高三数学备考:圆锥曲线方程

合集下载

专题 圆锥曲线的定义、方程与性质(课件)2023届高考数学二轮专题复习

专题 圆锥曲线的定义、方程与性质(课件)2023届高考数学二轮专题复习
A. B. C. D.

返回导航
解析:由题意可知,抛物线 的标准方程为 , ,设直线 的方程为 , , ,联立得 消去 ,得 , ,则 , . ,所以当 时, 的面积取得最小值,最小值为2,故选D.
返回导航
(2)(2022·新高考卷Ⅱ)已知直线 <m></m> 与椭圆 <m></m> 在第一象限交于 <m></m> , <m></m> 两点, <m></m> 与 <m></m> 轴、 <m></m> 轴分别交于 <m></m> , <m></m> 两点,且 <m></m> , <m></m> ,则 <m></m> 的方程为__________________.
,所以 ①,又 ②, 得 ,所以四边形 的面积为18.
返回导航
考点二 圆锥曲线的几何性质
例2.(1)(2022·陕西西安五校高三联考)已知双曲线 <m></m> 的离心率为2,则双曲线 <m></m> 的渐近线方程是( )
A. B. C. D.
解析:由题意可知,双曲线的实半轴长的平方 ,虚半轴长的平方 ,所以双曲线的离心率 满足 ,从而 ,所以双曲线的渐近线方程为 ,故选A.
返回导航
2. <m></m> , <m></m> 是椭圆 <m></m> 的两个焦点, <m></m> 是椭圆 <m></m> 上异于顶点的一点, <m></m> 是 <m></m> 的内切圆圆心,若 <m></m> 的面积等于 <m></m> 的面积的3倍,则椭圆 <m></m> 的离心率为_ _.

高三数学一轮复习必备:圆锥曲线方程及性质

高三数学一轮复习必备:圆锥曲线方程及性质

~高三数学(人教版A 版)第一轮复习资料第33讲 圆锥曲线方程及性质一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。

圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法对于本讲内容来讲,预测:(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。

三.【要点精讲】1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数(大于21||F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。

若M 为椭圆上任意一点,则有21||||2MF MF a +=椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。

注:①以上方程中,a b 的大小0a b >>,其中222c a b =-; ②在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。

例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。

高考数学复习考点突破专题讲解12 圆锥曲线的方程与性质

高考数学复习考点突破专题讲解12 圆锥曲线的方程与性质

高考数学复习考点突破专题讲解第12讲圆锥曲线的方程与性质一、单项选择题1.(2022·广东惠州一模)若抛物线y2=2px(p>0)上一点P(2,y0)到其焦点的距离为4,则抛物线的标准方程为()A.y2=2xB.y2=4xC.y2=6xD.y2=8x2.(2022·山东临沂二模)已知双曲线C:=1(a>0,b>0)的焦距为4,实轴长为4,则C的渐近线方程为()A.y=±2xB.y=±xC.y=±xD.y=±x3.(2022·广东肇庆二模)已知F1,F2分别是椭圆C:=1(a>b>0)的左、右焦点,A是椭圆上一点,O 为坐标原点,若|OA|=|OF1|,直线F2A的斜率为-3,则椭圆C的离心率为()A. B. C. D.4.(2022·河北保定高三期末)为了更好地研究双曲线,某校高二年级的一位数学老师制作了一个如图所示的双曲线模型.已知该模型左、右两侧的两段曲线(曲线AB与曲线CD)为某双曲线(离心率为2)的一部分,曲线AB与曲线CD中间最窄处间的距离为30 cm,点A与点C,点B与点D均关于该双曲线的对称中心对称,且|AB|=36 cm,则|AD|=()A.12 cmB.6 cmC.38 cmD.6 cm5.(2022·全国甲·文11)已知椭圆C:=1(a>b>0)的离心率为,A1,A2分别为C的左、右顶点,B为C的上顶点.若=-1,则C的方程为()A.=1B.=1C.=1D.+y2=16.(2022·广东执信中学模拟)已知双曲线C的离心率为,F1,F2是C的两个焦点,P为C上一点,|PF1|=3|PF2|,若△PF1F2的面积为,则双曲线C的实轴长为()A.1B.2C.3D.47.(2022·江西宜春期末)已知抛物线E:y2=8x的焦点为F,P是抛物线E上的动点,点Q与点F关于坐标原点对称,当取得最小值时,△PQF的外接圆半径为()A.1B.2C.2D.48.(2022·山东滨州二模)已知椭圆C1和双曲线C2有相同的左、右焦点F1,F2,若C1,C2在第一象限内的交点为P,且满足∠POF2=2∠PF1F2,设e1,e2分别是C1,C2的离心率,则e1,e2的关系是()A.e1e2=2B.=2C.+e1e2+=2D.=2二、多项选择题9.(2022·湖北武昌高三期末)已知双曲线C:=1,下列对双曲线C判断正确的是()A.实轴长是虚轴长的2倍B.焦距为8C.离心率为D.渐近线方程为x±y=010.(2022·新高考Ⅱ·10)已知O为坐标原点,过抛物线C:y2=2px(p>0)的焦点F的直线与C交于A,B两点,点A在第一象限,点M(p,0),若|AF|=|AM|,则()A.直线AB的斜率为2B.|OB|=|OF|C.|AB|>4|OF|D.∠OAM+∠OBM<180°11.(2022·山东临沂三模)2022年4月16日9时56分,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆组成的“曲圆”,如图,在平面直角坐标系中,半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点F(0,2),椭圆的短轴与半圆的直径重合,下半圆与y轴交于点G.若过原点O的直线与上半椭圆交于点A,与下半圆交于点B,则()A.椭圆的长轴长为4B.线段AB长度的取值范围是[4,2+2]C.△ABF的面积最小值是4D.△AFG的周长为4+412.(2022·江苏南通高三检测)已知椭圆C1:=1(m>n>0)的上焦点为F1,双曲线C2:=1的左、右焦点分别为F2,F3,直线F1F2与C2的右支相交于点A,若AF3⊥F2F3,则()A.C1的离心率为B.C2的离心率为C.C2的渐近线方程为y=±xD.△AF1F3为等边三角形三、填空题13.(2021·全国乙·理13)已知双曲线C:-y2=1(m>0)的一条渐近线为x+my=0,则C的焦距为.14.(2022·河北保定模拟)已知椭圆C的中心为坐标原点,焦点在y轴上,F1,F2为C的两个焦点,C的短轴长为4,且C上存在一点P,使得|PF1|=6|PF2|,写出椭圆C的一个标准方程:.15.(2022·山东威海高三期末)已知抛物线C1:y2=8x,圆C2:x2+y2-4x+3=0,点M(1,1),若A,B分别是C1,C2上的动点,则|AM|+|AB|的最小值为.16.(2022·河北石家庄二模)已知椭圆C1和双曲线C2有公共的焦点F1,F2,曲线C1和C2在第一象限内相交于点P,且∠F1PF2=60°.若椭圆C1的离心率的取值范围是,则双曲线C2的离心率的取值范围是.高考数学复习考点突破专题讲解12圆锥曲线的方程与性质1.D解析∵抛物线y2=2px上一点P(2,y0)到其焦点的距离等于到其准线的距离,∴+2=4,解得p=4,∴抛物线的标准方程为y2=8x.2.C解析由已知得,双曲线的焦点在y轴上,双曲线的焦距2c=4,解得c=2,双曲线的实轴长为2a=4,解得a=2,则b=--=4,故双曲线C的渐近线方程为y=±x=±x.3. D解析如图,由|OA|=|OF1|,得|OA|=|OF1|=|OF2|=c,故∠F1AF2=90°.因为直线F2A的斜率为-3,所以tan∠F1F2A=3,所以|AF1|=3|AF2|.又|AF1|+|AF2|=2a,所以|AF1|=,|AF2|=.又|AF1|2+|AF2|2=|F1F2|2,即a2+a2=4c2,得,所以.4. D解析以双曲线的对称中心为坐标原点,建立平面直角坐标系xOy,因为双曲线的离心率为2,所以可设双曲线的标准方程为=1(a>0),依题意可得2a=30,则a=15,即双曲线的标准方程为=1.因为|AB|=36cm,所以点A的纵坐标为18.由=1,得|x|=3,故|AD|=6cm.5.B解析由题意知,A1(-a,0),A2(a,0),B(0,b),则=(-a,-b)·(a,-b)=-a2+b2=-1,①由e=,得e2=-=1-,即b2=a2.②联立①②,解得a2=9,b2=8.故选B.6.B解析根据双曲线的定义,可得|PF1|-|PF2|=2a,又|PF1|=3|PF2|,解得|PF1|=3a,|PF2|=a.因为双曲线C的离心率为,所以c= a.在△PF1F2中,由余弦定理,可得cos∠F1PF2=-=-,则sin∠F1PF2=.由△PF1F2的面积为,可得|PF1||PF2|sin∠F1PF2=a2=,解得a=1.故双曲线C的实轴长为2.7. C解析过点P作准线的垂线,垂足为M,由抛物线的定义知|PF|=|PM|,所以=cos∠QPM=cos∠PQF,要使取得最小值,则cos∠PQF取得最小值,即tan∠PQF取得最大值0<∠PQF<,此时直线PQ与抛物线相切.设直线PQ的方程为y=k(x+2),由得k2x2+(4k2-8)x+4k2=0,所以Δ=(4k2-8)2-4k2·4k2=64(1-k2)=0,即k2=1,解得k=±1,不妨取k=1,此时直线PQ的倾斜角∠PQF=,且有x2-4x+4=0,所以x=2,所以P(2,4),所以|PF|=4.设△PQF的外接圆半径为R,在△PQF中,由正弦定理知,2R==4.所以此时△PQF的外接圆半径R=2.8. D解析因为∠POF2=∠PF1F2+∠F1PO,∠POF2=2∠PF1F2,所以∠PF1F2=∠F1PO,所以|OF1|=|OP|=|OF2|=c,所以PF1⊥PF2.记椭圆长半轴长为a1,双曲线实半轴长为a2,椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,则由椭圆和双曲线定义可得,m+n=2a1,①m-n=2a2,②①2+②2可得2(m2+n2)=4().由勾股定理知,m2+n2=4c2,代入上式可得2c2=,整理得=2,即=2,所以=2.9.BD解析由双曲线C:=1,可得a2=12,b2=4,则c2=a2+b2=16,所以a=2,b=2,c=4,故A不正确,B正确;e=,故C不正确;易知渐近线方程为y=±x,即x±y=0,故D正确.10.ACD解析选项A,由题意知,点A为FM的中点,设A(x A,y A),则x A=p,所以=2px A=2p·p=p2(y A>0).=2,故选项A正确;所以y A=p,故k AB=-选项B,由斜率为2可得直线AB的方程为x=y+,联立抛物线方程得y2-py-p2=0,设B(x B,y B),则p+y B=p,则y B=-,代入抛物线方程得-=2p·x B,解得x B=.∴|OB|=,故选项B错误;选项C,|AB|=p++p=p>2p=4|OF|,故选项C正确;选项D,由选项A,B知,A p,p,B,-p,所以=p,p·,-p=-p2=-p2<0,所以∠AOB为钝角.又=-p·-,-p=-p2=-p2<0,所以∠AMB为钝角.所以∠OAM+∠OBM<180°.故选项D正确.故选ACD.11. ABD解析由题知,椭圆中b=c=2,则a=2,则2a=4,故A正确;|AB|=|OB|+|OA|=2+|OA|,由椭圆性质可知2≤|OA|≤2,所以4≤|AB|≤2+2,故B正确;若A,B,F能构成三角形,则AB不与y轴重合,此时2≤|OA|<2,记∠AOF=θ,则S△ABF=S△AOF+S△OBF=|OA||OF|sinθ+OB·OF sin(π-θ)=|OA|·sinθ+2sinθ=(|OA|+2)sinθ,取θ=,则S△ABF=1+|OA|<1+×2<4,故C错误;由椭圆定义知,|AF|+|AG|=2a=4,所以△AFG的周长L=|FG|+4=4+4,故D正确.12. ACD解析易知F1(0,-),F2(-,0),F3(,0),将x=代入双曲线C2的方程得=1,可得y2=,则点A.因为O为F2F3的中点,且OF1∥AF3,所以OF1为△F2AF3的中位线,所以-,整理可得m4=4m2n2-4n4,即m2=2n2.椭圆C1的离心率为e1=-,故A正确;双曲线C2的离心率为e2=,故B错误;双曲线C2的渐近线方程为y=±x=±x,故C正确;易知点A(n,2n),F2(-n,0),则,则∠AF2F3=30°,故∠F2AF3=60°.因为|AF3|=2n,|AF1|=|AF2|=(|AF3|+2n)=2n,所以△AF1F3为等边三角形,故D正确.13.4解析由双曲线方程可知其渐近线方程为±y=0,即y=±x,得-=-,解得m=3.可得C 的焦距为2=4.14.=1(答案不唯一)解析因为|PF1|=6|PF2|,所以|PF1|+|PF2|=7|PF2|=2a,则|PF2|=.又因为a-c≤|PF2|≤a+c,所以≥a-c,即.根据题意可设C的标准方程为=1(a>b>0),因为椭圆C的短轴长为4,所以2b=4,b=2.又由,可得--,解得a2≥,所以椭圆C的一个标准方程为=1.15. 2解析由抛物线C1:y2=8x得焦点F(2,0),准线方程为x=-2.由圆C2:x2+y2-4x+3=0,得(x-2)2+y2=1,所以圆C2是以F(2,0)为圆心,以r=1为半径的圆.所以|AM|+|AB|≥|AM|+|AF|-1,所以当|AM|+|AF|取得最小值时,|AM|+|AB|取得最小值.又根据抛物线的定义得|AF|等于点A到准线的距离,所以过点M作准线的垂线,垂足为N,且与抛物线C1:y2=8x相交,当点A为此交点时,|AM|+|AF|取得最小值,最小值为|1-(-2)|=3.所以此时|AM|+|AB|≥|AM|+|AF|-1≥3-1=2,所以|AM|+|AB|的最小值为2.16.解析设椭圆C1:=1(a>b>0),双曲线C2:=1,椭圆与双曲线的半焦距为c,椭圆的离心率e=,双曲线的离心率e1=,|PF1|=s,|PF2|=t,如图,由椭圆的定义可得s+t=2a,由双曲线定义可得s-t=2a1,联立可得s=a1+a,t=a-a1.由余弦定理可得4c2=s2+t2-2st cos∠F1PF2=(a+a1)2+(a-a1)2-2(a+a1)(a-a1)cos60°=a2+3,即4=,解得.-因为e∈,所以≤e2≤,2≤≤3,可得≤3,故≤e1≤.。

圆锥曲线大题综合:五个方程型(学生版)

圆锥曲线大题综合:五个方程型(学生版)

