Q内的一条直线,则“1顼是“AL。
20届高考数学一轮复习讲义(提高版) 专题9.5 空间几何体中的垂直(解析版)
9.5 空间几何中垂直问题一.直线与平面垂直1.定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α互相垂直,记作l⊥α,直线l 叫做平面α的垂线,平面α叫做直线l的垂面.2.判定定理与性质定理1.二面角的有关概念①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.2.平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.3.平面与平面垂直的判定定理与性质定理考向一线面垂直【例1】如图,在正方体1111ABCD A B C D-中, ,E F分别为棱,AD AB的中点. (Ⅰ)求证: //EF平面11CB D;(Ⅱ)求证:11B D⊥平面11CAA C.【答案】见解析【解析】证明:(Ⅰ),E F分别为棱,AD AB的中点,在ABD中, EF为中位线,所以//EF BD;又因为11//BD B D;所以11//EF B D, 11B D⊂平面11CB D, EF⊄平面11CB D所以//EF平面11CB D.(Ⅱ)因为正方体1111ABCD A B C D-,11B D和11A C为对角线,所以1111B D A C⊥,在正方体1111ABCD A B C D-中,1AA⊥平面1111A B C D,11B D⊂平面1111A B C D,所以111AA B D⊥,又因为111A C AA A⋂=,所以11B D⊥平面11CAA C.【举一反三】1. 如图所示,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F是CC1上一点.当CF =2时,证明:B1F⊥平面ADF.【答案】见证明【证明】因为AB=AC,D是BC的中点,所以AD⊥BC.在直三棱柱ABC-A1B1C1中,因为BB1⊥底面ABC,AD⊂底面ABC,所以AD⊥B1B.因为BC∩B1B=B,BC,B1B⊂平面B1BCC1,所以AD⊥平面B1BCC1.因为B1F⊂平面B1BCC1,所以AD⊥B1F.方法一在矩形B1BCC1中,因为C1F=CD=1,B1C1=CF=2,所以Rt△DCF≌Rt△FC1B1,⎪⎩面面垂直的性质所以∠CFD=∠C1B1F,所以∠B1FD=90°,所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.方法二在Rt△B1BD中,BD=CD=1,BB1=3,所以B1D=BD2+BB21=10.在Rt△B1C1F中,B1C1=2,C1F=1,所以B1F=B1C21+C1F2= 5.在Rt△DCF中,CF=2,CD=1,所以DF=CD2+CF2= 5.显然DF2+B1F2=B1D2,所以∠B1FD=90°.所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.2.如图所示的多面体中,底面ABCD为正方形,ΔGAD为等边三角形,BF⊥平面ABCD,∠GDC=90∘,点E是线段GC上除两端点外的一点,若点P为线段GD的中点.(Ⅰ)求证:AP⊥平面GCD;(Ⅱ)求证:平面ADG//平面FBC.【答案】见证明【解析】(Ⅰ)证明:因为ΔGAD是等边三角形,点P为线段GD的中点,故AP⊥GD.因为AD⊥CD,GD⊥CD,且AD∩GD=D,AD,GD⊂平面GAD,故CD⊥平面GAD,又AP⊂平面GAD,故CD⊥AP,又CD∩GD=D,CD,GD⊂平面GCD,故AP⊥平面GCD.(Ⅱ)证明:∵BF⊥平面ABCD,∴BF⊥CD,∵BC⊥CD,BF∩BC=B,BF,BC⊂平面FBC,∴CD⊥平面FBC,由(Ⅰ)知CD⊥平面GAD,∴平面ADG//平面FBC.考向二面面垂直【例2】如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD 交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面PAD⊥平面ABCD.【答案】见证明【证明】(1)因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC,又因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2)因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,(1)中已证AB∥EF,所以AB⊥AF.又AB⊥AD,由点E在棱PC上(异于点C),所以点F异于点D,所以AF∩AD=A,AF,AD⊂平面PAD,所以AB⊥平面PAD,又AB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD . 【举一反三】1.如图,三棱柱111ABC A B C -中,1BC CC =,平面11A BC ⊥平面11BCC B .证明:(1) //AC 平面11A BC ;(2) 平面1AB C ⊥平面11A BC .【答案】(1)证明见解析;(2)证明见解析.【解析】(1)几何体为三棱柱 ⇒四边形11ACC A 为平行四边形 11//AC A C ⇒又11A C ⊂平面11A BC ,AC ⊄平面11A BC //AC ∴平面11A BC(2)1BC CC =且四边形11BCC B 为平行四边形∴四边形11BCC B 为菱形 11B C BC ⊥∴又平面11A BC ⊥平面11BCC B ,平面11A BC ⋂平面111BCC B BC =1B C ∴⊥平面11A BC 又1B C ⊂平面1AB C ∴平面1AB C ⊥平面11A BC考向三 垂直的性质运用【例3】如图,在三棱锥A BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .【答案】见证明【证明】(1)在平面ABD 内,因为AB ⊥AD , EF AD ⊥,所以EF AB .又因为EF ⊄平面ABC , AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD =BD ,BC ⊂平面BCD , BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD , BC AB B ⋂=, AB ⊂平面ABC , BC ⊂平面ABC , 所以AD ⊥平面ABC ,又因为AC ⊂平面ABC ,所以AD ⊥AC. 【举一反三】1.如图,在三棱锥S ABC -中, SD ⊥平面ABC D ,为AB 的中点,E 为BC 的中点, AC BC =.()1求证: //AC 平面SDE ; ()2求证: AB SC ⊥.【答案】见证明 【证明】()1D 为AB 的中点,E 为BC 的中点//DE AC ∴,又DE ⊂平面SED AC ⊄,平面SDE ,//AC ∴平面SDE .()2连结CD ,SD ⊥平面ABC AB ⊆,平面ABC ,SD AB ∴⊥,AC BC D =,是AB 的中点,CD AB ∴⊥,又CD SCD SD ⊂⊂,平面SCD CD SD D ⋂=,,AB ∴⊥平面SCD SC ⊂,平面SCD ,AB SC ∴⊥.2、如图所示,在四棱锥P —ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)CD ⊥AE ;(2)PD ⊥平面ABE . 【答案】见证明【证明】 (1)在四棱锥P —ABCD 中, ∵PA ⊥底面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD .又∵AC ⊥CD ,PA ∩AC =A ,PA ,AC ⊂平面PAC ,∴CD ⊥平面PAC . 而AE ⊂平面PAC ,∴CD ⊥AE .(2)由PA =AB =BC ,∠ABC =60°,可得AC =PA .∵E 是PC 的中点,∴AE ⊥PC .由(1)知AE ⊥CD ,且PC ∩CD =C ,PC ,CD ⊂平面PCD , ∴AE ⊥平面PCD ,而PD ⊂平面PCD ,∴AE ⊥PD . ∵PA ⊥底面ABCD ,AB ⊂平面ABCD ,∴PA ⊥AB . 又∵AB ⊥AD ,且PA ∩AD =A ,∴AB ⊥平面PAD ,而PD ⊂平面PAD ,∴AB ⊥PD .又∵AB ∩AE =A ,AB ,AE ⊂平面ABE ,∴PD ⊥平面ABE .考向四 垂直关系中的探索性问题【例4】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别是棱BC ,AB 的中点,点F 在棱CC 1上,已知AB =AC ,AA 1=3,BC =CF =2.(1)求证:C 1E ∥平面ADF ;(2)设点M 在棱BB 1上,当BM 为何值时,平面CAM ⊥平面ADF . 【答案】见证明【解析】(1)证明 连结CE 交AD 于O ,连结OF .因为CE ,AD 为△ABC 的中线,则O 为△ABC 的重心,故CF CC 1=CO CE =23,故OF ∥C 1E , 因为OF ⊂平面ADF ,C 1E ⊄平面ADF , 所以C 1E ∥平面ADF .(2)解 当BM =1时,平面CAM ⊥平面ADF . 证明如下:因为AB =AC ,AD ⊂平面ABC , 故AD ⊥BC .在直三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC ,BB 1⊂平面B 1BCC 1,故平面B 1BCC 1⊥平面ABC .又平面B 1BCC 1∩平面ABC =BC ,AD ⊂平面ABC ,所以AD⊥平面B1BCC1,又CM⊂平面B1BCC1,故AD⊥CM.又BM=1,BC=2,CD=1,FC=2,故Rt△CBM≌Rt△FCD.易证CM⊥DF,又DF∩AD=D,DF,AD⊂平面ADF,故CM⊥平面ADF.又CM⊂平面CAM,故平面CAM⊥平面ADF.【举一反三】1. 如图所示的空间几何体ABCDEFG中,四边形ABCD是边长为2的正方形,AE⊥平面ABCD,EF∥AB,EG∥AD,EF=EG=1.(1)求证:平面CFG⊥平面ACE;(2)在AC上是否存在一点H,使得EH∥平面CFG?若存在,求出CH的长,若不存在,请说明理由.【答案】见解析【解析】(1)证明连结BD交AC于点O,则BD⊥AC设AB,AD的中点分别为M,N,连结MN,则MN∥BD,连结FM,GN,则FM∥GN,且FM=GN,所以四边形FMNG为平行四边形,所以MN∥FG,所以BD∥FG,所以FG⊥AC.由于AE⊥平面ABCD,所以AE⊥BD.所以FG⊥AE,又因为AC∩AE=A,AC,AE⊂平面ACE,所以FG⊥平面ACE.又FG⊂平面CFG,所以平面CFG⊥平面ACE.(2)解存在.设平面ACE交FG于Q,则Q为FG的中点,连结EQ,CQ,取CO的中点H,连结EH,由已知易知,平面EFG∥平面ABCD,又平面ACE∩平面EFG=EQ,平面ACE∩平面ABCD=AC,所以CH∥EQ,又CH=EQ=22,所以四边形EQCH为平行四边形,所以EH∥CQ,又CQ⊂平面CFG,EH⊄平面CFG,所以EH∥平面CFG,所以在AC上存在一点H,使得EH∥平面CFG,且CH=22.考向五定义定理的运用【例5-1】设l,m表示直线,m是平面α内的一条直线,则“l⊥m”是“l⊥α”成立的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)【答案】必要不充分【解析】由线面垂直的定义知,直线垂直于平面内至少两条相交直线,则直线与平面垂直,只平行于平面内一条直线说明充分性不成立,反之,直线垂直于平面,则直线垂直于平面内任意一条直线,说明是必要条件,则“l⊥m”是“l⊥α”成立的必要不充分条件.【例5-2】已知平面α,β,直线m,n.给出下列命题:①若α⊥β,α∩β=n,m⊥n,则m⊥β;②若n⊥α,n⊥β,m⊥α,则m⊥β;③若m⊥α,n⊥β,m⊥n,则α⊥β;④若α⊥β,m⊥α,n⊥β,则m⊥n.其中,真命题是________.(填序号)【答案】②③④【解析】对于①,当m⊂α时,才能保证m⊥β,不对;对于②,由m⊥α,n⊥α,得m∥n,又n⊥β,所以m⊥β,对;③④都对.【举一反三】1.设m,n是两条不同的直线,α,β,γ是三个不重合的平面,给出下列四个命题:①若α∥β,β∥γ,m⊥α,则m⊥γ;②若α⊥β,m∥α,则m⊥β;③若m⊥α,m∥β,则α⊥β;④若m∥n,n⊂α,则m∥α.