瞬时加速度问题

合集下载

物理瞬时加速度问题

物理瞬时加速度问题

牛顿运动定律:瞬时加速度问题知识点睛牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,即m Fa ,ma F ,适用于惯性参考系中宏观、低速的物体;牛顿第二定律具有以下性质:①矢量性:加速度的方向与合外力方向一致;②瞬时性:ma F 对于过程中的每一瞬间都成立,a 和F 具有瞬时对应关系;③相对性:mFa 求得的a 是相对于惯性参考系地面而言的;④独立性:若F 是物体所受的合外力,则a 为实际加速度;若F 是某一方向上的合外力,则a 是该方向上的加速度关于力的瞬时性:(1) 物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之前或之后的力无关,不等于零的合外力作用在物体上,物体立即产生加速度;若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;若合外力变为零,加速度也立即变为零,也就是说物体运动的加速度可以突变(2) 对于中学物理的几个理想模型,如刚性绳、轻杆、轻弹簧、接触面等产生的弹力能否突变,关键要看在受力时形变是否明显,若形变不明显,则可以突变;若形变明显,则不能突变,详细如下: 比较模型 刚性绳 轻杆 接触面 弹性绳 轻弹簧 形变类型 拉伸 拉伸、压缩、扭曲 压缩 拉伸拉伸、压缩弹力方向沿着绳指向 绳收缩方向能沿着杆也可以 和杆成任意角度 垂直于接触面 指向受力物体 沿着绳指向 绳收缩方向 沿着弹簧指向弹簧 恢复原长的方向 形变大小 形变不明显 形变不明显 形变不明显 形变明显 形变明显 能否突变 可以突变可以突变可以突变不能突变不能突变例题精讲例题1:如图1,一质量为m 的物体系于长度分别为1l 和2l 的两根细绳上,1l 的一端悬挂在天花板上,与竖直方向夹角为 , 2l 水平拉直,物体处于平衡状态图1 图2(1)现将2l 线剪断,求剪断瞬间物体的加速度? 下面是某同学对该题的一种解法:设1l 线上拉力为1F ,2l 线上拉力为2F ,重力为mg ,物体在三力作用下保持平衡:mg F cos 1,21sin F F , tan 2mg F ,剪断2l 线的瞬间,2F 突然消失,物体即在2F 反方向上获得加速度,因为ma mg tan ,所以加速度 tan g a ,方向沿2F 反方向 你认为这个结果正确吗?请对该解法作出评价并说明(2)若将图中的细线1l 改为长度相同、质量不计的轻弹簧,如图2所示,其他条件不变,求解步骤与(1)完全相同,即 tan g a ,你认为这个结果正确吗?请说明理由解析:(1)结果不正确,因为2l 被剪断瞬间,轻绳1l 上张力大小发生了突变,此瞬间 cos 1mg F ,它与重力沿绳方向的分力抵消,重力垂直于绳方向的分力 sin mg 产生加速度 sin g a (2)结果正确,因为2l 被剪断瞬间,弹簧1l 的长度不能发生突变,即1F 大小方向都不变,它与重 力的合力与2F 方向相反,大小与2F 相等,所以物体的加速度大小为 tan g a例题2:光滑水平面上有一质量kg 1 m 的小球,小球与水平轻弹簧和与水平方向夹角 为 30的轻绳的一端相连,如图,此时小球处于静止状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,小球加速度的大小和方向如何?此时轻弹簧弹力与水平面对球的弹力比值是多少?解析:小球在绳末断时受三个力的作用, 绳剪断的瞬间,作用于小球的拉力T 立即消失,但弹簧的形变还存在,故弹簧的弹力F 存在.(1)绳未断时:F T 30cos ,mg T 30sin ,解得:N 20 T , N 310 F(2)绳断的瞬间:0 T ,在竖直方向支持力mg N ,水平方向F 大小方向不变,且ma F 所以310mFa 2/s m ,此时3 N F 说明:当将弹簧改为轻绳时,斜向上拉绳剪断的瞬间,水平绳的拉力立即为零.例题3:如图,木块B A 、用轻弹簧相连,放在悬挂的木箱C 内,处于静止状态,它们质量之比是3:2:1当剪断细绳的瞬间,各物体的加速度大小及其方向?解析:设A 的质量为m ,则C B 、的质量分别为m 2、m 3在未剪断细绳时,C B A 、、均受平衡力作用,受力如图所示。

瞬时加速度经典题型

瞬时加速度经典题型

瞬时加速度经典题型一、单项选择题1. 一质点做直线运动的速度 - 时间图象如图所示,质点在0 - 2s内做匀加速直线运动,加速度为a_1,在2 - 3s内做匀减速直线运动,加速度为a_2,则a_1与a_2的大小之比为()[图象为:0 - 2s内速度从0均匀增加到4m/s,2 - 3s内速度从4m/s均匀减小到0]A. 1:1B. 1:2C. 2:1D. 4:1解析:- 根据加速度的定义a=(Δ v)/(Δ t)。

- 在0 - 2s内,v_0=0,v = 4m/s,Δ t_1=2s,则a_1=frac{v - v_0}{Δ t_1}=(4 - 0)/(2)=2m/s^2。

- 在2 - 3s内,v_0=4m/s,v = 0,Δ t_2=1s,则a_2=frac{v - v_0}{Δ t_2}=(0 - 4)/(1)=- 4m/s^2(加速度为负表示与速度方向相反)。

- 加速度大小之比frac{a_1}{a_2}=(2)/(4)=(1)/(2),所以a_1:a_2=1:2,答案为B。

2. 一个物体做匀变速直线运动,某时刻速度大小为4m/s,1s后速度大小变为10m/s,在这1s内该物体的()A. 位移的大小可能小于4mB. 位移的大小可能大于10mC. 加速度的大小可能小于4m/s^2D. 加速度的大小可能大于10m/s^2解析:- 设初速度方向为正方向。

- 当末速度方向与初速度方向相同时,v_0=4m/s,v = 10m/s,根据a=frac{v - v_0}{t},a=(10 - 4)/(1)=6m/s^2,根据x=frac{v_0+v}{2}t=(4 + 10)/(2)×1 = 7m。

- 当末速度方向与初速度方向相反时,v_0=4m/s,v=-10m/s,a=frac{v -v_0}{t}=(-10 - 4)/(1)=-14m/s^2,x=frac{v_0+v}{2}t=(4-10)/(2)×1=-3m,位移大小为3m。

