人教A第二章学案1 平面向量的实际背景及基本概念
高中数学第二章平面向量2.1平面向量的实际背景及基本概念教案新人教A版必修
课题: 平面向量的实际背景及基本概念___________;A.质量 B.速度 C.位移 D.力3.设O是正方形ABCD的中心,向量AO OB CO OD、、、是A.平行向量 B.有相同终点的向量 C.相等向量 D.模相等的向量【课外拓展】1. 下列各量中是向量的是( )A.密度B.体积C.重力D.质量2.下列各说法中,其中正确的个数为()(1)向量AB的模长与向量BA的模长相等;(2)两个非零向量a与b平行,则a与b的方向相同或相反;(3)两个有公共终点的向量一定是共线向量;(4)共线向量是可以移动到同一条直线上的向量;(5)平行向量就是向量所在直线平行A.2个 B.3个 C.4个 D.5个3.已知向量a表示“向东航行1km”,向量b表示“向南航行1 km”,则向量a b 表示()2 B. 向东南航行2 kmA. 向东南航行km2 D. 向东北航行2kmC. 向东北航行km4.判断下列命题是否正确,若不正确,请简述理由①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD是平行四边形当且仅当AB=DC⑤一个向量方向不确定当且仅当模为0;⑥共线的向量,若起点不同,则终点一定不同..在下列说法中,正确的是.两个有公共起点且共线的向量,其终点必相同;abc在如图所示的向量a,b c,d e中(小正方形的边长为的模.【当堂训练】写出与=;方向相同且|a b教学反思]精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
数学必修四人教A版 2.1平面向量的实际背景及基本概念(教、学案)
平面向量的实际背景及基本概念教材分析:向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题。
向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用。
因此,本章在介绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法则,包括加法、减法、实数与向量的积、向量的数量积的运算法则等。
之后,又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标)的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种方法——向量法和坐标法。
本章共分五大节。
第一节是“平面向量的实际背景及基本概念”,内容包括向量的物理背景与概念、向量的几何表示、相等向量与共线向量。
本节从物理学中的位移、力这些既有大小又有方向的量出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念。
在“向量的物理背景与概念”中介绍向量的定义;在“向量的几何表示”中,主要介绍有向线段、有向线段的三个要素、向量的表示、向量与有向线段的区别与联系、向量的长度、零向量、单位向量、平行向量;在“相等向量与共线向量”中,主要介绍相等向量,共线向量定义等。
教学目标:、了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.、通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.、通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.学法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.教具:多媒体或实物投影仪,尺规授课类型:新授课教学过程:一、情景设置:如图,老鼠由向西北逃窜,猫在处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了.分析:老鼠逃窜的路线、猫追逐的路线实际上都是有方向、有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习:(一)向量的概念:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:(可制作成幻灯片)、数量与向量有何区别?、如何表示向量?、有向线段和线段有何区别和联系?分别可以表示向量的什么?、长度为零的向量叫什么向量?长度为的向量叫什么向量?、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?、有一组向量,它们的方向相同或相反,这组向量有什么关系?、如果把一组平行向量的起点全部移到一点,这是它们是不是平行向量?这时各向量的终点之间有什么关系?(三)探究学习、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小..向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:; ④向量的大小――长度称为向量的模,记作. .有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:()向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;()有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.、零向量、单位向量概念:①长度为的向量叫零向量,记作的方向是任意的.注意与的含义与书写区别.②长度为个单位长度的向量,叫单位向量. (起点) (终点)。
高中数学人教A版必修4:第二章 2(1).1 平面向量的实际背景及基本概念
2019年7月10日
你是我今生最美的相遇遇上你是我的缘
2
[新知初探]
1.向量的概念和表示方法 (1)概念:既有大小,又有方向的量称为向量.
(2)向量的表示: 几何表示:用有向线段 来表示向量,有向线段的 长度表示向量的 大小 ,箭头所指的方向表示向量 的 方向 ,即用有向线段的起点、终点字母表示,
2019年7月10日
你是我今生最美的相遇遇上你是我的缘
11
(1)判断一个量是否为向量应从两个方面入手 ①是否有大小;②是否有方向. (2)理解零向量和单位向量应注意的问题 ①零向量的方向是任意的,所有的零向量都相等. ②单位向量不一定相等,易忽略向量的方向.
2019年7月10日
你是我今生最美的相遇遇上你是我的缘
[点睛] 定义中的零向量和单位向量都是只限制大小,没有 确定方向.我们规定零向量的方向是任意的;单位向量有无数 个,它们大小相等,但方向不一定相同.
2019年7月10日
你是我今生最美的相遇遇上你是我的缘
4
3.向量间的关系 (1)相等向量:长度相等且方向相同的向量,叫做相等向量, 记作:a=b. (2)平行向量:方向相同或相反的非零向量,也叫 共线 向量;a 平行于 b,记作 a∥b ;规定零向量与任一向量 平行 .