其中正确的命题是________.(填序号)【答案】①③【解析】易知①正确;②可能有m⊂β,m∥β,m与β相交等情况,故不正确;③正确;④可以有m∥α或m⊂α,故不正确.2.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n ⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________.(用序号表示)【答案】①③④⇒②(或②③④⇒①)【解析】逐一判断.若①②③成立,则m与α的位置关系不确定,故①②③⇒④错误;同理①②④⇒③也错误;①③④⇒②与②③④⇒①均正确.1.如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,FD⊥平面ABCD,FD=. (I)求证://EF平面ABCD;(II)求证:平面ACF⊥平面BDF.【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】(Ⅰ)证明:如图,过点E作EH BC⊥于H,连接HD,∴EH=∵平面ABCD⊥平面BCE,EH⊂平面BCE,平面ABCD⋂平面BCE BC=,∴EH⊥平面ABCD,又∵FD ⊥平面ABCD ,FD =∴//FD EH ,FD EH =.∴四边形EHDF 为平行四边形.∴//EF HD . ∵EF ⊄平面ABCD ,HD ⊂平面ABCD ,∴//EF 平面ABCD .(Ⅱ)证明:FD ⊥面ABCD ,FD AC ∴⊥,又四边形ABCD 是菱形,AC BD ∴⊥,又FD BD D ⋂=,AC ∴⊥面FBD ,又AC ⊂面ACF ,从而面ACF ⊥面BDF .2.如图,在三棱锥S ABC -中,BC ⊥平面SAC .已知SA AC =,点,,H E F 分别为,,SC AB BC 的中点.(1)求证:EF ‖平面SAC ;(2)求证:AH ⊥平面SBC .【答案】(1)证明见解析;(2)证明见解析.【解析】(1)∵E ,F 分别为AB ,BC 的中点,//EF AC ∴,又AC ⊂平面SAC ,EF ∉平面SAC ,//EF ∴平面SAC ;(2)BC ⊥平面SAC ,AH ⊂平面SAC .BC AH ∴⊥,SA AC =,点H 分别为SC 的中点,AH SC ∴⊥,又BC SC C ⋂=,AH ∴⊥平面SBC .3.如图,在三棱柱111ABC A B C -中,AC BC =,1AA ⊥底面ABC ,D 是线段AB 的中点,E 是线段11A B 上任意一点,11B C BC O ⋂=.(1)证明:CD ⊥平面11ABB A ;(2)证明://OD 平面1AC E .【答案】(1)证明见解析;(2)证明见解析.【解析】(1)因为AC BC =,D 是线段AB 的中点,所以CD AB ⊥,又1AA ⊥底面ABC ,所以1AA CD ⊥,又1AB AA A =,所以CD ⊥平面11ABB A .(2)易知四边形11BCC B 为平行四边形,则O 为1BC 的中点,又D 是线段AB 的中点,所以1OD AC ,而OD ⊄平面1AC E ,1AC ⊂平面1AC E ,所以OD 平面1AC E .4.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,AC 与BD 交于点O ,PC ⊥底面ABCD ,E 为PB 上一点,G 为PO 中点.(1)若PD ∥平面ACE ,求证:E 为PB 的中点;(2)若AB =,求证:CG ⊥平面PBD .【答案】(1)详见解析;(2)详见解析.【解析】(1)连接OE ,由四边形ABCD 是正方形知,O 为BD 中点//PD 平面ACE ,PD ⊂面PBD ,面PBD 面ACE OE =//PD OE ∴ O 为BD 中点 E ∴为PB 的中点(2)在四棱锥P ABCD -中,AB =四边形ABCD 是正方形 OC AB ∴=PC OC ∴=G 为PO 中点 CG PO ∴⊥又PC ⊥底面ABCD ,BD ⊂底面ABCD PC BD ∴⊥而四边形ABCD 是正方形 AC BD ∴⊥,AC CG ⊂平面PAC ,AC CG C ⋂=BD ∴⊥平面PAC又CG ⊂平面PAC BD CG ∴⊥,PO BD ⊂平面PBD ,PO BD O =CG ∴⊥平面PBD5.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,1AC AA =,D 是棱AB 的中点.(1)求证:11BC CD 平面A ;(2)求证:11BC AC ⊥. 【答案】(1)见详解;(2)见详解.【解析】(1)连接AC 1,设AC 1∩A 1C =O ,连接OD ,在直三棱柱ABC ﹣A 1B 1C 1中,侧面ACC 1A 1是平行四边形, 所以:O 为AC 1的中点,又因为:D 是棱AB 的中点,所以:OD ∥BC 1,又因为:BC 1⊄平面A 1CD ,OD ⊂平面A 1CD ,所以:BC 1∥平面A 1CD .(2)由(1)可知:侧面ACC 1A 1是平行四边形,因为:AC =AA 1,所以:平行四边形ACC 1A 1是菱形,所以:AC1⊥A1C,在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,因为:AB⊂平面ABC,所以:AB⊥AA1,又因为:AB⊥AC,AC∩AA1=A,AC⊂平面ACC1A1,AA1⊂平面ACC1A1,所以:AB⊥平面ACC1A1,因为:A1C⊂平面ACC1A1,所以:AB⊥A1C,又因为:AC1⊥A1C,AB∩AC1=A,AB⊂平面ABC1,AC1⊂平面ABC1,所以:A1C⊥平面ABC1,因为:BC1⊂平面ABC1,所以:BC1⊥A1C.6.如图,在四棱锥P-ABCD中,底面ABCD为矩形,AP⊥平面PCD,E,F分别为PC,AB的中点.(1)求证:平面PAD⊥平面ABCD;(2)求证:EF∥平面PAD.【答案】见解析【解析】证明(1)因为AP⊥平面PCD,CD⊂平面PCD,所以AP⊥CD.又四边形ABCD为矩形,所以AD⊥CD,又因为AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以CD⊥平面PAD.又因为CD⊂平面ABCD,所以平面PAD⊥平面ABCD.(2)连结AC,BD交于点O,连结OE,OF.因为四边形ABCD为矩形,所以O为AC的中点.因为E为PC的中点,所以OE∥PA.因为OE⊄平面PAD,PA⊂平面PAD,所以OE∥平面PAD.同理可证OF∥平面PAD.因为OE∩OF=O,OB,OF⊂平面OEF,所以平面OEF∥平面PAD.因为EF⊂平面OEF,所以EF∥平面PAD.7.如图,在直三棱柱ABC-A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.【答案】见解析【解析】证明(1)因为D,E分别是AB,AC的中点,所以DE∥BC.又因为在三棱柱ABC-A1B1C1中,B1C1∥BC,所以B1C1∥DE.又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE.(2)在直三棱柱ABC-A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE.又BC⊥AC,DE∥BC,所以DE⊥AC.又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1,又因为DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1.8.如图,已知四边形ABCD是正方形,PD⊥平面ABCD,CD=PD=2EA,PD//EA,F,G,H分别为PB,BE,PC的中点.(Ⅰ)求证:GH//平面PDAE;(Ⅱ)求证:平面FGH⊥平面PCD.【答案】见解析【解析】(Ⅰ)分别取PD的中点M,EA的中点N.连结MH,NG,MN.因为G,H分别为BE,PC的中点,所以1CD,1AB,因为AB与CD平行且相等,所以MH平行且等于NG,故四边形GHMN 是平行四边形.所以GH//MN .又因为GH ⊄平面PDAE ,MN ⊂平面PDAE ,所以GH//平面PDAE .(Ⅱ)证明:因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD ⊥BC .因为BC ⊥CD ,PD ∩CD =D ,所以BC ⊥平面PCD .因为F ,H 分别为PB 、PC 的中点,所以FH//BC .所以FH ⊥平面PCD .因为FH ⊂平面FGH ,所以平面FGH ⊥平面PCD .9.如图:C 、D 是以AB 为直径的圆上两点,F BC AC AD AB ,,322===在线段AB 上,且 AB AF 31=,将圆沿直径AB 折起,使点C 在平面ABD 的射影E 在BD 上.(I )求证平面ACD ⊥平面BCD ;(II )求证:AD//平面CEF.【答案】见解析【解析】(I )证明:依题意:AD BD ⊥,CE ABD CE AD ⊥∴⊥平面BD CE E =AD BCE ∴⊥平面……3分又AD CAD ⊂平面CAD BCD ∴⊥平面平面…………4分(Ⅱ)证明:Rt ABD AB AD ==中,3BD =,联结AE ,在Rt ACE 和Rt BCE 中,,AC BC CE CE ==,Rt ACE Rt BCE AE BE ∴≅∴=……6分设DE x =,则3AE BE x ==-,在Rt ADE ,222AD DE AE +=,即()2233x x +=-,解得1x =2BE ∴=23BF BE BA BD ∴==…………10分∴AD //EF AD 在平面CEF 外∴AD //平面CEF10、如图所示,M ,N ,K 分别是正方体ABCD —A 1B 1C 1D 1的棱AB ,CD ,C 1D 1的中点.求证:(1)AN ∥平面A 1MK ;(2)平面A 1B 1C ⊥平面A 1MK .【答案】见解析【解析】(1)如图所示,连接NK .在正方体ABCD —A 1B 1C 1D 1中,∵四边形AA 1D 1D ,DD 1C 1C 都为正方形,∴AA 1∥DD 1,AA 1=DD 1,C 1D 1∥CD ,C 1D 1=CD .∵N ,K 分别为CD ,C 1D 1的中点,∴DN ∥D 1K ,DN =D 1K ,∴四边形DD 1KN 为平行四边形,∴KN ∥DD 1,KN =DD 1,∴AA 1∥KN ,AA 1=KN ,∴四边形AA 1KN 为平行四边形,∴AN ∥A 1K .又∵A 1K ⊂平面A 1MK ,AN ⊄平面A 1MK ,∴AN ∥平面A 1MK .(2)如图所示,连接BC1.在正方体ABCD—A1B1C1D1中,AB∥C1D1,AB=C1D1.∵M,K分别为AB,C1D1的中点,∴BM∥C1K,BM=C1K,∴四边形BC1KM为平行四边形,∴MK∥BC1在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,BC1⊂平面BB1C1C,∴A1B1⊥BC1.∵MK∥BC1,∴A1B1⊥MK.∵四边形BB1C1C为正方形,∴BC1⊥B1C∴MK⊥B1C.∵A1B1⊂平面A1B1C,B1C⊂平面A1B1C,A1B1∩B1C=B1,∴MK⊥平面A1B1C.又∵MK⊂平面A1MK,∴平面A1B1C⊥平面A1MK.11、如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,M为棱AC的中点.AB=BC,AC=2,AA1= 2.(1)求证:B1C∥平面A1BM;(2)求证:AC1⊥平面A1BM;(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时BNBB1的值;如果不存在,请说明理由.【答案】见解析【解析】(1)证明连接AB1与A1B,两线交于点O,连接OM.在△B1AC中,∵M,O分别为AC,AB1的中点,∴OM∥B1C,又∵OM⊂平面A1BM,B1C⊄平面A1BM,∴B1C∥平面A1BM.(2)证明∵侧棱AA1⊥底面ABC,BM⊂平面ABC,∴AA1⊥BM,又∵M为棱AC的中点,AB=BC,∴BM⊥AC.∵AA 1∩AC =A ,AA 1,AC ⊂平面ACC 1A 1, ∴BM ⊥平面ACC 1A 1,∴BM ⊥AC 1.∵AC =2,∴AM =1.又∵AA 1=2,∴在Rt △ACC 1和Rt △A 1AM 中, tan ∠AC 1C =tan ∠A 1MA =2,∴∠AC 1C =∠A 1MA ,即∠AC 1C +∠C 1AC =∠A 1MA +∠C 1AC =90°,∴A 1M ⊥AC 1. ∵BM ∩A 1M =M ,BM ,A 1M ⊂平面A 1BM , ∴AC 1⊥平面A 1BM .(3)解 当点N 为BB 1的中点,即BN BB 1=12时,平面AC 1N ⊥平面AA 1C 1C .证明如下:设AC 1的中点为D ,连接DM ,DN .∵D ,M 分别为AC 1,AC 的中点,∴DM ∥CC 1,且DM =12CC 1. 又∵N 为BB 1的中点,∴DM ∥BN ,且DM =BN ,∴四边形BNDM 为平行四边形, ∴BM ∥DN ,∵BM ⊥平面ACC 1A 1,∴DN ⊥平面AA 1C 1C . 又∵DN ⊂平面AC 1N ,∴平面AC 1N ⊥平面AA 1C 1C .。