牛顿第二定律瞬时加速度问题

牛顿第二定律瞬时加速度问题

瞬时加速度问题1.求解思路:求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两类”模型(1)刚性绳(轻杆或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.典型例题分析1、如图所示,质量为0.2 kg的物体A静止在竖直的轻弹簧上,质量为0.6 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压,现突然将细线剪断,则剪断后瞬间A.B间的作用力大小为(g取10 m/s2)()A.0.5 N B.2.5 N C.0 N D.1.5 N【解析】剪断细线前,A、B间无压力,则弹簧的弹力F=m A g=0.2×10=2 N,剪断细线的瞬间,对整体分析,N=m B g-m B a=0.6×10 N-0.6×7.5 N=1.5 N.故选D项【答案】D2、如图所示,天花板上固定有一光滑的定滑轮,绕过定滑轮且不可伸长的轻质细绳左端悬挂一质量为M的铁块;右端悬挂有两质量均为m的铁块,上下两铁块用轻质细线连接,中间夹一轻质弹簧处于压缩状态,此时细线上的张力为2mg,最初系统处于静止状态.某瞬间将细线烧断,则左端铁块的加速度大小为( )A.14gB.13gC.23gD.13g 【解析】 根据题意,烧断细线前轻绳上的张力为2mg ,可得到M =2m ,以右下端的铁块为研究对象,根据平衡条件可知,细线烧断前弹簧的弹力为mg ,细线烧断前的瞬间,铁块M 与右端上面的铁块m 间轻绳的故C 项正确.【答案】 C3、“儿童蹦极”中,拴在腰间左右两侧的是弹性极好的橡皮绳..质量为m 的小明如图所示静止悬挂时,两橡皮绳的拉力大小均恰为mg ,若此时小明右侧橡皮绳在腰间断裂,则小明此时( )A .加速度为零,速度为零B .加速度a =g ,沿原断裂橡皮绳的方向斜向下C .加速度a =g ,沿未断裂橡皮绳的方向斜向上D .加速度a =g ,方向竖直向下 解析 根据题述,腰间左右两侧的橡皮绳中弹力等于重力.若此时小明右侧橡皮绳在腰间断裂,则小明此时所受合力方向沿原断裂橡皮绳的方向斜向下,大小等于mg ,所以小明的加速度a =g ,沿原断裂橡皮绳的方向斜向下,B 项正确.答案B4、(多选)如图所示,A 、B 、C 三球质量分别为3m 、2m 、m ,轻质弹簧一端固定在斜面顶端、另一端与A 球相连,A 、B 间固定一个轻杆,B 、C 间由一轻质细线连接.倾角为θ=30°的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态.已知重力加速度为g.将细线烧断的瞬间,下列说法正确的是( )A .A 、B 两个小球的加速度均沿斜面向上,大小均为g 10B .B 球的加速度为g 2,方向沿斜面向下C .A 、B 之间杆的拉力大小为mgD .A 、B 之间杆的拉力大小为1.2mg解析A、B项,烧断细线前,以A、B、C组成的系统为研究对象,系统静止,处于平衡状态,合力为零,则弹簧的弹力为F=(3m+2m+m)gsinθ=6mgsinθ.以C为研究对象知,细线的拉力为mgsinθ.烧断细线的瞬间,由于弹簧弹力不能突变,弹簧弹力不变,以A、B组成的系统为研究对象,由牛顿第二定律得:F-(3m+2m)gsinθ=(3m+2m)a AB.答案AD5、如图所示,弹簧p和细绳q的上端固定在天花板上,下端用小钩勾住质量为m的小球C,弹簧、细绳和小钩的质量均忽略不计.静止时p、q与竖直方向的夹角均为60°.下列判断正确的有()A.若p和球突然脱钩,则脱钩后瞬间q对球的拉力大小为mgB.若p和球突然脱钩,则脱钩后瞬间球的加速度大小为gC.若q和球突然脱钩,则脱钩后瞬间p对球的拉力大小为mgD.若q和球突然脱钩,则脱钩后瞬间球的加速度大小为g6、(多选)如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a 上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断,将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g,在剪断的瞬间,()A.a1=3g B.a1=0 C.Δl1=2Δl2D.Δl1=Δl2[审题突破](1)剪断前,S1的弹力为________,S2的弹力为________,a物块所受合力为________;(2)剪断瞬间,两弹簧弹力________,物块a所受合力为________.[解析]设物体的质量为m,剪断细绳的瞬间,绳子的拉力消失,弹簧还没有来得及改变,所以剪断细绳的瞬间a受到重力和弹簧S1的拉力F T1,剪断前对bc和弹簧S2组成的整体分析可知F T1=2mg,故a受到的合=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确、D错误.[答案]AC7.如图所示,物块1、2 间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为aA .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +M M gD .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +M M g解析:选C.在抽出木板的瞬间,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上1、四个质量均为m 的小球,分别用三条轻绳和一根轻弹簧连接,处于平衡状态,如图所示.现突然迅速剪断轻绳A1、B1,让小球下落,在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用a1、a2、a3和a4表示,则( )A .a 1=g ,a 2=g ,a 3=2g ,a 4=0B .a 1=0,a 2=2g ,a 3=0,a 4=2gC .a 1=g ,a 2=g ,a 3=g ,a 4=gD .a 1=0,a 2=2g ,a 3=g ,a 4=g2、(多选)在动摩擦因数μ=0.2的水平面上有一个质量为m =2 kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零.当剪断轻绳的瞬间,取g =10 m/s 2,以下说法正确的是( )A .此时轻弹簧的弹力大小为20 NB .小球的加速度大小为8 m/s 2,方向向左C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右D .若剪断弹簧,则剪断的瞬间小球的加速度为0答案ABD解析在剪断轻绳前,小球受重力、绳子的拉力以及弹簧的弹力处于平衡,根据共点力平衡得,弹簧的弹力:F=mgtan45°=20×1=20 N,故A项正确;在剪断轻绳的瞬间,弹簧的弹力仍然为20 N,小球此时受重力、支持力、弹簧弹力和摩擦力四个力作用;小球所受的最大静摩擦力为:f=μmg=0.2×20 N=4 N,根据牛顿第二定律得小球的加速度为:a=(F-f)/m=8 m/s2;合力方向向左,所以向左加速.故B项正确;剪断弹簧的瞬间,轻绳对小球的拉力瞬间为零,此时小球所受的合力为零,则小球的加速度为零,故C项错误,D项正确.3、如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为( )A.0 B.g C.g D.g。

01专题:瞬时加速度问题(含答案)

01专题:瞬时加速度问题(含答案)

01专题:牛顿第二定律应用之瞬时加速度问题一、两种基本模型:1.轻绳、支撑面、杆等由于形变量非常小所以弹力会瞬时发生变化2.弹簧的形变量大,所以弹力不会瞬间变化二、解决此类问题的基本方法:1.分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则间利用平衡条件;若处于加速状态则利用牛顿运动定律);2.分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失);3.求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度。

例1.所示,一质量为m 的物体系于长度分别为12L L 、的两根细线上,1L 的一端悬挂在天花板上,与竖直方向夹角为θ,2L 水平拉直,物体处于平衡状态。

(1)现将线2L 剪断,求剪断2L 的瞬间物体的加速度。

(2)若将图甲中的细线1L 换成长度相同(接m 后),质量不计的轻弹簧,如图乙所示,其他条件不变,求剪断2L 的瞬间物体的加速度。

变式1.如图所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A 小球,同时水平细线一端连着A 球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A 、B 两小球分别连在另一根竖直弹簧两端。

开始时A 、B 两球都静止不动,A 、B 两小球的质量相等,重力加速度为g ,若不计弹簧质量,在水平细线被剪断瞬间,A 、B 两球的加速度分别为( )A .a A =aB =g B . a A =2g ,a B =0C .a A =3g ,a B =0D .A 23a g ,a B =0例2.如图所示,A 、B 、C 三个物体分别用轻绳和轻弹簧连接,放置在倾角为θ的光滑斜面上,当用沿斜面向上的恒力F 作用在物体A 上时,三者恰好保持静止,已知A 、B 、C 三者质量相等,重力加速度为g .下列说法正确的是A .在轻绳被烧断的瞬间,A 的加速度大小为2sin θgB .在轻绳被烧断的瞬间,B 的加速度大小为sin θgC .剪断弹簧的瞬间,A 的加速度大小为1sin θ2ggD.突然撤去外力F的瞬间,A的加速度大小为2sinθ变式2.如图所示,天花板上悬挂一轻质弹簧,弹簧下端栓接质量为m的小球A,A球通过轻杆连接质量为2m的小球B,重力加速度为g,下列说法正确的是()A.剪断弹簧瞬间,轻杆上弹力不为0B.剪断弹簧瞬间,A、B球加速度均为gC.剪断轻杆瞬间,A、B球加速度大小均为gD.剪断轻杆瞬间,A球加速度大小为2g,B球加速度大小为g三、巩固练习1.如图所示,光滑水平面上,A、B两物体用轻弹簧连接在一起,A、B的质量分别为m1、m2,在拉力F作用下,A、B共同做匀加速直线运动,加速度大小为a,某时刻突然撤去拉力F,撤去拉力F的瞬间A和B的加速度大小为a1和a2,则( )A.a1=0,a2=0B.a1=a,a2= aC.a1=a,a2= aD.a1=a,a2=a2. (多选)如图所示,A、B、C三球的质量均为m,轻质弹簧一端固定在斜面顶端、另一端与A球相连,A、B间固定一个轻杆,B、C间由一轻质细线连接。

物理瞬时加速度问题

物理瞬时加速度问题

牛顿运动定律:瞬时加速度问题知识点睛牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,即m Fa ,ma F ,适用于惯性参考系中宏观、低速的物体;牛顿第二定律具有以下性质:①矢量性:加速度的方向与合外力方向一致;②瞬时性:ma F 对于过程中的每一瞬间都成立,a 和F 具有瞬时对应关系;③相对性:mFa 求得的a 是相对于惯性参考系地面而言的;④独立性:若F 是物体所受的合外力,则a 为实际加速度;若F 是某一方向上的合外力,则a 是该方向上的加速度关于力的瞬时性:(1) 物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之前或之后的力无关,不等于零的合外力作用在物体上,物体立即产生加速度;若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;若合外力变为零,加速度也立即变为零,也就是说物体运动的加速度可以突变(2) 对于中学物理的几个理想模型,如刚性绳、轻杆、轻弹簧、接触面等产生的弹力能否突变,关键要看在受力时形变是否明显,若形变不明显,则可以突变;若形变明显,则不能突变,详细如下: 比较模型 刚性绳 轻杆 接触面 弹性绳 轻弹簧 形变类型 拉伸 拉伸、压缩、扭曲 压缩 拉伸拉伸、压缩弹力方向沿着绳指向 绳收缩方向能沿着杆也可以 和杆成任意角度 垂直于接触面 指向受力物体 沿着绳指向 绳收缩方向 沿着弹簧指向弹簧 恢复原长的方向 形变大小 形变不明显 形变不明显 形变不明显 形变明显 形变明显 能否突变 可以突变可以突变可以突变不能突变不能突变例题精讲例题1:如图1,一质量为m 的物体系于长度分别为1l 和2l 的两根细绳上,1l 的一端悬挂在天花板上,与竖直方向夹角为 , 2l 水平拉直,物体处于平衡状态图1 图2(1)现将2l 线剪断,求剪断瞬间物体的加速度? 下面是某同学对该题的一种解法:设1l 线上拉力为1F ,2l 线上拉力为2F ,重力为mg ,物体在三力作用下保持平衡:mg F cos 1,21sin F F , tan 2mg F ,剪断2l 线的瞬间,2F 突然消失,物体即在2F 反方向上获得加速度,因为ma mg tan ,所以加速度 tan g a ,方向沿2F 反方向 你认为这个结果正确吗?请对该解法作出评价并说明(2)若将图中的细线1l 改为长度相同、质量不计的轻弹簧,如图2所示,其他条件不变,求解步骤与(1)完全相同,即 tan g a ,你认为这个结果正确吗?请说明理由解析:(1)结果不正确,因为2l 被剪断瞬间,轻绳1l 上张力大小发生了突变,此瞬间 cos 1mg F ,它与重力沿绳方向的分力抵消,重力垂直于绳方向的分力 sin mg 产生加速度 sin g a (2)结果正确,因为2l 被剪断瞬间,弹簧1l 的长度不能发生突变,即1F 大小方向都不变,它与重 力的合力与2F 方向相反,大小与2F 相等,所以物体的加速度大小为 tan g a例题2:光滑水平面上有一质量kg 1 m 的小球,小球与水平轻弹簧和与水平方向夹角 为 30的轻绳的一端相连,如图,此时小球处于静止状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,小球加速度的大小和方向如何?此时轻弹簧弹力与水平面对球的弹力比值是多少?解析:小球在绳末断时受三个力的作用, 绳剪断的瞬间,作用于小球的拉力T 立即消失,但弹簧的形变还存在,故弹簧的弹力F 存在.(1)绳未断时:F T 30cos ,mg T 30sin ,解得:N 20 T , N 310 F(2)绳断的瞬间:0 T ,在竖直方向支持力mg N ,水平方向F 大小方向不变,且ma F 所以310mFa 2/s m ,此时3 N F 说明:当将弹簧改为轻绳时,斜向上拉绳剪断的瞬间,水平绳的拉力立即为零.例题3:如图,木块B A 、用轻弹簧相连,放在悬挂的木箱C 内,处于静止状态,它们质量之比是3:2:1当剪断细绳的瞬间,各物体的加速度大小及其方向?解析:设A 的质量为m ,则C B 、的质量分别为m 2、m 3在未剪断细绳时,C B A 、、均受平衡力作用,受力如图所示。