圆锥曲线大题综合归类:五个方程型目录重难点题型归纳 1【题型一】基础型 1【题型二】直线设为:x=ty+m型 4【题型三】直线无斜率不过定点设法:双变量型 7【题型四】面积最值 10【题型五】最值与范围型 13【题型六】定点:直线定点 15【题型七】定点:圆过定点 18【题型八】定值 21【题型九】定直线 23【题型十】斜率型:斜率和定 26【题型十一】斜率型:斜率和 29【题型十二】斜率型:斜率比 31【题型十三】斜率型:三斜率 34【题型十四】定比分点型:a=tb 36【题型十五】切线型 38【题型十六】复杂的“第六个方程” 41好题演练 45重难点题型归纳重难点题型归纳题型一基础型【典例分析】1已知椭圆x2a21+y2b21=1a1>b1>0与双曲线x2a22-y2b22=1a2>0,b2>0有共同的焦点,双曲线的左顶点为A-1,0,过A斜率为3的直线和双曲线仅有一个公共点A,双曲线的离心率是椭圆离心率的3倍.(1)求双曲线和椭圆的标准方程;(2)椭圆上存在一点P x P,y P-1<x P<0,y P>0,过AP的直线l与双曲线的左支相交于与A不重合的另一点B,若以BP为直径的圆经过双曲线的右顶点E,求直线l的方程.1已知F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点,过点P t ,b 的直线l 交C 于不同两点A ,B .当t =a ,且l 经过原点时,AB =6,AF +BF =22.(1)求C 的方程;(2)D 为C 的上顶点,当t =4,且直线AD ,BD 的斜率分别为k 1,k 2时,求1k 1+1k 2的值.题型二直线设为:x =ty +m 型【典例分析】1已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,右顶点为P ,点Q 0,b ,PF 2=1,∠F 1PQ =60°.(1)求双曲线C 的方程;(2)直线l 经过点F 2,且与双曲线C 相交于A ,B 两点,若△F 1AB 的面积为610,求直线l 的方程.1已知椭圆C:x2a2+y2b2=1a>b>0的左焦点为F,右顶点为A,离心率为22,B为椭圆C上一动点,△FAB面积的最大值为2+1 2.(1)求椭圆C的方程;(2)经过F且不垂直于坐标轴的直线l与C交于M,N两点,x轴上点P满足PM=PN,若MN=λFP,求λ的值.题型三直线无斜率不过定点设法:双变量型【典例分析】1已知抛物线:y 2=2px p >0 ,过其焦点F 的直线与抛物线交于A 、B 两点,与椭圆x 2a 2+y 2=1a >1 交于C 、D 两点,其中OA ⋅OB =-3.(1)求抛物线方程;(2)是否存在直线AB ,使得CD 是FA 与FB 的等比中项,若存在,请求出AB 的方程及a ;若不存在,请说明理由.1已知双曲线E 的顶点为A -1,0 ,B 1,0 ,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且S △OFG =324.点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP ⋅OH 为定值.题型四面积最值【典例分析】1已知椭圆x 23+y 22=1的左、右焦点分别为F 1,F 2.过F 1的直线交椭圆于B ,D 两点,过F 2的直线交椭圆于A ,C 两点,且AC ⊥BD ,垂足为P .(1)设P 点的坐标为(x 0,y 0),证明:x 203+y 202<1;(2)求四边形ABCD 的面积的最小值.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.2020年新高考全国卷Ⅱ数学试题(海南卷)题型五最值与范围型【典例分析】1设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点.(1)若P 是该椭圆上的一个动点,求PF 1 ⋅PF 2 =-54,求点P 的坐标;(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.1已知椭圆E:x2a2+y2b2=1(a>b>0)一个顶点A(0,-2),以椭圆E的四个顶点为顶点的四边形面积为45.(1)求椭圆E的方程;(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交y=-3交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.2021年北京市高考数学试题题型六定点:直线定点【典例分析】1已知F为抛物线C:y2=2px(p>0)的焦点,O为坐标原点,M为C的准线l上的一点,直线MF的斜率为-1,△OFM的面积为1.(1)求C的方程;(2)过点F作一条直线l ,交C于A,B两点,试问在l上是否存在定点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方?若存在,求出点N的坐标;若不存在,请说明理由.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),四点P 12,2 ,P 20,2 ,P 3-2,2 ,P 42,2 中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与椭圆C 相交于A ,B 两点,线段AB 的中点为M ,若∠AMP 2=2∠ABP 2,试问直线l 是否经过定点?若经过定点,请求出定点坐标;若不过定点,请说明理由.题型七定点:圆过定点【典例分析】1如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1) 求抛物线E的方程;(2) 设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明以PQ为直径的圆恒过y轴上某定点【变式演练】1已知动点P到点F1,0的距离与到直线l:x=4的距离之比为12,记点P的轨迹为曲线E.(1)求曲线E的方程;(2)曲线E与x轴正半轴交于点M,过F的直线交曲线E于A,B两点(异于点M),连接AM,BM并延长分别交l于D,C,试问:以CD为直径的圆是否恒过定点,若是,求出定点,若不是,说明理由.【典例分析】1如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2,证明:|MN 2|2-|MN 1|2为定值,并求此定值.【变式演练】1已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM =λQO ,QN =μQO ,求证:1λ+1μ为定值..【典例分析】1已知直线l:x=my-1,圆C:x2+y2+4x=0.(1)证明:直线l与圆C相交;(2)设直线l与C的两个交点分别为A、B,弦AB的中点为M,求点M的轨迹方程;(3)在(2)的条件下,设圆C在点A处的切线为l1,在点B处的切线为l2,l1与l2的交点为Q.证明:Q,A,B,C四点共圆,并探究当m变化时,点Q是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.【变式演练】1已知双曲线E:x2a2-y2b2=1a>0,b>0的左、右焦点分别为F1、F2,F1F2=23且双曲线E经过点A3,2.(1)求双曲线E的方程;(2)过点P2,1作动直线l,与双曲线的左、右支分别交于点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,求证:点H恒在一条定直线上.【典例分析】1已知点F是椭圆E:x2a2+y2b2=1(a>b>0)的右焦点,P是椭圆E的上顶点,O为坐标原点且tan∠PFO=33.(1)求椭圆的离心率e;(2)已知M1,0,N4,3,过点M作任意直线l与椭圆E交于A,B两点.设直线AN,BN的斜率分别为k1,k2,若k1+k2=2,求椭圆E的方程.【变式演练】1在平面直角坐标系中,己知圆心为点Q的动圆恒过点F(1,0),且与直线x=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(Ⅰ)求曲线Γ的方程;(Ⅱ)过点F的两条直线l1、l2与曲线Γ相交于A、B、C、D四点,且M、N分别为AB、CD的中点.设l1与l2的斜率依次为k1、k2,若k1+k2=-1,求证:直线MN恒过定点.【典例分析】1设椭圆方程为x2a2+y2b2=1a>b>0,A-2,0,B2,0分别是椭圆的左、右顶点,动直线l过点C6,0,当直线l经过点D-2,2时,直线l与椭圆相切.(1)求椭圆的方程;(2)若直线l与椭圆交于P,Q(异于A,B)两点,且直线AP与BQ的斜率之和为-12,求直线l的方程.【变式演练】1已知点M1,3 2在椭圆x2a2+y2b2=1a>b>0上,A,B分别是椭圆的左、右顶点,直线MA和MB的斜率之和满足:k MA+k MB=-1.(1)求椭圆的标准方程;(2)斜率为1的直线交椭圆于P,Q两点,椭圆上是否存在定点T,使直线PT和QT的斜率之和满足k PT+k QT=0(P,Q与T均不重合)?若存在,求出T点坐标;若不存在,说明理由.【典例分析】1已知圆F 1:x 2+y 2+2x -15=0和定点F 2(1,0),P 是圆F 1上任意一点,线段PF 2的垂直平分线交PF 1于点M ,设动点M 的轨迹为曲线E .(1)求曲线E 的方程;(2)设A (-2,0),B (2,0),过F 2的直线l 交曲线E 于M ,N 两点(点M 在x 轴上方),设直线AM 与BN 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【变式演练】1已知椭圆E :x 2a 2+y 2b2=1(a >0,b >0),离心率e =55,P 为椭圆上一点,F 1,F 2分别为椭圆的左、右焦点,若△PF 1F 2的周长为2+25.(1)求椭圆E 的方程;(2)已知四边形ABCD (端点不与椭圆顶点重合)为椭圆的内接四边形,且AF 2 =λF 2C ,BF 2 =μF 2D ,若直线CD 斜率是直线AB 斜率的52倍,试问直线AB 是否过定点,若是,求出定点坐标,若不是,说明理由.江西省重点中学协作体2023届高三下学期第一次联考数学(理)试题题型十三斜率型:三斜率【典例分析】1已知F是椭圆C:x2a2+y2b2=1(a>b>0)的右焦点,且P1,32在椭圆C上,PF垂直于x轴.(1)求椭圆C的方程.(2)过点F的直线l交椭圆C于A,B(异于点P)两点,D为直线l上一点.设直线PA,PD,PB的斜率分别为k1,k2,k3,若k1+k3=2k2,证明:点D的横坐标为定值.【变式演练】1在平面内动点P与两定点A1(-3,0),A2(3,0)连线斜率之积为-23.(1)求动点P的轨迹E的方程;(2)已知点F1(-1,0),F2(1,0),过点P作轨迹E的切线其斜率记为k(k≠0),当直线PF1,PF2斜率存在时分别记为k1,k2.探索1k⋅1k1+1k2是否为定值.若是,求出该定值;若不是,请说明理由.题型十四定比分点型:a =tb【典例分析】1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),倾斜角为30°的直线过椭圆的左焦点F 1和上顶点B ,且S △ABF 1=1+32(其中A 为右顶点).(1)求椭圆C 的标准方程;(2)若过点M (0,m )的直线l 与椭圆C 交于不同的两点P ,Q ,且PM =2MQ ,求实数m 的取值范围.【变式演练】1已知点M ,N 分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点与上顶点,原点O 到直线MN 的距离为32,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)斜率不为0的直线经过椭圆右焦点F 2,并且与椭圆交于A ,B 两点,若AF 2 =12F 2B ,求直线AB 的方程.题型十五切线型【典例分析】1法国数学家加斯帕尔·蒙日被誉为画法几何之父.他在研究椭圆切线问题时发现了一个有趣的重要结论:一椭圆的任两条互相垂直的切线交点的轨迹是一个圆,尊称为蒙日圆,且蒙日圆的圆心是该椭圆的中心,半径为该椭圆的长半轴与短半轴平方和的算术平方根.已知在椭圆C :x 2a 2+y 2b 2=1(a >b >0)中,离心率e =12,左、右焦点分别是F 1、F 2,上顶点为Q ,且QF 2 =2,O 为坐标原点.(1)求椭圆C 的方程,并请直接写出椭圆C 的蒙日圆的方程;(2)设P 是椭圆C 外一动点(不在坐标轴上),过P 作椭圆C 的两条切线,过P 作x 轴的垂线,垂足H ,若两切线斜率都存在且斜率之积为-12,求△POH 面积的最大值.【变式演练】1已知椭圆C:x2a2+y2b2=1a>b>0的上顶点为A,左、右焦点分别为F1、F2,三角形AF1F2的周长为6,面积为3.(1)求椭圆C的方程;(2)已知点M是椭圆C外一点,过点M所作椭圆的两条切线互相垂直,求三角形AF2M面积的最大值.题型十六复杂的“第六个方程”【典例分析】1如图,已知点B2,1,点N为直线OB上除O,B两点外的任意一点,BK,NH分别垂直y轴于点K,H,NA⊥BK于点A,直线OA,NH的交点为M.(1)求点M的轨迹方程;(2)若E3,0,C,G是点M的轨迹在第一象限的点(C在G的右侧),且直线EC,EG的斜率之和为0,若△CEG的面积为152,求tan∠CEG.【变式演练】1已知椭圆C的中心在原点O,焦点在x轴上,离心率为32,且椭圆C上的点到两个焦点的距离之和为4.(1)求椭圆C的方程;(2)设A为椭圆C的左顶点,过点A的直线l与椭圆交于点M,与y轴交于点N,过原点且与l平行的直线与椭圆交于点P.求SΔPAN⋅SΔPAM(SΔAOP)2的值.好题演练1(2023·贵州毕节·统考模拟预测)已知椭圆C的下顶点M,右焦点为F,N为线段MF的中点,O为坐标原点,ON=32,点F与椭圆C任意一点的距离的最小值为3-2.(1)求椭圆C的标准方程;(2)直线l:y=kx+m k≠0与椭圆C交于A,B两点,若存在过点M的直线l ,使得点A与点B关于直线l 对称,求△MAB的面积的取值范围.2(2023·天津南开·统考二模)已知椭圆x2a2+y2b2=1a>b>0的离心率为32,左、右顶点分别为A,B,上顶点为D,坐标原点O到直线AD的距离为255.(1)求椭圆的方程;(2)过A点作两条互相垂直的直线AP,AQ与椭圆交于P,Q两点,求△BPQ面积的最大值.3(2023·河北·统考模拟预测)已知直线l :x =12与点F 2,0 ,过直线l 上的一动点Q 作直线PQ ⊥l ,且点P 满足PF +2PQ ⋅PF -2PQ =0.(1)求点P 的轨迹C 的方程;(2)过点F 作直线与C 交于A ,B 两点,设M -1,0 ,直线AM 与直线l 相交于点N .试问:直线BN 是否经过x 轴上一定点?若过定点,求出该定点坐标;若不过定点,请说明理由.4(2023·北京东城·统考二模)已知焦点为F 的抛物线C :y 2=2px (p >0)经过点M (1,2).(1)设O 为坐标原点,求抛物线C 的准线方程及△OFM 的面积;(2)设斜率为k (k ≠0)的直线l 与抛物线C 交于不同的两点A ,B ,若以AB 为直径的圆与抛物线C 的准线相切,求证:直线l 过定点,并求出该定点的坐标.5(2023·四川自贡·统考三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =22,设A 62,12 ,B -62,12,P 0,2 ,其中A ,B 两点在椭圆C 上.(1)求椭圆C 的方程;(2)过点P 的直线交椭圆C 于M ,N 两点(M 在线段AB 上方),在AN 上取一点H ,连接MH 交线段AB 于T ,若T 为MH 的中点,证明:直线MH 的斜率为定值.6(2023·江西赣州·统考二模)在平面直角坐标系xOy 中,F 1(-1,0),F 2(1,0),点P 为平面内的动点,且满足∠F 1PF 2=2θ,PF 1 ⋅PF 2 cos 2θ=2.(1)求PF 1 +PF 2 的值,并求出点P 的轨迹E 的方程;(2)过F 1作直线l 与E 交于A 、B 两点,B 关于原点O 的对称点为点C ,直线AF 2与直线CF 1的交点为T .当直线l 的斜率和直线OT 的斜率的倒数之和的绝对值取得值最小值时,求直线l 的方程.7(2023·四川乐山·统考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (2,0),短轴长等于焦距.(1)求C 的方程;(2)过F 的直线交C 于P ,Q ,交直线x =22于点N ,记OP ,OQ ,ON 的斜率分别为k 1,k 2,k 3,若(k 1+k 2)k 3=1,求|OP |2+|OQ |2的值.8(2023·贵州贵阳·统考模拟预测)已知椭圆C 1:x 2a 2+y 2b2=1a >b >0 与椭圆C 2:x 22+y 2=1的离心率相等,C 1的焦距是22.(1)求C 1的标准方程;(2)P 为直线l :x =4上任意一点,是否在x 轴上存在定点T ,使得直线PT 与曲线C 1的交点A ,B 满足PA PB =AT TB?若存在,求出点T 的坐标.若不存在,请说明理由.。

高三数学第二轮专题复习系列(8)-- 圆锥曲线

高三数学第二轮专题复习系列(8)-- 圆锥曲线

高三数学第二轮专题复习系列(8)-- 圆锥曲线一、知识结构 1.方程的曲线在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫 做方程的曲线.点与曲线的关系 若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0; 点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0两条曲线的交点 若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则 f 1(x 0,y 0)=0 点P 0(x 0,y 0)是C 1,C 2的交点⇔f 2(x 0,y 0) =0方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有 交点. 2.圆 圆的定义 点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程 (1)标准方程圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为(-2D ,-2E ,半径是24F -E D 22+.配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F-E D 22+当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E); 当D 2+E 2-4F <0时,方程不表示任何图形.点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内, |MC |=r ⇔点M 在圆C 上, |MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +.(3)直线和圆的位置关系①直线和圆有相交、相切、相离三种位置关系 直线与圆相交⇔有两个公共点 直线与圆相切⇔有一个公共点 直线与圆相离⇔没有公共点 ②直线和圆的位置关系的判定 (i)判别式法(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d=22C Bb Aa BA +++与半径r 的大小关系来判定.3.椭圆、双曲线和抛物线椭圆、双曲线和抛物线的基本知识见下表.椭 圆 双曲线 抛物线轨迹条件 点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a =点集:{M ||MF 1|-|MF 2|.=±2a,|F 2F 2|>2a}. 点集{M | |MF |=点M 到直线l 的距离}. 圆 形标准方程 22a x +22b y =1(a >b >0)22a x -22by =1(a >0,b >0)y 2=2px(p >0)顶 点 A 1(-a,0),A 2(a,0); B 1(0,-b),B 2(0,b)A 1(0,-a),A 2(0,a) O(0,0)轴 对称轴x=0,y=0 长轴长:2a 短轴长:2b 对称轴x=0,y=0 实轴长:2a 虚轴长:2b 对称轴y=焦 点F 1(-c,0),F 2(c,0) 焦点在长轴上 F 1(-c,0),F 2(c,0) 焦点在实轴上 F(2P,0) 焦点对称轴上焦 距|F 1F 2|=2c ,c=b2-a2|F 1F 2|=2c, c=b2a2+准 线x=±ca 2准线垂直于长轴,且在x=±ca 2准线垂直于实轴,且在x=-2p 准线与焦点位于顶点两侧,且到顶点的距离曲 线 性 质椭圆外.两顶点的内侧.相等.离心率e=a c,0<e <1 e=ac,e >1 e=14.圆锥曲线的统一定义平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之 比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线.其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率. 当0<e <1时,轨迹为椭圆 当e=1时,轨迹为抛物线 当e >1时,轨迹为双曲线 5.坐标变换坐标变换 在解析几何中,把坐标系的变换(如改变坐标系原点的位置或坐标轴的方向)叫做 坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点 的坐标与曲线的方程.坐标轴的平移 坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫 做坐标轴的平移,简称移轴.坐标轴的平移公式 设平面内任意一点M ,它在原坐标系xOy 中的坐标是9x,y),在新坐标系x ′O ′y ′中的坐标是(x ′,y ′).设新坐标系的原点O ′在原坐标系xOy 中的坐标是(h,k),则x=x ′+h x ′=x-h (1) 或(2)y=y ′+k y ′=y-k 公式(1)或(2)叫做平移(或移轴)公式. 中心或顶点在(h,k)的圆锥曲线方程中心或顶点在(h,k)的圆锥曲线方程见下表.方 程焦 点 焦 线对称轴 椭圆22h)-(x a +22k)-(y b=1 (±c+h,k)x=±c a 2+hx=h y=k 22h)-(x b +22k)-(y a =1 (h,±c+k) y=±c a 2+kx=h y=k 双曲线22h)-(x a -22k)-(y b=1 (±c+h,k)=±c a 2+kx=h y=k 22k)-(y a -22h)-(x b=1 (h,±c+h)y=±ca 2+kx=h y=k 抛物线 (y-k)2=2p(x-h)(2p+h,k) x=-2p +h y=k (y-k)2=-2p(x-h)(-2p+h,k) x=2p +h y=k (x-h)2=2p(y-k)(h, 2p+k)y=-2p +kx=h(x-h)2=-2p(y-k)(h,-2p+k) y=2p +k x=h二、知识点、能力点提示(一)曲线和方程,由已知条件列出曲线的方程,曲线的交点说明 在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简 .特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求 出的曲线方程才能准确无误.另外,要求会判断 曲线间有无交点,会求曲线的交点坐标.三、 考纲中对圆锥曲线的要求: 考试内容:. 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程; . 双曲线及其标准方程.双曲线的简单几何性质; . 抛物线及其标准方程.抛物线的简单几何性质; 考试要求:. (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程; . (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质; . (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质; . (4)了解圆锥曲线的初步应用。

(完整版)高三圆锥曲线知识点总结

(完整版)高三圆锥曲线知识点总结

第八章 《圆锥曲线》专题复习一、椭圆方程.1. 椭圆的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+2.椭圆的方程形式: ①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax =+. ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay =+.②一般方程:)0,0(122B A By Ax =+.③椭圆的参数方程:2222+b y a x ⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:ca x 2±=或c a y 2±=.⑥离心率:)10( e ace =.⑦焦半径: i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则:证明:由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”.ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,F F 为上、下焦点,则:⑧通径:垂直于x 轴且过焦点的弦叫做通径: 222b d a=;坐标:22(,),(,)b b c c a a -4.共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot2θ⋅b .1020,PF a ex PF a ex=+=-1020,PF a ey PF a ey =+=-asin α,)α)二、双曲线方程.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-2.双曲线的方程:①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-. 一般方程:)0(122 AC Cy Ax =+.3.双曲线的性质:①i. 焦点在x 轴上: 顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程ca x 2±= 渐近线方程:0=±b ya x 或02222=-b y a x ii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±b x a y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x . ②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a ce =. ④准线距c a 22(两准线的距离);通径a b 22. ⑤参数关系ace b a c =+=,222. ⑥焦半径公式:对于双曲线方程12222=-b y a x (21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201(与椭圆焦半径不同,椭圆焦半aey F M a ey F M a ey MF a ey MF -'-='+'-='+=-=020102014. 等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 5.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .6.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程? 解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x . 7.直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1区域⑤:即过原点,无切线,无与渐近线平行的直线.注意:⑴过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.⑵若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号.⑶若P 在双曲线12222=-b y a x ,则常用结论1:P 到焦点的距离为m 与n ,则P 到两准线的距离比为m ︰n. 简证:ePF e PF d d 2121= =nm. ⑷:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程.设0 p ,抛物线的标准方程、类型及其几何性质:注意:⑴x c by ay =++2顶点)244(2aba b ac --.⑵)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.⑶通径为2p ,这是过焦点的所有弦中最短的.⑷px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pty ptx )(t 为参数). ⑸关于抛物线焦点弦的几个结论:设AB 为过抛物线 y 2=2px (p>0 )焦点的弦,A(x 1 ,y 1)、B (x 2 ,y 2 ) ,直线AB 的倾斜角为θ,则:① x 1x 2=24p , y 1y 2=-p 2; ② |AB|=22sin p θ;③以AB 为直径的圆与准线相切;④焦点F 对A 、B 在准线上射影的张角为900;⑤112||||FA FB P+=. 四、圆锥曲线的统一定义.1. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹. 当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线; 当0=e 时,轨迹为圆(ace =,当b a c ==,0时). 2. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.3. 当椭圆的焦点位置不明确,而无法确定其标准方程时,可设方程为22x y m n+ =1(m>0,n>0且m ≠n ),这样可以避免讨论和繁杂的运算,椭圆与双曲线的标准方程均可用简单形式 mx 2+ny 2=1(mn ≠0)来表示,所不同的是:若方程表示椭圆,则要求m>0,n>0且m ≠n ; 若方程表示双曲线,则要求mn<0,利用待定系数法求标准方程时,应注意此方法的合理使用,以避免讨论。

2024年高考数学专项复习圆锥曲线中的“设而不求”(解析版)

2024年高考数学专项复习圆锥曲线中的“设而不求”(解析版)