高考数学一轮复习讲义(提高版) 专题9.5 空间几何体中的垂直(解析版)
9.5 空间几何中垂直问题一.直线与平面垂直1.定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α互相垂直,记作l⊥α,直线l 叫做平面α的垂线,平面α叫做直线l的垂面.2.判定定理与性质定理1.二面角的有关概念①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.2.平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.3.平面与平面垂直的判定定理与性质定理考向一线面垂直【例1】如图,在正方体1111ABCD A B C D-中, ,E F分别为棱,AD AB的中点. (Ⅰ)求证: //EF平面11CB D;(Ⅱ)求证:11B D⊥平面11CAA C.【答案】见解析【解析】证明:(Ⅰ),E F分别为棱,AD AB的中点,在ABD中, EF为中位线,所以//EF BD;又因为11//BD B D;所以11//EF B D, 11B D⊂平面11CB D, EF⊄平面11CB D所以//EF平面11CB D.(Ⅱ)因为正方体1111ABCD A B C D-,11B D和11A C为对角线,所以1111B D A C⊥,在正方体1111ABCD A B C D-中,1AA⊥平面1111A B C D,11B D⊂平面1111A B C D,所以111AA B D⊥,又因为111A C AA A⋂=,所以11B D⊥平面11CAA C.【举一反三】1. 如图所示,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F是CC1上一点.当CF =2时,证明:B1F⊥平面ADF.【答案】见证明【证明】因为AB=AC,D是BC的中点,所以AD⊥BC.在直三棱柱ABC-A1B1C1中,因为BB1⊥底面ABC,AD⊂底面ABC,所以AD⊥B1B.因为BC∩B1B=B,BC,B1B⊂平面B1BCC1,所以AD⊥平面B1BCC1.因为B1F⊂平面B1BCC1,所以AD⊥B1F.方法一在矩形B1BCC1中,因为C1F=CD=1,B1C1=CF=2,所以Rt△DCF≌Rt△FC1B1,⎪⎩面面垂直的性质所以∠CFD=∠C1B1F,所以∠B1FD=90°,所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.方法二在Rt△B1BD中,BD=CD=1,BB1=3,所以B1D=BD2+BB21=10.在Rt△B1C1F中,B1C1=2,C1F=1,所以B1F=B1C21+C1F2= 5.在Rt△DCF中,CF=2,CD=1,所以DF=CD2+CF2= 5.显然DF2+B1F2=B1D2,所以∠B1FD=90°.所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.2.如图所示的多面体中,底面ABCD为正方形,ΔGAD为等边三角形,BF⊥平面ABCD,∠GDC=90∘,点E是线段GC上除两端点外的一点,若点P为线段GD的中点.(Ⅰ)求证:AP⊥平面GCD;(Ⅱ)求证:平面ADG//平面FBC.【答案】见证明【解析】(Ⅰ)证明:因为ΔGAD是等边三角形,点P为线段GD的中点,故AP⊥GD.因为AD⊥CD,GD⊥CD,且AD∩GD=D,AD,GD⊂平面GAD,故CD⊥平面GAD,又AP⊂平面GAD,故CD⊥AP,又CD∩GD=D,CD,GD⊂平面GCD,故AP⊥平面GCD.(Ⅱ)证明:∵BF⊥平面ABCD,∴BF⊥CD,∵BC⊥CD,BF∩BC=B,BF,BC⊂平面FBC,∴CD⊥平面FBC,由(Ⅰ)知CD⊥平面GAD,∴平面ADG//平面FBC.考向二面面垂直【例2】如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD 交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面PAD⊥平面ABCD.【答案】见证明【证明】(1)因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC,又因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2)因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,(1)中已证AB∥EF,所以AB⊥AF.又AB⊥AD,由点E在棱PC上(异于点C),所以点F异于点D,所以AF∩AD=A,AF,AD⊂平面PAD,所以AB⊥平面PAD,又AB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD . 【举一反三】1.如图,三棱柱111ABC A B C -中,1BC CC =,平面11A BC ⊥平面11BCC B .证明:(1) //AC 平面11A BC ;(2) 平面1AB C ⊥平面11A BC .【答案】(1)证明见解析;(2)证明见解析.【解析】(1)几何体为三棱柱 ⇒四边形11ACC A 为平行四边形 11//AC A C ⇒又11A C ⊂平面11A BC ,AC ⊄平面11A BC //AC ∴平面11A BC(2)1BC CC =且四边形11BCC B 为平行四边形∴四边形11BCC B 为菱形 11B C BC ⊥∴又平面11A BC ⊥平面11BCC B ,平面11A BC ⋂平面111BCC B BC =1B C ∴⊥平面11A BC 又1B C ⊂平面1AB C ∴平面1AB C ⊥平面11A BC考向三 垂直的性质运用【例3】如图,在三棱锥A BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .【答案】见证明【证明】(1)在平面ABD 内,因为AB ⊥AD , EF AD ⊥,所以EF AB .又因为EF ⊄平面ABC , AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD =BD ,BC ⊂平面BCD , BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥ AD .又AB ⊥AD , BC AB B ⋂=, AB ⊂平面ABC , BC ⊂平面ABC , 所以AD ⊥平面ABC ,又因为AC ⊂平面ABC ,所以AD ⊥AC. 【举一反三】1.如图,在三棱锥S ABC -中, SD ⊥平面ABC D ,为AB 的中点,E 为BC 的中点, AC BC =.()1求证: //AC 平面SDE ; ()2求证: AB SC ⊥.【答案】见证明 【证明】()1D 为AB 的中点,E 为BC 的中点//DE AC ∴,又DE ⊂平面SED AC ⊄,平面SDE ,//AC ∴平面SDE .()2连结CD ,SD ⊥平面ABC AB ⊆,平面ABC ,SD AB ∴⊥,AC BC D =,是AB 的中点,CD AB ∴⊥,又CD SCD SD ⊂⊂,平面SCD CD SD D ⋂=,,AB ∴⊥平面SCD SC ⊂,平面SCD ,AB SC ∴⊥.2、如图所示,在四棱锥P —ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)CD ⊥AE ;(2)PD ⊥平面ABE . 【答案】见证明【证明】 (1)在四棱锥P —ABCD 中, ∵PA ⊥底面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD .又∵AC ⊥CD ,PA ∩AC =A ,PA ,AC ⊂平面PAC ,∴CD ⊥平面PAC . 而AE ⊂平面PAC ,∴CD ⊥AE .(2)由PA =AB =BC ,∠ABC =60°,可得AC =PA .∵E 是PC 的中点,∴AE ⊥PC .由(1)知AE ⊥CD ,且PC ∩CD =C ,PC ,CD ⊂平面PCD , ∴AE ⊥平面PCD ,而PD ⊂平面PCD ,∴AE ⊥PD . ∵PA ⊥底面ABCD ,AB ⊂平面ABCD ,∴PA ⊥AB . 又∵AB ⊥AD ,且PA ∩AD =A ,∴AB ⊥平面PAD ,而PD ⊂平面PAD ,∴AB ⊥PD .又∵AB ∩AE =A ,AB ,AE ⊂平面ABE ,∴PD ⊥平面ABE .考向四 垂直关系中的探索性问题【例4】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别是棱BC ,AB 的中点,点F 在棱CC 1上,已知AB =AC ,AA 1=3,BC =CF =2.(1)求证:C 1E ∥平面ADF ;(2)设点M 在棱BB 1上,当BM 为何值时,平面CAM ⊥平面ADF . 【答案】见证明【解析】(1)证明 连结CE 交AD 于O ,连结OF .因为CE ,AD 为△ABC 的中线,则O 为△ABC 的重心,故CF CC 1=CO CE =23,故OF ∥C 1E , 因为OF ⊂平面ADF ,C 1E ⊄平面ADF , 所以C 1E ∥平面ADF .(2)解 当BM =1时,平面CAM ⊥平面ADF . 证明如下:因为AB =AC ,AD ⊂平面ABC , 故AD ⊥BC .在直三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC ,BB 1⊂平面B 1BCC 1,故平面B 1BCC 1⊥平面ABC .又平面B 1BCC 1∩平面ABC =BC ,AD ⊂平面ABC ,所以AD⊥平面B1BCC1,又CM⊂平面B1BCC1,故AD⊥CM.又BM=1,BC=2,CD=1,FC=2,故Rt△CBM≌Rt△FCD.易证CM⊥DF,又DF∩AD=D,DF,AD⊂平面ADF,故CM⊥平面ADF.又CM⊂平面CAM,故平面CAM⊥平面ADF.【举一反三】1. 如图所示的空间几何体ABCDEFG中,四边形ABCD是边长为2的正方形,AE⊥平面ABCD,EF∥AB,EG∥AD,EF=EG=1.(1)求证:平面CFG⊥平面ACE;(2)在AC上是否存在一点H,使得EH∥平面CFG?若存在,求出CH的长,若不存在,请说明理由.【答案】见解析【解析】(1)证明连结BD交AC于点O,则BD⊥AC设AB,AD的中点分别为M,N,连结MN,则MN∥BD,连结FM,GN,则FM∥GN,且FM=GN,所以四边形FMNG为平行四边形,所以MN∥FG,所以BD∥FG,所以FG⊥AC.由于AE⊥平面ABCD,所以AE⊥BD.所以FG⊥AE,又因为AC∩AE=A,AC,AE⊂平面ACE,所以FG⊥平面ACE.又FG⊂平面CFG,所以平面CFG⊥平面ACE.(2)解存在.设平面ACE交FG于Q,则Q为FG的中点,连结EQ,CQ,取CO的中点H,连结EH,由已知易知,平面EFG∥平面ABCD,又平面ACE∩平面EFG=EQ,平面ACE∩平面ABCD=AC,所以CH∥EQ,又CH=EQ=22,所以四边形EQCH为平行四边形,所以EH∥CQ,又CQ⊂平面CFG,EH⊄平面CFG,所以EH∥平面CFG,所以在AC上存在一点H,使得EH∥平面CFG,且CH=22.考向五定义定理的运用【例5-1】设l,m表示直线,m是平面α内的一条直线,则“l⊥m”是“l⊥α”成立的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)【答案】必要不充分【解析】由线面垂直的定义知,直线垂直于平面内至少两条相交直线,则直线与平面垂直,只平行于平面内一条直线说明充分性不成立,反之,直线垂直于平面,则直线垂直于平面内任意一条直线,说明是必要条件,则“l⊥m”是“l⊥α”成立的必要不充分条件.