牛顿第二定律之瞬时性问题

牛顿第二定律之瞬时性问题

牛顿第二定律之瞬时性问题智慧物理【总结】一、瞬时性问题1.牛顿第二定律的表达式为:F 合= 。

加速度由物体所受 决定,。

加速度的方向与物体所受 的方向一致;当物体所受合外力发生突变时,加速度也随着发生 ,而物体运动的速度 发生突变。

2.两种模型的区别(1)轻绳、轻杆和接触面:不发生明显形变就能产生弹力,剪断或脱离后,不需要时间恢复形变,原有弹力立即消失或 ,即会发生突变。

(2)轻弹簧、蹦床和橡皮条:当轻弹簧两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生 ,所以在瞬时问题中,其弹力大小认为是 的,即此时弹簧弹力不突变。

二、解题思路1.分析瞬时变化前物体的受力情况;2.分析瞬时变化后哪些力变化或消失;3.求出变化后物体所受合力,根据牛顿第二定律列方程;4.求瞬时加速度。

【专题练习】一、填空题1.如图所示,A B 、两小球用细线连接,C D 、两小球用轻弹簧连接,双手分别提起A C 、两球,使四个小球均在空中处于静止状态,双手同时释放A C 、瞬间(空气阻力不计,重力加速度为g ),小球B 的加速度大小为____________,小球D 的加速度大小为____________。

2.如图所示,两系统均处于静止状态,绳和弹簧质量不计。

重力加速度为g ,则剪断OA 、OC 上端绳的瞬时,物体A 、B 、C 、D 的瞬时加速度分别为:a A=______a B=______ac =______a D=______3.如图甲、乙所示,图中细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;图甲中倾斜细线OA与图乙中弹簧的拉力之比为________(θ、重力加速度g已知).4.如图所示,质量为m的小球用一根细线和一根轻弹簧悬挂起来,小球静止时,细线水平,而弹簧与竖直成θ角。

物理瞬时加速度问题

物理瞬时加速度问题

牛顿运动定律:瞬时加速度问题知识点睛牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,即m Fa ,ma F ,适用于惯性参考系中宏观、低速的物体;牛顿第二定律具有以下性质:①矢量性:加速度的方向与合外力方向一致;②瞬时性:ma F 对于过程中的每一瞬间都成立,a 和F 具有瞬时对应关系;③相对性:mFa 求得的a 是相对于惯性参考系地面而言的;④独立性:若F 是物体所受的合外力,则a 为实际加速度;若F 是某一方向上的合外力,则a 是该方向上的加速度关于力的瞬时性:(1) 物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之前或之后的力无关,不等于零的合外力作用在物体上,物体立即产生加速度;若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;若合外力变为零,加速度也立即变为零,也就是说物体运动的加速度可以突变(2) 对于中学物理的几个理想模型,如刚性绳、轻杆、轻弹簧、接触面等产生的弹力能否突变,关键要看在受力时形变是否明显,若形变不明显,则可以突变;若形变明显,则不能突变,详细如下: 比较模型 刚性绳 轻杆 接触面 弹性绳 轻弹簧 形变类型 拉伸 拉伸、压缩、扭曲 压缩 拉伸拉伸、压缩弹力方向沿着绳指向 绳收缩方向能沿着杆也可以 和杆成任意角度 垂直于接触面 指向受力物体 沿着绳指向 绳收缩方向 沿着弹簧指向弹簧 恢复原长的方向 形变大小 形变不明显 形变不明显 形变不明显 形变明显 形变明显 能否突变 可以突变可以突变可以突变不能突变不能突变例题精讲例题1:如图1,一质量为m 的物体系于长度分别为1l 和2l 的两根细绳上,1l 的一端悬挂在天花板上,与竖直方向夹角为 , 2l 水平拉直,物体处于平衡状态图1 图2(1)现将2l 线剪断,求剪断瞬间物体的加速度? 下面是某同学对该题的一种解法:设1l 线上拉力为1F ,2l 线上拉力为2F ,重力为mg ,物体在三力作用下保持平衡:mg F cos 1,21sin F F , tan 2mg F ,剪断2l 线的瞬间,2F 突然消失,物体即在2F 反方向上获得加速度,因为ma mg tan ,所以加速度 tan g a ,方向沿2F 反方向 你认为这个结果正确吗?请对该解法作出评价并说明(2)若将图中的细线1l 改为长度相同、质量不计的轻弹簧,如图2所示,其他条件不变,求解步骤与(1)完全相同,即 tan g a ,你认为这个结果正确吗?请说明理由解析:(1)结果不正确,因为2l 被剪断瞬间,轻绳1l 上张力大小发生了突变,此瞬间 cos 1mg F ,它与重力沿绳方向的分力抵消,重力垂直于绳方向的分力 sin mg 产生加速度 sin g a (2)结果正确,因为2l 被剪断瞬间,弹簧1l 的长度不能发生突变,即1F 大小方向都不变,它与重 力的合力与2F 方向相反,大小与2F 相等,所以物体的加速度大小为 tan g a例题2:光滑水平面上有一质量kg 1 m 的小球,小球与水平轻弹簧和与水平方向夹角 为 30的轻绳的一端相连,如图,此时小球处于静止状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,小球加速度的大小和方向如何?此时轻弹簧弹力与水平面对球的弹力比值是多少?解析:小球在绳末断时受三个力的作用, 绳剪断的瞬间,作用于小球的拉力T 立即消失,但弹簧的形变还存在,故弹簧的弹力F 存在.(1)绳未断时:F T 30cos ,mg T 30sin ,解得:N 20 T , N 310 F(2)绳断的瞬间:0 T ,在竖直方向支持力mg N ,水平方向F 大小方向不变,且ma F 所以310mFa 2/s m ,此时3 N F 说明:当将弹簧改为轻绳时,斜向上拉绳剪断的瞬间,水平绳的拉力立即为零.例题3:如图,木块B A 、用轻弹簧相连,放在悬挂的木箱C 内,处于静止状态,它们质量之比是3:2:1当剪断细绳的瞬间,各物体的加速度大小及其方向?解析:设A 的质量为m ,则C B 、的质量分别为m 2、m 3在未剪断细绳时,C B A 、、均受平衡力作用,受力如图所示。

2023届高考物理一轮复习知识点精讲与2022高考题模考题训练专题13牛顿运动定律的运用(解析版)

2023届高考物理一轮复习知识点精讲与2022高考题模考题训练专题13牛顿运动定律的运用(解析版)

2023高考一轮知识点精讲和最新高考题模拟题同步训练第三章牛顿运动定律专题13 牛顿第二定律的应用第一部分知识点精讲1. 瞬时加速度问题(1)两类模型(2). 在求解瞬时加速度时应注意的问题(i)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析。

(ii)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变。

(3)求解瞬时加速度的步骤2.动力学的两类基本问题第一类:已知受力情况求物体的运动情况。

第二类:已知运动情况求物体的受力情况。

不管是哪一类动力学问题,受力分析和运动状态分析都是关键环节。

(1)解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图:作为“桥梁”的加速度,既可能需要根据已知受力求解,也可能需要根据已知运动求解。