2019年ቤተ መጻሕፍቲ ባይዱ月10日
你是我今生最美的相遇遇上你是我的缘
1
预习课本P74~76,思考并完成以下问题
(1)向量是如何定义的?向量与数量有什么区别?
(2)怎样表示向量?向量的相关概念有哪些? (3)两个向量(向量的模)能否比较大小?
(4)如何判断相等向量或共线向量?向量 AB与向量 BA是相等向 量吗?
《平面向量的实际背景及基本概念》教案全面版
《平面向量的实际背景及基本概念》教案全面版一、教学目标:1. 了解平面向量的实际背景,理解向量的概念及物理意义。
2. 掌握平面向量的基本运算,包括加法、减法、数乘和共线定理。
3. 能够运用平面向量的知识解决实际问题。
二、教学内容:1. 平面向量的实际背景:引入向量的概念,解释向量在物理学、几何学等领域的应用。
2. 向量的概念:定义向量的基本属性,包括大小、方向和起点。
3. 向量的表示:介绍平面向量的几何表示法和坐标表示法。
4. 向量的加法:定义向量加法,讲解平行四边形法则和三角形法则。
5. 向量的减法:定义向量减法,转化为加法运算。
6. 向量的数乘:定义向量的数乘,讲解数乘对向量大小和方向的影响。
7. 向量共线定理:介绍共线定理及其应用。
三、教学方法:1. 采用问题驱动的教学方法,引导学生从实际问题中抽象出向量的概念。
2. 利用几何图形和物理情境,帮助学生直观地理解向量的运算。
3. 运用案例分析和练习题,巩固学生对向量知识的理解和应用。
四、教学评估:1. 通过课堂提问,检查学生对向量概念的理解。
2. 布置课后作业,检验学生掌握向量运算的能力。
3. 进行小组讨论和报告,评估学生对向量应用问题的解决能力。
五、教学资源:1. 教案、PPT课件。
2. 几何图形和物理情境的图片或视频。
3. 练习题和案例分析题。
4. 小组讨论和报告的评价标准。
六、教学重点与难点:1. 教学重点:向量的概念、表示方法、基本运算(加法、减法、数乘)及共线定理。
2. 教学难点:向量加法、减法的几何意义,数乘对向量的影响,共线定理的应用。
七、教学步骤:1. 引入向量的概念:通过实际问题,引导学生认识向量,理解向量表示物体运动和力的作用。
2. 向量的表示:讲解几何表示法和坐标表示法,让学生能用图形和坐标表示向量。
3. 向量加法:讲解平行四边形法则和三角形法则,让学生理解向量加法的几何意义。
4. 向量减法:转化为加法运算,让学生掌握减法与加法的联系。
人教A版高中数学必修4第二章 平面向量2.1 平面向量的实际背景及基本概念教案(1)
第二章平面向量2.1平面向量的实际背景及基本概念教学设计一、内容和内容解析向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何和三角函数的一种工具,它有着丰富的现实背景和物理背景。
向量是刻画位置的重要数学工具,在诸如卫星定位、飞船设计等领域有着广泛的应用。
向量也是刻画物理量——力、位移、速度、加速度、动量、电场强度这些物理量的数学工具,它体现了数学和物理的天然联系。
向量的学习有助于学生认识数学和实际生活以及物理学科的紧密联系,体会向量在刻画和解决实际问题中的作用,从中感受数学的应用价值。
在教学中需要引导学生对现实原型的观察分析和比较,得出抽象的数学模型,所以本节内容是渗透“数学抽象”很好的载体。
在本节中,学生将了解平面向量丰富的实际背景,理解平面向量的意义,能用向量的语言和方法表达和解决数学和物理中的一些问题。
本节课是一节概念课,在向量基本概念的形成过程中,需要将学生已有的旧知识作为新知识的固着点和生长点,在探究向量的几何表示时让学生经历以物理中学习力的图示,位移的表示,速度的表示为起点,归纳并确定向量的几何表示以及符号表示,而在探索向量间的特殊关系时,引导学生借助图形进行,这样不仅使研究有序,同时更锻炼学生的直观想象能力,有助于感受向量集数与形于一身的特性。
通过类比学习数量的过程,让学生自然的获得新知识的探究方向,在基本概念的学习中,要让学生体验概念的生成过程,获得这些概念的“基本思路”即获得数学研究对象,认识数学新对象的基本方法,用数学的观点刻画和研究现实事物的方法和途径。
二、目标和目标解析1. 通过对平面向量概念的抽象概括,体验数学概念的形成过程,了解平面向量的实际背景;2. 理解平面向量的意义和两个向量相等的含义;3. 理解平面向量的几何表示和基本要素,会用有向线段表示向量,会判断零向量,单位向量,能做一个向量和已知向量相等,能根据图形判定向量是否是平行,共线,相等向量。
4.通过类比“学习数量的过程”而获得研究的内容与方法的启发,再一次体会研究一类新的数学问题的基本思路.学生已经学习过数量,但是形如确定位置的问题,只用数量是无法满足需要的,这就使得学习新知识是自然的有必要的,同时可以引导学生类比“学习数量的过程”明确研究向量概念的基本方向,因此,复习回顾数量的相关知识是有必要的。
人教A高中数学必修4第二章 2.1平面向量的实际背景及基本概念
返回导航
上页
下页
2.1
平面向量的实际背景及基本概念
人教A版数学·必修4
考 纲 定 位 重 难
返回导航
上页
下页
突
破
1.能结合物理中的力、位移、速度等具体背景 认识向量,掌握向量与数量的区别. 2.会用有向线段作向量的几何表示,了解有向 重点:向量的概念及几何表 示;相等向量的概念; 共线向量的概念.