圆锥曲线中的“设而不求”考情分析研究曲线方程及由方程研究曲线的有关性质问题,是圆锥曲线中的一个重要内容,其特点是代数的运算较为繁杂,许多学生会想而不善于运算,往往是列出式子后“望式兴叹”.在解决圆锥曲线问题时若能恰当使用“设而不求”的策略,可避免盲目推演造成的无效运算,从而达到准确、快速的解题效果.、解题秘籍(一)“设而不求”的实质及注意事项1.设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.2.在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.3. “设而不求”最常见的类型一是涉及动点问题,设出动点坐标,在运算过程中动点坐标通过四则运算消去,或利用根与系数的关系转化为关于其他参数的问题;二是涉及动直线问题,把斜率或截距作为参数,设出直线的方程,再通过运算消去.1(2023届山西省临汾市等联考高三上学期期中)已知椭圆C :x 2a2+y 2b 2=1a >b >0 的长轴长为4,F 1,F 2为C 的左、右焦点,点P x 0,y 0 y 0≠0 在C 上运动,且cos ∠F 1PF 2的最小值为12.连接PF 1,PF 2并延长分别交椭圆C 于M ,N 两点.(1)求C 的方程;(2)证明:S △OPF 1S △OMF1+S△OPN S △OF 2N 为定值.2024年高考数学专项复习圆锥曲线中的“设而不求”(解析版)2(2023届江苏省连云港市高三上学期10月联考)已知椭圆中有两顶点为A -1,0 ,B 1,0 ,一个焦点为F 0,1 .(1)若直线l 过点F 且与椭圆交于C ,D 两点,当CD =322时,求直线l 的方程;(2)若直线l 过点T 0,t t ≠0 且与椭圆交于C ,D 两点,并与x 轴交于点P ,直线AD 与直线BC 交于点Q ,当点P 异A ,B 两点时,试问OP ⋅OQ是否是定值?若是,请求出此定值,若不是,请说明理由.(二)设点的坐标在涉及直线与圆锥曲线位置关系时,如何避免求交点,简化运算,是处理这类问题的关键,求解时常常设出点的坐标,设坐标方法即通过设一些辅助点的坐标,然后以坐标为参数,利用点的特性(条件)建立关系(方程).显然,这里的坐标只是为寻找关系而作为“搭桥”用的,在具体解题中是通过“设而不求”与“整体消元”解题策略进行的.3(2023届湖南省郴州市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的离心率为22,过坐标原点O 的直线交椭圆E 于P ,A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,△PAC 的面积为2.(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:∠APB 是否为定值,若是,求出这个定值;若不是,说明理由.4(2023届江苏省南通市如皋市高三上学期期中)作斜率为32的直线l 与椭圆C :x 24+y 29=1交于A ,B 两点,且P 2,322在直线l 的左上方.(1)当直线l 与椭圆C 有两个公共点时,证明直线l 与椭圆C 截得的线段AB 的中点在一条直线上;(2)证明:△PAB 的内切圆的圆心在一条定直线上.(三)设参数在求解与动直线有关的定点、定值或最值与范围问题时常设直线方程,因为动直线方程不确定,需要引入参数,这时常引入斜率、截距作为参数.5(2022届湖南省益阳市高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左右焦点分别为F 1,F 2,其离心率为32,P 为椭圆C 上一动点,△F 1PF 2面积的最大值为3.(1)求椭圆C 的方程;(2)过右焦点F 2的直线l 与椭圆C 交于A ,B 两点,试问:在x 轴上是否存在定点Q ,使得QA ⋅QB为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.(四)中点弦问题中的设而不求与中点弦有个的问题一般是设出弦端点坐标P x 1,y1,Q x2,y2代入圆锥曲线方程作差,得到关于y1-y2x1-x2,x1+x2,y1+y2的关系式,再结合题中条件求解.6中心在原点的双曲线E焦点在x轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A2,3;②该曲线的渐近线与圆x2-8x+y2+4=0相切;③点P在该双曲线上,F1、F2为该双曲线的焦点,当点P的纵坐标为32时,恰好PF1⊥PF2.(1)求双曲线E的标准方程;(2)过定点Q1,1能否作直线l,使l与此双曲线相交于Q1、Q2两点,且Q是弦Q1Q2的中点?若存在,求出l的方程;若不存在,说明理由.三、跟踪检测1(2023届河南省洛平许济高三上学期质量检测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,离心率为12,上顶点为0,3 .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于P ,Q 两点,与y 轴交于点M ,若MP =λPF ,MQ =μQF,判断λ+μ是否为定值?并说明理由.2(2023届江西省南昌市金太阳高三上学期10月联考)如图,长轴长为4的椭圆C :x 2a 2+y 2b 2=1a >b >0 的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 与y 轴分别交于M ,N 两点,当直线PQ 的斜率为22时,PQ =23.(1)求椭圆C 的方程.(2)试问是否存在定点T ,使得∠MTN =90°恒成立?若存在,求出定点T 的坐标;若不存在,说明理由.3(2023届黑龙江省大庆铁人中学高三上学期月考)已知椭圆C:x2a2+y2b2=1a>b>0的离心率为12,椭圆的短轴端点与双曲线y22-x2=1的焦点重合,过点P4,0且不垂直于x轴的直线l与椭圆相交于A,B两点.(1)求椭圆C的方程;(2)若点B关于x轴的对称点为点E,证明:直线AE与x轴交于定点.4(2023届江西省赣州厚德外国语学校、丰城中学高三上学期10月联考)已知双曲线C:x2a2-y2b2=1经过点2,-3,两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程.(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M m,0,使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.5(2023届内蒙古自治区赤峰市高三上学期月考)平面内一动点P到定直线x=4的距离,是它与定点F1,0的距离的两倍.(1)求点P的轨迹方程C;(2)过F点作两条互相垂直的直线l1,l2(直线l1不与x轴垂直).其中,直线l1交曲线C于A,B两点,直线l2交曲线C于E,N两点,直线l2与直线x=m m>2交于点M,若直线MB,MF,MA的斜率k MB,k MF,k MA构成等差数列,求m的值.6(2023届福建省福州华侨中学高三上学期考试)在平面直角坐标系xOy中,已知点F(2,0),直线l:x=12,点M到l的距离为d,若点M满足|MF|=2d,记M的轨迹为C.(1)求C的方程;(2)过点F(2,0)且斜率不为0的直线与C交于P,Q两点,设A(-1,0),证明:以P,Q为直径的圆经过点A.7(2023届河南省安阳市高三上学期10月月考)已知椭圆M1:x2a2+y2b2=1a>b>0的左、右焦点分别为F1,F2,F1F2=2,面积为487的正方形ABCD的顶点都在M1上.(1)求M1的方程;(2)已知P为椭圆M2:x22a2+y22b2=1上一点,过点P作M1的两条切线l1和l2,若l1,l2的斜率分别为k1,k2,求证:k1k2为定值.8(2023届浙江省浙里卷天下高三上学期10月测试)已知F1,F2分别为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,过点F1(-1,0)且与x轴不重合的直线与椭圆C交于A,B两点,△ABF2的周长为8.(1)若△ABF2的面积为1227,求直线AB的方程;(2)过A,B两点分别作直线x=-4的垂线,垂足分别是E,F,证明:直线EB与AF交于定点.9(2023届江苏省南京市六校高三上学期10月联考)已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,且过点P 2,33(1)求双曲线Γ的方程;(2)过双曲线Γ的左焦点F 分别作斜率为k 1,k 2的两直线l 1与l 2,直线l 1交双曲线Γ于A ,B 两点,直线l 2交双曲线Γ于C ,D 两点,设M ,N 分别为AB 与CD 的中点,若k 1⋅k 2=-1,试求△OMN 与△FMN 的面积之比.10(2022届北京市海淀区高三上学期期末)已知点A 0,-1 在椭圆C :x 23+y 2b 2=1上.(1)求椭圆C 的方程和离心率;(2)设直线l :y =k x -1 (其中k ≠1)与椭圆C 交于不同两点E ,F ,直线AE ,AF 分别交直线x =3于点M ,N .当△AMN 的面积为33时,求k 的值.11(2022届天津市第二中学高三上学期12月月考)已知椭圆x2a2+y2b2=1a>b>0的长轴长是4,且过点B0,1.(1)求椭圆的标准方程;(2)直线l:y=k x+2交椭圆于P,Q两点,若点B始终在以PQ为直径的圆内,求实数k的取值范围.12(2022届广东省华南师范大学附属中学高三上学期1月模拟)已知椭圆C1:x2a2+y2b2=1(a>b>0)的右顶点与抛物线C2:y2=2px(p>0)的焦点重合,椭圆C1的离心率为12,过椭圆C1的右焦点F且垂直于x轴的直线截抛物线所得弦的长度为42.(1)求椭圆C1和抛物线C2的方程.(2)过点A(-4,0)的直线l与椭圆C1交于M,N两点,点M关于x轴的对称点为E.当直线l绕点A旋转时,直线EN是否经过一定点?请判断并证明你的结论.13(2022届河北省高三上学期省级联测)已知椭圆P焦点分别是F1(0,-3)和F2(0,3),直线y= 3与椭圆P相交所得的弦长为1.(1)求椭圆P的标准方程;(2)将椭圆P绕原点逆时针旋转90°得到椭圆Q,在椭圆Q上存在A,B,C三点,且坐标原点为△ABC的重心,求△ABC的面积.14(2022届广东省佛山市高三上学期期末)已知双曲线C的渐近线方程为y=±33x,且过点P(3,2).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ与C交于另一点D,求证:直线AD过定点.15(2022届江苏省盐城市、南京市高三上学期1月模拟)设双曲线C:x2a2-y2b2=1(a,b>0)的右顶点为A,虚轴长为2,两准线间的距离为26 3.(1)求双曲线C的方程;(2)设动直线l与双曲线C交于P,Q两点,已知AP⊥AQ,设点A到动直线l的距离为d,求d的最大值.16(2022届浙江省普通高中强基联盟高三上学期统测)如图,已知椭圆C1:x24+y23=1,椭圆C2:y29+x24=1,A-2,0、B2,0.P为椭圆C2上动点且在第一象限,直线PA、PB分别交椭圆C1于E、F两点,连接EF交x轴于Q点.过B点作BH交椭圆C1于G,且BH⎳PA.(1)证明:k BF⋅k BG为定值;(2)证明直线GF过定点,并求出该定点;(3)若记P、Q两点的横坐标分别为x P、x Q,证明:x P x Q为定值.17(2022届湖北省新高考联考协作体高三上学期12月联考)已知圆O :x 2+y 2=2,椭圆C :x 2a 2+y 2b2=1a >b >2 的离心率为22,P 是C 上的一点,A 是圆O 上的一点,PA 的最大值为6+2.(1)求椭圆C 的方程;(2)点M 是C 上异于P 的一点,PM 与圆O 相切于点N ,证明:PO 2=PM ⋅PN .18已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为8,离心率e =54.(1)求双曲线C 的方程;(2)直线l 与双曲线C 相交于P ,Q 两点,弦PQ 的中点坐标为A 8,3 ,求直线l 的方程.圆锥曲线中的“设而不求”考情分析研究曲线方程及由方程研究曲线的有关性质问题,是圆锥曲线中的一个重要内容,其特点是代数的运算较为繁杂,许多学生会想而不善于运算,往往是列出式子后“望式兴叹”.在解决圆锥曲线问题时若能恰当使用“设而不求”的策略,可避免盲目推演造成的无效运算,从而达到准确、快速的解题效果.、解题秘籍(一)“设而不求”的实质及注意事项1.设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.2.在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.3. “设而不求”最常见的类型一是涉及动点问题,设出动点坐标,在运算过程中动点坐标通过四则运算消去,或利用根与系数的关系转化为关于其他参数的问题;二是涉及动直线问题,把斜率或截距作为参数,设出直线的方程,再通过运算消去.1(2023届山西省临汾市等联考高三上学期期中)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的长轴长为4,F 1,F 2为C 的左、右焦点,点P x 0,y 0 y 0≠0 在C 上运动,且cos ∠F 1PF 2的最小值为12.连接PF 1,PF 2并延长分别交椭圆C 于M ,N 两点.(1)求C 的方程;(2)证明:S △OPF 1S △OMF 1+S △OPN S △OF 2N为定值.【解析】(1)由题意得a =2,设PF 1 ,PF 2 的长分别为m ,n ,m +n =2a =4则cos ∠F 1PF 2=m 2+n 2-4c 22mn =m +n 2-4c 2-2mn 2mn =2b 2mn-1≥2b 2m +n 22-1=2b 2a2-1,当且仅当m=n 时取等号,从而2b 2a 2-1=12,得b 2a 2=34,∴b 2=3,则椭圆的标准方程为x 24+y 23=1;(2)由(1)得F 1-1,0 ,F 21,0 ,设M x 1,y 1 ,N x 2,y 2 ,设直线PM 的方程为x =x 0+1y 0y -1,直线PN 的方程为x =x 0-1y 0y +1,由x =x 0+1y 0y -1x 24+y 23=1,得3x 0+1 2y 02+4 y 2-6x 0+1 y 0y -9=0,则y 0y 1=-93x 0+1 2y 02+4=-9y 023x 0+1 2+4y 02=-9y 023x 02+4y 02+6x 0+3=-3y 022x 0+5,∴y 1=-3y 02x 0+5,同理可得y 2=-3y 05-2x 0,所以S △OPF 1S △OMF 1+S △OPN S △OF 2N =12OF 1 y 0 12OF 1 y 1 +12OF 2y 0 +y 2 12OF 2 y 2 =-y 0y 1+y 0y 2+1=-y 0-3y 02x 0+5+y 0-3y 05-2x 0+1=133.所以S △OPF 1S △OMF 1+S △OPN S △OF 2N 为定值133.2(2023届江苏省连云港市高三上学期10月联考)已知椭圆中有两顶点为A -1,0 ,B 1,0 ,一个焦点为F 0,1 .(1)若直线l 过点F 且与椭圆交于C ,D 两点,当CD =322时,求直线l 的方程;(2)若直线l 过点T 0,t t ≠0 且与椭圆交于C ,D 两点,并与x 轴交于点P ,直线AD 与直线BC 交于点Q ,当点P 异A ,B 两点时,试问OP ⋅OQ是否是定值?若是,请求出此定值,若不是,请说明理由.【解析】(1)∵椭圆的焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0),由已知得b =1,c =1,所以a =2,椭圆的方程为y 22+x 2=1,当直线l 与x 轴垂直时与题意不符,设直线l 的方程为y =kx +1,C x 1,y 1 ,D x 2,y 2 ,将直线l 的方程代入椭圆的方程化简得k 2+2 x 2+2kx -1=0,则x 1+x 2=-2k k 2+2,x 1⋅x 2=-1k 2+2,∴CD =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅-2k k 2+22+4⋅1k 2+2=22(k 2+1)k 2+2=322,解得k =±2.∴直线l 的方程为y =±2x +1;(2)当l ⊥x 轴时,AC ⎳BD ,不符合题意,当l 与x 轴不垂直时,设l :y =kx +t ,则P -tk ,0 ,设C x 1,y 1 ,D x 2,y 2 ,联立方程组y =kx +tx 2+y 22=1 得2+k 2 x 2+2ktx +t 2-2=0,∴x 1+x 2=-2kt 2+k 2,x 1x 2=t 2-22+k 2,又直线AD :y =y 2x 2+1(x +1),直线BC :y =y 1x 1-1(x -1),由y =y2x 2+1(x +1)y =y 1x 1-1(x -1) 可得y 2x 2+1(x +1)=y 1x 1-1(x -1),即kx 2+t x 2+1(x +1)=kx 1+t x 1-1(x -1),kx 2+t x 1-1 (x +1)=kx 1+t x 2+1 (x -1),kx 1x 2-kx 2+tx 1-t x +1 =kx 1x 2+kx 1+tx 2+t x -1 ,k x 1+x 2 +t x 2-x 1 +2t x =2kx 1x 2-k x 2-x 1 +t x 1+x 2 ,k ⋅-2kt 2+k 2+t x 2-x 1 +2t x =2k ⋅t 2-22+k 2-k x 2-x 1 +t ⋅-2kt 2+k 2,4t 2+k 2+t x 2-x 1 x =-4k 2+k 2-k x 2-x 1 ,即t 42+k 2+x 2-x 1 x =-k 42+k 2+x 2-x 1 ,得x =-k t,∴Q 点坐标为Q -kt,y Q ,∴OP ⋅OQ =-t k ,0 ⋅-k t ,y Q =-t k-kt +0⋅y Q =1,所以OP ⋅OQ=1为定值.(二)设点的坐标在涉及直线与圆锥曲线位置关系时,如何避免求交点,简化运算,是处理这类问题的关键,求解时常常设出点的坐标,设坐标方法即通过设一些辅助点的坐标,然后以坐标为参数,利用点的特性(条件)建立关系(方程).显然,这里的坐标只是为寻找关系而作为“搭桥”用的,在具体解题中是通过“设而不求”与“整体消元”解题策略进行的.3(2023届湖南省郴州市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的离心率为22,过坐标原点O 的直线交椭圆E 于P ,A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,△PAC 的面积为2.(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:∠APB 是否为定值,若是,求出这个定值;若不是,说明理由.【解析】(1)∵椭圆离心率e =c a =22,∴c 2=12a 2,则b 2=a 2-c 2=12a 2,当C 为椭圆右焦点时,PC =b 2a =12a ;∵S △PAC =2S △POC =2×12c ⋅12a =12ac =24a 2=2,解得:a 2=4,∴b 2=2,∴椭圆E 的方程为:x 24+y 22=1.(2)由题意可设直线AP :y =kx k >0 ,P x 0,kx 0 ,B x 1,y 1 ,则A -x 0,-kx 0 ,C x 0,0 ,∴k AC =kx 0x 0+x0=k2,∴直线AC :y =k2x -x 0 ;由y =k 2x -x 0x24+y22=1得:k 2+2 x 2-2k 2x 0x +k 2x 20-8=0,∴-x 0+x 1=2k 2x 0k 2+2,则x 1=2k 2x 0k 2+2+x 0,∴y 1=k 2x 1-x 0 =k 22k 2x 0k 2+2+x 0-x 0=k 3x 0k 2+2,∴B 2k 2x 0k 2+2+x 0,k 3x 0k 2+2;∴PB =2k 2x 0k 2+2,-2kx 0k 2+2,又PA =-2x 0,-2kx 0 ,∴PA ⋅PB =-2x 0⋅2k 2x 0k 2+2+-2kx 0 ⋅-2kx 0k 2+2=0,则PA ⊥PB ,∴∠APB 为定值90°.4(2023届江苏省南通市如皋市高三上学期期中)作斜率为32的直线l 与椭圆C :x 24+y 29=1交于A ,B 两点,且P 2,322在直线l 的左上方.(1)当直线l 与椭圆C 有两个公共点时,证明直线l 与椭圆C 截得的线段AB 的中点在一条直线上;(2)证明:△PAB 的内切圆的圆心在一条定直线上.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,AB 中点坐标为x 0,y 0 ,AB :y =32x +m 所以有x 0=x 1+x 22y 0=y 1+y 22,联立x 24+y 29=1y =32x +m,得9x 2+6mx +2m 2-18=0,得Δ=6m 2-4×92m 2-18 >0,得m 2<18,由韦达定理可知x 1+x 2=-2m 3,x 1x 2=2m 2-189,所以y 1+y 2=32x 1+m +32x 2+m =32x 1+x 2 +2m =m ,所以x 0=-m 3y 0=m 2,化简得:y 0=-32x 0,所以线段AB 的中点在直线y =-32x 上.(2)由题可知PA ,PB 的斜率分别为k PA =y 1-322x 1-2,k PB =y 2-322x 2-2,所以k PA +k PB =y 1-322x 1-2+y 2-322x 2-2=y 1-322 x 2-2 +y 2-322 x 1-2x 1x 2-2x 1+x 1 +2,因为y 1=32x 1+m ,y 2=32x 2+m 得k PA +k PB =3x 1x 2+m -32 x 1+x 1 -22m +6x 1x 2-2x 1+x 1 +2由(1)可知x 1+x 2=-2m 3,x 1x 2=2m 2-189,所以k PA +k PB =32m 2-189 +m -32 -23m -22m +62m 2-189-2-23m+2=0,又因为P 2,322在直线l 的左上方,所以∠APB 的角平分线与y 轴平行,所以△PAB 的内切圆的圆心在x =2这条直线上.(三)设参数在求解与动直线有关的定点、定值或最值与范围问题时常设直线方程,因为动直线方程不确定,需要引入参数,这时常引入斜率、截距作为参数.5(2022届湖南省益阳市高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左右焦点分别为F 1,F 2,其离心率为32,P 为椭圆C 上一动点,△F 1PF 2面积的最大值为3.(1)求椭圆C 的方程;(2)过右焦点F 2的直线l 与椭圆C 交于A ,B 两点,试问:在x 轴上是否存在定点Q ,使得QA ⋅QB为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.【解析】(1)设椭圆C 的半焦距为c ,因离心率为32,则c a =32,由椭圆性质知,椭圆短轴的端点到直线F 1F 2的距离最大,则有S △F 1PF 2max =12⋅2c ⋅b =bc ,于是得bc =3,又a 2=b 2+c 2,联立解得a =2,b =1,c =3,所以椭圆C 的方程为:x 24+y 2=1.(2)由(1)知,点F 23,0 ,当直线斜率存在时,不妨设l :y =k (x -3),A x 1,y 1 ,B x 2,y 2 ,由y =k (x -3)x 2+4y 2=4消去y 并整理得,(1+4k 2)x 2-83k 2x +12k 2-4=0,x 1+x 2=83k 21+4k 2,x 1x 2=12k 2-41+4k2,假定在x 轴上存在定点Q 满足条件,设点Q (t ,0),则QA ⋅QB=(x 1-t )(x 2-t )+y 1y 2=x 1x 2-t (x 1+x 2)+t 2+k 2(x 1-3)(x 2-3)=(1+k 2)x 1x 2-(3k 2+t )(x 1+x 2)+t 2+3k 2=(1+k 2)⋅12k 2-41+4k 2-(3k 2+t )⋅83k 21+4k 2+t 2+3k2=(4t 2-83t +11)k 2+t 2-41+4k 2,当t 2-4=4t 2-83t +114,即t =938时,QA ⋅QB =t 2-4=-1364,当直线l 斜率不存在时,直线l :x =-3与椭圆C 交于点A ,B ,由对称性不妨令A 3,12 ,B 3,-12,当点Q 坐标为938,0时,QA =-38,12 ,QB =-38,-12 ,QA ⋅QB =-38,12⋅-38,-12 =-1364,所以存在定点Q 938,0,使得QA ⋅QB 为定值-1364.(四)中点弦问题中的设而不求与中点弦有个的问题一般是设出弦端点坐标P x 1,y 1 ,Q x 2,y 2 代入圆锥曲线方程作差,得到关于y 1-y 2x 1-x 2,x 1+x 2,y 1+y 2的关系式,再结合题中条件求解.6中心在原点的双曲线E 焦点在x 轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A 2,3 ;②该曲线的渐近线与圆x 2-8x +y 2+4=0相切;③点P 在该双曲线上,F 1、F 2为该双曲线的焦点,当点P 的纵坐标为32时,恰好PF 1⊥PF 2.(1)求双曲线E 的标准方程;(2)过定点Q 1,1 能否作直线l ,使l 与此双曲线相交于Q 1、Q 2两点,且Q 是弦Q 1Q 2的中点?若存在,求出l 的方程;若不存在,说明理由.【解析】(1)设双曲线E 的标准方程为x 2a 2-y 2b 2=1a >b >0 .选①:由题意可知,双曲线E 的两个焦点分别为F 1-2,0 、F 22,0 ,由双曲线的定义可得2a =AF 1 -AF 2 =42+32-3 =2,则a =1,故b =c 2-a 2=3,所以,双曲线E 的标准方程为x 2-y 23=1.