(2)动力学两类基本问题的解题步骤(3)掌握动力学两类基本问题的“两个分析”“一个桥梁”,以及在多个运动过程之间建立“联系”。

(i )把握“两个分析”“一个桥梁”(ii)找到不同过程之间的“联系”,如第一个过程的末速度就是下一个过程的初速度,若过程较为复杂,可画位置示意图确定位移之间的联系。

3.物体在五类光滑斜面上运动时间的比较第一类:等高斜面(如图1所示)由L =12 at 2,a =g sin θ,L =h sin θ可得t =1sin θ 2h g, 可知倾角越小,时间越长,图1中t 1>t 2>t 3。

第二类:同底斜面(如图2所示)由L =12 at 2,a =g sin θ,L =d cos θ可得t = 4d g sin 2θ, 可见θ=45°时时间最短,图2中t 1=t 3>t 2。

第三类:圆周内同顶端的斜面(如图3所示)在竖直面内的同一个圆周上,各斜面的顶端都在竖直圆周的最高点,底端都落在该圆周上。

由2R ·sin θ=12·g sin θ·t 2,可推得t 1=t 2=t 3。

专题七: 瞬时加速度的求解

专题七: 瞬时加速度的求解
略 首先根据剪断前求得弹簧上的弹力(大小和方向) ,其次分析剪断后物体的受力, 然后根据牛顿第二定律求解. 规律 3 匀变速运动系统在细线剪断瞬间,远离细线且和弹簧相连物体加速度不变. 典例 1 如右图,质量分别为 m 和 M 的物体 A 和 B 之间用一轻弹簧相连,再 用细线 连接到箱顶上,它们以加速度向下做匀加速运动.若,求细线被剪断瞬间 A 、B 的加速度. 2.2 细线类问题 只需根据细线被剪断后系统的运动变化规律来进行分析求解即可. 典例 2 如右图所示, 2 个质量分别为和的物体 A 和 B 用细线连接到箱顶上, 以加速度 a 向上做匀加速运动. 求 A 和 B 在细线 1 被剪断瞬间的加速度 典例 3(2001 年上海物理)如图 A 所示,一质量为 m 的物体系于长度分别为 l1、l2 的两根细线上,l1 的一端悬挂在天花板上,与竖直方向夹角为θ ,l2 水平拉直,物体处于平衡状态。现将 l2 线剪断。 (1)求剪断瞬时物体的加速度。 (2)若将图 A 中的细线 l1 改为长度相同、质量不计的轻弹簧,如图 B 所示,其他条件不变, 你认为给与 1 中的情况结果相同吗?请说明理由。
A.a1=0, a2=g C.a1=0, a2=
mM g M
mM g M
图1
同类高考题 1. (2010 上海浦东模拟)如图所示,质量为 m 的物体 A 系于两根轻弹簧 l1、l2 上,l 1 的一端悬挂在天花板上 C 点,与竖直方向夹角为 θ,l2 水平拉直, 左端固定于墙上 B 点,物体处于静止状态.则 A.若将 l2 剪断,则剪断瞬间物体的加速度 α=gtanθ,方向沿 B→A 方向 B.若将 l2 剪断,则剪断瞬间物体的加速度 α=gsinθ,方向垂直于 AC 斜 向下 C.若将 l1 剪断,则剪断瞬间物体的加速度 α=g,方向竖直向下 D.若将 l1 剪断,则剪断瞬间物体的加速度 α=g/cosθ,方向沿 C→A 方向 同类高考题 2.如图所示,小球用两根轻质橡皮条悬吊着,且 AO 呈水平状态,BO 跟竖直方 向的夹角为 α,那么在剪断某一根橡皮条的瞬间,小球的加速度情况 是( ) A.不管剪断哪一根,小球加速度均是零 B.剪断 AO 瞬间,小球加速度大小 a=gtanα C.剪断 BO 瞬间,小球加速度大小 a=gcosα D.剪断 BO 瞬间,小球加速度大小 a=g/cosα 同类高考题 3 如右图,竖直光滑杆上套有 1 个小球和 2 根弹簧,两弹簧的一端各与小球相连, 另一端分别用销钉 M、N 固定于杆上,小球处于静止状态. 设拔去销钉 M 瞬 间, 小球加速度为,在不拔去销钉 M 而拔去 N 瞬间,小球加速度可能( A.竖直向上; B.,竖直向下; 1.2 细线类问题 典例 1 质量为 m 的箱子 C ,顶部悬挂质量也为 m 的小球 B ,B 的下方通过 一轻弹簧与质量为 m 的球 A 相连,箱子用轻线悬于天花板上而处于平衡状 态, 如右图所示. 现剪断轻线 ,则在剪断的瞬间小球 A、B 和箱子 C 的加速 度各为多大? )

新人教版物理必修第一册课件微专题四 瞬时加速度问题和动力学图像问题

新人教版物理必修第一册课件微专题四 瞬时加速度问题和动力学图像问题
A.0 B.大小为 10 m/s2,方向竖直向下 C.大小为 5 3 m/s2,方向斜向右下方 D.大小为 5 m/s2,方向斜向右下方
解析:小球原来受到重力、弹簧的弹力和斜面的支持力,斜
面的支持力大小为:FN=mgcos 30°;突然向下撤去梯形斜面, 弹簧的弹力来不及变化,重力也不变,支持力消失,所以此瞬间
小球的合力与原来的支持力 FN 大小相等、方向相反,由牛顿第 二定律得:mgcos 30°=ma,解得 a=5 3 m/s2,方向斜向右下 方,选项 C 正确.
答案:C
主题二 动力学中的图像问题 1.常见的图像形式 在动力学与运动学问题中,常见、常用的图像是位移图像(x -t 图像)、速度图像(v -t 图像)和力的图像(F -t 图像)等,这 些图像反映的是物体的运动规律、受力规律,而绝非代表物体的 运动轨迹. 2.图像问题的分析方法 遇到带有物理图像的问题时,要认真分析图像,先从它的物 理意义、点、线段、斜率、截距、交点、拐点、面积等方面了解 图像给出的信息,再利用共点力平衡、牛顿运动定律及运动学公 式解题.
分别以 A、B 为研究对象,分析剪断前和剪断时的受力.剪 断前 A、B 静止,A 球受三个力:绳子的拉力 FT、重力 mg 和弹 簧力 F,B 球受两个力:重力 mg 和弹簧弹力 F′.
A 球:FT-mg-F=0 B 球:F′-mg=0 F=F′
解得 FT=2mg,F=mg. 剪断瞬间,A 球受两个力,因为绳无弹性,剪断瞬间拉力不 存在,而弹簧瞬间形状不可改变,弹力不变.如图 2,A 球受重 力 mg、弹簧的弹力 F,同理 B 球受重力 mg 和弹力 F′. A 球:-mg-F=ma1,B 球:F′-mg=ma2,解得 a1=-2 g,a2=0,故 C 正确. 答案:C

牛顿运动定律应用之瞬时性加速度问题

牛顿运动定律应用之瞬时性加速度问题

牛顿运动定律应用之瞬时性加速度问题【核心要点】1.刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.2.弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.【核心方法】分析此类问题要注意系统状态变化前后受力分析的比较【经典例题】【例题1】(多选)如图所示,两轻质弹簧a、b悬挂一质量为m的小球,整体处于平衡状态,弹簧a与竖直方向成30°角,弹簧b与竖直方向成60°角,a、b 两弹簧的形变量相等,重力加速度为g,则、( )A.弹簧a、b的劲度系数之比为3∶2B.弹簧a、b的劲度系数之比为3∶1C.若弹簧a下端与小球松脱,则松脱瞬间小球的加速度大小为3gD.若弹簧b下端与小球松脱,则松脱瞬间小球的加速度大小为g 2【答案】BD【例题2】(多选)两小球A、B先后用弹簧和轻杆相连,放在光滑斜面上静止,挡板C与斜面垂直,弹簧、轻杆均与斜面平行,如图甲、乙,A、B质量相等,重力加速度为g,斜面的倾角为θ.在突然撤去挡板的瞬间( )A.两图中两球加速度均为g sinθB.两图中A球的加速度均为零C.图甲中B球的加速度为2g sinθD.图乙中B球的加速度为g sinθ【答案】CD【精讲精练】1.如图,吊篮用绳子悬挂在天花板上,吊篮A及物块B、C的质量均为m,重力加速度为g,则将悬挂吊篮的轻绳剪断的瞬间,下列说法正确的是( )A.三者的加速度都为gB.C的加速度为零,A和B的加速度为3 2 gC.B对A的压力为2mgD.B对A的压力为mg【答案】B2.如图所示,两个完全相同的轻弹簧a、b,一端固定在水平面上,另一端均与质量为m的小球相连接,轻杆c一端固定在天花板上,另一端与小球拴接.弹簧a、b和轻杆互成120°角,且弹簧a、b的弹力大小均为mg,g为重力加速度,如果将轻杆突然撤去,则撤去瞬间小球的加速度大小可能为( )A.a=0.5gB.a=gC.a=1.5gD.a=2g【答案】D3. (多选)如图所示,箱子A被弹簧吊着,箱内放有物块B,A、B质量分别为m、2m,现对箱子施加竖直向上的F=5mg的力,使系统处于静止状态。