【例5-2】已知平面α,β,直线m,n.给出下列命题:①若α⊥β,α∩β=n,m⊥n,则m⊥β;②若n⊥α,n⊥β,m⊥α,则m⊥β;③若m⊥α,n⊥β,m⊥n,则α⊥β;④若α⊥β,m⊥α,n⊥β,则m⊥n.其中,真命题是________.(填序号)【答案】②③④【解析】对于①,当m⊂α时,才能保证m⊥β,不对;对于②,由m⊥α,n⊥α,得m∥n,又n⊥β,所以m⊥β,对;③④都对.【举一反三】1.设m,n是两条不同的直线,α,β,γ是三个不重合的平面,给出下列四个命题:①若α∥β,β∥γ,m⊥α,则m⊥γ;②若α⊥β,m∥α,则m⊥β;③若m⊥α,m∥β,则α⊥β;④若m∥n,n⊂α,则m∥α.其中正确的命题是________.(填序号)【答案】①③【解析】易知①正确;②可能有m⊂β,m∥β,m与β相交等情况,故不正确;③正确;④可以有m∥α或m⊂α,故不正确.2.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n ⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________.(用序号表示)【答案】①③④⇒②(或②③④⇒①)【解析】逐一判断.若①②③成立,则m与α的位置关系不确定,故①②③⇒④错误;同理①②④⇒③也错误;①③④⇒②与②③④⇒①均正确.1.如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,FD⊥平面ABCD,FD=. (I)求证://EF平面ABCD;(II)求证:平面ACF⊥平面BDF.【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】(Ⅰ)证明:如图,过点E作EH BC⊥于H,连接HD,∴EH=∵平面ABCD⊥平面BCE,EH⊂平面BCE,平面ABCD⋂平面BCE BC=,∴EH⊥平面ABCD,又∵FD ⊥平面ABCD ,FD =∴//FD EH ,FD EH =. ∴四边形EHDF 为平行四边形. ∴//EF HD .∵EF ⊄平面ABCD ,HD ⊂平面ABCD , ∴//EF 平面ABCD . (Ⅱ)证明:FD ⊥面ABCD ,FD AC ∴⊥,又四边形ABCD 是菱形,AC BD ∴⊥,又FD BD D ⋂=,AC ∴⊥面FBD ,又AC ⊂面ACF ,从而面ACF ⊥面BDF .2.如图,在三棱锥S ABC -中,BC ⊥平面SAC .已知SA AC =,点,,H E F 分别为,,SC AB BC 的中点.(1)求证:EF ‖平面SAC ; (2)求证:AH ⊥平面SBC .【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)∵E ,F 分别为AB ,BC 的中点,//EF AC ∴, 又AC ⊂平面SAC ,EF ∉平面SAC ,//EF ∴平面SAC ; (2)BC ⊥平面SAC ,AH ⊂平面SAC .BC AH ∴⊥,SA AC =,点H 分别为SC 的中点,AH SC ∴⊥,又BC SC C ⋂=,AH ∴⊥平面SBC .3.如图,在三棱柱111ABC A B C -中,AC BC =,1AA ⊥底面ABC ,D 是线段AB 的中点,E 是线段11A B 上任意一点,11B C BC O ⋂=.(1)证明:CD ⊥平面11ABB A ;(2)证明://OD 平面1AC E .【答案】(1)证明见解析;(2)证明见解析.【解析】(1)因为AC BC =,D 是线段AB 的中点,所以CD AB ⊥, 又1AA ⊥底面ABC ,所以1AA CD ⊥,又1ABAA A =,所以CD ⊥平面11ABB A .(2)易知四边形11BCC B 为平行四边形,则O 为1BC 的中点,又D 是线段AB 的中点,所以1OD AC ,而OD ⊄平面1AC E ,1AC ⊂平面1AC E ,所以OD 平面1AC E .4.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,AC 与BD 交于点O ,PC ⊥底面ABCD ,E 为PB 上一点,G 为PO 中点.(1)若PD ∥平面ACE ,求证:E 为PB 的中点;(2)若AB =,求证:CG ⊥平面PBD .【答案】(1)详见解析;(2)详见解析.【解析】(1)连接OE ,由四边形ABCD 是正方形知,O 为BD 中点//PD 平面ACE ,PD ⊂面PBD ,面PBD 面ACE OE =//PD OE ∴O 为BD 中点 E ∴为PB 的中点(2)在四棱锥P ABCD -中,AB =四边形ABCD 是正方形 OC AB ∴=PC OC ∴=G 为PO 中点 CG PO ∴⊥又PC ⊥底面ABCD ,BD ⊂底面ABCD PC BD ∴⊥而四边形ABCD 是正方形 AC BD ∴⊥,AC CG ⊂平面PAC ,AC CG C ⋂= BD ∴⊥平面PAC又CG ⊂平面PAC BD CG ∴⊥,PO BD ⊂平面PBD ,PO BD O =CG ∴⊥平面PBD5.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,1AC AA =,D 是棱AB 的中点.(1)求证:11BC CD 平面A ;(2)求证:11BC AC ⊥. 【答案】(1)见详解;(2)见详解.【解析】(1)连接AC 1,设AC 1∩A 1C =O ,连接OD ,在直三棱柱ABC ﹣A 1B 1C 1中,侧面ACC 1A 1是平行四边形, 所以:O 为AC 1的中点,又因为:D 是棱AB 的中点,所以:OD ∥BC 1, 又因为:BC 1⊄平面A 1CD ,OD ⊂平面A 1CD ,所以:BC 1∥平面A 1CD .(2)由(1)可知:侧面ACC 1A 1是平行四边形,因为:AC =AA 1,所以:平行四边形ACC 1A 1是菱形,所以:AC1⊥A1C,在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,因为:AB⊂平面ABC,所以:AB⊥AA1,又因为:AB⊥AC,AC∩AA1=A,AC⊂平面ACC1A1,AA1⊂平面ACC1A1,所以:AB⊥平面ACC1A1,因为:A1C⊂平面ACC1A1,所以:AB⊥A1C,又因为:AC1⊥A1C,AB∩AC1=A,AB⊂平面ABC1,AC1⊂平面ABC1,所以:A1C⊥平面ABC1,因为:BC1⊂平面ABC1,所以:BC1⊥A1C.6.如图,在四棱锥P-ABCD中,底面ABCD为矩形,AP⊥平面PCD,E,F分别为PC,AB的中点.(1)求证:平面PAD⊥平面ABCD;(2)求证:EF∥平面PAD.【答案】见解析【解析】证明(1)因为AP⊥平面PCD,CD⊂平面PCD,所以AP⊥CD.又四边形ABCD为矩形,所以AD⊥CD,又因为AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以CD⊥平面PAD.又因为CD⊂平面ABCD,所以平面PAD⊥平面ABCD.(2)连结AC,BD交于点O,连结OE,OF.因为四边形ABCD为矩形,所以O为AC的中点.因为E为PC的中点,所以OE∥PA.因为OE⊄平面PAD,PA⊂平面PAD,所以OE∥平面PAD.同理可证OF∥平面PAD.因为OE∩OF=O,OB,OF⊂平面OEF,所以平面OEF∥平面PAD.因为EF⊂平面OEF,所以EF∥平面PAD.7.如图,在直三棱柱ABC-A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.【答案】见解析【解析】证明(1)因为D,E分别是AB,AC的中点,所以DE∥BC.又因为在三棱柱ABC-A1B1C1中,B1C1∥BC,所以B1C1∥DE.又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE.(2)在直三棱柱ABC-A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE.又BC⊥AC,DE∥BC,所以DE⊥AC.又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1,又因为DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1.8.如图,已知四边形ABCD是正方形,PD⊥平面ABCD,CD=PD=2EA,PD//EA,F,G,H分别为PB,BE,PC的中点.(Ⅰ)求证:GH//平面PDAE;(Ⅱ)求证:平面FGH⊥平面PCD.【答案】见解析【解析】(Ⅰ)分别取PD的中点M,EA的中点N.连结MH,NG,MN.因为G,H分别为BE,PC的中点,所以1CD,1AB,因为AB与CD平行且相等,所以MH平行且等于NG,故四边形GHMN 是平行四边形.所以GH//MN . 又因为GH ⊄平面PDAE ,MN ⊂平面PDAE , 所以GH//平面PDAE .(Ⅱ)证明:因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD ⊥BC . 因为BC ⊥CD ,PD ∩CD =D ,所以BC ⊥平面PCD . 因为F ,H 分别为PB 、PC 的中点,所以FH//BC . 所以FH ⊥平面PCD .因为FH ⊂平面FGH ,所以平面FGH ⊥平面PCD .9.如图:C 、D 是以AB 为直径的圆上两点,F BC AC AD AB ,,322===在线段AB 上,且 AB AF 31=,将圆沿直径AB 折起,使点C 在平面ABD 的射影E 在BD 上.(I )求证平面ACD ⊥平面BCD ; (II )求证:AD//平面CEF. 【答案】见解析【解析】(I )证明:依题意:AD BD ⊥,CE ABD CE AD ⊥∴⊥平面BD CE E =AD BCE ∴⊥平面……3分又AD CAD ⊂平面CAD BCD ∴⊥平面平面…………4分(Ⅱ)证明:Rt ABD AB AD ==中,3BD =,联结AE ,在Rt ACE 和Rt BCE 中,,AC BC CE CE ==,Rt ACE Rt BCE AE BE ∴≅∴=……6分设DE x =,则3AE BE x ==-,在Rt ADE ,222AD DE AE +=,即()2233x x +=-,解得1x =2BE ∴=23BF BE BA BD ∴==…………10分∴AD //EF AD 在平面CEF 外∴AD //平面CEF10、如图所示,M ,N ,K 分别是正方体ABCD —A 1B 1C 1D 1的棱AB ,CD ,C 1D 1的中点.求证:(1)AN ∥平面A 1MK ; (2)平面A 1B 1C ⊥平面A 1MK . 【答案】见解析【解析】(1)如图所示,连接NK .在正方体ABCD —A 1B 1C 1D 1中,∵四边形AA 1D 1D ,DD 1C 1C 都为正方形,∴AA 1∥DD 1,AA 1=DD 1,C 1D 1∥CD ,C 1D 1=CD .∵N ,K 分别为CD ,C 1D 1的中点,∴DN ∥D 1K ,DN =D 1K ,∴四边形DD 1KN 为平行四边形,∴KN ∥DD 1,KN =DD 1,∴AA 1∥KN ,AA 1=KN , ∴四边形AA 1KN 为平行四边形,∴AN ∥A 1K . 又∵A 1K ⊂平面A 1MK ,AN ⊄平面A 1MK , ∴AN ∥平面A 1MK .(2)如图所示,连接BC1.在正方体ABCD—A1B1C1D1中,AB∥C1D1,AB=C1D1.∵M,K分别为AB,C1D1的中点,∴BM∥C1K,BM=C1K,∴四边形BC1KM为平行四边形,∴MK∥BC1在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,BC1⊂平面BB1C1C,∴A1B1⊥BC1.∵MK∥BC1,∴A1B1⊥MK.∵四边形BB1C1C为正方形,∴BC1⊥B1C∴MK⊥B1C.∵A1B1⊂平面A1B1C,B1C⊂平面A1B1C,A1B1∩B1C=B1,∴MK⊥平面A1B1C.又∵MK⊂平面A1MK,∴平面A1B1C⊥平面A1MK.11、如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,M为棱AC的中点.AB=BC,AC=2,AA1= 2.