选②:圆x 2-8x +y 2+4=0的标准方程为x -4 2+y 2=12,圆心为4,0 ,半径为23,双曲线E 的渐近线方程为y =±bax ,由题意可得4b a 1+b a2=23,解得ba=3,即b =3a ,因为c =a 2+b 2=2a =2,则a =1,b =3,因此,双曲线E 的标准方程为x 2-y 23=1.选③:由勾股定理可得PF 1 2+PF 2 2=4c 2=16=PF 1 -PF 2 2+2PF 1 ⋅PF 2 =4a 2+2PF 1 ⋅PF 2 ,所以,PF 1 ⋅PF 2 =2c 2-a 2 =2b 2,则S △F 1PF 2=12PF 1 ⋅PF 2 =b 2=12×32×4,则b =3,故a =c 2-b 2=1,所以,双曲线E 的标准方程为x 2-y 23=1.(2)假设满足条件的直线l 存在,设点Q 1x 1,y 1 、Q 2x 2,y 2 ,则x 1+x 2=2y 1+y 2=2,由题意可得x 21-y 213=1x 22-y 223=1,两式作差得x 1-x 2 x 1+x 2 =y 1-y 2 y 1+y 23,所以,直线l 的斜率为k =y 1-y 2x 1-x 2=3,所以,直线l 的方程为y -1=3x -1 ,即y =3x -2.联立y =3x -2x 2-y 23=1 ,整理可得6x 2-12x +7=0,Δ=122-4×6×7<0,因此,直线l 不存在.三、跟踪检测1(2023届河南省洛平许济高三上学期质量检测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,离心率为12,上顶点为0,3 .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于P ,Q 两点,与y 轴交于点M ,若MP =λPF ,MQ =μQF,判断λ+μ是否为定值?并说明理由.【解析】(1)由题意可得b =3e =c a =12a 2=b 2+c 2,解得a =2b =3c =1,故椭圆C 的方程x 24+y 23=1.(2)λ+μ为定值-83,理由如下:由(1)可得F 1,0 ,由题意可知直线l 的斜率存在,设直线l :y =k x -1 ,P x 1,y 1 ,Q x 2,y 2 ,则M 0,-k ,联立方程y =k x -1x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2x +4k 2-12=0,则Δ=-8k 2 2-44k 2+3 4k 2-12 =144k 2+1 >0,x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,MP =x 1,y 1+k ,PF =1-x 1,-y 1 ,MQ =x 2,y 2+k ,QF=1-x 2,-y 2 ,∵MP =λPF ,MQ =μQF ,则x 1=λ1-x 1 x 2=μ1-x 2 ,可得λ=x11-x 1μ=x 21-x2,λ+μ=x 11-x 1+x 21-x 2=x 1+x 2 -2x 1x 21-x 1+x 2 +x 1x 2=8k 24k 2+3-24k 2-12 4k 2+31-8k 24k 2+3+4k 2-124k 2+3=-83(定值).2(2023届江西省南昌市金太阳高三上学期10月联考)如图,长轴长为4的椭圆C :x 2a 2+y 2b 2=1a >b >0 的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 与y 轴分别交于M ,N 两点,当直线PQ 的斜率为22时,PQ =23.(1)求椭圆C 的方程.(2)试问是否存在定点T ,使得∠MTN =90°恒成立?若存在,求出定点T 的坐标;若不存在,说明理由.【解析】(1)由题意可知2a =4,a =2,则椭圆方程C :x 2a 2+y 2b 2=1a >b >0 即x 24+y 2b 2=1,当直线PQ 的斜率为22时,PQ =23,故设P x 0,22x 0 ,∴x 20+22x 0 2=3,解得x 20=2,将P x 0,22x 0 代入x 24+y 2b 2=1得x 024+x 022b 2=1,即24+22b2=1,故b 2=2,所以椭圆的标准方程为x 24+y 22=1;(2)设P (x 0,y 0),x 0∈[-2,2],则Q (-x 0,-y 0),则x 204+y 202=1,∴x 20+2y 20=4,由椭圆方程x 24+y 22=1可得A (-2,0),∴直线PA 方程为︰y =y 0x 0+2(x +2),令x =0可得M 0,2y 0x 0+2,直线QA 方程为:y =y 0x 0-2(x +2),令x =0得N 0,2y 0x 0-2,假设存在定点T ,使得∠MTN =90°,则定点T 必在以MN 为直径的圆上,以MN 为直径的圆为x 2+y -2x 0y 0x 02-42=16y 02x 20-42,即x 2+y 2-4x 0y 0x 20-4y +4y 20x 20-4=0,∵x 20+2y 20=4,即x 20-4=-2y 20,∴x 2+y 2+2x 0y 0y -2=0,令y =0,则x 2-2=0,解得x =±2,∴以MN 为直径的圆过定点(±2,0),即存在定点T (±2,0),使得∠MTN =90°.3(2023届黑龙江省大庆铁人中学高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的离心率为12,椭圆的短轴端点与双曲线y 22-x 2=1的焦点重合,过点P 4,0 且不垂直于x 轴的直线l 与椭圆相交于A ,B 两点.(1)求椭圆C 的方程;(2)若点B 关于x 轴的对称点为点E ,证明:直线AE 与x 轴交于定点.【解析】(1)由双曲线y 22-x 2=1得焦点0,±3 ,得b =3,由题意可得b =3a 2=b 2+c 2e =c a =12 ,解得a =2,c =1,故椭圆C 的方程为;x 24+y 23=1.(2)设直线l :y =k x -4 ,点A x 1,y 1 ,B x 2,y 2 ,则点E x 2,-y 2 .由y =k x -4x 24+y 23=1,得4k 2+3 x 2-32k 2x +64k 2-12=0,Δ=32k 2 2-44k 2+3 64k 2-12 >0,解得-12<k <12,从而x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3,直线AE 的方程为y -y 1=y 1+y 2x 1-x 2x -x 1 ,令y =0得x =x 1y 2+x 2y 1y 1+y 2,又∵y 1=k x 1-4 ,y 2=k x 2-4 ,则x =kx 1x 2-4 +kx 2x 1-4 k x 1-4 +k x 2-4 =2x 1x 2-4x 1+x 2x 1+x 2-8,即x =2⋅64k 2-124k 2+3-4⋅32k 24k 2+332k 24k 2+3-8=1,故直线AE 与x 轴交于定点1,0 .4(2023届江西省赣州厚德外国语学校、丰城中学高三上学期10月联考)已知双曲线C :x 2a 2-y 2b 2=1经过点2,-3 ,两条渐近线的夹角为60°,直线l 交双曲线于A ,B 两点.(1)求双曲线C 的方程.(2)若动直线l 经过双曲线的右焦点F 2,是否存在x 轴上的定点M m ,0 ,使得以线段AB 为直径的圆恒过M 点?若存在,求实数m 的值;若不存在,请说明理由.【解析】(1)∵两条渐近线的夹角为60°,∴渐近线的斜率±b a =±3或±33,即b =3a 或b =33a ;当b =3a 时,由4a 2-9b 2=1得:a 2=1,b 2=3,∴双曲线C 的方程为:x 2-y 23=1;当b =33a 时,方程4a 2-9b2=1无解;综上所述:∴双曲线C 的方程为:x 2-y 23=1.(2)由题意得:F 22,0 ,假设存在定点M m ,0 满足题意,则MA ⋅MB =0恒成立;方法一:①当直线l 斜率存在时,设l :y =k x -2 ,A x 1,y 1 ,B x 2,y 2 ,由y =k x -2x 2-y 23=1得:3-k 2x 2+4k 2x -4k 2+3 =0,∴3-k 2≠0Δ=361+k 2 >0 ,∴x 1+x 2=4k 2k 2-3,x 1x 2=4k 2+3k 2-3,∴MA ⋅MB=x 1-m x 2-m +y 1y 2=x 1x 2-m x 1+x 2 +m 2+k 2x 1x 2-2x 1+x 2 +4 =1+k 2 x 1x 2-2k 2+m x 1+x 2 +4k 2=4k 2+3 1+k 2k 2-3-4k 22k 2+mk 2-3+m 2+4k 2=0,∴4k 2+3 1+k 2 -4k 22k 2+m +m 2+4k 2 k 2-3 =0,整理可得:k 2m 2-4m -5 +3-3m 2 =0,由m 2-4m -5=03-3m 2=0得:m =-1;∴当m =-1时,MA ⋅MB=0恒成立;②当直线l 斜率不存在时,l :x =2,则A 2,3 ,B 2,-3 ,当M -1,0 时,MA =3,3 ,MB =3,-3 ,∴MA ⋅MB=0成立;综上所述:存在M -1,0 ,使得以线段AB 为直径的圆恒过M 点.方法二:①当直线l 斜率为0时,l :y =0,则A -1,0 ,B 1,0 ,∵M m ,0 ,∴MA =-1-m ,0 ,MB=1-m ,0 ,∴MA ⋅MB=m 2-1=0,解得:m =±1;②当直线l 斜率不为0时,设l :x =ty +2,A x 1,y 1 ,B x 2,y 2 ,由x =ty +2x 2-y 23=1得:3t 2-1 y 2+12ty +9=0,∴3t 2-1≠0Δ=123t 2+3 >0 ,∴y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,∴MA ⋅MB=x 1-m x 2-m +y 1y 2=x 1x 2-m x 1+x 2 +m 2+y 1y 2=ty 1+2 ty 2+2 -m ty 1+2+ty 2+2+m 2+y 1y 2=t 2+1 y 1y 2+2t -mt y 1+y 2 +4-4m +m 2=9t 2+1 3t 2-1-12t 2t -mt 3t 2-1+4-4m +m 2=12m -15 t2+93t 2-1+2-m 2=0;当12m -153=9-1,即m =-1时,MA ⋅MB =0成立;综上所述:存在M -1,0 ,使得以线段AB 为直径的圆恒过M 点.5(2023届内蒙古自治区赤峰市高三上学期月考)平面内一动点P 到定直线x =4的距离,是它与定点F 1,0 的距离的两倍.(1)求点P 的轨迹方程C ;(2)过F 点作两条互相垂直的直线l 1,l 2(直线l 1不与x 轴垂直).其中,直线l 1交曲线C 于A ,B 两点,直线l 2交曲线C 于E ,N 两点,直线l 2与直线x =m m >2 交于点M ,若直线MB ,MF ,MA 的斜率k MB ,k MF ,k MA 构成等差数列,求m 的值.【解析】(1)设点P x ,y ,由题,有PFx -4 =12,即x -1 2+y 2x -4=12,解得3x 2+4y 2=12,所以所求P 点轨迹方程为x 24+y 23=1(2)由题,直线l 1的斜率存在且不为0,设直线l 1的方程为y =k x -1 ,与曲线C 联立方程组得y =k x -1x 24+y 23=1,解得4k 2+3 x 2-8k 2x +4k 2-12=0,设A x 1,y 1 ,B x 2,y 2 ,则有x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3依题意有直线l 2的斜率为-1k ,则直线l 2的方程为y =-1k x -1 ,令x =m ,则有M 点的坐标为m ,-m -1k,由题,k MF =m -1k 1-m =-1k ,k MA +k MB =y 1+m -1kx 1-m+y 2+m -1kx 2-m=y 1x 1-m +y 2x 2-m +1k m -1x 1-m+m -1x 2-m=k x 1-1 x 1-m +k x 2-1 x 2-m +1k m -1x 1-m+m -1x 2-m=k ×2x 1x 2-1+m x 1+x 2 +2m x 1x 2-x 1+x 2 m +m 2+1k ×m -1 x 1+x 2-2m x 1x 2-x 1+x 2 m +m 2=k ×6m -244k 2+34k 2-124k 2+3-m ×8k 24k 2+3+m2+1k×m -18k 24k 2+3-2m4k 2-124k 2+3-m ×8k 24k 2+3+m 2,因为2k MF =k MA +k MB ,所以k ×6m -244k 2+34k 2-124k 2+3-m ×8k 24k 2+3+m 2+1k×m -18k 24k 2+3-2m4k 2-124k 2+3-m ×8k 24k 2+3+m 2=-2k解得m -4 k 2+1 =0,则必有m -4=0,所以m =4.6(2023届福建省福州华侨中学高三上学期考试)在平面直角坐标系xOy 中,已知点F (2,0),直线l :x =12,点M 到l 的距离为d ,若点M 满足|MF |=2d ,记M 的轨迹为C .(1)求C 的方程;(2)过点F (2,0)且斜率不为0的直线与C 交于P ,Q 两点,设A (-1,0),证明:以P ,Q 为直径的圆经过点A .【解析】(1)设点M x ,y ,则d =x -12,MF =(x -2)2+y 2,由MF =2d ,得(x -2)2+y 2=2x -12,两边平方整理得3x 2-y 2=3,则所求曲线C 的方程为x 2-y 23=1.(2)设直线m 的方程为x =ty +2,P x 1,y 1 ,Q x 2,y 2 ,联立方程x =ty +2,3x 2-y 2=3,消去x 并整理得3t 2-1 y 2+12ty +9=0,,因为直线m 与C 交于两点,故t ≠±33,此时Δ=(12t )2-43t 2-1 ⋅9=36t 2+1 >0,所以y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,而x 1+x 2=t y 1+y 2 +4,x 1x 2=ty 1+2 ty 2+2 =t 2y 1y 2+2t y 1+y 2 +4.又AP =x 1+1,y 1 ,AQ=x 2+1,y 2 ,所以AP ⋅AQ=x 1+1 x 2+1 +y 1y 2=y 1y 2+x 1+x 2+x 1x 2+1=t 2+1 y 1y 2+3t y 1+y 2 +9=9t 2+93t 2-1-36t 23t 2-1+9=9-3t 2+1 3t 2-1+9=0.所以AP ⊥AQ ,即以P ,Q 为直径的圆经过点A .7(2023届河南省安阳市高三上学期10月月考)已知椭圆M 1:x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,F 1F 2 =2,面积为487的正方形ABCD 的顶点都在M 1上.(1)求M 1的方程;(2)已知P 为椭圆M 2:x 22a 2+y 22b 2=1上一点,过点P 作M 1的两条切线l 1和l 2,若l 1,l 2的斜率分别为k 1,k 2,求证:k 1k 2为定值.【解析】(1)根据对称性,不妨设正方形的一个顶点为A x ,x ,由x 2a 2+x 2b 2=1,得x 2=a 2b 2a 2+b 2,所以2a 2b 2a 2+b 2×2a 2b 2a 2+b2=487,整理得12a 2+b 2 =7a 2b 2.①又a 2-b 2=F 1F 222=1,②由①②解得a 2=4,b 2=3,故所求椭圆方程为x 24+y 23=1.(2)由已知及(1)可得M 2:x 28+y 26=1,设点P x 0,y 0 ,则y 20=61-x 208.设过点P 与M 1相切的直线l 的方程为y -y 0=k x -x 0 ,与x 24+y 23=1联立消去y 整理可得4k 2+3 x 2+8k y 0-kx 0 x +4y 0-kx 0 2-3 =0,令Δ=8k y 0-kx 0 2-4×4k 2+3 ×4y 0-kx 0 2-3 =0,整理可得x 20-4 k 2-2kx 0y 0+y 20-3=0,③根据题意k 1和k 2为方程③的两个不等实根,所以k 1k 2=y 20-3x 20-4=61-x 28 -3x 20-4=-34x 20-4 x 20-4=-34,即k 1k 2为定值-34.8(2023届浙江省浙里卷天下高三上学期10月测试)已知F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1(-1,0)且与x 轴不重合的直线与椭圆C 交于A ,B 两点,△ABF 2的周长为8.(1)若△ABF 2的面积为1227,求直线AB 的方程;(2)过A ,B 两点分别作直线x =-4的垂线,垂足分别是E ,F ,证明:直线EB 与AF 交于定点.【解析】(1)因△ABF 2的周长为8,由椭圆定义得4a =8,即a =2,而半焦距c =1,又a 2=b 2+c 2,则b 2=3,椭圆C 的方程为x 24+y 23=1,依题意,设直线AB 的方程为x =my -1,由x =my -13x 2+4y 2=12消去x 并整理得3m 2+4 y 2-6my -9=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,|y 1-y 2|=(y 1+y 2)2-4y 1y 2=6m 3m 2+42+363m 2+4=12m 2+13m 2+4,因此S △F 2AB =12F 1F 2 ⋅y 1-y 2 =12×2×12m 2+13m 2+4=1227,解得m =±1,所以直线AB 的方程为x -y +1=0或x +y +1=0.(2)由(1)知A x 1,y 1 ,B x 2,y 2 ,则E -4,y 1 ,F -4,y 2 ,设直线EB 与AF 交点为M (x ,y ),则FA =(x 1+4,y 1-y 2),FM =(x +4,y -y 2),EB =(x 2+4,y 2-y 1),EM =(x +4,y -y 1),而FA ⎳FM ,EB ⎳EM ,则(x +4)(y 1-y 2)=(y -y 2)(x 1+4),(x +4)(y 2-y 1)=(y -y 1)(x 2+4),两式相加得:y (x 1+x 2+8)-y 2(my 1+3)-y 1(my 2+3)=0,而x 1+x 2+8>0,则y (x 1+x 2+8)=2my 1y 2+3(y 1+y 2)=2m ⋅-93m 2+4+3⋅6m3m 2+4=0,因此y =0,两式相减得:2(x +4)(y 1-y 2)=-y 2(x 1+4)+y 1(x 2+4)=-y 2(my 1+3)+y 1(my 2+3)=3(y 1-y 2),而y 1-y 2≠0,则x =-52,即M -52,0 ,所以直线EB 与AF 交于定点M -52,0 .9(2023届江苏省南京市六校高三上学期10月联考)已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,且过点P 2,33(1)求双曲线Γ的方程;(2)过双曲线Γ的左焦点F 分别作斜率为k 1,k 2的两直线l 1与l 2,直线l 1交双曲线Γ于A ,B 两点,直线l 2交双曲线Γ于C ,D 两点,设M ,N 分别为AB 与CD 的中点,若k 1⋅k 2=-1,试求△OMN 与△FMN 的面积之比.【解析】(1)由题意得2c =4,得c =2,所以a 2+b 2=4,因为点P 2,33在双曲线上,所以4a 2-13b 2=1,解得a 2=3,b 2=1,所以双曲线方程为x 23-y 2=1,(2)F (-2,0),设直线l 1方程为y =k 1(x +2),A (x 1,y 1),B (x 2,y 2),由y =k 1(x +2)x 23-y 2=1,得(1-3k 12)x 2-12k 12x -12k 12-3=0则x 1+x 2=12k 121-3k 12,x 1x 2=-12k 12-31-3k 12,所以x 1+x 22=6k 121-3k 12,所以AB 的中点M 6k 121-3k 12,2k 11-3k 12,因为k 1⋅k 2=-1,所以用-1k 1代换k 1,得N 6k 12-3,-2k 1k 12-3,当6k 121-3k 12=61-3k 12,即k 1=±1时,直线MN 的方程为x =-3,过点E (-3,0),当k 1≠±1时,k MN =2k 11-3k 12--2k 1k 12-36k121-3k 12-6k 12-3=-2k 13(k 12-1),直线MN 的方程为y -2k 11-3k 12=-2k 13(k 12-1)x -6k 121-3k 12,令y =0,得x =3(k 12-1)1-3k 12+6k 121-3k 12=-3,所以直线MN 也过定点E (-3,0),所以S △OMN S △FMN =12y N-y M OE 12y M-y N FE =OE FE =310(2022届北京市海淀区高三上学期期末)已知点A 0,-1 在椭圆C :x 23+y 2b 2=1上.(1)求椭圆C 的方程和离心率;(2)设直线l :y =k x -1 (其中k ≠1)与椭圆C 交于不同两点E ,F ,直线AE ,AF 分别交直线x =3于点M ,N .当△AMN 的面积为33时,求k 的值.【解析】(1)将点A 0,-1 代入x 23+y 2b 2=1,解得b 2=1,所以椭圆C 的方程为x 23+y 2=1又c 2=a 2-b 2=3-1=2,离心率e =c 2a 2=23=63(2)联立y =k x -1x 23+y 2=1,整理得(1+3k 2)x 2-6k 2x +3k 2-3=0设点E ,F 的坐标分别为(x 1,y 1),(x 2,y 2)由韦达定理得:x 1+x 2=6k 21+3k 2,x 1x 2=3k 2-31+3k 2直线AE 的方程为y +1=y 1+1x 1x ,令x =3,得y =3y 1+3x 1-1,即M 3,3y 1+3x 1-1直线AF 的方程为y +1=y 2+1x 2x ,令x =3,得y =3y 2+3x 2-1,即N 3,3y 2+3x 2-1MN =3y 2+3x 2-1-3y 1+3x 1-1=3×x 1y 2-x 2y 1+x 1-x 2x 1x 2 =3×k -1 x 1-x2x 1x 2=3×k -1x 1+x 22-4x 1x 2x 1x 22=3×k -1 ×232k 2+1k 2-1 =23×2k 2+1k +1 所以△AMN 的面积S =12×MN ×3=32×MN =33×2k 2+1k +1 =33即2k 2+1k +1 =1⇒2k 2+1=k +1 ,解得k =0或k =2所以k 的值为0或211(2022届天津市第二中学高三上学期12月月考)已知椭圆x 2a 2+y 2b 2=1a >b >0 的长轴长是4,且过点B 0,1 .(1)求椭圆的标准方程;(2)直线l :y =k x +2 交椭圆于P ,Q 两点,若点B 始终在以PQ 为直径的圆内,求实数k 的取值范围.【解析】(1)由题意,得2a =4,b =1,所以椭圆的标准方程为x 24+y 2=1;(2)设P (x 1,y 1),Q (x 2,y 2),联立y =k (x +2)x 24+y 2=1,得x 2+4k 2(x +2)2-4=0,即(1+4k 2)x 2+16k 2x +16k 2-4=0,则x 1+x 2=-16k 21+4k 2,因为直线y =k x +2 恒过椭圆的左顶点(-2,0),所以x 1=-2,y 1=0,则x 2=-16k 21+4k 2+2=2-8k 21+4k 2,y 2=k (x 2+2)=4k1+4k 2,因为点B 始终在以PQ 为直径的圆内,所以π2<∠PBQ ≤π,即BP ·BQ <0,又BP =-2,-1 ,BQ=(x 2,y 2-1),则BP ·BQ=-2x 2-y 2+1<0,即4-16k 21+4k 2+4k 1+4k 2-1>0,即20k 2-4k -3<0,解得-310<k<12,所以实数k的取值范围为-310<k<12.12(2022届广东省华南师范大学附属中学高三上学期1月模拟)已知椭圆C1:x2a2+y2b2=1(a>b>0)的右顶点与抛物线C2:y2=2px(p>0)的焦点重合,椭圆C1的离心率为12,过椭圆C1的右焦点F且垂直于x轴的直线截抛物线所得弦的长度为42.(1)求椭圆C1和抛物线C2的方程.(2)过点A(-4,0)的直线l与椭圆C1交于M,N两点,点M关于x轴的对称点为E.当直线l绕点A旋转时,直线EN是否经过一定点?请判断并证明你的结论.【解析】(1)设椭圆C1的半焦距为c.依题意,可得a=p2,则C2:y2=4ax,代入x=c,得y2=4ac,即y=±2ac,所以4ac=42,则有ac=2ca=12a2=b2+c2,所以a=2,b=3,所以椭圆C1的方程为x24+y23=1,抛物线C2的方程为y2=8x.(2)依题意,当直线l的斜率不为0时,设其方程为x=ty-4,由x=ty-43x2+4y2=12,得(3t2+4)y2-24ty+36=0.设M(x1,y1),N(x2,y2),则E(x1,-y1).由Δ>0,得t<-2或t>2,且y1+y2=24t3t2+4,y1y2=363t2+4.根据椭圆的对称性可知,若直线EN过定点,此定点必在x轴上,设此定点为Q(m,0).因为k NQ=k EQ,所以y2x2-m=-y1x1-m,(x1-m)y2+(x2-m)y1=0,即(ty1-4-m)y2+(ty2-4-m)y1=0,2ty1y2-(m+4)(y1+y2)=0,即2t·363t2+4-(m+4)·24t3t2+4=0,得(3-m-4)t=(-m-1)t=0,由t是大于2或小于-2的任意实数知m=-1,所以直线EN过定点Q(-1,0).当直线l的斜率为0时,直线EN的方程为y=0,也经过点Q(-1,0),所以当直线l绕点A旋转时,直线EN恒过一定点Q(-1,0).13(2022届河北省高三上学期省级联测)已知椭圆P焦点分别是F1(0,-3)和F2(0,3),直线y= 3与椭圆P相交所得的弦长为1.(1)求椭圆P的标准方程;(2)将椭圆P绕原点逆时针旋转90°得到椭圆Q,在椭圆Q上存在A,B,C三点,且坐标原点为△ABC的重心,求△ABC的面积.。