→ → → → → 解析:在平行四边形 ABCD 和 ABDE 中,因为AB=ED,AB=DC,所以与ED相 → → → → → → → → 等的向量为AB,DC;由题干图知与向量AB共线的向量有BA,ED,DE,CD,DC, → ,CE →. EC → 、DC → 答案:AB
→ ,ED → ,DE → ,CD → ,DC → ,EC → ,CE → BA
人教A版数学·必修4
返回导航
上页
下页
[解析] 反;
(1)错误. 因为两个单位向量只是模都等于 1 个单位, 方向不一定相同或相
(2)错误.任何向量都有方向,零向量的方向是任意的; → → (3)正确.由三角形中位线性质知,DE∥BC,向量DE与CB方向相反,是平行向量; (4)错误.b 为零向量时,有 a∥b 且 b∥c,但 a 与 c 的方向可以任意变化,它们不 一定是平行向量; (5)错误.A、B、C、D 四点也可能在同一条直线上; → 与BA → 的模相等,方向相反,二者是平行向量. (6)正确.非零向量AB
人教A版数学·必修4
返回导航
上页
下页
→ → 解析:(1)正确,由于|a|=|AB|=|AB|,|b|=|BA|=|BA|=|AB|,因此有|a|=|b|. (2)不正确,由单位向量的定义知,凡长度为 1 的向量均称为单位向量,但是对方 向没有任何要求,因此说法(2)不正确. → |=|BA → |,所以当AB → 是单位向量时,BA → 也是单位向量. (3)正确.因为|AB → (4)正确,由于向量|AP|=1,所以点 P 是以点 A 为圆心的单位圆上的一点.反过 → |=1,所 来,若点 P 是以点 A 为圆心,1 为半径的单位圆上的任一点,则由于|AP → 是单位向量,因此说法正确. 以向量AP
人教A版高中数学必修四课件:第二章2-1平面向量的实际背景及基本概念
2.下列各量中不是向量的是:( A.位移 C.速度 B.力 D.质量
)
解析:只有质量不是向量. 答案:D
3.设 e1,e2 是两个单位向量,则下列结论中正确的 是( ) A.e1=e2 C.|e1|=|e2| B.e1∥e2 D.以上都不对
解析:单位向量的模都等于 1 个单位. 答案:C
4. 向量 a 与任一向量 b 平行,则 a 一定是________. 解析:有且只有零向量与任一向量平行,所以 a 一定 是 0. 答案:0
(2)几何表示:用有向线段表示,此时有向线段的方 → 的大小就是向量的长度(或称 向就是向量的方向.向量AB →| | AB 模),记作______. (3)字母表示:通常在印刷时,用黑体小写字母 a,b, → c, …表示向量, 书写时, 可写成带箭头的小写字母→ a, b, → c ,….
温馨提示 几何表示为用向量处理几何问题打下了 基础,而字母表示则有利于向量运算.
[变式训练] 一架飞机从 A 点向西北飞行 200 km 到 达 B 点,再从 B 点向东飞行 100 2 km 到达 C 点,再从 C 点向东偏南 30°飞行 50 2 km 到达 D 点. 问 D 点在 A 点的什么方向?D 点距 A 点多远?
→ |=100 2,知 C 在 A 解:由|BC → |=100 2. 的正北方向,|AC → |=50 2,∠ACD=60°知∠CDA=90°. 又由|CD
第二章
平面向量
2.1 平面向量的实际背景 及基本概念
[学习目标] 1.理解向量的有关概念及向量的几何表 示(重点). 2.理解共线向量、 相等向量的概念(难点). 3. 正确区分向量平行与直线平行(易错点、易混点).
[知识提炼· 梳理] 1.向量的概念 定义:既有大小,又有方向的量叫做向量. 2.向量的表示 (1)有向线段:带有方向的线段叫做有向线段.它包 含三个要素:起点、方向、长度.