(1)求证:B1C∥平面A1BM;(2)求证:AC1⊥平面A1BM;(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时BNBB1的值;如果不存在,请说明理由.【答案】见解析【解析】(1)证明连接AB1与A1B,两线交于点O,连接OM.在△B1AC中,∵M,O分别为AC,AB1的中点,∴OM∥B1C,又∵OM⊂平面A1BM,B1C⊄平面A1BM,∴B1C∥平面A1BM.(2)证明∵侧棱AA1⊥底面ABC,BM⊂平面ABC,∴AA1⊥BM,又∵M为棱AC的中点,AB=BC,∴BM⊥AC.∵AA 1∩AC =A ,AA 1,AC ⊂平面ACC 1A 1, ∴BM ⊥平面ACC 1A 1, ∴BM ⊥AC 1. ∵AC =2,∴AM =1.又∵AA 1=2,∴在Rt △ACC 1和Rt △A 1AM 中, tan ∠AC 1C =tan ∠A 1MA =2, ∴∠AC 1C =∠A 1MA ,即∠AC 1C +∠C 1AC =∠A 1MA +∠C 1AC =90°,∴A 1M ⊥AC 1. ∵BM ∩A 1M =M ,BM ,A 1M ⊂平面A 1BM , ∴AC 1⊥平面A 1BM .(3)解 当点N 为BB 1的中点,即BN BB 1=12时,平面AC 1N ⊥平面AA 1C 1C . 证明如下:设AC 1的中点为D ,连接DM ,DN .∵D ,M 分别为AC 1,AC 的中点, ∴DM ∥CC 1,且DM =12CC 1.又∵N 为BB 1的中点,∴DM ∥BN ,且DM =BN ,∴四边形BNDM 为平行四边形, ∴BM ∥DN ,∵BM ⊥平面ACC 1A 1,∴DN ⊥平面AA 1C 1C . 又∵DN ⊂平面AC 1N ,∴平面AC 1N ⊥平面AA 1C 1C .9.6 空间几何的体积表面积平行垂直综合运用求体积常见方法①直接法(公式法)直接根据相关的体积公式计算;②转移法:利用祖暅原理或等积变化,把所求的几何体转化为与它等底、等高的几何体的体积; ③分割法求和法:把所求几何体分割成基本几何体的体积; ④补形法:通过补形化归为基本几何体的体积;考向一 直接法【例1】如图,已知三棱柱ABC -A 1B 1C 1,侧面ABB 1A 1为菱形,侧面ACC 1A 1为正方形,侧面ABB 1A 1⊥侧面ACC 1A 1.(1)求证:A 1B ⊥平面AB 1C ;(2)若AB =2,∠ABB 1=60°,求三棱锥C 1-COB 1的体积.【答案】(1)详见解析;(2. 【解析】(1)因为侧面侧面,侧面为正方形,所以平面,, 又侧面为菱形,所以,所以平面.(2)因为,所以,平面,所以,三棱锥的体积等于三棱锥的体积; 平面,所以为三棱锥的高,因为,, 所以 11ABB A ⊥11ACC A 11ACC A AC ⊥11ABB A 1A B AC ⊥11ABB A 11A B AB ⊥1A B ⊥1AB C 11//A C AC 11//A C 1AB C 11C COB -11A COB -1A B ⊥1AB C 1A O 11A COB -12,60AB ABB =∠=︒111112122COB S OB CA ∆=⨯⨯=⨯⨯=111111133C COB COB V AO S -∆=⨯⨯==【举一反三】1..如图,在三棱台ABC−A1B1C1中,AB=BC=BB1=4,A1B1=B1C1=2,且B1B⊥面ABC,∠ABC=90°,D,G分别为AC,BC的中点,E,F为A1C1上两动点,且EF=2.(1)求证:BD⊥GE;(2)求四面体B−GEF的体积.【答案】见解析【解析】(1)取AB的中点O,连接OG,OA1,C1G,∵AB=BC,D为AC的中点,∴BD⊥AC,又AC//A1C1,∴BD⊥A1C1,∵BG//B1C1,且BG=B1C1,∴四边形BGC1B1为平行四边形,∴GC1//BB1,同理,四边形OBB1A1为平行四边形,∴GC1//OA1.∴四边OGC1A1为平行四边形,∵B1B⊥面ABC,∴C1G⊥面ABC,∴C1G⊥BD,又A1C1∩C1G=C1,∴BD⊥面A1C1GO,∵GE⊂面A1C1GO,∴BD⊥GE.(2)令OG与BD交于M,∵C1G⊥面ABC,C1G⊂面A1C1GO,∴面A1C1GO⊥面ABC,∵面A1C1GO∩面ABC=OG,∵OG//AC,BD⊥AC,∴BM⊥OG,∴BM⊥面A1C1GO,∴BM为点到B面A1C1GO的距离,即BM=√2,又SΔGEF=12×GC1×EF=12×4×2=4,∴V B−GEF=13×BM×SΔGEF=13×√2×4=4√23.考向二转移法【例2】在四棱锥P−ABCD中,∠ADC=∠BCD=90∘,AD=CD=1,BC=2,ΔPAC是以AC为斜边的等腰直角三角形,平面PAC⊥平面ABCD.(Ⅰ)证明:PC⊥PB;(Ⅱ)若点E在线段PC上,且PC=3PE,求三棱锥A−EBC的体积.【答案】见解析【解析】(Ⅰ)证明:取BC,AC的中点分别为M,N,连接AM,PN.∵ΔPAC是以AC为斜边的等腰直角三角形,∴PN⊥AC.∵平面PAC⊥平面ABCD,平面PAC∩平面ABCD=AC,∴PN⊥平面ABCD,而AB⊂ABCD,∴PN⊥AB①又∵∠ADC=∠BCD=90∘,AD=CD=1,BC=2,∴四边形AMCD为正方形,且AC=AB=√2,∴∠BAC=90∘,即AB⊥AC②由①②及PN∩AC=N得:AB⊥面PAC,又∵PC⊂面PAC,∴AB⊥PC,又∵PA ⊥PC ,PA ∩AB =A ,∴PC ⊥面PAB ,而PB ⊂面PAB ,∴PC ⊥PB .(Ⅱ)过E 点作EF ⊥AC 于F ,则EF ⊥面ABCD 且EF =23PN =√23, V A−EBC =V E−ABC =√29(或由(Ⅰ)得AB ⊥面PAC ,V A−EBC =V B−EAC =13S ΔAEC ⋅AB =√29) 【举一反三】1.如图,在四棱锥中,底面为平行四边形, , ,且底面.(1)证明: 平面;(2)若为的中点,求三棱锥的体积.【答案】见解析【解析】(1)证明:∵,∴, ∵,∴.又∵底面,∴. ∵,∴平面.(2)三棱锥的体积与三棱锥的体积相等,P ABCD -ABCD 22AB AD ==PD BD ==PD ⊥ABCD BC ⊥PBD Q PC A PBQ -222AD BD AB +=AD BD ⊥//AD BC BC BD ⊥PD ⊥ABCD PD BC ⊥PD BD D ⋂=BC ⊥PBD A PBQ -A PBQ V -A QBC -而 . 所以三棱锥的体积.考向三 分割法【例3】如图,多面体中,是菱形,,平面,,且.(1)求证:平面平面; (2)求多面体的体积.【答案】(1)证明见解析;(2. 【解析】(1)证明:连接交于,设中点为,连接,,分别为,的中点,且 且 12A QBC Q ABC P ABC V V V ---==111114434P ABCD V -==⨯⨯=A PBQ -14A PBQ V -=ABCDEF ABCD 60ABC ∠=︒FA ⊥ABCD //ED FA 22AB FA ED ===FAC ⊥EFC ABCDEF BD AC O FC P OP EP O P AC FC //OP FA ∴12OP FA =//OP ED ∴OP ED =四边形为平行四边形, 即平面,平面四边形是菱形平面,即平面又平面 平面平面(2) 平面平面【举一反三】1.如图,在多面体中,,四边形和四边形是两个全等的等腰梯形.(1)求证:四边形为矩形;(2)若平面平面,,,的体积.∴OPED //OD EP ∴//BD EP FA ⊥ABCD BD ⊂ABCD FA BD ∴⊥ABCD BD AC ∴⊥FA AC A =BD ∴⊥FAC EP ⊥FAC EP ⊂EFC ∴FAC ⊥EFC 11423343F ABC ABC V S FA -∆=⋅=⨯⨯=ADEF ⊥ABCD C ∴=()122132C ADEFV -+⨯∴=⨯⨯=3ABCDEF F ABC C ADEFV V V --∴=+=ABCDFE AB CD EF ∥∥ABCD ABEF CDFE ABEF ⊥ABCD 2AB =6CD =AD =ABCDFE【答案】(1)见证明;(2)【解析】(1)证明:∵四边形和四边形是两个全等的等腰梯形, ∴且,∴四边形为平行四边形.分别取,的中点,.∵,为的中点,∴,同理,∴. ∵为的中点,为的中点,∵,且.∴,,,四点共面,且四边形是以,为底的梯形.∵,,且,是平面内的相交线,∴平面. ∵平面,∴,又,∴. ∴四边形为矩形.(2)解:连结,,作,垂足为,则. ∵,,∴. 在中,.∵,平面,平面,∴平面.∵平面平面,,平面平面,平面,∴平面,∴点到平面的距离为2,同理,点到平面的距离为2,283ABCD ABEF EF CD =CDEF CDFE DF CE M N AD AF =M DF AM DF ⊥BN CE ⊥DF BN ⊥M DF N CE MNEF CD AB MN EF CD ==A B N M ABNM AB MN DF AM ⊥DF BN ⊥AM BN ABNM DF ⊥ABNM MN ⊂ABNM DF MN ⊥MN EF ∥EF DF ⊥CDFE AC CF AH CD ⊥H AH AB ⊥2AB =6CD =2DH =Rt AHD∆2AH ===CDAB CD ⊄ABEF ABABEF CD ∥ABEF ABEF ⊥ABCD AH AB ⊥ABEFABCD AB =AH ⊂ABCD AH ⊥ABEF C ABEF F ABCD则,; ,.故多面体的体积为.考向四 补形法【例4】如图,已知四棱锥的侧棱底面,且底面是直角梯形,,,,,,点在棱上,且.(1)证明:平面; (2)求三棱锥的体积. 【答案】(1)见证明;(2)4【解析】(1)证明:取的三等分点,使,连接,.因为,,所以,. 因为,,所以,,162ACD S AH CD ∆=⨯=16243F ACD V -=⨯⨯=1()282ABEF S AB EF =+⨯=梯形1168233C ABEF V -=⨯⨯=ABCDFE 1628433+=P ABCD -PD ⊥ABCD ABCD AD CD ⊥AB CD ∥24AB AD ==6DC =3PD =M PC 3PC CM=BM ∥PAD M PBD -PD N 3PD DN =AN MN 3PC CM =3PD DN =MN DC ∥243MN DC ==AB CD ∥4AB =AB MN ∥AB MN =所以四边形为平行四边形,所以,因为平面,平面,所以平面.(2)解:因为,,所以的面积为, 因为底面,所以三棱锥的高为,所以三棱锥的体积为. 因为,所以三棱锥的高为, 所以三棱锥的体积为, 故三棱锥的体积为.【举一反三】1.如图,直三棱柱中,,点是棱上不同于的动点,(1)证明:;ABMN BMAN AN ⊂PAD BM ⊄PAD BM ∥PAD 24AD =6DC =BCD ∆1162622DC AD ⋅=⨯⨯=PD ⊥ABCD P BCD -3PD =P BCD -16363V =⨯⨯=3PC CM =M BCD -113h PD ==M BCD -116123V =⨯⨯=M PBD -1624V V -=-=111ABC A B C-15,2,CC AB BC AC ====M 1AA 1,AA 1BCB M ⊥(2)当时,求平面把此棱柱分成的两部分几何体的体积之比。
2020版高考数学一轮(新课改省份专用)复习(讲义)第七章立体几何第四节直线平面垂直的判定与性质