2022版高考数学大一轮复习第10章圆锥曲线与方程第4讲圆锥曲线的综合应用1

2022版高考数学大一轮复习第10章圆锥曲线与方程第4讲圆锥曲线的综合应用1

第十章 圆锥曲线与方程第四讲 圆锥曲线的综合问题拓展变式1。

[2017浙江,21,15分]如图10—4—2,已知抛物线x 2=y ,点A (−12,14),B (32,94),抛物线上的点P (x ,y )(−12<x 〈32)。

过点B 作直线AP 的垂线,垂足为Q.图10—4-2(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值。

2。

[2020全国卷Ⅰ,21,12分][文]已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a 〉1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ·GB⃗⃗⃗⃗⃗ =8。

P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D.(1)求E 的方程;(2)证明:直线CD 过定点。

3.[2021武汉四地六校高三联考]已知椭圆C:x2a2+y2b2=1(a〉b〉0)的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线√7x−√5y+12=0相切。

(1)求椭圆C的方程.(2)已知A(-4,0),过点R(3,0)作与x轴不重合的直线l交椭圆C于P,Q两点,连接AP,AQ,分别交直线x=163于M,N两点,若直线MR,NR的斜率分别为k1,k2,问:k1k2是否为定值?若是,求出该定值;若不是,请说明理由.4。

[2021湖北省部分重点中学摸底联考]已知点A(1,−√32)在椭圆C:x2a2+y2b2=1(a〉b>0)上,O为坐标原点,直线l:xa2−√3y2b2=1的斜率与直线OA的斜率之积为−14.(1)求椭圆C的方程。

(2)不经过点A的直线m:y=√32x+t(t≠0)与椭圆C交于P,Q两点,P关于原点的对称点为R(与点A不重合),直线AQ,AR与y轴分别交于点M,N,求证:|AM|=|AN|.5。

[2020山西大同一联]已知椭圆C的中心在原点,焦点在坐标轴上,直线y=32x与椭圆C在第一象限内的交点是M,点M在x 轴上的射影恰好是椭圆C的右焦点F2,椭圆C的另一个焦点是F1,且MF1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF2⃗⃗⃗⃗⃗⃗⃗⃗ =94。

高三数学圆锥曲线与方程

高三数学圆锥曲线与方程

圆锥曲线与方程1. 已知动抛物线的准线为x 轴,且经过点(0,2),求抛物线的顶点轨迹方程。

解:设抛物线的顶点坐标为)2,(),,(y x y x 则焦点坐标为, ……………………3分由题意得4)22(22=-+y x , ………………6分即顶点的轨迹方程为.1)1(422=-+y x ………………8分 2.动点P 在x 轴与直线l :y =3之间的区域(含边界)上运动,且到点F (0,1)和直线l的距离之和为4.(1)求点P 的轨迹C 的方程;(2)过点(0,1)Q -作曲线C 的切线,求所作的切线与曲线C 所围成区域的面积. 【解】(1)设P (x ,y )+3-y =4,化简,得y =14x 2(y ≤3).…………………4分(2)设过Q 的直线方程为y =kx -1,代入抛物线方程,整理得x 2-4kx +4=0. 由△=16k 2-16=0.解得k =±1.于是所求切线方程为y =±x -1(亦可用导数求得切线方程). 切点的坐标为(2,1),(-2,1).由对称性知所求的区域的面积为S =220132(1)d .44x x x ⎡⎤--=⎢⎥⎣⎦⎰ ………………… 10分 3.已知圆F 1:(x +1)2+y 2=16,定点F 2(1,0).动圆M 过点F 2,且与圆F 1相内切.(1)求点M 的轨迹C 的方程;(2)若过原点的直线l 与(1)中的曲线C 交于A ,B 两点,且△ABF 1的面积为32,求直线l 的方程.解:(方法一)(1)设圆M 的半径为r . 因为圆M 与圆F 1相内切,所以MF 1=4-r . 因为圆M 过点F 2,所以MF 2=r .所以MF 1=4-MF 2,即MF 1+MF 2=4.………2分 所以点M 的轨迹C 是以F 1,F 2为焦点的椭圆.………且此椭圆的方程形式为x 2a 2+y 2b2=1(a >b >0).其中2a =4,c =1,所以a =2,b =3.……………4分所以曲线C 的方程x 24+y 23=1.……………5分(方法二)设M (x ,y),由MF 1+MF 2=4得4= ……3分化简得x 24+y 23=1,所以曲线C 的方程x 24+y 23=1.…5分(2)(方法一)当直线l 的斜率不存在时, A ,B 两点的坐标分别是(0,3),(0,-3),此时S △ABF 1=3≠32,不合题意.………………………………………………………6分设直线l 的方程为y =kx (k ≠0),代入椭圆方程x 24+y 23=1,得y 1=12k 23+4k 2,y 2=-12k 23+4k 2.所以S △ABF 1=S △AOF 1+S △BOF 1=12OF 1⋅∣y 1∣+12OF 1⋅∣y 2∣=12OF 1⋅(y 1-y 2)=12k 23+4k 2.……………………………………………7分因为S △ABF 1=32,所以12k 23+4k2=32.解得k =±12. …………………………8分 故所求直线l 的方程为x ±2y =0.……………………………………………………10分 (方法二)因为直线l 过椭圆的中心,由椭圆的对称性可知,S △ABF 1=2S AOF 1.因为S △ABF 1=32,所以S AOF 1=34. ………………………………6分 不妨设点A (x 1,y 1)在x 轴上方,则S AOF 1=12⋅OF 1⋅y 1=34.所以y 1=32,x 1=±3,即点A 的坐标为(3,32)或(-3,32). (8)分所以直线l 的斜率为±12.故所求的直线l 的方程为x ±2y =0.…………………………………………………10分 4. 点(,)n n n P x y 在曲线:xC y e -=上,曲线C 在n P 处的切线n l 与x 轴相交于点1(,0)n n Q x +,直线1n t +:1n x x +=与曲线C 相交于点111(,)n n n P x y +++,(1,2,3,n =L ).由曲线C 和直线n l ,1n t +围成的图形面积记为n S ,已知11x =.(1)证明:11n n x x +=+; (2)求n S 关于n 的表达式;(3)若数列{}n S 的前n 项之和为n T ,求证:11n n n nT x T x ++<(1,2,3,n =L ).解(Ⅰ)证明:因为x y e -=,所以xy e -'=-,则切线n l 的斜率nx n k e -=-,所以切线n l 的方程为()nx n n y y ex x --=--,令0y =,得1n Q n x x =+,即11n n x x +=+·2分(Ⅱ)解:因为11x =,所以n x n =,所以11111(2)()()|222n nn x xx n n n n n n n x e e S e dx x x y e e e +---+-+-=--⋅=--⨯=⎰ ·5分(Ⅲ)证明:因为12(2)2()(1)22(1)n n n e e T e e e e e e e ------=++⋅⋅⋅+=--, 所以1111111111n n n n n n n T e e e T e e e e e --++-++---===+---,又1111n nx n x n n ++==+, 故要证11n n n n T x T x ++<,只要证111n e e e n+-<-,即要证1(1)n e e n e +>-+·7分下用数学归纳法(或用二项式定理,或利用函数的单调性)等方法来 证明1(1)n ee n e +>-+(略)·10分5.在平面直角坐标系xOy 中,抛物线C 的顶点在原点,焦点F 的坐标为(1,0). (1)求抛物线C 的标准方程;(2)设M 、N 是抛物线C 的准线上的两个动点,且它们的纵坐标之积为-4,直线MO ,NO 与抛物线C 的交点分别为点A 、B .求证:动直线AB 恒过一个定点.解:(1)设抛物线的标准方程为y 2=2px (p >0),则p2=1,p =2.所以抛物线C 的标准方程为y 2=4x .………………………………………………3分 (2)(方法一)抛物线C 的准线方程为x =-1,设M (-1,y 1)、N (-1,y 2), 其中y 1y 2=-4.则直线MO 的方程为:y =-y 1x . 将y =-y 1x 与y 2=4x 联立方程组.解得A 点坐标为(4y 21,-4y 1).同理可得B 点坐标为(4y 22,-4y 2).则直线AB 的方程为:y +4y 1-4y 2+4y 1=x -4y 214y 22-4y 21.整理,得(y 1+y 2)y -4x +4=0.由⎩⎨⎧y =0,-4x +4=0,解得⎩⎨⎧x =1,y =0.故动直线AB 恒过一个定点(1,0).………………10分(方法二)抛物线C 的准线方程为x =-1,设M (-1,y 1)、N (-1,y 2). 由于y 1y 2=-4,取y 1=2,则y 2=-2,可得M (-1,2)、N (-1,-2).此时直线MO 的方程分别为y =-2x ,由⎩⎨⎧y 2=4x ,y =-2x .解得A 点坐标为(1,-2).同理,可得B 点坐标为(1,2).则直线AB 的方程为l 1:x =1. 再取y 1=1,则y 2=-4,同理可得A (4,-4),B (14,1).此时直线AB 方程为l 2:4x +3y -4=0.于是可得l 1与l 2的交点为(1,0). 下面验证对任意的y 1,y 2,当y 1y 2=-4时,动直线AB 恒过一个定点(1,0). 直线MO 的方程为:y =-y 1x . 将y =-y 1x 与y 2=4x 联立方程组.解得A 点坐标为(4y 21,-4y 1).同理可得B 点坐标为(4y 22,-4y 2).则直线AB 的方程为:y +4y 1-4y 2+4y 1=x -4y 214y 22-4y 21.整理,得(y 1+y 2)y -4x +4=0. 可得点(1,0)在直线AB 上.所以动直线AB 恒过一个定点(1,0).………………………………………………10分 6.(本题满分10分)在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点(2,2)A ,其焦点F 在x 轴上。