人教A版高中数学必修4第二章 平面向量2.1 平面向量的实际背景及基本概念教案(4)
《平面向量的实际背景及基本概念》教学设计一、教材内容分析1.教材的地位和作用本节内容是选自人教A版高中数学必修4第二章第一节,由于向量是近代数学中重要和基础的数学概念之一,它具有几何形式和代数形式的“双重身份”,因而成为数形结合的桥梁,成为沟通代数、几何、三角的得力工具.向量的概念从大量的生活实例和丰富的物理素材中抽象出来,反过来,它的理论和方法又成为解决生活实际问题和的物理学重要工具.它之所以有用,关键是它具有一套良好的运算性质,可以使复杂问题简单化、直观化,使代数问题几何化、几何问题代数化.正是由于向量所特有的数形二重性,使它成为中学数学知识的一个交汇点,成为联系多项内容的媒介,在高中数学教学内容中有广泛的应用.本节课是向量的入门课,概念较多,但难度不大,学生可借鉴对物理学中的位移、力、速度等的认识来学习.2.学情分析:高一学生在认识能力、抽象能力和思维能力等方面相对较弱,由于对向量的认识还是比较单一的(往往只考虑大小而忽略方向),所以学生对它的认识不可能一步到位。
因此,进行概念教学时,除了对概念进行逐字逐句分析外,还要通过日常生活中的实例和不同的例题对概念进行分析,并通过老师的引导,使学生对概念的理解逐步深入。
3.教学目标的确定根据本课教材的特点,新课标的教学要求,学生身心发展的需要,本节课确定教学目标如下:知识与技能(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示;(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并能弄清平行向量、相等向量、共线向量的关系(3)通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.过程与方法引导发现法与讨论相结合。
这是向量的第一节课,概念与知识点较多,在对学生进行适当的引导之后,应让学生清清楚楚得明白其概念,这是学生进一步获取向量知识的前提;通过学生主动地参与到课堂教学中,提高学生学习的积极性。
体现了在老师的引导下,学生的主体地位和作用。
人教A版高中数学必修4《第二章 平面向量 2.1 平面向量的实际背景及基本概念 2.1.2 向量的几何表示》_65
《平面向量的基本概念及表示》教学设计一、教材内容分析向量是近代数学中重要和基础的数学概念之一,它是沟通代数、几何、三角的桥梁,对更新和完善中学数学知识结构起着重要的作用。
向量集数与形于一身,有着极其丰富的实际背景,它的概念从大量的生活实例和丰富的物理素材中抽象出来,经过研究,建立起完整的知识体系后,向量又作为数学模型,广泛地运用于解决数学、物理学科及生活实际问题,因此它在整个高中数学中起到联系数形、跨越学科、承前启后的作用。
本节课是人教A版高中数学必修4第二章第一节,是平面向量的起始课,具有“统领全局”的作用。
本节课是概念课,但重要的不仅仅是向量的形式化定义及几个相关概念,还要让学生去体会如何用数学的观点刻画和研究现实事物,获得认识和研究数学新对象的基本思路和方法,进而提高提出问题、分析问题、解决问题的能力。
二、教学目标设置1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;2.掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并能弄清平行向量、相等向量、共线向量的关系3.经历平面向量及其相关概念的形成过程,初步体会学习新概念的基本思路,同时学生的观察、联系、类比、抽象、概括、归纳、实践等方面的能力都能得到一定程度培养和提高。
三、学生学情分析所教学生为高一奥赛班的学生,从知识上看,他们已经掌握了数的抽象过程、实数的绝对值(线段的长度)、单位长度、0和1的特殊性。
在物理学科中已经积累了足够多的向量模型,并且在三角函数线部分内容的学习中(必修4任意角的三角函数、三角函数的图象与性质)已经接触到有向线段的概念,从而为本节课的学习提供了知识准备。
从学生现有的学习能力看,学生已经具备了一定的抽象概括的能力,因此,可以尝试让学生从实际背景中抽象并概括出向量的概念。
学生在学习本节课内容过程中,对撇去实际背景后理解向量的概念,一时难以适应;向量的几何表示是向量概念的形象化(几何化),它是学生认识过程中的又一次飞跃,后继的向量运算,以及用向量方法解决几何问题,都是以此为基础。
高中数学 第二章 平面向量 2.1 平面向量的实际背景及基本概念教案 新人教A版必修4