第四节 直线、平面垂直的判定与性质突破点一 直线与平面垂直的判定与性质[基本知识]1.直线和平面垂直的定义直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α互相垂直. 2.直线与平面垂直的判定定理与性质定理(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条斜线和这个平面所成的角.(2)线面角θ的范围:⎣⎢⎡⎦⎥⎤0,π2.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( ) (2)若直线a ⊥平面α,直线b ∥α,则直线a 与b 垂直.( ) (3)直线a ⊥α,b ⊥α,则a ∥b .( ) 答案:(1)× (2)√ (3)√ 二、填空题1.过一点有________条直线与已知平面垂直. 答案:一2.在三棱锥P ABC 中,点P 在平面ABC 中的射影为点O , ①若PA =PB =PC ,则点O 是△ABC 的________心.②若PA ⊥PB ,PB ⊥PC ,PC ⊥PA ,则点O 是△ABC 的________心. 答案:外 垂3.如图,已知∠BAC =90°,PC ⊥平面ABC ,则在△ABC , △PAC 的边所在的直线中,与PC 垂直的直线有________________;与AP 垂直的直线有________.解析:因为PC ⊥平面ABC , 所以PC 垂直于直线AB ,BC ,AC . 因为AB ⊥AC ,AB ⊥PC ,AC ∩PC =C , 所以AB ⊥平面PAC , 又因为AP ⊂平面PAC ,所以AB ⊥AP ,与AP 垂直的直线是AB . 答案:AB ,BC ,AC AB[典例] (2019·郑州一测)如图,在三棱锥P ABC 中,平面PAB ⊥平面ABC ,AB =6,BC =23,AC =26,D 为线段AB 上的点,且AD =2DB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ;(2)若∠PAB =π4,求点B 到平面PAC 的距离.[解] (1)证明:连接CD ,据题知AD =4,BD =2,AC 2+BC 2=AB 2, ∴∠ACB =90°,∴cos ∠ABC =236=33,∴CD 2=22+(23)2-2×2×23cos ∠ABC =8, ∴CD =22,∴CD 2+AD 2=AC 2,则CD ⊥AB . ∵平面PAB ⊥平面ABC , ∴CD ⊥平面PAB ,∴CD ⊥PD , ∵PD ⊥AC ,AC ∩CD =C , ∴PD ⊥平面ABC .(2)由(1)得PD ⊥AB ,∵∠PAB =π4,∴PD =AD =4,PA =42,在Rt △PCD 中,PC =PD 2+CD 2=26, ∴△PAC 是等腰三角形,∴可求得S △PAC =8 2. 设点B 到平面PAC 的距离为d ,由V B PAC =V P ABC ,得13S △PAC ×d =13S △ABC ×PD ,∴d =S △ABC ×PDS △PAC=3. 故点B 到平面PAC 的距离为3. [方法技巧]证明直线与平面垂直的方法(1)定义法:若一条直线垂直于一个平面内的任意一条直线,则这条直线垂直于这个平面(不常用);(2)判定定理(常用方法);(3)若两条平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面(客观题常用);(4)若一条直线垂直于两个平行平面中的一个平面,则它必垂直于另一个平面(客观题常用);(5)若两平面垂直,则在一个平面内垂直于交线的直线必垂直于另一个平面(常用方法); (6)若两相交平面同时垂直于第三个平面,则这两个平面的交线垂直于第三个平面(客观题常用).[针对训练](2019·贵州模拟)如图,在直棱柱ABCD A 1B 1C 1D 1中,底面ABCD 为平行四边形,且AB =AD =1,AA 1=62,∠ABC =60°. (1)求证:AC ⊥BD 1; (2)求四面体D 1AB 1C 的体积.解:(1)证明:连接BD ,与AC 交于点O ,因为四边形ABCD 为平行四边形,且AB =AD ,所以四边形ABCD 为菱形,所以AC ⊥BD .在直四棱柱ABCD A 1B 1C 1D 1中,BB 1⊥平面ABCD ,可知BB 1⊥AC ,则AC ⊥平面BB 1D 1D ,又BD 1⊂平面BB 1D 1D ,则AC ⊥BD 1.(2)V D 1AB 1C =V ABCD A 1B 1C 1D 1-V B 1ABC -V D 1ACD -V A A 1B 1D 1-V C C 1B 1D 1=V ABCD A 1B 1C 1D 1-4V B 1ABC =32×62-4×13×34×62=24.突破点二 平面与平面垂直的判定与性质[基本知识]1.平面与平面垂直(1)平面与平面垂直的定义:两个平面相交, 如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理:2.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:过二面角棱上的任一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.(3)二面角α的范围:[0,π].[基本能力]一、判断题(对的打“√”,错的打“×”) (1)若α⊥β,a ⊥β⇒a ∥α.( )(2)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.( ) (3)如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β.( ) 答案:(1)× (2)× (3)× 二、填空题1.m ,n 为直线,α,β为平面,若m ⊥α,m ∥n ,n ∥β,则α与β的位置关系为________.答案:垂直2.设α,β为两个不同的平面,直线l ⊂α,则“l ⊥β”是“α⊥β”成立的____________条件.答案:充分不必要3.已知PD 垂直于正方形ABCD 所在的平面,连接PB ,PC ,PA ,AC ,BD ,则一定互相垂直的平面有________对.解析:由于PD ⊥平面ABCD ,故平面PAD ⊥平面ABCD ,平面PDB ⊥平面ABCD ,平面PDC ⊥平面ABCD ,平面PDA ⊥平面PDC ,平面PAC ⊥平面PDB ,平面PAB ⊥平面PAD, 平面PBC ⊥平面PDC ,共7对.答案:7[典例] (2019·开封定位考试)如图,在三棱锥D ABC 中,AB =2AC =2,∠BAC =60°,AD =6,CD =3,平面ADC ⊥平面ABC .(1)证明:平面BDC ⊥平面ADC ; (2)求三棱锥D ABC 的体积.[解] (1)证明:在△ABC 中,由余弦定理可得,BC =AB 2+AC 2-2AB ·AC ·cos∠BAC=4+1-2×2×1×12=3,∴BC 2+AC 2=AB 2,∴BC ⊥AC ,∵平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC , ∴BC ⊥平面ADC ,又BC ⊂平面BDC ,∴平面BDC ⊥平面ADC . (2)由余弦定理可得cos ∠ACD =23,∴sin ∠ACD =53, ∴S △ACD =12·AC ·CD ·sin∠ACD =52,则V D ABC =V B ADC =13·BC ·S △ACD =156.[方法技巧] 面面垂直判定的两种方法与一个转化[针对训练](2019·洛阳一模)如图,在四棱锥E ABCD 中,△EAD 为等边三角形,底面ABCD 为等腰梯形,满足AB ∥CD ,AD =DC =12AB ,且AE ⊥BD .(1)证明:平面EBD ⊥平面EAD ;(2)若△EAD 的面积为3,求点C 到平面EBD 的距离. 解:(1)证明:如图,取AB 的中点M ,连接DM , 则由题意可知四边形BCDM 为平行四边形,∴DM =CB =AD =12AB ,即点D 在以线段AB 为直径的圆上,∴BD ⊥AD ,又AE ⊥BD ,且AE ∩AD =A , ∴BD ⊥平面EAD .∵BD ⊂平面EBD ,∴平面EBD ⊥平面EAD . (2)∵BD ⊥平面EAD ,且BD ⊂平面ABCD , ∴平面ABCD ⊥平面EAD . ∵等边△EAD 的面积为3, ∴AD =AE =ED =2,取AD 的中点O ,连接EO ,则EO ⊥AD ,EO =3, ∵平面EAD ⊥平面ABCD ,平面EAD ∩平面ABCD =AD , ∴EO ⊥平面ABCD .由(1)知△ABD ,△EBD 都是直角三角形, ∴BD =AB 2-AD 2=23,S △EBD =12ED ·BD =23,设点C 到平面EBD 的距离为h ,由V C EBD =V E BCD ,得13S △EBD ·h =13S △BCD ·EO ,又S △BCD =12BC ·CD sin 120°=3,∴h =32.∴点C 到平面EBD 的距离为32. 突破点三 平行与垂直的综合问题1.平行关系之间的转化在证明线面、面面平行时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向是由题目的具体条件而定的,不可过于“模式化”.2.垂直关系之间的转化在证明线面垂直、面面垂直时,一定要注意判定定理成立的条件.同时抓住线线、线面、面面垂直的转化关系,即:在证明两平面垂直时,一般先从现有的直线中寻找平面的垂线,若这样的直线在图中不存在,则可通过作辅助线来解决.[典例] (2018·北京高考)如图,在四棱锥P ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面PAB ⊥平面PCD ; (3)求证:EF ∥平面PCD .[证明] (1)因为PA =PD ,E 为AD 的中点, 所以PE ⊥AD .因为底面ABCD 为矩形, 所以BC ∥AD ,所以PE ⊥BC .(2)因为底面ABCD 为矩形,所以AB ⊥AD .又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊂平面ABCD , 所以AB ⊥平面PAD ,因为PD ⊂平面PAD ,所以AB ⊥PD . 又因为PA ⊥PD ,AB ∩PA =A , 所以PD ⊥平面PAB .因为PD ⊂平面PCD ,所以平面PAB ⊥平面PCD .(3)如图,取PC 的中点G ,连接FG ,DG .因为F ,G 分别为PB ,PC 的中点,所以FG ∥BC ,FG =12BC .因为四边形ABCD 为矩形,且E 为AD 的中点, 所以DE ∥BC ,DE =12BC .所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形.所以EF ∥DG . 又因为EF ⊄平面PCD ,DG ⊂平面PCD , 所以EF ∥平面PCD . [方法技巧]平行与垂直的综合问题主要是利用平行关系、垂直关系之间的转化去解决.注意遵循“空间到平面”“低维”到“高维”的转化关系.[针对训练](2019·北京西城区期末)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3,G ,H 分别是CE ,CF 的中点.(1)求证:AC ⊥平面BDEF ;(2)求证:平面BDGH∥平面AEF.证明:(1)因为四边形ABCD是正方形,所以AC⊥BD.又平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,所以AC⊥平面BDEF.(2)在△CEF中,因为G,H分别是CE,CF的中点,所以GH∥EF.又GH⊄平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC∩BD=O,连接OH,如图.在△ACF中,因为O,H分别为CA,CF的中点,所以OH∥AF.因为OH⊄平面AEF,AF⊂平面AEF,所以OH∥平面AEF.因为OH∩GH=H,OH,GH⊂平面BDGH,所以平面BDGH∥平面AEF.。
2020版高考数学一轮复习第7章立体几何初步第4节垂直关系教学案文含解析北师大版