高三高考数学总复习《圆锥曲线》题型归纳与汇总

高三高考数学总复习《圆锥曲线》题型归纳与汇总

高考数学总复习题型分类汇《圆锥曲线》篇经典试题大汇总目录【题型归纳】题型一求曲线的方程 (3)题型二最值(范围)问题 (4)题型三定点定值与存在性 (6)【巩固训练】题型一求曲线的方程 (8)题型二最值(范围)问题 (9)题型三定点定值与存在性 (11)高考数学《圆锥曲线》题型归纳与训练【题型归纳】题型一 求曲线的方程例1 已知定点()0,3-G ,S 是圆()723:22=+-y x C (C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E ,设点E 的轨迹为M . 求M 的方程. 【答案】见解析【解析】由题意知ES EG =,所以26=+=+EC ESEC EG ,又因为266<=GC .所以点E 的轨迹是以G ,C 为焦点,长轴长为26的椭圆,动点E 的轨迹方程为191822=+y x . 例2 设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过点M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.求点P 的轨迹方程.【答案】见解析【解析】如图所示,设(),P x y ,(),0N x ,()1,M x y . 由2NP NM =知,12y y =,即12y =.又点M 在椭圆2212x y +=上,则有22122x y +=,即222x y +=.例3 如图,矩形ABCD 中, ()()()()2,0,2,0,2,2,2,2A B C D -- 且,AM AD DN DC λλ==,[]0,1,AN λ∈交BM 于点Q .若点Q 的轨迹是曲线P 的一部分,曲线P 关于x 轴、y 轴、原点都对称,求曲线P 的轨迹方程.【答案】Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【解析】设(),Q x y ,由,AM AD DN DC λλ==,求得()()2,2,42,2M N λλ--, ∵1,22QA AN QB BM k k k k λλ====-,∴11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭, P x,y ()NM Oxy∴1224y y x x ⋅=-+-,整理得()22120,014x y x y +=-≤≤≤≤.可知点Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【易错点】求轨迹问题学生容易忽视范围 【思维点拨】高考中常见的求轨迹方程的方法有:1.直译法与定义法:直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简; 定义法求轨迹方程:轨迹方程问题中,若能得到与所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.2.相关点法:找动点之间的转化关系(平移,伸缩,中点,垂直等),用要求的代替已知轨迹的,代入化简3.参数法:可用联立求得参数方程,消参.注意此种问题通常范围有限制.4.交轨法:联立求交点,变形的轨迹. 题型二 最值(范围)问题例1 已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则DE AB +的最小值为( )A. 16B. 14C. 12D. 10 【答案】A【解析】设()()()()11223344,,,,,,,A x y B x y D x y E x y ,直线1l 的方程为()11y k x =-,联立方程()214 1y xy k x ==-⎧⎪⎨⎪⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=- 212124k k +=, 同理直线2l 与抛物线的交点满足:22342224k x x k ++=, 由抛物线定义可知12342AB DE x x x x p +=++++=22122222121224244448816k k k k k k ++++=++≥=, 当且仅当121k k =-=(或1-)时,取等号.【易错点】本题考查抛物线的焦点弦长,利用抛物线的焦点弦长公式,表示出DE AB +,然后利用基本不等式求最值.对相关流程应有所熟练例2 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【答案】见解析【解析】(1)2(c,0)F c c 设,由条件知,222=2, 1.c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (2)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12PQ x =-=从而O PQ d OPQ =∆又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即OPQ ∆所以,当的面积最大时,l 的方程为2222y x y x =-=--或. 【思维点拨】 圆锥曲线中的取值范围问题常用的方法有以下几个:(1)利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;(2)利用基本不等式求出参数的取值范围;(3)利用函数的值域的求法(甚至求导),确定参数的取值范围. 题型三 定点定值与存在性问题例1 已知椭圆C :()222210x y a b a b +=>>上.(1)求C 的方程.(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .直线OM 的斜率与直线l 的斜率的乘积为定值. 【答案】见解析【解析】 (1=22421a b+=,解得28a =,24b =. 所以C 的方程为22184x y +=. (2)设直线l :()00y kx b kb =+≠≠,,()11A x y ,, ()22B x y ,,()M M M x y ,.将 y kx b =+代入22184x y +=得()22221+4280k x kbx b ++-=. 故1222221M x x kb x k +-==+,221M M by kx b k =+=+ . 于是直线OM 的斜率12M OM M y k x k ==-,即12OM k k ⋅=-. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.【思维点拨】解析几何是高考必考内容之一,在命题时多从考查各种圆锥曲线方程中的基本量关系及运算,在直线与圆锥曲线关系中.一般用方程的思想和函数的观点来解决问题,并会结合中点坐标,方程根与函数关系来求解.例2 已知抛物线2:4C y x =,点()0,m M 在x 轴的正半轴上,过M 点的直线l 与抛物线C 相交于A ,B 两点,O 为坐标原点.(1) 若1=m ,且直线l 的斜率为1,求以AB 为直径的圆的方程;(2) 是否存在定点M ,使得不论直线:l x ky m =+绕点M 如何转动,2211AMBM+恒为定值?【答案】(1)()()223216x y -+-=. (2)存在定点M (2, 0). 【解析】(1)当1=m 时,()0,1M ,此时,点M 为抛物线C 的焦点,直线l 的方程为1-=x y ,设()()1122,,A x y B x y ,,联立24{ 1y xy x ==-,消去y 得, 2610x x -+=,∴126x x +=, 121224y y x x +=+-=,∴圆心坐标为(3, 2).又1228AB x x =++=,∴圆的半径为4,∴圆的方程为()()223216x y -+-=. (2)由题意可设直线l 的方程为x ky m =+,则直线l 的方程与抛物线2:4C y x =联立,消去x 得: 2440y ky m --=,则124y y m =-, 124y y k +=,()()22222211221111AMBMx m y x m y +=+-+-+()()()22122222222121211111y y k y k y k y y +=+=+++ ()()()()222121222222221221682111621y y y y k m k mky y k m m k +-++===+++ 对任意k R ∈恒为定值, 于是2=m ,此时221114AMBM+=. ∴存在定点()0,2M ,满足题意. 【易错点】定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果(取特殊位置或特殊值),因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.【思维点拨】定点、定值问题通常先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.在求解中通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.【巩固训练】题型一 求曲线的方程1.设圆222150x y x ++-=的圆心为A ,直线l 过点()0,1B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程.【答案】13422=+y x (0≠y ) 【解析】因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为13422=+y x (0≠y ).2.已知动圆G 过定点()4,0F ,且在y 轴上截得的弦长为8.求动圆G 的圆心点G 的轨迹方程; 【答案】28y x =【解析】设动圆圆心(),G x y ,设圆交y 轴于,M N 两点,连接,GF GM , 则GF GM =,过点G 作GH MN ⊥,则点H 是MN 的中点, 显然()22224,4GM x GF x y =+=-+,于是()222244x y x -+=+,化简整理得28y x =,故的轨迹方程为28y x =.3.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.【答案】(1)见解析; (2)12-=x y .【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(1)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=.所以FQ AR ∥. (2)设l 与x 轴的交点为)0,(1x D , 则1111,2222ABF PQF a b S b a FD b a x S -=-=--=△△. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .题型二 最值(范围)问题1.已知动点E 到点A ()2,0与点B ()2,0-的直线斜率之积为14-,点E 的轨迹为曲线C . (1)求C 的方程;(2)过点D ()1,0作直线l 与曲线C 交于P , Q 两点,求OP OQ ⋅的最大值.【答案】(1)()22124x y x +=≠±(2)14 【解析】(1)设(),E x y ,则2x ≠±.因为E 到点A ()2,0,与点B ()2,0-的斜率之积为14-,所以122y yx x ⋅=-+-,整理得C 的方程为()22124x y x +=≠±. (2)当l 垂直于轴时,l 的方程为1x =,代入2214x y +=得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭.11,4OP OQ ⎛⎛⋅=⋅= ⎝⎭⎝⎭. 当l 不垂直于x 轴时,依题意可设()()10y k x k =-≠,代入2214x y +=得 ()2222148440k xk x k +-+-=.因为()216130k ∆=+>,设()11,P x y , ()22,Q x y .则2122814k x x k +=+, 21224414k x x k -=+.()()21212121211OP OQ x x y y x x k x x ⋅=+=+-- ()()22212121k x x k x x k =+-++14+21174416k =-+ 14< 综上OP OQ ⋅ 14≤,当l 垂直于x 轴时等号成立,故OP OQ ⋅的最大值是14.2.设椭圆()2222:10x y M a b a b +=>>经过点12,,P F F ⎭是椭圆M 的左、右焦点,且12PF F ∆的面积为2. (1)求椭圆M 的方程;(2)设O 为坐标原点,过椭圆M 内的一点()0,t 作斜率为k 的直线l 与椭圆M 交于,A B 两点,直线,OA OB 的斜率分别为12,k k ,若对任意实数k ,存在实数m ,使得12k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)[)2,m ∈+∞. 【解析】(1)略(2)设直线l 的方程为y kx t =+,由221{ 43x y y kx t+==+,得()2223484120k x ktx t +++-=,设()()1122,,,A x y B x y ,则21212228412,3434kt t x x x x k k -+=-=++,()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--, 由12k k mk +=对任意k 成立,得22223t m t =--,∴()232m t m-=,又()0,t 在椭圆内部中,∴203t ≤<,∴2m ≥,即[)2,m ∈+∞.题型三 定点定值与存在性问题1.已知12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,离心率为12, ,M N 分别是椭圆的上、下顶点,22•2MF NF =-.(1)求椭圆E 的方程;(2)若直线y kx m =+与椭圆E 交于相异两点,A B ,且满足直线,MA MB 的斜率之积为14,证明:直线AB 恒过定点,并求定点的坐标.【答案】(1)22143x y +=(2)直线AB恒过定点(0,.【解析】(1)由题知()0,2c F ,()b M ,0,()b N -,0,22222-=-=⋅∴b c NF MF ①由21==a c e ,得c a 2= ② 又222cb a =- ③ 由①②③联立解得:42=a ,32=b ∴椭圆E 的方程为13422=+y x . (2)证明:由椭圆E 的方程得,上顶点()3,0M ,设()11,y x A ,()22,y x B ,由题意知,01≠x ,02≠x由⎪⎩⎪⎨⎧=++=13422y x m kx y 得:()()034843222=-+++m kmx x k∴221438kkmx x +-=+,()22214334k m x x +-=, 又111133x m kx x y k MA -+=-=,222233x m kx x y k MB -+=-=, 由41=⋅NB MA k k ,得()()2121334x x m kx m kx =-+-+, ()()()()()()0433483414342222=+-+--+--k m km m k k m ,化简得:06332=+-m m 解得:3=m 或32=m ,结合01≠x ,02≠x 知32=m ,即直线AB 恒过定点()32,0.2.已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.【答案】(1) 1422=+y x (2)见解析. 【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (2)由(1)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y .令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN .综上,BM AN ⋅为定值.3. 在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点 到(0,2)Q 的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y += 相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.【答案】(1) 2213x y += (2)见解析【解析】(1)由2223c e c a a ==⇒=,所以222213b ac a =-= 设(,)P x y 是椭圆C 上任意一点,则22221x y a b+=,所以222222(1)3y x a a y b =-=-||PQ ===所以,当1y =-时,||PQ 3=,可得a =1,b c ==故椭圆C 的方程为:2213x y += (2)存在点M 满足要求,使OAB ∆得面积最大.假设直线:1l mx ny +=与圆22:1O x y +=相交于不同两点,A B , 则圆心O 到l的距离1d =<,∴221m n +> ①因为(,)M m n 在椭圆C 上,所以2213m n +=②,由①②得:203m <∵||AB ==所以1||2OABSAB d =⋅=2213m n =-代入上式得213221213OABmS m m ∆==+⋅,当且仅当22231(0,3]32m m =⇒=∈,∴2231,22m n ==,此时满足要求的点(M 有四个. 此时对应的OAB ∆的面积为12. 4.已知过抛物线()022>=p px y 的焦点F 的直线交抛物线于()()()112212,,,A x y B x y x x < 两点,且6AB =.(1)求该抛物线E 的方程;(2)过点F 任意作互相垂直的两条直线12,l l ,分别交曲线E 于点,C D 和,M N .设线段,CD MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点.【答案】(1)24y x = (2)直线PQ 恒过定点()3,0.【解析】(1)抛物线的焦点,02p F ⎛⎫⎪⎝⎭,∴直线AB 的方程为:2p y x ⎫=-⎪⎭联立方程组22{ 2y pxp y x =⎫=-⎪⎭,消元得: 22204p x px -+=, ∴212122,4px x p xx +==∴6AB ===,解得2p =±.∵0p >,∴抛物线E 的方程为:24y x =.(2)设,C D 两点坐标分别为()()1122,,,x y x y ,则点P 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭..由题意可设直线1l 的方程为()()10y k x k =-≠. 由()24{1y x y k x ==-,得()2222240k x k x k -++=.()24224416160k k k ∆=+-=+>因为直线1l 与曲线E 于,C D 两点,所以()1212122442,2x x y y k x x k k+=++=+-=. 所以点P 的坐标为2221,k k ⎛⎫+⎪⎝⎭. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为()212,2k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为()222121k y k x k k+=---,整理得()230yk x k y +--=. 于是,直线PQ 恒过定点()3,0; 当1k=±时,直线PQ 的方程为3x =,也过点()3,0.综上所述,直线PQ 恒过定点()3,0.新课程标准的内容与现形课标内容的对比如下表:与现形课标对比,必修3中的“算法初步”删掉了;删掉了必修5中的解三角形,不等式的大部分内容。

圆锥曲线与方程知识点总结

圆锥曲线与方程知识点总结

圆锥曲线与方程知识点总结圆锥曲线是一种二维的曲线,它的形状类似于圆锥。

圆锥曲线的方程通常用参数方程的形式表示,其中包含两个参数t和k。

t是曲线上的点的横坐标,k是圆锥曲线的焦点到顶点的距离。

圆锥曲线的一般形式方程为:x = k * t * cos(t)y = k * t * sin(t)其中t是参数,k是圆锥曲线的焦点到顶点的距离。

圆锥曲线的特殊形式有:圆锥曲线的标准形式方程:x = ty = k * t^2圆锥曲线的极坐标形式方程:x = k * cos(t)y = k * sin(t)圆锥曲线的泊松形式方程:x = k * cosh(t)y = k * sinh(t)圆锥曲线的双曲线形式方程:x = k * cosh(t)y = k * sinh(t)圆锥曲线的性质:圆锥曲线是闭合的,即曲线的起点和终点重合。

圆锥曲线是对称的,即关于y轴对称。

圆锥曲线的顶点在y轴上。

圆锥曲线的焦点在x轴上。

圆锥曲线的焦点到顶点的距离称为焦距。

圆锥曲线的形状取决于焦距的大小。

当焦距大于0时,圆锥曲线的形状类似于圆锥,称为双曲圆锥曲线。

当焦距等于0时,圆锥曲线的形状类似于椭圆,称为椭圆圆锥曲线。

当焦距小于0时,圆锥曲线的形状类似于倒圆锥,称为凹圆锥曲线。

圆锥曲线的应用:圆锥曲线常用于几何图形的绘制,如圆锥体、圆柱体、圆台体等。

圆锥曲线还可以用于机械设计、建筑设计等领域。

总结:圆锥曲线是一种二维的曲线,其形状类似于圆锥,可以用参数方程、标准形式方程、极坐标形式方程、泊松形式方程和双曲线形式方程来表示。

圆锥曲线有若干性质,如闭合、对称、顶点在y轴上、焦点在x轴上等,并且其形状取决于焦距的大小。

圆锥曲线常用于几何图形的绘制,并在机械设计、建筑设计等领域得到广泛应用。

高三数学应知应会讲义十一:圆锥曲线

高三数学应知应会讲义十一:圆锥曲线

圆锥曲线1.(1)设F 1F 2是两定点,|F 1F 2|=6,动点P 满足|PF 1|+|PF 2|=6,则动点P 的轨迹是A .椭圆B .直线C .线段D .圆(2)设F 1F 2是两定点,|F 1F 2|=6,动点P 满足|PF 1|—|PF 2|=6,则动点P 的轨迹是A .双曲线B .直线C .线段D .射线 (3)方程2)1()1(222++=-+-y x y x 所表示的曲线为A .椭圆B .双曲线C .抛物线D .圆(4 )已知点F 1(-5,0)和、F 2(5,0),曲线上动点P 到F 1与F 2距离之差为6,则点P 的轨迹方程为A .116922=-y x B .)0(116922>=-x y x C .191622=-y x D .)0(116922<=-x y x 考查圆锥曲线的定义,注意定义中的条件。

2.(1)已知椭圆1162522=+y x 上一点P 到椭圆左焦点距离为3,则点P 到椭圆右准线的距离是A .335 B .5 C .435D .415(2)双曲线116922=-y x 上有一点P 到左准线的距离为4.5,那么P 到右焦点的距离为 A .7.5 B .13.5 C .1.5 D .13.5或1.5(3)已知AB 为过抛物线px y 22=焦点F 的弦,以则AB 为直径的圆与抛物线的准线A .相交B .相切C .相离D .与p 的取值有关(4)双曲线)0,0(12222>>=-b a by a x 过焦点F 1的弦AB,A,B 两点在同一支上且长为m,另一焦点为F 2, ⊿ABF 2的周长为A .4aB .4a-mC .4a+2mD .4a-2m(5)若椭圆)0(12222>>=+n m n y m x 和双曲线)0,0(12222>>=-b a by a x 有相同的焦点F 1,F 2,点P 是两曲线的一个公共点,则|PF 1|•、|PF 2|的值等于A .a m -B .22a m - C .)(21a m - D .a m - (6)已知点A(3,2),F 为抛物线x y 22=的焦点,点P 在抛物线上移动,则使|PA|+|PF|取最小值时点P 的坐标是 .(7)已知A )3,2(-,F 是椭圆1121622=+y x 的右焦点,点M 在椭圆上移动,当|MA|+2|MF|取最小值时,点M 的坐标是 .深入理解圆锥曲线的定义,学会用定义定义解决有关问题。

高中数学圆锥曲线方程知识点总结

高中数学圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点一、椭圆方程1. 椭圆方程的第一定义:平面内与两个定点F 1,F 2的距离的和等于定长定长通常等于2a,且2a>F 1F 2的点的轨迹叫椭圆;1①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax=+.ii. 中心在原点,焦点在y 轴上:)0(12222b a b x a y=+.注:A.以上方程中,a b 的大小0a b >>,其中222b ac =-;B.在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小;②一般方程:)0,0(122 B A By Ax =+.③椭圆的标准方程:12222=+b y a x 的参数方程为⎩⎨⎧==θθsin cos b y a x 一象限θ应是属于20πθ .⑵椭圆的性质①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:ca x 2±=或c a y 2±=.⑥离心率:)10( e ace =.∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆;当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a +=;⑦焦点半径:i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则ii.设),(00y x P 为椭圆)0(12222 b a a y b x =+上的一点,21,F F 为上、下焦点,则由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a ca x e pF -=-=+=+=归结起来为“左加右减”.注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆.⑧通径:垂直于x 轴且过焦点的弦叫做通径.坐标:),(2222a b c a b d -=和),(2ab c⑨焦点三角形的面积:若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan 2θb 用余弦定理与a PF PF 221=+可得;若是双曲线,则面积为2cot2θ⋅b ;(3)(4)共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. 2.3.椭圆的第二定义:平面内到定点F 的距离和它到一条定直线LF 不在L 上的距离的比为常数e 01e <<的点的轨迹叫做椭圆;其中定点F 为椭圆的焦点,定直线L 为椭圆焦点F 相应的准线;二、双曲线方程1.2. 双曲线的第一定义:平面内到到两个定点F 1,F 2的差的绝对值等于定长定长通常等于2a,且2a<F 1F 2的点的轨迹叫做双曲线;12||||||2PF PF a -=;⇒-=+=0201,ex a PF ex a PF ⇒-=+=0201,ey a PF ey a PF⑴①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-.一般方程:)0(122 AC Cy Ax =+.⑵①i. 焦点在x 轴上:顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程c a x 2±= 渐近线方程:0=±b ya x 或02222=-by a xii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±bx a y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x .②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c.③离心率ace =.④准线距c a 22两准线的距离;通径ab 22.⑤参数关系ace b a c =+=,222.⑥焦点半径公式:对于双曲线方程12222=-by ax21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点“长加短减”原则:与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号aex MF a ex MF -=+=0201 构成满足a MF MF 221=-M aex F M --='01⑶等轴双曲线:双曲线222a y x ±=-yA.定义:实轴和虚轴等长的双曲线叫做等轴双曲线;定义式:a b =;B.等轴双曲线的性质:1渐近线方程为:x y ±= ;2渐近线互相垂直;C.注意到等轴双曲线的特征a b =,则等轴双曲线可以设为:)0(22≠=-λλy x ,当0>λ时交点在x 轴,当0<λ时焦点在y 轴上;⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222b y a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by a x .⑸共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x .2.双曲线的第二定义:平面内到定点F 的距离和它到一条定直线LF 不在L 上的距离的比为常数ee>1的点的轨迹叫做双曲线;其中定点F 为双曲线的焦点,定直线L 为双曲线焦点F 相应的准线;三、抛物线方程1抛物线的概念平面内与一定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线定点F 不在定直线l 上;定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线;方程()022>=p pxy 叫做抛物线的标准方程;注意:它表示的抛物线的焦点在x 轴的正半轴上,焦点坐标是F2p ,0,它的准线方程是2px -= ;2抛物线的性质设0 p ,抛物线的标准方程、类型及其几何性质:注:①通径过焦点且垂直于坐标轴的线段为2p,这是过焦点的所有弦中最短的.px y 22=或py x 22=的参数方程为⎩⎨⎧==pt y pt x 222或⎩⎨⎧==222pt y ptx t 为参数. 四、圆锥曲线的统一定义1. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹.当10 e 时,轨迹为椭圆;当1=e 时,轨迹为抛物线;当1 e 时,轨迹为双曲线;当0=e 时,轨迹为圆a c e =,当b ac ==,0时.弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=2.备注1双曲线:1等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 2共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x . 备注2抛物线:1设抛物线的标准方程为2y =2pxp>0,则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p,焦点到准线的距离为p.2已知过抛物线2y =2pxp>0焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设Ax 1,y 1,Bx 2,y 2,则弦长AB=21x x ++p 或α2sin 2pAB =α为直线AB 的倾斜角,221p y y -=,2,41221px AF p x x +==AF 叫做焦半径. §弦长公式:。

高考数学一轮复习专题01 圆锥曲线方程(轨迹方程)(解析版)

高考数学一轮复习专题01 圆锥曲线方程(轨迹方程)(解析版)

解析几何 专题一:轨迹方程一、知识储备 1、曲线方程的定义一般地,如果曲线C 与方程(,)0F x y =之间有以下两个关系: ①曲线C 上的点的坐标都是方程(,)0F x y =的解; ②以方程(,)0F x y =的解为坐标的点都是曲线C 上的点.此时,把方程(,)0F x y =叫做曲线C 的方程,曲线C 叫做方程(,)0F x y =的曲线. 2、求曲线方程的一般步骤:(1)建立适当的直角坐标系(如果已给出,本步骤省略); (2)设曲线上任意一点的坐标为),(y x ; (3)根据曲线上点所适合的条件写出等式; (4)用坐标表示这个等式,并化简; (5)确定化简后的式子中点的范围.上述五个步骤可简记为:求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围. 3、求轨迹方程的方法: (1)定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

(2)直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(,)x y 表示该等量关系式,即可得到轨迹方程。

(3)参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标,x y 与该参数t 的函数关系()x f t =,()y g t =,进而通过消参化为轨迹的普通方程(,)0F x y =.(4)代入法(相关点法):如果动点P 的运动是由另外某一点P '的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线y x 、方程),则可以设出(,)P x y ,用(,)x y 表示出相关点P '的坐标,然后把P '的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

高中数学圆锥曲线方程知识点总结

高中数学圆锥曲线方程知识点总结

2.双曲线的第二定义:平面内到定点 F 的距离和它到一条定直线 L(F 不在 L 上)的距离的比为常数 e (e>1) 的点的轨迹叫做双曲线。 其中定点 F 为双曲线的焦点, 定直线 L 为双曲线焦点 F 相应的准线。
3
三、抛物线方程
(1)抛物线的概念 平面内与一定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线(定点 F 不在定直线 l 上)。 定点 F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线。 方程 y 2 px
⑴①双曲线标准方程:
x2 a
2

y2 b
2
1(a, b 1(a, b 0) .
一般方程: Ax 2 Cy 2 1( AC 0) . ⑵①i. 焦点在 x 轴上: 顶点: (a,0), ( a,0) 焦点: (c,0), (c,0) 准线方程 x
x2 y2 a2 x y 渐近线方程: 0 或 2 2 0 c a b a b a2 . c
ii. 焦点在 y 轴上: 顶点: (0, a ), (0, a ) . 参数方程: 焦点:(0, c), (0,c) . 准线方程:y
渐近线方程:
y a
y2 x2 x 0或 2 2 0, b a b
c ,当 c 0, a b 时).【弦长公式 a
AB 1 k 2 x1 x2 (1 k 2 )[( x1 x2 ) 2 4 x1 x2 ] 】
双曲线 抛物线
2.椭圆、双曲线、抛物线的标准方程与几何性质 椭圆 1.到两定点 F1,F2 的距离之 和为定值 2a(2a>|F1F2|)的 点的轨迹 2.与定点和直线的距离之 比为定值 e 的点的轨迹. (0<e<1)