(完整word版)瞬时加速度专题巩固复习 12个例题

(完整word版)瞬时加速度专题巩固复习  12个例题

高三 瞬时加速度专题复习例1 如右图所示,质量为m 的小球用水平弹簧系住,并用倾角为︒30的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度为 ( )A .0B .大小为g ,方向竖直向下C .大小为g 332,方向垂直木板向下 D .大小为g 33,方向水平向右例3 如图所示,木块A 、B 用一轻弹簧相连,竖直放在木块C 上,C 静置于地面上,质 量之比是1:2:3,设所有接触面都光滑.当沿水平方向迅速抽出木块C 的瞬间,A 、B 的 加速度分别是=A a ,=B a 。

例4 如图所示,竖直放置在水平面上的轻弹簧上叠放着两个物块A .B ,它们的质量都2kg都处于静止状态。

若突然将一个大小为10N 的竖直向下的压力加在A 上,在此瞬间,A 对B 的压力大小为A .35N B .25N C .15N D .5N例5 如图,有一只质量为m 的猫,竖直跳上一根用细绳悬挂起来的质量为M 的长木柱上。

当 它跳上木柱后,细绳断裂,此时猫要与地面保持不变的高度,在此过程中,猫要使木柱对地的加速度大小为______.(例1图) (例3图) (例4图) (例5图) 例6 如图所示,质量为M 的木板放在倾角为θ的光滑斜面上,质量为m 的人在木板上跑,假如脚与板接触处不打滑.(1)要保持木板相对斜面静止,人应以多大的加速度朝什么方向跑动?(2)要保持人相对于斜面的位置不动,求板的加速度。

例7 传送带以恒定的速率 运动,已知它与水平面成 ,如图所示, ,将一个小物体无初速度地放在 P 点,小物体与传送带间的动摩擦因数为,问当皮带逆时针转动时,小物体运动到 Q 点的时间为多少?例8 如图所示,两个质量相同的小球A 和B,甲图中两球间用不可伸长的细绳连接,然后用细绳悬挂起来,剪断悬挂线0A 的瞬间,A 球和B 球的加速度分别是多少?A B例9 如图A 所示,一质量为m 的物体系于长度分别为1l 、2l 的两根细线上,1l 的一端悬挂在天花板上,与竖直方向夹角为θ,2l 水平拉直,物体处于平衡状态。

瞬时加速度问题(答案)

瞬时加速度问题(答案)

瞬时加速度问题(参考答案)一、知识清单1. 【答案】(1)弹簧和下段绳的拉力都变为0.(2)弹簧的弹力来不及变化,下段绳的拉力变为0.(3)绳的弹力可以突变而弹簧的弹力不能突变.2. 【答案】二、选择题3. 【答案】A【解析】A 、B 看作整体,加速度a=3mg/2m=1.5g,选项A 正确;4. 【答案】 AC【解析】 设物块的质量为m ,剪断细线的瞬间,细线的拉力消失,弹簧还没有来得及发生形变,所以剪断细线的瞬间a 受到重力和弹簧S 1的拉力T 1,剪断前对b 、c 和弹簧S 2组成的整体受力分析可知T 1=2mg ,故a受到的合力F 合=mg +T 1=mg +2mg =3mg ,故加速度a 1=F 合m=3g ,A 正确,B 错误;设弹簧S 2的拉力为T 2,则T 2=mg ,根据胡克定律F =k Δx 可得Δl 1=2Δl 2,C 正确,D 错误.【名师点睛】做本类型题目时,需要知道剪断细线的瞬间,弹簧来不及发生变化,即细线的拉力变为零,弹簧的弹力不变,然后根据整体和隔离法分析。

5. 【答案】 C【解析】 在抽出木板的瞬时,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对3向上的弹力大小和对物块4向下的弹力大小仍为mg ,因此物块3满足mg =F ,a 3=0;由牛顿第二定律得物块4满足a 4=F +Mg M =M +m Mg ,所以C 对. 6. 【答案】C7. 【答案】BD【解析】物体A 受重力和支持力,在细绳剪断瞬间仍受力平衡,所以a =0,故A 错误; B 、C 物体相对静止,将B 、C 看作一个整体,受重力和弹簧的压力,弹簧的压力等于A 物体的重力,故整体的加速度为:a =mg +2mg +mg 2m +m=43g ;故B 正确,C 错误;根据B 项分析知B 与C 之间弹力为零,故D 正确. 8. 【答案】BC【解析】对A 、B 整体受力分析,细线烧断前细线对A 球的拉力F T =2mg sin θ,细线烧断瞬间,弹簧弹力与原来相等,B 球受力平衡,a B =0,A 球所受合力与F T 等大反向,则F T =2mg sin θ=ma A ,解得a A =2g sin θ,A 、D 错误,B 、C 正确.9. 【答案】C【解析】由整体法知,F 弹=(m A +m B )g sin 30°剪断线瞬间,弹力瞬间不发生变化,由牛顿第二定律可得:对B :F 弹-m B g sin 30°=m B a B ,得a B =m A m B ·g 2对A :m A g sin 30°=m A a A ,得a A =12g所以C 正确.10.【答案】 D【解析】 撤去挡板前,挡板对B 球的弹力大小为2mg sin θ,因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间,图甲中A 球所受合力为0,加速度为0,B 球所受合力为2mg sin θ,加速度为2g sin θ;图乙中杆的弹力突变为0,A 、B 两球所受合力均为mg sin θ,加速度均为g sin θ,可知只有D 对.11.【答案】CD【解析】据题意,对A 球受力分析,受到重力G ,垂直斜面向上的支持力N A ,沿斜面向上的弹力F 和B 、C 球对它的拉力T A ,由于A 球处于静止状态,则据平衡条件有:F =G A sin θ+T A =3mg sin θ;现将细线烧断,据弹簧弹力具有瞬间保持原值的特性,则有:F -G A sin θ=ma ,故A 球此时加速度为a =2g sin θ,A 答案项错误;细线烧断后B 、C 球整体只受到重力和支持力,则加速度以a =g sin θ向下运动,所以B 、C 之间没有相互作用力,故C 、D 答案项正确而B 答案项错误。

人教版高中物理必修一:4.6牛顿运动定律应用 瞬时加速度问题 课件

人教版高中物理必修一:4.6牛顿运动定律应用 瞬时加速度问题 课件


1.刚性绳(或接触面)模型:这种不发生明显形变就能产生 弹力的物体,剪断(或脱离)后,弹力立即改变或消失,形 变恢复几乎不需要时间.
2.弹簧(或橡皮绳)模型:此种物体的特点是形变量大,形 变恢复需要较长时间,在瞬时问题中,其弹力的大小往 往可以看成是不变的.
思、议
1.质量皆为m的A,B两球之间系着一个不计质 量的轻弹簧,放在光滑水平台面上,A球紧靠 墙壁,今用力F将B球向左推压弹簧,平衡后, 突然将力F撤去的瞬间A,B的加速度分别为多 少?
。2021年3月14日星期日2021/3/142021/3/142021/3/14
• 15、会当凌绝顶,一览众山小。2021年3月2021/3/142021/3/142021/3/143/14/2021
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/3/142021/3/14March 14, 2021
求瞬时加速度问题

瞬时加速度问题
根据牛顿第二定律,加速度a与合外力F存在着瞬时对应 关系:合外力恒定,加速度恒定;合外力变化,加速度变化; 合外力等于零,加速度等于零,所以分析物体在某一时刻的 瞬时加速度,关键是分析该时刻物体的受力情况及运动状态, 再由牛顿第二定律求出瞬时加速度.应注意两类基本模型的 区别:

THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/3/142021/3/142021/3/142021/3/14
谢谢观看
如图,质量相同的物块A、B、C用两个轻弹 簧和一根轻线相连,挂在天花板上处于平 衡状态。现将A、B之间的轻绳剪断,在刚 剪断的瞬间,三个物块的加速度分别是多 大?方向如何?