第四节 垂直关系[考纲传真] 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.1.直线与平面垂直(1)定义:如果一条直线和一个平面内的任意一条直线都垂直,那么称这条直线和这个平面垂直.(2)定理αα⊥a(1)定义:从一条直线出发的两个半平面所组成的图形叫作二面角.这条直线叫作二面角的棱,这两个半平面叫作二面角的面.(2)二面角的度量——二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角.平面角是直角的二面角叫作直二面角.3.平面与平面垂直(1)定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直. (2)定理⊥lα∩1.若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.2.一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.3.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.4.过一点有且只有一条直线与已知平面垂直.5.过一点有且只有一个平面与已知直线垂直.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( )(2)垂直于同一个平面的两平面平行.( )(3)垂直于同一条直线的两个平面平行.( )(4)若两个平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( )[答案](1)×(2)×(3)√(4)×2.“直线a与平面M内的无数条直线都垂直”是“直线a与平面M垂直”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件B[根据直线与平面垂直的定义知“直线a与平面M内的无数条直线都垂直”不能推出“直线a与平面M垂直”,反之可以,所以是必要不充分条件.故选B.]3.(教材改编)设α,β是两个不同的平面,l,m是两条不同的直线,且lα,mβ.( ) A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥mA[∵l⊥β,lα,∴α⊥β(面面垂直的判定定理),故A正确.]4.如图所示,已知PA⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.4 [∵PA ⊥平面ABC , ∴PA ⊥AB ,PA ⊥AC ,PA ⊥BC , 则△PAB ,△PAC 为直角三角形. 由BC ⊥AC ,且AC ∩PA =A , ∴BC ⊥平面PAC ,从而BC ⊥PC . 因此△ABC ,△PBC 也是直角三角形.]5.边长为a 的正方形ABCD 沿对角线BD 折成直二面角,则折叠后AC 的长为________.a [如图所示,取BD 的中点O ,连接A ′O ,CO ,则∠A ′OC 是二面角A ′BD C 的平面角.即∠A ′OC =90°,又A ′O =CO =22a , ∴A ′C =a 22+a 22=a ,即折叠后AC 的长(A ′C )为a .]►考法1 直线与平面垂直的判定【例1】 (2018·全国卷Ⅱ)如图,在三棱锥P ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. [解] (1)证明:因为AP =CP =AC =4,O 为AC 的中点, 所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC ,OB 平面ABC ,AC平面ABC ,OB ∩AC =O ,知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,OP平面POM ,OM平面POM ,OP ∩OM =O ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°.所以OM =253,CH =OC ·MC ·sin∠ACB OM =455.所以点C 到平面POM 的距离为455.►考法2 直线与平面垂直的性质【例2】 (2017·江苏高考)如图,在三棱锥A BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF∥平面ABC;(2)AD⊥AC.[证明](1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF平面ABC,AB平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB平面ABC,BC平面ABC,所以AD⊥平面ABC.又因为AC平面ABC,所以AD⊥AC.=60°,PA=AB=BC,E是PC的中点.证明:(1)CD ⊥AE ; (2)PD ⊥平面ABE .[证明] (1)在四棱锥P ABCD 中,∵PA ⊥平面ABCD ,CD 平面ABCD ,∴PA ⊥CD .又∵AC ⊥CD ,且PA ∩AC =A , ∴CD ⊥平面PAC .而AE平面PAC ,∴CD ⊥AE .(2)由PA =AB =BC ,∠ABC =60°,可得AC =PA . ∵E 是PC 的中点,∴AE ⊥PC .由(1)知AE ⊥CD ,且PC ∩CD =C ,∴AE ⊥平面PCD . 又PD平面PCD ,∴AE ⊥PD .∵PA ⊥底面ABCD ,∴PA ⊥AB .又∵AB ⊥AD ,且PA ∩AD =A ,∴AB ⊥平面PAD ,而PD 平面PAD ,∴AB ⊥PD .又AB ∩AE =A ,∴PD ⊥平面ABE .【例3】 (2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q ABP 的体积.[解] (1)证明:由已知可得,∠BAC =90°,BA ⊥AC . 又BA ⊥AD ,且AC平面ACD ,AD平面ACD ,AC ∩AD =A ,所以AB ⊥平面ACD .又AB平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =3 2.又BP =DQ =23DA ,所以BP =2 2.作QE ⊥AC ,垂足为E ,则QE13DC . 由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q ABP 的体积为V Q -ABP =13×QE ×S △ABP =13×1×12×3×22sin 45°=1.(2018·江苏高考)在平行六面体11111111求证:(1)AB ∥平面A 1B 1C ; (2)平面ABB 1A 1⊥平面A 1BC .[证明] (1)在平行六面体ABCD A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB平面A 1B 1C ,A 1B 1平面A 1B 1C ,所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC . 又因为A 1B ∩BC =B ,A 1B 平面A 1BC ,BC平面A 1BC ,所以AB 1⊥平面A 1BC . 因为AB 1平面ABB 1A 1,所以平面ABB 1A 1⊥平面A 1BC .【例4】 如图,三棱锥P ABC 中,PA ⊥平面ABC ,PA =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P ABC 的体积;(2)在线段PC 上是否存在一点M ,使得AC ⊥BM ,若存在求PMMC的值,并说明理由. [解] (1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32.由PA ⊥平面ABC ,可知PA 是三棱锥P ABC 的高, 又PA =1,所以三棱锥P ABC 的体积V =13·S △ABC ·PA =36. (2)在线段PC 上存在一点M ,使得AC ⊥BM ,此时PM MC =13.证明如下:如图,在平面PAC 内,过点M 作MN ∥PA 交AC 于N ,连接BN ,BM .由PA ⊥平面ABC 知PA ⊥AC , 所以MN ⊥AC . 由MN ∥PA 知AN NC =PM MC =13.所以AN =12,在△ABN 中,BN 2=AB 2+AN 2-2AB ·AN cos∠BAC =12+⎝ ⎛⎭⎪⎫122-2×1×12×12=34,所以AN 2+BN 2=AB 2, 即AC ⊥BN .由于BN ∩MN =N ,故AC ⊥平面MBN . 又BM平面MBN .所以AC ⊥BM .DC =2AB =2,DA = 3.(1)线段BC 上是否存在一点E ,使平面PBC ⊥平面PDE ?若存在,请给出BE CE的值,并进行证明;若不存在,请说明理由.(2)若PD =3,线段PC 上有一点F ,且PC =3PF ,求三棱锥A FBD 的体积. [解] (1)存在线段BC 的中点E ,使平面PBC ⊥平面PDE ,即BE CE=1.证明如下: 连接DE ,PE ,∵∠BAD =∠ADC =90°,AB =1,DA =3,∴BD =DC =2,∵E 为BC 的中点,∴BC ⊥DE ,∵PD ⊥平面ABCD ,∴BC ⊥PD , ∵DE ∩PD =D ,∴BC ⊥平面PDE ,∵BC 平面PBC ,∴平面PBC ⊥平面PDE .(2)∵PD ⊥平面ABCD ,且PC =3PF ,∴点F 到平面ABCD 的距离为23PD =233,∴三棱锥A FBD 的体积V A FBD =V F ABD =13×S △ABD ×233=13×12×1×3×233=13.【例5】 如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图2中△A 1BE 的位置,得到四棱锥A 1BCDE .图1 图2(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1BCDE 的体积为362,求a 的值. [解] (1)证明:在题图1中,连接EC (图略), 因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥A 1O ,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE ,又由(1)可得A 1O ⊥BE ,所以A 1O ⊥平面BCDE . 即A 1O 是四棱锥A 1BCDE 的高.由题图1知,A 1O =AO =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2,从而四棱锥A 1BCDE 的体积为V =13S ·A 1O =13×a 2×22a =26a 3.由26a 3=362,得a =6.AC 上,且EF ∥BC ,将△AEF 沿EF 折起到△PEF 的位置,使得二面角P EF B 的大小为60°.(1)求证:EF ⊥PB ;(2)当点E 为线段AB 的靠近B 点的三等分点时,求四棱锥P EBCF 的侧面积.[解] (1)证明:在Rt△ABC 中,∵AB =BC =3,∴BC ⊥AB .∵EF ∥BC ,∴EF ⊥AB ,翻折后垂直关系没变,仍有EF ⊥PE ,EF ⊥BE , ∴EF ⊥平面PBE ,∴EF ⊥PB .(2)∵EF ⊥PE ,EF ⊥BE ,∴∠PEB 是二面角P EF B 的平面角, ∴∠PEB =60°,又PE =2,BE =1,由余弦定理得PB =3,∴PB 2+BE 2=PE 2,∴PB ⊥BE ,∴PB ,BC ,BE 两两垂直,又EF ⊥PE ,EF ⊥BE , ∴△PBE ,△PBC ,△PEF 均为直角三角形. 由△AEF ∽△ABC 可得,EF =23BC =2,S △PBC =12BC ·PB =332,S △PBE =12PB ·BE =32,S △PEF =12EF ·PE =2. 在四边形BCFE 中,过点F 作BC 的垂线,垂足为H (图略),则FC 2=FH 2+HC 2=BE 2+(BC -EF )2=2,∴FC = 2.在△PFC 中,FC =2,PC =BC 2+PB 2=23,PF =PE 2+EF 2=22,由余弦定理可得cos∠PFC =PF 2+FC 2-PC 22PF ·FC =-14,则sin∠PFC =154,S △PFC =12PF ·FC sin∠PFC =152. ∴四棱锥P EBCF 的侧面积为S △PBC +S △PBE +S △PEF +S △PFC =2+23+152.1.(2018·全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧︵CD 所在平面垂直,M 是︵CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.[解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为︵CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM平面AMD ,故平面AMD ⊥平面BMC .(2)当P 为AM 的中点时,MC ∥平面PBD . 证明如下:如图,连接AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点.连接OP ,因为P 为AM 中点,所以MC ∥OP .MC 平面PBD ,OP平面PBD ,所以MC ∥平面PBD .2.(2017·全国卷Ⅰ)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.5 空间几何中垂直问题
一.直线与平面垂直
1.定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α互相垂直,记作l⊥α,直线l 叫做平面α的垂线,平面α叫做直线l的垂面.