高三理科数学复习教案:圆锥曲线与方程总复习教案

高三理科数学复习教案:圆锥曲线与方程总复习教案

高三理科数学复习教案:圆锥曲线与方程总复习教案【】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习适应和能力。

因此小编在此为您编辑了此文:高三理科数学复习教案:圆锥曲线与方程总复习教案期望能为您的提供到关心。

本文题目:高三理科数学复习教案:圆锥曲线与方程总复习教案高考导航考试要求重难点击命题展望1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用;2.把握椭圆、抛物线的定义、几何图形、标准方程及简单性质;3.了解双曲线的定义、几何图形和标准方程,明白它的简单几何性质;4.了解圆锥曲线的简单应用;5.明白得数形结合的思想;6.了解方程的曲线与曲线的方程的对应关系. 本章重点:1.椭圆、双曲线、抛物线的定义、几何图形、标准方程及简单性质;2.直线与圆锥曲线的位置关系问题;3.求曲线的方程或曲线的轨迹;4.数形结合的思想,方程的思想,函数的思想,坐标法.本章难点:1.对圆锥曲线的定义及性质的明白得和应用;2.直线与圆锥曲线的位置关系问题;3.曲线与方程的对应关系. 圆锥曲线与函数、方程、不等式、三角形、平面向量等知识结合是高考常考题型.极有可能以一小一大的形式显现,小题要紧考查圆锥曲线的标准方程及几何性质等基础知识、差不多技能和差不多方法运用;解答题常作为数学高考的把关题或压轴题,综合考查学生在数形结合、等价转换、分类讨论、逻辑推理等方面的能力.知识网络9.1 椭圆典例精析题型一求椭圆的标准方程【例1】已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为453和253,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程.【解析】由椭圆的定义知,2a=453+253=25,故a=5,由勾股定理得,(453)2-(253)2=4c2,因此c2=53,b2=a2-c2=103,故所求方程为x25+3y210=1或3x210+y25=1.【点拨】(1)在求椭圆的标准方程时,常用待定系数法,然而当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx2+ny2=1(m0,n0且m(2)在求椭圆中的a、b、c时,经常用到椭圆的定义及解三角形的知识.【变式训练1】已知椭圆C1的中心在原点、焦点在x轴上,抛物线C 2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:据此,可推断椭圆C1的方程为.【解析】方法一:先将题目中的点描出来,如图,A(-2,2),B(-2,0),C(0,6),D(2,-22),E(22,2),F(3,-23).通过观看可明白点F,O,D可能是抛物线上的点.而A,C,E是椭圆上的点,这时正好点B既不在椭圆上,也不在抛物线上.明显半焦距b=6,则不妨设椭圆的方程是x2m+y26=1,则将点A(-2,2)代入可得m=12,故该椭圆的方程是x212+y26=1.方法二:欲求椭圆的解析式,我们应先求出抛物线的解析式,因为抛物线的解析式形式比椭圆简单一些.不妨设有两点y21=2px1,①y22=2px2,②y21y22=x1x2,则可知B(-2,0),C(0,6)不是抛物线上的点.而D(2,-22),F(3,-23)正好符合.又因为椭圆的交点在x轴上,故B(-2,0),C(0,6)不可能同时显现.故选用A(-2,2),E(22,2)这两个点代入,可得椭圆的方程是x212+y26=1.题型二椭圆的几何性质的运用【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,F1PF2=60.(1)求椭圆离心率的范畴;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.【解析】(1)设椭圆的方程为x2a2+y2b2=1(a0),|PF1|=m,|PF2|=n,在△F1PF2中,由余弦定理可知4c2=m2+n2-2mncos 60,因为m+n=2a,因此m2+n2=(m+n)2-2mn=4a2-2mn,因此4c2=4a2-3mn,即3mn=4a2-4c2.又mn(m+n2)2=a2(当且仅当m=n时取等号),因此4a2-4c23a2,因此c2a214,即e12,因此e的取值范畴是[12,1).(2)由(1)知mn=43b2,因此=12mnsin 60=33b2,即△F1PF2的面积只与椭圆的短轴长有关.【点拨】椭圆中△F1PF2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范畴时,要专门注意椭圆定义(或性质)与不等式的联合使用,如|PF1||PF2|(|PF1|+|PF2|2)2,|PF1|a-c.【变式训练2】已知P是椭圆x225+y29=1上的一点,Q,R分别是圆(x +4)2+y2=14和圆(x-4)2+y2=14上的点,则|PQ|+|PR|的最小值是.【解析】设F1,F2为椭圆左、右焦点,则F1,F2分别为两已知圆的圆心,则|PQ|+|PR|(|PF1|-12)+(|PF2|-12)=|PF1|+|PF2|-1=9.因此|PQ|+|PR|的最小值为9.题型三有关椭圆的综合问题【例3】(2021全国新课标)设F1,F2分别是椭圆E:x2a2+y2b2=1(a0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,-1)满足|PA|=|PB|,求E的方程.【解析】(1)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得|AB|=43a.l的方程为y=x+c,其中c=a2-b2.设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组化简得(a2+b2)x2+2a2cx+a2(c2-b2)=0,则x1+x2=-2a2ca2+b2,x1x2=a2(c2-b2)a2+b2.因为直线AB斜率为1,因此|AB|=2|x2-x1|=2[(x1+x2)2-4x1x2],即43a=4ab2a2+b2,故a2=2b2,因此E的离心率e=ca=a2-b2a=22.(2 )设AB的中点为N(x0,y0),由(1)知x0=x1+x22=-a2ca2+b2=-23c,y 0=x0+c=c3.由|PA|=|PB|kPN=-1,即y0+1x0=-1c=3.从而a=32,b=3,故E的方程为x218+y29=1.【变式训练3】已知椭圆x2a2+y2b2=1(a0)的离心率为e,两焦点为F1,F2,抛物线以F1为顶点,F2为焦点,P为两曲线的一个交点,若|PF1||PF2 |=e,则e的值是()A.32B.33C.22D.63【解析】设F1(-c,0),F2(c,0),P(x0,y0),则椭圆左准线x=-a2c,抛物线准线为x=-3c,x0-(-a2c)=x0-(-3c)c2a2=13e=33.故选B.总结提高1.椭圆的标准方程有两种形式,其结构简单,形式对称且系数的几何意义明确,在解题时要防止遗漏.确定椭圆需要三个条件,要确定焦点在哪条坐标轴上(即定位),还要确定a、b的值(即定量),若定位条件不足应分类讨论,或设方程为mx2+ny2=1(m0,n0,mn)求解.2.充分利用定义解题,一方面,会依照定义判定动点的轨迹是椭圆,另一方面,会利用椭圆上的点到两焦点的距离和为常数进行运算推理.3.焦点三角形包含着专门多关系,解题时要多从椭圆定义和三角形的几何条件入手,且不可顾此失彼,另外一定要注意椭圆离心率的范畴.9.2 双曲线典例精析题型一双曲线的定义与标准方程【例1】已知动圆E与圆A:(x+4)2+y2=2外切,与圆B:( x-4)2+y2= 2内切,求动圆圆心E的轨迹方程.【解析】设动圆E的半径为r,则由已知|AE|=r+2,|BE|=r-2,因此|AE|-|BE|=22,又A(-4,0),B(4,0),因此|AB|=8,22|AB|.依照双曲线定义知,点E的轨迹是以A、B为焦点的双曲线的右支.因为a=2,c=4,因此b2=c2-a2=14,故点E的轨迹方程是x22-y214=1(x2).【点拨】利用两圆内、外切圆心距与两圆半径的关系找出E点满足的几何条件,结合双曲线定义求解,要专门注意轨迹是否为双曲线的两支.【变式训练1】P为双曲线x29-y216=1的右支上一点,M,N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为()A.6B.7C.8D.9【解析】选D.题型二双曲线几何性质的运用【例2】双曲线C:x2a2-y2b2=1(a0,b0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,使=0,求此双曲线离心率的取值范畴.【解析】设P(x,y),则由=0,得APPQ,则P在以AQ为直径的圆上,即(x-3a2)2+y2=(a2)2,①又P在双曲线上,得x2a2-y2b2=1,②由①②消去y,得(a2+b2)x2-3a3x+2a4-a2b2=0,即[(a2+b2)x-(2a3-ab2)](x-a)=0,当x=a时,P与A重合,不符合题意,舍去;当x=2a3-ab2a2+b2时,满足题意的点P存在,需x=2a3-ab2a2+b2a,化简得a22b2,即3a22c2,ca62,因此离心率的取值范畴是(1,62).【点拨】依照双曲线上的点的范畴或者焦半径的最小值建立不等式,是求离心率的取值范畴的常用方法.【变式训练2】设离心率为e的双曲线C:x2a2-y2b2=1(a0,b0)的右焦点为F,直线l过焦点F,且斜率为k,则直线l与双曲线C的左、右两支都相交的充要条件是()A.k2-e21B.k2-e21C.e2-k21D.e2-k21【解析】由双曲线的图象和渐近线的几何意义,可知直线的斜率k只需满足-ba题型三有关双曲线的综合问题【例3】(2021广东)已知双曲线x22-y2=1的左、右顶点分别为A1、A 2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;(2)若过点H(0,h)(h1)的两条直线l1和l2与轨迹E都只有一个交点,且l1l2,求h的值.【解析】(1)由题意知|x1|2,A1(-2,0),A2(2,0),则有直线A1P的方程为y=y1x1+2(x+2),①直线A2Q的方程为y=-y1x1-2(x-2).②方法一:联立①②解得交点坐标为x=2x1,y=2y1x1,即x1=2x,y1=2 yx,③则x0,|x|2.而点P(x1,y1)在双曲线x22-y2=1上,因此x212-y21=1.将③代入上式,整理得所求轨迹E的方程为x22+y2=1,x0且x2.方法二:设点M(x,y)是A1P与A2Q的交点,①②得y2=-y21x21-2(x 2-2).③又点P(x1,y1)在双曲线上,因此x212-y21=1,即y21=x212-1.代入③式整理得x22+y2=1.因为点P,Q是双曲线上的不同两点,因此它们与点A1,A2均不重合.故点A1和A2均不在轨迹E上.过点(0,1)及A2(2,0)的直线l的方程为x+2 y-2=0.解方程组得x=2,y=0.因此直线l与双曲线只有唯独交点A2.故轨迹E只是点(0,1).同理轨迹E也只是点(0,-1).综上分析,轨迹E的方程为x22+y2=1,x0且x2.(2)设过点H(0,h)的直线为y=kx+h(h1),联立x22+y2=1得(1+2k2)x2+4khx+2h2-2=0.令=16k2h2-4(1+2k2)(2h2-2)=0,得h2-1-2k2=0,解得k1=h2-12,k2=-h2-12.由于l1l2,则k1k2=-h2-12=-1,故h=3.过点A1,A2分别引直线l1,l2通过y轴上的点H(0,h),且使l1l2,因此A1HA2H,由h2(-h2)=-1,得h=2.现在,l1,l2的方程分别为y=x+2与y=-x+2,它们与轨迹E分别仅有一个交点(-23,223)与(23,223).因此,符合条件的h的值为3或2.【变式训练3】双曲线x2a2-y2b2=1(a0,b0)的左、右焦点分别为F1,F 2,离心率为e,过F2的直线与双曲线的右支交于A,B两点,若△F1AB 是以A为直角顶点的等腰直角三角形,则e2等于()A.1+22B.3+22C.4-22D.5-22【解析】本题考查双曲线定义的应用及差不多量的求解.据题意设|AF1|=x,则|AB|=x,|BF1|=2x.由双曲线定义有|AF1|-|AF2|=2a,|BF1|-|BF2|=2a(|AF1|+|BF1|)-(|AF2|+|BF2|)=(2+1)x-x=4a,即x=22a=|AF1|.故在Rt△AF1F2中可求得|AF2|=|F1F2|2-|AF1|2=4c2-8a2.又由定义可得|AF2|=|AF1|-2a=22a-2a,即4c2-8a2=22-2a,两边平方整理得c2=a2(5-22)c2a2=e2=5-22,故选D.总结提高1.要与椭圆类比来明白得、把握双曲线的定义、标准方程和几何性质,但应专门注意不同点,如a,b,c的关系、渐近线等.2.要深刻明白得双曲线的定义,注意其中的隐含条件.当||PF1|-|PF2||=2a| F1F2|时,P的轨迹是双曲线;当||PF1|-|PF2||=2a=|F1F2|时,P的轨迹是以F1或F2为端点的射线;当||PF1|-|PF2||=2a|F1F2|时,P无轨迹.3.双曲线是具有渐近线的曲线,画双曲线草图时,一样先画出渐近线,要把握以下两个问题:(1)已知双曲线方程,求它的渐近线;(2)求已知渐近线的双曲线的方程.如已知双曲线渐近线y=bax,可将双曲线方程设为x2a2-y2b2=(0),再利用其他条件确定的值,求法的实质是待定系数法.9.3 抛物线典例精析题型一抛物线定义的运用【例1】依照下列条件,求抛物线的标准方程.(1)抛物线过点P(2,-4);(2)抛物线焦点F在x轴上,直线y=-3与抛物线交于点A,|AF|=5.【解析】(1)设方程为y2=mx或x2=ny.将点P坐标代入得y2=8x或x2=-y.(2)设A(m,-3),所求焦点在x轴上的抛物线为y2=2px(p0),由定义得5=|AF|=|m+p2|,又(-3)2=2pm,因此p=1或9,所求方程为y2=2x或y2=18x.【变式训练1】已知P是抛物线y2=2x上的一点,另一点A(a,0) (a0)满足|P A|=d,试求d的最小值.【解析】设P(x0,y0) (x00),则y20=2x0,因此d=|PA|=(x0-a)2+y20=(x0-a)2+2x0=[x0+(1-a)]2+2a-1.因为a0,x00,因此当0当a1时,现在有x0=a-1,dmin=2a-1.题型二直线与抛物线位置讨论【例2】(2021湖北)已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差差不多上1.(1)求曲线C的方程;(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B 的任一直线,都有0?若存在,求出m的取值范畴;若不存在,请说明理由.【解析】(1)设P(x,y)是曲线C上任意一点,那么点P(x,y)满足:(x-1)2+y2-x=1(x0).化简得y2=4x(x0).(2)设过点M(m,0)(m0)的直线l与曲线C的交点为A(x1,y1),B(x2,y 2).设l的方程为x=ty+m,由得y2-4ty-4m=0,=16(t2+m)0,因此①又=(x1-1,y1),=(x2-1,y2).(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+y1y20.②又x=y24,因此不等式②等价于y214y224+y1y2-(y214+y224)+10(y1y2)216+y1y2-14[(y1+y2)2-2y1y2]+10.③由①式,不等式③等价于m2-6m+14t2.④对任意实数t,4t2的最小值为0,因此不等式④关于一切t成立等价于m 2-6m+10,即3-22由此可知,存在正数m,关于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有0,且m的取值范畴是(3-22,3+22).【变式训练2】已知抛物线y2=4x的一条弦AB,A(x1,y1),B(x2,y 2),AB所在直线与y轴的交点坐标为(0,2),则1y1+1y2= .【解析】y2-4my+8m=0,因此1y1+1y2=y1+y2y1y2=12.题型三有关抛物线的综合问题【例3】已知抛物线C:y =2x2,直线y=kx+2交C于A,B两点,M 是线段AB的中点,过M作x轴的垂线交C于点N.(1)求证:抛物线C在点N处的切线与AB平行;(2)是否存在实数k使=0?若存在,求k的值;若不存在,说明理由.【解析】(1)证明:如图,设A(x1,2x21),B(x2,2x22),把y=kx+2代入y=2x2,得2x2-kx-2=0,由韦达定理得x1+x2=k2,x1x2=-1,因此xN=xM=x1+x22=k4,因此点N的坐标为(k4,k28).设抛物线在点N处的切线l的方程为y-k28=m(x-k4),将y=2x2代入上式,得2x2-mx+mk4 -k28=0,因为直线l与抛物线C相切,因此=m2-8(mk4-k28)=m2-2mk+k2=(m-k)2=0,因此m=k,即l∥AB.(2)假设存在实数k,使=0,则NANB,又因为M是AB的中点,因此|MN|= |AB|.由(1)知yM=12(y1+y2)=12(kx1+2+kx2+2)=12[k(x1+x2)+4]=12(k22+4)=k 24+2.因为MNx轴,因此|MN|=|yM-yN|=k24+2-k28=k2+168.又|AB|=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2=1+k2(k2)2-4(-1)=12k2+1k2+16.因此k2+168=14k2+1k2+16,解得k=2.即存在k=2,使=0.【点拨】直线与抛物线的位置关系,一样要用到根与系数的关系;有关抛物线的弦长问题,要注意弦是否过焦点,若过抛物线的焦点,可直截了当使用公式|AB|=x1+x2+p,若只是焦点,则必须使用一样弦长公式.【变式训练3】已知P是抛物线y2=2x上的一个动点,过点P作圆(x-3)2+y2=1的切线,切点分别为M、N,则|MN|的最小值是.【解析】455.总结提高1.在抛物线定义中,焦点F不在准线l上,这是一个重要的隐含条件,若F在l上,则抛物线退化为一条直线.2.把握抛物线本身固有的一些性质:(1)顶点、焦点在对称轴上;(2)准线垂直于对称轴;(3)焦点到准线的距离为p;(4)过焦点垂直于对称轴的弦(通径)长为2p.3.抛物线的标准方程有四种形式,要把握抛物线的方程与图形的对应关系.求抛物线方程时,若由已知条件可知曲线的类型,可采纳待定系数法.4.抛物线的几何性质,只要与椭圆、双曲线加以对比,专门容易把握.但由于抛物线的离心率为1,因此抛物线的焦点有专门多重要性质,而且应用广泛,例如:已知过抛物线y2=2px(p0)的焦点的直线交抛物线于A、B 两点,设A(x1,y1),B(x2,y2),则有下列性质:|AB|=x1+x2+p或|AB|=2p sin2(为AB的倾斜角),y1y2=-p2,x1x2=p24等.9.4 直线与圆锥曲线的位置关系典例精析题型一直线与圆锥曲线交点问题【例1】若曲线y2=ax与直线y=(a+1)x-1恰有一个公共点,求实数a 的值.【解析】联立方程组(1)当a=0时,方程组恰有一组解为(2)当a0时,消去x得a+1ay2-y-1=0,①若a+1a=0,即a=-1,方程变为一元一次方程-y-1=0,方程组恰有一组解②若a+1a0,即a-1,令=0,即1+4(a+1)a=0,解得a= -45,这时直线与曲线相切,只有一个公共点.综上所述,a=0或a=-1或a=-45.【点拨】本题设计了一个思维陷阱,即审题中误认为a0,解答过程中的失误确实是不讨论二次项系数=0,即a=-1的可能性,从而漏掉两解.本题用代数方法解完后,应从几何上验证一下:①当a=0时,曲线y2=ax,即直线y=0,现在与已知直线y=x-1 恰有交点(1,0);②当a=-1时,直线y=-1与抛物线的对称轴平行,恰有一个交点(代数特点是消元后得到的一元二次方程中二次项系数为零);③当a=-45时直线与抛物线相切.【变式训练1】若直线y=kx-1与双曲线x2-y2=4有且只有一个公共点,则实数k的取值范畴为()A.{1,-1,52,-52}B.(-,-52][52,+)C.(-,-1][1,+)D.(-,-1)[52,+)【解析】由(1-k2)x2-2kx-5=0,k=52,结合直线过定点(0,-1),且渐近线斜率为1,可知答案为A.题型二直线与圆锥曲线的相交弦问题【例2】(2021辽宁)设椭圆C:x2a2+y2b2=1(a0)的右焦点为F,过F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60,=2 .(1)求椭圆C的离心率;(2)假如|AB|=154,求椭圆C的方程.【解析】设A(x1,y1),B(x2,y2),由题意知y10,y20.(1)直线l的方程为y=3(x-c),其中c=a2-b2.联立得(3a2+b2)y2+23b2cy-3b4=0.解得y1=-3b2(c+2a)3a2+b2,y2=-3b2(c-2a)3a2+b2.因为=2 ,因此-y1=2y2,即3b2(c+2a)3a2+b2=2-3b2(c-2a)3a2+b2.解得离心率e=ca=23.(2)因为|AB|=1+13|y2-y1|,因此2343ab23a2+b2=154.由ca=23得b=53a,因此54a=154,即a=3,b=5.因此椭圆的方程为x29+y25=1.【点拨】本题考查直线与圆锥曲线相交及相交弦的弦长问题,以及用待定系数法求椭圆方程.【变式训练2】椭圆ax2+ by2=1与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为32,则ab的值为.【解析】设直线与椭圆交于A、B两点的坐标分别为(x1,y1),(x2,y 2),弦中点坐标为(x0,y0),代入椭圆方程两式相减得a(x1-x2)(x1+x2)+b(y 1-y2)(y1+y2)=02ax0+2by0y1-y2x1-x2=0ax0-by0=0.故ab=y0x0=32.题型三对称问题【例3】在抛物线y2=4x上存在两个不同的点关于直线l:y=kx+3对称,求k的取值范畴.【解析】设A(x1,y1)、B(x2、y2)是抛物线上关于直线l对称的两点,由题意知k0.设直线AB的方程为y=-1kx+b,联立消去x,得14ky2+y-b=0,由题意有=12+414k0,即bk+10.(*)且y1+y2=-4k.又y1+y22=-1kx1+x22+b.因此x1+x22=k(2k+b).故AB的中点为E(k(2k+b),-2k).因为l过E,因此-2k=k2(2k+b)+3,即b=-2k-3k2-2k.代入(*)式,得-2k-3k3-2+1k3+2k+3k30k(k+1)(k2-k+3)-1【点拨】(1)本题的关键是对称条件的转化.A(x1,y1)、B(x2,y2)关于直线l对称,则满足直线l与AB垂直,且线段AB的中点坐标满足l的方程;(2)关于圆锥曲线上存在两点关于某一直线对称,求有关参数的范畴问题,利用对称条件求出过这两点的直线方程,利用判别式大于零建立不等式求解;或者用参数表示弦中点的坐标,利用中点在曲线内部的条件建立不等式求参数的取值范畴.【变式训练3】已知抛物线y=-x2+3上存在关于x+y=0对称的两点A,B,则|AB|等于()A.3B.4C.32D.42【解析】设AB方程:y=x+b,代入y=-x2+3,得x2+x+b-3=0,因此xA+xB=-1,故AB中点为(-12,-12+b).它又在x+y=0上,因此b=1,因此|AB|=32,故选C.总结提高1.本节内容的重点是研究直线与圆锥曲线位置关系的判别式方法及弦中点问题的处理方法.2.直线与圆锥曲线的位置关系的研究能够转化为相应方程组的解的讨论,即联立方程组通过消去y(也能够消去x)得到x的方程ax2+bx+c=0进行讨论.这时要注意考虑a=0和a0两种情形,对双曲线和抛物线而言,一个公共点的情形除a0,=0外,直线与双曲线的渐近线平行或直线与抛物线的对称轴平行时,都只有一个交点(现在直线与双曲线、抛物线属相交情形).由此可见,直线与圆锥曲线只有一个公共点,并不是直线与圆锥曲线相切的充要条件.3.弦中点问题的处理既能够用判别式法,也能够用点差法;使用点差法时,要专门注意验证相交的情形.9.5 圆锥曲线综合问题典例精析题型一求轨迹方程【例1】已知抛物线的方程为x2=2y,F是抛物线的焦点,过点F的直线l与抛物线交于A、B两点,分别过点A、B作抛物线的两条切线l1和l 2,记l1和l2交于点M.(1)求证:l1(2)求点M的轨迹方程.【解析】(1)依题意,直线l的斜率存在,设直线l的方程为y=kx+12.联立消去y整理得x2-2kx-1=0.设A的坐标为(x1,y1),B的坐标为(x 2,y2),则有x1x2=-1,将抛物线方程改写为y=12x2,求导得y=x.因此过点A的切线l1的斜率是k1=x1,过点B的切线l2的斜率是k2= x2.因为k1k2 =x1x2=-1,因此l1l2.(2)直线l1的方程为y-y1=k1(x-x1),即y-x212=x1(x-x1).同理直线l2的方程为y-x222=x2(x-x2).联立这两个方程消去y得x212-x222=x2(x-x2)-x1(x-x1),整理得(x1-x2)(x-x1+x22)=0,注意到x1x2,因此x=x1+x22.现在y=x212+x1(x-x1)=x212+x1(x1+x22-x1)=x1x22=-12.由(1)知x1+x2=2k,因此x=x1+x22=kR.因此点M的轨迹方程是y=-12.【点拨】直截了当法是求轨迹方程最重要的方法之一,本题用的确实是直截了当法.要注意求轨迹方程和求轨迹是两个不同概念,求轨迹除了第一要求我们求出方程,还要说明方程轨迹的形状,这就需要我们对各种差不多曲线方程和它的形状的对应关系了如指掌.【变式训练1】已知△ABC的顶点为A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是()A.x29-y216=1B.x216-y29=1C.x29-y216=1(x3)D.x216-y29=1(x4)【解析】如图,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,因此|CA|-|CB|=8-2=6,依照双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,方程为x29-y216=1(x3),故选C.题型二圆锥曲线的有关最值【例2】已知菱形ABCD的顶点A、C在椭圆x2+3y2=4上,对角线B D所在直线的斜率为1.当ABC=60时,求菱形ABCD面积的最大值.【解析】因为四边形ABCD为菱形,因此ACBD.因此可设直线AC的方程为y=-x+n.由得4x2-6nx+3n2-4=0.因为A,C在椭圆上,因此=-12n2+640,解得-433设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n2,x1x2=3 n2-44,y1=-x1+n,y2=-x2+n. 因此y1+y2=n2.因为四边形ABCD为菱形,且ABC=60,因此|AB|=|BC|=|CA|.因此菱形ABCD的面积S=32|AC|2.又|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,因此S=34(-3n2+16) (-433因此当n=0时,菱形ABCD的面积取得最大值43.【点拨】建立目标函数,借助代数方法求最值,要专门注意自变量的取值范畴.在考试中专门多考生没有利用判别式求出n的取值范畴,尽管也能得出答案,然而得分缺失许多.【变式训练2】已知抛物线y=x2-1上有一定点B(-1,0)和两个动点P、Q,若BPPQ,则点Q横坐标的取值范畴是.【解析】如图,B(-1,0),设P(xP,x2P-1),Q(xQ,x2Q-1),由kBPkPQ=-1,得x2P-1xP+1x2Q-x2PxQ-xP=-1.因此xQ=-xP-1xP-1=-(xP-1)-1xP-1-1.因为|xP-1+1xP-1|2,因此xQ1或xQ-3.题型三求参数的取值范畴及最值的综合题【例3】(2021浙江)已知m1,直线l:x-my-m22=0,椭圆C:x2m2+y 2=1,F1,F2分别为椭圆C的左、右焦点.(1)当直线l过右焦点F2时,求直线l的方程;(2)设直线l与椭圆C交于A,B两点,△AF1F2,△BF1F2的重心分别为G,H.若原点O在以线段GH为直径的圆内,求实数m的取值范畴.【解析】(1)因为直线l:x-my-m22=0通过F2(m2-1,0),因此m2-1=m22,解得m2=2,又因为m1,因此m=2.故直线l的方程为x-2y-1=0.(2)A(x1,y1),B(x2,y2),由消去x得2y2+my+m24-1=0,则由=m2-8(m24-1)=-m2+80知m28,且有y1+y2=-m2,y1y2=m28-12.由于F1(-c,0),F2(c,0),故O为F1F2的中点,由=2 ,=2 ,得G(x13,y13),H(x23,y23),|GH|2=(x1-x2)29+(y1-y2)29.设M是GH的中点,则M(x1+x26,y1+y26),由题意可知,2|MO||GH|,即4[(x1+x26)2+(y1+y26)2](x1-x2)29+(y1-y2) 29,即x1x2+y1y20.而x1x2+y1y2=(my1+m22)(my2+m22)+y1y2=(m2+1)(m28-12).因此m28-120,即m24.又因为m1且0,因此1因此m的取值范畴是(1,2).【点拨】本题要紧考查椭圆的几何性质,直线与椭圆、点与圆的位置关系等基础知识,同时考查解析几何的差不多思想方法和综合解题能力.【变式训练3】若双曲线x2-ay2=1的右支上存在三点A、B、C使△A BC为正三角形,其中一个顶点A与双曲线右顶点重合,则a的取值范畴为.【解析】设B(m,m2-1a),则C(m,-m2-1a)(m1),又A(1,0),由AB=BC得(m-1)2+m2-1a=(2m2-1a)2,因此a=3m+1m-1=3(1+2m-1)3,即a的取值范畴为(3,+).总结提高事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。