2.1 平面向量的实际背景及基本概念1.知识与技能(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示.(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念.(3)学会区分平行向量、相等向量和共线向量.2.过程与方法通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3.情感、态度与价值观通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.难点:向量的概念,平行向量、相等向量和共线向量的区别和联系.(1)重点的突破:从向量的物理背景、几何背景等入手,从学生熟悉的矢量概念引出向量概念;还要注意与数量概念的比较,使学生在区分相似概念的过程中把握向量的概念.(2)难点的突破:借助信息技术,通过向量平移来说明向量的相等与起点无关.让学生体会,只要表示两个向量的有向线段所在直线平行或重合,这两个向量就是共线向量.向量及向量符号的由来向量最初应用于物理学,被称为矢量,很多物理量,如力、速度、位移、电场强度、磁感应强度等都是向量.大约公元前350年,古希腊著名学者亚里士多德(Aristotle,公元前384—前322)就知道力可以表示成向量.向量一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿(Newton,1642—1727).向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向,线段长表示大小的有向线段来表示它.1806年,瑞士人阿尔冈(R.Argand,1768—1822)以AB表示一个有向线段或向量.1827年,莫比乌斯(Mobius,1790—1868)以AB表示起点为A,终点为B的向量,这种用法被数学家广泛接受.另外,哈密尔顿(W.R.Hamilton,1805—1865)、吉布斯(J.W.Gibbs,1839—1903)等人则以小写希腊字母表示向量.1912年,兰格文用表示向量,以后,字母上加箭头表示向量的方法逐渐流行,尤其在手写稿中.为了方便印刷,用粗黑小写字母a,b等表示向量,这两种符号一直沿用至今.向量进入数学并得到发展,是从复数的几何表示开始的.1797年,丹麦数学家威塞尔(C.Wessel,1745—1818)利用坐标平面上的点(a,b)来表示复数a+b i,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何与三角问题.人们逐步接受了复数,也学会了利用复数表示、研究平面中的向量.1。
高中数学第二章平面向量的实际背景及基本概念教案新人教A版
2.1向量的概念及表示【教学目标】1.知识目标:○1能理解向量的概念,并能用两种方法表示向量;○2明确向量的长度(模)、零向量、单位向量的概念;○3掌握平行向量、共线向量和相等向量的概念,能根据图形判定向量是否平行(共线)、相等.2.能力目标:培养学生数形结合的能力,学会用类比和分类讨论的方法解决问题的能力.3.情感目标:培养学生学以致用的科学探索精神和爱国主义情操.【教学重点】1.向量概念的引入,会表示向量.2.理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念.【教学难点】1. “数”与“形”的结合思想2. 平行(共线)向量和相等向量区别和联系.【教学过程】一创设情境二自主学习概念:向量的定义:我们把既有又有的量叫做向量.向量的表示:常用:表示,记作:,也可以用小写字母表示.向量AB的大小称为“”,记作:.相等向量,a b ,a c三 概念辨析判断下列命题是否正确,若不正确,请简述理由. 题组一:① 温度含有零上和零下温度,所以温度是向量;② 若|a |>|b |则a >b ;向量的定义的注意点: 题组二:③ 起点相同的两个非零向量不平行;④ 若a //b ,b //c ,则a //c ;⑤ a 与b 不共线,则a 与b 都是非零向量;向量平行与直线平行的区别: 题组三:⑥ 若四边形ABCD 是平行四边形则AB CD =;⑦ 若四边形ABCD 中,AB DC =,则ABCD 是平行四边形; ⑧ 若|a |=|b |且a //b 则a =b ;相等向量的注意点: 题组四:⑨ 单位向量都相等;⑩ 共线的单位向量都相等;单位向量的注意点: 题组五:○11 ||||0a a -=; ○12 向量的模为正实数. 零向量的注意点:四 数学应用例1.已知O 点是的正六边形ABCDEF 的中心, 在图中所标出的向量中:(1)与FE 共线的向量有 ; (2)与FE 相等的向量有 ; (3)OA 与BC 是互为 向量.例2.如图,45 的方格纸中有一个向量AB ,分别以图中的格点为起点和终点作向量,其中(1)与AB 相等的向量有多少个? (2)与AB 相反的向量有多少个?(3)与AB 长度相等的共线向量有多少个?(AB 除外)五.课时小结六.课后作业 课本p57 习题2.1:1,2,3.七.任务延伸 根据地图,求以南通为起点,黑瞎子岛为终点的向量的模是多少?方向是什么?八.课后拓展 课本p57 习题第5题.CFAB。
《平面向量的实际背景及基本概念》教案全面版
《平面向量的实际背景及基本概念》教案全面版一、教学目标1. 让学生理解平面向量的实际背景,了解向量在现实生活中的应用。
2. 掌握平面向量的基本概念,包括向量的定义、表示方法、相等向量、相反向量等。
3. 掌握向量的线性运算,包括加法、减法、数乘等。
4. 培养学生的数学思维能力和实际问题解决能力。
二、教学内容1. 向量的实际背景:介绍向量在物理学、工程学等领域的应用,如力的表示、位移的表示等。