例析高中物理教学中的瞬时加速度问题

例析高中物理教学中的瞬时加速度问题

例析高中物理教学中的瞬时加速度问题引言在高中物理课程中,瞬时加速度问题是一个重要的概念。

理解瞬时加速度问题可以帮助学生更好地理解牛顿第二定律,而牛顿第二定律是高中物理课程的核心。

本文将从理论和实际例子两方面阐述瞬时加速度问题。

瞬时加速度的概念瞬时加速度是物体在某一瞬间的加速度,是一个短时间内的平均加速度。

简单地说,就是在某一瞬间的瞬时加速度可以通过求取该点的切线斜率来计算。

由此可以得到一个重要的公式:a = v / t其中,a表示物体的瞬时加速度,v表示物体在该瞬间的速度,t表示这一瞬间的时间。

通过这个公式,我们可以看出,在一个时间短到可以被忽略的瞬间内,物体的速度是近似恒定的,因此可以用瞬时速度来计算瞬时加速度。

物理实验例子为了更好地理解瞬时加速度的概念,我们可以进行一些物理实验。

实验一我们可以在一个平坦的路面上放置一个小球,并记录它在不同时间下的位置。

然后,根据小球在不同时刻的位置,求出小球的瞬时速度和瞬时加速度。

具体操作如下:1.在平坦路面上放置一个小球,并用一段时间记录下小球在不同时间下的位置。

2.根据小球在两个时间点之间移动的位置,求出小球的平均速度。

假设小球在时间t1和时间t2之间移动的距离为s,则小球在此期间内的平均速度为:(s / (t2 - t1))。

3.根据小球在相邻两个时间点之间移动的位置,求出小球的瞬时速度。

假设小球在时间t0和时间t1之间的移动距离为s1,在时间t1和时间t2之间的移动距离为s2,则小球在时间t1的瞬时速度为:(s2 - s1) / (t2 -t1)。

4.根据小球在相邻两个时间点之间的瞬时速度,求出小球在某一时间点的瞬时加速度。

假设小球在时间t1的瞬时速度为v1,在时间t2的瞬时速度为v2,则小球在时间t1的瞬时加速度为:(v2 - v1) / (t2 - t1)。

实验二我们可以将一块石头投掷到水平地面上,并记录它在不同时间下的位置。

同样,根据石头在不同时刻的位置,求出它的瞬时速度和瞬时加速度。

七(超重与失重,瞬时加速度问题)

七(超重与失重,瞬时加速度问题)

A 超重与失重 1.超重和失重产生的原因 超重和失重产生的原因是系统在竖直方向有了加速度.无论超重还是失重都是由竖直方向的加速度的方向决定的,与物体速度方向无关.2.对超重和失重现象的定量分析①超重物体具有向上的加速度,根据牛顿第二定律有:F -mg =ma 可解得F =m (g +a )>mg ②失重物体具有向下的加速度,根据牛顿第二定律有: mg -F =ma 可解得F =m (g -a )<mg ,当a =g 时,F =0.此时为完全失重状态.3.不论是超重,还是失重或完全失重,物体所受的重力 没有发生 改变,发生超重、失重或完全失重与物体运动的速度 无关,仅决定于物体运动的 加速度.在完全失重的状态下,平时一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力,液体柱不再产生向下的压强等.1如图所示,质量为M 的框架放在水平地面上,一轻质弹簧上端固定在框架上,下端固定一个质量为m 的小球.小球上下振动时,框架始终没有跳起.当框架对地面压力为零的瞬间,小球的加速度大小为 ( )A.g B .g m m M - C .0 D .g m m M +2. 游乐园中,乘客乘坐能加速或减速运动的升降机,能够体会超重或失重的感觉,下列描述准确的是 ( )A .当升降机加速上升时,游客是处在失重状态B .当升降机减速下降时,游客是处在超重状态C .当升降机减速上升时,游客是处在失重状态D .当升降机加速下降时,游客是处在超重状态 3.原来做匀速直线运动的升降机内,有一被伸长的弹簧拉住的.具有一定质量的物体A 静止在地板上,如图所示.现发现A 突然被弹簧拉向右方,由此可判断,此时升降机的运动可能是 ( )A .加速上升B .减速上升C .加速下降D .减速下降4.如图所示,小球B 放在真空正方体容器A 内,球B 的直径恰好等于A 的内边长,现将它们以初速度v 0竖直向上抛出,下列说法中准确的是 ( )A .若不计空气阻力,上升过程中,A 对B 有向上的支持力B .若不计空气阻力,下落过程中,A 对B 没有压力C .若考虑空气阻力,下落过程中,A 对B 的压力向下D .若考虑空气阻力,上升过程中,A 对B 的压力向下5.若货物随升降机运动的v t -图像如题5图所示(竖直向上为正),则货物受到升降机的支持力F 与时间t 关系的图像可能是M m6.如图所示,兴趣小组的同学为了研究竖直运动的电梯中物体的受力情况,在电梯地板上放置了一个压力传感器,将质量为4kg 的物体放在传感器上。

解析如何计算平均加速度和瞬时加速度问题

 解析如何计算平均加速度和瞬时加速度问题

解析如何计算平均加速度和瞬时加速度问题计算平均加速度和瞬时加速度是物理学中一个重要的问题,它帮助我们了解物体在运动中的变化速率。

本文将深入解析如何计算平均加速度和瞬时加速度的问题,并探讨它们在现实生活中的应用。

一、平均加速度的计算方法平均加速度是物体在一段时间内的速度变化率平均值。

它的计算方法是通过物体的初速度和末速度之差,再除以时间间隔。

公式如下:平均加速度(平均a)= (末速度-初速度) / 时间间隔例如,一辆汽车从静止开始加速,经过5秒钟后,它的速度达到20m/s。

那么汽车的平均加速度可以通过以下计算得到:平均加速度= (20-0) / 5 = 4m/s²这意味着汽车在每秒钟内的速度变化率为4m/s²。

二、瞬时加速度的计算方法瞬时加速度是物体在某一瞬间的瞬时速度变化率。

为了计算瞬时加速度,我们需要通过极限的方式来逼近一个时间间隔趋近于零的情况。

公式如下:瞬时加速度(瞬时a)= dV / dt其中,dV代表极小时间间隔内的速度变化量,dt代表时间的的极小间隔。

为了更好地理解瞬时加速度,我们可以通过一个例子来说明。

假设我们有一个自由落体的物体,它从高处下落。

我们在一个时间点(t1)测量到它的速度为10m/s,之后过了一小段时间(Δt),我们再次测量到它的速度为15m/s。

那么根据定义,可以得到:瞬时加速度= (15-10) / Δt当我们让Δt趋近于零时,就得到了瞬时加速度。

这种方法可以用微积分中的导数来表示。

三、平均加速度和瞬时加速度的区别与联系平均加速度和瞬时加速度都可以用来描述物体在运动中的速度变化。

但它们之间存在一些区别。

首先,平均加速度是在一段时间内计算的,而瞬时加速度是在某一瞬间计算的。

平均加速度可以提供一个运动中物体速度变化的平均情况,而瞬时加速度则能够描述某一时刻的速度变化情况。

其次,平均加速度和瞬时加速度的计算方法不同。

平均加速度通过速度的变化量与时间间隔的比值来计算,而瞬时加速度则是通过速度的变化量与极小时间间隔的比值来计算。

瞬时加速度问题

瞬时加速度问题

瞬时加速度问题考点理解:1、刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。

2、轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。

方法技巧:(1)分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态则利用牛顿运动定律);(2)分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失); (3)求物体在状态变化后所受的合外力,利用牛顿第二定律 ,求出瞬时加速度。

例题分析:例1.如图所示,小球 A 、B 的质量分别 为m 和 2m ,用轻弹簧相连,然后用细线悬挂而静止,在剪断弹簧的瞬间,求 A 和 B 的加速度各为多少思考.如图所示,木块A 和B 用一弹簧相连,竖直放在木板C 上,三者静止于地面,它们的质量比是1:2:3,设所有接触面都是光滑的,当沿水平方向迅速抽出木块C 的瞬时,A 和B 的加速度 a A = ,a B = 。

例2.如图所示,用轻弹簧相连的A 、B 两球,放在光滑的水平面上,m A =2kg ,m B =1kg , 在6N 的水平力F作用下,它们一起向右加速运动,在突然撤去 F 的瞬间,两球加速度a A = a B = 。

思考.如图质量为m 的小球用水平弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度【 】 A .0B .大小为233g ,方向竖直向下 C .大小为233g ,方向垂直于木板向下<D .大小为33g ,方向水平向右图1 B\ 图3A B C \ B A 图5 F 》例3.物块A 1、A 2、B 1和B 2的质量均为m ,A 1、A 2用刚性轻杆连接,B 1、B 2用轻质弹簧连结,两个装置都放在水平的支托物上,处于平衡状态,如图今突然撤去支托物,让物块下落,在除去支托物的瞬间,A 1、A 2受到的合力分别为1f F 和2f F ,B 1、B 2受到的合力分别为F 1和F 2,则 【 】 A .1f F = 0,2f F = 2mg ,F 1 = 0,F 2 = 2mgB .1f F = mg ,2f F = mg ,F 1 = 0,F 2 = 2mgC .1f F = mg ,2f F = 2mg ,F 1 = mg ,F 2 = mgD .1f F = mg ,2f F = mg ,F 1 = mg ,F 2 = mg]思考.如下图所示,竖直光滑杆上套有一个小球和两根轻质弹簧,两弹簧的一端分别用销钉M 、N 固定于杆上,若拔去销钉M ,小球的加速度大小为12m/s 2。