圆锥曲线的方程

圆锥曲线的方程

第三章圆锥曲线的方程 ---02椭圆的简单几何性质一、问题导学1. 什么是椭圆?椭圆的标准方程形式有哪些?如何确定焦点位置?2. a,b,c 的关系如何?3. 椭圆的几何性质有哪些?4.如何根据方程和图像推导几何性质? 二、知识构建知识点一 椭圆的简单几何性质标准方程()222210+=>>x y a b a b()222210+=>>x y a b a b图形性质范围 a x a -≤≤,b y b -≤≤ b x b -≤≤,a y a -≤≤对称性对称轴:坐标轴对称中心:原点顶点 ()1,0A a -,()2,0A a ,()10,B b -,()20,B b()10,A a -,()20,A a ,()1,0B b -,()2,0B b轴长轴12A A 的长为 ,短轴12B B 的长为焦距12F F =焦点()1,0F c -,()2,0F c ()10,F c -,()20,F c离心e = ∈率 a 、b 、c 的关系2c =知识点二 对椭圆简单几何性质的说明1.离心率的范围为(0,1).2.e 越大,椭圆越扁平;e 越小,椭圆越接近于圆.3.椭圆的焦点一定在它的长轴上.4.椭圆上到中心的距离最小的点是短轴的两个端点,到中心的距离最大的点是长轴的两个端点.5.椭圆上到焦点的距离最大和最小的点分别是长轴的两个端点,最大值为a +c ,最小值为a -c .三、类型剖析类型一 利用椭圆的标准方程研究其几何性质 类型二 由几何性质求椭圆的方程 类型三 求椭圆的离心率四、类型应用类型一 利用椭圆的标准方程研究其几何性质【例1】(23-24高二上·上海·课后作业)已知下列椭圆的方程,分别求椭圆的长轴长、短轴长、焦点坐标和顶点坐标. (1)22143x y +=;(2)22254100x y +=.【跟踪训练1-1】(23-24高二上·全国·课后作业)求下列各椭圆的长轴长、短轴长、焦距、顶点坐标、焦点坐标和离心率,并画出它们的草图: (1)22936x y +=; (2)229545x y +=.【跟踪训练1-2】(23-24高二下·四川雅安·开学考试)已知椭圆22:1828x y C +=,则( )A .椭圆C 的长轴长为7B .椭圆C 的焦距为12C .椭圆C 的短半轴长为2D .椭圆C 35【跟踪训练1-3】(22-23高二上·全国·期中)已知椭圆22:146x y C +=,则下列说法中正确的是( )A .椭圆C 的焦点在x 轴上B .椭圆C 的长轴长是6C .椭圆C 的焦距为4D .椭圆C 3【跟踪训练1-4】(24-25高二上·全国·课后作业)已知椭圆C 与椭圆22164x y +=有相同的焦点,且C 的长轴长为6,则C 的短轴长为( )A .2B .4C 7D .27类型二 由几何性质求椭圆的方程【例2】(22-23高二上·江苏连云港·阶段练习)求适合下列条件的椭圆的标准方程: (1)中心在原点,一个焦点坐标为()0,5,短轴长为4;(2)中心在原点,焦点在x 轴上,右焦点到短轴端点的距离为2,到右顶点的距离为1. 【跟踪训练2-1】(24-25高二上·山东滨州·阶段练习)椭圆的长短轴之和为18,焦距为6,则椭圆的标准方程为( )A .221916x y +=B .2212516x y +=C .2212516x y +=或2251162x y += D .2251162x y +=【跟踪训练2-2】(23-24高二下·江西·期中)已知椭圆C 的对称中心为坐标原点,焦点在坐标轴上,若椭圆的长轴长为10,短半轴长为4,则椭圆C 的标准方程可能为( )A .2212516x y +=B .22195x y +=C .2251162x y +=D .22159x y +=【跟踪训练2-3】(23-24高二上·陕西宝鸡·期中)已知椭圆()222210+=>>x y a b a b过点31,2M ⎛⎫⎪⎝⎭,且椭圆的短轴长为3 ) A .22153x y +=B .22143x y +=C .2211612x y +=D .22163x y +=【跟踪训练2-4】(22-23高二上·河南·阶段练习)已知直线220x y +-=,经过椭圆的右顶点和上顶点,则椭圆的标准方程为( )A .2215x y +=B .22153x y +=C .2214x y +=D .22143x y +=【跟踪训练2-5】(24-25高二·上海·随堂练习)已知椭圆的中心在原点且过点()3,2P ,焦点在坐标轴上,长轴长是短轴长的3倍,求该椭圆的方程 .【跟踪训练2-6】(22-23高二上·河南郑州·期中)焦点在x 轴上,短轴长为8,离心率为35的椭圆的标准方程是 . 类型三 求椭圆的离心率【例3】(2024·陕西西安·模拟预测)已知椭圆C :()222104x y a a +=>的焦距为25C 的离心率为 .【跟踪训练3-1】(23-24高二下·湖南益阳·阶段练习)椭圆22142x y +=的离心率为( ) A 2B .12C 3D .13【跟踪训练3-2】(20-21高二上·天津北辰·期末)椭圆的长轴长为10,其焦点到椭圆中心的距离为4,则该椭圆的离心率为 .【跟踪训练3-3】(24-25高二上·湖南衡阳·阶段练习)若椭圆2222:1(0)x y C a b a b+=>>满足2a b =,则该椭圆的离心率e =( )A .12B 3C 3D 5【跟踪训练3-4】(2024·辽宁·模拟预测)已知焦点在x 轴上的椭圆()222:104x yC b b+=>的短轴长为2,则其离心率为( ) A 3B 2 C .12D .14【跟踪训练3-5】(23-24高二上·重庆·期末)已知12,F F 是椭圆的两个焦点,若椭圆上存在点P ,使得21212PF F F PF ==,则椭圆的离心率为 .【跟踪训练3-6】(23-24高二下·内蒙古赤峰·期中)已知点A ,B ,C 为椭圆的三个顶点,若ABC 是正三角形,则它的离心率是 .【跟踪训练3-7】(24-25高二上·全国·课后作业)椭圆有这样的光学性质:从椭圆的一个焦点发出的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.今有一个水平放置的椭圆形球盘,点,A B 是它的两个焦点,其距离为2c =6,静放在点A 的小球(小球的半径不计)从点A 沿直线(不与长轴共线)发出,经椭圆壁反弹后第一次回到点A 时,小球经过的路程为20,则椭圆的离心率为 .五、数学情境1.(23-24高三下·江苏南京·开学考试)数学月考出了这样一道题:设,A B 为椭圆221169x y +=上的两个动点,若直线430x y m +-=上存在点P ,使得APB ∠为直角,求实数m 的取值范围.小峰同学没有思路,于是求助数学老师,老师拍拍他的肩膀告诉他:从前,有个叫蒙日的数学家,发现椭圆的两条互相垂直的切线的交点所构成的轨迹是一个定圆.小峰顿悟,于是写出了答案: .2.(24-25高二上·陕西汉中·期中)万众瞩目的北京冬奥会将于2022年2月4日正式开幕,继2008年北京奥运会之后,国家体育场(又名鸟巢)将再次承办奥运会开幕式.在手工课上,王老师带领同学们一起制作了一个近似鸟巢的金属模型,其俯视图可近似看成是两个大小不同,扁平程度相同的椭圆,已知大椭圆的长轴长为40cm ,短轴长为20cm ,小椭圆的短轴长为10cm ,则小椭圆的长轴长为( )cm .A .30B .20C .10D .33.(24-25高二上·全国·随堂练习)如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.灯丝位于椭圆的一个焦点1F 上,卡门位于另一个焦点2F 上.已知此椭圆的离心率为59,且125cm F F =,则灯丝发出的光线经反射镜面反射后到达卡门时所经过的路程为( )A .9cmB .10cmC .14cmD .18cm4.(23-24高二上·四川内江·阶段练习)彗星是太阳系中具有明亮尾巴的天体,它们的运行轨道是以太阳为一个焦点的椭圆.某彗星测得轨道的近日点(距离太阳最近的点)距太阳中心约4个天文单位,远日点(距离太阳最远的点)距太阳中心约6个天文单位,且近日点、远日点及太阳中心同在一条直线上,则轨道方程可以为(以“天文单位”为单位)( )A .2212524x y +=B .22194x y +=C .2212425x y +=D .22149x y +=六、素养提升1.(23-24高二上·贵州贵阳·阶段练习)椭圆的离心率(01e <<)大小决定该椭圆的圆扁程度(离心率趋于0椭圆越圆,离心率越趋于1椭圆越扁),则四个椭圆的形状中,最接近于圆.的椭圆是( ) A .221436x y +=B .2211612x y +=C .221364x y +=D .221610x y +=2.(24-25高二上·河南南阳·阶段练习)若椭圆22189x y k +=+2,则实数k 的值为 .3.(24-25高二上·陕西西安·阶段练习)曲线221259x y +=与曲线()2219259x y k k k +=<--一定成立的是( )A .长轴长相等B .焦距相等C .离心率相等D .短轴长相等4.(22-23高二上·黑龙江哈尔滨·期末)已知点(0,4)A ,P 是椭圆22:1259x yE +=上的动点,则||PA 的最大值是 .七、随堂检测1.已知椭圆22:14y C x +=,则椭圆C 的( )A .长轴长为4B .焦点在x 轴上C .离心率为12D .焦距为52.已知焦点在x 轴上的椭圆222:1(0)8+=>x y C b b的短轴长为4,则其离心率为( )A .12B .14C 3D 23.已知椭圆的2214x y m +=的焦距为2,则m 的值为( )A .5B 5C .3或5D 5或√34.下列椭圆的形状更接近于圆的是( ) A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=5.椭圆22195x y +=上的动点P 到其左焦点1F 的距离的最大值为( )A .4B .5C .6D .86.已知A 为椭圆2217x y +=的上顶点,P 为椭圆上一点,则PA 的最大值为( )A .2B 76C .3D 77.椭圆22110y x +=的短轴长为 ,该椭圆上一点到两个焦点的距离之和为 .8.已知椭圆C 的左焦点为F ,右顶点为A ,上顶点为B ,若ABF △为等腰三角形,则C 的离心率为 .9.求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是()4,0-和()4,0,且椭圆经过点()5,0; (2)焦点在y 轴上,且经过两个点()0,2和()1,0. 10.求适合下列条件的椭圆的标准方程: (1)长轴长为4,短轴长为2,焦点在y 轴上; (2)过点()3,0,离心率6e ; (3)过点()1,2M ,且与椭圆221126x y +=有相同离心率.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【摘要】:一轮复习是高考复习中内容最全面、最细致的一轮,也决定了同学们赖以迎接考试的知识基础是否牢靠。

因此,如果希望在高考中取得优异的成绩,一轮复习时需要有良好的方法和复习效果。

在此,查字典数学网小编为同学们整理了高考数学圆锥曲线方程,希望能对大家所有帮助。

高考数学圆锥曲线方程知识点如下;【总结】高考数学圆锥曲线方程一文到这里就为您介绍完毕了,怎么样,看了之后是不是受益良多呢?想要了解更多高三备考指导,请继续关注查字典数学网高中频道。

相关文档
最新文档