2. 向量的定义:介绍向量的概念,强调向量是有大小和方向的量。
3. 向量的表示方法:介绍向量的表示方法,包括箭头表示法、坐标表示法等。
4. 相等向量、相反向量:介绍相等向量和相反向量的概念,强调它们的性质和运算规律。
5. 向量的线性运算:介绍向量的加法、减法和数乘运算,包括运算规则、运算性质等。
三、教学方法1. 采用问题驱动的教学方法,引导学生从实际问题中抽象出向量的概念和运算规律。
2. 利用多媒体辅助教学,通过动画、图片等形式展示向量的实际背景和运算过程。
3. 采用小组讨论、合作学习的方式,培养学生的团队协作能力和交流表达能力。
4. 结合例题讲解,让学生通过实践操作理解和掌握向量的运算方法和技巧。
四、教学评估1. 通过课堂提问、作业批改等方式及时了解学生的学习情况,发现问题并及时解决。
2. 设计一些实际问题,让学生运用所学的向量知识解决,评估学生对知识的掌握程度。
3. 组织课堂讨论,评估学生的参与程度和团队协作能力。
五、教学资源1. 多媒体教学课件:包括向量的实际背景图片、向量运算的动画演示等。
2. 教材:提供相关章节的学习材料,供学生预习和复习使用。
3. 练习题库:提供丰富的练习题,包括填空题、选择题、解答题等,用于巩固所学知识。
4. 参考资料:提供一些相关的研究论文、书籍等,供有兴趣深入学习的学生参考。
六、教学安排1. 课时安排:本章节共需4课时,每课时45分钟。
2. 课堂活动安排:第一课时:向量的实际背景介绍,向量的定义和表示方法学习。
人教A版高中数学必修4《二章 平面向量 2.1 平面向量的实际背景及基本概念 2.1.2 向量的几何表示》教案_14
向量的几何表示教学设计1.教学内容解析本节课是《普通高中课程标准实验教科书数学4》(人教A 版)第二章第一节“平面向量的实际背景及基本概念”第一课时。
平面向量的实际背景及基本概念是向量知识体系中的起始内容,起着为其他知识学习奠基的重要作用。
一方面,它能为其他向量知识的学习奠基,通过了解向量的实际背景,理解向量的含义及几何表示等内容,奠定学生学习向量的线性运算、平面向量的基本定理及坐标表示和平面向量数量积的知识基础;另一方面,它能为学习新的数学对象奠基,学生通过认识向量,形成向量相关概念的过程,可以获得认识其他数学对象的基本方法和途径,可以为学习和研究其他数学对象奠定方法基础。
所以,平面向量的实际背景及基本概念作为向量的起始课及概念型课,其教学必须要有“交代问题背景、引入基本概念、渗透研究方法、构建研究蓝图”的大气。
由于是第一课时,所以笔者重点在于章引言,向量概念的引入,向量的表示,零向量、单位向量和平行向量的教学,不讲相等向量和共线向量。
2.教学目标设置课堂教学目标如下.(1)从如何由A点确定B点的位置,速度既有大小和方向抽象出向量的概念并与数量区分;(2)经历从实数的表示到“带箭头的线段”,从有向线段到向量的几何表示,掌握向量的几何表示、符号表示,模的表示,感受类比的思想,体会数学的实用性、表达的简洁美;(3)理解从大小看:零向量、单位向量,从方向看:平行向量;(4)体会认识新的数学概念基本思路:1.归纳共性;2.抽象定义;3.符号表示;4.认识特殊;5.研究一般;进而提高提出问题、研究问题的能力;3.学生学情分析(1)在物理学中,已经知道速度,力,位移等是既有大小又有方向的物理量(矢量);(2)如何作力的图示;(3)已经经历并了解实数的形成过程;(4)对实际生活中的一些常见的量,能识别它们是否具有大小、方向;(5)在以前的学习中,能运用类比的思想发现问题、提出问题,进而解决问题。
但是,高一学生在思维辨析方面还比较薄弱,教师要适度加以引导,指导学生进行辨析。
高中数学新人教版A版精品教案《平面向量的实际背景及基本概念》
平面向量的实际背景及基本概念教学设计一.教学内容分析本节课是《普通高中课程标准实验教科书•数学4(必修)》(人教A版)第二章第一节的第一课时《平面向量的实际背景及基本概念》.本节内容属于概念性知识.向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有及其丰富的实际背景,在数学和物理学科中具有广泛的应用在现实生活中随处可见的力、位移、速度等既有大小,又有方向的量是其物理背景,有向线段是其几何背景,向量就是从这些实际对象中抽象出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学工具,广泛地应用于解决数学、物理学科或实际生活中的问题因此,它在整个高中数学的地位是非常重要的本节课是《平面向量》的起始课,通过本节课的学习,让学生体会到向量的两个属性:大小和方向,研究向量我们可以从大小和方向两个角度入手另外,实数学习的经验可以启发我们对向量的学习,引进一个量,就要研究它的运算,研究相应的运算律,因此,《平面向量》这一章,后续将要研究的内容就比较明朗了,这体现了本节课内容,对这一章的教学具有“统领全局”的作用另外,对于本节课的教学,重要的是让学生去体会研究数学新对象的方法和基本思路,而不是向量的形式化定义及几个相关概念因此,本节课内容的学习,它的理论意义远远大于它在解题中的作用.