关于瞬时加速度应注意的几个问题

关于瞬时加速度应注意的几个问题

关于“瞬时加速度”应注意的几个问题 在高中物理中,求瞬时加速度问题是一个比较重要的知识点, 教师都把其列为一个专题来处理.一、高中物理中涉及到的弹簧和绳, 均为“轻质弹簧”(没有质量的理想化模型) 和“刚性绳”(受力但无形变的理想化模型. 后文中的“弹簧”和“绳子”均指“轻质弹簧”和“刚性绳”) . 首先要清楚二者在情况突然变化时的相同与不同之处;二者相同之处为:当二者其中一端解除限制(例如从一端剪断) 时,力都突变为零;二者不同之处为:当二者两端均有限制而力发生变化时,弹簧的弹力不会突变,而刚性绳的力将会突变.例如 在图1、图2中小球、原来均静止. 现如果均从1m 2m 图中B 处剪断,则图1中的弹簧和图2中的下段绳子的拉力均立即突变为零.如果均从图中A 处剪断, 则图1中的弹簧的弹力不能突变为零, 而图2中的下段绳子的拉力在剪断瞬间就立即突变为零.二、要讲清楚“瞬时”的特点.对于力而言, 在开始变化的这一瞬间,能突变的力可以突变(例如图2 中当从B 处剪断时下段绳子的拉力) , 而不能突变的力将和未变化前相同, 即这一瞬时这个力还未来得及改变(例如图1中的弹簧的弹力在A 处剪断瞬间和未剪断前一样等于) . 加速度和力一样,当物体的合力突变时, 加g m 2速度也将突变; 而当物体的合力未变化时, 加速度也将不发生变化. 对于速度而言, 是不能突变的, 开始变化的这一瞬时将和未变化前一样.三、虽然我们所求的为刚开始这一瞬时的情况, 但有时我们需要研究物体此后的运动情况再反过来判断这一瞬时的情况, 这一点很重要.如图1,当从A 处剪断后,、在下落过程中,弹簧要缩短, 即、之间1m 2m 1m 2m 距离要变小,而二者初速均为零, 所以我们说在A 处剪断瞬间,二者的加速度肯定是不同的. 如图2,当从A 处剪断后,、在下落过程中,二者之间的距离是1m 2m 不变的(这是实际情况) , 即二者相对静止,则应用整体法可得整体加速度为重力加速度g,则由每一个物体加速度为g 可以判断出在B 处剪断这一瞬时,绳子的拉力立即突变为零,则由此可以判断在这一瞬时,、均只受重力,加速度均1m 2m 为g. 例1 如图3,绳子水平, 弹簧与竖直方向成角,小球静止,求从图中A处剪断瞬间小球的加速度是多少?解析:当从A 处剪断瞬时,开始我们无法判断绳子的拉力是否突变. 但我们知道小球以后将作部分圆周运动. 在A 处剪断瞬时,小球的位置(也即未剪断前小球的位置) 就是部分圆周运动的初始位置, 那么在此位置我们就按圆周运动来处理:假设绳子有拉力为T,绳长为L,小球的质量为m,则由向心力公式可知,而由于此时小球的速度还未来得及变化仍为零,所Lmv T 2=以得出,这一瞬时绳子拉力突变为零,速度为零,小球只受重力,加速度0=T .g a =例2 如图4,开始弹簧水平, 绳子与竖直方向成角,小球静止. 求当从图中A 处α剪断瞬间,小球的加速度为多少?解析: 许多学生在答这一题时,都得出的错误结论. 原因是这些学生αtan g a =误认为绳子的拉力在这一瞬时和未剪断前一样没变, 而实际上绳子的拉力已经突变了. 当从A 处剪断后,小球此后将做部分圆周运动, 剪断这一瞬时小球的位置应是部分圆周运动的初始位置, 所以这时我们把这个位置按圆周运动来处理. 设小球质量为m, 绳长为L. 在此位置对小球进行受力分析(如图5) , 可知小球只受重力和绳子的拉力. 将重力沿切向和法向分别分解为和. 由向心力公式可知:αsin 1mg F =αcos 2mg F =,而由于剪断这一瞬间,小球的速度仍为零,所以Lmv F T 22=-,所以小球的合力只等于, 所以正确2F T =ma mg F ==αsin 1答案应是:从A 处剪断这一瞬时,方向为图中的方向.以上这三个例αsin g a =1F 子, 我们都应用了先分析“瞬时”以后的运动情况再反过来判断这一“瞬时”的情况,从而得出正确的结论.瞬时加速度的解题规律分类解析 瞬时加速度问题是牛顿第二定律的一个重要应用,是比较复杂的问题之一,只有注意总结其题型分类和解题策略才能百战百胜.1 系统静止类的瞬时加速度问题1. 1 弹簧类问题 如右图,注意弹簧发生形变需要时间,瞬时不能变化,弹力不变.解题策略 弹簧没有伸缩、无形变; 系统原来静止,则细线被剪断瞬间,物体(与细线相连的) 所受合外力等于剪断前的细线拉力.规律1 原来静止系统在细线被剪断瞬间,远离细线且和弹簧相连物体加速度为0.规律2 原来静止的系统在细线被剪断瞬间,和细线且和弹簧相连的物体,其加速度等于剪断前细线上拉力FT 除以该物体质量.例1 如右图,竖直光滑杆上套有1 个小球和2 根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于静止状态. 设拔去销钉M 瞬间,小球加速度为,在不拔去销钉M 而拔去N 瞬间,小球加速度可能( ) 212-⋅s m () .210-⋅=s m gA.,方向竖直向上;222-⋅s m B.,方向竖直向下;222-⋅s m C.,方向竖直向上;22-⋅s m D.,方向竖直向下22-⋅s m 解析 拔去销钉M 瞬间小球加速度大小为,则小球加速度方向可能有2种212-⋅s m 情况:向上或向下(设小球质量为m ).(1) (加速度向上) 根据规律2知: 拔去M 瞬间小球的合外力等于弹簧2在剪断前的弹力、方向向下; 根据剪断前小球平衡可得,弹簧1的弹力为、)22(2-⋅⋅s m m 方向向上;再根据规律2得:拔去销钉N 瞬间加速度为、方向向下,故选222-⋅s m 项B 正确;(2) (加速度向下) 同理可得:拔去销钉N 瞬间加速度大小为、方向向上,22-⋅s m故本题正确答案为B 、C.1.2 细线类问题(如右图) 认为细线形变不需要时间,所以细线上的弹力迅速变化.解题策略 不必去管剪断细线前细线上的受力,只需根据细线被剪断以后系统的运动规律来进行分析求解即可.例2 质量为m 的箱子C ,顶部悬挂质量也为m 的小球B ,B 的下方通过一轻弹簧与质量为m 的球A 相连,箱子用轻线悬于天花板21o o上而处于平衡状态, 如右图所示. 现剪断轻线 ,则在剪断21o o 的瞬间小球A 、B 和箱子C 的加速度各为多大?解析 由规律1知球A 加速度.箱子在剪断轻线后小球B0=A a 21o o 和C 以共同加速度下落,受力为和弹簧拉力,故mg 2T F 2/32/)2(g mg F mg a a T C B =+==例3 如右图所示, 3 个可视为质点的金属小球A 、B 、C ,质量分别为m 、2m 、3m ,B 球带负电、电荷量为Q ,A 、C 不带电,不可伸长的绝缘细线将3 球相连,悬挂于O 点. 3 球均处于竖直向上的场强为E 的匀强电场中.将OA 剪断瞬间,A 、B 、C 球的加速度分别为( ) .解析 因为小球B 受到向下的电场力,则OA 剪断瞬间,球QE A 、B 以大于g 的共同加速度运动,而C 做自由落体运动,则:;.g a C =QE g mQE mg a a B A +=+==332 系统加速运动类问题2.1 弹簧类问题 注意系统加速时,细线剪断瞬间和细线相连的物体所受合外力不再等于剪断前细线拉力.解题策略 首先根据剪断前求得弹簧上的弹力(大小和方向) ,其次分析剪断后物体的受力,然后根据牛顿第二定律求解.规律3 匀变速运动系统在细线剪断瞬间,远离细线且和弹簧相连物体加速度不变.例4 如右图,质量分别为、的物体A 和B 之间用一轻弹簧相连,再用细线A m B m连接到箱顶上,它们以加速度向下做匀加速运动.若)(g a a <,求细线被剪断瞬间A 、B 的加速度.A B m m 2=解析 由规律3知细线被剪断的瞬间.细线被剪断前(设a a B =弹簧弹力为F) ,对B 有,解得.细a m F g m B B =-)(a g m F B -=线被剪断瞬间弹力没变,则对A 有AA A a m g m F =+解得:ag a A 23-=2.2 细线类问题 只需根据细线被剪断后系统的运动变化规律来进行分析求解即可.例5 如右图所示, 2个质量分别为和的物体A 和B 用细线连接到箱顶上,A m A m以加速度a 向上做匀加速运动. 求A 和B 在细线1被剪断瞬间的加速度和.A aB a 解析 细线1 被剪断之后,它们将做竖直上抛运动,所以细线1被剪断瞬间的加速度.g a a B A ==思考 若细线2被剪断,求A 、B 加速度.分析 细线2被剪断后,A 静止、B 自由落体运动,则、.0=A a g a B =训练题例1、传送带以恒定的速率 运动,已知它与水平面成 ,如图所示,,将一个小物体无初速度地放在 P 点,小物体与传送带间的动摩擦因数为,问当皮带逆时针转动时,小物体运动到 Q 点的时间为多少?解析:当物体刚放在传送带上时,物体的速度速度传送带的速度,物体所受的滑动摩擦力方向沿斜面向下,加速度为:滑行时间: 滑行距离:当物体与传送带的速度相同时,由于重力的作用物体继续加速,物体的速度大于传送带的速度,摩擦力的方向变为沿斜面向上,加速度为:因为:又: 解得:所以,小物体从 P 点运动到 Q 点的时间:例2 如图所示,竖直放置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的电阻都忽略不计)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