2.判定定理与性质定理
1.二面角的有关概念
①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;
②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.
2.平面和平面垂直的定义
两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.
3.平面与平面垂直的判定定理与性质定理
考向一线面垂直
【例1】如图,在正方体
1111
ABCD A B C D
-中, ,E F分别为棱,
AD AB的中点. (Ⅰ)求证: //
EF平面
11
CB D;
(Ⅱ)求证:
11
B D⊥平面
11
CAA C.
【答案】见解析
【解析】证明:(Ⅰ),E F分别为棱,
AD AB的中点,
在ABD
V中, EF为中位线,所以//
EF BD;又因为
11
//
BD B D;所以
11
//
EF B D, 11
B D⊂平面
11
CB D, EF⊄平面
11
CB D所以//
EF平面
11
CB D.
(Ⅱ)因为正方体
1111
ABCD A B C D
-,
11
B D和
11
A C为对角线,
所以
1111
B D A C
⊥,
在正方体
1111
ABCD A B C D
-中,
1
AA⊥平面
1111
A B C D,
11
B D⊂平面
1111
A B C D,
所以
111
AA B D
⊥,
又因为
111
A C AA A
⋂=,
所以
11
B D⊥平面
11
CAA C.
【举一反三】
1. 如图所示,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F是CC1上一点.当CF =2时,证明:B1F⊥平面ADF.
【答案】见证明
【证明】因为AB=AC,D是BC的中点,所以AD⊥BC.
在直三棱柱ABC-A1B1C1中,
因为BB1⊥底面ABC,AD⊂底面ABC,
所以AD⊥B1B.
因为BC∩B1B=B,BC,B1B⊂平面B1BCC1,
所以AD⊥平面B1BCC1.
因为B1F⊂平面B1BCC1,
所以AD⊥B1F.
方法一在矩形B1BCC1中,
因为C1F=CD=1,B1C1=CF=2,
所以Rt△DCF≌Rt△FC1B1,
⎪⎩面面垂直的性质
所以∠CFD=∠C1B1F,
所以∠B1FD=90°,
所以B1F⊥FD.
因为AD∩FD=D,AD,FD⊂平面ADF,
所以B1F⊥平面ADF.
方法二在Rt△B1BD中,BD=CD=1,BB1=3,
所以B1D=BD2+BB21=10.
在Rt△B1C1F中,B1C1=2,C1F=1,
所以B1F=B1C21+C1F2= 5.
在Rt△DCF中,CF=2,CD=1,
所以DF=CD2+CF2= 5.
显然DF2+B1F2=B1D2,
所以∠B1FD=90°.
所以B1F⊥FD.
因为AD∩FD=D,AD,FD⊂平面ADF,
所以B1F⊥平面ADF.
2.如图所示的多面体中,底面ABCD为正方形,ΔGAD为等边三角形,BF⊥平面ABCD,∠GDC=90∘,点E是线段GC上除两端点外的一点,若点P为线段GD的中点.
(Ⅰ)求证:AP⊥平面GCD;(Ⅱ)求证:平面ADG//平面FBC.
【答案】见证明
【解析】(Ⅰ)证明:因为ΔGAD是等边三角形,点P为线段GD的中点,故AP⊥GD.
因为AD⊥CD,GD⊥CD,且AD∩GD=D,AD,GD⊂平面GAD,故CD⊥平面GAD,
又AP⊂平面GAD,故CD⊥AP,
又CD∩GD=D,CD,GD⊂平面GCD,故AP⊥平面GCD.
(Ⅱ)证明:∵BF⊥平面ABCD,∴BF⊥CD,
∵BC⊥CD,BF∩BC=B,BF,BC⊂平面FBC,∴CD⊥平面FBC,
由(Ⅰ)知CD⊥平面GAD,∴平面ADG//平面FBC.
考向二面面垂直
【例2】如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD 交于点F.
(1)求证:AB∥EF;
(2)若AF⊥EF,求证:平面PAD⊥平面ABCD.
【答案】见证明
【证明】(1)因为四边形ABCD是矩形,所以AB∥CD.
又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC,
又因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.
(2)因为四边形ABCD是矩形,所以AB⊥AD.
因为AF⊥EF,(1)中已证AB∥EF,所以AB⊥AF.
又AB⊥AD,由点E在棱PC上(异于点C),所以点F异于点D,
所以AF∩AD=A,AF,AD⊂平面PAD,所以AB⊥平面PAD,
又AB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD . 【举一反三】
1.如图,三棱柱111ABC A B C -中,1BC CC =,平面11A BC ⊥平面11BCC B .
证明:(1) //AC 平面11A BC ;
(2) 平面1AB C ⊥平面11A BC .
【答案】(1)证明见解析;(2)证明见解析.
【解析】(1)几何体为三棱柱 ⇒四边形11ACC A 为平行四边形 11//AC A C ⇒
又11A C ⊂平面11A BC ,AC ⊄平面11A BC //AC ∴平面11A BC
(2)1BC CC =Q 且四边形11BCC B 为平行四边形
∴四边形11BCC B 为菱形 11B C BC ⊥∴
又平面11A BC ⊥平面11BCC B ,平面11A BC ⋂平面111BCC B BC =
1B C ∴⊥平面11A BC 又1B C ⊂平面1AB C ∴平面1AB C ⊥平面11A BC
考向三 垂直的性质运用
【例3】如图,在三棱锥A BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .
求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .
【答案】见证明
【证明】(1)在平面ABD 内,因为AB ⊥AD , EF AD ⊥,所以EF AB P . 又因为EF ⊄平面ABC , AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD =BD ,
BC ⊂平面BCD , BC BD ⊥,所以BC ⊥平面ABD .
因为AD ⊂平面ABD ,所以BC ⊥ AD .
又AB ⊥AD , BC AB B ⋂=, AB ⊂平面ABC , BC ⊂平面ABC , 所以AD ⊥平面ABC ,又因为AC ⊂平面ABC ,所以AD ⊥AC. 【举一反三】
1.如图,在三棱锥S ABC -中, SD ⊥平面ABC D ,为AB 的中点,E 为BC 的中点, AC BC =.
()1求证: //AC 平面SDE ; ()2求证: AB SC ⊥.
【答案】见证明
【证明】()1D Q 为AB 的中点,E 为BC 的中点//DE AC ∴, 又DE ⊂平面SED AC ⊄,平面SDE ,//AC ∴平面SDE .
()2连结CD ,SD ⊥Q 平面ABC AB ⊆,平面ABC ,SD AB ∴⊥,
AC BC D =Q ,是AB 的中点,CD AB ∴⊥,
又CD SCD SD ⊂⊂,平面SCD CD SD D ⋂=,,AB ∴⊥平面SCD SC ⊂Q ,平面SCD ,AB SC ∴⊥.
2、如图所示,在四棱锥P —ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是
PC 的中点.
证明:(1)CD ⊥AE ;(2)PD ⊥平面ABE . 【答案】见证明
【证明】 (1)在四棱锥P —ABCD 中, ∵PA ⊥底面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD .
又∵AC ⊥CD ,PA ∩AC =A ,PA ,AC ⊂平面PAC ,∴CD ⊥平面PAC . 而AE ⊂平面PAC ,∴CD ⊥AE .
(2)由PA =AB =BC ,∠ABC =60°,可得AC =PA .
∵E 是PC 的中点,∴AE ⊥PC .由(1)知AE ⊥CD ,且PC ∩CD =C ,PC ,CD ⊂平面PCD , ∴AE ⊥平面PCD ,而PD ⊂平面PCD ,∴AE ⊥PD . ∵PA ⊥底面ABCD ,AB ⊂平面ABCD ,∴PA ⊥AB . 又∵AB ⊥AD ,且PA ∩AD =A ,。