二.教学目标设置根据本节课的内容特点以及学生的认知水平,确定本节课的教学目标是:1 通过位移的实例分析,了解向量的实际背景,理解向量的概念及向量相等的含义,理解向量的几何表示2 在向量概念的形成过程中,提高抽象与概括能力,在向量的表示、特殊向量、向量的特殊关系的探讨过程中,体会向量具有数和形两个特征.3 由具有物理意义的量抽象出向量的概念,积累从具体到抽象的活动经验;在向量的概念、向量的表示、特殊向量、向量的特殊关系的探讨过程中,自觉形成从大小和方向两个角度来进行思考的习惯,培养理性思维.三.教学重难点1 重点:向量的概念,相等向量的概念,向量的几何表示2难点:向量的概念和共线向量的概念四.教学过程设计(一)创设情境,引入课题【问题1】同学们被外国人誉为中国的“新四大发明”是什么?设计意图:教师提出一个生活中的热点问题,激发学生学习兴趣,为下一步引出物理现象作铺垫【问题2】运用物理学的哪个量,可以解释路径不同,但是最终都能从南宁到达福州这一现象?追问1:这个物理量有什么特点?师生活动:教师通过图片演示两条不同从南宁到福州的路径,学生认真观察现象并进行思考,教师组织学生交流设计意图:进一步让学生思考现象背后的原理,让学生经历由直观感知,为向量概念的引出作准备;(二)概念形成【问题3】大家能否举出一些既有大小,又有方向的量请举例说明。
数学人教A版4示范教案:第二章第一节平面向量的实际背景及基本概念含解析
第二章第一节平面向量的实际背景及基本概念1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3.本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.4.本章教学约需12作者:赵勇,永安三中教师,本教学设计获福建省教学设计大赛三等奖错误!教学理念新的课程标准要求我们创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、合作交流和创新等过程,获得知识、能力、情感的全面发展.本节课将充分体现以“学生为本”的教学观念,实现课程理念、教学方式和学生学习方式的转变.教学目标1.通过力的分析等实例,了解向量的实际背景;理解向量的概念.2.理解向量的几何表示;掌握零向量、单位向量、平行向量等概念;3.理解相等向量和共线向量等概念,并会辨认图形中的相等向量或作出与某一已知向量的相等向量.教学重点、难点1.通过学生自主探究,并在教师的引导下,使学生理解向量的概念、相等向量的概念、向量的几何表示等是本节课的重点.2.难点是学生对向量的概念和共线向量的概念的理解.学情和教材分析《向量》是高中数学新教材必修四第二章第1节.向量是近代数学中重要和基本的概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.所以,向量是高考必考的重点内容,又因为其抽象性,它还是学生在学习中的一个难学内容.本节内容是向量一章的第一节课,因此,是十分关键、重要的一节课.教学准备多媒体课件错误!导入新课位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图1,如何由点A确定点B的位置?图1一种常用的方法是,以A为参照点,用B点A点之间的方位和距离确定B点的位置.如,B点在A点东偏南45°,30千米处.这样,在A点与B点之间,我们可以用有向线段AB表示B点相对于A点的位置.有向线段AB就是A点与B点之间的位移.位移简明地表示了位置之间的相对关系.像位移这种既有大小又有方向的量,加以抽象,就是我们本章要研究的向量.推进新课错误!本章引言中,我们知道,位移是既有大小,又有方向的量,你还能举出一些这样的量吗?图2请大家阅读课本2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下列各组是不是向量?如果是向量,说明这些向量之 间有什么关系. (1)两个三角形的面积S1,S2; (2)桌面上两个物体各自受到的重力G1,G2;
(3)小船驶向对岸的速度v1与水流的速度v2;
(4)浮在水面上的物体受到的重力G和水的浮力F. (1)因为面积S1,S2只有大小,没有方向,所以不是向量. (2)是向量,方向相同,为共线向量. (3)是向量,为不共线向量. (4)是向量,方向相反,为共线向量.
返回
学点三
相等向量与共线向量
返回
返回
【评析】
返回
给出下列命题: ①平行向量的方向一定相同; ②共线向量一定在同一条直线上; ③不平行的向量一定不相等; ④与任意向量平行的向量是零向量; ⑤平行于同一个非零向量的向量是平行向量.
其中所有正确命题的序号是.
【答案】③④⑤
返回
【解析】①平行向量的方向可能相反,不正确.
开始
学点一
学点二 学点三
1.有向线段AB的长度,记作 |AB| .有向线段包含三个要 素: 起点、方向、长度 . 知道了有向线段的起点、方向和长度,它的终点就唯一确 定. 2.向量可以用有向线段表示.也可用字母表示, 或用表示向量的有向线段的起点和终点字母表示, 例如 a,b,c,… , AB,CD,….