瞬时加速度问题
考点理解:
1、刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。

2、轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。

方法技巧:
(1)分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态则利用牛顿运动定律);
(2)分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失); (3)求物体在状态变化后所受的合外力,利用牛顿第二定律 ,求出瞬时加速度。

例题分析:
例1.如图所示,小球 A 、B 的质量分别 为m 和 2m ,用轻弹簧相连,然后用细线悬挂而静止,在剪断弹簧的瞬间,求 A 和 B 的加速度各为多少?
思考.如图所示,木块A 和B 用一弹簧相连,竖直放在木板C 上,三者静止于地
面,它们的质量比是1:2:3,设所有接触面都是光滑的,当沿水平方向迅速
抽出木块C 的瞬时,A 和B 的加速度 a A = ,a B = 。

例2.如图所示,用轻弹簧相连的A 、B 两球,放在光滑的水平面上,m A =
2kg ,m B =1kg , 在6N 的水平力F作用下,它们一起向右加速运动,在突然撤去 F 的瞬间,两球加速度a A = a B = 。

思考.如图质量为m 的小球用水平弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度【 】 A .0
B .大小为23
3g ,方向竖直向下
C .大小为23
3g ,方向垂直于木板向下
D .大小为3
3
g ,方向水平向右
图1 B
A 图3
A B C B A 图5 F
例3.物块A 1、A 2、B 1和B 2的质量均为m ,A 1、A 2用刚性轻杆连接,B 1、B 2用轻质弹簧连结,两个装置都放在水平的支托物上,处于平衡状态,如图今突然撤去支托物,让物块下落,在除去支托物的瞬间,
A 1、A 2受到的合力分别为1f F 和2f F ,
B 1、B 2受到的合力分别为F 1和F 2,则 【 】
A .1f F = 0,2f F = 2mg ,F 1 = 0,F 2 = 2mg
B .1f F = mg ,2f F = mg ,F 1 = 0,F 2 = 2mg
C .1f F = mg ,2f F = 2mg ,F 1 = mg ,F 2 = mg
D .1f F = mg ,2f F = mg ,F 1 = mg ,F 2 = mg
思考.如下图所示,竖直光滑杆上套有一个小球和两根轻质弹簧,两弹簧的一端分别用销钉M 、N 固定于杆上,若拔去销钉M ,小球的加速度大小为12m/s 2。

若不拔去销钉
M ,而拔去销钉N 瞬间,小球的加速度可能是(g=10m/s 2
)【 】 A.22m/s 2
竖直向上 B.22m/s 2
竖直向下
C.2m/s 2 竖直向上
D.2m/s 2
竖直向下
规律总结:
【练习】:
1.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定一个质量为m 的小球,小球上下振动时,框架始终没有跳起.当框架对地面压
力为零瞬间,小球的加速度大小为:【 】 A.g B.
m
m
M - g C.0 D.
m
m
M +g
2.如图所示,A 、B 两小球质量分别为M A 和M B 连在弹簧两端, B 端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪
断瞬间,A 、B 两球的加速度分别为:【 】 A.都等于
2g B. 2
g
和0 C.
2g M M M B B A ⋅+和0 D.0和2
g M M M B B A ⋅+
3.一根轻弹簧上端固定同上端挂一质量为m o 的平盘,盘中有一质量为m 的物体(如图3-3-13)当盘静止时,弹簧的长度比其自然长度伸长为l ,今向下拉盘使弹簧再伸长∆l 后停止,然后松手放开,则刚松手时盘对物体的弹力等于(设弹簧处在弹性限度以内):【 】
N
M
图2-8
1题图 图2-9
2题图
图3-3-13 3题图
A .mg l l )1(Λ+
B .g m m l l ))(1(+∆+
C .mg l l ∆
D .g m m l
l )(+∆
4.如图所示,质量相同的木块A 、B ,用轻质弹簧连接处于静止状态,现用水平恒力推木块A ,则弹簧在第一次压缩到最短的过
程中 :【 】
A .A 、
B 速度相同时,加速度a A = a B B .A 、B 速度相同时,加速度a A >a B
C .A 、B 加速度相同时,速度υA <υB
D .A 、B 加速度相同时,速度υA >υB
5.如图所示,小球质量为m,被三根质量不计的弹簧A 、B 、C 拉住,
弹簧间的夹角均为1200
,小球平衡时, A 、B 、C 的弹力大小之比为3:3:1,当剪断C 瞬间,小球的加速度大小及方向可能为:【 】
A .g/2,竖直向下;
B .g/2,竖直向上;
C .g/4,竖直向下;
D .g/4,竖直向上;
6.如图所示,一根轻弹簧竖直直立在水平面上,下端固定。

在弹簧
正上方有一个物块从高处自由下落到弹簧上端O ,将弹簧压缩。


弹簧被压缩了x 0时,物块的速度减小到零。

从物块和弹簧接触开始到物块速度减小到零过程中,物块的加速度大小a 随下降位移大小x 变化的图象,可能是下图中的:【 】
7.如图所示,斜面体M 的底面粗糙,斜面光滑,放在粗糙水平面上。

弹簧的一端固定在墙面上,另一端与放在斜面上的物块m 相连,弹 簧的轴线与斜面平行。

若物块在斜面上做简谐运动,斜面体保持静止,则下列图象中可定
性反映地面对斜面体的支持力F与时间t 的关系的是:【 】
8.如图,物体B 、C 分别连接在轻弹簧两端,将其静置于吊篮A 中的水平底板上,
已知A 、B 、C 的质量都是m ,重力加速度为g ,那么将悬挂吊篮的细线烧断的瞬间,A 、B 、C 的加速度分别为多少?
4题图
8题图 5题图

t 0

t 0

t A
B
C

t
D
M
m
7题图
C a o
a o
a o
x
a
o
g g g g x x x x A B D 6题图
9:如图所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ, l 2水平拉直,物体处于平衡状态,现将l 2线剪断 (1)求剪断瞬时物体的加速度. (2)若将上图中的细线l 1改变为长度相同、质量不计的轻弹簧,如图所示,其他条件不变,现将l 2剪断,求剪断瞬时物体的加速度.
1.如图4-19所示,一轻质弹簧一端系在墙上的O 点,自由伸长到B 点,今将一小物体m 把弹簧压缩到A 点,然后释放,小物体能运动到C 点静止。

物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是( )
A .物体在
B 点所受合外力为零
B .物体从A 点到B 点速度越来越大,从B 点到
C 点速度越来越小 C .物体从A 点到B 点速度越来越小,从B 点到C 点加速度不变
D .物体从A 点到B 点先加速后减速,从B 点到C 点一直减速运动
2.如图4-20所示,A 、B 、C 、D 、E 、F 六个小球分别用弹簧、细绳和细杆联结,挂于水平天花板上,若某一瞬间同时在a 、b 、c 处将悬挂的细绳剪断,比较各球下落瞬间的加速度,下列说法中正确的是( )
A .所有小球都以g 的加速度下落
B .A 球的加速度为2g ,B 球的加速度为g
C . C 、
D 、
E 、
F 球的加速度均为g D .E 球的加速度大于F 球的加速度
3.一个物体受到几个力作用而处于静止状态,若保持其它力不变而将其中的一个力F 1逐渐减小到零方向保持不变),然后又将F 1逐渐恢复原状,在这个过程中,物体的( )
A .加速度增加,速度增大
B .加速度减小,速度增大
C .加速度先增加后减小,速度增大
D .加速度和速度都是先增大后减小
4.物体m 在光滑的水平面上受一个沿水平方向恒力F 的作用向前运动。

如图4-21所示。

它的正前方固定一根劲度系数足够大的弹簧,当木块接触弹簧后( )
A .仍做匀加速运动
B .立即开始做匀减速运动
C .当弹簧处于最大压缩量时,物体的加速度不为零
D .在一段时间内仍做加速运动,速度继续增大
5.在光滑水平面上,物体受到水平的两平衡力F 1、F 2作用处
于静止状态,当其中水平向右的力F 1发生如图4-22所示的变化,F 2保持不变时,则( )
A .在OA 时间内,物体将向左作变加速运动,加速度逐渐增大
B .在A 时刻物体的速度和加速度均达最大
C .在AB 时间内物体做减速运动
D .在A 时刻物体的速度达到最大
图4-19
图4-20
图4-21
图4-22
θl 2l 1θl 1
l 2。

相关文档
最新文档