5.共线向量的定义中指的是非零向量的共线问题.
返回
1.掌握向量的表示法,可以用有向线段来表示向量,也 可以用字母表示向量.用有向线段AB表示一个向量,显 示了图形的直观性,为用向量处理几何问题和物理问题 打下了基础,同时提供了一种几何方法,它也体现了数 形结合的数学思想,另外,应该注意的是有向线段是向 量的表示,并不是说向量就是有向线段;用字母表示向 量便于向量运算.
返回
3.(1) 方向相同或相反的非零向量 叫做平行向量,向 量a与b平行,通常记作 a∥b .
我们规定:零向量与任一向量平行,即对于任意向量a, 都有 0∥a .
相等向量是 长度相等且方向相同的向量 ,向量a与b相等, a=b 记作 . (2)任一组平行向量都可以移动到同一直线上,因 此 平行向量 ,也叫做共线向量.
返回
学点一
向量的概念
下列物理量:①质量;②速度;③位移;④力;⑤加速度; ⑥路程;⑦密度;⑧功.其中不是向量的有( ) A.1个 B.2个 C.3个 D.4个 【分析】由向量的概念直接作出判断. 【答案】D 【解析】一个量是不是向量,就是看它是否同时具备向量 的两个要素:大小和方向.由于速度、位移、力、加速度都 是由大小和方向确定的,所以是向量;而质量、路程、密 度、功只有大小而没有方向,所以不是向量. 故应选D. 【评析】向量与数量的区别在于是否具有方向,即向量既 有大小又有方向,而数量只有大小.向量与向量的关系一定 要从大小和方向两方面考虑. 返回
返回
如图所示,AD是△ABC的边 BC上的高,BE是边AC上的中 线,问线段AD,BE是否可以表 示向量?
平面几何中的线段只有大小没有方向,所以线段AD,BE 都不能表示向量.(在平面几何中,线段没有起点和终点之 分,即线段AB与线段BA同义,正因为如此,本题中 AD=DA,BE=EB,所以AD,BE都是只有大小,没有方 向的量.)
②共线向量可能分别在两条平行线上,不正确.
③不平行的向量其方向不相同,故一定不相等,正确. ④零向量与任意向量平行,正确. ⑤平行于同一个非零向量的两个向量中,若至少有一个零 向量,它们是平行向量,若都是非零向量,它们也是平行 向量,正确.
返回
1.向量由大小和方向确定,与位置无关,所以所有向量都 可以从同一个起点出发,也就是向量可以任意平移,平移 后向量与原向量仍相等. 2.0与0不同,前者是数量,后者是向量,规定0的方向是 任意的. 3.若实数a大于实数b,则记作a>b. 若|a|>|b|,则不能记作a>b,向量没法比较大小. 若向量a,b相等,则可以记作a=b. 4.任一向量a都与它自身是平行向量,并且规定:零向量与 任一向量都是平行向量.
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回Leabharlann 返回学点二向量的表示
一辆汽车从A点出发向西行驶了100km到达B点,然后又改变 方向向西偏北50°行驶了200km到达C点,最后又改变方向, 向东行驶了100km到达D点. (1)作出向量AB,BC,CD;(2)求|AD|.
【分析】根据向量的表示方法解答.
【解析】(1)向量AB,BC,CD如图所示: (2)由题意易知,AB与CD方向相反,故AB与CD共线, 又|AB|=|CD|, ∴在四边形ABCD中,AB CD,
返回
2.注意理解向量、零向量、单位向量、平行向量的概念. 因为向量既有大小,又有方向,所以向量不同于数量.数量 之间可以比较大小,“大于”“小于”的概念对于数量是 适用的;向量由模和方向确定,由于方向不能比较大小, 因此,“大于”“小于”对于向量来说是没有意义的,向 量不能比较大小,向量的模可以比较大小. 3.由于零向量是特殊的向量,方向可看作是任意的,所以 规定零向量与任意方向的向量平行.今后解答问题时,要注 意看清题目中是“零向量”还是“非零向量”,从而正确 解题. 4.非零向量相等.任意两个相等的非零向量都可用 一条有向线段来表示,并且与有向线段的起点无关.两个非 零向量只有当它们的模相等,同时方向又相同时,才能称 它们相等.例如b=a,就意味着|a|=|b|,并且b与a的方向相同.
∴四边形ABCD为平行四边形,
∴AD=BC,|AD|=|BC|=200km.
返回
【评析】(1)准确画出向量的方法是先确定向量的起 点,再确定向量的方向,然后根据向量的大小确定向量 的终点.
(2)要注意能够运用向量观点将实际问题抽象成数学 模型.“数学建模”能力是今后能力培养的主要方向,需要 在日常学习中不断积累经验.